]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/slab.c
slab,slub: don't enable interrupts during early boot
[mirror_ubuntu-zesty-kernel.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
02af61bb 105#include <linux/kmemtrace.h>
1da177e4 106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
1da177e4 117
1da177e4
LT
118#include <asm/cacheflush.h>
119#include <asm/tlbflush.h>
120#include <asm/page.h>
121
122/*
50953fe9 123 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
124 * 0 for faster, smaller code (especially in the critical paths).
125 *
126 * STATS - 1 to collect stats for /proc/slabinfo.
127 * 0 for faster, smaller code (especially in the critical paths).
128 *
129 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
130 */
131
132#ifdef CONFIG_DEBUG_SLAB
133#define DEBUG 1
134#define STATS 1
135#define FORCED_DEBUG 1
136#else
137#define DEBUG 0
138#define STATS 0
139#define FORCED_DEBUG 0
140#endif
141
1da177e4
LT
142/* Shouldn't this be in a header file somewhere? */
143#define BYTES_PER_WORD sizeof(void *)
87a927c7 144#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 145
1da177e4
LT
146#ifndef ARCH_KMALLOC_MINALIGN
147/*
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
b46b8f19
DW
152 * alignment larger than the alignment of a 64-bit integer.
153 * ARCH_KMALLOC_MINALIGN allows that.
154 * Note that increasing this value may disable some debug features.
1da177e4 155 */
b46b8f19 156#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
1da177e4
LT
157#endif
158
159#ifndef ARCH_SLAB_MINALIGN
160/*
161 * Enforce a minimum alignment for all caches.
162 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
163 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
164 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
165 * some debug features.
166 */
167#define ARCH_SLAB_MINALIGN 0
168#endif
169
170#ifndef ARCH_KMALLOC_FLAGS
171#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
172#endif
173
174/* Legal flag mask for kmem_cache_create(). */
175#if DEBUG
50953fe9 176# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 177 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 178 SLAB_CACHE_DMA | \
5af60839 179 SLAB_STORE_USER | \
1da177e4 180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 181 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
d5cff635 182 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE)
1da177e4 183#else
ac2b898c 184# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 185 SLAB_CACHE_DMA | \
1da177e4 186 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 187 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
d5cff635 188 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE)
1da177e4
LT
189#endif
190
191/*
192 * kmem_bufctl_t:
193 *
194 * Bufctl's are used for linking objs within a slab
195 * linked offsets.
196 *
197 * This implementation relies on "struct page" for locating the cache &
198 * slab an object belongs to.
199 * This allows the bufctl structure to be small (one int), but limits
200 * the number of objects a slab (not a cache) can contain when off-slab
201 * bufctls are used. The limit is the size of the largest general cache
202 * that does not use off-slab slabs.
203 * For 32bit archs with 4 kB pages, is this 56.
204 * This is not serious, as it is only for large objects, when it is unwise
205 * to have too many per slab.
206 * Note: This limit can be raised by introducing a general cache whose size
207 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
208 */
209
fa5b08d5 210typedef unsigned int kmem_bufctl_t;
1da177e4
LT
211#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
212#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
213#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
214#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 215
1da177e4
LT
216/*
217 * struct slab
218 *
219 * Manages the objs in a slab. Placed either at the beginning of mem allocated
220 * for a slab, or allocated from an general cache.
221 * Slabs are chained into three list: fully used, partial, fully free slabs.
222 */
223struct slab {
b28a02de
PE
224 struct list_head list;
225 unsigned long colouroff;
226 void *s_mem; /* including colour offset */
227 unsigned int inuse; /* num of objs active in slab */
228 kmem_bufctl_t free;
229 unsigned short nodeid;
1da177e4
LT
230};
231
232/*
233 * struct slab_rcu
234 *
235 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
236 * arrange for kmem_freepages to be called via RCU. This is useful if
237 * we need to approach a kernel structure obliquely, from its address
238 * obtained without the usual locking. We can lock the structure to
239 * stabilize it and check it's still at the given address, only if we
240 * can be sure that the memory has not been meanwhile reused for some
241 * other kind of object (which our subsystem's lock might corrupt).
242 *
243 * rcu_read_lock before reading the address, then rcu_read_unlock after
244 * taking the spinlock within the structure expected at that address.
245 *
246 * We assume struct slab_rcu can overlay struct slab when destroying.
247 */
248struct slab_rcu {
b28a02de 249 struct rcu_head head;
343e0d7a 250 struct kmem_cache *cachep;
b28a02de 251 void *addr;
1da177e4
LT
252};
253
254/*
255 * struct array_cache
256 *
1da177e4
LT
257 * Purpose:
258 * - LIFO ordering, to hand out cache-warm objects from _alloc
259 * - reduce the number of linked list operations
260 * - reduce spinlock operations
261 *
262 * The limit is stored in the per-cpu structure to reduce the data cache
263 * footprint.
264 *
265 */
266struct array_cache {
267 unsigned int avail;
268 unsigned int limit;
269 unsigned int batchcount;
270 unsigned int touched;
e498be7d 271 spinlock_t lock;
bda5b655 272 void *entry[]; /*
a737b3e2
AM
273 * Must have this definition in here for the proper
274 * alignment of array_cache. Also simplifies accessing
275 * the entries.
a737b3e2 276 */
1da177e4
LT
277};
278
a737b3e2
AM
279/*
280 * bootstrap: The caches do not work without cpuarrays anymore, but the
281 * cpuarrays are allocated from the generic caches...
1da177e4
LT
282 */
283#define BOOT_CPUCACHE_ENTRIES 1
284struct arraycache_init {
285 struct array_cache cache;
b28a02de 286 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
287};
288
289/*
e498be7d 290 * The slab lists for all objects.
1da177e4
LT
291 */
292struct kmem_list3 {
b28a02de
PE
293 struct list_head slabs_partial; /* partial list first, better asm code */
294 struct list_head slabs_full;
295 struct list_head slabs_free;
296 unsigned long free_objects;
b28a02de 297 unsigned int free_limit;
2e1217cf 298 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
299 spinlock_t list_lock;
300 struct array_cache *shared; /* shared per node */
301 struct array_cache **alien; /* on other nodes */
35386e3b
CL
302 unsigned long next_reap; /* updated without locking */
303 int free_touched; /* updated without locking */
1da177e4
LT
304};
305
7e85ee0c
PE
306/*
307 * The slab allocator is initialized with interrupts disabled. Therefore, make
308 * sure early boot allocations don't accidentally enable interrupts.
309 */
310static gfp_t slab_gfp_mask __read_mostly = SLAB_GFP_BOOT_MASK;
311
e498be7d
CL
312/*
313 * Need this for bootstrapping a per node allocator.
314 */
556a169d 315#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
e498be7d
CL
316struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
317#define CACHE_CACHE 0
556a169d
PE
318#define SIZE_AC MAX_NUMNODES
319#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 320
ed11d9eb
CL
321static int drain_freelist(struct kmem_cache *cache,
322 struct kmem_list3 *l3, int tofree);
323static void free_block(struct kmem_cache *cachep, void **objpp, int len,
324 int node);
83b519e8 325static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 326static void cache_reap(struct work_struct *unused);
ed11d9eb 327
e498be7d 328/*
a737b3e2
AM
329 * This function must be completely optimized away if a constant is passed to
330 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 331 */
7243cc05 332static __always_inline int index_of(const size_t size)
e498be7d 333{
5ec8a847
SR
334 extern void __bad_size(void);
335
e498be7d
CL
336 if (__builtin_constant_p(size)) {
337 int i = 0;
338
339#define CACHE(x) \
340 if (size <=x) \
341 return i; \
342 else \
343 i++;
1c61fc40 344#include <linux/kmalloc_sizes.h>
e498be7d 345#undef CACHE
5ec8a847 346 __bad_size();
7243cc05 347 } else
5ec8a847 348 __bad_size();
e498be7d
CL
349 return 0;
350}
351
e0a42726
IM
352static int slab_early_init = 1;
353
e498be7d
CL
354#define INDEX_AC index_of(sizeof(struct arraycache_init))
355#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 356
5295a74c 357static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
358{
359 INIT_LIST_HEAD(&parent->slabs_full);
360 INIT_LIST_HEAD(&parent->slabs_partial);
361 INIT_LIST_HEAD(&parent->slabs_free);
362 parent->shared = NULL;
363 parent->alien = NULL;
2e1217cf 364 parent->colour_next = 0;
e498be7d
CL
365 spin_lock_init(&parent->list_lock);
366 parent->free_objects = 0;
367 parent->free_touched = 0;
368}
369
a737b3e2
AM
370#define MAKE_LIST(cachep, listp, slab, nodeid) \
371 do { \
372 INIT_LIST_HEAD(listp); \
373 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
374 } while (0)
375
a737b3e2
AM
376#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
377 do { \
e498be7d
CL
378 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
379 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
380 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
381 } while (0)
1da177e4
LT
382
383/*
343e0d7a 384 * struct kmem_cache
1da177e4
LT
385 *
386 * manages a cache.
387 */
b28a02de 388
2109a2d1 389struct kmem_cache {
1da177e4 390/* 1) per-cpu data, touched during every alloc/free */
b28a02de 391 struct array_cache *array[NR_CPUS];
b5d8ca7c 392/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
393 unsigned int batchcount;
394 unsigned int limit;
395 unsigned int shared;
b5d8ca7c 396
3dafccf2 397 unsigned int buffer_size;
6a2d7a95 398 u32 reciprocal_buffer_size;
b5d8ca7c 399/* 3) touched by every alloc & free from the backend */
b5d8ca7c 400
a737b3e2
AM
401 unsigned int flags; /* constant flags */
402 unsigned int num; /* # of objs per slab */
1da177e4 403
b5d8ca7c 404/* 4) cache_grow/shrink */
1da177e4 405 /* order of pgs per slab (2^n) */
b28a02de 406 unsigned int gfporder;
1da177e4
LT
407
408 /* force GFP flags, e.g. GFP_DMA */
b28a02de 409 gfp_t gfpflags;
1da177e4 410
a737b3e2 411 size_t colour; /* cache colouring range */
b28a02de 412 unsigned int colour_off; /* colour offset */
343e0d7a 413 struct kmem_cache *slabp_cache;
b28a02de 414 unsigned int slab_size;
a737b3e2 415 unsigned int dflags; /* dynamic flags */
1da177e4
LT
416
417 /* constructor func */
51cc5068 418 void (*ctor)(void *obj);
1da177e4 419
b5d8ca7c 420/* 5) cache creation/removal */
b28a02de
PE
421 const char *name;
422 struct list_head next;
1da177e4 423
b5d8ca7c 424/* 6) statistics */
1da177e4 425#if STATS
b28a02de
PE
426 unsigned long num_active;
427 unsigned long num_allocations;
428 unsigned long high_mark;
429 unsigned long grown;
430 unsigned long reaped;
431 unsigned long errors;
432 unsigned long max_freeable;
433 unsigned long node_allocs;
434 unsigned long node_frees;
fb7faf33 435 unsigned long node_overflow;
b28a02de
PE
436 atomic_t allochit;
437 atomic_t allocmiss;
438 atomic_t freehit;
439 atomic_t freemiss;
1da177e4
LT
440#endif
441#if DEBUG
3dafccf2
MS
442 /*
443 * If debugging is enabled, then the allocator can add additional
444 * fields and/or padding to every object. buffer_size contains the total
445 * object size including these internal fields, the following two
446 * variables contain the offset to the user object and its size.
447 */
448 int obj_offset;
449 int obj_size;
1da177e4 450#endif
8da3430d
ED
451 /*
452 * We put nodelists[] at the end of kmem_cache, because we want to size
453 * this array to nr_node_ids slots instead of MAX_NUMNODES
454 * (see kmem_cache_init())
455 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
456 * is statically defined, so we reserve the max number of nodes.
457 */
458 struct kmem_list3 *nodelists[MAX_NUMNODES];
459 /*
460 * Do not add fields after nodelists[]
461 */
1da177e4
LT
462};
463
464#define CFLGS_OFF_SLAB (0x80000000UL)
465#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
466
467#define BATCHREFILL_LIMIT 16
a737b3e2
AM
468/*
469 * Optimization question: fewer reaps means less probability for unnessary
470 * cpucache drain/refill cycles.
1da177e4 471 *
dc6f3f27 472 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
473 * which could lock up otherwise freeable slabs.
474 */
475#define REAPTIMEOUT_CPUC (2*HZ)
476#define REAPTIMEOUT_LIST3 (4*HZ)
477
478#if STATS
479#define STATS_INC_ACTIVE(x) ((x)->num_active++)
480#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
481#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
482#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 483#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
484#define STATS_SET_HIGH(x) \
485 do { \
486 if ((x)->num_active > (x)->high_mark) \
487 (x)->high_mark = (x)->num_active; \
488 } while (0)
1da177e4
LT
489#define STATS_INC_ERR(x) ((x)->errors++)
490#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 491#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 492#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
493#define STATS_SET_FREEABLE(x, i) \
494 do { \
495 if ((x)->max_freeable < i) \
496 (x)->max_freeable = i; \
497 } while (0)
1da177e4
LT
498#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
499#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
500#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
501#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
502#else
503#define STATS_INC_ACTIVE(x) do { } while (0)
504#define STATS_DEC_ACTIVE(x) do { } while (0)
505#define STATS_INC_ALLOCED(x) do { } while (0)
506#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 507#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
508#define STATS_SET_HIGH(x) do { } while (0)
509#define STATS_INC_ERR(x) do { } while (0)
510#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 511#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 512#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 513#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
514#define STATS_INC_ALLOCHIT(x) do { } while (0)
515#define STATS_INC_ALLOCMISS(x) do { } while (0)
516#define STATS_INC_FREEHIT(x) do { } while (0)
517#define STATS_INC_FREEMISS(x) do { } while (0)
518#endif
519
520#if DEBUG
1da177e4 521
a737b3e2
AM
522/*
523 * memory layout of objects:
1da177e4 524 * 0 : objp
3dafccf2 525 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
526 * the end of an object is aligned with the end of the real
527 * allocation. Catches writes behind the end of the allocation.
3dafccf2 528 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 529 * redzone word.
3dafccf2
MS
530 * cachep->obj_offset: The real object.
531 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
532 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
533 * [BYTES_PER_WORD long]
1da177e4 534 */
343e0d7a 535static int obj_offset(struct kmem_cache *cachep)
1da177e4 536{
3dafccf2 537 return cachep->obj_offset;
1da177e4
LT
538}
539
343e0d7a 540static int obj_size(struct kmem_cache *cachep)
1da177e4 541{
3dafccf2 542 return cachep->obj_size;
1da177e4
LT
543}
544
b46b8f19 545static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
546{
547 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
548 return (unsigned long long*) (objp + obj_offset(cachep) -
549 sizeof(unsigned long long));
1da177e4
LT
550}
551
b46b8f19 552static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
553{
554 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
555 if (cachep->flags & SLAB_STORE_USER)
b46b8f19
DW
556 return (unsigned long long *)(objp + cachep->buffer_size -
557 sizeof(unsigned long long) -
87a927c7 558 REDZONE_ALIGN);
b46b8f19
DW
559 return (unsigned long long *) (objp + cachep->buffer_size -
560 sizeof(unsigned long long));
1da177e4
LT
561}
562
343e0d7a 563static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
564{
565 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 566 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
567}
568
569#else
570
3dafccf2
MS
571#define obj_offset(x) 0
572#define obj_size(cachep) (cachep->buffer_size)
b46b8f19
DW
573#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
574#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
575#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
576
577#endif
578
36555751
EGM
579#ifdef CONFIG_KMEMTRACE
580size_t slab_buffer_size(struct kmem_cache *cachep)
581{
582 return cachep->buffer_size;
583}
584EXPORT_SYMBOL(slab_buffer_size);
585#endif
586
1da177e4
LT
587/*
588 * Do not go above this order unless 0 objects fit into the slab.
589 */
590#define BREAK_GFP_ORDER_HI 1
591#define BREAK_GFP_ORDER_LO 0
592static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
593
a737b3e2
AM
594/*
595 * Functions for storing/retrieving the cachep and or slab from the page
596 * allocator. These are used to find the slab an obj belongs to. With kfree(),
597 * these are used to find the cache which an obj belongs to.
1da177e4 598 */
065d41cb
PE
599static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
600{
601 page->lru.next = (struct list_head *)cache;
602}
603
604static inline struct kmem_cache *page_get_cache(struct page *page)
605{
d85f3385 606 page = compound_head(page);
ddc2e812 607 BUG_ON(!PageSlab(page));
065d41cb
PE
608 return (struct kmem_cache *)page->lru.next;
609}
610
611static inline void page_set_slab(struct page *page, struct slab *slab)
612{
613 page->lru.prev = (struct list_head *)slab;
614}
615
616static inline struct slab *page_get_slab(struct page *page)
617{
ddc2e812 618 BUG_ON(!PageSlab(page));
065d41cb
PE
619 return (struct slab *)page->lru.prev;
620}
1da177e4 621
6ed5eb22
PE
622static inline struct kmem_cache *virt_to_cache(const void *obj)
623{
b49af68f 624 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
625 return page_get_cache(page);
626}
627
628static inline struct slab *virt_to_slab(const void *obj)
629{
b49af68f 630 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
631 return page_get_slab(page);
632}
633
8fea4e96
PE
634static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
635 unsigned int idx)
636{
637 return slab->s_mem + cache->buffer_size * idx;
638}
639
6a2d7a95
ED
640/*
641 * We want to avoid an expensive divide : (offset / cache->buffer_size)
642 * Using the fact that buffer_size is a constant for a particular cache,
643 * we can replace (offset / cache->buffer_size) by
644 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
645 */
646static inline unsigned int obj_to_index(const struct kmem_cache *cache,
647 const struct slab *slab, void *obj)
8fea4e96 648{
6a2d7a95
ED
649 u32 offset = (obj - slab->s_mem);
650 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
651}
652
a737b3e2
AM
653/*
654 * These are the default caches for kmalloc. Custom caches can have other sizes.
655 */
1da177e4
LT
656struct cache_sizes malloc_sizes[] = {
657#define CACHE(x) { .cs_size = (x) },
658#include <linux/kmalloc_sizes.h>
659 CACHE(ULONG_MAX)
660#undef CACHE
661};
662EXPORT_SYMBOL(malloc_sizes);
663
664/* Must match cache_sizes above. Out of line to keep cache footprint low. */
665struct cache_names {
666 char *name;
667 char *name_dma;
668};
669
670static struct cache_names __initdata cache_names[] = {
671#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
672#include <linux/kmalloc_sizes.h>
b28a02de 673 {NULL,}
1da177e4
LT
674#undef CACHE
675};
676
677static struct arraycache_init initarray_cache __initdata =
b28a02de 678 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 679static struct arraycache_init initarray_generic =
b28a02de 680 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
681
682/* internal cache of cache description objs */
343e0d7a 683static struct kmem_cache cache_cache = {
b28a02de
PE
684 .batchcount = 1,
685 .limit = BOOT_CPUCACHE_ENTRIES,
686 .shared = 1,
343e0d7a 687 .buffer_size = sizeof(struct kmem_cache),
b28a02de 688 .name = "kmem_cache",
1da177e4
LT
689};
690
056c6241
RT
691#define BAD_ALIEN_MAGIC 0x01020304ul
692
f1aaee53
AV
693#ifdef CONFIG_LOCKDEP
694
695/*
696 * Slab sometimes uses the kmalloc slabs to store the slab headers
697 * for other slabs "off slab".
698 * The locking for this is tricky in that it nests within the locks
699 * of all other slabs in a few places; to deal with this special
700 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
701 *
702 * We set lock class for alien array caches which are up during init.
703 * The lock annotation will be lost if all cpus of a node goes down and
704 * then comes back up during hotplug
f1aaee53 705 */
056c6241
RT
706static struct lock_class_key on_slab_l3_key;
707static struct lock_class_key on_slab_alc_key;
708
709static inline void init_lock_keys(void)
f1aaee53 710
f1aaee53
AV
711{
712 int q;
056c6241
RT
713 struct cache_sizes *s = malloc_sizes;
714
715 while (s->cs_size != ULONG_MAX) {
716 for_each_node(q) {
717 struct array_cache **alc;
718 int r;
719 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
720 if (!l3 || OFF_SLAB(s->cs_cachep))
721 continue;
722 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
723 alc = l3->alien;
724 /*
725 * FIXME: This check for BAD_ALIEN_MAGIC
726 * should go away when common slab code is taught to
727 * work even without alien caches.
728 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
729 * for alloc_alien_cache,
730 */
731 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
732 continue;
733 for_each_node(r) {
734 if (alc[r])
735 lockdep_set_class(&alc[r]->lock,
736 &on_slab_alc_key);
737 }
738 }
739 s++;
f1aaee53
AV
740 }
741}
f1aaee53 742#else
056c6241 743static inline void init_lock_keys(void)
f1aaee53
AV
744{
745}
746#endif
747
8f5be20b 748/*
95402b38 749 * Guard access to the cache-chain.
8f5be20b 750 */
fc0abb14 751static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
752static struct list_head cache_chain;
753
1da177e4
LT
754/*
755 * chicken and egg problem: delay the per-cpu array allocation
756 * until the general caches are up.
757 */
758static enum {
759 NONE,
e498be7d
CL
760 PARTIAL_AC,
761 PARTIAL_L3,
1da177e4
LT
762 FULL
763} g_cpucache_up;
764
39d24e64
MK
765/*
766 * used by boot code to determine if it can use slab based allocator
767 */
768int slab_is_available(void)
769{
770 return g_cpucache_up == FULL;
771}
772
52bad64d 773static DEFINE_PER_CPU(struct delayed_work, reap_work);
1da177e4 774
343e0d7a 775static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
776{
777 return cachep->array[smp_processor_id()];
778}
779
a737b3e2
AM
780static inline struct kmem_cache *__find_general_cachep(size_t size,
781 gfp_t gfpflags)
1da177e4
LT
782{
783 struct cache_sizes *csizep = malloc_sizes;
784
785#if DEBUG
786 /* This happens if someone tries to call
b28a02de
PE
787 * kmem_cache_create(), or __kmalloc(), before
788 * the generic caches are initialized.
789 */
c7e43c78 790 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 791#endif
6cb8f913
CL
792 if (!size)
793 return ZERO_SIZE_PTR;
794
1da177e4
LT
795 while (size > csizep->cs_size)
796 csizep++;
797
798 /*
0abf40c1 799 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
800 * has cs_{dma,}cachep==NULL. Thus no special case
801 * for large kmalloc calls required.
802 */
4b51d669 803#ifdef CONFIG_ZONE_DMA
1da177e4
LT
804 if (unlikely(gfpflags & GFP_DMA))
805 return csizep->cs_dmacachep;
4b51d669 806#endif
1da177e4
LT
807 return csizep->cs_cachep;
808}
809
b221385b 810static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
811{
812 return __find_general_cachep(size, gfpflags);
813}
97e2bde4 814
fbaccacf 815static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 816{
fbaccacf
SR
817 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
818}
1da177e4 819
a737b3e2
AM
820/*
821 * Calculate the number of objects and left-over bytes for a given buffer size.
822 */
fbaccacf
SR
823static void cache_estimate(unsigned long gfporder, size_t buffer_size,
824 size_t align, int flags, size_t *left_over,
825 unsigned int *num)
826{
827 int nr_objs;
828 size_t mgmt_size;
829 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 830
fbaccacf
SR
831 /*
832 * The slab management structure can be either off the slab or
833 * on it. For the latter case, the memory allocated for a
834 * slab is used for:
835 *
836 * - The struct slab
837 * - One kmem_bufctl_t for each object
838 * - Padding to respect alignment of @align
839 * - @buffer_size bytes for each object
840 *
841 * If the slab management structure is off the slab, then the
842 * alignment will already be calculated into the size. Because
843 * the slabs are all pages aligned, the objects will be at the
844 * correct alignment when allocated.
845 */
846 if (flags & CFLGS_OFF_SLAB) {
847 mgmt_size = 0;
848 nr_objs = slab_size / buffer_size;
849
850 if (nr_objs > SLAB_LIMIT)
851 nr_objs = SLAB_LIMIT;
852 } else {
853 /*
854 * Ignore padding for the initial guess. The padding
855 * is at most @align-1 bytes, and @buffer_size is at
856 * least @align. In the worst case, this result will
857 * be one greater than the number of objects that fit
858 * into the memory allocation when taking the padding
859 * into account.
860 */
861 nr_objs = (slab_size - sizeof(struct slab)) /
862 (buffer_size + sizeof(kmem_bufctl_t));
863
864 /*
865 * This calculated number will be either the right
866 * amount, or one greater than what we want.
867 */
868 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
869 > slab_size)
870 nr_objs--;
871
872 if (nr_objs > SLAB_LIMIT)
873 nr_objs = SLAB_LIMIT;
874
875 mgmt_size = slab_mgmt_size(nr_objs, align);
876 }
877 *num = nr_objs;
878 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
879}
880
d40cee24 881#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 882
a737b3e2
AM
883static void __slab_error(const char *function, struct kmem_cache *cachep,
884 char *msg)
1da177e4
LT
885{
886 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 887 function, cachep->name, msg);
1da177e4
LT
888 dump_stack();
889}
890
3395ee05
PM
891/*
892 * By default on NUMA we use alien caches to stage the freeing of
893 * objects allocated from other nodes. This causes massive memory
894 * inefficiencies when using fake NUMA setup to split memory into a
895 * large number of small nodes, so it can be disabled on the command
896 * line
897 */
898
899static int use_alien_caches __read_mostly = 1;
1807a1aa 900static int numa_platform __read_mostly = 1;
3395ee05
PM
901static int __init noaliencache_setup(char *s)
902{
903 use_alien_caches = 0;
904 return 1;
905}
906__setup("noaliencache", noaliencache_setup);
907
8fce4d8e
CL
908#ifdef CONFIG_NUMA
909/*
910 * Special reaping functions for NUMA systems called from cache_reap().
911 * These take care of doing round robin flushing of alien caches (containing
912 * objects freed on different nodes from which they were allocated) and the
913 * flushing of remote pcps by calling drain_node_pages.
914 */
915static DEFINE_PER_CPU(unsigned long, reap_node);
916
917static void init_reap_node(int cpu)
918{
919 int node;
920
921 node = next_node(cpu_to_node(cpu), node_online_map);
922 if (node == MAX_NUMNODES)
442295c9 923 node = first_node(node_online_map);
8fce4d8e 924
7f6b8876 925 per_cpu(reap_node, cpu) = node;
8fce4d8e
CL
926}
927
928static void next_reap_node(void)
929{
930 int node = __get_cpu_var(reap_node);
931
8fce4d8e
CL
932 node = next_node(node, node_online_map);
933 if (unlikely(node >= MAX_NUMNODES))
934 node = first_node(node_online_map);
935 __get_cpu_var(reap_node) = node;
936}
937
938#else
939#define init_reap_node(cpu) do { } while (0)
940#define next_reap_node(void) do { } while (0)
941#endif
942
1da177e4
LT
943/*
944 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
945 * via the workqueue/eventd.
946 * Add the CPU number into the expiration time to minimize the possibility of
947 * the CPUs getting into lockstep and contending for the global cache chain
948 * lock.
949 */
897e679b 950static void __cpuinit start_cpu_timer(int cpu)
1da177e4 951{
52bad64d 952 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
1da177e4
LT
953
954 /*
955 * When this gets called from do_initcalls via cpucache_init(),
956 * init_workqueues() has already run, so keventd will be setup
957 * at that time.
958 */
52bad64d 959 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 960 init_reap_node(cpu);
65f27f38 961 INIT_DELAYED_WORK(reap_work, cache_reap);
2b284214
AV
962 schedule_delayed_work_on(cpu, reap_work,
963 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
964 }
965}
966
e498be7d 967static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 968 int batchcount, gfp_t gfp)
1da177e4 969{
b28a02de 970 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
971 struct array_cache *nc = NULL;
972
83b519e8 973 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
974 /*
975 * The array_cache structures contain pointers to free object.
976 * However, when such objects are allocated or transfered to another
977 * cache the pointers are not cleared and they could be counted as
978 * valid references during a kmemleak scan. Therefore, kmemleak must
979 * not scan such objects.
980 */
981 kmemleak_no_scan(nc);
1da177e4
LT
982 if (nc) {
983 nc->avail = 0;
984 nc->limit = entries;
985 nc->batchcount = batchcount;
986 nc->touched = 0;
e498be7d 987 spin_lock_init(&nc->lock);
1da177e4
LT
988 }
989 return nc;
990}
991
3ded175a
CL
992/*
993 * Transfer objects in one arraycache to another.
994 * Locking must be handled by the caller.
995 *
996 * Return the number of entries transferred.
997 */
998static int transfer_objects(struct array_cache *to,
999 struct array_cache *from, unsigned int max)
1000{
1001 /* Figure out how many entries to transfer */
1002 int nr = min(min(from->avail, max), to->limit - to->avail);
1003
1004 if (!nr)
1005 return 0;
1006
1007 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1008 sizeof(void *) *nr);
1009
1010 from->avail -= nr;
1011 to->avail += nr;
1012 to->touched = 1;
1013 return nr;
1014}
1015
765c4507
CL
1016#ifndef CONFIG_NUMA
1017
1018#define drain_alien_cache(cachep, alien) do { } while (0)
1019#define reap_alien(cachep, l3) do { } while (0)
1020
83b519e8 1021static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
1022{
1023 return (struct array_cache **)BAD_ALIEN_MAGIC;
1024}
1025
1026static inline void free_alien_cache(struct array_cache **ac_ptr)
1027{
1028}
1029
1030static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1031{
1032 return 0;
1033}
1034
1035static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1036 gfp_t flags)
1037{
1038 return NULL;
1039}
1040
8b98c169 1041static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1042 gfp_t flags, int nodeid)
1043{
1044 return NULL;
1045}
1046
1047#else /* CONFIG_NUMA */
1048
8b98c169 1049static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1050static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1051
83b519e8 1052static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
1053{
1054 struct array_cache **ac_ptr;
8ef82866 1055 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1056 int i;
1057
1058 if (limit > 1)
1059 limit = 12;
83b519e8 1060 ac_ptr = kmalloc_node(memsize, gfp, node);
e498be7d
CL
1061 if (ac_ptr) {
1062 for_each_node(i) {
1063 if (i == node || !node_online(i)) {
1064 ac_ptr[i] = NULL;
1065 continue;
1066 }
83b519e8 1067 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 1068 if (!ac_ptr[i]) {
cc550def 1069 for (i--; i >= 0; i--)
e498be7d
CL
1070 kfree(ac_ptr[i]);
1071 kfree(ac_ptr);
1072 return NULL;
1073 }
1074 }
1075 }
1076 return ac_ptr;
1077}
1078
5295a74c 1079static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1080{
1081 int i;
1082
1083 if (!ac_ptr)
1084 return;
e498be7d 1085 for_each_node(i)
b28a02de 1086 kfree(ac_ptr[i]);
e498be7d
CL
1087 kfree(ac_ptr);
1088}
1089
343e0d7a 1090static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1091 struct array_cache *ac, int node)
e498be7d
CL
1092{
1093 struct kmem_list3 *rl3 = cachep->nodelists[node];
1094
1095 if (ac->avail) {
1096 spin_lock(&rl3->list_lock);
e00946fe
CL
1097 /*
1098 * Stuff objects into the remote nodes shared array first.
1099 * That way we could avoid the overhead of putting the objects
1100 * into the free lists and getting them back later.
1101 */
693f7d36
JS
1102 if (rl3->shared)
1103 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1104
ff69416e 1105 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1106 ac->avail = 0;
1107 spin_unlock(&rl3->list_lock);
1108 }
1109}
1110
8fce4d8e
CL
1111/*
1112 * Called from cache_reap() to regularly drain alien caches round robin.
1113 */
1114static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1115{
1116 int node = __get_cpu_var(reap_node);
1117
1118 if (l3->alien) {
1119 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1120
1121 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1122 __drain_alien_cache(cachep, ac, node);
1123 spin_unlock_irq(&ac->lock);
1124 }
1125 }
1126}
1127
a737b3e2
AM
1128static void drain_alien_cache(struct kmem_cache *cachep,
1129 struct array_cache **alien)
e498be7d 1130{
b28a02de 1131 int i = 0;
e498be7d
CL
1132 struct array_cache *ac;
1133 unsigned long flags;
1134
1135 for_each_online_node(i) {
4484ebf1 1136 ac = alien[i];
e498be7d
CL
1137 if (ac) {
1138 spin_lock_irqsave(&ac->lock, flags);
1139 __drain_alien_cache(cachep, ac, i);
1140 spin_unlock_irqrestore(&ac->lock, flags);
1141 }
1142 }
1143}
729bd0b7 1144
873623df 1145static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1146{
1147 struct slab *slabp = virt_to_slab(objp);
1148 int nodeid = slabp->nodeid;
1149 struct kmem_list3 *l3;
1150 struct array_cache *alien = NULL;
1ca4cb24
PE
1151 int node;
1152
1153 node = numa_node_id();
729bd0b7
PE
1154
1155 /*
1156 * Make sure we are not freeing a object from another node to the array
1157 * cache on this cpu.
1158 */
62918a03 1159 if (likely(slabp->nodeid == node))
729bd0b7
PE
1160 return 0;
1161
1ca4cb24 1162 l3 = cachep->nodelists[node];
729bd0b7
PE
1163 STATS_INC_NODEFREES(cachep);
1164 if (l3->alien && l3->alien[nodeid]) {
1165 alien = l3->alien[nodeid];
873623df 1166 spin_lock(&alien->lock);
729bd0b7
PE
1167 if (unlikely(alien->avail == alien->limit)) {
1168 STATS_INC_ACOVERFLOW(cachep);
1169 __drain_alien_cache(cachep, alien, nodeid);
1170 }
1171 alien->entry[alien->avail++] = objp;
1172 spin_unlock(&alien->lock);
1173 } else {
1174 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1175 free_block(cachep, &objp, 1, nodeid);
1176 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1177 }
1178 return 1;
1179}
e498be7d
CL
1180#endif
1181
fbf1e473
AM
1182static void __cpuinit cpuup_canceled(long cpu)
1183{
1184 struct kmem_cache *cachep;
1185 struct kmem_list3 *l3 = NULL;
1186 int node = cpu_to_node(cpu);
a70f7302 1187 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473
AM
1188
1189 list_for_each_entry(cachep, &cache_chain, next) {
1190 struct array_cache *nc;
1191 struct array_cache *shared;
1192 struct array_cache **alien;
fbf1e473 1193
fbf1e473
AM
1194 /* cpu is dead; no one can alloc from it. */
1195 nc = cachep->array[cpu];
1196 cachep->array[cpu] = NULL;
1197 l3 = cachep->nodelists[node];
1198
1199 if (!l3)
1200 goto free_array_cache;
1201
1202 spin_lock_irq(&l3->list_lock);
1203
1204 /* Free limit for this kmem_list3 */
1205 l3->free_limit -= cachep->batchcount;
1206 if (nc)
1207 free_block(cachep, nc->entry, nc->avail, node);
1208
c5f59f08 1209 if (!cpus_empty(*mask)) {
fbf1e473
AM
1210 spin_unlock_irq(&l3->list_lock);
1211 goto free_array_cache;
1212 }
1213
1214 shared = l3->shared;
1215 if (shared) {
1216 free_block(cachep, shared->entry,
1217 shared->avail, node);
1218 l3->shared = NULL;
1219 }
1220
1221 alien = l3->alien;
1222 l3->alien = NULL;
1223
1224 spin_unlock_irq(&l3->list_lock);
1225
1226 kfree(shared);
1227 if (alien) {
1228 drain_alien_cache(cachep, alien);
1229 free_alien_cache(alien);
1230 }
1231free_array_cache:
1232 kfree(nc);
1233 }
1234 /*
1235 * In the previous loop, all the objects were freed to
1236 * the respective cache's slabs, now we can go ahead and
1237 * shrink each nodelist to its limit.
1238 */
1239 list_for_each_entry(cachep, &cache_chain, next) {
1240 l3 = cachep->nodelists[node];
1241 if (!l3)
1242 continue;
1243 drain_freelist(cachep, l3, l3->free_objects);
1244 }
1245}
1246
1247static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1248{
343e0d7a 1249 struct kmem_cache *cachep;
e498be7d
CL
1250 struct kmem_list3 *l3 = NULL;
1251 int node = cpu_to_node(cpu);
ea02e3dd 1252 const int memsize = sizeof(struct kmem_list3);
1da177e4 1253
fbf1e473
AM
1254 /*
1255 * We need to do this right in the beginning since
1256 * alloc_arraycache's are going to use this list.
1257 * kmalloc_node allows us to add the slab to the right
1258 * kmem_list3 and not this cpu's kmem_list3
1259 */
1260
1261 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2 1262 /*
fbf1e473
AM
1263 * Set up the size64 kmemlist for cpu before we can
1264 * begin anything. Make sure some other cpu on this
1265 * node has not already allocated this
e498be7d 1266 */
fbf1e473
AM
1267 if (!cachep->nodelists[node]) {
1268 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1269 if (!l3)
1270 goto bad;
1271 kmem_list3_init(l3);
1272 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1273 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1274
a737b3e2 1275 /*
fbf1e473
AM
1276 * The l3s don't come and go as CPUs come and
1277 * go. cache_chain_mutex is sufficient
1278 * protection here.
e498be7d 1279 */
fbf1e473 1280 cachep->nodelists[node] = l3;
e498be7d
CL
1281 }
1282
fbf1e473
AM
1283 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1284 cachep->nodelists[node]->free_limit =
1285 (1 + nr_cpus_node(node)) *
1286 cachep->batchcount + cachep->num;
1287 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1288 }
1289
1290 /*
1291 * Now we can go ahead with allocating the shared arrays and
1292 * array caches
1293 */
1294 list_for_each_entry(cachep, &cache_chain, next) {
1295 struct array_cache *nc;
1296 struct array_cache *shared = NULL;
1297 struct array_cache **alien = NULL;
1298
1299 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1300 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1301 if (!nc)
1302 goto bad;
1303 if (cachep->shared) {
1304 shared = alloc_arraycache(node,
1305 cachep->shared * cachep->batchcount,
83b519e8 1306 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1307 if (!shared) {
1308 kfree(nc);
1da177e4 1309 goto bad;
12d00f6a 1310 }
fbf1e473
AM
1311 }
1312 if (use_alien_caches) {
83b519e8 1313 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1314 if (!alien) {
1315 kfree(shared);
1316 kfree(nc);
fbf1e473 1317 goto bad;
12d00f6a 1318 }
fbf1e473
AM
1319 }
1320 cachep->array[cpu] = nc;
1321 l3 = cachep->nodelists[node];
1322 BUG_ON(!l3);
1323
1324 spin_lock_irq(&l3->list_lock);
1325 if (!l3->shared) {
1326 /*
1327 * We are serialised from CPU_DEAD or
1328 * CPU_UP_CANCELLED by the cpucontrol lock
1329 */
1330 l3->shared = shared;
1331 shared = NULL;
1332 }
4484ebf1 1333#ifdef CONFIG_NUMA
fbf1e473
AM
1334 if (!l3->alien) {
1335 l3->alien = alien;
1336 alien = NULL;
1da177e4 1337 }
fbf1e473
AM
1338#endif
1339 spin_unlock_irq(&l3->list_lock);
1340 kfree(shared);
1341 free_alien_cache(alien);
1342 }
1343 return 0;
1344bad:
12d00f6a 1345 cpuup_canceled(cpu);
fbf1e473
AM
1346 return -ENOMEM;
1347}
1348
1349static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1350 unsigned long action, void *hcpu)
1351{
1352 long cpu = (long)hcpu;
1353 int err = 0;
1354
1355 switch (action) {
fbf1e473
AM
1356 case CPU_UP_PREPARE:
1357 case CPU_UP_PREPARE_FROZEN:
95402b38 1358 mutex_lock(&cache_chain_mutex);
fbf1e473 1359 err = cpuup_prepare(cpu);
95402b38 1360 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1361 break;
1362 case CPU_ONLINE:
8bb78442 1363 case CPU_ONLINE_FROZEN:
1da177e4
LT
1364 start_cpu_timer(cpu);
1365 break;
1366#ifdef CONFIG_HOTPLUG_CPU
5830c590 1367 case CPU_DOWN_PREPARE:
8bb78442 1368 case CPU_DOWN_PREPARE_FROZEN:
5830c590
CL
1369 /*
1370 * Shutdown cache reaper. Note that the cache_chain_mutex is
1371 * held so that if cache_reap() is invoked it cannot do
1372 * anything expensive but will only modify reap_work
1373 * and reschedule the timer.
1374 */
1375 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1376 /* Now the cache_reaper is guaranteed to be not running. */
1377 per_cpu(reap_work, cpu).work.func = NULL;
1378 break;
1379 case CPU_DOWN_FAILED:
8bb78442 1380 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1381 start_cpu_timer(cpu);
1382 break;
1da177e4 1383 case CPU_DEAD:
8bb78442 1384 case CPU_DEAD_FROZEN:
4484ebf1
RT
1385 /*
1386 * Even if all the cpus of a node are down, we don't free the
1387 * kmem_list3 of any cache. This to avoid a race between
1388 * cpu_down, and a kmalloc allocation from another cpu for
1389 * memory from the node of the cpu going down. The list3
1390 * structure is usually allocated from kmem_cache_create() and
1391 * gets destroyed at kmem_cache_destroy().
1392 */
183ff22b 1393 /* fall through */
8f5be20b 1394#endif
1da177e4 1395 case CPU_UP_CANCELED:
8bb78442 1396 case CPU_UP_CANCELED_FROZEN:
95402b38 1397 mutex_lock(&cache_chain_mutex);
fbf1e473 1398 cpuup_canceled(cpu);
fc0abb14 1399 mutex_unlock(&cache_chain_mutex);
1da177e4 1400 break;
1da177e4 1401 }
fbf1e473 1402 return err ? NOTIFY_BAD : NOTIFY_OK;
1da177e4
LT
1403}
1404
74b85f37
CS
1405static struct notifier_block __cpuinitdata cpucache_notifier = {
1406 &cpuup_callback, NULL, 0
1407};
1da177e4 1408
e498be7d
CL
1409/*
1410 * swap the static kmem_list3 with kmalloced memory
1411 */
a737b3e2
AM
1412static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1413 int nodeid)
e498be7d
CL
1414{
1415 struct kmem_list3 *ptr;
1416
83b519e8 1417 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
e498be7d
CL
1418 BUG_ON(!ptr);
1419
e498be7d 1420 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1421 /*
1422 * Do not assume that spinlocks can be initialized via memcpy:
1423 */
1424 spin_lock_init(&ptr->list_lock);
1425
e498be7d
CL
1426 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1427 cachep->nodelists[nodeid] = ptr;
e498be7d
CL
1428}
1429
556a169d
PE
1430/*
1431 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1432 * size of kmem_list3.
1433 */
1434static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1435{
1436 int node;
1437
1438 for_each_online_node(node) {
1439 cachep->nodelists[node] = &initkmem_list3[index + node];
1440 cachep->nodelists[node]->next_reap = jiffies +
1441 REAPTIMEOUT_LIST3 +
1442 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1443 }
1444}
1445
a737b3e2
AM
1446/*
1447 * Initialisation. Called after the page allocator have been initialised and
1448 * before smp_init().
1da177e4
LT
1449 */
1450void __init kmem_cache_init(void)
1451{
1452 size_t left_over;
1453 struct cache_sizes *sizes;
1454 struct cache_names *names;
e498be7d 1455 int i;
07ed76b2 1456 int order;
1ca4cb24 1457 int node;
e498be7d 1458
1807a1aa 1459 if (num_possible_nodes() == 1) {
62918a03 1460 use_alien_caches = 0;
1807a1aa
SS
1461 numa_platform = 0;
1462 }
62918a03 1463
e498be7d
CL
1464 for (i = 0; i < NUM_INIT_LISTS; i++) {
1465 kmem_list3_init(&initkmem_list3[i]);
1466 if (i < MAX_NUMNODES)
1467 cache_cache.nodelists[i] = NULL;
1468 }
556a169d 1469 set_up_list3s(&cache_cache, CACHE_CACHE);
1da177e4
LT
1470
1471 /*
1472 * Fragmentation resistance on low memory - only use bigger
1473 * page orders on machines with more than 32MB of memory.
1474 */
1475 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1476 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1477
1da177e4
LT
1478 /* Bootstrap is tricky, because several objects are allocated
1479 * from caches that do not exist yet:
a737b3e2
AM
1480 * 1) initialize the cache_cache cache: it contains the struct
1481 * kmem_cache structures of all caches, except cache_cache itself:
1482 * cache_cache is statically allocated.
e498be7d
CL
1483 * Initially an __init data area is used for the head array and the
1484 * kmem_list3 structures, it's replaced with a kmalloc allocated
1485 * array at the end of the bootstrap.
1da177e4 1486 * 2) Create the first kmalloc cache.
343e0d7a 1487 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1488 * An __init data area is used for the head array.
1489 * 3) Create the remaining kmalloc caches, with minimally sized
1490 * head arrays.
1da177e4
LT
1491 * 4) Replace the __init data head arrays for cache_cache and the first
1492 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1493 * 5) Replace the __init data for kmem_list3 for cache_cache and
1494 * the other cache's with kmalloc allocated memory.
1495 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1496 */
1497
1ca4cb24
PE
1498 node = numa_node_id();
1499
1da177e4 1500 /* 1) create the cache_cache */
1da177e4
LT
1501 INIT_LIST_HEAD(&cache_chain);
1502 list_add(&cache_cache.next, &cache_chain);
1503 cache_cache.colour_off = cache_line_size();
1504 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
ec1f5eee 1505 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1da177e4 1506
8da3430d
ED
1507 /*
1508 * struct kmem_cache size depends on nr_node_ids, which
1509 * can be less than MAX_NUMNODES.
1510 */
1511 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1512 nr_node_ids * sizeof(struct kmem_list3 *);
1513#if DEBUG
1514 cache_cache.obj_size = cache_cache.buffer_size;
1515#endif
a737b3e2
AM
1516 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1517 cache_line_size());
6a2d7a95
ED
1518 cache_cache.reciprocal_buffer_size =
1519 reciprocal_value(cache_cache.buffer_size);
1da177e4 1520
07ed76b2
JS
1521 for (order = 0; order < MAX_ORDER; order++) {
1522 cache_estimate(order, cache_cache.buffer_size,
1523 cache_line_size(), 0, &left_over, &cache_cache.num);
1524 if (cache_cache.num)
1525 break;
1526 }
40094fa6 1527 BUG_ON(!cache_cache.num);
07ed76b2 1528 cache_cache.gfporder = order;
b28a02de 1529 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1530 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1531 sizeof(struct slab), cache_line_size());
1da177e4
LT
1532
1533 /* 2+3) create the kmalloc caches */
1534 sizes = malloc_sizes;
1535 names = cache_names;
1536
a737b3e2
AM
1537 /*
1538 * Initialize the caches that provide memory for the array cache and the
1539 * kmem_list3 structures first. Without this, further allocations will
1540 * bug.
e498be7d
CL
1541 */
1542
1543 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1544 sizes[INDEX_AC].cs_size,
1545 ARCH_KMALLOC_MINALIGN,
1546 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1547 NULL);
e498be7d 1548
a737b3e2 1549 if (INDEX_AC != INDEX_L3) {
e498be7d 1550 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1551 kmem_cache_create(names[INDEX_L3].name,
1552 sizes[INDEX_L3].cs_size,
1553 ARCH_KMALLOC_MINALIGN,
1554 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1555 NULL);
a737b3e2 1556 }
e498be7d 1557
e0a42726
IM
1558 slab_early_init = 0;
1559
1da177e4 1560 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1561 /*
1562 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1563 * This should be particularly beneficial on SMP boxes, as it
1564 * eliminates "false sharing".
1565 * Note for systems short on memory removing the alignment will
e498be7d
CL
1566 * allow tighter packing of the smaller caches.
1567 */
a737b3e2 1568 if (!sizes->cs_cachep) {
e498be7d 1569 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1570 sizes->cs_size,
1571 ARCH_KMALLOC_MINALIGN,
1572 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1573 NULL);
a737b3e2 1574 }
4b51d669
CL
1575#ifdef CONFIG_ZONE_DMA
1576 sizes->cs_dmacachep = kmem_cache_create(
1577 names->name_dma,
a737b3e2
AM
1578 sizes->cs_size,
1579 ARCH_KMALLOC_MINALIGN,
1580 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1581 SLAB_PANIC,
20c2df83 1582 NULL);
4b51d669 1583#endif
1da177e4
LT
1584 sizes++;
1585 names++;
1586 }
1587 /* 4) Replace the bootstrap head arrays */
1588 {
2b2d5493 1589 struct array_cache *ptr;
e498be7d 1590
83b519e8 1591 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1592
9a2dba4b
PE
1593 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1594 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1595 sizeof(struct arraycache_init));
2b2d5493
IM
1596 /*
1597 * Do not assume that spinlocks can be initialized via memcpy:
1598 */
1599 spin_lock_init(&ptr->lock);
1600
1da177e4 1601 cache_cache.array[smp_processor_id()] = ptr;
e498be7d 1602
83b519e8 1603 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1604
9a2dba4b 1605 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1606 != &initarray_generic.cache);
9a2dba4b 1607 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1608 sizeof(struct arraycache_init));
2b2d5493
IM
1609 /*
1610 * Do not assume that spinlocks can be initialized via memcpy:
1611 */
1612 spin_lock_init(&ptr->lock);
1613
e498be7d 1614 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1615 ptr;
1da177e4 1616 }
e498be7d
CL
1617 /* 5) Replace the bootstrap kmem_list3's */
1618 {
1ca4cb24
PE
1619 int nid;
1620
9c09a95c 1621 for_each_online_node(nid) {
ec1f5eee 1622 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1623
e498be7d 1624 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1625 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1626
1627 if (INDEX_AC != INDEX_L3) {
1628 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1629 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1630 }
1631 }
1632 }
1da177e4 1633
e498be7d 1634 /* 6) resize the head arrays to their final sizes */
1da177e4 1635 {
343e0d7a 1636 struct kmem_cache *cachep;
fc0abb14 1637 mutex_lock(&cache_chain_mutex);
1da177e4 1638 list_for_each_entry(cachep, &cache_chain, next)
83b519e8 1639 if (enable_cpucache(cachep, GFP_NOWAIT))
2ed3a4ef 1640 BUG();
fc0abb14 1641 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1642 }
1643
056c6241
RT
1644 /* Annotate slab for lockdep -- annotate the malloc caches */
1645 init_lock_keys();
1646
1647
1da177e4
LT
1648 /* Done! */
1649 g_cpucache_up = FULL;
1650
a737b3e2
AM
1651 /*
1652 * Register a cpu startup notifier callback that initializes
1653 * cpu_cache_get for all new cpus
1da177e4
LT
1654 */
1655 register_cpu_notifier(&cpucache_notifier);
1da177e4 1656
a737b3e2
AM
1657 /*
1658 * The reap timers are started later, with a module init call: That part
1659 * of the kernel is not yet operational.
1da177e4
LT
1660 */
1661}
1662
7e85ee0c
PE
1663void __init kmem_cache_init_late(void)
1664{
1665 /*
1666 * Interrupts are enabled now so all GFP allocations are safe.
1667 */
1668 slab_gfp_mask = __GFP_BITS_MASK;
1669}
1670
1da177e4
LT
1671static int __init cpucache_init(void)
1672{
1673 int cpu;
1674
a737b3e2
AM
1675 /*
1676 * Register the timers that return unneeded pages to the page allocator
1da177e4 1677 */
e498be7d 1678 for_each_online_cpu(cpu)
a737b3e2 1679 start_cpu_timer(cpu);
1da177e4
LT
1680 return 0;
1681}
1da177e4
LT
1682__initcall(cpucache_init);
1683
1684/*
1685 * Interface to system's page allocator. No need to hold the cache-lock.
1686 *
1687 * If we requested dmaable memory, we will get it. Even if we
1688 * did not request dmaable memory, we might get it, but that
1689 * would be relatively rare and ignorable.
1690 */
343e0d7a 1691static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1692{
1693 struct page *page;
e1b6aa6f 1694 int nr_pages;
1da177e4
LT
1695 int i;
1696
d6fef9da 1697#ifndef CONFIG_MMU
e1b6aa6f
CH
1698 /*
1699 * Nommu uses slab's for process anonymous memory allocations, and thus
1700 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1701 */
e1b6aa6f 1702 flags |= __GFP_COMP;
d6fef9da 1703#endif
765c4507 1704
3c517a61 1705 flags |= cachep->gfpflags;
e12ba74d
MG
1706 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1707 flags |= __GFP_RECLAIMABLE;
e1b6aa6f
CH
1708
1709 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1710 if (!page)
1711 return NULL;
1da177e4 1712
e1b6aa6f 1713 nr_pages = (1 << cachep->gfporder);
1da177e4 1714 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1715 add_zone_page_state(page_zone(page),
1716 NR_SLAB_RECLAIMABLE, nr_pages);
1717 else
1718 add_zone_page_state(page_zone(page),
1719 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1720 for (i = 0; i < nr_pages; i++)
1721 __SetPageSlab(page + i);
1722 return page_address(page);
1da177e4
LT
1723}
1724
1725/*
1726 * Interface to system's page release.
1727 */
343e0d7a 1728static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1729{
b28a02de 1730 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1731 struct page *page = virt_to_page(addr);
1732 const unsigned long nr_freed = i;
1733
972d1a7b
CL
1734 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1735 sub_zone_page_state(page_zone(page),
1736 NR_SLAB_RECLAIMABLE, nr_freed);
1737 else
1738 sub_zone_page_state(page_zone(page),
1739 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1740 while (i--) {
f205b2fe
NP
1741 BUG_ON(!PageSlab(page));
1742 __ClearPageSlab(page);
1da177e4
LT
1743 page++;
1744 }
1da177e4
LT
1745 if (current->reclaim_state)
1746 current->reclaim_state->reclaimed_slab += nr_freed;
1747 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1748}
1749
1750static void kmem_rcu_free(struct rcu_head *head)
1751{
b28a02de 1752 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1753 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1754
1755 kmem_freepages(cachep, slab_rcu->addr);
1756 if (OFF_SLAB(cachep))
1757 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1758}
1759
1760#if DEBUG
1761
1762#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1763static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1764 unsigned long caller)
1da177e4 1765{
3dafccf2 1766 int size = obj_size(cachep);
1da177e4 1767
3dafccf2 1768 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1769
b28a02de 1770 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1771 return;
1772
b28a02de
PE
1773 *addr++ = 0x12345678;
1774 *addr++ = caller;
1775 *addr++ = smp_processor_id();
1776 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1777 {
1778 unsigned long *sptr = &caller;
1779 unsigned long svalue;
1780
1781 while (!kstack_end(sptr)) {
1782 svalue = *sptr++;
1783 if (kernel_text_address(svalue)) {
b28a02de 1784 *addr++ = svalue;
1da177e4
LT
1785 size -= sizeof(unsigned long);
1786 if (size <= sizeof(unsigned long))
1787 break;
1788 }
1789 }
1790
1791 }
b28a02de 1792 *addr++ = 0x87654321;
1da177e4
LT
1793}
1794#endif
1795
343e0d7a 1796static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1797{
3dafccf2
MS
1798 int size = obj_size(cachep);
1799 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1800
1801 memset(addr, val, size);
b28a02de 1802 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1803}
1804
1805static void dump_line(char *data, int offset, int limit)
1806{
1807 int i;
aa83aa40
DJ
1808 unsigned char error = 0;
1809 int bad_count = 0;
1810
1da177e4 1811 printk(KERN_ERR "%03x:", offset);
aa83aa40
DJ
1812 for (i = 0; i < limit; i++) {
1813 if (data[offset + i] != POISON_FREE) {
1814 error = data[offset + i];
1815 bad_count++;
1816 }
b28a02de 1817 printk(" %02x", (unsigned char)data[offset + i]);
aa83aa40 1818 }
1da177e4 1819 printk("\n");
aa83aa40
DJ
1820
1821 if (bad_count == 1) {
1822 error ^= POISON_FREE;
1823 if (!(error & (error - 1))) {
1824 printk(KERN_ERR "Single bit error detected. Probably "
1825 "bad RAM.\n");
1826#ifdef CONFIG_X86
1827 printk(KERN_ERR "Run memtest86+ or a similar memory "
1828 "test tool.\n");
1829#else
1830 printk(KERN_ERR "Run a memory test tool.\n");
1831#endif
1832 }
1833 }
1da177e4
LT
1834}
1835#endif
1836
1837#if DEBUG
1838
343e0d7a 1839static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1840{
1841 int i, size;
1842 char *realobj;
1843
1844 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1845 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1846 *dbg_redzone1(cachep, objp),
1847 *dbg_redzone2(cachep, objp));
1da177e4
LT
1848 }
1849
1850 if (cachep->flags & SLAB_STORE_USER) {
1851 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1852 *dbg_userword(cachep, objp));
1da177e4 1853 print_symbol("(%s)",
a737b3e2 1854 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1855 printk("\n");
1856 }
3dafccf2
MS
1857 realobj = (char *)objp + obj_offset(cachep);
1858 size = obj_size(cachep);
b28a02de 1859 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1860 int limit;
1861 limit = 16;
b28a02de
PE
1862 if (i + limit > size)
1863 limit = size - i;
1da177e4
LT
1864 dump_line(realobj, i, limit);
1865 }
1866}
1867
343e0d7a 1868static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1869{
1870 char *realobj;
1871 int size, i;
1872 int lines = 0;
1873
3dafccf2
MS
1874 realobj = (char *)objp + obj_offset(cachep);
1875 size = obj_size(cachep);
1da177e4 1876
b28a02de 1877 for (i = 0; i < size; i++) {
1da177e4 1878 char exp = POISON_FREE;
b28a02de 1879 if (i == size - 1)
1da177e4
LT
1880 exp = POISON_END;
1881 if (realobj[i] != exp) {
1882 int limit;
1883 /* Mismatch ! */
1884 /* Print header */
1885 if (lines == 0) {
b28a02de 1886 printk(KERN_ERR
e94a40c5
DH
1887 "Slab corruption: %s start=%p, len=%d\n",
1888 cachep->name, realobj, size);
1da177e4
LT
1889 print_objinfo(cachep, objp, 0);
1890 }
1891 /* Hexdump the affected line */
b28a02de 1892 i = (i / 16) * 16;
1da177e4 1893 limit = 16;
b28a02de
PE
1894 if (i + limit > size)
1895 limit = size - i;
1da177e4
LT
1896 dump_line(realobj, i, limit);
1897 i += 16;
1898 lines++;
1899 /* Limit to 5 lines */
1900 if (lines > 5)
1901 break;
1902 }
1903 }
1904 if (lines != 0) {
1905 /* Print some data about the neighboring objects, if they
1906 * exist:
1907 */
6ed5eb22 1908 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1909 unsigned int objnr;
1da177e4 1910
8fea4e96 1911 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1912 if (objnr) {
8fea4e96 1913 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1914 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1915 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1916 realobj, size);
1da177e4
LT
1917 print_objinfo(cachep, objp, 2);
1918 }
b28a02de 1919 if (objnr + 1 < cachep->num) {
8fea4e96 1920 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1921 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1922 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1923 realobj, size);
1da177e4
LT
1924 print_objinfo(cachep, objp, 2);
1925 }
1926 }
1927}
1928#endif
1929
12dd36fa 1930#if DEBUG
e79aec29 1931static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1932{
1da177e4
LT
1933 int i;
1934 for (i = 0; i < cachep->num; i++) {
8fea4e96 1935 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1936
1937 if (cachep->flags & SLAB_POISON) {
1938#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1939 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1940 OFF_SLAB(cachep))
b28a02de 1941 kernel_map_pages(virt_to_page(objp),
a737b3e2 1942 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1943 else
1944 check_poison_obj(cachep, objp);
1945#else
1946 check_poison_obj(cachep, objp);
1947#endif
1948 }
1949 if (cachep->flags & SLAB_RED_ZONE) {
1950 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1951 slab_error(cachep, "start of a freed object "
b28a02de 1952 "was overwritten");
1da177e4
LT
1953 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1954 slab_error(cachep, "end of a freed object "
b28a02de 1955 "was overwritten");
1da177e4 1956 }
1da177e4 1957 }
12dd36fa 1958}
1da177e4 1959#else
e79aec29 1960static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1961{
12dd36fa 1962}
1da177e4
LT
1963#endif
1964
911851e6
RD
1965/**
1966 * slab_destroy - destroy and release all objects in a slab
1967 * @cachep: cache pointer being destroyed
1968 * @slabp: slab pointer being destroyed
1969 *
12dd36fa 1970 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1971 * Before calling the slab must have been unlinked from the cache. The
1972 * cache-lock is not held/needed.
12dd36fa 1973 */
343e0d7a 1974static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1975{
1976 void *addr = slabp->s_mem - slabp->colouroff;
1977
e79aec29 1978 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
1979 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1980 struct slab_rcu *slab_rcu;
1981
b28a02de 1982 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1983 slab_rcu->cachep = cachep;
1984 slab_rcu->addr = addr;
1985 call_rcu(&slab_rcu->head, kmem_rcu_free);
1986 } else {
1987 kmem_freepages(cachep, addr);
873623df
IM
1988 if (OFF_SLAB(cachep))
1989 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1990 }
1991}
1992
117f6eb1
CL
1993static void __kmem_cache_destroy(struct kmem_cache *cachep)
1994{
1995 int i;
1996 struct kmem_list3 *l3;
1997
1998 for_each_online_cpu(i)
1999 kfree(cachep->array[i]);
2000
2001 /* NUMA: free the list3 structures */
2002 for_each_online_node(i) {
2003 l3 = cachep->nodelists[i];
2004 if (l3) {
2005 kfree(l3->shared);
2006 free_alien_cache(l3->alien);
2007 kfree(l3);
2008 }
2009 }
2010 kmem_cache_free(&cache_cache, cachep);
2011}
2012
2013
4d268eba 2014/**
a70773dd
RD
2015 * calculate_slab_order - calculate size (page order) of slabs
2016 * @cachep: pointer to the cache that is being created
2017 * @size: size of objects to be created in this cache.
2018 * @align: required alignment for the objects.
2019 * @flags: slab allocation flags
2020 *
2021 * Also calculates the number of objects per slab.
4d268eba
PE
2022 *
2023 * This could be made much more intelligent. For now, try to avoid using
2024 * high order pages for slabs. When the gfp() functions are more friendly
2025 * towards high-order requests, this should be changed.
2026 */
a737b3e2 2027static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2028 size_t size, size_t align, unsigned long flags)
4d268eba 2029{
b1ab41c4 2030 unsigned long offslab_limit;
4d268eba 2031 size_t left_over = 0;
9888e6fa 2032 int gfporder;
4d268eba 2033
0aa817f0 2034 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2035 unsigned int num;
2036 size_t remainder;
2037
9888e6fa 2038 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2039 if (!num)
2040 continue;
9888e6fa 2041
b1ab41c4
IM
2042 if (flags & CFLGS_OFF_SLAB) {
2043 /*
2044 * Max number of objs-per-slab for caches which
2045 * use off-slab slabs. Needed to avoid a possible
2046 * looping condition in cache_grow().
2047 */
2048 offslab_limit = size - sizeof(struct slab);
2049 offslab_limit /= sizeof(kmem_bufctl_t);
2050
2051 if (num > offslab_limit)
2052 break;
2053 }
4d268eba 2054
9888e6fa 2055 /* Found something acceptable - save it away */
4d268eba 2056 cachep->num = num;
9888e6fa 2057 cachep->gfporder = gfporder;
4d268eba
PE
2058 left_over = remainder;
2059
f78bb8ad
LT
2060 /*
2061 * A VFS-reclaimable slab tends to have most allocations
2062 * as GFP_NOFS and we really don't want to have to be allocating
2063 * higher-order pages when we are unable to shrink dcache.
2064 */
2065 if (flags & SLAB_RECLAIM_ACCOUNT)
2066 break;
2067
4d268eba
PE
2068 /*
2069 * Large number of objects is good, but very large slabs are
2070 * currently bad for the gfp()s.
2071 */
9888e6fa 2072 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
2073 break;
2074
9888e6fa
LT
2075 /*
2076 * Acceptable internal fragmentation?
2077 */
a737b3e2 2078 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2079 break;
2080 }
2081 return left_over;
2082}
2083
83b519e8 2084static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2085{
2ed3a4ef 2086 if (g_cpucache_up == FULL)
83b519e8 2087 return enable_cpucache(cachep, gfp);
2ed3a4ef 2088
f30cf7d1
PE
2089 if (g_cpucache_up == NONE) {
2090 /*
2091 * Note: the first kmem_cache_create must create the cache
2092 * that's used by kmalloc(24), otherwise the creation of
2093 * further caches will BUG().
2094 */
2095 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2096
2097 /*
2098 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2099 * the first cache, then we need to set up all its list3s,
2100 * otherwise the creation of further caches will BUG().
2101 */
2102 set_up_list3s(cachep, SIZE_AC);
2103 if (INDEX_AC == INDEX_L3)
2104 g_cpucache_up = PARTIAL_L3;
2105 else
2106 g_cpucache_up = PARTIAL_AC;
2107 } else {
2108 cachep->array[smp_processor_id()] =
83b519e8 2109 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1
PE
2110
2111 if (g_cpucache_up == PARTIAL_AC) {
2112 set_up_list3s(cachep, SIZE_L3);
2113 g_cpucache_up = PARTIAL_L3;
2114 } else {
2115 int node;
556a169d 2116 for_each_online_node(node) {
f30cf7d1
PE
2117 cachep->nodelists[node] =
2118 kmalloc_node(sizeof(struct kmem_list3),
eb91f1d0 2119 gfp, node);
f30cf7d1
PE
2120 BUG_ON(!cachep->nodelists[node]);
2121 kmem_list3_init(cachep->nodelists[node]);
2122 }
2123 }
2124 }
2125 cachep->nodelists[numa_node_id()]->next_reap =
2126 jiffies + REAPTIMEOUT_LIST3 +
2127 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2128
2129 cpu_cache_get(cachep)->avail = 0;
2130 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2131 cpu_cache_get(cachep)->batchcount = 1;
2132 cpu_cache_get(cachep)->touched = 0;
2133 cachep->batchcount = 1;
2134 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2135 return 0;
f30cf7d1
PE
2136}
2137
1da177e4
LT
2138/**
2139 * kmem_cache_create - Create a cache.
2140 * @name: A string which is used in /proc/slabinfo to identify this cache.
2141 * @size: The size of objects to be created in this cache.
2142 * @align: The required alignment for the objects.
2143 * @flags: SLAB flags
2144 * @ctor: A constructor for the objects.
1da177e4
LT
2145 *
2146 * Returns a ptr to the cache on success, NULL on failure.
2147 * Cannot be called within a int, but can be interrupted.
20c2df83 2148 * The @ctor is run when new pages are allocated by the cache.
1da177e4
LT
2149 *
2150 * @name must be valid until the cache is destroyed. This implies that
a737b3e2 2151 * the module calling this has to destroy the cache before getting unloaded.
249da166
CM
2152 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2153 * therefore applications must manage it themselves.
a737b3e2 2154 *
1da177e4
LT
2155 * The flags are
2156 *
2157 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2158 * to catch references to uninitialised memory.
2159 *
2160 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2161 * for buffer overruns.
2162 *
1da177e4
LT
2163 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2164 * cacheline. This can be beneficial if you're counting cycles as closely
2165 * as davem.
2166 */
343e0d7a 2167struct kmem_cache *
1da177e4 2168kmem_cache_create (const char *name, size_t size, size_t align,
51cc5068 2169 unsigned long flags, void (*ctor)(void *))
1da177e4
LT
2170{
2171 size_t left_over, slab_size, ralign;
7a7c381d 2172 struct kmem_cache *cachep = NULL, *pc;
83b519e8 2173 gfp_t gfp;
1da177e4
LT
2174
2175 /*
2176 * Sanity checks... these are all serious usage bugs.
2177 */
a737b3e2 2178 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
20c2df83 2179 size > KMALLOC_MAX_SIZE) {
d40cee24 2180 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
a737b3e2 2181 name);
b28a02de
PE
2182 BUG();
2183 }
1da177e4 2184
f0188f47 2185 /*
8f5be20b 2186 * We use cache_chain_mutex to ensure a consistent view of
174596a0 2187 * cpu_online_mask as well. Please see cpuup_callback
f0188f47 2188 */
83b519e8
PE
2189 if (slab_is_available()) {
2190 get_online_cpus();
2191 mutex_lock(&cache_chain_mutex);
2192 }
4f12bb4f 2193
7a7c381d 2194 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2195 char tmp;
2196 int res;
2197
2198 /*
2199 * This happens when the module gets unloaded and doesn't
2200 * destroy its slab cache and no-one else reuses the vmalloc
2201 * area of the module. Print a warning.
2202 */
138ae663 2203 res = probe_kernel_address(pc->name, tmp);
4f12bb4f 2204 if (res) {
b4169525 2205 printk(KERN_ERR
2206 "SLAB: cache with size %d has lost its name\n",
3dafccf2 2207 pc->buffer_size);
4f12bb4f
AM
2208 continue;
2209 }
2210
b28a02de 2211 if (!strcmp(pc->name, name)) {
b4169525 2212 printk(KERN_ERR
2213 "kmem_cache_create: duplicate cache %s\n", name);
4f12bb4f
AM
2214 dump_stack();
2215 goto oops;
2216 }
2217 }
2218
1da177e4
LT
2219#if DEBUG
2220 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1da177e4
LT
2221#if FORCED_DEBUG
2222 /*
2223 * Enable redzoning and last user accounting, except for caches with
2224 * large objects, if the increased size would increase the object size
2225 * above the next power of two: caches with object sizes just above a
2226 * power of two have a significant amount of internal fragmentation.
2227 */
87a927c7
DW
2228 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2229 2 * sizeof(unsigned long long)))
b28a02de 2230 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2231 if (!(flags & SLAB_DESTROY_BY_RCU))
2232 flags |= SLAB_POISON;
2233#endif
2234 if (flags & SLAB_DESTROY_BY_RCU)
2235 BUG_ON(flags & SLAB_POISON);
2236#endif
1da177e4 2237 /*
a737b3e2
AM
2238 * Always checks flags, a caller might be expecting debug support which
2239 * isn't available.
1da177e4 2240 */
40094fa6 2241 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2242
a737b3e2
AM
2243 /*
2244 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2245 * unaligned accesses for some archs when redzoning is used, and makes
2246 * sure any on-slab bufctl's are also correctly aligned.
2247 */
b28a02de
PE
2248 if (size & (BYTES_PER_WORD - 1)) {
2249 size += (BYTES_PER_WORD - 1);
2250 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2251 }
2252
a737b3e2
AM
2253 /* calculate the final buffer alignment: */
2254
1da177e4
LT
2255 /* 1) arch recommendation: can be overridden for debug */
2256 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2257 /*
2258 * Default alignment: as specified by the arch code. Except if
2259 * an object is really small, then squeeze multiple objects into
2260 * one cacheline.
1da177e4
LT
2261 */
2262 ralign = cache_line_size();
b28a02de 2263 while (size <= ralign / 2)
1da177e4
LT
2264 ralign /= 2;
2265 } else {
2266 ralign = BYTES_PER_WORD;
2267 }
ca5f9703
PE
2268
2269 /*
87a927c7
DW
2270 * Redzoning and user store require word alignment or possibly larger.
2271 * Note this will be overridden by architecture or caller mandated
2272 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2273 */
87a927c7
DW
2274 if (flags & SLAB_STORE_USER)
2275 ralign = BYTES_PER_WORD;
2276
2277 if (flags & SLAB_RED_ZONE) {
2278 ralign = REDZONE_ALIGN;
2279 /* If redzoning, ensure that the second redzone is suitably
2280 * aligned, by adjusting the object size accordingly. */
2281 size += REDZONE_ALIGN - 1;
2282 size &= ~(REDZONE_ALIGN - 1);
2283 }
ca5f9703 2284
a44b56d3 2285 /* 2) arch mandated alignment */
1da177e4
LT
2286 if (ralign < ARCH_SLAB_MINALIGN) {
2287 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2288 }
a44b56d3 2289 /* 3) caller mandated alignment */
1da177e4
LT
2290 if (ralign < align) {
2291 ralign = align;
1da177e4 2292 }
a44b56d3 2293 /* disable debug if necessary */
b46b8f19 2294 if (ralign > __alignof__(unsigned long long))
a44b56d3 2295 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2296 /*
ca5f9703 2297 * 4) Store it.
1da177e4
LT
2298 */
2299 align = ralign;
2300
83b519e8
PE
2301 if (slab_is_available())
2302 gfp = GFP_KERNEL;
2303 else
2304 gfp = GFP_NOWAIT;
2305
1da177e4 2306 /* Get cache's description obj. */
83b519e8 2307 cachep = kmem_cache_zalloc(&cache_cache, gfp);
1da177e4 2308 if (!cachep)
4f12bb4f 2309 goto oops;
1da177e4
LT
2310
2311#if DEBUG
3dafccf2 2312 cachep->obj_size = size;
1da177e4 2313
ca5f9703
PE
2314 /*
2315 * Both debugging options require word-alignment which is calculated
2316 * into align above.
2317 */
1da177e4 2318 if (flags & SLAB_RED_ZONE) {
1da177e4 2319 /* add space for red zone words */
b46b8f19
DW
2320 cachep->obj_offset += sizeof(unsigned long long);
2321 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2322 }
2323 if (flags & SLAB_STORE_USER) {
ca5f9703 2324 /* user store requires one word storage behind the end of
87a927c7
DW
2325 * the real object. But if the second red zone needs to be
2326 * aligned to 64 bits, we must allow that much space.
1da177e4 2327 */
87a927c7
DW
2328 if (flags & SLAB_RED_ZONE)
2329 size += REDZONE_ALIGN;
2330 else
2331 size += BYTES_PER_WORD;
1da177e4
LT
2332 }
2333#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2334 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2335 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2336 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2337 size = PAGE_SIZE;
2338 }
2339#endif
2340#endif
2341
e0a42726
IM
2342 /*
2343 * Determine if the slab management is 'on' or 'off' slab.
2344 * (bootstrapping cannot cope with offslab caches so don't do
2345 * it too early on.)
2346 */
2347 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
1da177e4
LT
2348 /*
2349 * Size is large, assume best to place the slab management obj
2350 * off-slab (should allow better packing of objs).
2351 */
2352 flags |= CFLGS_OFF_SLAB;
2353
2354 size = ALIGN(size, align);
2355
f78bb8ad 2356 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2357
2358 if (!cachep->num) {
b4169525 2359 printk(KERN_ERR
2360 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4
LT
2361 kmem_cache_free(&cache_cache, cachep);
2362 cachep = NULL;
4f12bb4f 2363 goto oops;
1da177e4 2364 }
b28a02de
PE
2365 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2366 + sizeof(struct slab), align);
1da177e4
LT
2367
2368 /*
2369 * If the slab has been placed off-slab, and we have enough space then
2370 * move it on-slab. This is at the expense of any extra colouring.
2371 */
2372 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2373 flags &= ~CFLGS_OFF_SLAB;
2374 left_over -= slab_size;
2375 }
2376
2377 if (flags & CFLGS_OFF_SLAB) {
2378 /* really off slab. No need for manual alignment */
b28a02de
PE
2379 slab_size =
2380 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2381 }
2382
2383 cachep->colour_off = cache_line_size();
2384 /* Offset must be a multiple of the alignment. */
2385 if (cachep->colour_off < align)
2386 cachep->colour_off = align;
b28a02de 2387 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2388 cachep->slab_size = slab_size;
2389 cachep->flags = flags;
2390 cachep->gfpflags = 0;
4b51d669 2391 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
1da177e4 2392 cachep->gfpflags |= GFP_DMA;
3dafccf2 2393 cachep->buffer_size = size;
6a2d7a95 2394 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2395
e5ac9c5a 2396 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2397 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2398 /*
2399 * This is a possibility for one of the malloc_sizes caches.
2400 * But since we go off slab only for object size greater than
2401 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2402 * this should not happen at all.
2403 * But leave a BUG_ON for some lucky dude.
2404 */
6cb8f913 2405 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2406 }
1da177e4 2407 cachep->ctor = ctor;
1da177e4
LT
2408 cachep->name = name;
2409
83b519e8 2410 if (setup_cpu_cache(cachep, gfp)) {
2ed3a4ef
CL
2411 __kmem_cache_destroy(cachep);
2412 cachep = NULL;
2413 goto oops;
2414 }
1da177e4 2415
1da177e4
LT
2416 /* cache setup completed, link it into the list */
2417 list_add(&cachep->next, &cache_chain);
a737b3e2 2418oops:
1da177e4
LT
2419 if (!cachep && (flags & SLAB_PANIC))
2420 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2421 name);
83b519e8
PE
2422 if (slab_is_available()) {
2423 mutex_unlock(&cache_chain_mutex);
2424 put_online_cpus();
2425 }
1da177e4
LT
2426 return cachep;
2427}
2428EXPORT_SYMBOL(kmem_cache_create);
2429
2430#if DEBUG
2431static void check_irq_off(void)
2432{
2433 BUG_ON(!irqs_disabled());
2434}
2435
2436static void check_irq_on(void)
2437{
2438 BUG_ON(irqs_disabled());
2439}
2440
343e0d7a 2441static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2442{
2443#ifdef CONFIG_SMP
2444 check_irq_off();
e498be7d 2445 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2446#endif
2447}
e498be7d 2448
343e0d7a 2449static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2450{
2451#ifdef CONFIG_SMP
2452 check_irq_off();
2453 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2454#endif
2455}
2456
1da177e4
LT
2457#else
2458#define check_irq_off() do { } while(0)
2459#define check_irq_on() do { } while(0)
2460#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2461#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2462#endif
2463
aab2207c
CL
2464static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2465 struct array_cache *ac,
2466 int force, int node);
2467
1da177e4
LT
2468static void do_drain(void *arg)
2469{
a737b3e2 2470 struct kmem_cache *cachep = arg;
1da177e4 2471 struct array_cache *ac;
ff69416e 2472 int node = numa_node_id();
1da177e4
LT
2473
2474 check_irq_off();
9a2dba4b 2475 ac = cpu_cache_get(cachep);
ff69416e
CL
2476 spin_lock(&cachep->nodelists[node]->list_lock);
2477 free_block(cachep, ac->entry, ac->avail, node);
2478 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2479 ac->avail = 0;
2480}
2481
343e0d7a 2482static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2483{
e498be7d
CL
2484 struct kmem_list3 *l3;
2485 int node;
2486
15c8b6c1 2487 on_each_cpu(do_drain, cachep, 1);
1da177e4 2488 check_irq_on();
b28a02de 2489 for_each_online_node(node) {
e498be7d 2490 l3 = cachep->nodelists[node];
a4523a8b
RD
2491 if (l3 && l3->alien)
2492 drain_alien_cache(cachep, l3->alien);
2493 }
2494
2495 for_each_online_node(node) {
2496 l3 = cachep->nodelists[node];
2497 if (l3)
aab2207c 2498 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2499 }
1da177e4
LT
2500}
2501
ed11d9eb
CL
2502/*
2503 * Remove slabs from the list of free slabs.
2504 * Specify the number of slabs to drain in tofree.
2505 *
2506 * Returns the actual number of slabs released.
2507 */
2508static int drain_freelist(struct kmem_cache *cache,
2509 struct kmem_list3 *l3, int tofree)
1da177e4 2510{
ed11d9eb
CL
2511 struct list_head *p;
2512 int nr_freed;
1da177e4 2513 struct slab *slabp;
1da177e4 2514
ed11d9eb
CL
2515 nr_freed = 0;
2516 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2517
ed11d9eb 2518 spin_lock_irq(&l3->list_lock);
e498be7d 2519 p = l3->slabs_free.prev;
ed11d9eb
CL
2520 if (p == &l3->slabs_free) {
2521 spin_unlock_irq(&l3->list_lock);
2522 goto out;
2523 }
1da177e4 2524
ed11d9eb 2525 slabp = list_entry(p, struct slab, list);
1da177e4 2526#if DEBUG
40094fa6 2527 BUG_ON(slabp->inuse);
1da177e4
LT
2528#endif
2529 list_del(&slabp->list);
ed11d9eb
CL
2530 /*
2531 * Safe to drop the lock. The slab is no longer linked
2532 * to the cache.
2533 */
2534 l3->free_objects -= cache->num;
e498be7d 2535 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2536 slab_destroy(cache, slabp);
2537 nr_freed++;
1da177e4 2538 }
ed11d9eb
CL
2539out:
2540 return nr_freed;
1da177e4
LT
2541}
2542
8f5be20b 2543/* Called with cache_chain_mutex held to protect against cpu hotplug */
343e0d7a 2544static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2545{
2546 int ret = 0, i = 0;
2547 struct kmem_list3 *l3;
2548
2549 drain_cpu_caches(cachep);
2550
2551 check_irq_on();
2552 for_each_online_node(i) {
2553 l3 = cachep->nodelists[i];
ed11d9eb
CL
2554 if (!l3)
2555 continue;
2556
2557 drain_freelist(cachep, l3, l3->free_objects);
2558
2559 ret += !list_empty(&l3->slabs_full) ||
2560 !list_empty(&l3->slabs_partial);
e498be7d
CL
2561 }
2562 return (ret ? 1 : 0);
2563}
2564
1da177e4
LT
2565/**
2566 * kmem_cache_shrink - Shrink a cache.
2567 * @cachep: The cache to shrink.
2568 *
2569 * Releases as many slabs as possible for a cache.
2570 * To help debugging, a zero exit status indicates all slabs were released.
2571 */
343e0d7a 2572int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2573{
8f5be20b 2574 int ret;
40094fa6 2575 BUG_ON(!cachep || in_interrupt());
1da177e4 2576
95402b38 2577 get_online_cpus();
8f5be20b
RT
2578 mutex_lock(&cache_chain_mutex);
2579 ret = __cache_shrink(cachep);
2580 mutex_unlock(&cache_chain_mutex);
95402b38 2581 put_online_cpus();
8f5be20b 2582 return ret;
1da177e4
LT
2583}
2584EXPORT_SYMBOL(kmem_cache_shrink);
2585
2586/**
2587 * kmem_cache_destroy - delete a cache
2588 * @cachep: the cache to destroy
2589 *
72fd4a35 2590 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2591 *
2592 * It is expected this function will be called by a module when it is
2593 * unloaded. This will remove the cache completely, and avoid a duplicate
2594 * cache being allocated each time a module is loaded and unloaded, if the
2595 * module doesn't have persistent in-kernel storage across loads and unloads.
2596 *
2597 * The cache must be empty before calling this function.
2598 *
2599 * The caller must guarantee that noone will allocate memory from the cache
2600 * during the kmem_cache_destroy().
2601 */
133d205a 2602void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2603{
40094fa6 2604 BUG_ON(!cachep || in_interrupt());
1da177e4 2605
1da177e4 2606 /* Find the cache in the chain of caches. */
95402b38 2607 get_online_cpus();
fc0abb14 2608 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2609 /*
2610 * the chain is never empty, cache_cache is never destroyed
2611 */
2612 list_del(&cachep->next);
1da177e4
LT
2613 if (__cache_shrink(cachep)) {
2614 slab_error(cachep, "Can't free all objects");
b28a02de 2615 list_add(&cachep->next, &cache_chain);
fc0abb14 2616 mutex_unlock(&cache_chain_mutex);
95402b38 2617 put_online_cpus();
133d205a 2618 return;
1da177e4
LT
2619 }
2620
2621 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2622 synchronize_rcu();
1da177e4 2623
117f6eb1 2624 __kmem_cache_destroy(cachep);
8f5be20b 2625 mutex_unlock(&cache_chain_mutex);
95402b38 2626 put_online_cpus();
1da177e4
LT
2627}
2628EXPORT_SYMBOL(kmem_cache_destroy);
2629
e5ac9c5a
RT
2630/*
2631 * Get the memory for a slab management obj.
2632 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2633 * always come from malloc_sizes caches. The slab descriptor cannot
2634 * come from the same cache which is getting created because,
2635 * when we are searching for an appropriate cache for these
2636 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2637 * If we are creating a malloc_sizes cache here it would not be visible to
2638 * kmem_find_general_cachep till the initialization is complete.
2639 * Hence we cannot have slabp_cache same as the original cache.
2640 */
343e0d7a 2641static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2642 int colour_off, gfp_t local_flags,
2643 int nodeid)
1da177e4
LT
2644{
2645 struct slab *slabp;
b28a02de 2646
1da177e4
LT
2647 if (OFF_SLAB(cachep)) {
2648 /* Slab management obj is off-slab. */
5b74ada7 2649 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2650 local_flags, nodeid);
d5cff635
CM
2651 /*
2652 * If the first object in the slab is leaked (it's allocated
2653 * but no one has a reference to it), we want to make sure
2654 * kmemleak does not treat the ->s_mem pointer as a reference
2655 * to the object. Otherwise we will not report the leak.
2656 */
2657 kmemleak_scan_area(slabp, offsetof(struct slab, list),
2658 sizeof(struct list_head), local_flags);
1da177e4
LT
2659 if (!slabp)
2660 return NULL;
2661 } else {
b28a02de 2662 slabp = objp + colour_off;
1da177e4
LT
2663 colour_off += cachep->slab_size;
2664 }
2665 slabp->inuse = 0;
2666 slabp->colouroff = colour_off;
b28a02de 2667 slabp->s_mem = objp + colour_off;
5b74ada7 2668 slabp->nodeid = nodeid;
e51bfd0a 2669 slabp->free = 0;
1da177e4
LT
2670 return slabp;
2671}
2672
2673static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2674{
b28a02de 2675 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2676}
2677
343e0d7a 2678static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2679 struct slab *slabp)
1da177e4
LT
2680{
2681 int i;
2682
2683 for (i = 0; i < cachep->num; i++) {
8fea4e96 2684 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2685#if DEBUG
2686 /* need to poison the objs? */
2687 if (cachep->flags & SLAB_POISON)
2688 poison_obj(cachep, objp, POISON_FREE);
2689 if (cachep->flags & SLAB_STORE_USER)
2690 *dbg_userword(cachep, objp) = NULL;
2691
2692 if (cachep->flags & SLAB_RED_ZONE) {
2693 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2694 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2695 }
2696 /*
a737b3e2
AM
2697 * Constructors are not allowed to allocate memory from the same
2698 * cache which they are a constructor for. Otherwise, deadlock.
2699 * They must also be threaded.
1da177e4
LT
2700 */
2701 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2702 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2703
2704 if (cachep->flags & SLAB_RED_ZONE) {
2705 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2706 slab_error(cachep, "constructor overwrote the"
b28a02de 2707 " end of an object");
1da177e4
LT
2708 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2709 slab_error(cachep, "constructor overwrote the"
b28a02de 2710 " start of an object");
1da177e4 2711 }
a737b3e2
AM
2712 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2713 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2714 kernel_map_pages(virt_to_page(objp),
3dafccf2 2715 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2716#else
2717 if (cachep->ctor)
51cc5068 2718 cachep->ctor(objp);
1da177e4 2719#endif
b28a02de 2720 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2721 }
b28a02de 2722 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2723}
2724
343e0d7a 2725static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2726{
4b51d669
CL
2727 if (CONFIG_ZONE_DMA_FLAG) {
2728 if (flags & GFP_DMA)
2729 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2730 else
2731 BUG_ON(cachep->gfpflags & GFP_DMA);
2732 }
1da177e4
LT
2733}
2734
a737b3e2
AM
2735static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2736 int nodeid)
78d382d7 2737{
8fea4e96 2738 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2739 kmem_bufctl_t next;
2740
2741 slabp->inuse++;
2742 next = slab_bufctl(slabp)[slabp->free];
2743#if DEBUG
2744 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2745 WARN_ON(slabp->nodeid != nodeid);
2746#endif
2747 slabp->free = next;
2748
2749 return objp;
2750}
2751
a737b3e2
AM
2752static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2753 void *objp, int nodeid)
78d382d7 2754{
8fea4e96 2755 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2756
2757#if DEBUG
2758 /* Verify that the slab belongs to the intended node */
2759 WARN_ON(slabp->nodeid != nodeid);
2760
871751e2 2761 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2762 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2763 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2764 BUG();
2765 }
2766#endif
2767 slab_bufctl(slabp)[objnr] = slabp->free;
2768 slabp->free = objnr;
2769 slabp->inuse--;
2770}
2771
4776874f
PE
2772/*
2773 * Map pages beginning at addr to the given cache and slab. This is required
2774 * for the slab allocator to be able to lookup the cache and slab of a
2775 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2776 */
2777static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2778 void *addr)
1da177e4 2779{
4776874f 2780 int nr_pages;
1da177e4
LT
2781 struct page *page;
2782
4776874f 2783 page = virt_to_page(addr);
84097518 2784
4776874f 2785 nr_pages = 1;
84097518 2786 if (likely(!PageCompound(page)))
4776874f
PE
2787 nr_pages <<= cache->gfporder;
2788
1da177e4 2789 do {
4776874f
PE
2790 page_set_cache(page, cache);
2791 page_set_slab(page, slab);
1da177e4 2792 page++;
4776874f 2793 } while (--nr_pages);
1da177e4
LT
2794}
2795
2796/*
2797 * Grow (by 1) the number of slabs within a cache. This is called by
2798 * kmem_cache_alloc() when there are no active objs left in a cache.
2799 */
3c517a61
CL
2800static int cache_grow(struct kmem_cache *cachep,
2801 gfp_t flags, int nodeid, void *objp)
1da177e4 2802{
b28a02de 2803 struct slab *slabp;
b28a02de
PE
2804 size_t offset;
2805 gfp_t local_flags;
e498be7d 2806 struct kmem_list3 *l3;
1da177e4 2807
a737b3e2
AM
2808 /*
2809 * Be lazy and only check for valid flags here, keeping it out of the
2810 * critical path in kmem_cache_alloc().
1da177e4 2811 */
6cb06229
CL
2812 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2813 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2814
2e1217cf 2815 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2816 check_irq_off();
2e1217cf
RT
2817 l3 = cachep->nodelists[nodeid];
2818 spin_lock(&l3->list_lock);
1da177e4
LT
2819
2820 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2821 offset = l3->colour_next;
2822 l3->colour_next++;
2823 if (l3->colour_next >= cachep->colour)
2824 l3->colour_next = 0;
2825 spin_unlock(&l3->list_lock);
1da177e4 2826
2e1217cf 2827 offset *= cachep->colour_off;
1da177e4
LT
2828
2829 if (local_flags & __GFP_WAIT)
2830 local_irq_enable();
2831
2832 /*
2833 * The test for missing atomic flag is performed here, rather than
2834 * the more obvious place, simply to reduce the critical path length
2835 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2836 * will eventually be caught here (where it matters).
2837 */
2838 kmem_flagcheck(cachep, flags);
2839
a737b3e2
AM
2840 /*
2841 * Get mem for the objs. Attempt to allocate a physical page from
2842 * 'nodeid'.
e498be7d 2843 */
3c517a61 2844 if (!objp)
b8c1c5da 2845 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2846 if (!objp)
1da177e4
LT
2847 goto failed;
2848
2849 /* Get slab management. */
3c517a61 2850 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2851 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2852 if (!slabp)
1da177e4
LT
2853 goto opps1;
2854
4776874f 2855 slab_map_pages(cachep, slabp, objp);
1da177e4 2856
a35afb83 2857 cache_init_objs(cachep, slabp);
1da177e4
LT
2858
2859 if (local_flags & __GFP_WAIT)
2860 local_irq_disable();
2861 check_irq_off();
e498be7d 2862 spin_lock(&l3->list_lock);
1da177e4
LT
2863
2864 /* Make slab active. */
e498be7d 2865 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2866 STATS_INC_GROWN(cachep);
e498be7d
CL
2867 l3->free_objects += cachep->num;
2868 spin_unlock(&l3->list_lock);
1da177e4 2869 return 1;
a737b3e2 2870opps1:
1da177e4 2871 kmem_freepages(cachep, objp);
a737b3e2 2872failed:
1da177e4
LT
2873 if (local_flags & __GFP_WAIT)
2874 local_irq_disable();
2875 return 0;
2876}
2877
2878#if DEBUG
2879
2880/*
2881 * Perform extra freeing checks:
2882 * - detect bad pointers.
2883 * - POISON/RED_ZONE checking
1da177e4
LT
2884 */
2885static void kfree_debugcheck(const void *objp)
2886{
1da177e4
LT
2887 if (!virt_addr_valid(objp)) {
2888 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2889 (unsigned long)objp);
2890 BUG();
1da177e4 2891 }
1da177e4
LT
2892}
2893
58ce1fd5
PE
2894static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2895{
b46b8f19 2896 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2897
2898 redzone1 = *dbg_redzone1(cache, obj);
2899 redzone2 = *dbg_redzone2(cache, obj);
2900
2901 /*
2902 * Redzone is ok.
2903 */
2904 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2905 return;
2906
2907 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2908 slab_error(cache, "double free detected");
2909 else
2910 slab_error(cache, "memory outside object was overwritten");
2911
b46b8f19 2912 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2913 obj, redzone1, redzone2);
2914}
2915
343e0d7a 2916static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2917 void *caller)
1da177e4
LT
2918{
2919 struct page *page;
2920 unsigned int objnr;
2921 struct slab *slabp;
2922
80cbd911
MW
2923 BUG_ON(virt_to_cache(objp) != cachep);
2924
3dafccf2 2925 objp -= obj_offset(cachep);
1da177e4 2926 kfree_debugcheck(objp);
b49af68f 2927 page = virt_to_head_page(objp);
1da177e4 2928
065d41cb 2929 slabp = page_get_slab(page);
1da177e4
LT
2930
2931 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2932 verify_redzone_free(cachep, objp);
1da177e4
LT
2933 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2934 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2935 }
2936 if (cachep->flags & SLAB_STORE_USER)
2937 *dbg_userword(cachep, objp) = caller;
2938
8fea4e96 2939 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2940
2941 BUG_ON(objnr >= cachep->num);
8fea4e96 2942 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2943
871751e2
AV
2944#ifdef CONFIG_DEBUG_SLAB_LEAK
2945 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2946#endif
1da177e4
LT
2947 if (cachep->flags & SLAB_POISON) {
2948#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2949 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2950 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2951 kernel_map_pages(virt_to_page(objp),
3dafccf2 2952 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2953 } else {
2954 poison_obj(cachep, objp, POISON_FREE);
2955 }
2956#else
2957 poison_obj(cachep, objp, POISON_FREE);
2958#endif
2959 }
2960 return objp;
2961}
2962
343e0d7a 2963static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2964{
2965 kmem_bufctl_t i;
2966 int entries = 0;
b28a02de 2967
1da177e4
LT
2968 /* Check slab's freelist to see if this obj is there. */
2969 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2970 entries++;
2971 if (entries > cachep->num || i >= cachep->num)
2972 goto bad;
2973 }
2974 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2975bad:
2976 printk(KERN_ERR "slab: Internal list corruption detected in "
2977 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2978 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2979 for (i = 0;
264132bc 2980 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2981 i++) {
a737b3e2 2982 if (i % 16 == 0)
1da177e4 2983 printk("\n%03x:", i);
b28a02de 2984 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2985 }
2986 printk("\n");
2987 BUG();
2988 }
2989}
2990#else
2991#define kfree_debugcheck(x) do { } while(0)
2992#define cache_free_debugcheck(x,objp,z) (objp)
2993#define check_slabp(x,y) do { } while(0)
2994#endif
2995
343e0d7a 2996static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2997{
2998 int batchcount;
2999 struct kmem_list3 *l3;
3000 struct array_cache *ac;
1ca4cb24
PE
3001 int node;
3002
6d2144d3 3003retry:
1da177e4 3004 check_irq_off();
6d2144d3 3005 node = numa_node_id();
9a2dba4b 3006 ac = cpu_cache_get(cachep);
1da177e4
LT
3007 batchcount = ac->batchcount;
3008 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
3009 /*
3010 * If there was little recent activity on this cache, then
3011 * perform only a partial refill. Otherwise we could generate
3012 * refill bouncing.
1da177e4
LT
3013 */
3014 batchcount = BATCHREFILL_LIMIT;
3015 }
1ca4cb24 3016 l3 = cachep->nodelists[node];
e498be7d
CL
3017
3018 BUG_ON(ac->avail > 0 || !l3);
3019 spin_lock(&l3->list_lock);
1da177e4 3020
3ded175a
CL
3021 /* See if we can refill from the shared array */
3022 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
3023 goto alloc_done;
3024
1da177e4
LT
3025 while (batchcount > 0) {
3026 struct list_head *entry;
3027 struct slab *slabp;
3028 /* Get slab alloc is to come from. */
3029 entry = l3->slabs_partial.next;
3030 if (entry == &l3->slabs_partial) {
3031 l3->free_touched = 1;
3032 entry = l3->slabs_free.next;
3033 if (entry == &l3->slabs_free)
3034 goto must_grow;
3035 }
3036
3037 slabp = list_entry(entry, struct slab, list);
3038 check_slabp(cachep, slabp);
3039 check_spinlock_acquired(cachep);
714b8171
PE
3040
3041 /*
3042 * The slab was either on partial or free list so
3043 * there must be at least one object available for
3044 * allocation.
3045 */
249b9f33 3046 BUG_ON(slabp->inuse >= cachep->num);
714b8171 3047
1da177e4 3048 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3049 STATS_INC_ALLOCED(cachep);
3050 STATS_INC_ACTIVE(cachep);
3051 STATS_SET_HIGH(cachep);
3052
78d382d7 3053 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 3054 node);
1da177e4
LT
3055 }
3056 check_slabp(cachep, slabp);
3057
3058 /* move slabp to correct slabp list: */
3059 list_del(&slabp->list);
3060 if (slabp->free == BUFCTL_END)
3061 list_add(&slabp->list, &l3->slabs_full);
3062 else
3063 list_add(&slabp->list, &l3->slabs_partial);
3064 }
3065
a737b3e2 3066must_grow:
1da177e4 3067 l3->free_objects -= ac->avail;
a737b3e2 3068alloc_done:
e498be7d 3069 spin_unlock(&l3->list_lock);
1da177e4
LT
3070
3071 if (unlikely(!ac->avail)) {
3072 int x;
3c517a61 3073 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3074
a737b3e2 3075 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3076 ac = cpu_cache_get(cachep);
a737b3e2 3077 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
3078 return NULL;
3079
a737b3e2 3080 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3081 goto retry;
3082 }
3083 ac->touched = 1;
e498be7d 3084 return ac->entry[--ac->avail];
1da177e4
LT
3085}
3086
a737b3e2
AM
3087static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3088 gfp_t flags)
1da177e4
LT
3089{
3090 might_sleep_if(flags & __GFP_WAIT);
3091#if DEBUG
3092 kmem_flagcheck(cachep, flags);
3093#endif
3094}
3095
3096#if DEBUG
a737b3e2
AM
3097static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3098 gfp_t flags, void *objp, void *caller)
1da177e4 3099{
b28a02de 3100 if (!objp)
1da177e4 3101 return objp;
b28a02de 3102 if (cachep->flags & SLAB_POISON) {
1da177e4 3103#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 3104 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3105 kernel_map_pages(virt_to_page(objp),
3dafccf2 3106 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
3107 else
3108 check_poison_obj(cachep, objp);
3109#else
3110 check_poison_obj(cachep, objp);
3111#endif
3112 poison_obj(cachep, objp, POISON_INUSE);
3113 }
3114 if (cachep->flags & SLAB_STORE_USER)
3115 *dbg_userword(cachep, objp) = caller;
3116
3117 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3118 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3119 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3120 slab_error(cachep, "double free, or memory outside"
3121 " object was overwritten");
b28a02de 3122 printk(KERN_ERR
b46b8f19 3123 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3124 objp, *dbg_redzone1(cachep, objp),
3125 *dbg_redzone2(cachep, objp));
1da177e4
LT
3126 }
3127 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3128 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3129 }
871751e2
AV
3130#ifdef CONFIG_DEBUG_SLAB_LEAK
3131 {
3132 struct slab *slabp;
3133 unsigned objnr;
3134
b49af68f 3135 slabp = page_get_slab(virt_to_head_page(objp));
871751e2
AV
3136 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3137 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3138 }
3139#endif
3dafccf2 3140 objp += obj_offset(cachep);
4f104934 3141 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3142 cachep->ctor(objp);
a44b56d3
KH
3143#if ARCH_SLAB_MINALIGN
3144 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3145 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3146 objp, ARCH_SLAB_MINALIGN);
3147 }
3148#endif
1da177e4
LT
3149 return objp;
3150}
3151#else
3152#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3153#endif
3154
773ff60e 3155static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502
AM
3156{
3157 if (cachep == &cache_cache)
773ff60e 3158 return false;
8a8b6502 3159
773ff60e 3160 return should_failslab(obj_size(cachep), flags);
8a8b6502
AM
3161}
3162
343e0d7a 3163static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3164{
b28a02de 3165 void *objp;
1da177e4
LT
3166 struct array_cache *ac;
3167
5c382300 3168 check_irq_off();
8a8b6502 3169
9a2dba4b 3170 ac = cpu_cache_get(cachep);
1da177e4
LT
3171 if (likely(ac->avail)) {
3172 STATS_INC_ALLOCHIT(cachep);
3173 ac->touched = 1;
e498be7d 3174 objp = ac->entry[--ac->avail];
1da177e4
LT
3175 } else {
3176 STATS_INC_ALLOCMISS(cachep);
3177 objp = cache_alloc_refill(cachep, flags);
3178 }
d5cff635
CM
3179 /*
3180 * To avoid a false negative, if an object that is in one of the
3181 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3182 * treat the array pointers as a reference to the object.
3183 */
3184 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3185 return objp;
3186}
3187
e498be7d 3188#ifdef CONFIG_NUMA
c61afb18 3189/*
b2455396 3190 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3191 *
3192 * If we are in_interrupt, then process context, including cpusets and
3193 * mempolicy, may not apply and should not be used for allocation policy.
3194 */
3195static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3196{
3197 int nid_alloc, nid_here;
3198
765c4507 3199 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18
PJ
3200 return NULL;
3201 nid_alloc = nid_here = numa_node_id();
3202 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3203 nid_alloc = cpuset_mem_spread_node();
3204 else if (current->mempolicy)
3205 nid_alloc = slab_node(current->mempolicy);
3206 if (nid_alloc != nid_here)
8b98c169 3207 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3208 return NULL;
3209}
3210
765c4507
CL
3211/*
3212 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3213 * certain node and fall back is permitted. First we scan all the
3214 * available nodelists for available objects. If that fails then we
3215 * perform an allocation without specifying a node. This allows the page
3216 * allocator to do its reclaim / fallback magic. We then insert the
3217 * slab into the proper nodelist and then allocate from it.
765c4507 3218 */
8c8cc2c1 3219static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3220{
8c8cc2c1
PE
3221 struct zonelist *zonelist;
3222 gfp_t local_flags;
dd1a239f 3223 struct zoneref *z;
54a6eb5c
MG
3224 struct zone *zone;
3225 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3226 void *obj = NULL;
3c517a61 3227 int nid;
8c8cc2c1
PE
3228
3229 if (flags & __GFP_THISNODE)
3230 return NULL;
3231
0e88460d 3232 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
6cb06229 3233 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3234
3c517a61
CL
3235retry:
3236 /*
3237 * Look through allowed nodes for objects available
3238 * from existing per node queues.
3239 */
54a6eb5c
MG
3240 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3241 nid = zone_to_nid(zone);
aedb0eb1 3242
54a6eb5c 3243 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3c517a61 3244 cache->nodelists[nid] &&
481c5346 3245 cache->nodelists[nid]->free_objects) {
3c517a61
CL
3246 obj = ____cache_alloc_node(cache,
3247 flags | GFP_THISNODE, nid);
481c5346
CL
3248 if (obj)
3249 break;
3250 }
3c517a61
CL
3251 }
3252
cfce6604 3253 if (!obj) {
3c517a61
CL
3254 /*
3255 * This allocation will be performed within the constraints
3256 * of the current cpuset / memory policy requirements.
3257 * We may trigger various forms of reclaim on the allowed
3258 * set and go into memory reserves if necessary.
3259 */
dd47ea75
CL
3260 if (local_flags & __GFP_WAIT)
3261 local_irq_enable();
3262 kmem_flagcheck(cache, flags);
9ac33b2b 3263 obj = kmem_getpages(cache, local_flags, -1);
dd47ea75
CL
3264 if (local_flags & __GFP_WAIT)
3265 local_irq_disable();
3c517a61
CL
3266 if (obj) {
3267 /*
3268 * Insert into the appropriate per node queues
3269 */
3270 nid = page_to_nid(virt_to_page(obj));
3271 if (cache_grow(cache, flags, nid, obj)) {
3272 obj = ____cache_alloc_node(cache,
3273 flags | GFP_THISNODE, nid);
3274 if (!obj)
3275 /*
3276 * Another processor may allocate the
3277 * objects in the slab since we are
3278 * not holding any locks.
3279 */
3280 goto retry;
3281 } else {
b6a60451 3282 /* cache_grow already freed obj */
3c517a61
CL
3283 obj = NULL;
3284 }
3285 }
aedb0eb1 3286 }
765c4507
CL
3287 return obj;
3288}
3289
e498be7d
CL
3290/*
3291 * A interface to enable slab creation on nodeid
1da177e4 3292 */
8b98c169 3293static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3294 int nodeid)
e498be7d
CL
3295{
3296 struct list_head *entry;
b28a02de
PE
3297 struct slab *slabp;
3298 struct kmem_list3 *l3;
3299 void *obj;
b28a02de
PE
3300 int x;
3301
3302 l3 = cachep->nodelists[nodeid];
3303 BUG_ON(!l3);
3304
a737b3e2 3305retry:
ca3b9b91 3306 check_irq_off();
b28a02de
PE
3307 spin_lock(&l3->list_lock);
3308 entry = l3->slabs_partial.next;
3309 if (entry == &l3->slabs_partial) {
3310 l3->free_touched = 1;
3311 entry = l3->slabs_free.next;
3312 if (entry == &l3->slabs_free)
3313 goto must_grow;
3314 }
3315
3316 slabp = list_entry(entry, struct slab, list);
3317 check_spinlock_acquired_node(cachep, nodeid);
3318 check_slabp(cachep, slabp);
3319
3320 STATS_INC_NODEALLOCS(cachep);
3321 STATS_INC_ACTIVE(cachep);
3322 STATS_SET_HIGH(cachep);
3323
3324 BUG_ON(slabp->inuse == cachep->num);
3325
78d382d7 3326 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3327 check_slabp(cachep, slabp);
3328 l3->free_objects--;
3329 /* move slabp to correct slabp list: */
3330 list_del(&slabp->list);
3331
a737b3e2 3332 if (slabp->free == BUFCTL_END)
b28a02de 3333 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3334 else
b28a02de 3335 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3336
b28a02de
PE
3337 spin_unlock(&l3->list_lock);
3338 goto done;
e498be7d 3339
a737b3e2 3340must_grow:
b28a02de 3341 spin_unlock(&l3->list_lock);
3c517a61 3342 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3343 if (x)
3344 goto retry;
1da177e4 3345
8c8cc2c1 3346 return fallback_alloc(cachep, flags);
e498be7d 3347
a737b3e2 3348done:
b28a02de 3349 return obj;
e498be7d 3350}
8c8cc2c1
PE
3351
3352/**
3353 * kmem_cache_alloc_node - Allocate an object on the specified node
3354 * @cachep: The cache to allocate from.
3355 * @flags: See kmalloc().
3356 * @nodeid: node number of the target node.
3357 * @caller: return address of caller, used for debug information
3358 *
3359 * Identical to kmem_cache_alloc but it will allocate memory on the given
3360 * node, which can improve the performance for cpu bound structures.
3361 *
3362 * Fallback to other node is possible if __GFP_THISNODE is not set.
3363 */
3364static __always_inline void *
3365__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3366 void *caller)
3367{
3368 unsigned long save_flags;
3369 void *ptr;
3370
7e85ee0c
PE
3371 flags &= slab_gfp_mask;
3372
cf40bd16
NP
3373 lockdep_trace_alloc(flags);
3374
773ff60e 3375 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3376 return NULL;
3377
8c8cc2c1
PE
3378 cache_alloc_debugcheck_before(cachep, flags);
3379 local_irq_save(save_flags);
3380
3381 if (unlikely(nodeid == -1))
3382 nodeid = numa_node_id();
3383
3384 if (unlikely(!cachep->nodelists[nodeid])) {
3385 /* Node not bootstrapped yet */
3386 ptr = fallback_alloc(cachep, flags);
3387 goto out;
3388 }
3389
3390 if (nodeid == numa_node_id()) {
3391 /*
3392 * Use the locally cached objects if possible.
3393 * However ____cache_alloc does not allow fallback
3394 * to other nodes. It may fail while we still have
3395 * objects on other nodes available.
3396 */
3397 ptr = ____cache_alloc(cachep, flags);
3398 if (ptr)
3399 goto out;
3400 }
3401 /* ___cache_alloc_node can fall back to other nodes */
3402 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3403 out:
3404 local_irq_restore(save_flags);
3405 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
d5cff635
CM
3406 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3407 flags);
8c8cc2c1 3408
d07dbea4
CL
3409 if (unlikely((flags & __GFP_ZERO) && ptr))
3410 memset(ptr, 0, obj_size(cachep));
3411
8c8cc2c1
PE
3412 return ptr;
3413}
3414
3415static __always_inline void *
3416__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3417{
3418 void *objp;
3419
3420 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3421 objp = alternate_node_alloc(cache, flags);
3422 if (objp)
3423 goto out;
3424 }
3425 objp = ____cache_alloc(cache, flags);
3426
3427 /*
3428 * We may just have run out of memory on the local node.
3429 * ____cache_alloc_node() knows how to locate memory on other nodes
3430 */
3431 if (!objp)
3432 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3433
3434 out:
3435 return objp;
3436}
3437#else
3438
3439static __always_inline void *
3440__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3441{
3442 return ____cache_alloc(cachep, flags);
3443}
3444
3445#endif /* CONFIG_NUMA */
3446
3447static __always_inline void *
3448__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3449{
3450 unsigned long save_flags;
3451 void *objp;
3452
7e85ee0c
PE
3453 flags &= slab_gfp_mask;
3454
cf40bd16
NP
3455 lockdep_trace_alloc(flags);
3456
773ff60e 3457 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3458 return NULL;
3459
8c8cc2c1
PE
3460 cache_alloc_debugcheck_before(cachep, flags);
3461 local_irq_save(save_flags);
3462 objp = __do_cache_alloc(cachep, flags);
3463 local_irq_restore(save_flags);
3464 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
d5cff635
CM
3465 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3466 flags);
8c8cc2c1
PE
3467 prefetchw(objp);
3468
d07dbea4
CL
3469 if (unlikely((flags & __GFP_ZERO) && objp))
3470 memset(objp, 0, obj_size(cachep));
3471
8c8cc2c1
PE
3472 return objp;
3473}
e498be7d
CL
3474
3475/*
3476 * Caller needs to acquire correct kmem_list's list_lock
3477 */
343e0d7a 3478static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3479 int node)
1da177e4
LT
3480{
3481 int i;
e498be7d 3482 struct kmem_list3 *l3;
1da177e4
LT
3483
3484 for (i = 0; i < nr_objects; i++) {
3485 void *objp = objpp[i];
3486 struct slab *slabp;
1da177e4 3487
6ed5eb22 3488 slabp = virt_to_slab(objp);
ff69416e 3489 l3 = cachep->nodelists[node];
1da177e4 3490 list_del(&slabp->list);
ff69416e 3491 check_spinlock_acquired_node(cachep, node);
1da177e4 3492 check_slabp(cachep, slabp);
78d382d7 3493 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3494 STATS_DEC_ACTIVE(cachep);
e498be7d 3495 l3->free_objects++;
1da177e4
LT
3496 check_slabp(cachep, slabp);
3497
3498 /* fixup slab chains */
3499 if (slabp->inuse == 0) {
e498be7d
CL
3500 if (l3->free_objects > l3->free_limit) {
3501 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3502 /* No need to drop any previously held
3503 * lock here, even if we have a off-slab slab
3504 * descriptor it is guaranteed to come from
3505 * a different cache, refer to comments before
3506 * alloc_slabmgmt.
3507 */
1da177e4
LT
3508 slab_destroy(cachep, slabp);
3509 } else {
e498be7d 3510 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3511 }
3512 } else {
3513 /* Unconditionally move a slab to the end of the
3514 * partial list on free - maximum time for the
3515 * other objects to be freed, too.
3516 */
e498be7d 3517 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3518 }
3519 }
3520}
3521
343e0d7a 3522static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3523{
3524 int batchcount;
e498be7d 3525 struct kmem_list3 *l3;
ff69416e 3526 int node = numa_node_id();
1da177e4
LT
3527
3528 batchcount = ac->batchcount;
3529#if DEBUG
3530 BUG_ON(!batchcount || batchcount > ac->avail);
3531#endif
3532 check_irq_off();
ff69416e 3533 l3 = cachep->nodelists[node];
873623df 3534 spin_lock(&l3->list_lock);
e498be7d
CL
3535 if (l3->shared) {
3536 struct array_cache *shared_array = l3->shared;
b28a02de 3537 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3538 if (max) {
3539 if (batchcount > max)
3540 batchcount = max;
e498be7d 3541 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3542 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3543 shared_array->avail += batchcount;
3544 goto free_done;
3545 }
3546 }
3547
ff69416e 3548 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3549free_done:
1da177e4
LT
3550#if STATS
3551 {
3552 int i = 0;
3553 struct list_head *p;
3554
e498be7d
CL
3555 p = l3->slabs_free.next;
3556 while (p != &(l3->slabs_free)) {
1da177e4
LT
3557 struct slab *slabp;
3558
3559 slabp = list_entry(p, struct slab, list);
3560 BUG_ON(slabp->inuse);
3561
3562 i++;
3563 p = p->next;
3564 }
3565 STATS_SET_FREEABLE(cachep, i);
3566 }
3567#endif
e498be7d 3568 spin_unlock(&l3->list_lock);
1da177e4 3569 ac->avail -= batchcount;
a737b3e2 3570 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3571}
3572
3573/*
a737b3e2
AM
3574 * Release an obj back to its cache. If the obj has a constructed state, it must
3575 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3576 */
873623df 3577static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3578{
9a2dba4b 3579 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3580
3581 check_irq_off();
d5cff635 3582 kmemleak_free_recursive(objp, cachep->flags);
1da177e4
LT
3583 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3584
1807a1aa
SS
3585 /*
3586 * Skip calling cache_free_alien() when the platform is not numa.
3587 * This will avoid cache misses that happen while accessing slabp (which
3588 * is per page memory reference) to get nodeid. Instead use a global
3589 * variable to skip the call, which is mostly likely to be present in
3590 * the cache.
3591 */
3592 if (numa_platform && cache_free_alien(cachep, objp))
729bd0b7
PE
3593 return;
3594
1da177e4
LT
3595 if (likely(ac->avail < ac->limit)) {
3596 STATS_INC_FREEHIT(cachep);
e498be7d 3597 ac->entry[ac->avail++] = objp;
1da177e4
LT
3598 return;
3599 } else {
3600 STATS_INC_FREEMISS(cachep);
3601 cache_flusharray(cachep, ac);
e498be7d 3602 ac->entry[ac->avail++] = objp;
1da177e4
LT
3603 }
3604}
3605
3606/**
3607 * kmem_cache_alloc - Allocate an object
3608 * @cachep: The cache to allocate from.
3609 * @flags: See kmalloc().
3610 *
3611 * Allocate an object from this cache. The flags are only relevant
3612 * if the cache has no available objects.
3613 */
343e0d7a 3614void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3615{
36555751
EGM
3616 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3617
ca2b84cb
EGM
3618 trace_kmem_cache_alloc(_RET_IP_, ret,
3619 obj_size(cachep), cachep->buffer_size, flags);
36555751
EGM
3620
3621 return ret;
1da177e4
LT
3622}
3623EXPORT_SYMBOL(kmem_cache_alloc);
3624
36555751
EGM
3625#ifdef CONFIG_KMEMTRACE
3626void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
3627{
3628 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3629}
3630EXPORT_SYMBOL(kmem_cache_alloc_notrace);
3631#endif
3632
1da177e4 3633/**
7682486b 3634 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
1da177e4
LT
3635 * @cachep: the cache we're checking against
3636 * @ptr: pointer to validate
3637 *
7682486b 3638 * This verifies that the untrusted pointer looks sane;
1da177e4
LT
3639 * it is _not_ a guarantee that the pointer is actually
3640 * part of the slab cache in question, but it at least
3641 * validates that the pointer can be dereferenced and
3642 * looks half-way sane.
3643 *
3644 * Currently only used for dentry validation.
3645 */
b7f869a2 3646int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
1da177e4 3647{
b28a02de 3648 unsigned long addr = (unsigned long)ptr;
1da177e4 3649 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3650 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3651 unsigned long size = cachep->buffer_size;
1da177e4
LT
3652 struct page *page;
3653
3654 if (unlikely(addr < min_addr))
3655 goto out;
3656 if (unlikely(addr > (unsigned long)high_memory - size))
3657 goto out;
3658 if (unlikely(addr & align_mask))
3659 goto out;
3660 if (unlikely(!kern_addr_valid(addr)))
3661 goto out;
3662 if (unlikely(!kern_addr_valid(addr + size - 1)))
3663 goto out;
3664 page = virt_to_page(ptr);
3665 if (unlikely(!PageSlab(page)))
3666 goto out;
065d41cb 3667 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3668 goto out;
3669 return 1;
a737b3e2 3670out:
1da177e4
LT
3671 return 0;
3672}
3673
3674#ifdef CONFIG_NUMA
8b98c169
CH
3675void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3676{
36555751
EGM
3677 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3678 __builtin_return_address(0));
3679
ca2b84cb
EGM
3680 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3681 obj_size(cachep), cachep->buffer_size,
3682 flags, nodeid);
36555751
EGM
3683
3684 return ret;
8b98c169 3685}
1da177e4
LT
3686EXPORT_SYMBOL(kmem_cache_alloc_node);
3687
36555751
EGM
3688#ifdef CONFIG_KMEMTRACE
3689void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
3690 gfp_t flags,
3691 int nodeid)
3692{
3693 return __cache_alloc_node(cachep, flags, nodeid,
3694 __builtin_return_address(0));
3695}
3696EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
3697#endif
3698
8b98c169
CH
3699static __always_inline void *
3700__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3701{
343e0d7a 3702 struct kmem_cache *cachep;
36555751 3703 void *ret;
97e2bde4
MS
3704
3705 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3706 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3707 return cachep;
36555751
EGM
3708 ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
3709
ca2b84cb
EGM
3710 trace_kmalloc_node((unsigned long) caller, ret,
3711 size, cachep->buffer_size, flags, node);
36555751
EGM
3712
3713 return ret;
97e2bde4 3714}
8b98c169 3715
36555751 3716#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
8b98c169
CH
3717void *__kmalloc_node(size_t size, gfp_t flags, int node)
3718{
3719 return __do_kmalloc_node(size, flags, node,
3720 __builtin_return_address(0));
3721}
dbe5e69d 3722EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3723
3724void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3725 int node, unsigned long caller)
8b98c169 3726{
ce71e27c 3727 return __do_kmalloc_node(size, flags, node, (void *)caller);
8b98c169
CH
3728}
3729EXPORT_SYMBOL(__kmalloc_node_track_caller);
3730#else
3731void *__kmalloc_node(size_t size, gfp_t flags, int node)
3732{
3733 return __do_kmalloc_node(size, flags, node, NULL);
3734}
3735EXPORT_SYMBOL(__kmalloc_node);
3736#endif /* CONFIG_DEBUG_SLAB */
3737#endif /* CONFIG_NUMA */
1da177e4
LT
3738
3739/**
800590f5 3740 * __do_kmalloc - allocate memory
1da177e4 3741 * @size: how many bytes of memory are required.
800590f5 3742 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3743 * @caller: function caller for debug tracking of the caller
1da177e4 3744 */
7fd6b141
PE
3745static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3746 void *caller)
1da177e4 3747{
343e0d7a 3748 struct kmem_cache *cachep;
36555751 3749 void *ret;
1da177e4 3750
97e2bde4
MS
3751 /* If you want to save a few bytes .text space: replace
3752 * __ with kmem_.
3753 * Then kmalloc uses the uninlined functions instead of the inline
3754 * functions.
3755 */
3756 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3757 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3758 return cachep;
36555751
EGM
3759 ret = __cache_alloc(cachep, flags, caller);
3760
ca2b84cb
EGM
3761 trace_kmalloc((unsigned long) caller, ret,
3762 size, cachep->buffer_size, flags);
36555751
EGM
3763
3764 return ret;
7fd6b141
PE
3765}
3766
7fd6b141 3767
36555751 3768#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
7fd6b141
PE
3769void *__kmalloc(size_t size, gfp_t flags)
3770{
871751e2 3771 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3772}
3773EXPORT_SYMBOL(__kmalloc);
3774
ce71e27c 3775void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3776{
ce71e27c 3777 return __do_kmalloc(size, flags, (void *)caller);
7fd6b141
PE
3778}
3779EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3780
3781#else
3782void *__kmalloc(size_t size, gfp_t flags)
3783{
3784 return __do_kmalloc(size, flags, NULL);
3785}
3786EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3787#endif
3788
1da177e4
LT
3789/**
3790 * kmem_cache_free - Deallocate an object
3791 * @cachep: The cache the allocation was from.
3792 * @objp: The previously allocated object.
3793 *
3794 * Free an object which was previously allocated from this
3795 * cache.
3796 */
343e0d7a 3797void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3798{
3799 unsigned long flags;
3800
3801 local_irq_save(flags);
898552c9 3802 debug_check_no_locks_freed(objp, obj_size(cachep));
3ac7fe5a
TG
3803 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3804 debug_check_no_obj_freed(objp, obj_size(cachep));
873623df 3805 __cache_free(cachep, objp);
1da177e4 3806 local_irq_restore(flags);
36555751 3807
ca2b84cb 3808 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3809}
3810EXPORT_SYMBOL(kmem_cache_free);
3811
1da177e4
LT
3812/**
3813 * kfree - free previously allocated memory
3814 * @objp: pointer returned by kmalloc.
3815 *
80e93eff
PE
3816 * If @objp is NULL, no operation is performed.
3817 *
1da177e4
LT
3818 * Don't free memory not originally allocated by kmalloc()
3819 * or you will run into trouble.
3820 */
3821void kfree(const void *objp)
3822{
343e0d7a 3823 struct kmem_cache *c;
1da177e4
LT
3824 unsigned long flags;
3825
2121db74
PE
3826 trace_kfree(_RET_IP_, objp);
3827
6cb8f913 3828 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3829 return;
3830 local_irq_save(flags);
3831 kfree_debugcheck(objp);
6ed5eb22 3832 c = virt_to_cache(objp);
f9b8404c 3833 debug_check_no_locks_freed(objp, obj_size(c));
3ac7fe5a 3834 debug_check_no_obj_freed(objp, obj_size(c));
873623df 3835 __cache_free(c, (void *)objp);
1da177e4
LT
3836 local_irq_restore(flags);
3837}
3838EXPORT_SYMBOL(kfree);
3839
343e0d7a 3840unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3841{
3dafccf2 3842 return obj_size(cachep);
1da177e4
LT
3843}
3844EXPORT_SYMBOL(kmem_cache_size);
3845
343e0d7a 3846const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3847{
3848 return cachep->name;
3849}
3850EXPORT_SYMBOL_GPL(kmem_cache_name);
3851
e498be7d 3852/*
183ff22b 3853 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 3854 */
83b519e8 3855static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3856{
3857 int node;
3858 struct kmem_list3 *l3;
cafeb02e 3859 struct array_cache *new_shared;
3395ee05 3860 struct array_cache **new_alien = NULL;
e498be7d 3861
9c09a95c 3862 for_each_online_node(node) {
cafeb02e 3863
3395ee05 3864 if (use_alien_caches) {
83b519e8 3865 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3866 if (!new_alien)
3867 goto fail;
3868 }
cafeb02e 3869
63109846
ED
3870 new_shared = NULL;
3871 if (cachep->shared) {
3872 new_shared = alloc_arraycache(node,
0718dc2a 3873 cachep->shared*cachep->batchcount,
83b519e8 3874 0xbaadf00d, gfp);
63109846
ED
3875 if (!new_shared) {
3876 free_alien_cache(new_alien);
3877 goto fail;
3878 }
0718dc2a 3879 }
cafeb02e 3880
a737b3e2
AM
3881 l3 = cachep->nodelists[node];
3882 if (l3) {
cafeb02e
CL
3883 struct array_cache *shared = l3->shared;
3884
e498be7d
CL
3885 spin_lock_irq(&l3->list_lock);
3886
cafeb02e 3887 if (shared)
0718dc2a
CL
3888 free_block(cachep, shared->entry,
3889 shared->avail, node);
e498be7d 3890
cafeb02e
CL
3891 l3->shared = new_shared;
3892 if (!l3->alien) {
e498be7d
CL
3893 l3->alien = new_alien;
3894 new_alien = NULL;
3895 }
b28a02de 3896 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3897 cachep->batchcount + cachep->num;
e498be7d 3898 spin_unlock_irq(&l3->list_lock);
cafeb02e 3899 kfree(shared);
e498be7d
CL
3900 free_alien_cache(new_alien);
3901 continue;
3902 }
83b519e8 3903 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
0718dc2a
CL
3904 if (!l3) {
3905 free_alien_cache(new_alien);
3906 kfree(new_shared);
e498be7d 3907 goto fail;
0718dc2a 3908 }
e498be7d
CL
3909
3910 kmem_list3_init(l3);
3911 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3912 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3913 l3->shared = new_shared;
e498be7d 3914 l3->alien = new_alien;
b28a02de 3915 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3916 cachep->batchcount + cachep->num;
e498be7d
CL
3917 cachep->nodelists[node] = l3;
3918 }
cafeb02e 3919 return 0;
0718dc2a 3920
a737b3e2 3921fail:
0718dc2a
CL
3922 if (!cachep->next.next) {
3923 /* Cache is not active yet. Roll back what we did */
3924 node--;
3925 while (node >= 0) {
3926 if (cachep->nodelists[node]) {
3927 l3 = cachep->nodelists[node];
3928
3929 kfree(l3->shared);
3930 free_alien_cache(l3->alien);
3931 kfree(l3);
3932 cachep->nodelists[node] = NULL;
3933 }
3934 node--;
3935 }
3936 }
cafeb02e 3937 return -ENOMEM;
e498be7d
CL
3938}
3939
1da177e4 3940struct ccupdate_struct {
343e0d7a 3941 struct kmem_cache *cachep;
1da177e4
LT
3942 struct array_cache *new[NR_CPUS];
3943};
3944
3945static void do_ccupdate_local(void *info)
3946{
a737b3e2 3947 struct ccupdate_struct *new = info;
1da177e4
LT
3948 struct array_cache *old;
3949
3950 check_irq_off();
9a2dba4b 3951 old = cpu_cache_get(new->cachep);
e498be7d 3952
1da177e4
LT
3953 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3954 new->new[smp_processor_id()] = old;
3955}
3956
b5d8ca7c 3957/* Always called with the cache_chain_mutex held */
a737b3e2 3958static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3959 int batchcount, int shared, gfp_t gfp)
1da177e4 3960{
d2e7b7d0 3961 struct ccupdate_struct *new;
2ed3a4ef 3962 int i;
1da177e4 3963
83b519e8 3964 new = kzalloc(sizeof(*new), gfp);
d2e7b7d0
SS
3965 if (!new)
3966 return -ENOMEM;
3967
e498be7d 3968 for_each_online_cpu(i) {
d2e7b7d0 3969 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
83b519e8 3970 batchcount, gfp);
d2e7b7d0 3971 if (!new->new[i]) {
b28a02de 3972 for (i--; i >= 0; i--)
d2e7b7d0
SS
3973 kfree(new->new[i]);
3974 kfree(new);
e498be7d 3975 return -ENOMEM;
1da177e4
LT
3976 }
3977 }
d2e7b7d0 3978 new->cachep = cachep;
1da177e4 3979
15c8b6c1 3980 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 3981
1da177e4 3982 check_irq_on();
1da177e4
LT
3983 cachep->batchcount = batchcount;
3984 cachep->limit = limit;
e498be7d 3985 cachep->shared = shared;
1da177e4 3986
e498be7d 3987 for_each_online_cpu(i) {
d2e7b7d0 3988 struct array_cache *ccold = new->new[i];
1da177e4
LT
3989 if (!ccold)
3990 continue;
e498be7d 3991 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3992 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3993 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3994 kfree(ccold);
3995 }
d2e7b7d0 3996 kfree(new);
83b519e8 3997 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
3998}
3999
b5d8ca7c 4000/* Called with cache_chain_mutex held always */
83b519e8 4001static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
4002{
4003 int err;
4004 int limit, shared;
4005
a737b3e2
AM
4006 /*
4007 * The head array serves three purposes:
1da177e4
LT
4008 * - create a LIFO ordering, i.e. return objects that are cache-warm
4009 * - reduce the number of spinlock operations.
a737b3e2 4010 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4011 * bufctl chains: array operations are cheaper.
4012 * The numbers are guessed, we should auto-tune as described by
4013 * Bonwick.
4014 */
3dafccf2 4015 if (cachep->buffer_size > 131072)
1da177e4 4016 limit = 1;
3dafccf2 4017 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 4018 limit = 8;
3dafccf2 4019 else if (cachep->buffer_size > 1024)
1da177e4 4020 limit = 24;
3dafccf2 4021 else if (cachep->buffer_size > 256)
1da177e4
LT
4022 limit = 54;
4023 else
4024 limit = 120;
4025
a737b3e2
AM
4026 /*
4027 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4028 * allocation behaviour: Most allocs on one cpu, most free operations
4029 * on another cpu. For these cases, an efficient object passing between
4030 * cpus is necessary. This is provided by a shared array. The array
4031 * replaces Bonwick's magazine layer.
4032 * On uniprocessor, it's functionally equivalent (but less efficient)
4033 * to a larger limit. Thus disabled by default.
4034 */
4035 shared = 0;
364fbb29 4036 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4037 shared = 8;
1da177e4
LT
4038
4039#if DEBUG
a737b3e2
AM
4040 /*
4041 * With debugging enabled, large batchcount lead to excessively long
4042 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4043 */
4044 if (limit > 32)
4045 limit = 32;
4046#endif
83b519e8 4047 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
1da177e4
LT
4048 if (err)
4049 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4050 cachep->name, -err);
2ed3a4ef 4051 return err;
1da177e4
LT
4052}
4053
1b55253a
CL
4054/*
4055 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4056 * necessary. Note that the l3 listlock also protects the array_cache
4057 * if drain_array() is used on the shared array.
1b55253a
CL
4058 */
4059void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4060 struct array_cache *ac, int force, int node)
1da177e4
LT
4061{
4062 int tofree;
4063
1b55253a
CL
4064 if (!ac || !ac->avail)
4065 return;
1da177e4
LT
4066 if (ac->touched && !force) {
4067 ac->touched = 0;
b18e7e65 4068 } else {
1b55253a 4069 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4070 if (ac->avail) {
4071 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4072 if (tofree > ac->avail)
4073 tofree = (ac->avail + 1) / 2;
4074 free_block(cachep, ac->entry, tofree, node);
4075 ac->avail -= tofree;
4076 memmove(ac->entry, &(ac->entry[tofree]),
4077 sizeof(void *) * ac->avail);
4078 }
1b55253a 4079 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4080 }
4081}
4082
4083/**
4084 * cache_reap - Reclaim memory from caches.
05fb6bf0 4085 * @w: work descriptor
1da177e4
LT
4086 *
4087 * Called from workqueue/eventd every few seconds.
4088 * Purpose:
4089 * - clear the per-cpu caches for this CPU.
4090 * - return freeable pages to the main free memory pool.
4091 *
a737b3e2
AM
4092 * If we cannot acquire the cache chain mutex then just give up - we'll try
4093 * again on the next iteration.
1da177e4 4094 */
7c5cae36 4095static void cache_reap(struct work_struct *w)
1da177e4 4096{
7a7c381d 4097 struct kmem_cache *searchp;
e498be7d 4098 struct kmem_list3 *l3;
aab2207c 4099 int node = numa_node_id();
bf6aede7 4100 struct delayed_work *work = to_delayed_work(w);
1da177e4 4101
7c5cae36 4102 if (!mutex_trylock(&cache_chain_mutex))
1da177e4 4103 /* Give up. Setup the next iteration. */
7c5cae36 4104 goto out;
1da177e4 4105
7a7c381d 4106 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
4107 check_irq_on();
4108
35386e3b
CL
4109 /*
4110 * We only take the l3 lock if absolutely necessary and we
4111 * have established with reasonable certainty that
4112 * we can do some work if the lock was obtained.
4113 */
aab2207c 4114 l3 = searchp->nodelists[node];
35386e3b 4115
8fce4d8e 4116 reap_alien(searchp, l3);
1da177e4 4117
aab2207c 4118 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4119
35386e3b
CL
4120 /*
4121 * These are racy checks but it does not matter
4122 * if we skip one check or scan twice.
4123 */
e498be7d 4124 if (time_after(l3->next_reap, jiffies))
35386e3b 4125 goto next;
1da177e4 4126
e498be7d 4127 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4128
aab2207c 4129 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4130
ed11d9eb 4131 if (l3->free_touched)
e498be7d 4132 l3->free_touched = 0;
ed11d9eb
CL
4133 else {
4134 int freed;
1da177e4 4135
ed11d9eb
CL
4136 freed = drain_freelist(searchp, l3, (l3->free_limit +
4137 5 * searchp->num - 1) / (5 * searchp->num));
4138 STATS_ADD_REAPED(searchp, freed);
4139 }
35386e3b 4140next:
1da177e4
LT
4141 cond_resched();
4142 }
4143 check_irq_on();
fc0abb14 4144 mutex_unlock(&cache_chain_mutex);
8fce4d8e 4145 next_reap_node();
7c5cae36 4146out:
a737b3e2 4147 /* Set up the next iteration */
7c5cae36 4148 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4149}
4150
158a9624 4151#ifdef CONFIG_SLABINFO
1da177e4 4152
85289f98 4153static void print_slabinfo_header(struct seq_file *m)
1da177e4 4154{
85289f98
PE
4155 /*
4156 * Output format version, so at least we can change it
4157 * without _too_ many complaints.
4158 */
1da177e4 4159#if STATS
85289f98 4160 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4161#else
85289f98 4162 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4163#endif
85289f98
PE
4164 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4165 "<objperslab> <pagesperslab>");
4166 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4167 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4168#if STATS
85289f98 4169 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4170 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4171 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4172#endif
85289f98
PE
4173 seq_putc(m, '\n');
4174}
4175
4176static void *s_start(struct seq_file *m, loff_t *pos)
4177{
4178 loff_t n = *pos;
85289f98 4179
fc0abb14 4180 mutex_lock(&cache_chain_mutex);
85289f98
PE
4181 if (!n)
4182 print_slabinfo_header(m);
b92151ba
PE
4183
4184 return seq_list_start(&cache_chain, *pos);
1da177e4
LT
4185}
4186
4187static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4188{
b92151ba 4189 return seq_list_next(p, &cache_chain, pos);
1da177e4
LT
4190}
4191
4192static void s_stop(struct seq_file *m, void *p)
4193{
fc0abb14 4194 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4195}
4196
4197static int s_show(struct seq_file *m, void *p)
4198{
b92151ba 4199 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
b28a02de
PE
4200 struct slab *slabp;
4201 unsigned long active_objs;
4202 unsigned long num_objs;
4203 unsigned long active_slabs = 0;
4204 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4205 const char *name;
1da177e4 4206 char *error = NULL;
e498be7d
CL
4207 int node;
4208 struct kmem_list3 *l3;
1da177e4 4209
1da177e4
LT
4210 active_objs = 0;
4211 num_slabs = 0;
e498be7d
CL
4212 for_each_online_node(node) {
4213 l3 = cachep->nodelists[node];
4214 if (!l3)
4215 continue;
4216
ca3b9b91
RT
4217 check_irq_on();
4218 spin_lock_irq(&l3->list_lock);
e498be7d 4219
7a7c381d 4220 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4221 if (slabp->inuse != cachep->num && !error)
4222 error = "slabs_full accounting error";
4223 active_objs += cachep->num;
4224 active_slabs++;
4225 }
7a7c381d 4226 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4227 if (slabp->inuse == cachep->num && !error)
4228 error = "slabs_partial inuse accounting error";
4229 if (!slabp->inuse && !error)
4230 error = "slabs_partial/inuse accounting error";
4231 active_objs += slabp->inuse;
4232 active_slabs++;
4233 }
7a7c381d 4234 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4235 if (slabp->inuse && !error)
4236 error = "slabs_free/inuse accounting error";
4237 num_slabs++;
4238 }
4239 free_objects += l3->free_objects;
4484ebf1
RT
4240 if (l3->shared)
4241 shared_avail += l3->shared->avail;
e498be7d 4242
ca3b9b91 4243 spin_unlock_irq(&l3->list_lock);
1da177e4 4244 }
b28a02de
PE
4245 num_slabs += active_slabs;
4246 num_objs = num_slabs * cachep->num;
e498be7d 4247 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4248 error = "free_objects accounting error";
4249
b28a02de 4250 name = cachep->name;
1da177e4
LT
4251 if (error)
4252 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4253
4254 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 4255 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 4256 cachep->num, (1 << cachep->gfporder));
1da177e4 4257 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4258 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4259 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4260 active_slabs, num_slabs, shared_avail);
1da177e4 4261#if STATS
b28a02de 4262 { /* list3 stats */
1da177e4
LT
4263 unsigned long high = cachep->high_mark;
4264 unsigned long allocs = cachep->num_allocations;
4265 unsigned long grown = cachep->grown;
4266 unsigned long reaped = cachep->reaped;
4267 unsigned long errors = cachep->errors;
4268 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4269 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4270 unsigned long node_frees = cachep->node_frees;
fb7faf33 4271 unsigned long overflows = cachep->node_overflow;
1da177e4 4272
e498be7d 4273 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 4274 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 4275 reaped, errors, max_freeable, node_allocs,
fb7faf33 4276 node_frees, overflows);
1da177e4
LT
4277 }
4278 /* cpu stats */
4279 {
4280 unsigned long allochit = atomic_read(&cachep->allochit);
4281 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4282 unsigned long freehit = atomic_read(&cachep->freehit);
4283 unsigned long freemiss = atomic_read(&cachep->freemiss);
4284
4285 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4286 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4287 }
4288#endif
4289 seq_putc(m, '\n');
1da177e4
LT
4290 return 0;
4291}
4292
4293/*
4294 * slabinfo_op - iterator that generates /proc/slabinfo
4295 *
4296 * Output layout:
4297 * cache-name
4298 * num-active-objs
4299 * total-objs
4300 * object size
4301 * num-active-slabs
4302 * total-slabs
4303 * num-pages-per-slab
4304 * + further values on SMP and with statistics enabled
4305 */
4306
7b3c3a50 4307static const struct seq_operations slabinfo_op = {
b28a02de
PE
4308 .start = s_start,
4309 .next = s_next,
4310 .stop = s_stop,
4311 .show = s_show,
1da177e4
LT
4312};
4313
4314#define MAX_SLABINFO_WRITE 128
4315/**
4316 * slabinfo_write - Tuning for the slab allocator
4317 * @file: unused
4318 * @buffer: user buffer
4319 * @count: data length
4320 * @ppos: unused
4321 */
b28a02de
PE
4322ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4323 size_t count, loff_t *ppos)
1da177e4 4324{
b28a02de 4325 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4326 int limit, batchcount, shared, res;
7a7c381d 4327 struct kmem_cache *cachep;
b28a02de 4328
1da177e4
LT
4329 if (count > MAX_SLABINFO_WRITE)
4330 return -EINVAL;
4331 if (copy_from_user(&kbuf, buffer, count))
4332 return -EFAULT;
b28a02de 4333 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4334
4335 tmp = strchr(kbuf, ' ');
4336 if (!tmp)
4337 return -EINVAL;
4338 *tmp = '\0';
4339 tmp++;
4340 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4341 return -EINVAL;
4342
4343 /* Find the cache in the chain of caches. */
fc0abb14 4344 mutex_lock(&cache_chain_mutex);
1da177e4 4345 res = -EINVAL;
7a7c381d 4346 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4347 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4348 if (limit < 1 || batchcount < 1 ||
4349 batchcount > limit || shared < 0) {
e498be7d 4350 res = 0;
1da177e4 4351 } else {
e498be7d 4352 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4353 batchcount, shared,
4354 GFP_KERNEL);
1da177e4
LT
4355 }
4356 break;
4357 }
4358 }
fc0abb14 4359 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4360 if (res >= 0)
4361 res = count;
4362 return res;
4363}
871751e2 4364
7b3c3a50
AD
4365static int slabinfo_open(struct inode *inode, struct file *file)
4366{
4367 return seq_open(file, &slabinfo_op);
4368}
4369
4370static const struct file_operations proc_slabinfo_operations = {
4371 .open = slabinfo_open,
4372 .read = seq_read,
4373 .write = slabinfo_write,
4374 .llseek = seq_lseek,
4375 .release = seq_release,
4376};
4377
871751e2
AV
4378#ifdef CONFIG_DEBUG_SLAB_LEAK
4379
4380static void *leaks_start(struct seq_file *m, loff_t *pos)
4381{
871751e2 4382 mutex_lock(&cache_chain_mutex);
b92151ba 4383 return seq_list_start(&cache_chain, *pos);
871751e2
AV
4384}
4385
4386static inline int add_caller(unsigned long *n, unsigned long v)
4387{
4388 unsigned long *p;
4389 int l;
4390 if (!v)
4391 return 1;
4392 l = n[1];
4393 p = n + 2;
4394 while (l) {
4395 int i = l/2;
4396 unsigned long *q = p + 2 * i;
4397 if (*q == v) {
4398 q[1]++;
4399 return 1;
4400 }
4401 if (*q > v) {
4402 l = i;
4403 } else {
4404 p = q + 2;
4405 l -= i + 1;
4406 }
4407 }
4408 if (++n[1] == n[0])
4409 return 0;
4410 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4411 p[0] = v;
4412 p[1] = 1;
4413 return 1;
4414}
4415
4416static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4417{
4418 void *p;
4419 int i;
4420 if (n[0] == n[1])
4421 return;
4422 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4423 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4424 continue;
4425 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4426 return;
4427 }
4428}
4429
4430static void show_symbol(struct seq_file *m, unsigned long address)
4431{
4432#ifdef CONFIG_KALLSYMS
871751e2 4433 unsigned long offset, size;
9281acea 4434 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4435
a5c43dae 4436 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4437 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4438 if (modname[0])
871751e2
AV
4439 seq_printf(m, " [%s]", modname);
4440 return;
4441 }
4442#endif
4443 seq_printf(m, "%p", (void *)address);
4444}
4445
4446static int leaks_show(struct seq_file *m, void *p)
4447{
b92151ba 4448 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
871751e2
AV
4449 struct slab *slabp;
4450 struct kmem_list3 *l3;
4451 const char *name;
4452 unsigned long *n = m->private;
4453 int node;
4454 int i;
4455
4456 if (!(cachep->flags & SLAB_STORE_USER))
4457 return 0;
4458 if (!(cachep->flags & SLAB_RED_ZONE))
4459 return 0;
4460
4461 /* OK, we can do it */
4462
4463 n[1] = 0;
4464
4465 for_each_online_node(node) {
4466 l3 = cachep->nodelists[node];
4467 if (!l3)
4468 continue;
4469
4470 check_irq_on();
4471 spin_lock_irq(&l3->list_lock);
4472
7a7c381d 4473 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4474 handle_slab(n, cachep, slabp);
7a7c381d 4475 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4476 handle_slab(n, cachep, slabp);
871751e2
AV
4477 spin_unlock_irq(&l3->list_lock);
4478 }
4479 name = cachep->name;
4480 if (n[0] == n[1]) {
4481 /* Increase the buffer size */
4482 mutex_unlock(&cache_chain_mutex);
4483 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4484 if (!m->private) {
4485 /* Too bad, we are really out */
4486 m->private = n;
4487 mutex_lock(&cache_chain_mutex);
4488 return -ENOMEM;
4489 }
4490 *(unsigned long *)m->private = n[0] * 2;
4491 kfree(n);
4492 mutex_lock(&cache_chain_mutex);
4493 /* Now make sure this entry will be retried */
4494 m->count = m->size;
4495 return 0;
4496 }
4497 for (i = 0; i < n[1]; i++) {
4498 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4499 show_symbol(m, n[2*i+2]);
4500 seq_putc(m, '\n');
4501 }
d2e7b7d0 4502
871751e2
AV
4503 return 0;
4504}
4505
a0ec95a8 4506static const struct seq_operations slabstats_op = {
871751e2
AV
4507 .start = leaks_start,
4508 .next = s_next,
4509 .stop = s_stop,
4510 .show = leaks_show,
4511};
a0ec95a8
AD
4512
4513static int slabstats_open(struct inode *inode, struct file *file)
4514{
4515 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4516 int ret = -ENOMEM;
4517 if (n) {
4518 ret = seq_open(file, &slabstats_op);
4519 if (!ret) {
4520 struct seq_file *m = file->private_data;
4521 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4522 m->private = n;
4523 n = NULL;
4524 }
4525 kfree(n);
4526 }
4527 return ret;
4528}
4529
4530static const struct file_operations proc_slabstats_operations = {
4531 .open = slabstats_open,
4532 .read = seq_read,
4533 .llseek = seq_lseek,
4534 .release = seq_release_private,
4535};
4536#endif
4537
4538static int __init slab_proc_init(void)
4539{
7b3c3a50 4540 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
a0ec95a8
AD
4541#ifdef CONFIG_DEBUG_SLAB_LEAK
4542 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4543#endif
a0ec95a8
AD
4544 return 0;
4545}
4546module_init(slab_proc_init);
1da177e4
LT
4547#endif
4548
00e145b6
MS
4549/**
4550 * ksize - get the actual amount of memory allocated for a given object
4551 * @objp: Pointer to the object
4552 *
4553 * kmalloc may internally round up allocations and return more memory
4554 * than requested. ksize() can be used to determine the actual amount of
4555 * memory allocated. The caller may use this additional memory, even though
4556 * a smaller amount of memory was initially specified with the kmalloc call.
4557 * The caller must guarantee that objp points to a valid object previously
4558 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4559 * must not be freed during the duration of the call.
4560 */
fd76bab2 4561size_t ksize(const void *objp)
1da177e4 4562{
ef8b4520
CL
4563 BUG_ON(!objp);
4564 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4565 return 0;
1da177e4 4566
6ed5eb22 4567 return obj_size(virt_to_cache(objp));
1da177e4 4568}
b1aabecd 4569EXPORT_SYMBOL(ksize);