]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/slab.c
slab: remove useless statement for checking pfmemalloc
[mirror_ubuntu-jammy-kernel.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
072bb0aa
MG
160/*
161 * true if a page was allocated from pfmemalloc reserves for network-based
162 * swap
163 */
164static bool pfmemalloc_active __read_mostly;
165
1da177e4
LT
166/*
167 * struct array_cache
168 *
1da177e4
LT
169 * Purpose:
170 * - LIFO ordering, to hand out cache-warm objects from _alloc
171 * - reduce the number of linked list operations
172 * - reduce spinlock operations
173 *
174 * The limit is stored in the per-cpu structure to reduce the data cache
175 * footprint.
176 *
177 */
178struct array_cache {
179 unsigned int avail;
180 unsigned int limit;
181 unsigned int batchcount;
182 unsigned int touched;
e498be7d 183 spinlock_t lock;
bda5b655 184 void *entry[]; /*
a737b3e2
AM
185 * Must have this definition in here for the proper
186 * alignment of array_cache. Also simplifies accessing
187 * the entries.
072bb0aa
MG
188 *
189 * Entries should not be directly dereferenced as
190 * entries belonging to slabs marked pfmemalloc will
191 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 192 */
1da177e4
LT
193};
194
072bb0aa
MG
195#define SLAB_OBJ_PFMEMALLOC 1
196static inline bool is_obj_pfmemalloc(void *objp)
197{
198 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
199}
200
201static inline void set_obj_pfmemalloc(void **objp)
202{
203 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
204 return;
205}
206
207static inline void clear_obj_pfmemalloc(void **objp)
208{
209 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
210}
211
a737b3e2
AM
212/*
213 * bootstrap: The caches do not work without cpuarrays anymore, but the
214 * cpuarrays are allocated from the generic caches...
1da177e4
LT
215 */
216#define BOOT_CPUCACHE_ENTRIES 1
217struct arraycache_init {
218 struct array_cache cache;
b28a02de 219 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
220};
221
e498be7d
CL
222/*
223 * Need this for bootstrapping a per node allocator.
224 */
556a169d 225#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
ce8eb6c4 226static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 227#define CACHE_CACHE 0
556a169d 228#define SIZE_AC MAX_NUMNODES
ce8eb6c4 229#define SIZE_NODE (2 * MAX_NUMNODES)
e498be7d 230
ed11d9eb 231static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 232 struct kmem_cache_node *n, int tofree);
ed11d9eb
CL
233static void free_block(struct kmem_cache *cachep, void **objpp, int len,
234 int node);
83b519e8 235static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 236static void cache_reap(struct work_struct *unused);
ed11d9eb 237
e0a42726
IM
238static int slab_early_init = 1;
239
e3366016 240#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
ce8eb6c4 241#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 242
ce8eb6c4 243static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
244{
245 INIT_LIST_HEAD(&parent->slabs_full);
246 INIT_LIST_HEAD(&parent->slabs_partial);
247 INIT_LIST_HEAD(&parent->slabs_free);
248 parent->shared = NULL;
249 parent->alien = NULL;
2e1217cf 250 parent->colour_next = 0;
e498be7d
CL
251 spin_lock_init(&parent->list_lock);
252 parent->free_objects = 0;
253 parent->free_touched = 0;
254}
255
a737b3e2
AM
256#define MAKE_LIST(cachep, listp, slab, nodeid) \
257 do { \
258 INIT_LIST_HEAD(listp); \
6a67368c 259 list_splice(&(cachep->node[nodeid]->slab), listp); \
e498be7d
CL
260 } while (0)
261
a737b3e2
AM
262#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
263 do { \
e498be7d
CL
264 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
265 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
266 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
267 } while (0)
1da177e4 268
1da177e4
LT
269#define CFLGS_OFF_SLAB (0x80000000UL)
270#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
271
272#define BATCHREFILL_LIMIT 16
a737b3e2
AM
273/*
274 * Optimization question: fewer reaps means less probability for unnessary
275 * cpucache drain/refill cycles.
1da177e4 276 *
dc6f3f27 277 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
278 * which could lock up otherwise freeable slabs.
279 */
280#define REAPTIMEOUT_CPUC (2*HZ)
281#define REAPTIMEOUT_LIST3 (4*HZ)
282
283#if STATS
284#define STATS_INC_ACTIVE(x) ((x)->num_active++)
285#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
286#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
287#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 288#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
289#define STATS_SET_HIGH(x) \
290 do { \
291 if ((x)->num_active > (x)->high_mark) \
292 (x)->high_mark = (x)->num_active; \
293 } while (0)
1da177e4
LT
294#define STATS_INC_ERR(x) ((x)->errors++)
295#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 296#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 297#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
298#define STATS_SET_FREEABLE(x, i) \
299 do { \
300 if ((x)->max_freeable < i) \
301 (x)->max_freeable = i; \
302 } while (0)
1da177e4
LT
303#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
304#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
305#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
306#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
307#else
308#define STATS_INC_ACTIVE(x) do { } while (0)
309#define STATS_DEC_ACTIVE(x) do { } while (0)
310#define STATS_INC_ALLOCED(x) do { } while (0)
311#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 312#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
313#define STATS_SET_HIGH(x) do { } while (0)
314#define STATS_INC_ERR(x) do { } while (0)
315#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 316#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 317#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 318#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
319#define STATS_INC_ALLOCHIT(x) do { } while (0)
320#define STATS_INC_ALLOCMISS(x) do { } while (0)
321#define STATS_INC_FREEHIT(x) do { } while (0)
322#define STATS_INC_FREEMISS(x) do { } while (0)
323#endif
324
325#if DEBUG
1da177e4 326
a737b3e2
AM
327/*
328 * memory layout of objects:
1da177e4 329 * 0 : objp
3dafccf2 330 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
331 * the end of an object is aligned with the end of the real
332 * allocation. Catches writes behind the end of the allocation.
3dafccf2 333 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 334 * redzone word.
3dafccf2 335 * cachep->obj_offset: The real object.
3b0efdfa
CL
336 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
337 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 338 * [BYTES_PER_WORD long]
1da177e4 339 */
343e0d7a 340static int obj_offset(struct kmem_cache *cachep)
1da177e4 341{
3dafccf2 342 return cachep->obj_offset;
1da177e4
LT
343}
344
b46b8f19 345static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
346{
347 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
348 return (unsigned long long*) (objp + obj_offset(cachep) -
349 sizeof(unsigned long long));
1da177e4
LT
350}
351
b46b8f19 352static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
353{
354 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
355 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 356 return (unsigned long long *)(objp + cachep->size -
b46b8f19 357 sizeof(unsigned long long) -
87a927c7 358 REDZONE_ALIGN);
3b0efdfa 359 return (unsigned long long *) (objp + cachep->size -
b46b8f19 360 sizeof(unsigned long long));
1da177e4
LT
361}
362
343e0d7a 363static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
364{
365 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 366 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
367}
368
369#else
370
3dafccf2 371#define obj_offset(x) 0
b46b8f19
DW
372#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
373#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
374#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
375
376#endif
377
1da177e4 378/*
3df1cccd
DR
379 * Do not go above this order unless 0 objects fit into the slab or
380 * overridden on the command line.
1da177e4 381 */
543585cc
DR
382#define SLAB_MAX_ORDER_HI 1
383#define SLAB_MAX_ORDER_LO 0
384static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 385static bool slab_max_order_set __initdata;
1da177e4 386
6ed5eb22
PE
387static inline struct kmem_cache *virt_to_cache(const void *obj)
388{
b49af68f 389 struct page *page = virt_to_head_page(obj);
35026088 390 return page->slab_cache;
6ed5eb22
PE
391}
392
8456a648 393static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
394 unsigned int idx)
395{
8456a648 396 return page->s_mem + cache->size * idx;
8fea4e96
PE
397}
398
6a2d7a95 399/*
3b0efdfa
CL
400 * We want to avoid an expensive divide : (offset / cache->size)
401 * Using the fact that size is a constant for a particular cache,
402 * we can replace (offset / cache->size) by
6a2d7a95
ED
403 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
404 */
405static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 406 const struct page *page, void *obj)
8fea4e96 407{
8456a648 408 u32 offset = (obj - page->s_mem);
6a2d7a95 409 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
410}
411
1da177e4 412static struct arraycache_init initarray_generic =
b28a02de 413 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
414
415/* internal cache of cache description objs */
9b030cb8 416static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
417 .batchcount = 1,
418 .limit = BOOT_CPUCACHE_ENTRIES,
419 .shared = 1,
3b0efdfa 420 .size = sizeof(struct kmem_cache),
b28a02de 421 .name = "kmem_cache",
1da177e4
LT
422};
423
056c6241
RT
424#define BAD_ALIEN_MAGIC 0x01020304ul
425
f1aaee53
AV
426#ifdef CONFIG_LOCKDEP
427
428/*
429 * Slab sometimes uses the kmalloc slabs to store the slab headers
430 * for other slabs "off slab".
431 * The locking for this is tricky in that it nests within the locks
432 * of all other slabs in a few places; to deal with this special
433 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
434 *
435 * We set lock class for alien array caches which are up during init.
436 * The lock annotation will be lost if all cpus of a node goes down and
437 * then comes back up during hotplug
f1aaee53 438 */
056c6241
RT
439static struct lock_class_key on_slab_l3_key;
440static struct lock_class_key on_slab_alc_key;
441
83835b3d
PZ
442static struct lock_class_key debugobj_l3_key;
443static struct lock_class_key debugobj_alc_key;
444
445static void slab_set_lock_classes(struct kmem_cache *cachep,
446 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
447 int q)
448{
449 struct array_cache **alc;
ce8eb6c4 450 struct kmem_cache_node *n;
83835b3d
PZ
451 int r;
452
ce8eb6c4
CL
453 n = cachep->node[q];
454 if (!n)
83835b3d
PZ
455 return;
456
ce8eb6c4
CL
457 lockdep_set_class(&n->list_lock, l3_key);
458 alc = n->alien;
83835b3d
PZ
459 /*
460 * FIXME: This check for BAD_ALIEN_MAGIC
461 * should go away when common slab code is taught to
462 * work even without alien caches.
463 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
464 * for alloc_alien_cache,
465 */
466 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
467 return;
468 for_each_node(r) {
469 if (alc[r])
470 lockdep_set_class(&alc[r]->lock, alc_key);
471 }
472}
473
474static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
475{
476 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
477}
478
479static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
480{
481 int node;
482
483 for_each_online_node(node)
484 slab_set_debugobj_lock_classes_node(cachep, node);
485}
486
ce79ddc8 487static void init_node_lock_keys(int q)
f1aaee53 488{
e3366016 489 int i;
056c6241 490
97d06609 491 if (slab_state < UP)
ce79ddc8
PE
492 return;
493
0f8f8094 494 for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
ce8eb6c4 495 struct kmem_cache_node *n;
e3366016
CL
496 struct kmem_cache *cache = kmalloc_caches[i];
497
498 if (!cache)
499 continue;
ce79ddc8 500
ce8eb6c4
CL
501 n = cache->node[q];
502 if (!n || OFF_SLAB(cache))
00afa758 503 continue;
83835b3d 504
e3366016 505 slab_set_lock_classes(cache, &on_slab_l3_key,
83835b3d 506 &on_slab_alc_key, q);
f1aaee53
AV
507 }
508}
ce79ddc8 509
6ccfb5bc
GC
510static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
511{
6a67368c 512 if (!cachep->node[q])
6ccfb5bc
GC
513 return;
514
515 slab_set_lock_classes(cachep, &on_slab_l3_key,
516 &on_slab_alc_key, q);
517}
518
519static inline void on_slab_lock_classes(struct kmem_cache *cachep)
520{
521 int node;
522
523 VM_BUG_ON(OFF_SLAB(cachep));
524 for_each_node(node)
525 on_slab_lock_classes_node(cachep, node);
526}
527
ce79ddc8
PE
528static inline void init_lock_keys(void)
529{
530 int node;
531
532 for_each_node(node)
533 init_node_lock_keys(node);
534}
f1aaee53 535#else
ce79ddc8
PE
536static void init_node_lock_keys(int q)
537{
538}
539
056c6241 540static inline void init_lock_keys(void)
f1aaee53
AV
541{
542}
83835b3d 543
6ccfb5bc
GC
544static inline void on_slab_lock_classes(struct kmem_cache *cachep)
545{
546}
547
548static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
549{
550}
551
83835b3d
PZ
552static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
553{
554}
555
556static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
557{
558}
f1aaee53
AV
559#endif
560
1871e52c 561static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 562
343e0d7a 563static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
564{
565 return cachep->array[smp_processor_id()];
566}
567
fbaccacf 568static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 569{
8456a648 570 return ALIGN(nr_objs * sizeof(unsigned int), align);
fbaccacf 571}
1da177e4 572
a737b3e2
AM
573/*
574 * Calculate the number of objects and left-over bytes for a given buffer size.
575 */
fbaccacf
SR
576static void cache_estimate(unsigned long gfporder, size_t buffer_size,
577 size_t align, int flags, size_t *left_over,
578 unsigned int *num)
579{
580 int nr_objs;
581 size_t mgmt_size;
582 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 583
fbaccacf
SR
584 /*
585 * The slab management structure can be either off the slab or
586 * on it. For the latter case, the memory allocated for a
587 * slab is used for:
588 *
16025177 589 * - One unsigned int for each object
fbaccacf
SR
590 * - Padding to respect alignment of @align
591 * - @buffer_size bytes for each object
592 *
593 * If the slab management structure is off the slab, then the
594 * alignment will already be calculated into the size. Because
595 * the slabs are all pages aligned, the objects will be at the
596 * correct alignment when allocated.
597 */
598 if (flags & CFLGS_OFF_SLAB) {
599 mgmt_size = 0;
600 nr_objs = slab_size / buffer_size;
601
fbaccacf
SR
602 } else {
603 /*
604 * Ignore padding for the initial guess. The padding
605 * is at most @align-1 bytes, and @buffer_size is at
606 * least @align. In the worst case, this result will
607 * be one greater than the number of objects that fit
608 * into the memory allocation when taking the padding
609 * into account.
610 */
8456a648 611 nr_objs = (slab_size) / (buffer_size + sizeof(unsigned int));
fbaccacf
SR
612
613 /*
614 * This calculated number will be either the right
615 * amount, or one greater than what we want.
616 */
617 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
618 > slab_size)
619 nr_objs--;
620
fbaccacf
SR
621 mgmt_size = slab_mgmt_size(nr_objs, align);
622 }
623 *num = nr_objs;
624 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
625}
626
f28510d3 627#if DEBUG
d40cee24 628#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 629
a737b3e2
AM
630static void __slab_error(const char *function, struct kmem_cache *cachep,
631 char *msg)
1da177e4
LT
632{
633 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 634 function, cachep->name, msg);
1da177e4 635 dump_stack();
373d4d09 636 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 637}
f28510d3 638#endif
1da177e4 639
3395ee05
PM
640/*
641 * By default on NUMA we use alien caches to stage the freeing of
642 * objects allocated from other nodes. This causes massive memory
643 * inefficiencies when using fake NUMA setup to split memory into a
644 * large number of small nodes, so it can be disabled on the command
645 * line
646 */
647
648static int use_alien_caches __read_mostly = 1;
649static int __init noaliencache_setup(char *s)
650{
651 use_alien_caches = 0;
652 return 1;
653}
654__setup("noaliencache", noaliencache_setup);
655
3df1cccd
DR
656static int __init slab_max_order_setup(char *str)
657{
658 get_option(&str, &slab_max_order);
659 slab_max_order = slab_max_order < 0 ? 0 :
660 min(slab_max_order, MAX_ORDER - 1);
661 slab_max_order_set = true;
662
663 return 1;
664}
665__setup("slab_max_order=", slab_max_order_setup);
666
8fce4d8e
CL
667#ifdef CONFIG_NUMA
668/*
669 * Special reaping functions for NUMA systems called from cache_reap().
670 * These take care of doing round robin flushing of alien caches (containing
671 * objects freed on different nodes from which they were allocated) and the
672 * flushing of remote pcps by calling drain_node_pages.
673 */
1871e52c 674static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
675
676static void init_reap_node(int cpu)
677{
678 int node;
679
7d6e6d09 680 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 681 if (node == MAX_NUMNODES)
442295c9 682 node = first_node(node_online_map);
8fce4d8e 683
1871e52c 684 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
685}
686
687static void next_reap_node(void)
688{
909ea964 689 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 690
8fce4d8e
CL
691 node = next_node(node, node_online_map);
692 if (unlikely(node >= MAX_NUMNODES))
693 node = first_node(node_online_map);
909ea964 694 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
695}
696
697#else
698#define init_reap_node(cpu) do { } while (0)
699#define next_reap_node(void) do { } while (0)
700#endif
701
1da177e4
LT
702/*
703 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
704 * via the workqueue/eventd.
705 * Add the CPU number into the expiration time to minimize the possibility of
706 * the CPUs getting into lockstep and contending for the global cache chain
707 * lock.
708 */
0db0628d 709static void start_cpu_timer(int cpu)
1da177e4 710{
1871e52c 711 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
712
713 /*
714 * When this gets called from do_initcalls via cpucache_init(),
715 * init_workqueues() has already run, so keventd will be setup
716 * at that time.
717 */
52bad64d 718 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 719 init_reap_node(cpu);
203b42f7 720 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
721 schedule_delayed_work_on(cpu, reap_work,
722 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
723 }
724}
725
e498be7d 726static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 727 int batchcount, gfp_t gfp)
1da177e4 728{
b28a02de 729 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
730 struct array_cache *nc = NULL;
731
83b519e8 732 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
733 /*
734 * The array_cache structures contain pointers to free object.
25985edc 735 * However, when such objects are allocated or transferred to another
d5cff635
CM
736 * cache the pointers are not cleared and they could be counted as
737 * valid references during a kmemleak scan. Therefore, kmemleak must
738 * not scan such objects.
739 */
740 kmemleak_no_scan(nc);
1da177e4
LT
741 if (nc) {
742 nc->avail = 0;
743 nc->limit = entries;
744 nc->batchcount = batchcount;
745 nc->touched = 0;
e498be7d 746 spin_lock_init(&nc->lock);
1da177e4
LT
747 }
748 return nc;
749}
750
8456a648 751static inline bool is_slab_pfmemalloc(struct page *page)
072bb0aa 752{
7ecccf9d 753 return PageSlabPfmemalloc(page);
072bb0aa
MG
754}
755
756/* Clears pfmemalloc_active if no slabs have pfmalloc set */
757static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
758 struct array_cache *ac)
759{
ce8eb6c4 760 struct kmem_cache_node *n = cachep->node[numa_mem_id()];
8456a648 761 struct page *page;
072bb0aa
MG
762 unsigned long flags;
763
764 if (!pfmemalloc_active)
765 return;
766
ce8eb6c4 767 spin_lock_irqsave(&n->list_lock, flags);
8456a648
JK
768 list_for_each_entry(page, &n->slabs_full, lru)
769 if (is_slab_pfmemalloc(page))
072bb0aa
MG
770 goto out;
771
8456a648
JK
772 list_for_each_entry(page, &n->slabs_partial, lru)
773 if (is_slab_pfmemalloc(page))
072bb0aa
MG
774 goto out;
775
8456a648
JK
776 list_for_each_entry(page, &n->slabs_free, lru)
777 if (is_slab_pfmemalloc(page))
072bb0aa
MG
778 goto out;
779
780 pfmemalloc_active = false;
781out:
ce8eb6c4 782 spin_unlock_irqrestore(&n->list_lock, flags);
072bb0aa
MG
783}
784
381760ea 785static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
786 gfp_t flags, bool force_refill)
787{
788 int i;
789 void *objp = ac->entry[--ac->avail];
790
791 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
792 if (unlikely(is_obj_pfmemalloc(objp))) {
ce8eb6c4 793 struct kmem_cache_node *n;
072bb0aa
MG
794
795 if (gfp_pfmemalloc_allowed(flags)) {
796 clear_obj_pfmemalloc(&objp);
797 return objp;
798 }
799
800 /* The caller cannot use PFMEMALLOC objects, find another one */
d014dc2e 801 for (i = 0; i < ac->avail; i++) {
072bb0aa
MG
802 /* If a !PFMEMALLOC object is found, swap them */
803 if (!is_obj_pfmemalloc(ac->entry[i])) {
804 objp = ac->entry[i];
805 ac->entry[i] = ac->entry[ac->avail];
806 ac->entry[ac->avail] = objp;
807 return objp;
808 }
809 }
810
811 /*
812 * If there are empty slabs on the slabs_free list and we are
813 * being forced to refill the cache, mark this one !pfmemalloc.
814 */
ce8eb6c4
CL
815 n = cachep->node[numa_mem_id()];
816 if (!list_empty(&n->slabs_free) && force_refill) {
8456a648 817 struct page *page = virt_to_head_page(objp);
7ecccf9d 818 ClearPageSlabPfmemalloc(page);
072bb0aa
MG
819 clear_obj_pfmemalloc(&objp);
820 recheck_pfmemalloc_active(cachep, ac);
821 return objp;
822 }
823
824 /* No !PFMEMALLOC objects available */
825 ac->avail++;
826 objp = NULL;
827 }
828
829 return objp;
830}
831
381760ea
MG
832static inline void *ac_get_obj(struct kmem_cache *cachep,
833 struct array_cache *ac, gfp_t flags, bool force_refill)
834{
835 void *objp;
836
837 if (unlikely(sk_memalloc_socks()))
838 objp = __ac_get_obj(cachep, ac, flags, force_refill);
839 else
840 objp = ac->entry[--ac->avail];
841
842 return objp;
843}
844
845static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
846 void *objp)
847{
848 if (unlikely(pfmemalloc_active)) {
849 /* Some pfmemalloc slabs exist, check if this is one */
8456a648 850 struct page *page = virt_to_head_page(objp);
7ecccf9d 851 if (PageSlabPfmemalloc(page))
072bb0aa
MG
852 set_obj_pfmemalloc(&objp);
853 }
854
381760ea
MG
855 return objp;
856}
857
858static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
859 void *objp)
860{
861 if (unlikely(sk_memalloc_socks()))
862 objp = __ac_put_obj(cachep, ac, objp);
863
072bb0aa
MG
864 ac->entry[ac->avail++] = objp;
865}
866
3ded175a
CL
867/*
868 * Transfer objects in one arraycache to another.
869 * Locking must be handled by the caller.
870 *
871 * Return the number of entries transferred.
872 */
873static int transfer_objects(struct array_cache *to,
874 struct array_cache *from, unsigned int max)
875{
876 /* Figure out how many entries to transfer */
732eacc0 877 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
878
879 if (!nr)
880 return 0;
881
882 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
883 sizeof(void *) *nr);
884
885 from->avail -= nr;
886 to->avail += nr;
3ded175a
CL
887 return nr;
888}
889
765c4507
CL
890#ifndef CONFIG_NUMA
891
892#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 893#define reap_alien(cachep, n) do { } while (0)
765c4507 894
83b519e8 895static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
896{
897 return (struct array_cache **)BAD_ALIEN_MAGIC;
898}
899
900static inline void free_alien_cache(struct array_cache **ac_ptr)
901{
902}
903
904static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
905{
906 return 0;
907}
908
909static inline void *alternate_node_alloc(struct kmem_cache *cachep,
910 gfp_t flags)
911{
912 return NULL;
913}
914
8b98c169 915static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
916 gfp_t flags, int nodeid)
917{
918 return NULL;
919}
920
921#else /* CONFIG_NUMA */
922
8b98c169 923static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 924static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 925
83b519e8 926static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
927{
928 struct array_cache **ac_ptr;
8ef82866 929 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
930 int i;
931
932 if (limit > 1)
933 limit = 12;
f3186a9c 934 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
935 if (ac_ptr) {
936 for_each_node(i) {
f3186a9c 937 if (i == node || !node_online(i))
e498be7d 938 continue;
83b519e8 939 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 940 if (!ac_ptr[i]) {
cc550def 941 for (i--; i >= 0; i--)
e498be7d
CL
942 kfree(ac_ptr[i]);
943 kfree(ac_ptr);
944 return NULL;
945 }
946 }
947 }
948 return ac_ptr;
949}
950
5295a74c 951static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
952{
953 int i;
954
955 if (!ac_ptr)
956 return;
e498be7d 957 for_each_node(i)
b28a02de 958 kfree(ac_ptr[i]);
e498be7d
CL
959 kfree(ac_ptr);
960}
961
343e0d7a 962static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 963 struct array_cache *ac, int node)
e498be7d 964{
ce8eb6c4 965 struct kmem_cache_node *n = cachep->node[node];
e498be7d
CL
966
967 if (ac->avail) {
ce8eb6c4 968 spin_lock(&n->list_lock);
e00946fe
CL
969 /*
970 * Stuff objects into the remote nodes shared array first.
971 * That way we could avoid the overhead of putting the objects
972 * into the free lists and getting them back later.
973 */
ce8eb6c4
CL
974 if (n->shared)
975 transfer_objects(n->shared, ac, ac->limit);
e00946fe 976
ff69416e 977 free_block(cachep, ac->entry, ac->avail, node);
e498be7d 978 ac->avail = 0;
ce8eb6c4 979 spin_unlock(&n->list_lock);
e498be7d
CL
980 }
981}
982
8fce4d8e
CL
983/*
984 * Called from cache_reap() to regularly drain alien caches round robin.
985 */
ce8eb6c4 986static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 987{
909ea964 988 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 989
ce8eb6c4
CL
990 if (n->alien) {
991 struct array_cache *ac = n->alien[node];
e00946fe
CL
992
993 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
994 __drain_alien_cache(cachep, ac, node);
995 spin_unlock_irq(&ac->lock);
996 }
997 }
998}
999
a737b3e2
AM
1000static void drain_alien_cache(struct kmem_cache *cachep,
1001 struct array_cache **alien)
e498be7d 1002{
b28a02de 1003 int i = 0;
e498be7d
CL
1004 struct array_cache *ac;
1005 unsigned long flags;
1006
1007 for_each_online_node(i) {
4484ebf1 1008 ac = alien[i];
e498be7d
CL
1009 if (ac) {
1010 spin_lock_irqsave(&ac->lock, flags);
1011 __drain_alien_cache(cachep, ac, i);
1012 spin_unlock_irqrestore(&ac->lock, flags);
1013 }
1014 }
1015}
729bd0b7 1016
873623df 1017static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7 1018{
1ea991b0 1019 int nodeid = page_to_nid(virt_to_page(objp));
ce8eb6c4 1020 struct kmem_cache_node *n;
729bd0b7 1021 struct array_cache *alien = NULL;
1ca4cb24
PE
1022 int node;
1023
7d6e6d09 1024 node = numa_mem_id();
729bd0b7
PE
1025
1026 /*
1027 * Make sure we are not freeing a object from another node to the array
1028 * cache on this cpu.
1029 */
1ea991b0 1030 if (likely(nodeid == node))
729bd0b7
PE
1031 return 0;
1032
ce8eb6c4 1033 n = cachep->node[node];
729bd0b7 1034 STATS_INC_NODEFREES(cachep);
ce8eb6c4
CL
1035 if (n->alien && n->alien[nodeid]) {
1036 alien = n->alien[nodeid];
873623df 1037 spin_lock(&alien->lock);
729bd0b7
PE
1038 if (unlikely(alien->avail == alien->limit)) {
1039 STATS_INC_ACOVERFLOW(cachep);
1040 __drain_alien_cache(cachep, alien, nodeid);
1041 }
072bb0aa 1042 ac_put_obj(cachep, alien, objp);
729bd0b7
PE
1043 spin_unlock(&alien->lock);
1044 } else {
6a67368c 1045 spin_lock(&(cachep->node[nodeid])->list_lock);
729bd0b7 1046 free_block(cachep, &objp, 1, nodeid);
6a67368c 1047 spin_unlock(&(cachep->node[nodeid])->list_lock);
729bd0b7
PE
1048 }
1049 return 1;
1050}
e498be7d
CL
1051#endif
1052
8f9f8d9e 1053/*
6a67368c 1054 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 1055 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 1056 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 1057 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
1058 * already in use.
1059 *
18004c5d 1060 * Must hold slab_mutex.
8f9f8d9e 1061 */
6a67368c 1062static int init_cache_node_node(int node)
8f9f8d9e
DR
1063{
1064 struct kmem_cache *cachep;
ce8eb6c4 1065 struct kmem_cache_node *n;
6744f087 1066 const int memsize = sizeof(struct kmem_cache_node);
8f9f8d9e 1067
18004c5d 1068 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1069 /*
1070 * Set up the size64 kmemlist for cpu before we can
1071 * begin anything. Make sure some other cpu on this
1072 * node has not already allocated this
1073 */
6a67368c 1074 if (!cachep->node[node]) {
ce8eb6c4
CL
1075 n = kmalloc_node(memsize, GFP_KERNEL, node);
1076 if (!n)
8f9f8d9e 1077 return -ENOMEM;
ce8eb6c4
CL
1078 kmem_cache_node_init(n);
1079 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
8f9f8d9e
DR
1080 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1081
1082 /*
1083 * The l3s don't come and go as CPUs come and
18004c5d 1084 * go. slab_mutex is sufficient
8f9f8d9e
DR
1085 * protection here.
1086 */
ce8eb6c4 1087 cachep->node[node] = n;
8f9f8d9e
DR
1088 }
1089
6a67368c
CL
1090 spin_lock_irq(&cachep->node[node]->list_lock);
1091 cachep->node[node]->free_limit =
8f9f8d9e
DR
1092 (1 + nr_cpus_node(node)) *
1093 cachep->batchcount + cachep->num;
6a67368c 1094 spin_unlock_irq(&cachep->node[node]->list_lock);
8f9f8d9e
DR
1095 }
1096 return 0;
1097}
1098
0fa8103b
WL
1099static inline int slabs_tofree(struct kmem_cache *cachep,
1100 struct kmem_cache_node *n)
1101{
1102 return (n->free_objects + cachep->num - 1) / cachep->num;
1103}
1104
0db0628d 1105static void cpuup_canceled(long cpu)
fbf1e473
AM
1106{
1107 struct kmem_cache *cachep;
ce8eb6c4 1108 struct kmem_cache_node *n = NULL;
7d6e6d09 1109 int node = cpu_to_mem(cpu);
a70f7302 1110 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1111
18004c5d 1112 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1113 struct array_cache *nc;
1114 struct array_cache *shared;
1115 struct array_cache **alien;
fbf1e473 1116
fbf1e473
AM
1117 /* cpu is dead; no one can alloc from it. */
1118 nc = cachep->array[cpu];
1119 cachep->array[cpu] = NULL;
ce8eb6c4 1120 n = cachep->node[node];
fbf1e473 1121
ce8eb6c4 1122 if (!n)
fbf1e473
AM
1123 goto free_array_cache;
1124
ce8eb6c4 1125 spin_lock_irq(&n->list_lock);
fbf1e473 1126
ce8eb6c4
CL
1127 /* Free limit for this kmem_cache_node */
1128 n->free_limit -= cachep->batchcount;
fbf1e473
AM
1129 if (nc)
1130 free_block(cachep, nc->entry, nc->avail, node);
1131
58463c1f 1132 if (!cpumask_empty(mask)) {
ce8eb6c4 1133 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1134 goto free_array_cache;
1135 }
1136
ce8eb6c4 1137 shared = n->shared;
fbf1e473
AM
1138 if (shared) {
1139 free_block(cachep, shared->entry,
1140 shared->avail, node);
ce8eb6c4 1141 n->shared = NULL;
fbf1e473
AM
1142 }
1143
ce8eb6c4
CL
1144 alien = n->alien;
1145 n->alien = NULL;
fbf1e473 1146
ce8eb6c4 1147 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1148
1149 kfree(shared);
1150 if (alien) {
1151 drain_alien_cache(cachep, alien);
1152 free_alien_cache(alien);
1153 }
1154free_array_cache:
1155 kfree(nc);
1156 }
1157 /*
1158 * In the previous loop, all the objects were freed to
1159 * the respective cache's slabs, now we can go ahead and
1160 * shrink each nodelist to its limit.
1161 */
18004c5d 1162 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4
CL
1163 n = cachep->node[node];
1164 if (!n)
fbf1e473 1165 continue;
0fa8103b 1166 drain_freelist(cachep, n, slabs_tofree(cachep, n));
fbf1e473
AM
1167 }
1168}
1169
0db0628d 1170static int cpuup_prepare(long cpu)
1da177e4 1171{
343e0d7a 1172 struct kmem_cache *cachep;
ce8eb6c4 1173 struct kmem_cache_node *n = NULL;
7d6e6d09 1174 int node = cpu_to_mem(cpu);
8f9f8d9e 1175 int err;
1da177e4 1176
fbf1e473
AM
1177 /*
1178 * We need to do this right in the beginning since
1179 * alloc_arraycache's are going to use this list.
1180 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1181 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1182 */
6a67368c 1183 err = init_cache_node_node(node);
8f9f8d9e
DR
1184 if (err < 0)
1185 goto bad;
fbf1e473
AM
1186
1187 /*
1188 * Now we can go ahead with allocating the shared arrays and
1189 * array caches
1190 */
18004c5d 1191 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1192 struct array_cache *nc;
1193 struct array_cache *shared = NULL;
1194 struct array_cache **alien = NULL;
1195
1196 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1197 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1198 if (!nc)
1199 goto bad;
1200 if (cachep->shared) {
1201 shared = alloc_arraycache(node,
1202 cachep->shared * cachep->batchcount,
83b519e8 1203 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1204 if (!shared) {
1205 kfree(nc);
1da177e4 1206 goto bad;
12d00f6a 1207 }
fbf1e473
AM
1208 }
1209 if (use_alien_caches) {
83b519e8 1210 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1211 if (!alien) {
1212 kfree(shared);
1213 kfree(nc);
fbf1e473 1214 goto bad;
12d00f6a 1215 }
fbf1e473
AM
1216 }
1217 cachep->array[cpu] = nc;
ce8eb6c4
CL
1218 n = cachep->node[node];
1219 BUG_ON(!n);
fbf1e473 1220
ce8eb6c4
CL
1221 spin_lock_irq(&n->list_lock);
1222 if (!n->shared) {
fbf1e473
AM
1223 /*
1224 * We are serialised from CPU_DEAD or
1225 * CPU_UP_CANCELLED by the cpucontrol lock
1226 */
ce8eb6c4 1227 n->shared = shared;
fbf1e473
AM
1228 shared = NULL;
1229 }
4484ebf1 1230#ifdef CONFIG_NUMA
ce8eb6c4
CL
1231 if (!n->alien) {
1232 n->alien = alien;
fbf1e473 1233 alien = NULL;
1da177e4 1234 }
fbf1e473 1235#endif
ce8eb6c4 1236 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1237 kfree(shared);
1238 free_alien_cache(alien);
83835b3d
PZ
1239 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1240 slab_set_debugobj_lock_classes_node(cachep, node);
6ccfb5bc
GC
1241 else if (!OFF_SLAB(cachep) &&
1242 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1243 on_slab_lock_classes_node(cachep, node);
fbf1e473 1244 }
ce79ddc8
PE
1245 init_node_lock_keys(node);
1246
fbf1e473
AM
1247 return 0;
1248bad:
12d00f6a 1249 cpuup_canceled(cpu);
fbf1e473
AM
1250 return -ENOMEM;
1251}
1252
0db0628d 1253static int cpuup_callback(struct notifier_block *nfb,
fbf1e473
AM
1254 unsigned long action, void *hcpu)
1255{
1256 long cpu = (long)hcpu;
1257 int err = 0;
1258
1259 switch (action) {
fbf1e473
AM
1260 case CPU_UP_PREPARE:
1261 case CPU_UP_PREPARE_FROZEN:
18004c5d 1262 mutex_lock(&slab_mutex);
fbf1e473 1263 err = cpuup_prepare(cpu);
18004c5d 1264 mutex_unlock(&slab_mutex);
1da177e4
LT
1265 break;
1266 case CPU_ONLINE:
8bb78442 1267 case CPU_ONLINE_FROZEN:
1da177e4
LT
1268 start_cpu_timer(cpu);
1269 break;
1270#ifdef CONFIG_HOTPLUG_CPU
5830c590 1271 case CPU_DOWN_PREPARE:
8bb78442 1272 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1273 /*
18004c5d 1274 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1275 * held so that if cache_reap() is invoked it cannot do
1276 * anything expensive but will only modify reap_work
1277 * and reschedule the timer.
1278 */
afe2c511 1279 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1280 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1281 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1282 break;
1283 case CPU_DOWN_FAILED:
8bb78442 1284 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1285 start_cpu_timer(cpu);
1286 break;
1da177e4 1287 case CPU_DEAD:
8bb78442 1288 case CPU_DEAD_FROZEN:
4484ebf1
RT
1289 /*
1290 * Even if all the cpus of a node are down, we don't free the
ce8eb6c4 1291 * kmem_cache_node of any cache. This to avoid a race between
4484ebf1 1292 * cpu_down, and a kmalloc allocation from another cpu for
ce8eb6c4 1293 * memory from the node of the cpu going down. The node
4484ebf1
RT
1294 * structure is usually allocated from kmem_cache_create() and
1295 * gets destroyed at kmem_cache_destroy().
1296 */
183ff22b 1297 /* fall through */
8f5be20b 1298#endif
1da177e4 1299 case CPU_UP_CANCELED:
8bb78442 1300 case CPU_UP_CANCELED_FROZEN:
18004c5d 1301 mutex_lock(&slab_mutex);
fbf1e473 1302 cpuup_canceled(cpu);
18004c5d 1303 mutex_unlock(&slab_mutex);
1da177e4 1304 break;
1da177e4 1305 }
eac40680 1306 return notifier_from_errno(err);
1da177e4
LT
1307}
1308
0db0628d 1309static struct notifier_block cpucache_notifier = {
74b85f37
CS
1310 &cpuup_callback, NULL, 0
1311};
1da177e4 1312
8f9f8d9e
DR
1313#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1314/*
1315 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1316 * Returns -EBUSY if all objects cannot be drained so that the node is not
1317 * removed.
1318 *
18004c5d 1319 * Must hold slab_mutex.
8f9f8d9e 1320 */
6a67368c 1321static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1322{
1323 struct kmem_cache *cachep;
1324 int ret = 0;
1325
18004c5d 1326 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1327 struct kmem_cache_node *n;
8f9f8d9e 1328
ce8eb6c4
CL
1329 n = cachep->node[node];
1330 if (!n)
8f9f8d9e
DR
1331 continue;
1332
0fa8103b 1333 drain_freelist(cachep, n, slabs_tofree(cachep, n));
8f9f8d9e 1334
ce8eb6c4
CL
1335 if (!list_empty(&n->slabs_full) ||
1336 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1337 ret = -EBUSY;
1338 break;
1339 }
1340 }
1341 return ret;
1342}
1343
1344static int __meminit slab_memory_callback(struct notifier_block *self,
1345 unsigned long action, void *arg)
1346{
1347 struct memory_notify *mnb = arg;
1348 int ret = 0;
1349 int nid;
1350
1351 nid = mnb->status_change_nid;
1352 if (nid < 0)
1353 goto out;
1354
1355 switch (action) {
1356 case MEM_GOING_ONLINE:
18004c5d 1357 mutex_lock(&slab_mutex);
6a67368c 1358 ret = init_cache_node_node(nid);
18004c5d 1359 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1360 break;
1361 case MEM_GOING_OFFLINE:
18004c5d 1362 mutex_lock(&slab_mutex);
6a67368c 1363 ret = drain_cache_node_node(nid);
18004c5d 1364 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1365 break;
1366 case MEM_ONLINE:
1367 case MEM_OFFLINE:
1368 case MEM_CANCEL_ONLINE:
1369 case MEM_CANCEL_OFFLINE:
1370 break;
1371 }
1372out:
5fda1bd5 1373 return notifier_from_errno(ret);
8f9f8d9e
DR
1374}
1375#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1376
e498be7d 1377/*
ce8eb6c4 1378 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1379 */
6744f087 1380static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1381 int nodeid)
e498be7d 1382{
6744f087 1383 struct kmem_cache_node *ptr;
e498be7d 1384
6744f087 1385 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1386 BUG_ON(!ptr);
1387
6744f087 1388 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1389 /*
1390 * Do not assume that spinlocks can be initialized via memcpy:
1391 */
1392 spin_lock_init(&ptr->list_lock);
1393
e498be7d 1394 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1395 cachep->node[nodeid] = ptr;
e498be7d
CL
1396}
1397
556a169d 1398/*
ce8eb6c4
CL
1399 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1400 * size of kmem_cache_node.
556a169d 1401 */
ce8eb6c4 1402static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1403{
1404 int node;
1405
1406 for_each_online_node(node) {
ce8eb6c4 1407 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1408 cachep->node[node]->next_reap = jiffies +
556a169d
PE
1409 REAPTIMEOUT_LIST3 +
1410 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1411 }
1412}
1413
3c583465
CL
1414/*
1415 * The memory after the last cpu cache pointer is used for the
6a67368c 1416 * the node pointer.
3c583465 1417 */
6a67368c 1418static void setup_node_pointer(struct kmem_cache *cachep)
3c583465 1419{
6a67368c 1420 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
3c583465
CL
1421}
1422
a737b3e2
AM
1423/*
1424 * Initialisation. Called after the page allocator have been initialised and
1425 * before smp_init().
1da177e4
LT
1426 */
1427void __init kmem_cache_init(void)
1428{
e498be7d
CL
1429 int i;
1430
68126702
JK
1431 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1432 sizeof(struct rcu_head));
9b030cb8 1433 kmem_cache = &kmem_cache_boot;
6a67368c 1434 setup_node_pointer(kmem_cache);
9b030cb8 1435
b6e68bc1 1436 if (num_possible_nodes() == 1)
62918a03
SS
1437 use_alien_caches = 0;
1438
3c583465 1439 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1440 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1441
ce8eb6c4 1442 set_up_node(kmem_cache, CACHE_CACHE);
1da177e4
LT
1443
1444 /*
1445 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1446 * page orders on machines with more than 32MB of memory if
1447 * not overridden on the command line.
1da177e4 1448 */
3df1cccd 1449 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1450 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1451
1da177e4
LT
1452 /* Bootstrap is tricky, because several objects are allocated
1453 * from caches that do not exist yet:
9b030cb8
CL
1454 * 1) initialize the kmem_cache cache: it contains the struct
1455 * kmem_cache structures of all caches, except kmem_cache itself:
1456 * kmem_cache is statically allocated.
e498be7d 1457 * Initially an __init data area is used for the head array and the
ce8eb6c4 1458 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1459 * array at the end of the bootstrap.
1da177e4 1460 * 2) Create the first kmalloc cache.
343e0d7a 1461 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1462 * An __init data area is used for the head array.
1463 * 3) Create the remaining kmalloc caches, with minimally sized
1464 * head arrays.
9b030cb8 1465 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1466 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1467 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1468 * the other cache's with kmalloc allocated memory.
1469 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1470 */
1471
9b030cb8 1472 /* 1) create the kmem_cache */
1da177e4 1473
8da3430d 1474 /*
b56efcf0 1475 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1476 */
2f9baa9f
CL
1477 create_boot_cache(kmem_cache, "kmem_cache",
1478 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
6744f087 1479 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1480 SLAB_HWCACHE_ALIGN);
1481 list_add(&kmem_cache->list, &slab_caches);
1da177e4
LT
1482
1483 /* 2+3) create the kmalloc caches */
1da177e4 1484
a737b3e2
AM
1485 /*
1486 * Initialize the caches that provide memory for the array cache and the
ce8eb6c4 1487 * kmem_cache_node structures first. Without this, further allocations will
a737b3e2 1488 * bug.
e498be7d
CL
1489 */
1490
e3366016
CL
1491 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1492 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
45530c44 1493
ce8eb6c4
CL
1494 if (INDEX_AC != INDEX_NODE)
1495 kmalloc_caches[INDEX_NODE] =
1496 create_kmalloc_cache("kmalloc-node",
1497 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
e498be7d 1498
e0a42726
IM
1499 slab_early_init = 0;
1500
1da177e4
LT
1501 /* 4) Replace the bootstrap head arrays */
1502 {
2b2d5493 1503 struct array_cache *ptr;
e498be7d 1504
83b519e8 1505 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1506
9b030cb8 1507 memcpy(ptr, cpu_cache_get(kmem_cache),
b28a02de 1508 sizeof(struct arraycache_init));
2b2d5493
IM
1509 /*
1510 * Do not assume that spinlocks can be initialized via memcpy:
1511 */
1512 spin_lock_init(&ptr->lock);
1513
9b030cb8 1514 kmem_cache->array[smp_processor_id()] = ptr;
e498be7d 1515
83b519e8 1516 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1517
e3366016 1518 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
b28a02de 1519 != &initarray_generic.cache);
e3366016 1520 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
b28a02de 1521 sizeof(struct arraycache_init));
2b2d5493
IM
1522 /*
1523 * Do not assume that spinlocks can be initialized via memcpy:
1524 */
1525 spin_lock_init(&ptr->lock);
1526
e3366016 1527 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1da177e4 1528 }
ce8eb6c4 1529 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1530 {
1ca4cb24
PE
1531 int nid;
1532
9c09a95c 1533 for_each_online_node(nid) {
ce8eb6c4 1534 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1535
e3366016 1536 init_list(kmalloc_caches[INDEX_AC],
ce8eb6c4 1537 &init_kmem_cache_node[SIZE_AC + nid], nid);
e498be7d 1538
ce8eb6c4
CL
1539 if (INDEX_AC != INDEX_NODE) {
1540 init_list(kmalloc_caches[INDEX_NODE],
1541 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1542 }
1543 }
1544 }
1da177e4 1545
f97d5f63 1546 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1547}
1548
1549void __init kmem_cache_init_late(void)
1550{
1551 struct kmem_cache *cachep;
1552
97d06609 1553 slab_state = UP;
52cef189 1554
8429db5c 1555 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1556 mutex_lock(&slab_mutex);
1557 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1558 if (enable_cpucache(cachep, GFP_NOWAIT))
1559 BUG();
18004c5d 1560 mutex_unlock(&slab_mutex);
056c6241 1561
947ca185
MW
1562 /* Annotate slab for lockdep -- annotate the malloc caches */
1563 init_lock_keys();
1564
97d06609
CL
1565 /* Done! */
1566 slab_state = FULL;
1567
a737b3e2
AM
1568 /*
1569 * Register a cpu startup notifier callback that initializes
1570 * cpu_cache_get for all new cpus
1da177e4
LT
1571 */
1572 register_cpu_notifier(&cpucache_notifier);
1da177e4 1573
8f9f8d9e
DR
1574#ifdef CONFIG_NUMA
1575 /*
1576 * Register a memory hotplug callback that initializes and frees
6a67368c 1577 * node.
8f9f8d9e
DR
1578 */
1579 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1580#endif
1581
a737b3e2
AM
1582 /*
1583 * The reap timers are started later, with a module init call: That part
1584 * of the kernel is not yet operational.
1da177e4
LT
1585 */
1586}
1587
1588static int __init cpucache_init(void)
1589{
1590 int cpu;
1591
a737b3e2
AM
1592 /*
1593 * Register the timers that return unneeded pages to the page allocator
1da177e4 1594 */
e498be7d 1595 for_each_online_cpu(cpu)
a737b3e2 1596 start_cpu_timer(cpu);
a164f896
GC
1597
1598 /* Done! */
97d06609 1599 slab_state = FULL;
1da177e4
LT
1600 return 0;
1601}
1da177e4
LT
1602__initcall(cpucache_init);
1603
8bdec192
RA
1604static noinline void
1605slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1606{
ce8eb6c4 1607 struct kmem_cache_node *n;
8456a648 1608 struct page *page;
8bdec192
RA
1609 unsigned long flags;
1610 int node;
1611
1612 printk(KERN_WARNING
1613 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1614 nodeid, gfpflags);
1615 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1616 cachep->name, cachep->size, cachep->gfporder);
8bdec192
RA
1617
1618 for_each_online_node(node) {
1619 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1620 unsigned long active_slabs = 0, num_slabs = 0;
1621
ce8eb6c4
CL
1622 n = cachep->node[node];
1623 if (!n)
8bdec192
RA
1624 continue;
1625
ce8eb6c4 1626 spin_lock_irqsave(&n->list_lock, flags);
8456a648 1627 list_for_each_entry(page, &n->slabs_full, lru) {
8bdec192
RA
1628 active_objs += cachep->num;
1629 active_slabs++;
1630 }
8456a648
JK
1631 list_for_each_entry(page, &n->slabs_partial, lru) {
1632 active_objs += page->active;
8bdec192
RA
1633 active_slabs++;
1634 }
8456a648 1635 list_for_each_entry(page, &n->slabs_free, lru)
8bdec192
RA
1636 num_slabs++;
1637
ce8eb6c4
CL
1638 free_objects += n->free_objects;
1639 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192
RA
1640
1641 num_slabs += active_slabs;
1642 num_objs = num_slabs * cachep->num;
1643 printk(KERN_WARNING
1644 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1645 node, active_slabs, num_slabs, active_objs, num_objs,
1646 free_objects);
1647 }
1648}
1649
1da177e4
LT
1650/*
1651 * Interface to system's page allocator. No need to hold the cache-lock.
1652 *
1653 * If we requested dmaable memory, we will get it. Even if we
1654 * did not request dmaable memory, we might get it, but that
1655 * would be relatively rare and ignorable.
1656 */
0c3aa83e
JK
1657static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1658 int nodeid)
1da177e4
LT
1659{
1660 struct page *page;
e1b6aa6f 1661 int nr_pages;
765c4507 1662
a618e89f 1663 flags |= cachep->allocflags;
e12ba74d
MG
1664 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1665 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1666
517d0869 1667 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192
RA
1668 if (!page) {
1669 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1670 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1671 return NULL;
8bdec192 1672 }
1da177e4 1673
b37f1dd0 1674 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
072bb0aa
MG
1675 if (unlikely(page->pfmemalloc))
1676 pfmemalloc_active = true;
1677
e1b6aa6f 1678 nr_pages = (1 << cachep->gfporder);
1da177e4 1679 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1680 add_zone_page_state(page_zone(page),
1681 NR_SLAB_RECLAIMABLE, nr_pages);
1682 else
1683 add_zone_page_state(page_zone(page),
1684 NR_SLAB_UNRECLAIMABLE, nr_pages);
a57a4988
JK
1685 __SetPageSlab(page);
1686 if (page->pfmemalloc)
1687 SetPageSlabPfmemalloc(page);
1f458cbf 1688 memcg_bind_pages(cachep, cachep->gfporder);
072bb0aa 1689
b1eeab67
VN
1690 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1691 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1692
1693 if (cachep->ctor)
1694 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1695 else
1696 kmemcheck_mark_unallocated_pages(page, nr_pages);
1697 }
c175eea4 1698
0c3aa83e 1699 return page;
1da177e4
LT
1700}
1701
1702/*
1703 * Interface to system's page release.
1704 */
0c3aa83e 1705static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1706{
a57a4988 1707 const unsigned long nr_freed = (1 << cachep->gfporder);
1da177e4 1708
b1eeab67 1709 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1710
972d1a7b
CL
1711 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1712 sub_zone_page_state(page_zone(page),
1713 NR_SLAB_RECLAIMABLE, nr_freed);
1714 else
1715 sub_zone_page_state(page_zone(page),
1716 NR_SLAB_UNRECLAIMABLE, nr_freed);
73293c2f 1717
a57a4988 1718 BUG_ON(!PageSlab(page));
73293c2f 1719 __ClearPageSlabPfmemalloc(page);
a57a4988 1720 __ClearPageSlab(page);
8456a648
JK
1721 page_mapcount_reset(page);
1722 page->mapping = NULL;
1f458cbf
GC
1723
1724 memcg_release_pages(cachep, cachep->gfporder);
1da177e4
LT
1725 if (current->reclaim_state)
1726 current->reclaim_state->reclaimed_slab += nr_freed;
0c3aa83e 1727 __free_memcg_kmem_pages(page, cachep->gfporder);
1da177e4
LT
1728}
1729
1730static void kmem_rcu_free(struct rcu_head *head)
1731{
68126702
JK
1732 struct kmem_cache *cachep;
1733 struct page *page;
1da177e4 1734
68126702
JK
1735 page = container_of(head, struct page, rcu_head);
1736 cachep = page->slab_cache;
1737
1738 kmem_freepages(cachep, page);
1da177e4
LT
1739}
1740
1741#if DEBUG
1742
1743#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1744static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1745 unsigned long caller)
1da177e4 1746{
8c138bc0 1747 int size = cachep->object_size;
1da177e4 1748
3dafccf2 1749 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1750
b28a02de 1751 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1752 return;
1753
b28a02de
PE
1754 *addr++ = 0x12345678;
1755 *addr++ = caller;
1756 *addr++ = smp_processor_id();
1757 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1758 {
1759 unsigned long *sptr = &caller;
1760 unsigned long svalue;
1761
1762 while (!kstack_end(sptr)) {
1763 svalue = *sptr++;
1764 if (kernel_text_address(svalue)) {
b28a02de 1765 *addr++ = svalue;
1da177e4
LT
1766 size -= sizeof(unsigned long);
1767 if (size <= sizeof(unsigned long))
1768 break;
1769 }
1770 }
1771
1772 }
b28a02de 1773 *addr++ = 0x87654321;
1da177e4
LT
1774}
1775#endif
1776
343e0d7a 1777static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1778{
8c138bc0 1779 int size = cachep->object_size;
3dafccf2 1780 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1781
1782 memset(addr, val, size);
b28a02de 1783 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1784}
1785
1786static void dump_line(char *data, int offset, int limit)
1787{
1788 int i;
aa83aa40
DJ
1789 unsigned char error = 0;
1790 int bad_count = 0;
1791
fdde6abb 1792 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
1793 for (i = 0; i < limit; i++) {
1794 if (data[offset + i] != POISON_FREE) {
1795 error = data[offset + i];
1796 bad_count++;
1797 }
aa83aa40 1798 }
fdde6abb
SAS
1799 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1800 &data[offset], limit, 1);
aa83aa40
DJ
1801
1802 if (bad_count == 1) {
1803 error ^= POISON_FREE;
1804 if (!(error & (error - 1))) {
1805 printk(KERN_ERR "Single bit error detected. Probably "
1806 "bad RAM.\n");
1807#ifdef CONFIG_X86
1808 printk(KERN_ERR "Run memtest86+ or a similar memory "
1809 "test tool.\n");
1810#else
1811 printk(KERN_ERR "Run a memory test tool.\n");
1812#endif
1813 }
1814 }
1da177e4
LT
1815}
1816#endif
1817
1818#if DEBUG
1819
343e0d7a 1820static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1821{
1822 int i, size;
1823 char *realobj;
1824
1825 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1826 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1827 *dbg_redzone1(cachep, objp),
1828 *dbg_redzone2(cachep, objp));
1da177e4
LT
1829 }
1830
1831 if (cachep->flags & SLAB_STORE_USER) {
071361d3
JP
1832 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1833 *dbg_userword(cachep, objp),
1834 *dbg_userword(cachep, objp));
1da177e4 1835 }
3dafccf2 1836 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1837 size = cachep->object_size;
b28a02de 1838 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1839 int limit;
1840 limit = 16;
b28a02de
PE
1841 if (i + limit > size)
1842 limit = size - i;
1da177e4
LT
1843 dump_line(realobj, i, limit);
1844 }
1845}
1846
343e0d7a 1847static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1848{
1849 char *realobj;
1850 int size, i;
1851 int lines = 0;
1852
3dafccf2 1853 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1854 size = cachep->object_size;
1da177e4 1855
b28a02de 1856 for (i = 0; i < size; i++) {
1da177e4 1857 char exp = POISON_FREE;
b28a02de 1858 if (i == size - 1)
1da177e4
LT
1859 exp = POISON_END;
1860 if (realobj[i] != exp) {
1861 int limit;
1862 /* Mismatch ! */
1863 /* Print header */
1864 if (lines == 0) {
b28a02de 1865 printk(KERN_ERR
face37f5
DJ
1866 "Slab corruption (%s): %s start=%p, len=%d\n",
1867 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
1868 print_objinfo(cachep, objp, 0);
1869 }
1870 /* Hexdump the affected line */
b28a02de 1871 i = (i / 16) * 16;
1da177e4 1872 limit = 16;
b28a02de
PE
1873 if (i + limit > size)
1874 limit = size - i;
1da177e4
LT
1875 dump_line(realobj, i, limit);
1876 i += 16;
1877 lines++;
1878 /* Limit to 5 lines */
1879 if (lines > 5)
1880 break;
1881 }
1882 }
1883 if (lines != 0) {
1884 /* Print some data about the neighboring objects, if they
1885 * exist:
1886 */
8456a648 1887 struct page *page = virt_to_head_page(objp);
8fea4e96 1888 unsigned int objnr;
1da177e4 1889
8456a648 1890 objnr = obj_to_index(cachep, page, objp);
1da177e4 1891 if (objnr) {
8456a648 1892 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1893 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1894 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1895 realobj, size);
1da177e4
LT
1896 print_objinfo(cachep, objp, 2);
1897 }
b28a02de 1898 if (objnr + 1 < cachep->num) {
8456a648 1899 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1900 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1901 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1902 realobj, size);
1da177e4
LT
1903 print_objinfo(cachep, objp, 2);
1904 }
1905 }
1906}
1907#endif
1908
12dd36fa 1909#if DEBUG
8456a648
JK
1910static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1911 struct page *page)
1da177e4 1912{
1da177e4
LT
1913 int i;
1914 for (i = 0; i < cachep->num; i++) {
8456a648 1915 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1916
1917 if (cachep->flags & SLAB_POISON) {
1918#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 1919 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 1920 OFF_SLAB(cachep))
b28a02de 1921 kernel_map_pages(virt_to_page(objp),
3b0efdfa 1922 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
1923 else
1924 check_poison_obj(cachep, objp);
1925#else
1926 check_poison_obj(cachep, objp);
1927#endif
1928 }
1929 if (cachep->flags & SLAB_RED_ZONE) {
1930 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1931 slab_error(cachep, "start of a freed object "
b28a02de 1932 "was overwritten");
1da177e4
LT
1933 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1934 slab_error(cachep, "end of a freed object "
b28a02de 1935 "was overwritten");
1da177e4 1936 }
1da177e4 1937 }
12dd36fa 1938}
1da177e4 1939#else
8456a648
JK
1940static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1941 struct page *page)
12dd36fa 1942{
12dd36fa 1943}
1da177e4
LT
1944#endif
1945
911851e6
RD
1946/**
1947 * slab_destroy - destroy and release all objects in a slab
1948 * @cachep: cache pointer being destroyed
1949 * @slabp: slab pointer being destroyed
1950 *
12dd36fa 1951 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1952 * Before calling the slab must have been unlinked from the cache. The
1953 * cache-lock is not held/needed.
12dd36fa 1954 */
8456a648 1955static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1956{
8456a648 1957 struct freelist *freelist;
12dd36fa 1958
8456a648
JK
1959 freelist = page->freelist;
1960 slab_destroy_debugcheck(cachep, page);
1da177e4 1961 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
68126702
JK
1962 struct rcu_head *head;
1963
1964 /*
1965 * RCU free overloads the RCU head over the LRU.
1966 * slab_page has been overloeaded over the LRU,
1967 * however it is not used from now on so that
1968 * we can use it safely.
1969 */
1970 head = (void *)&page->rcu_head;
1971 call_rcu(head, kmem_rcu_free);
1da177e4 1972
1da177e4 1973 } else {
0c3aa83e 1974 kmem_freepages(cachep, page);
1da177e4 1975 }
68126702
JK
1976
1977 /*
8456a648 1978 * From now on, we don't use freelist
68126702
JK
1979 * although actual page can be freed in rcu context
1980 */
1981 if (OFF_SLAB(cachep))
8456a648 1982 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1983}
1984
4d268eba 1985/**
a70773dd
RD
1986 * calculate_slab_order - calculate size (page order) of slabs
1987 * @cachep: pointer to the cache that is being created
1988 * @size: size of objects to be created in this cache.
1989 * @align: required alignment for the objects.
1990 * @flags: slab allocation flags
1991 *
1992 * Also calculates the number of objects per slab.
4d268eba
PE
1993 *
1994 * This could be made much more intelligent. For now, try to avoid using
1995 * high order pages for slabs. When the gfp() functions are more friendly
1996 * towards high-order requests, this should be changed.
1997 */
a737b3e2 1998static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1999 size_t size, size_t align, unsigned long flags)
4d268eba 2000{
b1ab41c4 2001 unsigned long offslab_limit;
4d268eba 2002 size_t left_over = 0;
9888e6fa 2003 int gfporder;
4d268eba 2004
0aa817f0 2005 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2006 unsigned int num;
2007 size_t remainder;
2008
9888e6fa 2009 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2010 if (!num)
2011 continue;
9888e6fa 2012
b1ab41c4
IM
2013 if (flags & CFLGS_OFF_SLAB) {
2014 /*
2015 * Max number of objs-per-slab for caches which
2016 * use off-slab slabs. Needed to avoid a possible
2017 * looping condition in cache_grow().
2018 */
8456a648 2019 offslab_limit = size;
16025177 2020 offslab_limit /= sizeof(unsigned int);
b1ab41c4
IM
2021
2022 if (num > offslab_limit)
2023 break;
2024 }
4d268eba 2025
9888e6fa 2026 /* Found something acceptable - save it away */
4d268eba 2027 cachep->num = num;
9888e6fa 2028 cachep->gfporder = gfporder;
4d268eba
PE
2029 left_over = remainder;
2030
f78bb8ad
LT
2031 /*
2032 * A VFS-reclaimable slab tends to have most allocations
2033 * as GFP_NOFS and we really don't want to have to be allocating
2034 * higher-order pages when we are unable to shrink dcache.
2035 */
2036 if (flags & SLAB_RECLAIM_ACCOUNT)
2037 break;
2038
4d268eba
PE
2039 /*
2040 * Large number of objects is good, but very large slabs are
2041 * currently bad for the gfp()s.
2042 */
543585cc 2043 if (gfporder >= slab_max_order)
4d268eba
PE
2044 break;
2045
9888e6fa
LT
2046 /*
2047 * Acceptable internal fragmentation?
2048 */
a737b3e2 2049 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2050 break;
2051 }
2052 return left_over;
2053}
2054
83b519e8 2055static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2056{
97d06609 2057 if (slab_state >= FULL)
83b519e8 2058 return enable_cpucache(cachep, gfp);
2ed3a4ef 2059
97d06609 2060 if (slab_state == DOWN) {
f30cf7d1 2061 /*
2f9baa9f 2062 * Note: Creation of first cache (kmem_cache).
ce8eb6c4 2063 * The setup_node is taken care
2f9baa9f
CL
2064 * of by the caller of __kmem_cache_create
2065 */
2066 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2067 slab_state = PARTIAL;
2068 } else if (slab_state == PARTIAL) {
2069 /*
2070 * Note: the second kmem_cache_create must create the cache
f30cf7d1
PE
2071 * that's used by kmalloc(24), otherwise the creation of
2072 * further caches will BUG().
2073 */
2074 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2075
2076 /*
ce8eb6c4
CL
2077 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2078 * the second cache, then we need to set up all its node/,
f30cf7d1
PE
2079 * otherwise the creation of further caches will BUG().
2080 */
ce8eb6c4
CL
2081 set_up_node(cachep, SIZE_AC);
2082 if (INDEX_AC == INDEX_NODE)
2083 slab_state = PARTIAL_NODE;
f30cf7d1 2084 else
97d06609 2085 slab_state = PARTIAL_ARRAYCACHE;
f30cf7d1 2086 } else {
2f9baa9f 2087 /* Remaining boot caches */
f30cf7d1 2088 cachep->array[smp_processor_id()] =
83b519e8 2089 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1 2090
97d06609 2091 if (slab_state == PARTIAL_ARRAYCACHE) {
ce8eb6c4
CL
2092 set_up_node(cachep, SIZE_NODE);
2093 slab_state = PARTIAL_NODE;
f30cf7d1
PE
2094 } else {
2095 int node;
556a169d 2096 for_each_online_node(node) {
6a67368c 2097 cachep->node[node] =
6744f087 2098 kmalloc_node(sizeof(struct kmem_cache_node),
eb91f1d0 2099 gfp, node);
6a67368c 2100 BUG_ON(!cachep->node[node]);
ce8eb6c4 2101 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
2102 }
2103 }
2104 }
6a67368c 2105 cachep->node[numa_mem_id()]->next_reap =
f30cf7d1
PE
2106 jiffies + REAPTIMEOUT_LIST3 +
2107 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2108
2109 cpu_cache_get(cachep)->avail = 0;
2110 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2111 cpu_cache_get(cachep)->batchcount = 1;
2112 cpu_cache_get(cachep)->touched = 0;
2113 cachep->batchcount = 1;
2114 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2115 return 0;
f30cf7d1
PE
2116}
2117
1da177e4 2118/**
039363f3 2119 * __kmem_cache_create - Create a cache.
a755b76a 2120 * @cachep: cache management descriptor
1da177e4 2121 * @flags: SLAB flags
1da177e4
LT
2122 *
2123 * Returns a ptr to the cache on success, NULL on failure.
2124 * Cannot be called within a int, but can be interrupted.
20c2df83 2125 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2126 *
1da177e4
LT
2127 * The flags are
2128 *
2129 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2130 * to catch references to uninitialised memory.
2131 *
2132 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2133 * for buffer overruns.
2134 *
1da177e4
LT
2135 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2136 * cacheline. This can be beneficial if you're counting cycles as closely
2137 * as davem.
2138 */
278b1bb1 2139int
8a13a4cc 2140__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4 2141{
8456a648 2142 size_t left_over, freelist_size, ralign;
83b519e8 2143 gfp_t gfp;
278b1bb1 2144 int err;
8a13a4cc 2145 size_t size = cachep->size;
1da177e4 2146
1da177e4 2147#if DEBUG
1da177e4
LT
2148#if FORCED_DEBUG
2149 /*
2150 * Enable redzoning and last user accounting, except for caches with
2151 * large objects, if the increased size would increase the object size
2152 * above the next power of two: caches with object sizes just above a
2153 * power of two have a significant amount of internal fragmentation.
2154 */
87a927c7
DW
2155 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2156 2 * sizeof(unsigned long long)))
b28a02de 2157 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2158 if (!(flags & SLAB_DESTROY_BY_RCU))
2159 flags |= SLAB_POISON;
2160#endif
2161 if (flags & SLAB_DESTROY_BY_RCU)
2162 BUG_ON(flags & SLAB_POISON);
2163#endif
1da177e4 2164
a737b3e2
AM
2165 /*
2166 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2167 * unaligned accesses for some archs when redzoning is used, and makes
2168 * sure any on-slab bufctl's are also correctly aligned.
2169 */
b28a02de
PE
2170 if (size & (BYTES_PER_WORD - 1)) {
2171 size += (BYTES_PER_WORD - 1);
2172 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2173 }
2174
ca5f9703 2175 /*
87a927c7
DW
2176 * Redzoning and user store require word alignment or possibly larger.
2177 * Note this will be overridden by architecture or caller mandated
2178 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2179 */
87a927c7
DW
2180 if (flags & SLAB_STORE_USER)
2181 ralign = BYTES_PER_WORD;
2182
2183 if (flags & SLAB_RED_ZONE) {
2184 ralign = REDZONE_ALIGN;
2185 /* If redzoning, ensure that the second redzone is suitably
2186 * aligned, by adjusting the object size accordingly. */
2187 size += REDZONE_ALIGN - 1;
2188 size &= ~(REDZONE_ALIGN - 1);
2189 }
ca5f9703 2190
a44b56d3 2191 /* 3) caller mandated alignment */
8a13a4cc
CL
2192 if (ralign < cachep->align) {
2193 ralign = cachep->align;
1da177e4 2194 }
3ff84a7f
PE
2195 /* disable debug if necessary */
2196 if (ralign > __alignof__(unsigned long long))
a44b56d3 2197 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2198 /*
ca5f9703 2199 * 4) Store it.
1da177e4 2200 */
8a13a4cc 2201 cachep->align = ralign;
1da177e4 2202
83b519e8
PE
2203 if (slab_is_available())
2204 gfp = GFP_KERNEL;
2205 else
2206 gfp = GFP_NOWAIT;
2207
6a67368c 2208 setup_node_pointer(cachep);
1da177e4 2209#if DEBUG
1da177e4 2210
ca5f9703
PE
2211 /*
2212 * Both debugging options require word-alignment which is calculated
2213 * into align above.
2214 */
1da177e4 2215 if (flags & SLAB_RED_ZONE) {
1da177e4 2216 /* add space for red zone words */
3ff84a7f
PE
2217 cachep->obj_offset += sizeof(unsigned long long);
2218 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2219 }
2220 if (flags & SLAB_STORE_USER) {
ca5f9703 2221 /* user store requires one word storage behind the end of
87a927c7
DW
2222 * the real object. But if the second red zone needs to be
2223 * aligned to 64 bits, we must allow that much space.
1da177e4 2224 */
87a927c7
DW
2225 if (flags & SLAB_RED_ZONE)
2226 size += REDZONE_ALIGN;
2227 else
2228 size += BYTES_PER_WORD;
1da177e4
LT
2229 }
2230#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
ce8eb6c4 2231 if (size >= kmalloc_size(INDEX_NODE + 1)
608da7e3
TH
2232 && cachep->object_size > cache_line_size()
2233 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2234 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
1da177e4
LT
2235 size = PAGE_SIZE;
2236 }
2237#endif
2238#endif
2239
e0a42726
IM
2240 /*
2241 * Determine if the slab management is 'on' or 'off' slab.
2242 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2243 * it too early on. Always use on-slab management when
2244 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2245 */
e7cb55b9
CM
2246 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2247 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2248 /*
2249 * Size is large, assume best to place the slab management obj
2250 * off-slab (should allow better packing of objs).
2251 */
2252 flags |= CFLGS_OFF_SLAB;
2253
8a13a4cc 2254 size = ALIGN(size, cachep->align);
1da177e4 2255
8a13a4cc 2256 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
1da177e4 2257
8a13a4cc 2258 if (!cachep->num)
278b1bb1 2259 return -E2BIG;
1da177e4 2260
8456a648
JK
2261 freelist_size =
2262 ALIGN(cachep->num * sizeof(unsigned int), cachep->align);
1da177e4
LT
2263
2264 /*
2265 * If the slab has been placed off-slab, and we have enough space then
2266 * move it on-slab. This is at the expense of any extra colouring.
2267 */
8456a648 2268 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
1da177e4 2269 flags &= ~CFLGS_OFF_SLAB;
8456a648 2270 left_over -= freelist_size;
1da177e4
LT
2271 }
2272
2273 if (flags & CFLGS_OFF_SLAB) {
2274 /* really off slab. No need for manual alignment */
8456a648 2275 freelist_size = cachep->num * sizeof(unsigned int);
67461365
RL
2276
2277#ifdef CONFIG_PAGE_POISONING
2278 /* If we're going to use the generic kernel_map_pages()
2279 * poisoning, then it's going to smash the contents of
2280 * the redzone and userword anyhow, so switch them off.
2281 */
2282 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2283 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2284#endif
1da177e4
LT
2285 }
2286
2287 cachep->colour_off = cache_line_size();
2288 /* Offset must be a multiple of the alignment. */
8a13a4cc
CL
2289 if (cachep->colour_off < cachep->align)
2290 cachep->colour_off = cachep->align;
b28a02de 2291 cachep->colour = left_over / cachep->colour_off;
8456a648 2292 cachep->freelist_size = freelist_size;
1da177e4 2293 cachep->flags = flags;
a57a4988 2294 cachep->allocflags = __GFP_COMP;
4b51d669 2295 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2296 cachep->allocflags |= GFP_DMA;
3b0efdfa 2297 cachep->size = size;
6a2d7a95 2298 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2299
e5ac9c5a 2300 if (flags & CFLGS_OFF_SLAB) {
8456a648 2301 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
e5ac9c5a
RT
2302 /*
2303 * This is a possibility for one of the malloc_sizes caches.
2304 * But since we go off slab only for object size greater than
2305 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2306 * this should not happen at all.
2307 * But leave a BUG_ON for some lucky dude.
2308 */
8456a648 2309 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
e5ac9c5a 2310 }
1da177e4 2311
278b1bb1
CL
2312 err = setup_cpu_cache(cachep, gfp);
2313 if (err) {
12c3667f 2314 __kmem_cache_shutdown(cachep);
278b1bb1 2315 return err;
2ed3a4ef 2316 }
1da177e4 2317
83835b3d
PZ
2318 if (flags & SLAB_DEBUG_OBJECTS) {
2319 /*
2320 * Would deadlock through slab_destroy()->call_rcu()->
2321 * debug_object_activate()->kmem_cache_alloc().
2322 */
2323 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2324
2325 slab_set_debugobj_lock_classes(cachep);
6ccfb5bc
GC
2326 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2327 on_slab_lock_classes(cachep);
83835b3d 2328
278b1bb1 2329 return 0;
1da177e4 2330}
1da177e4
LT
2331
2332#if DEBUG
2333static void check_irq_off(void)
2334{
2335 BUG_ON(!irqs_disabled());
2336}
2337
2338static void check_irq_on(void)
2339{
2340 BUG_ON(irqs_disabled());
2341}
2342
343e0d7a 2343static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2344{
2345#ifdef CONFIG_SMP
2346 check_irq_off();
6a67368c 2347 assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
1da177e4
LT
2348#endif
2349}
e498be7d 2350
343e0d7a 2351static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2352{
2353#ifdef CONFIG_SMP
2354 check_irq_off();
6a67368c 2355 assert_spin_locked(&cachep->node[node]->list_lock);
e498be7d
CL
2356#endif
2357}
2358
1da177e4
LT
2359#else
2360#define check_irq_off() do { } while(0)
2361#define check_irq_on() do { } while(0)
2362#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2363#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2364#endif
2365
ce8eb6c4 2366static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
aab2207c
CL
2367 struct array_cache *ac,
2368 int force, int node);
2369
1da177e4
LT
2370static void do_drain(void *arg)
2371{
a737b3e2 2372 struct kmem_cache *cachep = arg;
1da177e4 2373 struct array_cache *ac;
7d6e6d09 2374 int node = numa_mem_id();
1da177e4
LT
2375
2376 check_irq_off();
9a2dba4b 2377 ac = cpu_cache_get(cachep);
6a67368c 2378 spin_lock(&cachep->node[node]->list_lock);
ff69416e 2379 free_block(cachep, ac->entry, ac->avail, node);
6a67368c 2380 spin_unlock(&cachep->node[node]->list_lock);
1da177e4
LT
2381 ac->avail = 0;
2382}
2383
343e0d7a 2384static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2385{
ce8eb6c4 2386 struct kmem_cache_node *n;
e498be7d
CL
2387 int node;
2388
15c8b6c1 2389 on_each_cpu(do_drain, cachep, 1);
1da177e4 2390 check_irq_on();
b28a02de 2391 for_each_online_node(node) {
ce8eb6c4
CL
2392 n = cachep->node[node];
2393 if (n && n->alien)
2394 drain_alien_cache(cachep, n->alien);
a4523a8b
RD
2395 }
2396
2397 for_each_online_node(node) {
ce8eb6c4
CL
2398 n = cachep->node[node];
2399 if (n)
2400 drain_array(cachep, n, n->shared, 1, node);
e498be7d 2401 }
1da177e4
LT
2402}
2403
ed11d9eb
CL
2404/*
2405 * Remove slabs from the list of free slabs.
2406 * Specify the number of slabs to drain in tofree.
2407 *
2408 * Returns the actual number of slabs released.
2409 */
2410static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2411 struct kmem_cache_node *n, int tofree)
1da177e4 2412{
ed11d9eb
CL
2413 struct list_head *p;
2414 int nr_freed;
8456a648 2415 struct page *page;
1da177e4 2416
ed11d9eb 2417 nr_freed = 0;
ce8eb6c4 2418 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2419
ce8eb6c4
CL
2420 spin_lock_irq(&n->list_lock);
2421 p = n->slabs_free.prev;
2422 if (p == &n->slabs_free) {
2423 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2424 goto out;
2425 }
1da177e4 2426
8456a648 2427 page = list_entry(p, struct page, lru);
1da177e4 2428#if DEBUG
8456a648 2429 BUG_ON(page->active);
1da177e4 2430#endif
8456a648 2431 list_del(&page->lru);
ed11d9eb
CL
2432 /*
2433 * Safe to drop the lock. The slab is no longer linked
2434 * to the cache.
2435 */
ce8eb6c4
CL
2436 n->free_objects -= cache->num;
2437 spin_unlock_irq(&n->list_lock);
8456a648 2438 slab_destroy(cache, page);
ed11d9eb 2439 nr_freed++;
1da177e4 2440 }
ed11d9eb
CL
2441out:
2442 return nr_freed;
1da177e4
LT
2443}
2444
18004c5d 2445/* Called with slab_mutex held to protect against cpu hotplug */
343e0d7a 2446static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2447{
2448 int ret = 0, i = 0;
ce8eb6c4 2449 struct kmem_cache_node *n;
e498be7d
CL
2450
2451 drain_cpu_caches(cachep);
2452
2453 check_irq_on();
2454 for_each_online_node(i) {
ce8eb6c4
CL
2455 n = cachep->node[i];
2456 if (!n)
ed11d9eb
CL
2457 continue;
2458
0fa8103b 2459 drain_freelist(cachep, n, slabs_tofree(cachep, n));
ed11d9eb 2460
ce8eb6c4
CL
2461 ret += !list_empty(&n->slabs_full) ||
2462 !list_empty(&n->slabs_partial);
e498be7d
CL
2463 }
2464 return (ret ? 1 : 0);
2465}
2466
1da177e4
LT
2467/**
2468 * kmem_cache_shrink - Shrink a cache.
2469 * @cachep: The cache to shrink.
2470 *
2471 * Releases as many slabs as possible for a cache.
2472 * To help debugging, a zero exit status indicates all slabs were released.
2473 */
343e0d7a 2474int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2475{
8f5be20b 2476 int ret;
40094fa6 2477 BUG_ON(!cachep || in_interrupt());
1da177e4 2478
95402b38 2479 get_online_cpus();
18004c5d 2480 mutex_lock(&slab_mutex);
8f5be20b 2481 ret = __cache_shrink(cachep);
18004c5d 2482 mutex_unlock(&slab_mutex);
95402b38 2483 put_online_cpus();
8f5be20b 2484 return ret;
1da177e4
LT
2485}
2486EXPORT_SYMBOL(kmem_cache_shrink);
2487
945cf2b6 2488int __kmem_cache_shutdown(struct kmem_cache *cachep)
1da177e4 2489{
12c3667f 2490 int i;
ce8eb6c4 2491 struct kmem_cache_node *n;
12c3667f 2492 int rc = __cache_shrink(cachep);
1da177e4 2493
12c3667f
CL
2494 if (rc)
2495 return rc;
1da177e4 2496
12c3667f
CL
2497 for_each_online_cpu(i)
2498 kfree(cachep->array[i]);
1da177e4 2499
ce8eb6c4 2500 /* NUMA: free the node structures */
12c3667f 2501 for_each_online_node(i) {
ce8eb6c4
CL
2502 n = cachep->node[i];
2503 if (n) {
2504 kfree(n->shared);
2505 free_alien_cache(n->alien);
2506 kfree(n);
12c3667f
CL
2507 }
2508 }
2509 return 0;
1da177e4 2510}
1da177e4 2511
e5ac9c5a
RT
2512/*
2513 * Get the memory for a slab management obj.
2514 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2515 * always come from malloc_sizes caches. The slab descriptor cannot
2516 * come from the same cache which is getting created because,
2517 * when we are searching for an appropriate cache for these
2518 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2519 * If we are creating a malloc_sizes cache here it would not be visible to
2520 * kmem_find_general_cachep till the initialization is complete.
8456a648 2521 * Hence we cannot have freelist_cache same as the original cache.
e5ac9c5a 2522 */
8456a648 2523static struct freelist *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2524 struct page *page, int colour_off,
2525 gfp_t local_flags, int nodeid)
1da177e4 2526{
8456a648 2527 struct freelist *freelist;
0c3aa83e 2528 void *addr = page_address(page);
b28a02de 2529
1da177e4
LT
2530 if (OFF_SLAB(cachep)) {
2531 /* Slab management obj is off-slab. */
8456a648 2532 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2533 local_flags, nodeid);
d5cff635
CM
2534 /*
2535 * If the first object in the slab is leaked (it's allocated
2536 * but no one has a reference to it), we want to make sure
2537 * kmemleak does not treat the ->s_mem pointer as a reference
2538 * to the object. Otherwise we will not report the leak.
2539 */
8456a648 2540 kmemleak_scan_area(&page->lru, sizeof(struct list_head),
c017b4be 2541 local_flags);
8456a648 2542 if (!freelist)
1da177e4
LT
2543 return NULL;
2544 } else {
8456a648
JK
2545 freelist = addr + colour_off;
2546 colour_off += cachep->freelist_size;
1da177e4 2547 }
8456a648
JK
2548 page->active = 0;
2549 page->s_mem = addr + colour_off;
2550 return freelist;
1da177e4
LT
2551}
2552
8456a648 2553static inline unsigned int *slab_bufctl(struct page *page)
1da177e4 2554{
8456a648 2555 return (unsigned int *)(page->freelist);
1da177e4
LT
2556}
2557
343e0d7a 2558static void cache_init_objs(struct kmem_cache *cachep,
8456a648 2559 struct page *page)
1da177e4
LT
2560{
2561 int i;
2562
2563 for (i = 0; i < cachep->num; i++) {
8456a648 2564 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
2565#if DEBUG
2566 /* need to poison the objs? */
2567 if (cachep->flags & SLAB_POISON)
2568 poison_obj(cachep, objp, POISON_FREE);
2569 if (cachep->flags & SLAB_STORE_USER)
2570 *dbg_userword(cachep, objp) = NULL;
2571
2572 if (cachep->flags & SLAB_RED_ZONE) {
2573 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2574 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2575 }
2576 /*
a737b3e2
AM
2577 * Constructors are not allowed to allocate memory from the same
2578 * cache which they are a constructor for. Otherwise, deadlock.
2579 * They must also be threaded.
1da177e4
LT
2580 */
2581 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2582 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2583
2584 if (cachep->flags & SLAB_RED_ZONE) {
2585 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2586 slab_error(cachep, "constructor overwrote the"
b28a02de 2587 " end of an object");
1da177e4
LT
2588 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2589 slab_error(cachep, "constructor overwrote the"
b28a02de 2590 " start of an object");
1da177e4 2591 }
3b0efdfa 2592 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2593 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2594 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2595 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2596#else
2597 if (cachep->ctor)
51cc5068 2598 cachep->ctor(objp);
1da177e4 2599#endif
8456a648 2600 slab_bufctl(page)[i] = i;
1da177e4 2601 }
1da177e4
LT
2602}
2603
343e0d7a 2604static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2605{
4b51d669
CL
2606 if (CONFIG_ZONE_DMA_FLAG) {
2607 if (flags & GFP_DMA)
a618e89f 2608 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2609 else
a618e89f 2610 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2611 }
1da177e4
LT
2612}
2613
8456a648 2614static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
a737b3e2 2615 int nodeid)
78d382d7 2616{
b1cb0982 2617 void *objp;
78d382d7 2618
8456a648
JK
2619 objp = index_to_obj(cachep, page, slab_bufctl(page)[page->active]);
2620 page->active++;
78d382d7 2621#if DEBUG
1ea991b0 2622 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
78d382d7 2623#endif
78d382d7
MD
2624
2625 return objp;
2626}
2627
8456a648 2628static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
a737b3e2 2629 void *objp, int nodeid)
78d382d7 2630{
8456a648 2631 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2632#if DEBUG
16025177 2633 unsigned int i;
b1cb0982 2634
78d382d7 2635 /* Verify that the slab belongs to the intended node */
1ea991b0 2636 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
78d382d7 2637
b1cb0982 2638 /* Verify double free bug */
8456a648
JK
2639 for (i = page->active; i < cachep->num; i++) {
2640 if (slab_bufctl(page)[i] == objnr) {
b1cb0982
JK
2641 printk(KERN_ERR "slab: double free detected in cache "
2642 "'%s', objp %p\n", cachep->name, objp);
2643 BUG();
2644 }
78d382d7
MD
2645 }
2646#endif
8456a648
JK
2647 page->active--;
2648 slab_bufctl(page)[page->active] = objnr;
78d382d7
MD
2649}
2650
4776874f
PE
2651/*
2652 * Map pages beginning at addr to the given cache and slab. This is required
2653 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2654 * virtual address for kfree, ksize, and slab debugging.
4776874f 2655 */
8456a648
JK
2656static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2657 struct freelist *freelist)
1da177e4 2658{
a57a4988 2659 page->slab_cache = cache;
8456a648 2660 page->freelist = freelist;
1da177e4
LT
2661}
2662
2663/*
2664 * Grow (by 1) the number of slabs within a cache. This is called by
2665 * kmem_cache_alloc() when there are no active objs left in a cache.
2666 */
3c517a61 2667static int cache_grow(struct kmem_cache *cachep,
0c3aa83e 2668 gfp_t flags, int nodeid, struct page *page)
1da177e4 2669{
8456a648 2670 struct freelist *freelist;
b28a02de
PE
2671 size_t offset;
2672 gfp_t local_flags;
ce8eb6c4 2673 struct kmem_cache_node *n;
1da177e4 2674
a737b3e2
AM
2675 /*
2676 * Be lazy and only check for valid flags here, keeping it out of the
2677 * critical path in kmem_cache_alloc().
1da177e4 2678 */
6cb06229
CL
2679 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2680 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2681
ce8eb6c4 2682 /* Take the node list lock to change the colour_next on this node */
1da177e4 2683 check_irq_off();
ce8eb6c4
CL
2684 n = cachep->node[nodeid];
2685 spin_lock(&n->list_lock);
1da177e4
LT
2686
2687 /* Get colour for the slab, and cal the next value. */
ce8eb6c4
CL
2688 offset = n->colour_next;
2689 n->colour_next++;
2690 if (n->colour_next >= cachep->colour)
2691 n->colour_next = 0;
2692 spin_unlock(&n->list_lock);
1da177e4 2693
2e1217cf 2694 offset *= cachep->colour_off;
1da177e4
LT
2695
2696 if (local_flags & __GFP_WAIT)
2697 local_irq_enable();
2698
2699 /*
2700 * The test for missing atomic flag is performed here, rather than
2701 * the more obvious place, simply to reduce the critical path length
2702 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2703 * will eventually be caught here (where it matters).
2704 */
2705 kmem_flagcheck(cachep, flags);
2706
a737b3e2
AM
2707 /*
2708 * Get mem for the objs. Attempt to allocate a physical page from
2709 * 'nodeid'.
e498be7d 2710 */
0c3aa83e
JK
2711 if (!page)
2712 page = kmem_getpages(cachep, local_flags, nodeid);
2713 if (!page)
1da177e4
LT
2714 goto failed;
2715
2716 /* Get slab management. */
8456a648 2717 freelist = alloc_slabmgmt(cachep, page, offset,
6cb06229 2718 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
8456a648 2719 if (!freelist)
1da177e4
LT
2720 goto opps1;
2721
8456a648 2722 slab_map_pages(cachep, page, freelist);
1da177e4 2723
8456a648 2724 cache_init_objs(cachep, page);
1da177e4
LT
2725
2726 if (local_flags & __GFP_WAIT)
2727 local_irq_disable();
2728 check_irq_off();
ce8eb6c4 2729 spin_lock(&n->list_lock);
1da177e4
LT
2730
2731 /* Make slab active. */
8456a648 2732 list_add_tail(&page->lru, &(n->slabs_free));
1da177e4 2733 STATS_INC_GROWN(cachep);
ce8eb6c4
CL
2734 n->free_objects += cachep->num;
2735 spin_unlock(&n->list_lock);
1da177e4 2736 return 1;
a737b3e2 2737opps1:
0c3aa83e 2738 kmem_freepages(cachep, page);
a737b3e2 2739failed:
1da177e4
LT
2740 if (local_flags & __GFP_WAIT)
2741 local_irq_disable();
2742 return 0;
2743}
2744
2745#if DEBUG
2746
2747/*
2748 * Perform extra freeing checks:
2749 * - detect bad pointers.
2750 * - POISON/RED_ZONE checking
1da177e4
LT
2751 */
2752static void kfree_debugcheck(const void *objp)
2753{
1da177e4
LT
2754 if (!virt_addr_valid(objp)) {
2755 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2756 (unsigned long)objp);
2757 BUG();
1da177e4 2758 }
1da177e4
LT
2759}
2760
58ce1fd5
PE
2761static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2762{
b46b8f19 2763 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2764
2765 redzone1 = *dbg_redzone1(cache, obj);
2766 redzone2 = *dbg_redzone2(cache, obj);
2767
2768 /*
2769 * Redzone is ok.
2770 */
2771 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2772 return;
2773
2774 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2775 slab_error(cache, "double free detected");
2776 else
2777 slab_error(cache, "memory outside object was overwritten");
2778
b46b8f19 2779 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2780 obj, redzone1, redzone2);
2781}
2782
343e0d7a 2783static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2784 unsigned long caller)
1da177e4 2785{
1da177e4 2786 unsigned int objnr;
8456a648 2787 struct page *page;
1da177e4 2788
80cbd911
MW
2789 BUG_ON(virt_to_cache(objp) != cachep);
2790
3dafccf2 2791 objp -= obj_offset(cachep);
1da177e4 2792 kfree_debugcheck(objp);
8456a648 2793 page = virt_to_head_page(objp);
1da177e4
LT
2794
2795 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2796 verify_redzone_free(cachep, objp);
1da177e4
LT
2797 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2798 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2799 }
2800 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2801 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4 2802
8456a648 2803 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2804
2805 BUG_ON(objnr >= cachep->num);
8456a648 2806 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2807
1da177e4
LT
2808 if (cachep->flags & SLAB_POISON) {
2809#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2810 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
7c0cb9c6 2811 store_stackinfo(cachep, objp, caller);
b28a02de 2812 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2813 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2814 } else {
2815 poison_obj(cachep, objp, POISON_FREE);
2816 }
2817#else
2818 poison_obj(cachep, objp, POISON_FREE);
2819#endif
2820 }
2821 return objp;
2822}
2823
1da177e4
LT
2824#else
2825#define kfree_debugcheck(x) do { } while(0)
2826#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2827#endif
2828
072bb0aa
MG
2829static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2830 bool force_refill)
1da177e4
LT
2831{
2832 int batchcount;
ce8eb6c4 2833 struct kmem_cache_node *n;
1da177e4 2834 struct array_cache *ac;
1ca4cb24
PE
2835 int node;
2836
1da177e4 2837 check_irq_off();
7d6e6d09 2838 node = numa_mem_id();
072bb0aa
MG
2839 if (unlikely(force_refill))
2840 goto force_grow;
2841retry:
9a2dba4b 2842 ac = cpu_cache_get(cachep);
1da177e4
LT
2843 batchcount = ac->batchcount;
2844 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2845 /*
2846 * If there was little recent activity on this cache, then
2847 * perform only a partial refill. Otherwise we could generate
2848 * refill bouncing.
1da177e4
LT
2849 */
2850 batchcount = BATCHREFILL_LIMIT;
2851 }
ce8eb6c4 2852 n = cachep->node[node];
e498be7d 2853
ce8eb6c4
CL
2854 BUG_ON(ac->avail > 0 || !n);
2855 spin_lock(&n->list_lock);
1da177e4 2856
3ded175a 2857 /* See if we can refill from the shared array */
ce8eb6c4
CL
2858 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2859 n->shared->touched = 1;
3ded175a 2860 goto alloc_done;
44b57f1c 2861 }
3ded175a 2862
1da177e4
LT
2863 while (batchcount > 0) {
2864 struct list_head *entry;
8456a648 2865 struct page *page;
1da177e4 2866 /* Get slab alloc is to come from. */
ce8eb6c4
CL
2867 entry = n->slabs_partial.next;
2868 if (entry == &n->slabs_partial) {
2869 n->free_touched = 1;
2870 entry = n->slabs_free.next;
2871 if (entry == &n->slabs_free)
1da177e4
LT
2872 goto must_grow;
2873 }
2874
8456a648 2875 page = list_entry(entry, struct page, lru);
1da177e4 2876 check_spinlock_acquired(cachep);
714b8171
PE
2877
2878 /*
2879 * The slab was either on partial or free list so
2880 * there must be at least one object available for
2881 * allocation.
2882 */
8456a648 2883 BUG_ON(page->active >= cachep->num);
714b8171 2884
8456a648 2885 while (page->active < cachep->num && batchcount--) {
1da177e4
LT
2886 STATS_INC_ALLOCED(cachep);
2887 STATS_INC_ACTIVE(cachep);
2888 STATS_SET_HIGH(cachep);
2889
8456a648 2890 ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
072bb0aa 2891 node));
1da177e4 2892 }
1da177e4
LT
2893
2894 /* move slabp to correct slabp list: */
8456a648
JK
2895 list_del(&page->lru);
2896 if (page->active == cachep->num)
2897 list_add(&page->list, &n->slabs_full);
1da177e4 2898 else
8456a648 2899 list_add(&page->list, &n->slabs_partial);
1da177e4
LT
2900 }
2901
a737b3e2 2902must_grow:
ce8eb6c4 2903 n->free_objects -= ac->avail;
a737b3e2 2904alloc_done:
ce8eb6c4 2905 spin_unlock(&n->list_lock);
1da177e4
LT
2906
2907 if (unlikely(!ac->avail)) {
2908 int x;
072bb0aa 2909force_grow:
3c517a61 2910 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 2911
a737b3e2 2912 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2913 ac = cpu_cache_get(cachep);
51cd8e6f 2914 node = numa_mem_id();
072bb0aa
MG
2915
2916 /* no objects in sight? abort */
2917 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
2918 return NULL;
2919
a737b3e2 2920 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2921 goto retry;
2922 }
2923 ac->touched = 1;
072bb0aa
MG
2924
2925 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
2926}
2927
a737b3e2
AM
2928static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2929 gfp_t flags)
1da177e4
LT
2930{
2931 might_sleep_if(flags & __GFP_WAIT);
2932#if DEBUG
2933 kmem_flagcheck(cachep, flags);
2934#endif
2935}
2936
2937#if DEBUG
a737b3e2 2938static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 2939 gfp_t flags, void *objp, unsigned long caller)
1da177e4 2940{
b28a02de 2941 if (!objp)
1da177e4 2942 return objp;
b28a02de 2943 if (cachep->flags & SLAB_POISON) {
1da177e4 2944#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2945 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 2946 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2947 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2948 else
2949 check_poison_obj(cachep, objp);
2950#else
2951 check_poison_obj(cachep, objp);
2952#endif
2953 poison_obj(cachep, objp, POISON_INUSE);
2954 }
2955 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2956 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
2957
2958 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2959 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2960 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2961 slab_error(cachep, "double free, or memory outside"
2962 " object was overwritten");
b28a02de 2963 printk(KERN_ERR
b46b8f19 2964 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
2965 objp, *dbg_redzone1(cachep, objp),
2966 *dbg_redzone2(cachep, objp));
1da177e4
LT
2967 }
2968 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2969 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2970 }
3dafccf2 2971 objp += obj_offset(cachep);
4f104934 2972 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 2973 cachep->ctor(objp);
7ea466f2
TH
2974 if (ARCH_SLAB_MINALIGN &&
2975 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 2976 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 2977 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 2978 }
1da177e4
LT
2979 return objp;
2980}
2981#else
2982#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2983#endif
2984
773ff60e 2985static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502 2986{
9b030cb8 2987 if (cachep == kmem_cache)
773ff60e 2988 return false;
8a8b6502 2989
8c138bc0 2990 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
2991}
2992
343e0d7a 2993static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2994{
b28a02de 2995 void *objp;
1da177e4 2996 struct array_cache *ac;
072bb0aa 2997 bool force_refill = false;
1da177e4 2998
5c382300 2999 check_irq_off();
8a8b6502 3000
9a2dba4b 3001 ac = cpu_cache_get(cachep);
1da177e4 3002 if (likely(ac->avail)) {
1da177e4 3003 ac->touched = 1;
072bb0aa
MG
3004 objp = ac_get_obj(cachep, ac, flags, false);
3005
ddbf2e83 3006 /*
072bb0aa
MG
3007 * Allow for the possibility all avail objects are not allowed
3008 * by the current flags
ddbf2e83 3009 */
072bb0aa
MG
3010 if (objp) {
3011 STATS_INC_ALLOCHIT(cachep);
3012 goto out;
3013 }
3014 force_refill = true;
1da177e4 3015 }
072bb0aa
MG
3016
3017 STATS_INC_ALLOCMISS(cachep);
3018 objp = cache_alloc_refill(cachep, flags, force_refill);
3019 /*
3020 * the 'ac' may be updated by cache_alloc_refill(),
3021 * and kmemleak_erase() requires its correct value.
3022 */
3023 ac = cpu_cache_get(cachep);
3024
3025out:
d5cff635
CM
3026 /*
3027 * To avoid a false negative, if an object that is in one of the
3028 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3029 * treat the array pointers as a reference to the object.
3030 */
f3d8b53a
O
3031 if (objp)
3032 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3033 return objp;
3034}
3035
e498be7d 3036#ifdef CONFIG_NUMA
c61afb18 3037/*
b2455396 3038 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3039 *
3040 * If we are in_interrupt, then process context, including cpusets and
3041 * mempolicy, may not apply and should not be used for allocation policy.
3042 */
3043static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3044{
3045 int nid_alloc, nid_here;
3046
765c4507 3047 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3048 return NULL;
7d6e6d09 3049 nid_alloc = nid_here = numa_mem_id();
c61afb18 3050 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3051 nid_alloc = cpuset_slab_spread_node();
c61afb18 3052 else if (current->mempolicy)
e7b691b0 3053 nid_alloc = slab_node();
c61afb18 3054 if (nid_alloc != nid_here)
8b98c169 3055 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3056 return NULL;
3057}
3058
765c4507
CL
3059/*
3060 * Fallback function if there was no memory available and no objects on a
3c517a61 3061 * certain node and fall back is permitted. First we scan all the
6a67368c 3062 * available node for available objects. If that fails then we
3c517a61
CL
3063 * perform an allocation without specifying a node. This allows the page
3064 * allocator to do its reclaim / fallback magic. We then insert the
3065 * slab into the proper nodelist and then allocate from it.
765c4507 3066 */
8c8cc2c1 3067static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3068{
8c8cc2c1
PE
3069 struct zonelist *zonelist;
3070 gfp_t local_flags;
dd1a239f 3071 struct zoneref *z;
54a6eb5c
MG
3072 struct zone *zone;
3073 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3074 void *obj = NULL;
3c517a61 3075 int nid;
cc9a6c87 3076 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3077
3078 if (flags & __GFP_THISNODE)
3079 return NULL;
3080
6cb06229 3081 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3082
cc9a6c87
MG
3083retry_cpuset:
3084 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 3085 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87 3086
3c517a61
CL
3087retry:
3088 /*
3089 * Look through allowed nodes for objects available
3090 * from existing per node queues.
3091 */
54a6eb5c
MG
3092 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3093 nid = zone_to_nid(zone);
aedb0eb1 3094
54a6eb5c 3095 if (cpuset_zone_allowed_hardwall(zone, flags) &&
6a67368c
CL
3096 cache->node[nid] &&
3097 cache->node[nid]->free_objects) {
3c517a61
CL
3098 obj = ____cache_alloc_node(cache,
3099 flags | GFP_THISNODE, nid);
481c5346
CL
3100 if (obj)
3101 break;
3102 }
3c517a61
CL
3103 }
3104
cfce6604 3105 if (!obj) {
3c517a61
CL
3106 /*
3107 * This allocation will be performed within the constraints
3108 * of the current cpuset / memory policy requirements.
3109 * We may trigger various forms of reclaim on the allowed
3110 * set and go into memory reserves if necessary.
3111 */
0c3aa83e
JK
3112 struct page *page;
3113
dd47ea75
CL
3114 if (local_flags & __GFP_WAIT)
3115 local_irq_enable();
3116 kmem_flagcheck(cache, flags);
0c3aa83e 3117 page = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3118 if (local_flags & __GFP_WAIT)
3119 local_irq_disable();
0c3aa83e 3120 if (page) {
3c517a61
CL
3121 /*
3122 * Insert into the appropriate per node queues
3123 */
0c3aa83e
JK
3124 nid = page_to_nid(page);
3125 if (cache_grow(cache, flags, nid, page)) {
3c517a61
CL
3126 obj = ____cache_alloc_node(cache,
3127 flags | GFP_THISNODE, nid);
3128 if (!obj)
3129 /*
3130 * Another processor may allocate the
3131 * objects in the slab since we are
3132 * not holding any locks.
3133 */
3134 goto retry;
3135 } else {
b6a60451 3136 /* cache_grow already freed obj */
3c517a61
CL
3137 obj = NULL;
3138 }
3139 }
aedb0eb1 3140 }
cc9a6c87
MG
3141
3142 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3143 goto retry_cpuset;
765c4507
CL
3144 return obj;
3145}
3146
e498be7d
CL
3147/*
3148 * A interface to enable slab creation on nodeid
1da177e4 3149 */
8b98c169 3150static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3151 int nodeid)
e498be7d
CL
3152{
3153 struct list_head *entry;
8456a648 3154 struct page *page;
ce8eb6c4 3155 struct kmem_cache_node *n;
b28a02de 3156 void *obj;
b28a02de
PE
3157 int x;
3158
14e50c6a 3159 VM_BUG_ON(nodeid > num_online_nodes());
ce8eb6c4
CL
3160 n = cachep->node[nodeid];
3161 BUG_ON(!n);
b28a02de 3162
a737b3e2 3163retry:
ca3b9b91 3164 check_irq_off();
ce8eb6c4
CL
3165 spin_lock(&n->list_lock);
3166 entry = n->slabs_partial.next;
3167 if (entry == &n->slabs_partial) {
3168 n->free_touched = 1;
3169 entry = n->slabs_free.next;
3170 if (entry == &n->slabs_free)
b28a02de
PE
3171 goto must_grow;
3172 }
3173
8456a648 3174 page = list_entry(entry, struct page, lru);
b28a02de 3175 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3176
3177 STATS_INC_NODEALLOCS(cachep);
3178 STATS_INC_ACTIVE(cachep);
3179 STATS_SET_HIGH(cachep);
3180
8456a648 3181 BUG_ON(page->active == cachep->num);
b28a02de 3182
8456a648 3183 obj = slab_get_obj(cachep, page, nodeid);
ce8eb6c4 3184 n->free_objects--;
b28a02de 3185 /* move slabp to correct slabp list: */
8456a648 3186 list_del(&page->lru);
b28a02de 3187
8456a648
JK
3188 if (page->active == cachep->num)
3189 list_add(&page->lru, &n->slabs_full);
a737b3e2 3190 else
8456a648 3191 list_add(&page->lru, &n->slabs_partial);
e498be7d 3192
ce8eb6c4 3193 spin_unlock(&n->list_lock);
b28a02de 3194 goto done;
e498be7d 3195
a737b3e2 3196must_grow:
ce8eb6c4 3197 spin_unlock(&n->list_lock);
3c517a61 3198 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3199 if (x)
3200 goto retry;
1da177e4 3201
8c8cc2c1 3202 return fallback_alloc(cachep, flags);
e498be7d 3203
a737b3e2 3204done:
b28a02de 3205 return obj;
e498be7d 3206}
8c8cc2c1 3207
8c8cc2c1 3208static __always_inline void *
48356303 3209slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3210 unsigned long caller)
8c8cc2c1
PE
3211{
3212 unsigned long save_flags;
3213 void *ptr;
7d6e6d09 3214 int slab_node = numa_mem_id();
8c8cc2c1 3215
dcce284a 3216 flags &= gfp_allowed_mask;
7e85ee0c 3217
cf40bd16
NP
3218 lockdep_trace_alloc(flags);
3219
773ff60e 3220 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3221 return NULL;
3222
d79923fa
GC
3223 cachep = memcg_kmem_get_cache(cachep, flags);
3224
8c8cc2c1
PE
3225 cache_alloc_debugcheck_before(cachep, flags);
3226 local_irq_save(save_flags);
3227
eacbbae3 3228 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3229 nodeid = slab_node;
8c8cc2c1 3230
6a67368c 3231 if (unlikely(!cachep->node[nodeid])) {
8c8cc2c1
PE
3232 /* Node not bootstrapped yet */
3233 ptr = fallback_alloc(cachep, flags);
3234 goto out;
3235 }
3236
7d6e6d09 3237 if (nodeid == slab_node) {
8c8cc2c1
PE
3238 /*
3239 * Use the locally cached objects if possible.
3240 * However ____cache_alloc does not allow fallback
3241 * to other nodes. It may fail while we still have
3242 * objects on other nodes available.
3243 */
3244 ptr = ____cache_alloc(cachep, flags);
3245 if (ptr)
3246 goto out;
3247 }
3248 /* ___cache_alloc_node can fall back to other nodes */
3249 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3250 out:
3251 local_irq_restore(save_flags);
3252 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3253 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3254 flags);
8c8cc2c1 3255
c175eea4 3256 if (likely(ptr))
8c138bc0 3257 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
c175eea4 3258
d07dbea4 3259 if (unlikely((flags & __GFP_ZERO) && ptr))
8c138bc0 3260 memset(ptr, 0, cachep->object_size);
d07dbea4 3261
8c8cc2c1
PE
3262 return ptr;
3263}
3264
3265static __always_inline void *
3266__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3267{
3268 void *objp;
3269
3270 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3271 objp = alternate_node_alloc(cache, flags);
3272 if (objp)
3273 goto out;
3274 }
3275 objp = ____cache_alloc(cache, flags);
3276
3277 /*
3278 * We may just have run out of memory on the local node.
3279 * ____cache_alloc_node() knows how to locate memory on other nodes
3280 */
7d6e6d09
LS
3281 if (!objp)
3282 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3283
3284 out:
3285 return objp;
3286}
3287#else
3288
3289static __always_inline void *
3290__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3291{
3292 return ____cache_alloc(cachep, flags);
3293}
3294
3295#endif /* CONFIG_NUMA */
3296
3297static __always_inline void *
48356303 3298slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3299{
3300 unsigned long save_flags;
3301 void *objp;
3302
dcce284a 3303 flags &= gfp_allowed_mask;
7e85ee0c 3304
cf40bd16
NP
3305 lockdep_trace_alloc(flags);
3306
773ff60e 3307 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3308 return NULL;
3309
d79923fa
GC
3310 cachep = memcg_kmem_get_cache(cachep, flags);
3311
8c8cc2c1
PE
3312 cache_alloc_debugcheck_before(cachep, flags);
3313 local_irq_save(save_flags);
3314 objp = __do_cache_alloc(cachep, flags);
3315 local_irq_restore(save_flags);
3316 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3317 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3318 flags);
8c8cc2c1
PE
3319 prefetchw(objp);
3320
c175eea4 3321 if (likely(objp))
8c138bc0 3322 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
c175eea4 3323
d07dbea4 3324 if (unlikely((flags & __GFP_ZERO) && objp))
8c138bc0 3325 memset(objp, 0, cachep->object_size);
d07dbea4 3326
8c8cc2c1
PE
3327 return objp;
3328}
e498be7d
CL
3329
3330/*
3331 * Caller needs to acquire correct kmem_list's list_lock
3332 */
343e0d7a 3333static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3334 int node)
1da177e4
LT
3335{
3336 int i;
ce8eb6c4 3337 struct kmem_cache_node *n;
1da177e4
LT
3338
3339 for (i = 0; i < nr_objects; i++) {
072bb0aa 3340 void *objp;
8456a648 3341 struct page *page;
1da177e4 3342
072bb0aa
MG
3343 clear_obj_pfmemalloc(&objpp[i]);
3344 objp = objpp[i];
3345
8456a648 3346 page = virt_to_head_page(objp);
ce8eb6c4 3347 n = cachep->node[node];
8456a648 3348 list_del(&page->lru);
ff69416e 3349 check_spinlock_acquired_node(cachep, node);
8456a648 3350 slab_put_obj(cachep, page, objp, node);
1da177e4 3351 STATS_DEC_ACTIVE(cachep);
ce8eb6c4 3352 n->free_objects++;
1da177e4
LT
3353
3354 /* fixup slab chains */
8456a648 3355 if (page->active == 0) {
ce8eb6c4
CL
3356 if (n->free_objects > n->free_limit) {
3357 n->free_objects -= cachep->num;
e5ac9c5a
RT
3358 /* No need to drop any previously held
3359 * lock here, even if we have a off-slab slab
3360 * descriptor it is guaranteed to come from
3361 * a different cache, refer to comments before
3362 * alloc_slabmgmt.
3363 */
8456a648 3364 slab_destroy(cachep, page);
1da177e4 3365 } else {
8456a648 3366 list_add(&page->lru, &n->slabs_free);
1da177e4
LT
3367 }
3368 } else {
3369 /* Unconditionally move a slab to the end of the
3370 * partial list on free - maximum time for the
3371 * other objects to be freed, too.
3372 */
8456a648 3373 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3374 }
3375 }
3376}
3377
343e0d7a 3378static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3379{
3380 int batchcount;
ce8eb6c4 3381 struct kmem_cache_node *n;
7d6e6d09 3382 int node = numa_mem_id();
1da177e4
LT
3383
3384 batchcount = ac->batchcount;
3385#if DEBUG
3386 BUG_ON(!batchcount || batchcount > ac->avail);
3387#endif
3388 check_irq_off();
ce8eb6c4
CL
3389 n = cachep->node[node];
3390 spin_lock(&n->list_lock);
3391 if (n->shared) {
3392 struct array_cache *shared_array = n->shared;
b28a02de 3393 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3394 if (max) {
3395 if (batchcount > max)
3396 batchcount = max;
e498be7d 3397 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3398 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3399 shared_array->avail += batchcount;
3400 goto free_done;
3401 }
3402 }
3403
ff69416e 3404 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3405free_done:
1da177e4
LT
3406#if STATS
3407 {
3408 int i = 0;
3409 struct list_head *p;
3410
ce8eb6c4
CL
3411 p = n->slabs_free.next;
3412 while (p != &(n->slabs_free)) {
8456a648 3413 struct page *page;
1da177e4 3414
8456a648
JK
3415 page = list_entry(p, struct page, lru);
3416 BUG_ON(page->active);
1da177e4
LT
3417
3418 i++;
3419 p = p->next;
3420 }
3421 STATS_SET_FREEABLE(cachep, i);
3422 }
3423#endif
ce8eb6c4 3424 spin_unlock(&n->list_lock);
1da177e4 3425 ac->avail -= batchcount;
a737b3e2 3426 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3427}
3428
3429/*
a737b3e2
AM
3430 * Release an obj back to its cache. If the obj has a constructed state, it must
3431 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3432 */
a947eb95 3433static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3434 unsigned long caller)
1da177e4 3435{
9a2dba4b 3436 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3437
3438 check_irq_off();
d5cff635 3439 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3440 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3441
8c138bc0 3442 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3443
1807a1aa
SS
3444 /*
3445 * Skip calling cache_free_alien() when the platform is not numa.
3446 * This will avoid cache misses that happen while accessing slabp (which
3447 * is per page memory reference) to get nodeid. Instead use a global
3448 * variable to skip the call, which is mostly likely to be present in
3449 * the cache.
3450 */
b6e68bc1 3451 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3452 return;
3453
1da177e4
LT
3454 if (likely(ac->avail < ac->limit)) {
3455 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3456 } else {
3457 STATS_INC_FREEMISS(cachep);
3458 cache_flusharray(cachep, ac);
1da177e4 3459 }
42c8c99c 3460
072bb0aa 3461 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3462}
3463
3464/**
3465 * kmem_cache_alloc - Allocate an object
3466 * @cachep: The cache to allocate from.
3467 * @flags: See kmalloc().
3468 *
3469 * Allocate an object from this cache. The flags are only relevant
3470 * if the cache has no available objects.
3471 */
343e0d7a 3472void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3473{
48356303 3474 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3475
ca2b84cb 3476 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3477 cachep->object_size, cachep->size, flags);
36555751
EGM
3478
3479 return ret;
1da177e4
LT
3480}
3481EXPORT_SYMBOL(kmem_cache_alloc);
3482
0f24f128 3483#ifdef CONFIG_TRACING
85beb586 3484void *
4052147c 3485kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3486{
85beb586
SR
3487 void *ret;
3488
48356303 3489 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586
SR
3490
3491 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3492 size, cachep->size, flags);
85beb586 3493 return ret;
36555751 3494}
85beb586 3495EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3496#endif
3497
1da177e4 3498#ifdef CONFIG_NUMA
d0d04b78
ZL
3499/**
3500 * kmem_cache_alloc_node - Allocate an object on the specified node
3501 * @cachep: The cache to allocate from.
3502 * @flags: See kmalloc().
3503 * @nodeid: node number of the target node.
3504 *
3505 * Identical to kmem_cache_alloc but it will allocate memory on the given
3506 * node, which can improve the performance for cpu bound structures.
3507 *
3508 * Fallback to other node is possible if __GFP_THISNODE is not set.
3509 */
8b98c169
CH
3510void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3511{
48356303 3512 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3513
ca2b84cb 3514 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3515 cachep->object_size, cachep->size,
ca2b84cb 3516 flags, nodeid);
36555751
EGM
3517
3518 return ret;
8b98c169 3519}
1da177e4
LT
3520EXPORT_SYMBOL(kmem_cache_alloc_node);
3521
0f24f128 3522#ifdef CONFIG_TRACING
4052147c 3523void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3524 gfp_t flags,
4052147c
EG
3525 int nodeid,
3526 size_t size)
36555751 3527{
85beb586
SR
3528 void *ret;
3529
592f4145 3530 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
7c0cb9c6 3531
85beb586 3532 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3533 size, cachep->size,
85beb586
SR
3534 flags, nodeid);
3535 return ret;
36555751 3536}
85beb586 3537EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3538#endif
3539
8b98c169 3540static __always_inline void *
7c0cb9c6 3541__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3542{
343e0d7a 3543 struct kmem_cache *cachep;
97e2bde4 3544
2c59dd65 3545 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3546 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3547 return cachep;
4052147c 3548 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
97e2bde4 3549}
8b98c169 3550
0bb38a5c 3551#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3552void *__kmalloc_node(size_t size, gfp_t flags, int node)
3553{
7c0cb9c6 3554 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3555}
dbe5e69d 3556EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3557
3558void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3559 int node, unsigned long caller)
8b98c169 3560{
7c0cb9c6 3561 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3562}
3563EXPORT_SYMBOL(__kmalloc_node_track_caller);
3564#else
3565void *__kmalloc_node(size_t size, gfp_t flags, int node)
3566{
7c0cb9c6 3567 return __do_kmalloc_node(size, flags, node, 0);
8b98c169
CH
3568}
3569EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3570#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3571#endif /* CONFIG_NUMA */
1da177e4
LT
3572
3573/**
800590f5 3574 * __do_kmalloc - allocate memory
1da177e4 3575 * @size: how many bytes of memory are required.
800590f5 3576 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3577 * @caller: function caller for debug tracking of the caller
1da177e4 3578 */
7fd6b141 3579static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3580 unsigned long caller)
1da177e4 3581{
343e0d7a 3582 struct kmem_cache *cachep;
36555751 3583 void *ret;
1da177e4 3584
97e2bde4
MS
3585 /* If you want to save a few bytes .text space: replace
3586 * __ with kmem_.
3587 * Then kmalloc uses the uninlined functions instead of the inline
3588 * functions.
3589 */
2c59dd65 3590 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3591 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3592 return cachep;
48356303 3593 ret = slab_alloc(cachep, flags, caller);
36555751 3594
7c0cb9c6 3595 trace_kmalloc(caller, ret,
3b0efdfa 3596 size, cachep->size, flags);
36555751
EGM
3597
3598 return ret;
7fd6b141
PE
3599}
3600
7fd6b141 3601
0bb38a5c 3602#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3603void *__kmalloc(size_t size, gfp_t flags)
3604{
7c0cb9c6 3605 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3606}
3607EXPORT_SYMBOL(__kmalloc);
3608
ce71e27c 3609void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3610{
7c0cb9c6 3611 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3612}
3613EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3614
3615#else
3616void *__kmalloc(size_t size, gfp_t flags)
3617{
7c0cb9c6 3618 return __do_kmalloc(size, flags, 0);
1d2c8eea
CH
3619}
3620EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3621#endif
3622
1da177e4
LT
3623/**
3624 * kmem_cache_free - Deallocate an object
3625 * @cachep: The cache the allocation was from.
3626 * @objp: The previously allocated object.
3627 *
3628 * Free an object which was previously allocated from this
3629 * cache.
3630 */
343e0d7a 3631void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3632{
3633 unsigned long flags;
b9ce5ef4
GC
3634 cachep = cache_from_obj(cachep, objp);
3635 if (!cachep)
3636 return;
1da177e4
LT
3637
3638 local_irq_save(flags);
d97d476b 3639 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3640 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3641 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3642 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3643 local_irq_restore(flags);
36555751 3644
ca2b84cb 3645 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3646}
3647EXPORT_SYMBOL(kmem_cache_free);
3648
1da177e4
LT
3649/**
3650 * kfree - free previously allocated memory
3651 * @objp: pointer returned by kmalloc.
3652 *
80e93eff
PE
3653 * If @objp is NULL, no operation is performed.
3654 *
1da177e4
LT
3655 * Don't free memory not originally allocated by kmalloc()
3656 * or you will run into trouble.
3657 */
3658void kfree(const void *objp)
3659{
343e0d7a 3660 struct kmem_cache *c;
1da177e4
LT
3661 unsigned long flags;
3662
2121db74
PE
3663 trace_kfree(_RET_IP_, objp);
3664
6cb8f913 3665 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3666 return;
3667 local_irq_save(flags);
3668 kfree_debugcheck(objp);
6ed5eb22 3669 c = virt_to_cache(objp);
8c138bc0
CL
3670 debug_check_no_locks_freed(objp, c->object_size);
3671
3672 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3673 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3674 local_irq_restore(flags);
3675}
3676EXPORT_SYMBOL(kfree);
3677
e498be7d 3678/*
ce8eb6c4 3679 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3680 */
83b519e8 3681static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3682{
3683 int node;
ce8eb6c4 3684 struct kmem_cache_node *n;
cafeb02e 3685 struct array_cache *new_shared;
3395ee05 3686 struct array_cache **new_alien = NULL;
e498be7d 3687
9c09a95c 3688 for_each_online_node(node) {
cafeb02e 3689
3395ee05 3690 if (use_alien_caches) {
83b519e8 3691 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3692 if (!new_alien)
3693 goto fail;
3694 }
cafeb02e 3695
63109846
ED
3696 new_shared = NULL;
3697 if (cachep->shared) {
3698 new_shared = alloc_arraycache(node,
0718dc2a 3699 cachep->shared*cachep->batchcount,
83b519e8 3700 0xbaadf00d, gfp);
63109846
ED
3701 if (!new_shared) {
3702 free_alien_cache(new_alien);
3703 goto fail;
3704 }
0718dc2a 3705 }
cafeb02e 3706
ce8eb6c4
CL
3707 n = cachep->node[node];
3708 if (n) {
3709 struct array_cache *shared = n->shared;
cafeb02e 3710
ce8eb6c4 3711 spin_lock_irq(&n->list_lock);
e498be7d 3712
cafeb02e 3713 if (shared)
0718dc2a
CL
3714 free_block(cachep, shared->entry,
3715 shared->avail, node);
e498be7d 3716
ce8eb6c4
CL
3717 n->shared = new_shared;
3718 if (!n->alien) {
3719 n->alien = new_alien;
e498be7d
CL
3720 new_alien = NULL;
3721 }
ce8eb6c4 3722 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3723 cachep->batchcount + cachep->num;
ce8eb6c4 3724 spin_unlock_irq(&n->list_lock);
cafeb02e 3725 kfree(shared);
e498be7d
CL
3726 free_alien_cache(new_alien);
3727 continue;
3728 }
ce8eb6c4
CL
3729 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3730 if (!n) {
0718dc2a
CL
3731 free_alien_cache(new_alien);
3732 kfree(new_shared);
e498be7d 3733 goto fail;
0718dc2a 3734 }
e498be7d 3735
ce8eb6c4
CL
3736 kmem_cache_node_init(n);
3737 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3738 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
ce8eb6c4
CL
3739 n->shared = new_shared;
3740 n->alien = new_alien;
3741 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3742 cachep->batchcount + cachep->num;
ce8eb6c4 3743 cachep->node[node] = n;
e498be7d 3744 }
cafeb02e 3745 return 0;
0718dc2a 3746
a737b3e2 3747fail:
3b0efdfa 3748 if (!cachep->list.next) {
0718dc2a
CL
3749 /* Cache is not active yet. Roll back what we did */
3750 node--;
3751 while (node >= 0) {
6a67368c 3752 if (cachep->node[node]) {
ce8eb6c4 3753 n = cachep->node[node];
0718dc2a 3754
ce8eb6c4
CL
3755 kfree(n->shared);
3756 free_alien_cache(n->alien);
3757 kfree(n);
6a67368c 3758 cachep->node[node] = NULL;
0718dc2a
CL
3759 }
3760 node--;
3761 }
3762 }
cafeb02e 3763 return -ENOMEM;
e498be7d
CL
3764}
3765
1da177e4 3766struct ccupdate_struct {
343e0d7a 3767 struct kmem_cache *cachep;
acfe7d74 3768 struct array_cache *new[0];
1da177e4
LT
3769};
3770
3771static void do_ccupdate_local(void *info)
3772{
a737b3e2 3773 struct ccupdate_struct *new = info;
1da177e4
LT
3774 struct array_cache *old;
3775
3776 check_irq_off();
9a2dba4b 3777 old = cpu_cache_get(new->cachep);
e498be7d 3778
1da177e4
LT
3779 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3780 new->new[smp_processor_id()] = old;
3781}
3782
18004c5d 3783/* Always called with the slab_mutex held */
943a451a 3784static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3785 int batchcount, int shared, gfp_t gfp)
1da177e4 3786{
d2e7b7d0 3787 struct ccupdate_struct *new;
2ed3a4ef 3788 int i;
1da177e4 3789
acfe7d74
ED
3790 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3791 gfp);
d2e7b7d0
SS
3792 if (!new)
3793 return -ENOMEM;
3794
e498be7d 3795 for_each_online_cpu(i) {
7d6e6d09 3796 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 3797 batchcount, gfp);
d2e7b7d0 3798 if (!new->new[i]) {
b28a02de 3799 for (i--; i >= 0; i--)
d2e7b7d0
SS
3800 kfree(new->new[i]);
3801 kfree(new);
e498be7d 3802 return -ENOMEM;
1da177e4
LT
3803 }
3804 }
d2e7b7d0 3805 new->cachep = cachep;
1da177e4 3806
15c8b6c1 3807 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 3808
1da177e4 3809 check_irq_on();
1da177e4
LT
3810 cachep->batchcount = batchcount;
3811 cachep->limit = limit;
e498be7d 3812 cachep->shared = shared;
1da177e4 3813
e498be7d 3814 for_each_online_cpu(i) {
d2e7b7d0 3815 struct array_cache *ccold = new->new[i];
1da177e4
LT
3816 if (!ccold)
3817 continue;
6a67368c 3818 spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
7d6e6d09 3819 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
6a67368c 3820 spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
1da177e4
LT
3821 kfree(ccold);
3822 }
d2e7b7d0 3823 kfree(new);
83b519e8 3824 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
3825}
3826
943a451a
GC
3827static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3828 int batchcount, int shared, gfp_t gfp)
3829{
3830 int ret;
3831 struct kmem_cache *c = NULL;
3832 int i = 0;
3833
3834 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3835
3836 if (slab_state < FULL)
3837 return ret;
3838
3839 if ((ret < 0) || !is_root_cache(cachep))
3840 return ret;
3841
ebe945c2 3842 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
943a451a
GC
3843 for_each_memcg_cache_index(i) {
3844 c = cache_from_memcg(cachep, i);
3845 if (c)
3846 /* return value determined by the parent cache only */
3847 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3848 }
3849
3850 return ret;
3851}
3852
18004c5d 3853/* Called with slab_mutex held always */
83b519e8 3854static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3855{
3856 int err;
943a451a
GC
3857 int limit = 0;
3858 int shared = 0;
3859 int batchcount = 0;
3860
3861 if (!is_root_cache(cachep)) {
3862 struct kmem_cache *root = memcg_root_cache(cachep);
3863 limit = root->limit;
3864 shared = root->shared;
3865 batchcount = root->batchcount;
3866 }
1da177e4 3867
943a451a
GC
3868 if (limit && shared && batchcount)
3869 goto skip_setup;
a737b3e2
AM
3870 /*
3871 * The head array serves three purposes:
1da177e4
LT
3872 * - create a LIFO ordering, i.e. return objects that are cache-warm
3873 * - reduce the number of spinlock operations.
a737b3e2 3874 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3875 * bufctl chains: array operations are cheaper.
3876 * The numbers are guessed, we should auto-tune as described by
3877 * Bonwick.
3878 */
3b0efdfa 3879 if (cachep->size > 131072)
1da177e4 3880 limit = 1;
3b0efdfa 3881 else if (cachep->size > PAGE_SIZE)
1da177e4 3882 limit = 8;
3b0efdfa 3883 else if (cachep->size > 1024)
1da177e4 3884 limit = 24;
3b0efdfa 3885 else if (cachep->size > 256)
1da177e4
LT
3886 limit = 54;
3887 else
3888 limit = 120;
3889
a737b3e2
AM
3890 /*
3891 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3892 * allocation behaviour: Most allocs on one cpu, most free operations
3893 * on another cpu. For these cases, an efficient object passing between
3894 * cpus is necessary. This is provided by a shared array. The array
3895 * replaces Bonwick's magazine layer.
3896 * On uniprocessor, it's functionally equivalent (but less efficient)
3897 * to a larger limit. Thus disabled by default.
3898 */
3899 shared = 0;
3b0efdfa 3900 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3901 shared = 8;
1da177e4
LT
3902
3903#if DEBUG
a737b3e2
AM
3904 /*
3905 * With debugging enabled, large batchcount lead to excessively long
3906 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3907 */
3908 if (limit > 32)
3909 limit = 32;
3910#endif
943a451a
GC
3911 batchcount = (limit + 1) / 2;
3912skip_setup:
3913 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
1da177e4
LT
3914 if (err)
3915 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3916 cachep->name, -err);
2ed3a4ef 3917 return err;
1da177e4
LT
3918}
3919
1b55253a 3920/*
ce8eb6c4
CL
3921 * Drain an array if it contains any elements taking the node lock only if
3922 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3923 * if drain_array() is used on the shared array.
1b55253a 3924 */
ce8eb6c4 3925static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
1b55253a 3926 struct array_cache *ac, int force, int node)
1da177e4
LT
3927{
3928 int tofree;
3929
1b55253a
CL
3930 if (!ac || !ac->avail)
3931 return;
1da177e4
LT
3932 if (ac->touched && !force) {
3933 ac->touched = 0;
b18e7e65 3934 } else {
ce8eb6c4 3935 spin_lock_irq(&n->list_lock);
b18e7e65
CL
3936 if (ac->avail) {
3937 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3938 if (tofree > ac->avail)
3939 tofree = (ac->avail + 1) / 2;
3940 free_block(cachep, ac->entry, tofree, node);
3941 ac->avail -= tofree;
3942 memmove(ac->entry, &(ac->entry[tofree]),
3943 sizeof(void *) * ac->avail);
3944 }
ce8eb6c4 3945 spin_unlock_irq(&n->list_lock);
1da177e4
LT
3946 }
3947}
3948
3949/**
3950 * cache_reap - Reclaim memory from caches.
05fb6bf0 3951 * @w: work descriptor
1da177e4
LT
3952 *
3953 * Called from workqueue/eventd every few seconds.
3954 * Purpose:
3955 * - clear the per-cpu caches for this CPU.
3956 * - return freeable pages to the main free memory pool.
3957 *
a737b3e2
AM
3958 * If we cannot acquire the cache chain mutex then just give up - we'll try
3959 * again on the next iteration.
1da177e4 3960 */
7c5cae36 3961static void cache_reap(struct work_struct *w)
1da177e4 3962{
7a7c381d 3963 struct kmem_cache *searchp;
ce8eb6c4 3964 struct kmem_cache_node *n;
7d6e6d09 3965 int node = numa_mem_id();
bf6aede7 3966 struct delayed_work *work = to_delayed_work(w);
1da177e4 3967
18004c5d 3968 if (!mutex_trylock(&slab_mutex))
1da177e4 3969 /* Give up. Setup the next iteration. */
7c5cae36 3970 goto out;
1da177e4 3971
18004c5d 3972 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
3973 check_irq_on();
3974
35386e3b 3975 /*
ce8eb6c4 3976 * We only take the node lock if absolutely necessary and we
35386e3b
CL
3977 * have established with reasonable certainty that
3978 * we can do some work if the lock was obtained.
3979 */
ce8eb6c4 3980 n = searchp->node[node];
35386e3b 3981
ce8eb6c4 3982 reap_alien(searchp, n);
1da177e4 3983
ce8eb6c4 3984 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
1da177e4 3985
35386e3b
CL
3986 /*
3987 * These are racy checks but it does not matter
3988 * if we skip one check or scan twice.
3989 */
ce8eb6c4 3990 if (time_after(n->next_reap, jiffies))
35386e3b 3991 goto next;
1da177e4 3992
ce8eb6c4 3993 n->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 3994
ce8eb6c4 3995 drain_array(searchp, n, n->shared, 0, node);
1da177e4 3996
ce8eb6c4
CL
3997 if (n->free_touched)
3998 n->free_touched = 0;
ed11d9eb
CL
3999 else {
4000 int freed;
1da177e4 4001
ce8eb6c4 4002 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
4003 5 * searchp->num - 1) / (5 * searchp->num));
4004 STATS_ADD_REAPED(searchp, freed);
4005 }
35386e3b 4006next:
1da177e4
LT
4007 cond_resched();
4008 }
4009 check_irq_on();
18004c5d 4010 mutex_unlock(&slab_mutex);
8fce4d8e 4011 next_reap_node();
7c5cae36 4012out:
a737b3e2 4013 /* Set up the next iteration */
7c5cae36 4014 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4015}
4016
158a9624 4017#ifdef CONFIG_SLABINFO
0d7561c6 4018void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4019{
8456a648 4020 struct page *page;
b28a02de
PE
4021 unsigned long active_objs;
4022 unsigned long num_objs;
4023 unsigned long active_slabs = 0;
4024 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4025 const char *name;
1da177e4 4026 char *error = NULL;
e498be7d 4027 int node;
ce8eb6c4 4028 struct kmem_cache_node *n;
1da177e4 4029
1da177e4
LT
4030 active_objs = 0;
4031 num_slabs = 0;
e498be7d 4032 for_each_online_node(node) {
ce8eb6c4
CL
4033 n = cachep->node[node];
4034 if (!n)
e498be7d
CL
4035 continue;
4036
ca3b9b91 4037 check_irq_on();
ce8eb6c4 4038 spin_lock_irq(&n->list_lock);
e498be7d 4039
8456a648
JK
4040 list_for_each_entry(page, &n->slabs_full, lru) {
4041 if (page->active != cachep->num && !error)
e498be7d
CL
4042 error = "slabs_full accounting error";
4043 active_objs += cachep->num;
4044 active_slabs++;
4045 }
8456a648
JK
4046 list_for_each_entry(page, &n->slabs_partial, lru) {
4047 if (page->active == cachep->num && !error)
106a74e1 4048 error = "slabs_partial accounting error";
8456a648 4049 if (!page->active && !error)
106a74e1 4050 error = "slabs_partial accounting error";
8456a648 4051 active_objs += page->active;
e498be7d
CL
4052 active_slabs++;
4053 }
8456a648
JK
4054 list_for_each_entry(page, &n->slabs_free, lru) {
4055 if (page->active && !error)
106a74e1 4056 error = "slabs_free accounting error";
e498be7d
CL
4057 num_slabs++;
4058 }
ce8eb6c4
CL
4059 free_objects += n->free_objects;
4060 if (n->shared)
4061 shared_avail += n->shared->avail;
e498be7d 4062
ce8eb6c4 4063 spin_unlock_irq(&n->list_lock);
1da177e4 4064 }
b28a02de
PE
4065 num_slabs += active_slabs;
4066 num_objs = num_slabs * cachep->num;
e498be7d 4067 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4068 error = "free_objects accounting error";
4069
b28a02de 4070 name = cachep->name;
1da177e4
LT
4071 if (error)
4072 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4073
0d7561c6
GC
4074 sinfo->active_objs = active_objs;
4075 sinfo->num_objs = num_objs;
4076 sinfo->active_slabs = active_slabs;
4077 sinfo->num_slabs = num_slabs;
4078 sinfo->shared_avail = shared_avail;
4079 sinfo->limit = cachep->limit;
4080 sinfo->batchcount = cachep->batchcount;
4081 sinfo->shared = cachep->shared;
4082 sinfo->objects_per_slab = cachep->num;
4083 sinfo->cache_order = cachep->gfporder;
4084}
4085
4086void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4087{
1da177e4 4088#if STATS
ce8eb6c4 4089 { /* node stats */
1da177e4
LT
4090 unsigned long high = cachep->high_mark;
4091 unsigned long allocs = cachep->num_allocations;
4092 unsigned long grown = cachep->grown;
4093 unsigned long reaped = cachep->reaped;
4094 unsigned long errors = cachep->errors;
4095 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4096 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4097 unsigned long node_frees = cachep->node_frees;
fb7faf33 4098 unsigned long overflows = cachep->node_overflow;
1da177e4 4099
e92dd4fd
JP
4100 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4101 "%4lu %4lu %4lu %4lu %4lu",
4102 allocs, high, grown,
4103 reaped, errors, max_freeable, node_allocs,
4104 node_frees, overflows);
1da177e4
LT
4105 }
4106 /* cpu stats */
4107 {
4108 unsigned long allochit = atomic_read(&cachep->allochit);
4109 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4110 unsigned long freehit = atomic_read(&cachep->freehit);
4111 unsigned long freemiss = atomic_read(&cachep->freemiss);
4112
4113 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4114 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4115 }
4116#endif
1da177e4
LT
4117}
4118
1da177e4
LT
4119#define MAX_SLABINFO_WRITE 128
4120/**
4121 * slabinfo_write - Tuning for the slab allocator
4122 * @file: unused
4123 * @buffer: user buffer
4124 * @count: data length
4125 * @ppos: unused
4126 */
b7454ad3 4127ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4128 size_t count, loff_t *ppos)
1da177e4 4129{
b28a02de 4130 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4131 int limit, batchcount, shared, res;
7a7c381d 4132 struct kmem_cache *cachep;
b28a02de 4133
1da177e4
LT
4134 if (count > MAX_SLABINFO_WRITE)
4135 return -EINVAL;
4136 if (copy_from_user(&kbuf, buffer, count))
4137 return -EFAULT;
b28a02de 4138 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4139
4140 tmp = strchr(kbuf, ' ');
4141 if (!tmp)
4142 return -EINVAL;
4143 *tmp = '\0';
4144 tmp++;
4145 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4146 return -EINVAL;
4147
4148 /* Find the cache in the chain of caches. */
18004c5d 4149 mutex_lock(&slab_mutex);
1da177e4 4150 res = -EINVAL;
18004c5d 4151 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4152 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4153 if (limit < 1 || batchcount < 1 ||
4154 batchcount > limit || shared < 0) {
e498be7d 4155 res = 0;
1da177e4 4156 } else {
e498be7d 4157 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4158 batchcount, shared,
4159 GFP_KERNEL);
1da177e4
LT
4160 }
4161 break;
4162 }
4163 }
18004c5d 4164 mutex_unlock(&slab_mutex);
1da177e4
LT
4165 if (res >= 0)
4166 res = count;
4167 return res;
4168}
871751e2
AV
4169
4170#ifdef CONFIG_DEBUG_SLAB_LEAK
4171
4172static void *leaks_start(struct seq_file *m, loff_t *pos)
4173{
18004c5d
CL
4174 mutex_lock(&slab_mutex);
4175 return seq_list_start(&slab_caches, *pos);
871751e2
AV
4176}
4177
4178static inline int add_caller(unsigned long *n, unsigned long v)
4179{
4180 unsigned long *p;
4181 int l;
4182 if (!v)
4183 return 1;
4184 l = n[1];
4185 p = n + 2;
4186 while (l) {
4187 int i = l/2;
4188 unsigned long *q = p + 2 * i;
4189 if (*q == v) {
4190 q[1]++;
4191 return 1;
4192 }
4193 if (*q > v) {
4194 l = i;
4195 } else {
4196 p = q + 2;
4197 l -= i + 1;
4198 }
4199 }
4200 if (++n[1] == n[0])
4201 return 0;
4202 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4203 p[0] = v;
4204 p[1] = 1;
4205 return 1;
4206}
4207
8456a648
JK
4208static void handle_slab(unsigned long *n, struct kmem_cache *c,
4209 struct page *page)
871751e2
AV
4210{
4211 void *p;
b1cb0982
JK
4212 int i, j;
4213
871751e2
AV
4214 if (n[0] == n[1])
4215 return;
8456a648 4216 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
b1cb0982
JK
4217 bool active = true;
4218
8456a648 4219 for (j = page->active; j < c->num; j++) {
b1cb0982 4220 /* Skip freed item */
8456a648 4221 if (slab_bufctl(page)[j] == i) {
b1cb0982
JK
4222 active = false;
4223 break;
4224 }
4225 }
4226 if (!active)
871751e2 4227 continue;
b1cb0982 4228
871751e2
AV
4229 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4230 return;
4231 }
4232}
4233
4234static void show_symbol(struct seq_file *m, unsigned long address)
4235{
4236#ifdef CONFIG_KALLSYMS
871751e2 4237 unsigned long offset, size;
9281acea 4238 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4239
a5c43dae 4240 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4241 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4242 if (modname[0])
871751e2
AV
4243 seq_printf(m, " [%s]", modname);
4244 return;
4245 }
4246#endif
4247 seq_printf(m, "%p", (void *)address);
4248}
4249
4250static int leaks_show(struct seq_file *m, void *p)
4251{
0672aa7c 4252 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4253 struct page *page;
ce8eb6c4 4254 struct kmem_cache_node *n;
871751e2 4255 const char *name;
db845067 4256 unsigned long *x = m->private;
871751e2
AV
4257 int node;
4258 int i;
4259
4260 if (!(cachep->flags & SLAB_STORE_USER))
4261 return 0;
4262 if (!(cachep->flags & SLAB_RED_ZONE))
4263 return 0;
4264
4265 /* OK, we can do it */
4266
db845067 4267 x[1] = 0;
871751e2
AV
4268
4269 for_each_online_node(node) {
ce8eb6c4
CL
4270 n = cachep->node[node];
4271 if (!n)
871751e2
AV
4272 continue;
4273
4274 check_irq_on();
ce8eb6c4 4275 spin_lock_irq(&n->list_lock);
871751e2 4276
8456a648
JK
4277 list_for_each_entry(page, &n->slabs_full, lru)
4278 handle_slab(x, cachep, page);
4279 list_for_each_entry(page, &n->slabs_partial, lru)
4280 handle_slab(x, cachep, page);
ce8eb6c4 4281 spin_unlock_irq(&n->list_lock);
871751e2
AV
4282 }
4283 name = cachep->name;
db845067 4284 if (x[0] == x[1]) {
871751e2 4285 /* Increase the buffer size */
18004c5d 4286 mutex_unlock(&slab_mutex);
db845067 4287 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4288 if (!m->private) {
4289 /* Too bad, we are really out */
db845067 4290 m->private = x;
18004c5d 4291 mutex_lock(&slab_mutex);
871751e2
AV
4292 return -ENOMEM;
4293 }
db845067
CL
4294 *(unsigned long *)m->private = x[0] * 2;
4295 kfree(x);
18004c5d 4296 mutex_lock(&slab_mutex);
871751e2
AV
4297 /* Now make sure this entry will be retried */
4298 m->count = m->size;
4299 return 0;
4300 }
db845067
CL
4301 for (i = 0; i < x[1]; i++) {
4302 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4303 show_symbol(m, x[2*i+2]);
871751e2
AV
4304 seq_putc(m, '\n');
4305 }
d2e7b7d0 4306
871751e2
AV
4307 return 0;
4308}
4309
a0ec95a8 4310static const struct seq_operations slabstats_op = {
871751e2 4311 .start = leaks_start,
276a2439
WL
4312 .next = slab_next,
4313 .stop = slab_stop,
871751e2
AV
4314 .show = leaks_show,
4315};
a0ec95a8
AD
4316
4317static int slabstats_open(struct inode *inode, struct file *file)
4318{
4319 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4320 int ret = -ENOMEM;
4321 if (n) {
4322 ret = seq_open(file, &slabstats_op);
4323 if (!ret) {
4324 struct seq_file *m = file->private_data;
4325 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4326 m->private = n;
4327 n = NULL;
4328 }
4329 kfree(n);
4330 }
4331 return ret;
4332}
4333
4334static const struct file_operations proc_slabstats_operations = {
4335 .open = slabstats_open,
4336 .read = seq_read,
4337 .llseek = seq_lseek,
4338 .release = seq_release_private,
4339};
4340#endif
4341
4342static int __init slab_proc_init(void)
4343{
4344#ifdef CONFIG_DEBUG_SLAB_LEAK
4345 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4346#endif
a0ec95a8
AD
4347 return 0;
4348}
4349module_init(slab_proc_init);
1da177e4
LT
4350#endif
4351
00e145b6
MS
4352/**
4353 * ksize - get the actual amount of memory allocated for a given object
4354 * @objp: Pointer to the object
4355 *
4356 * kmalloc may internally round up allocations and return more memory
4357 * than requested. ksize() can be used to determine the actual amount of
4358 * memory allocated. The caller may use this additional memory, even though
4359 * a smaller amount of memory was initially specified with the kmalloc call.
4360 * The caller must guarantee that objp points to a valid object previously
4361 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4362 * must not be freed during the duration of the call.
4363 */
fd76bab2 4364size_t ksize(const void *objp)
1da177e4 4365{
ef8b4520
CL
4366 BUG_ON(!objp);
4367 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4368 return 0;
1da177e4 4369
8c138bc0 4370 return virt_to_cache(objp)->object_size;
1da177e4 4371}
b1aabecd 4372EXPORT_SYMBOL(ksize);