]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - mm/slab.c
[PATCH] lockdep: undo mm/slab.c annotation
[mirror_ubuntu-focal-kernel.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
e498be7d 107#include <linux/nodemask.h>
dc85da15 108#include <linux/mempolicy.h>
fc0abb14 109#include <linux/mutex.h>
e7eebaf6 110#include <linux/rtmutex.h>
1da177e4
LT
111
112#include <asm/uaccess.h>
113#include <asm/cacheflush.h>
114#include <asm/tlbflush.h>
115#include <asm/page.h>
116
117/*
118 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
119 * SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define DEBUG 1
130#define STATS 1
131#define FORCED_DEBUG 1
132#else
133#define DEBUG 0
134#define STATS 0
135#define FORCED_DEBUG 0
136#endif
137
1da177e4
LT
138/* Shouldn't this be in a header file somewhere? */
139#define BYTES_PER_WORD sizeof(void *)
140
141#ifndef cache_line_size
142#define cache_line_size() L1_CACHE_BYTES
143#endif
144
145#ifndef ARCH_KMALLOC_MINALIGN
146/*
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
152 * Note that this flag disables some debug features.
153 */
154#define ARCH_KMALLOC_MINALIGN 0
155#endif
156
157#ifndef ARCH_SLAB_MINALIGN
158/*
159 * Enforce a minimum alignment for all caches.
160 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
161 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
162 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
163 * some debug features.
164 */
165#define ARCH_SLAB_MINALIGN 0
166#endif
167
168#ifndef ARCH_KMALLOC_FLAGS
169#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
170#endif
171
172/* Legal flag mask for kmem_cache_create(). */
173#if DEBUG
174# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
175 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 176 SLAB_CACHE_DMA | \
1da177e4
LT
177 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
178 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 179 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4 180#else
ac2b898c 181# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
1da177e4
LT
182 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
183 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 184 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4
LT
185#endif
186
187/*
188 * kmem_bufctl_t:
189 *
190 * Bufctl's are used for linking objs within a slab
191 * linked offsets.
192 *
193 * This implementation relies on "struct page" for locating the cache &
194 * slab an object belongs to.
195 * This allows the bufctl structure to be small (one int), but limits
196 * the number of objects a slab (not a cache) can contain when off-slab
197 * bufctls are used. The limit is the size of the largest general cache
198 * that does not use off-slab slabs.
199 * For 32bit archs with 4 kB pages, is this 56.
200 * This is not serious, as it is only for large objects, when it is unwise
201 * to have too many per slab.
202 * Note: This limit can be raised by introducing a general cache whose size
203 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
204 */
205
fa5b08d5 206typedef unsigned int kmem_bufctl_t;
1da177e4
LT
207#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
208#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
209#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
210#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 211
1da177e4
LT
212/*
213 * struct slab
214 *
215 * Manages the objs in a slab. Placed either at the beginning of mem allocated
216 * for a slab, or allocated from an general cache.
217 * Slabs are chained into three list: fully used, partial, fully free slabs.
218 */
219struct slab {
b28a02de
PE
220 struct list_head list;
221 unsigned long colouroff;
222 void *s_mem; /* including colour offset */
223 unsigned int inuse; /* num of objs active in slab */
224 kmem_bufctl_t free;
225 unsigned short nodeid;
1da177e4
LT
226};
227
228/*
229 * struct slab_rcu
230 *
231 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
232 * arrange for kmem_freepages to be called via RCU. This is useful if
233 * we need to approach a kernel structure obliquely, from its address
234 * obtained without the usual locking. We can lock the structure to
235 * stabilize it and check it's still at the given address, only if we
236 * can be sure that the memory has not been meanwhile reused for some
237 * other kind of object (which our subsystem's lock might corrupt).
238 *
239 * rcu_read_lock before reading the address, then rcu_read_unlock after
240 * taking the spinlock within the structure expected at that address.
241 *
242 * We assume struct slab_rcu can overlay struct slab when destroying.
243 */
244struct slab_rcu {
b28a02de 245 struct rcu_head head;
343e0d7a 246 struct kmem_cache *cachep;
b28a02de 247 void *addr;
1da177e4
LT
248};
249
250/*
251 * struct array_cache
252 *
1da177e4
LT
253 * Purpose:
254 * - LIFO ordering, to hand out cache-warm objects from _alloc
255 * - reduce the number of linked list operations
256 * - reduce spinlock operations
257 *
258 * The limit is stored in the per-cpu structure to reduce the data cache
259 * footprint.
260 *
261 */
262struct array_cache {
263 unsigned int avail;
264 unsigned int limit;
265 unsigned int batchcount;
266 unsigned int touched;
e498be7d 267 spinlock_t lock;
a737b3e2
AM
268 void *entry[0]; /*
269 * Must have this definition in here for the proper
270 * alignment of array_cache. Also simplifies accessing
271 * the entries.
272 * [0] is for gcc 2.95. It should really be [].
273 */
1da177e4
LT
274};
275
a737b3e2
AM
276/*
277 * bootstrap: The caches do not work without cpuarrays anymore, but the
278 * cpuarrays are allocated from the generic caches...
1da177e4
LT
279 */
280#define BOOT_CPUCACHE_ENTRIES 1
281struct arraycache_init {
282 struct array_cache cache;
b28a02de 283 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
284};
285
286/*
e498be7d 287 * The slab lists for all objects.
1da177e4
LT
288 */
289struct kmem_list3 {
b28a02de
PE
290 struct list_head slabs_partial; /* partial list first, better asm code */
291 struct list_head slabs_full;
292 struct list_head slabs_free;
293 unsigned long free_objects;
b28a02de 294 unsigned int free_limit;
2e1217cf 295 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
296 spinlock_t list_lock;
297 struct array_cache *shared; /* shared per node */
298 struct array_cache **alien; /* on other nodes */
35386e3b
CL
299 unsigned long next_reap; /* updated without locking */
300 int free_touched; /* updated without locking */
1da177e4
LT
301};
302
e498be7d
CL
303/*
304 * Need this for bootstrapping a per node allocator.
305 */
306#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
307struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
308#define CACHE_CACHE 0
309#define SIZE_AC 1
310#define SIZE_L3 (1 + MAX_NUMNODES)
311
ed11d9eb
CL
312static int drain_freelist(struct kmem_cache *cache,
313 struct kmem_list3 *l3, int tofree);
314static void free_block(struct kmem_cache *cachep, void **objpp, int len,
315 int node);
316static void enable_cpucache(struct kmem_cache *cachep);
317static void cache_reap(void *unused);
318
e498be7d 319/*
a737b3e2
AM
320 * This function must be completely optimized away if a constant is passed to
321 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 322 */
7243cc05 323static __always_inline int index_of(const size_t size)
e498be7d 324{
5ec8a847
SR
325 extern void __bad_size(void);
326
e498be7d
CL
327 if (__builtin_constant_p(size)) {
328 int i = 0;
329
330#define CACHE(x) \
331 if (size <=x) \
332 return i; \
333 else \
334 i++;
335#include "linux/kmalloc_sizes.h"
336#undef CACHE
5ec8a847 337 __bad_size();
7243cc05 338 } else
5ec8a847 339 __bad_size();
e498be7d
CL
340 return 0;
341}
342
e0a42726
IM
343static int slab_early_init = 1;
344
e498be7d
CL
345#define INDEX_AC index_of(sizeof(struct arraycache_init))
346#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 347
5295a74c 348static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
349{
350 INIT_LIST_HEAD(&parent->slabs_full);
351 INIT_LIST_HEAD(&parent->slabs_partial);
352 INIT_LIST_HEAD(&parent->slabs_free);
353 parent->shared = NULL;
354 parent->alien = NULL;
2e1217cf 355 parent->colour_next = 0;
e498be7d
CL
356 spin_lock_init(&parent->list_lock);
357 parent->free_objects = 0;
358 parent->free_touched = 0;
359}
360
a737b3e2
AM
361#define MAKE_LIST(cachep, listp, slab, nodeid) \
362 do { \
363 INIT_LIST_HEAD(listp); \
364 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
365 } while (0)
366
a737b3e2
AM
367#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
368 do { \
e498be7d
CL
369 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
370 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
372 } while (0)
1da177e4
LT
373
374/*
343e0d7a 375 * struct kmem_cache
1da177e4
LT
376 *
377 * manages a cache.
378 */
b28a02de 379
2109a2d1 380struct kmem_cache {
1da177e4 381/* 1) per-cpu data, touched during every alloc/free */
b28a02de 382 struct array_cache *array[NR_CPUS];
b5d8ca7c 383/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
384 unsigned int batchcount;
385 unsigned int limit;
386 unsigned int shared;
b5d8ca7c 387
3dafccf2 388 unsigned int buffer_size;
b5d8ca7c 389/* 3) touched by every alloc & free from the backend */
b28a02de 390 struct kmem_list3 *nodelists[MAX_NUMNODES];
b5d8ca7c 391
a737b3e2
AM
392 unsigned int flags; /* constant flags */
393 unsigned int num; /* # of objs per slab */
1da177e4 394
b5d8ca7c 395/* 4) cache_grow/shrink */
1da177e4 396 /* order of pgs per slab (2^n) */
b28a02de 397 unsigned int gfporder;
1da177e4
LT
398
399 /* force GFP flags, e.g. GFP_DMA */
b28a02de 400 gfp_t gfpflags;
1da177e4 401
a737b3e2 402 size_t colour; /* cache colouring range */
b28a02de 403 unsigned int colour_off; /* colour offset */
343e0d7a 404 struct kmem_cache *slabp_cache;
b28a02de 405 unsigned int slab_size;
a737b3e2 406 unsigned int dflags; /* dynamic flags */
1da177e4
LT
407
408 /* constructor func */
343e0d7a 409 void (*ctor) (void *, struct kmem_cache *, unsigned long);
1da177e4
LT
410
411 /* de-constructor func */
343e0d7a 412 void (*dtor) (void *, struct kmem_cache *, unsigned long);
1da177e4 413
b5d8ca7c 414/* 5) cache creation/removal */
b28a02de
PE
415 const char *name;
416 struct list_head next;
1da177e4 417
b5d8ca7c 418/* 6) statistics */
1da177e4 419#if STATS
b28a02de
PE
420 unsigned long num_active;
421 unsigned long num_allocations;
422 unsigned long high_mark;
423 unsigned long grown;
424 unsigned long reaped;
425 unsigned long errors;
426 unsigned long max_freeable;
427 unsigned long node_allocs;
428 unsigned long node_frees;
fb7faf33 429 unsigned long node_overflow;
b28a02de
PE
430 atomic_t allochit;
431 atomic_t allocmiss;
432 atomic_t freehit;
433 atomic_t freemiss;
1da177e4
LT
434#endif
435#if DEBUG
3dafccf2
MS
436 /*
437 * If debugging is enabled, then the allocator can add additional
438 * fields and/or padding to every object. buffer_size contains the total
439 * object size including these internal fields, the following two
440 * variables contain the offset to the user object and its size.
441 */
442 int obj_offset;
443 int obj_size;
1da177e4
LT
444#endif
445};
446
447#define CFLGS_OFF_SLAB (0x80000000UL)
448#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
449
450#define BATCHREFILL_LIMIT 16
a737b3e2
AM
451/*
452 * Optimization question: fewer reaps means less probability for unnessary
453 * cpucache drain/refill cycles.
1da177e4 454 *
dc6f3f27 455 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
456 * which could lock up otherwise freeable slabs.
457 */
458#define REAPTIMEOUT_CPUC (2*HZ)
459#define REAPTIMEOUT_LIST3 (4*HZ)
460
461#if STATS
462#define STATS_INC_ACTIVE(x) ((x)->num_active++)
463#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
464#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
465#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 466#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
467#define STATS_SET_HIGH(x) \
468 do { \
469 if ((x)->num_active > (x)->high_mark) \
470 (x)->high_mark = (x)->num_active; \
471 } while (0)
1da177e4
LT
472#define STATS_INC_ERR(x) ((x)->errors++)
473#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 474#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 475#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
476#define STATS_SET_FREEABLE(x, i) \
477 do { \
478 if ((x)->max_freeable < i) \
479 (x)->max_freeable = i; \
480 } while (0)
1da177e4
LT
481#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
482#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
483#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
484#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
485#else
486#define STATS_INC_ACTIVE(x) do { } while (0)
487#define STATS_DEC_ACTIVE(x) do { } while (0)
488#define STATS_INC_ALLOCED(x) do { } while (0)
489#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 490#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
491#define STATS_SET_HIGH(x) do { } while (0)
492#define STATS_INC_ERR(x) do { } while (0)
493#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 494#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 495#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 496#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
497#define STATS_INC_ALLOCHIT(x) do { } while (0)
498#define STATS_INC_ALLOCMISS(x) do { } while (0)
499#define STATS_INC_FREEHIT(x) do { } while (0)
500#define STATS_INC_FREEMISS(x) do { } while (0)
501#endif
502
503#if DEBUG
1da177e4 504
a737b3e2
AM
505/*
506 * memory layout of objects:
1da177e4 507 * 0 : objp
3dafccf2 508 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
509 * the end of an object is aligned with the end of the real
510 * allocation. Catches writes behind the end of the allocation.
3dafccf2 511 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 512 * redzone word.
3dafccf2
MS
513 * cachep->obj_offset: The real object.
514 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
515 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
516 * [BYTES_PER_WORD long]
1da177e4 517 */
343e0d7a 518static int obj_offset(struct kmem_cache *cachep)
1da177e4 519{
3dafccf2 520 return cachep->obj_offset;
1da177e4
LT
521}
522
343e0d7a 523static int obj_size(struct kmem_cache *cachep)
1da177e4 524{
3dafccf2 525 return cachep->obj_size;
1da177e4
LT
526}
527
343e0d7a 528static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
529{
530 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
3dafccf2 531 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
1da177e4
LT
532}
533
343e0d7a 534static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
535{
536 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
537 if (cachep->flags & SLAB_STORE_USER)
3dafccf2 538 return (unsigned long *)(objp + cachep->buffer_size -
b28a02de 539 2 * BYTES_PER_WORD);
3dafccf2 540 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
541}
542
343e0d7a 543static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
544{
545 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 546 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
547}
548
549#else
550
3dafccf2
MS
551#define obj_offset(x) 0
552#define obj_size(cachep) (cachep->buffer_size)
1da177e4
LT
553#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
555#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
556
557#endif
558
559/*
a737b3e2
AM
560 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
561 * order.
1da177e4
LT
562 */
563#if defined(CONFIG_LARGE_ALLOCS)
564#define MAX_OBJ_ORDER 13 /* up to 32Mb */
565#define MAX_GFP_ORDER 13 /* up to 32Mb */
566#elif defined(CONFIG_MMU)
567#define MAX_OBJ_ORDER 5 /* 32 pages */
568#define MAX_GFP_ORDER 5 /* 32 pages */
569#else
570#define MAX_OBJ_ORDER 8 /* up to 1Mb */
571#define MAX_GFP_ORDER 8 /* up to 1Mb */
572#endif
573
574/*
575 * Do not go above this order unless 0 objects fit into the slab.
576 */
577#define BREAK_GFP_ORDER_HI 1
578#define BREAK_GFP_ORDER_LO 0
579static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
580
a737b3e2
AM
581/*
582 * Functions for storing/retrieving the cachep and or slab from the page
583 * allocator. These are used to find the slab an obj belongs to. With kfree(),
584 * these are used to find the cache which an obj belongs to.
1da177e4 585 */
065d41cb
PE
586static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
587{
588 page->lru.next = (struct list_head *)cache;
589}
590
591static inline struct kmem_cache *page_get_cache(struct page *page)
592{
84097518
NP
593 if (unlikely(PageCompound(page)))
594 page = (struct page *)page_private(page);
ddc2e812 595 BUG_ON(!PageSlab(page));
065d41cb
PE
596 return (struct kmem_cache *)page->lru.next;
597}
598
599static inline void page_set_slab(struct page *page, struct slab *slab)
600{
601 page->lru.prev = (struct list_head *)slab;
602}
603
604static inline struct slab *page_get_slab(struct page *page)
605{
84097518
NP
606 if (unlikely(PageCompound(page)))
607 page = (struct page *)page_private(page);
ddc2e812 608 BUG_ON(!PageSlab(page));
065d41cb
PE
609 return (struct slab *)page->lru.prev;
610}
1da177e4 611
6ed5eb22
PE
612static inline struct kmem_cache *virt_to_cache(const void *obj)
613{
614 struct page *page = virt_to_page(obj);
615 return page_get_cache(page);
616}
617
618static inline struct slab *virt_to_slab(const void *obj)
619{
620 struct page *page = virt_to_page(obj);
621 return page_get_slab(page);
622}
623
8fea4e96
PE
624static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
625 unsigned int idx)
626{
627 return slab->s_mem + cache->buffer_size * idx;
628}
629
630static inline unsigned int obj_to_index(struct kmem_cache *cache,
631 struct slab *slab, void *obj)
632{
633 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
634}
635
a737b3e2
AM
636/*
637 * These are the default caches for kmalloc. Custom caches can have other sizes.
638 */
1da177e4
LT
639struct cache_sizes malloc_sizes[] = {
640#define CACHE(x) { .cs_size = (x) },
641#include <linux/kmalloc_sizes.h>
642 CACHE(ULONG_MAX)
643#undef CACHE
644};
645EXPORT_SYMBOL(malloc_sizes);
646
647/* Must match cache_sizes above. Out of line to keep cache footprint low. */
648struct cache_names {
649 char *name;
650 char *name_dma;
651};
652
653static struct cache_names __initdata cache_names[] = {
654#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
655#include <linux/kmalloc_sizes.h>
b28a02de 656 {NULL,}
1da177e4
LT
657#undef CACHE
658};
659
660static struct arraycache_init initarray_cache __initdata =
b28a02de 661 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 662static struct arraycache_init initarray_generic =
b28a02de 663 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
664
665/* internal cache of cache description objs */
343e0d7a 666static struct kmem_cache cache_cache = {
b28a02de
PE
667 .batchcount = 1,
668 .limit = BOOT_CPUCACHE_ENTRIES,
669 .shared = 1,
343e0d7a 670 .buffer_size = sizeof(struct kmem_cache),
b28a02de 671 .name = "kmem_cache",
1da177e4 672#if DEBUG
343e0d7a 673 .obj_size = sizeof(struct kmem_cache),
1da177e4
LT
674#endif
675};
676
677/* Guard access to the cache-chain. */
fc0abb14 678static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
679static struct list_head cache_chain;
680
681/*
a737b3e2
AM
682 * vm_enough_memory() looks at this to determine how many slab-allocated pages
683 * are possibly freeable under pressure
1da177e4
LT
684 *
685 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
686 */
687atomic_t slab_reclaim_pages;
1da177e4
LT
688
689/*
690 * chicken and egg problem: delay the per-cpu array allocation
691 * until the general caches are up.
692 */
693static enum {
694 NONE,
e498be7d
CL
695 PARTIAL_AC,
696 PARTIAL_L3,
1da177e4
LT
697 FULL
698} g_cpucache_up;
699
39d24e64
MK
700/*
701 * used by boot code to determine if it can use slab based allocator
702 */
703int slab_is_available(void)
704{
705 return g_cpucache_up == FULL;
706}
707
1da177e4
LT
708static DEFINE_PER_CPU(struct work_struct, reap_work);
709
343e0d7a 710static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
711{
712 return cachep->array[smp_processor_id()];
713}
714
a737b3e2
AM
715static inline struct kmem_cache *__find_general_cachep(size_t size,
716 gfp_t gfpflags)
1da177e4
LT
717{
718 struct cache_sizes *csizep = malloc_sizes;
719
720#if DEBUG
721 /* This happens if someone tries to call
b28a02de
PE
722 * kmem_cache_create(), or __kmalloc(), before
723 * the generic caches are initialized.
724 */
c7e43c78 725 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4
LT
726#endif
727 while (size > csizep->cs_size)
728 csizep++;
729
730 /*
0abf40c1 731 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
732 * has cs_{dma,}cachep==NULL. Thus no special case
733 * for large kmalloc calls required.
734 */
735 if (unlikely(gfpflags & GFP_DMA))
736 return csizep->cs_dmacachep;
737 return csizep->cs_cachep;
738}
739
343e0d7a 740struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
741{
742 return __find_general_cachep(size, gfpflags);
743}
744EXPORT_SYMBOL(kmem_find_general_cachep);
745
fbaccacf 746static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 747{
fbaccacf
SR
748 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
749}
1da177e4 750
a737b3e2
AM
751/*
752 * Calculate the number of objects and left-over bytes for a given buffer size.
753 */
fbaccacf
SR
754static void cache_estimate(unsigned long gfporder, size_t buffer_size,
755 size_t align, int flags, size_t *left_over,
756 unsigned int *num)
757{
758 int nr_objs;
759 size_t mgmt_size;
760 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 761
fbaccacf
SR
762 /*
763 * The slab management structure can be either off the slab or
764 * on it. For the latter case, the memory allocated for a
765 * slab is used for:
766 *
767 * - The struct slab
768 * - One kmem_bufctl_t for each object
769 * - Padding to respect alignment of @align
770 * - @buffer_size bytes for each object
771 *
772 * If the slab management structure is off the slab, then the
773 * alignment will already be calculated into the size. Because
774 * the slabs are all pages aligned, the objects will be at the
775 * correct alignment when allocated.
776 */
777 if (flags & CFLGS_OFF_SLAB) {
778 mgmt_size = 0;
779 nr_objs = slab_size / buffer_size;
780
781 if (nr_objs > SLAB_LIMIT)
782 nr_objs = SLAB_LIMIT;
783 } else {
784 /*
785 * Ignore padding for the initial guess. The padding
786 * is at most @align-1 bytes, and @buffer_size is at
787 * least @align. In the worst case, this result will
788 * be one greater than the number of objects that fit
789 * into the memory allocation when taking the padding
790 * into account.
791 */
792 nr_objs = (slab_size - sizeof(struct slab)) /
793 (buffer_size + sizeof(kmem_bufctl_t));
794
795 /*
796 * This calculated number will be either the right
797 * amount, or one greater than what we want.
798 */
799 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
800 > slab_size)
801 nr_objs--;
802
803 if (nr_objs > SLAB_LIMIT)
804 nr_objs = SLAB_LIMIT;
805
806 mgmt_size = slab_mgmt_size(nr_objs, align);
807 }
808 *num = nr_objs;
809 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
810}
811
812#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
813
a737b3e2
AM
814static void __slab_error(const char *function, struct kmem_cache *cachep,
815 char *msg)
1da177e4
LT
816{
817 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 818 function, cachep->name, msg);
1da177e4
LT
819 dump_stack();
820}
821
8fce4d8e
CL
822#ifdef CONFIG_NUMA
823/*
824 * Special reaping functions for NUMA systems called from cache_reap().
825 * These take care of doing round robin flushing of alien caches (containing
826 * objects freed on different nodes from which they were allocated) and the
827 * flushing of remote pcps by calling drain_node_pages.
828 */
829static DEFINE_PER_CPU(unsigned long, reap_node);
830
831static void init_reap_node(int cpu)
832{
833 int node;
834
835 node = next_node(cpu_to_node(cpu), node_online_map);
836 if (node == MAX_NUMNODES)
442295c9 837 node = first_node(node_online_map);
8fce4d8e
CL
838
839 __get_cpu_var(reap_node) = node;
840}
841
842static void next_reap_node(void)
843{
844 int node = __get_cpu_var(reap_node);
845
846 /*
847 * Also drain per cpu pages on remote zones
848 */
849 if (node != numa_node_id())
850 drain_node_pages(node);
851
852 node = next_node(node, node_online_map);
853 if (unlikely(node >= MAX_NUMNODES))
854 node = first_node(node_online_map);
855 __get_cpu_var(reap_node) = node;
856}
857
858#else
859#define init_reap_node(cpu) do { } while (0)
860#define next_reap_node(void) do { } while (0)
861#endif
862
1da177e4
LT
863/*
864 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
865 * via the workqueue/eventd.
866 * Add the CPU number into the expiration time to minimize the possibility of
867 * the CPUs getting into lockstep and contending for the global cache chain
868 * lock.
869 */
870static void __devinit start_cpu_timer(int cpu)
871{
872 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
873
874 /*
875 * When this gets called from do_initcalls via cpucache_init(),
876 * init_workqueues() has already run, so keventd will be setup
877 * at that time.
878 */
879 if (keventd_up() && reap_work->func == NULL) {
8fce4d8e 880 init_reap_node(cpu);
1da177e4
LT
881 INIT_WORK(reap_work, cache_reap, NULL);
882 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
883 }
884}
885
e498be7d 886static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 887 int batchcount)
1da177e4 888{
b28a02de 889 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
890 struct array_cache *nc = NULL;
891
e498be7d 892 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
893 if (nc) {
894 nc->avail = 0;
895 nc->limit = entries;
896 nc->batchcount = batchcount;
897 nc->touched = 0;
e498be7d 898 spin_lock_init(&nc->lock);
1da177e4
LT
899 }
900 return nc;
901}
902
3ded175a
CL
903/*
904 * Transfer objects in one arraycache to another.
905 * Locking must be handled by the caller.
906 *
907 * Return the number of entries transferred.
908 */
909static int transfer_objects(struct array_cache *to,
910 struct array_cache *from, unsigned int max)
911{
912 /* Figure out how many entries to transfer */
913 int nr = min(min(from->avail, max), to->limit - to->avail);
914
915 if (!nr)
916 return 0;
917
918 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
919 sizeof(void *) *nr);
920
921 from->avail -= nr;
922 to->avail += nr;
923 to->touched = 1;
924 return nr;
925}
926
e498be7d 927#ifdef CONFIG_NUMA
343e0d7a 928static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 929static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 930
5295a74c 931static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
932{
933 struct array_cache **ac_ptr;
b28a02de 934 int memsize = sizeof(void *) * MAX_NUMNODES;
e498be7d
CL
935 int i;
936
937 if (limit > 1)
938 limit = 12;
939 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
940 if (ac_ptr) {
941 for_each_node(i) {
942 if (i == node || !node_online(i)) {
943 ac_ptr[i] = NULL;
944 continue;
945 }
946 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
947 if (!ac_ptr[i]) {
b28a02de 948 for (i--; i <= 0; i--)
e498be7d
CL
949 kfree(ac_ptr[i]);
950 kfree(ac_ptr);
951 return NULL;
952 }
953 }
954 }
955 return ac_ptr;
956}
957
5295a74c 958static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
959{
960 int i;
961
962 if (!ac_ptr)
963 return;
e498be7d 964 for_each_node(i)
b28a02de 965 kfree(ac_ptr[i]);
e498be7d
CL
966 kfree(ac_ptr);
967}
968
343e0d7a 969static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 970 struct array_cache *ac, int node)
e498be7d
CL
971{
972 struct kmem_list3 *rl3 = cachep->nodelists[node];
973
974 if (ac->avail) {
975 spin_lock(&rl3->list_lock);
e00946fe
CL
976 /*
977 * Stuff objects into the remote nodes shared array first.
978 * That way we could avoid the overhead of putting the objects
979 * into the free lists and getting them back later.
980 */
693f7d36
JS
981 if (rl3->shared)
982 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 983
ff69416e 984 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
985 ac->avail = 0;
986 spin_unlock(&rl3->list_lock);
987 }
988}
989
8fce4d8e
CL
990/*
991 * Called from cache_reap() to regularly drain alien caches round robin.
992 */
993static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
994{
995 int node = __get_cpu_var(reap_node);
996
997 if (l3->alien) {
998 struct array_cache *ac = l3->alien[node];
e00946fe
CL
999
1000 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1001 __drain_alien_cache(cachep, ac, node);
1002 spin_unlock_irq(&ac->lock);
1003 }
1004 }
1005}
1006
a737b3e2
AM
1007static void drain_alien_cache(struct kmem_cache *cachep,
1008 struct array_cache **alien)
e498be7d 1009{
b28a02de 1010 int i = 0;
e498be7d
CL
1011 struct array_cache *ac;
1012 unsigned long flags;
1013
1014 for_each_online_node(i) {
4484ebf1 1015 ac = alien[i];
e498be7d
CL
1016 if (ac) {
1017 spin_lock_irqsave(&ac->lock, flags);
1018 __drain_alien_cache(cachep, ac, i);
1019 spin_unlock_irqrestore(&ac->lock, flags);
1020 }
1021 }
1022}
729bd0b7 1023
873623df 1024static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1025{
1026 struct slab *slabp = virt_to_slab(objp);
1027 int nodeid = slabp->nodeid;
1028 struct kmem_list3 *l3;
1029 struct array_cache *alien = NULL;
1030
1031 /*
1032 * Make sure we are not freeing a object from another node to the array
1033 * cache on this cpu.
1034 */
1035 if (likely(slabp->nodeid == numa_node_id()))
1036 return 0;
1037
1038 l3 = cachep->nodelists[numa_node_id()];
1039 STATS_INC_NODEFREES(cachep);
1040 if (l3->alien && l3->alien[nodeid]) {
1041 alien = l3->alien[nodeid];
873623df 1042 spin_lock(&alien->lock);
729bd0b7
PE
1043 if (unlikely(alien->avail == alien->limit)) {
1044 STATS_INC_ACOVERFLOW(cachep);
1045 __drain_alien_cache(cachep, alien, nodeid);
1046 }
1047 alien->entry[alien->avail++] = objp;
1048 spin_unlock(&alien->lock);
1049 } else {
1050 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1051 free_block(cachep, &objp, 1, nodeid);
1052 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1053 }
1054 return 1;
1055}
1056
e498be7d 1057#else
7a21ef6f 1058
4484ebf1 1059#define drain_alien_cache(cachep, alien) do { } while (0)
8fce4d8e 1060#define reap_alien(cachep, l3) do { } while (0)
4484ebf1 1061
7a21ef6f
LT
1062static inline struct array_cache **alloc_alien_cache(int node, int limit)
1063{
1064 return (struct array_cache **) 0x01020304ul;
1065}
1066
4484ebf1
RT
1067static inline void free_alien_cache(struct array_cache **ac_ptr)
1068{
1069}
7a21ef6f 1070
873623df 1071static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1072{
1073 return 0;
1074}
1075
e498be7d
CL
1076#endif
1077
9c7b216d 1078static int __devinit cpuup_callback(struct notifier_block *nfb,
b28a02de 1079 unsigned long action, void *hcpu)
1da177e4
LT
1080{
1081 long cpu = (long)hcpu;
343e0d7a 1082 struct kmem_cache *cachep;
e498be7d
CL
1083 struct kmem_list3 *l3 = NULL;
1084 int node = cpu_to_node(cpu);
1085 int memsize = sizeof(struct kmem_list3);
1da177e4
LT
1086
1087 switch (action) {
1088 case CPU_UP_PREPARE:
fc0abb14 1089 mutex_lock(&cache_chain_mutex);
a737b3e2
AM
1090 /*
1091 * We need to do this right in the beginning since
e498be7d
CL
1092 * alloc_arraycache's are going to use this list.
1093 * kmalloc_node allows us to add the slab to the right
1094 * kmem_list3 and not this cpu's kmem_list3
1095 */
1096
1da177e4 1097 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2
AM
1098 /*
1099 * Set up the size64 kmemlist for cpu before we can
e498be7d
CL
1100 * begin anything. Make sure some other cpu on this
1101 * node has not already allocated this
1102 */
1103 if (!cachep->nodelists[node]) {
a737b3e2
AM
1104 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1105 if (!l3)
e498be7d
CL
1106 goto bad;
1107 kmem_list3_init(l3);
1108 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 1109 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1110
4484ebf1
RT
1111 /*
1112 * The l3s don't come and go as CPUs come and
1113 * go. cache_chain_mutex is sufficient
1114 * protection here.
1115 */
e498be7d
CL
1116 cachep->nodelists[node] = l3;
1117 }
1da177e4 1118
e498be7d
CL
1119 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1120 cachep->nodelists[node]->free_limit =
a737b3e2
AM
1121 (1 + nr_cpus_node(node)) *
1122 cachep->batchcount + cachep->num;
e498be7d
CL
1123 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1124 }
1125
a737b3e2
AM
1126 /*
1127 * Now we can go ahead with allocating the shared arrays and
1128 * array caches
1129 */
e498be7d 1130 list_for_each_entry(cachep, &cache_chain, next) {
cd105df4 1131 struct array_cache *nc;
4484ebf1
RT
1132 struct array_cache *shared;
1133 struct array_cache **alien;
cd105df4 1134
e498be7d 1135 nc = alloc_arraycache(node, cachep->limit,
4484ebf1 1136 cachep->batchcount);
1da177e4
LT
1137 if (!nc)
1138 goto bad;
4484ebf1
RT
1139 shared = alloc_arraycache(node,
1140 cachep->shared * cachep->batchcount,
1141 0xbaadf00d);
1142 if (!shared)
1143 goto bad;
7a21ef6f 1144
4484ebf1
RT
1145 alien = alloc_alien_cache(node, cachep->limit);
1146 if (!alien)
1147 goto bad;
1da177e4 1148 cachep->array[cpu] = nc;
e498be7d
CL
1149 l3 = cachep->nodelists[node];
1150 BUG_ON(!l3);
e498be7d 1151
4484ebf1
RT
1152 spin_lock_irq(&l3->list_lock);
1153 if (!l3->shared) {
1154 /*
1155 * We are serialised from CPU_DEAD or
1156 * CPU_UP_CANCELLED by the cpucontrol lock
1157 */
1158 l3->shared = shared;
1159 shared = NULL;
e498be7d 1160 }
4484ebf1
RT
1161#ifdef CONFIG_NUMA
1162 if (!l3->alien) {
1163 l3->alien = alien;
1164 alien = NULL;
1165 }
1166#endif
1167 spin_unlock_irq(&l3->list_lock);
4484ebf1
RT
1168 kfree(shared);
1169 free_alien_cache(alien);
1da177e4 1170 }
fc0abb14 1171 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1172 break;
1173 case CPU_ONLINE:
1174 start_cpu_timer(cpu);
1175 break;
1176#ifdef CONFIG_HOTPLUG_CPU
1177 case CPU_DEAD:
4484ebf1
RT
1178 /*
1179 * Even if all the cpus of a node are down, we don't free the
1180 * kmem_list3 of any cache. This to avoid a race between
1181 * cpu_down, and a kmalloc allocation from another cpu for
1182 * memory from the node of the cpu going down. The list3
1183 * structure is usually allocated from kmem_cache_create() and
1184 * gets destroyed at kmem_cache_destroy().
1185 */
1da177e4
LT
1186 /* fall thru */
1187 case CPU_UP_CANCELED:
fc0abb14 1188 mutex_lock(&cache_chain_mutex);
1da177e4
LT
1189 list_for_each_entry(cachep, &cache_chain, next) {
1190 struct array_cache *nc;
4484ebf1
RT
1191 struct array_cache *shared;
1192 struct array_cache **alien;
e498be7d 1193 cpumask_t mask;
1da177e4 1194
e498be7d 1195 mask = node_to_cpumask(node);
1da177e4
LT
1196 /* cpu is dead; no one can alloc from it. */
1197 nc = cachep->array[cpu];
1198 cachep->array[cpu] = NULL;
e498be7d
CL
1199 l3 = cachep->nodelists[node];
1200
1201 if (!l3)
4484ebf1 1202 goto free_array_cache;
e498be7d 1203
ca3b9b91 1204 spin_lock_irq(&l3->list_lock);
e498be7d
CL
1205
1206 /* Free limit for this kmem_list3 */
1207 l3->free_limit -= cachep->batchcount;
1208 if (nc)
ff69416e 1209 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
1210
1211 if (!cpus_empty(mask)) {
ca3b9b91 1212 spin_unlock_irq(&l3->list_lock);
4484ebf1 1213 goto free_array_cache;
b28a02de 1214 }
e498be7d 1215
4484ebf1
RT
1216 shared = l3->shared;
1217 if (shared) {
e498be7d 1218 free_block(cachep, l3->shared->entry,
b28a02de 1219 l3->shared->avail, node);
e498be7d
CL
1220 l3->shared = NULL;
1221 }
e498be7d 1222
4484ebf1
RT
1223 alien = l3->alien;
1224 l3->alien = NULL;
1225
1226 spin_unlock_irq(&l3->list_lock);
1227
1228 kfree(shared);
1229 if (alien) {
1230 drain_alien_cache(cachep, alien);
1231 free_alien_cache(alien);
e498be7d 1232 }
4484ebf1 1233free_array_cache:
1da177e4
LT
1234 kfree(nc);
1235 }
4484ebf1
RT
1236 /*
1237 * In the previous loop, all the objects were freed to
1238 * the respective cache's slabs, now we can go ahead and
1239 * shrink each nodelist to its limit.
1240 */
1241 list_for_each_entry(cachep, &cache_chain, next) {
1242 l3 = cachep->nodelists[node];
1243 if (!l3)
1244 continue;
ed11d9eb 1245 drain_freelist(cachep, l3, l3->free_objects);
4484ebf1 1246 }
fc0abb14 1247 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1248 break;
1249#endif
1250 }
1251 return NOTIFY_OK;
a737b3e2 1252bad:
fc0abb14 1253 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1254 return NOTIFY_BAD;
1255}
1256
74b85f37
CS
1257static struct notifier_block __cpuinitdata cpucache_notifier = {
1258 &cpuup_callback, NULL, 0
1259};
1da177e4 1260
e498be7d
CL
1261/*
1262 * swap the static kmem_list3 with kmalloced memory
1263 */
a737b3e2
AM
1264static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1265 int nodeid)
e498be7d
CL
1266{
1267 struct kmem_list3 *ptr;
1268
1269 BUG_ON(cachep->nodelists[nodeid] != list);
1270 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1271 BUG_ON(!ptr);
1272
1273 local_irq_disable();
1274 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1275 /*
1276 * Do not assume that spinlocks can be initialized via memcpy:
1277 */
1278 spin_lock_init(&ptr->list_lock);
1279
e498be7d
CL
1280 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1281 cachep->nodelists[nodeid] = ptr;
1282 local_irq_enable();
1283}
1284
a737b3e2
AM
1285/*
1286 * Initialisation. Called after the page allocator have been initialised and
1287 * before smp_init().
1da177e4
LT
1288 */
1289void __init kmem_cache_init(void)
1290{
1291 size_t left_over;
1292 struct cache_sizes *sizes;
1293 struct cache_names *names;
e498be7d 1294 int i;
07ed76b2 1295 int order;
e498be7d
CL
1296
1297 for (i = 0; i < NUM_INIT_LISTS; i++) {
1298 kmem_list3_init(&initkmem_list3[i]);
1299 if (i < MAX_NUMNODES)
1300 cache_cache.nodelists[i] = NULL;
1301 }
1da177e4
LT
1302
1303 /*
1304 * Fragmentation resistance on low memory - only use bigger
1305 * page orders on machines with more than 32MB of memory.
1306 */
1307 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1308 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1309
1da177e4
LT
1310 /* Bootstrap is tricky, because several objects are allocated
1311 * from caches that do not exist yet:
a737b3e2
AM
1312 * 1) initialize the cache_cache cache: it contains the struct
1313 * kmem_cache structures of all caches, except cache_cache itself:
1314 * cache_cache is statically allocated.
e498be7d
CL
1315 * Initially an __init data area is used for the head array and the
1316 * kmem_list3 structures, it's replaced with a kmalloc allocated
1317 * array at the end of the bootstrap.
1da177e4 1318 * 2) Create the first kmalloc cache.
343e0d7a 1319 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1320 * An __init data area is used for the head array.
1321 * 3) Create the remaining kmalloc caches, with minimally sized
1322 * head arrays.
1da177e4
LT
1323 * 4) Replace the __init data head arrays for cache_cache and the first
1324 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1325 * 5) Replace the __init data for kmem_list3 for cache_cache and
1326 * the other cache's with kmalloc allocated memory.
1327 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1328 */
1329
1330 /* 1) create the cache_cache */
1da177e4
LT
1331 INIT_LIST_HEAD(&cache_chain);
1332 list_add(&cache_cache.next, &cache_chain);
1333 cache_cache.colour_off = cache_line_size();
1334 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
e498be7d 1335 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1da177e4 1336
a737b3e2
AM
1337 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1338 cache_line_size());
1da177e4 1339
07ed76b2
JS
1340 for (order = 0; order < MAX_ORDER; order++) {
1341 cache_estimate(order, cache_cache.buffer_size,
1342 cache_line_size(), 0, &left_over, &cache_cache.num);
1343 if (cache_cache.num)
1344 break;
1345 }
40094fa6 1346 BUG_ON(!cache_cache.num);
07ed76b2 1347 cache_cache.gfporder = order;
b28a02de 1348 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1349 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1350 sizeof(struct slab), cache_line_size());
1da177e4
LT
1351
1352 /* 2+3) create the kmalloc caches */
1353 sizes = malloc_sizes;
1354 names = cache_names;
1355
a737b3e2
AM
1356 /*
1357 * Initialize the caches that provide memory for the array cache and the
1358 * kmem_list3 structures first. Without this, further allocations will
1359 * bug.
e498be7d
CL
1360 */
1361
1362 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1363 sizes[INDEX_AC].cs_size,
1364 ARCH_KMALLOC_MINALIGN,
1365 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1366 NULL, NULL);
e498be7d 1367
a737b3e2 1368 if (INDEX_AC != INDEX_L3) {
e498be7d 1369 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1370 kmem_cache_create(names[INDEX_L3].name,
1371 sizes[INDEX_L3].cs_size,
1372 ARCH_KMALLOC_MINALIGN,
1373 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1374 NULL, NULL);
1375 }
e498be7d 1376
e0a42726
IM
1377 slab_early_init = 0;
1378
1da177e4 1379 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1380 /*
1381 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1382 * This should be particularly beneficial on SMP boxes, as it
1383 * eliminates "false sharing".
1384 * Note for systems short on memory removing the alignment will
e498be7d
CL
1385 * allow tighter packing of the smaller caches.
1386 */
a737b3e2 1387 if (!sizes->cs_cachep) {
e498be7d 1388 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1389 sizes->cs_size,
1390 ARCH_KMALLOC_MINALIGN,
1391 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1392 NULL, NULL);
1393 }
1da177e4 1394
1da177e4 1395 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
a737b3e2
AM
1396 sizes->cs_size,
1397 ARCH_KMALLOC_MINALIGN,
1398 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1399 SLAB_PANIC,
1400 NULL, NULL);
1da177e4
LT
1401 sizes++;
1402 names++;
1403 }
1404 /* 4) Replace the bootstrap head arrays */
1405 {
2b2d5493 1406 struct array_cache *ptr;
e498be7d 1407
1da177e4 1408 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1409
1da177e4 1410 local_irq_disable();
9a2dba4b
PE
1411 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1412 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1413 sizeof(struct arraycache_init));
2b2d5493
IM
1414 /*
1415 * Do not assume that spinlocks can be initialized via memcpy:
1416 */
1417 spin_lock_init(&ptr->lock);
1418
1da177e4
LT
1419 cache_cache.array[smp_processor_id()] = ptr;
1420 local_irq_enable();
e498be7d 1421
1da177e4 1422 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1423
1da177e4 1424 local_irq_disable();
9a2dba4b 1425 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1426 != &initarray_generic.cache);
9a2dba4b 1427 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1428 sizeof(struct arraycache_init));
2b2d5493
IM
1429 /*
1430 * Do not assume that spinlocks can be initialized via memcpy:
1431 */
1432 spin_lock_init(&ptr->lock);
1433
e498be7d 1434 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1435 ptr;
1da177e4
LT
1436 local_irq_enable();
1437 }
e498be7d
CL
1438 /* 5) Replace the bootstrap kmem_list3's */
1439 {
1440 int node;
1441 /* Replace the static kmem_list3 structures for the boot cpu */
1442 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
b28a02de 1443 numa_node_id());
e498be7d
CL
1444
1445 for_each_online_node(node) {
1446 init_list(malloc_sizes[INDEX_AC].cs_cachep,
b28a02de 1447 &initkmem_list3[SIZE_AC + node], node);
e498be7d
CL
1448
1449 if (INDEX_AC != INDEX_L3) {
1450 init_list(malloc_sizes[INDEX_L3].cs_cachep,
b28a02de
PE
1451 &initkmem_list3[SIZE_L3 + node],
1452 node);
e498be7d
CL
1453 }
1454 }
1455 }
1da177e4 1456
e498be7d 1457 /* 6) resize the head arrays to their final sizes */
1da177e4 1458 {
343e0d7a 1459 struct kmem_cache *cachep;
fc0abb14 1460 mutex_lock(&cache_chain_mutex);
1da177e4 1461 list_for_each_entry(cachep, &cache_chain, next)
a737b3e2 1462 enable_cpucache(cachep);
fc0abb14 1463 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1464 }
1465
1466 /* Done! */
1467 g_cpucache_up = FULL;
1468
a737b3e2
AM
1469 /*
1470 * Register a cpu startup notifier callback that initializes
1471 * cpu_cache_get for all new cpus
1da177e4
LT
1472 */
1473 register_cpu_notifier(&cpucache_notifier);
1da177e4 1474
a737b3e2
AM
1475 /*
1476 * The reap timers are started later, with a module init call: That part
1477 * of the kernel is not yet operational.
1da177e4
LT
1478 */
1479}
1480
1481static int __init cpucache_init(void)
1482{
1483 int cpu;
1484
a737b3e2
AM
1485 /*
1486 * Register the timers that return unneeded pages to the page allocator
1da177e4 1487 */
e498be7d 1488 for_each_online_cpu(cpu)
a737b3e2 1489 start_cpu_timer(cpu);
1da177e4
LT
1490 return 0;
1491}
1da177e4
LT
1492__initcall(cpucache_init);
1493
1494/*
1495 * Interface to system's page allocator. No need to hold the cache-lock.
1496 *
1497 * If we requested dmaable memory, we will get it. Even if we
1498 * did not request dmaable memory, we might get it, but that
1499 * would be relatively rare and ignorable.
1500 */
343e0d7a 1501static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1502{
1503 struct page *page;
e1b6aa6f 1504 int nr_pages;
1da177e4
LT
1505 int i;
1506
d6fef9da 1507#ifndef CONFIG_MMU
e1b6aa6f
CH
1508 /*
1509 * Nommu uses slab's for process anonymous memory allocations, and thus
1510 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1511 */
e1b6aa6f 1512 flags |= __GFP_COMP;
d6fef9da 1513#endif
e1b6aa6f
CH
1514 flags |= cachep->gfpflags;
1515
1516 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1517 if (!page)
1518 return NULL;
1da177e4 1519
e1b6aa6f 1520 nr_pages = (1 << cachep->gfporder);
1da177e4 1521 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
e1b6aa6f 1522 atomic_add(nr_pages, &slab_reclaim_pages);
9a865ffa 1523 add_zone_page_state(page_zone(page), NR_SLAB, nr_pages);
e1b6aa6f
CH
1524 for (i = 0; i < nr_pages; i++)
1525 __SetPageSlab(page + i);
1526 return page_address(page);
1da177e4
LT
1527}
1528
1529/*
1530 * Interface to system's page release.
1531 */
343e0d7a 1532static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1533{
b28a02de 1534 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1535 struct page *page = virt_to_page(addr);
1536 const unsigned long nr_freed = i;
1537
9a865ffa 1538 sub_zone_page_state(page_zone(page), NR_SLAB, nr_freed);
1da177e4 1539 while (i--) {
f205b2fe
NP
1540 BUG_ON(!PageSlab(page));
1541 __ClearPageSlab(page);
1da177e4
LT
1542 page++;
1543 }
1da177e4
LT
1544 if (current->reclaim_state)
1545 current->reclaim_state->reclaimed_slab += nr_freed;
1546 free_pages((unsigned long)addr, cachep->gfporder);
b28a02de
PE
1547 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1548 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1da177e4
LT
1549}
1550
1551static void kmem_rcu_free(struct rcu_head *head)
1552{
b28a02de 1553 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1554 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1555
1556 kmem_freepages(cachep, slab_rcu->addr);
1557 if (OFF_SLAB(cachep))
1558 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1559}
1560
1561#if DEBUG
1562
1563#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1564static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1565 unsigned long caller)
1da177e4 1566{
3dafccf2 1567 int size = obj_size(cachep);
1da177e4 1568
3dafccf2 1569 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1570
b28a02de 1571 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1572 return;
1573
b28a02de
PE
1574 *addr++ = 0x12345678;
1575 *addr++ = caller;
1576 *addr++ = smp_processor_id();
1577 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1578 {
1579 unsigned long *sptr = &caller;
1580 unsigned long svalue;
1581
1582 while (!kstack_end(sptr)) {
1583 svalue = *sptr++;
1584 if (kernel_text_address(svalue)) {
b28a02de 1585 *addr++ = svalue;
1da177e4
LT
1586 size -= sizeof(unsigned long);
1587 if (size <= sizeof(unsigned long))
1588 break;
1589 }
1590 }
1591
1592 }
b28a02de 1593 *addr++ = 0x87654321;
1da177e4
LT
1594}
1595#endif
1596
343e0d7a 1597static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1598{
3dafccf2
MS
1599 int size = obj_size(cachep);
1600 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1601
1602 memset(addr, val, size);
b28a02de 1603 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1604}
1605
1606static void dump_line(char *data, int offset, int limit)
1607{
1608 int i;
1609 printk(KERN_ERR "%03x:", offset);
a737b3e2 1610 for (i = 0; i < limit; i++)
b28a02de 1611 printk(" %02x", (unsigned char)data[offset + i]);
1da177e4
LT
1612 printk("\n");
1613}
1614#endif
1615
1616#if DEBUG
1617
343e0d7a 1618static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1619{
1620 int i, size;
1621 char *realobj;
1622
1623 if (cachep->flags & SLAB_RED_ZONE) {
1624 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
a737b3e2
AM
1625 *dbg_redzone1(cachep, objp),
1626 *dbg_redzone2(cachep, objp));
1da177e4
LT
1627 }
1628
1629 if (cachep->flags & SLAB_STORE_USER) {
1630 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1631 *dbg_userword(cachep, objp));
1da177e4 1632 print_symbol("(%s)",
a737b3e2 1633 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1634 printk("\n");
1635 }
3dafccf2
MS
1636 realobj = (char *)objp + obj_offset(cachep);
1637 size = obj_size(cachep);
b28a02de 1638 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1639 int limit;
1640 limit = 16;
b28a02de
PE
1641 if (i + limit > size)
1642 limit = size - i;
1da177e4
LT
1643 dump_line(realobj, i, limit);
1644 }
1645}
1646
343e0d7a 1647static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1648{
1649 char *realobj;
1650 int size, i;
1651 int lines = 0;
1652
3dafccf2
MS
1653 realobj = (char *)objp + obj_offset(cachep);
1654 size = obj_size(cachep);
1da177e4 1655
b28a02de 1656 for (i = 0; i < size; i++) {
1da177e4 1657 char exp = POISON_FREE;
b28a02de 1658 if (i == size - 1)
1da177e4
LT
1659 exp = POISON_END;
1660 if (realobj[i] != exp) {
1661 int limit;
1662 /* Mismatch ! */
1663 /* Print header */
1664 if (lines == 0) {
b28a02de 1665 printk(KERN_ERR
a737b3e2
AM
1666 "Slab corruption: start=%p, len=%d\n",
1667 realobj, size);
1da177e4
LT
1668 print_objinfo(cachep, objp, 0);
1669 }
1670 /* Hexdump the affected line */
b28a02de 1671 i = (i / 16) * 16;
1da177e4 1672 limit = 16;
b28a02de
PE
1673 if (i + limit > size)
1674 limit = size - i;
1da177e4
LT
1675 dump_line(realobj, i, limit);
1676 i += 16;
1677 lines++;
1678 /* Limit to 5 lines */
1679 if (lines > 5)
1680 break;
1681 }
1682 }
1683 if (lines != 0) {
1684 /* Print some data about the neighboring objects, if they
1685 * exist:
1686 */
6ed5eb22 1687 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1688 unsigned int objnr;
1da177e4 1689
8fea4e96 1690 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1691 if (objnr) {
8fea4e96 1692 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1693 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1694 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1695 realobj, size);
1da177e4
LT
1696 print_objinfo(cachep, objp, 2);
1697 }
b28a02de 1698 if (objnr + 1 < cachep->num) {
8fea4e96 1699 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1700 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1701 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1702 realobj, size);
1da177e4
LT
1703 print_objinfo(cachep, objp, 2);
1704 }
1705 }
1706}
1707#endif
1708
12dd36fa
MD
1709#if DEBUG
1710/**
911851e6
RD
1711 * slab_destroy_objs - destroy a slab and its objects
1712 * @cachep: cache pointer being destroyed
1713 * @slabp: slab pointer being destroyed
1714 *
1715 * Call the registered destructor for each object in a slab that is being
1716 * destroyed.
1da177e4 1717 */
343e0d7a 1718static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1719{
1da177e4
LT
1720 int i;
1721 for (i = 0; i < cachep->num; i++) {
8fea4e96 1722 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1723
1724 if (cachep->flags & SLAB_POISON) {
1725#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1726 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1727 OFF_SLAB(cachep))
b28a02de 1728 kernel_map_pages(virt_to_page(objp),
a737b3e2 1729 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1730 else
1731 check_poison_obj(cachep, objp);
1732#else
1733 check_poison_obj(cachep, objp);
1734#endif
1735 }
1736 if (cachep->flags & SLAB_RED_ZONE) {
1737 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1738 slab_error(cachep, "start of a freed object "
b28a02de 1739 "was overwritten");
1da177e4
LT
1740 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1741 slab_error(cachep, "end of a freed object "
b28a02de 1742 "was overwritten");
1da177e4
LT
1743 }
1744 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
3dafccf2 1745 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1da177e4 1746 }
12dd36fa 1747}
1da177e4 1748#else
343e0d7a 1749static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1750{
1da177e4
LT
1751 if (cachep->dtor) {
1752 int i;
1753 for (i = 0; i < cachep->num; i++) {
8fea4e96 1754 void *objp = index_to_obj(cachep, slabp, i);
b28a02de 1755 (cachep->dtor) (objp, cachep, 0);
1da177e4
LT
1756 }
1757 }
12dd36fa 1758}
1da177e4
LT
1759#endif
1760
911851e6
RD
1761/**
1762 * slab_destroy - destroy and release all objects in a slab
1763 * @cachep: cache pointer being destroyed
1764 * @slabp: slab pointer being destroyed
1765 *
12dd36fa 1766 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1767 * Before calling the slab must have been unlinked from the cache. The
1768 * cache-lock is not held/needed.
12dd36fa 1769 */
343e0d7a 1770static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1771{
1772 void *addr = slabp->s_mem - slabp->colouroff;
1773
1774 slab_destroy_objs(cachep, slabp);
1da177e4
LT
1775 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1776 struct slab_rcu *slab_rcu;
1777
b28a02de 1778 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1779 slab_rcu->cachep = cachep;
1780 slab_rcu->addr = addr;
1781 call_rcu(&slab_rcu->head, kmem_rcu_free);
1782 } else {
1783 kmem_freepages(cachep, addr);
873623df
IM
1784 if (OFF_SLAB(cachep))
1785 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1786 }
1787}
1788
a737b3e2
AM
1789/*
1790 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1791 * size of kmem_list3.
1792 */
343e0d7a 1793static void set_up_list3s(struct kmem_cache *cachep, int index)
e498be7d
CL
1794{
1795 int node;
1796
1797 for_each_online_node(node) {
b28a02de 1798 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1799 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1800 REAPTIMEOUT_LIST3 +
1801 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1802 }
1803}
1804
4d268eba 1805/**
a70773dd
RD
1806 * calculate_slab_order - calculate size (page order) of slabs
1807 * @cachep: pointer to the cache that is being created
1808 * @size: size of objects to be created in this cache.
1809 * @align: required alignment for the objects.
1810 * @flags: slab allocation flags
1811 *
1812 * Also calculates the number of objects per slab.
4d268eba
PE
1813 *
1814 * This could be made much more intelligent. For now, try to avoid using
1815 * high order pages for slabs. When the gfp() functions are more friendly
1816 * towards high-order requests, this should be changed.
1817 */
a737b3e2 1818static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1819 size_t size, size_t align, unsigned long flags)
4d268eba 1820{
b1ab41c4 1821 unsigned long offslab_limit;
4d268eba 1822 size_t left_over = 0;
9888e6fa 1823 int gfporder;
4d268eba 1824
a737b3e2 1825 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
4d268eba
PE
1826 unsigned int num;
1827 size_t remainder;
1828
9888e6fa 1829 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
1830 if (!num)
1831 continue;
9888e6fa 1832
b1ab41c4
IM
1833 if (flags & CFLGS_OFF_SLAB) {
1834 /*
1835 * Max number of objs-per-slab for caches which
1836 * use off-slab slabs. Needed to avoid a possible
1837 * looping condition in cache_grow().
1838 */
1839 offslab_limit = size - sizeof(struct slab);
1840 offslab_limit /= sizeof(kmem_bufctl_t);
1841
1842 if (num > offslab_limit)
1843 break;
1844 }
4d268eba 1845
9888e6fa 1846 /* Found something acceptable - save it away */
4d268eba 1847 cachep->num = num;
9888e6fa 1848 cachep->gfporder = gfporder;
4d268eba
PE
1849 left_over = remainder;
1850
f78bb8ad
LT
1851 /*
1852 * A VFS-reclaimable slab tends to have most allocations
1853 * as GFP_NOFS and we really don't want to have to be allocating
1854 * higher-order pages when we are unable to shrink dcache.
1855 */
1856 if (flags & SLAB_RECLAIM_ACCOUNT)
1857 break;
1858
4d268eba
PE
1859 /*
1860 * Large number of objects is good, but very large slabs are
1861 * currently bad for the gfp()s.
1862 */
9888e6fa 1863 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
1864 break;
1865
9888e6fa
LT
1866 /*
1867 * Acceptable internal fragmentation?
1868 */
a737b3e2 1869 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1870 break;
1871 }
1872 return left_over;
1873}
1874
f30cf7d1
PE
1875static void setup_cpu_cache(struct kmem_cache *cachep)
1876{
1877 if (g_cpucache_up == FULL) {
1878 enable_cpucache(cachep);
1879 return;
1880 }
1881 if (g_cpucache_up == NONE) {
1882 /*
1883 * Note: the first kmem_cache_create must create the cache
1884 * that's used by kmalloc(24), otherwise the creation of
1885 * further caches will BUG().
1886 */
1887 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1888
1889 /*
1890 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1891 * the first cache, then we need to set up all its list3s,
1892 * otherwise the creation of further caches will BUG().
1893 */
1894 set_up_list3s(cachep, SIZE_AC);
1895 if (INDEX_AC == INDEX_L3)
1896 g_cpucache_up = PARTIAL_L3;
1897 else
1898 g_cpucache_up = PARTIAL_AC;
1899 } else {
1900 cachep->array[smp_processor_id()] =
1901 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1902
1903 if (g_cpucache_up == PARTIAL_AC) {
1904 set_up_list3s(cachep, SIZE_L3);
1905 g_cpucache_up = PARTIAL_L3;
1906 } else {
1907 int node;
1908 for_each_online_node(node) {
1909 cachep->nodelists[node] =
1910 kmalloc_node(sizeof(struct kmem_list3),
1911 GFP_KERNEL, node);
1912 BUG_ON(!cachep->nodelists[node]);
1913 kmem_list3_init(cachep->nodelists[node]);
1914 }
1915 }
1916 }
1917 cachep->nodelists[numa_node_id()]->next_reap =
1918 jiffies + REAPTIMEOUT_LIST3 +
1919 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1920
1921 cpu_cache_get(cachep)->avail = 0;
1922 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1923 cpu_cache_get(cachep)->batchcount = 1;
1924 cpu_cache_get(cachep)->touched = 0;
1925 cachep->batchcount = 1;
1926 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1927}
1928
1da177e4
LT
1929/**
1930 * kmem_cache_create - Create a cache.
1931 * @name: A string which is used in /proc/slabinfo to identify this cache.
1932 * @size: The size of objects to be created in this cache.
1933 * @align: The required alignment for the objects.
1934 * @flags: SLAB flags
1935 * @ctor: A constructor for the objects.
1936 * @dtor: A destructor for the objects.
1937 *
1938 * Returns a ptr to the cache on success, NULL on failure.
1939 * Cannot be called within a int, but can be interrupted.
1940 * The @ctor is run when new pages are allocated by the cache
1941 * and the @dtor is run before the pages are handed back.
1942 *
1943 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
1944 * the module calling this has to destroy the cache before getting unloaded.
1945 *
1da177e4
LT
1946 * The flags are
1947 *
1948 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1949 * to catch references to uninitialised memory.
1950 *
1951 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1952 * for buffer overruns.
1953 *
1da177e4
LT
1954 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1955 * cacheline. This can be beneficial if you're counting cycles as closely
1956 * as davem.
1957 */
343e0d7a 1958struct kmem_cache *
1da177e4 1959kmem_cache_create (const char *name, size_t size, size_t align,
a737b3e2
AM
1960 unsigned long flags,
1961 void (*ctor)(void*, struct kmem_cache *, unsigned long),
343e0d7a 1962 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1da177e4
LT
1963{
1964 size_t left_over, slab_size, ralign;
7a7c381d 1965 struct kmem_cache *cachep = NULL, *pc;
1da177e4
LT
1966
1967 /*
1968 * Sanity checks... these are all serious usage bugs.
1969 */
a737b3e2 1970 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
b28a02de 1971 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
a737b3e2
AM
1972 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
1973 name);
b28a02de
PE
1974 BUG();
1975 }
1da177e4 1976
f0188f47
RT
1977 /*
1978 * Prevent CPUs from coming and going.
1979 * lock_cpu_hotplug() nests outside cache_chain_mutex
1980 */
1981 lock_cpu_hotplug();
1982
fc0abb14 1983 mutex_lock(&cache_chain_mutex);
4f12bb4f 1984
7a7c381d 1985 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
1986 mm_segment_t old_fs = get_fs();
1987 char tmp;
1988 int res;
1989
1990 /*
1991 * This happens when the module gets unloaded and doesn't
1992 * destroy its slab cache and no-one else reuses the vmalloc
1993 * area of the module. Print a warning.
1994 */
1995 set_fs(KERNEL_DS);
1996 res = __get_user(tmp, pc->name);
1997 set_fs(old_fs);
1998 if (res) {
1999 printk("SLAB: cache with size %d has lost its name\n",
3dafccf2 2000 pc->buffer_size);
4f12bb4f
AM
2001 continue;
2002 }
2003
b28a02de 2004 if (!strcmp(pc->name, name)) {
4f12bb4f
AM
2005 printk("kmem_cache_create: duplicate cache %s\n", name);
2006 dump_stack();
2007 goto oops;
2008 }
2009 }
2010
1da177e4
LT
2011#if DEBUG
2012 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2013 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2014 /* No constructor, but inital state check requested */
2015 printk(KERN_ERR "%s: No con, but init state check "
b28a02de 2016 "requested - %s\n", __FUNCTION__, name);
1da177e4
LT
2017 flags &= ~SLAB_DEBUG_INITIAL;
2018 }
1da177e4
LT
2019#if FORCED_DEBUG
2020 /*
2021 * Enable redzoning and last user accounting, except for caches with
2022 * large objects, if the increased size would increase the object size
2023 * above the next power of two: caches with object sizes just above a
2024 * power of two have a significant amount of internal fragmentation.
2025 */
a737b3e2 2026 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
b28a02de 2027 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2028 if (!(flags & SLAB_DESTROY_BY_RCU))
2029 flags |= SLAB_POISON;
2030#endif
2031 if (flags & SLAB_DESTROY_BY_RCU)
2032 BUG_ON(flags & SLAB_POISON);
2033#endif
2034 if (flags & SLAB_DESTROY_BY_RCU)
2035 BUG_ON(dtor);
2036
2037 /*
a737b3e2
AM
2038 * Always checks flags, a caller might be expecting debug support which
2039 * isn't available.
1da177e4 2040 */
40094fa6 2041 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2042
a737b3e2
AM
2043 /*
2044 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2045 * unaligned accesses for some archs when redzoning is used, and makes
2046 * sure any on-slab bufctl's are also correctly aligned.
2047 */
b28a02de
PE
2048 if (size & (BYTES_PER_WORD - 1)) {
2049 size += (BYTES_PER_WORD - 1);
2050 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2051 }
2052
a737b3e2
AM
2053 /* calculate the final buffer alignment: */
2054
1da177e4
LT
2055 /* 1) arch recommendation: can be overridden for debug */
2056 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2057 /*
2058 * Default alignment: as specified by the arch code. Except if
2059 * an object is really small, then squeeze multiple objects into
2060 * one cacheline.
1da177e4
LT
2061 */
2062 ralign = cache_line_size();
b28a02de 2063 while (size <= ralign / 2)
1da177e4
LT
2064 ralign /= 2;
2065 } else {
2066 ralign = BYTES_PER_WORD;
2067 }
2068 /* 2) arch mandated alignment: disables debug if necessary */
2069 if (ralign < ARCH_SLAB_MINALIGN) {
2070 ralign = ARCH_SLAB_MINALIGN;
2071 if (ralign > BYTES_PER_WORD)
b28a02de 2072 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4
LT
2073 }
2074 /* 3) caller mandated alignment: disables debug if necessary */
2075 if (ralign < align) {
2076 ralign = align;
2077 if (ralign > BYTES_PER_WORD)
b28a02de 2078 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4 2079 }
a737b3e2
AM
2080 /*
2081 * 4) Store it. Note that the debug code below can reduce
1da177e4
LT
2082 * the alignment to BYTES_PER_WORD.
2083 */
2084 align = ralign;
2085
2086 /* Get cache's description obj. */
c5e3b83e 2087 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
1da177e4 2088 if (!cachep)
4f12bb4f 2089 goto oops;
1da177e4
LT
2090
2091#if DEBUG
3dafccf2 2092 cachep->obj_size = size;
1da177e4
LT
2093
2094 if (flags & SLAB_RED_ZONE) {
2095 /* redzoning only works with word aligned caches */
2096 align = BYTES_PER_WORD;
2097
2098 /* add space for red zone words */
3dafccf2 2099 cachep->obj_offset += BYTES_PER_WORD;
b28a02de 2100 size += 2 * BYTES_PER_WORD;
1da177e4
LT
2101 }
2102 if (flags & SLAB_STORE_USER) {
2103 /* user store requires word alignment and
2104 * one word storage behind the end of the real
2105 * object.
2106 */
2107 align = BYTES_PER_WORD;
2108 size += BYTES_PER_WORD;
2109 }
2110#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2111 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2112 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2113 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2114 size = PAGE_SIZE;
2115 }
2116#endif
2117#endif
2118
e0a42726
IM
2119 /*
2120 * Determine if the slab management is 'on' or 'off' slab.
2121 * (bootstrapping cannot cope with offslab caches so don't do
2122 * it too early on.)
2123 */
2124 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
1da177e4
LT
2125 /*
2126 * Size is large, assume best to place the slab management obj
2127 * off-slab (should allow better packing of objs).
2128 */
2129 flags |= CFLGS_OFF_SLAB;
2130
2131 size = ALIGN(size, align);
2132
f78bb8ad 2133 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2134
2135 if (!cachep->num) {
2136 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2137 kmem_cache_free(&cache_cache, cachep);
2138 cachep = NULL;
4f12bb4f 2139 goto oops;
1da177e4 2140 }
b28a02de
PE
2141 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2142 + sizeof(struct slab), align);
1da177e4
LT
2143
2144 /*
2145 * If the slab has been placed off-slab, and we have enough space then
2146 * move it on-slab. This is at the expense of any extra colouring.
2147 */
2148 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2149 flags &= ~CFLGS_OFF_SLAB;
2150 left_over -= slab_size;
2151 }
2152
2153 if (flags & CFLGS_OFF_SLAB) {
2154 /* really off slab. No need for manual alignment */
b28a02de
PE
2155 slab_size =
2156 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2157 }
2158
2159 cachep->colour_off = cache_line_size();
2160 /* Offset must be a multiple of the alignment. */
2161 if (cachep->colour_off < align)
2162 cachep->colour_off = align;
b28a02de 2163 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2164 cachep->slab_size = slab_size;
2165 cachep->flags = flags;
2166 cachep->gfpflags = 0;
2167 if (flags & SLAB_CACHE_DMA)
2168 cachep->gfpflags |= GFP_DMA;
3dafccf2 2169 cachep->buffer_size = size;
1da177e4
LT
2170
2171 if (flags & CFLGS_OFF_SLAB)
b2d55073 2172 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
1da177e4
LT
2173 cachep->ctor = ctor;
2174 cachep->dtor = dtor;
2175 cachep->name = name;
2176
1da177e4 2177
f30cf7d1 2178 setup_cpu_cache(cachep);
1da177e4 2179
1da177e4
LT
2180 /* cache setup completed, link it into the list */
2181 list_add(&cachep->next, &cache_chain);
a737b3e2 2182oops:
1da177e4
LT
2183 if (!cachep && (flags & SLAB_PANIC))
2184 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2185 name);
fc0abb14 2186 mutex_unlock(&cache_chain_mutex);
f0188f47 2187 unlock_cpu_hotplug();
1da177e4
LT
2188 return cachep;
2189}
2190EXPORT_SYMBOL(kmem_cache_create);
2191
2192#if DEBUG
2193static void check_irq_off(void)
2194{
2195 BUG_ON(!irqs_disabled());
2196}
2197
2198static void check_irq_on(void)
2199{
2200 BUG_ON(irqs_disabled());
2201}
2202
343e0d7a 2203static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2204{
2205#ifdef CONFIG_SMP
2206 check_irq_off();
e498be7d 2207 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2208#endif
2209}
e498be7d 2210
343e0d7a 2211static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2212{
2213#ifdef CONFIG_SMP
2214 check_irq_off();
2215 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2216#endif
2217}
2218
1da177e4
LT
2219#else
2220#define check_irq_off() do { } while(0)
2221#define check_irq_on() do { } while(0)
2222#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2223#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2224#endif
2225
aab2207c
CL
2226static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2227 struct array_cache *ac,
2228 int force, int node);
2229
1da177e4
LT
2230static void do_drain(void *arg)
2231{
a737b3e2 2232 struct kmem_cache *cachep = arg;
1da177e4 2233 struct array_cache *ac;
ff69416e 2234 int node = numa_node_id();
1da177e4
LT
2235
2236 check_irq_off();
9a2dba4b 2237 ac = cpu_cache_get(cachep);
ff69416e
CL
2238 spin_lock(&cachep->nodelists[node]->list_lock);
2239 free_block(cachep, ac->entry, ac->avail, node);
2240 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2241 ac->avail = 0;
2242}
2243
343e0d7a 2244static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2245{
e498be7d
CL
2246 struct kmem_list3 *l3;
2247 int node;
2248
a07fa394 2249 on_each_cpu(do_drain, cachep, 1, 1);
1da177e4 2250 check_irq_on();
b28a02de 2251 for_each_online_node(node) {
e498be7d 2252 l3 = cachep->nodelists[node];
a4523a8b
RD
2253 if (l3 && l3->alien)
2254 drain_alien_cache(cachep, l3->alien);
2255 }
2256
2257 for_each_online_node(node) {
2258 l3 = cachep->nodelists[node];
2259 if (l3)
aab2207c 2260 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2261 }
1da177e4
LT
2262}
2263
ed11d9eb
CL
2264/*
2265 * Remove slabs from the list of free slabs.
2266 * Specify the number of slabs to drain in tofree.
2267 *
2268 * Returns the actual number of slabs released.
2269 */
2270static int drain_freelist(struct kmem_cache *cache,
2271 struct kmem_list3 *l3, int tofree)
1da177e4 2272{
ed11d9eb
CL
2273 struct list_head *p;
2274 int nr_freed;
1da177e4 2275 struct slab *slabp;
1da177e4 2276
ed11d9eb
CL
2277 nr_freed = 0;
2278 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2279
ed11d9eb 2280 spin_lock_irq(&l3->list_lock);
e498be7d 2281 p = l3->slabs_free.prev;
ed11d9eb
CL
2282 if (p == &l3->slabs_free) {
2283 spin_unlock_irq(&l3->list_lock);
2284 goto out;
2285 }
1da177e4 2286
ed11d9eb 2287 slabp = list_entry(p, struct slab, list);
1da177e4 2288#if DEBUG
40094fa6 2289 BUG_ON(slabp->inuse);
1da177e4
LT
2290#endif
2291 list_del(&slabp->list);
ed11d9eb
CL
2292 /*
2293 * Safe to drop the lock. The slab is no longer linked
2294 * to the cache.
2295 */
2296 l3->free_objects -= cache->num;
e498be7d 2297 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2298 slab_destroy(cache, slabp);
2299 nr_freed++;
1da177e4 2300 }
ed11d9eb
CL
2301out:
2302 return nr_freed;
1da177e4
LT
2303}
2304
343e0d7a 2305static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2306{
2307 int ret = 0, i = 0;
2308 struct kmem_list3 *l3;
2309
2310 drain_cpu_caches(cachep);
2311
2312 check_irq_on();
2313 for_each_online_node(i) {
2314 l3 = cachep->nodelists[i];
ed11d9eb
CL
2315 if (!l3)
2316 continue;
2317
2318 drain_freelist(cachep, l3, l3->free_objects);
2319
2320 ret += !list_empty(&l3->slabs_full) ||
2321 !list_empty(&l3->slabs_partial);
e498be7d
CL
2322 }
2323 return (ret ? 1 : 0);
2324}
2325
1da177e4
LT
2326/**
2327 * kmem_cache_shrink - Shrink a cache.
2328 * @cachep: The cache to shrink.
2329 *
2330 * Releases as many slabs as possible for a cache.
2331 * To help debugging, a zero exit status indicates all slabs were released.
2332 */
343e0d7a 2333int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2334{
40094fa6 2335 BUG_ON(!cachep || in_interrupt());
1da177e4
LT
2336
2337 return __cache_shrink(cachep);
2338}
2339EXPORT_SYMBOL(kmem_cache_shrink);
2340
2341/**
2342 * kmem_cache_destroy - delete a cache
2343 * @cachep: the cache to destroy
2344 *
343e0d7a 2345 * Remove a struct kmem_cache object from the slab cache.
1da177e4
LT
2346 * Returns 0 on success.
2347 *
2348 * It is expected this function will be called by a module when it is
2349 * unloaded. This will remove the cache completely, and avoid a duplicate
2350 * cache being allocated each time a module is loaded and unloaded, if the
2351 * module doesn't have persistent in-kernel storage across loads and unloads.
2352 *
2353 * The cache must be empty before calling this function.
2354 *
2355 * The caller must guarantee that noone will allocate memory from the cache
2356 * during the kmem_cache_destroy().
2357 */
343e0d7a 2358int kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4
LT
2359{
2360 int i;
e498be7d 2361 struct kmem_list3 *l3;
1da177e4 2362
40094fa6 2363 BUG_ON(!cachep || in_interrupt());
1da177e4
LT
2364
2365 /* Don't let CPUs to come and go */
2366 lock_cpu_hotplug();
2367
2368 /* Find the cache in the chain of caches. */
fc0abb14 2369 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2370 /*
2371 * the chain is never empty, cache_cache is never destroyed
2372 */
2373 list_del(&cachep->next);
fc0abb14 2374 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2375
2376 if (__cache_shrink(cachep)) {
2377 slab_error(cachep, "Can't free all objects");
fc0abb14 2378 mutex_lock(&cache_chain_mutex);
b28a02de 2379 list_add(&cachep->next, &cache_chain);
fc0abb14 2380 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2381 unlock_cpu_hotplug();
2382 return 1;
2383 }
2384
2385 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2386 synchronize_rcu();
1da177e4 2387
e498be7d 2388 for_each_online_cpu(i)
b28a02de 2389 kfree(cachep->array[i]);
1da177e4
LT
2390
2391 /* NUMA: free the list3 structures */
e498be7d 2392 for_each_online_node(i) {
a737b3e2
AM
2393 l3 = cachep->nodelists[i];
2394 if (l3) {
e498be7d
CL
2395 kfree(l3->shared);
2396 free_alien_cache(l3->alien);
2397 kfree(l3);
2398 }
2399 }
1da177e4 2400 kmem_cache_free(&cache_cache, cachep);
1da177e4 2401 unlock_cpu_hotplug();
1da177e4
LT
2402 return 0;
2403}
2404EXPORT_SYMBOL(kmem_cache_destroy);
2405
2406/* Get the memory for a slab management obj. */
343e0d7a 2407static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2408 int colour_off, gfp_t local_flags,
2409 int nodeid)
1da177e4
LT
2410{
2411 struct slab *slabp;
b28a02de 2412
1da177e4
LT
2413 if (OFF_SLAB(cachep)) {
2414 /* Slab management obj is off-slab. */
5b74ada7
RT
2415 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2416 local_flags, nodeid);
1da177e4
LT
2417 if (!slabp)
2418 return NULL;
2419 } else {
b28a02de 2420 slabp = objp + colour_off;
1da177e4
LT
2421 colour_off += cachep->slab_size;
2422 }
2423 slabp->inuse = 0;
2424 slabp->colouroff = colour_off;
b28a02de 2425 slabp->s_mem = objp + colour_off;
5b74ada7 2426 slabp->nodeid = nodeid;
1da177e4
LT
2427 return slabp;
2428}
2429
2430static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2431{
b28a02de 2432 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2433}
2434
343e0d7a 2435static void cache_init_objs(struct kmem_cache *cachep,
b28a02de 2436 struct slab *slabp, unsigned long ctor_flags)
1da177e4
LT
2437{
2438 int i;
2439
2440 for (i = 0; i < cachep->num; i++) {
8fea4e96 2441 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2442#if DEBUG
2443 /* need to poison the objs? */
2444 if (cachep->flags & SLAB_POISON)
2445 poison_obj(cachep, objp, POISON_FREE);
2446 if (cachep->flags & SLAB_STORE_USER)
2447 *dbg_userword(cachep, objp) = NULL;
2448
2449 if (cachep->flags & SLAB_RED_ZONE) {
2450 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2451 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2452 }
2453 /*
a737b3e2
AM
2454 * Constructors are not allowed to allocate memory from the same
2455 * cache which they are a constructor for. Otherwise, deadlock.
2456 * They must also be threaded.
1da177e4
LT
2457 */
2458 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
3dafccf2 2459 cachep->ctor(objp + obj_offset(cachep), cachep,
b28a02de 2460 ctor_flags);
1da177e4
LT
2461
2462 if (cachep->flags & SLAB_RED_ZONE) {
2463 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2464 slab_error(cachep, "constructor overwrote the"
b28a02de 2465 " end of an object");
1da177e4
LT
2466 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2467 slab_error(cachep, "constructor overwrote the"
b28a02de 2468 " start of an object");
1da177e4 2469 }
a737b3e2
AM
2470 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2471 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2472 kernel_map_pages(virt_to_page(objp),
3dafccf2 2473 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2474#else
2475 if (cachep->ctor)
2476 cachep->ctor(objp, cachep, ctor_flags);
2477#endif
b28a02de 2478 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2479 }
b28a02de 2480 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2481 slabp->free = 0;
2482}
2483
343e0d7a 2484static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2485{
a737b3e2
AM
2486 if (flags & SLAB_DMA)
2487 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2488 else
2489 BUG_ON(cachep->gfpflags & GFP_DMA);
1da177e4
LT
2490}
2491
a737b3e2
AM
2492static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2493 int nodeid)
78d382d7 2494{
8fea4e96 2495 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2496 kmem_bufctl_t next;
2497
2498 slabp->inuse++;
2499 next = slab_bufctl(slabp)[slabp->free];
2500#if DEBUG
2501 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2502 WARN_ON(slabp->nodeid != nodeid);
2503#endif
2504 slabp->free = next;
2505
2506 return objp;
2507}
2508
a737b3e2
AM
2509static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2510 void *objp, int nodeid)
78d382d7 2511{
8fea4e96 2512 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2513
2514#if DEBUG
2515 /* Verify that the slab belongs to the intended node */
2516 WARN_ON(slabp->nodeid != nodeid);
2517
871751e2 2518 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2519 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2520 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2521 BUG();
2522 }
2523#endif
2524 slab_bufctl(slabp)[objnr] = slabp->free;
2525 slabp->free = objnr;
2526 slabp->inuse--;
2527}
2528
4776874f
PE
2529/*
2530 * Map pages beginning at addr to the given cache and slab. This is required
2531 * for the slab allocator to be able to lookup the cache and slab of a
2532 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2533 */
2534static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2535 void *addr)
1da177e4 2536{
4776874f 2537 int nr_pages;
1da177e4
LT
2538 struct page *page;
2539
4776874f 2540 page = virt_to_page(addr);
84097518 2541
4776874f 2542 nr_pages = 1;
84097518 2543 if (likely(!PageCompound(page)))
4776874f
PE
2544 nr_pages <<= cache->gfporder;
2545
1da177e4 2546 do {
4776874f
PE
2547 page_set_cache(page, cache);
2548 page_set_slab(page, slab);
1da177e4 2549 page++;
4776874f 2550 } while (--nr_pages);
1da177e4
LT
2551}
2552
2553/*
2554 * Grow (by 1) the number of slabs within a cache. This is called by
2555 * kmem_cache_alloc() when there are no active objs left in a cache.
2556 */
343e0d7a 2557static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 2558{
b28a02de
PE
2559 struct slab *slabp;
2560 void *objp;
2561 size_t offset;
2562 gfp_t local_flags;
2563 unsigned long ctor_flags;
e498be7d 2564 struct kmem_list3 *l3;
1da177e4 2565
a737b3e2
AM
2566 /*
2567 * Be lazy and only check for valid flags here, keeping it out of the
2568 * critical path in kmem_cache_alloc().
1da177e4 2569 */
40094fa6 2570 BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
1da177e4
LT
2571 if (flags & SLAB_NO_GROW)
2572 return 0;
2573
2574 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2575 local_flags = (flags & SLAB_LEVEL_MASK);
2576 if (!(local_flags & __GFP_WAIT))
2577 /*
2578 * Not allowed to sleep. Need to tell a constructor about
2579 * this - it might need to know...
2580 */
2581 ctor_flags |= SLAB_CTOR_ATOMIC;
2582
2e1217cf 2583 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2584 check_irq_off();
2e1217cf
RT
2585 l3 = cachep->nodelists[nodeid];
2586 spin_lock(&l3->list_lock);
1da177e4
LT
2587
2588 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2589 offset = l3->colour_next;
2590 l3->colour_next++;
2591 if (l3->colour_next >= cachep->colour)
2592 l3->colour_next = 0;
2593 spin_unlock(&l3->list_lock);
1da177e4 2594
2e1217cf 2595 offset *= cachep->colour_off;
1da177e4
LT
2596
2597 if (local_flags & __GFP_WAIT)
2598 local_irq_enable();
2599
2600 /*
2601 * The test for missing atomic flag is performed here, rather than
2602 * the more obvious place, simply to reduce the critical path length
2603 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2604 * will eventually be caught here (where it matters).
2605 */
2606 kmem_flagcheck(cachep, flags);
2607
a737b3e2
AM
2608 /*
2609 * Get mem for the objs. Attempt to allocate a physical page from
2610 * 'nodeid'.
e498be7d 2611 */
a737b3e2
AM
2612 objp = kmem_getpages(cachep, flags, nodeid);
2613 if (!objp)
1da177e4
LT
2614 goto failed;
2615
2616 /* Get slab management. */
5b74ada7 2617 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
a737b3e2 2618 if (!slabp)
1da177e4
LT
2619 goto opps1;
2620
e498be7d 2621 slabp->nodeid = nodeid;
4776874f 2622 slab_map_pages(cachep, slabp, objp);
1da177e4
LT
2623
2624 cache_init_objs(cachep, slabp, ctor_flags);
2625
2626 if (local_flags & __GFP_WAIT)
2627 local_irq_disable();
2628 check_irq_off();
e498be7d 2629 spin_lock(&l3->list_lock);
1da177e4
LT
2630
2631 /* Make slab active. */
e498be7d 2632 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2633 STATS_INC_GROWN(cachep);
e498be7d
CL
2634 l3->free_objects += cachep->num;
2635 spin_unlock(&l3->list_lock);
1da177e4 2636 return 1;
a737b3e2 2637opps1:
1da177e4 2638 kmem_freepages(cachep, objp);
a737b3e2 2639failed:
1da177e4
LT
2640 if (local_flags & __GFP_WAIT)
2641 local_irq_disable();
2642 return 0;
2643}
2644
2645#if DEBUG
2646
2647/*
2648 * Perform extra freeing checks:
2649 * - detect bad pointers.
2650 * - POISON/RED_ZONE checking
2651 * - destructor calls, for caches with POISON+dtor
2652 */
2653static void kfree_debugcheck(const void *objp)
2654{
2655 struct page *page;
2656
2657 if (!virt_addr_valid(objp)) {
2658 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2659 (unsigned long)objp);
2660 BUG();
1da177e4
LT
2661 }
2662 page = virt_to_page(objp);
2663 if (!PageSlab(page)) {
b28a02de
PE
2664 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2665 (unsigned long)objp);
1da177e4
LT
2666 BUG();
2667 }
2668}
2669
58ce1fd5
PE
2670static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2671{
2672 unsigned long redzone1, redzone2;
2673
2674 redzone1 = *dbg_redzone1(cache, obj);
2675 redzone2 = *dbg_redzone2(cache, obj);
2676
2677 /*
2678 * Redzone is ok.
2679 */
2680 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2681 return;
2682
2683 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2684 slab_error(cache, "double free detected");
2685 else
2686 slab_error(cache, "memory outside object was overwritten");
2687
2688 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2689 obj, redzone1, redzone2);
2690}
2691
343e0d7a 2692static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2693 void *caller)
1da177e4
LT
2694{
2695 struct page *page;
2696 unsigned int objnr;
2697 struct slab *slabp;
2698
3dafccf2 2699 objp -= obj_offset(cachep);
1da177e4
LT
2700 kfree_debugcheck(objp);
2701 page = virt_to_page(objp);
2702
065d41cb 2703 slabp = page_get_slab(page);
1da177e4
LT
2704
2705 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2706 verify_redzone_free(cachep, objp);
1da177e4
LT
2707 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2708 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2709 }
2710 if (cachep->flags & SLAB_STORE_USER)
2711 *dbg_userword(cachep, objp) = caller;
2712
8fea4e96 2713 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2714
2715 BUG_ON(objnr >= cachep->num);
8fea4e96 2716 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4
LT
2717
2718 if (cachep->flags & SLAB_DEBUG_INITIAL) {
a737b3e2
AM
2719 /*
2720 * Need to call the slab's constructor so the caller can
2721 * perform a verify of its state (debugging). Called without
2722 * the cache-lock held.
1da177e4 2723 */
3dafccf2 2724 cachep->ctor(objp + obj_offset(cachep),
b28a02de 2725 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
1da177e4
LT
2726 }
2727 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2728 /* we want to cache poison the object,
2729 * call the destruction callback
2730 */
3dafccf2 2731 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
1da177e4 2732 }
871751e2
AV
2733#ifdef CONFIG_DEBUG_SLAB_LEAK
2734 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2735#endif
1da177e4
LT
2736 if (cachep->flags & SLAB_POISON) {
2737#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2738 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2739 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2740 kernel_map_pages(virt_to_page(objp),
3dafccf2 2741 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2742 } else {
2743 poison_obj(cachep, objp, POISON_FREE);
2744 }
2745#else
2746 poison_obj(cachep, objp, POISON_FREE);
2747#endif
2748 }
2749 return objp;
2750}
2751
343e0d7a 2752static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2753{
2754 kmem_bufctl_t i;
2755 int entries = 0;
b28a02de 2756
1da177e4
LT
2757 /* Check slab's freelist to see if this obj is there. */
2758 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2759 entries++;
2760 if (entries > cachep->num || i >= cachep->num)
2761 goto bad;
2762 }
2763 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2764bad:
2765 printk(KERN_ERR "slab: Internal list corruption detected in "
2766 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2767 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2768 for (i = 0;
264132bc 2769 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2770 i++) {
a737b3e2 2771 if (i % 16 == 0)
1da177e4 2772 printk("\n%03x:", i);
b28a02de 2773 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2774 }
2775 printk("\n");
2776 BUG();
2777 }
2778}
2779#else
2780#define kfree_debugcheck(x) do { } while(0)
2781#define cache_free_debugcheck(x,objp,z) (objp)
2782#define check_slabp(x,y) do { } while(0)
2783#endif
2784
343e0d7a 2785static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2786{
2787 int batchcount;
2788 struct kmem_list3 *l3;
2789 struct array_cache *ac;
2790
2791 check_irq_off();
9a2dba4b 2792 ac = cpu_cache_get(cachep);
a737b3e2 2793retry:
1da177e4
LT
2794 batchcount = ac->batchcount;
2795 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2796 /*
2797 * If there was little recent activity on this cache, then
2798 * perform only a partial refill. Otherwise we could generate
2799 * refill bouncing.
1da177e4
LT
2800 */
2801 batchcount = BATCHREFILL_LIMIT;
2802 }
e498be7d
CL
2803 l3 = cachep->nodelists[numa_node_id()];
2804
2805 BUG_ON(ac->avail > 0 || !l3);
2806 spin_lock(&l3->list_lock);
1da177e4 2807
3ded175a
CL
2808 /* See if we can refill from the shared array */
2809 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2810 goto alloc_done;
2811
1da177e4
LT
2812 while (batchcount > 0) {
2813 struct list_head *entry;
2814 struct slab *slabp;
2815 /* Get slab alloc is to come from. */
2816 entry = l3->slabs_partial.next;
2817 if (entry == &l3->slabs_partial) {
2818 l3->free_touched = 1;
2819 entry = l3->slabs_free.next;
2820 if (entry == &l3->slabs_free)
2821 goto must_grow;
2822 }
2823
2824 slabp = list_entry(entry, struct slab, list);
2825 check_slabp(cachep, slabp);
2826 check_spinlock_acquired(cachep);
2827 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
2828 STATS_INC_ALLOCED(cachep);
2829 STATS_INC_ACTIVE(cachep);
2830 STATS_SET_HIGH(cachep);
2831
78d382d7
MD
2832 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2833 numa_node_id());
1da177e4
LT
2834 }
2835 check_slabp(cachep, slabp);
2836
2837 /* move slabp to correct slabp list: */
2838 list_del(&slabp->list);
2839 if (slabp->free == BUFCTL_END)
2840 list_add(&slabp->list, &l3->slabs_full);
2841 else
2842 list_add(&slabp->list, &l3->slabs_partial);
2843 }
2844
a737b3e2 2845must_grow:
1da177e4 2846 l3->free_objects -= ac->avail;
a737b3e2 2847alloc_done:
e498be7d 2848 spin_unlock(&l3->list_lock);
1da177e4
LT
2849
2850 if (unlikely(!ac->avail)) {
2851 int x;
e498be7d
CL
2852 x = cache_grow(cachep, flags, numa_node_id());
2853
a737b3e2 2854 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2855 ac = cpu_cache_get(cachep);
a737b3e2 2856 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
2857 return NULL;
2858
a737b3e2 2859 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2860 goto retry;
2861 }
2862 ac->touched = 1;
e498be7d 2863 return ac->entry[--ac->avail];
1da177e4
LT
2864}
2865
a737b3e2
AM
2866static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2867 gfp_t flags)
1da177e4
LT
2868{
2869 might_sleep_if(flags & __GFP_WAIT);
2870#if DEBUG
2871 kmem_flagcheck(cachep, flags);
2872#endif
2873}
2874
2875#if DEBUG
a737b3e2
AM
2876static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2877 gfp_t flags, void *objp, void *caller)
1da177e4 2878{
b28a02de 2879 if (!objp)
1da177e4 2880 return objp;
b28a02de 2881 if (cachep->flags & SLAB_POISON) {
1da177e4 2882#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 2883 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 2884 kernel_map_pages(virt_to_page(objp),
3dafccf2 2885 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
2886 else
2887 check_poison_obj(cachep, objp);
2888#else
2889 check_poison_obj(cachep, objp);
2890#endif
2891 poison_obj(cachep, objp, POISON_INUSE);
2892 }
2893 if (cachep->flags & SLAB_STORE_USER)
2894 *dbg_userword(cachep, objp) = caller;
2895
2896 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2897 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2898 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2899 slab_error(cachep, "double free, or memory outside"
2900 " object was overwritten");
b28a02de 2901 printk(KERN_ERR
a737b3e2
AM
2902 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2903 objp, *dbg_redzone1(cachep, objp),
2904 *dbg_redzone2(cachep, objp));
1da177e4
LT
2905 }
2906 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2907 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2908 }
871751e2
AV
2909#ifdef CONFIG_DEBUG_SLAB_LEAK
2910 {
2911 struct slab *slabp;
2912 unsigned objnr;
2913
2914 slabp = page_get_slab(virt_to_page(objp));
2915 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2916 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
2917 }
2918#endif
3dafccf2 2919 objp += obj_offset(cachep);
1da177e4 2920 if (cachep->ctor && cachep->flags & SLAB_POISON) {
b28a02de 2921 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
1da177e4
LT
2922
2923 if (!(flags & __GFP_WAIT))
2924 ctor_flags |= SLAB_CTOR_ATOMIC;
2925
2926 cachep->ctor(objp, cachep, ctor_flags);
b28a02de 2927 }
1da177e4
LT
2928 return objp;
2929}
2930#else
2931#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2932#endif
2933
343e0d7a 2934static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2935{
b28a02de 2936 void *objp;
1da177e4
LT
2937 struct array_cache *ac;
2938
dc85da15 2939#ifdef CONFIG_NUMA
b2455396 2940 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
c61afb18
PJ
2941 objp = alternate_node_alloc(cachep, flags);
2942 if (objp != NULL)
2943 return objp;
dc85da15
CL
2944 }
2945#endif
2946
5c382300 2947 check_irq_off();
9a2dba4b 2948 ac = cpu_cache_get(cachep);
1da177e4
LT
2949 if (likely(ac->avail)) {
2950 STATS_INC_ALLOCHIT(cachep);
2951 ac->touched = 1;
e498be7d 2952 objp = ac->entry[--ac->avail];
1da177e4
LT
2953 } else {
2954 STATS_INC_ALLOCMISS(cachep);
2955 objp = cache_alloc_refill(cachep, flags);
2956 }
5c382300
AK
2957 return objp;
2958}
2959
a737b3e2
AM
2960static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2961 gfp_t flags, void *caller)
5c382300
AK
2962{
2963 unsigned long save_flags;
b28a02de 2964 void *objp;
5c382300
AK
2965
2966 cache_alloc_debugcheck_before(cachep, flags);
2967
2968 local_irq_save(save_flags);
2969 objp = ____cache_alloc(cachep, flags);
1da177e4 2970 local_irq_restore(save_flags);
34342e86 2971 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
7fd6b141 2972 caller);
34342e86 2973 prefetchw(objp);
1da177e4
LT
2974 return objp;
2975}
2976
e498be7d 2977#ifdef CONFIG_NUMA
c61afb18 2978/*
b2455396 2979 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
2980 *
2981 * If we are in_interrupt, then process context, including cpusets and
2982 * mempolicy, may not apply and should not be used for allocation policy.
2983 */
2984static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2985{
2986 int nid_alloc, nid_here;
2987
2988 if (in_interrupt())
2989 return NULL;
2990 nid_alloc = nid_here = numa_node_id();
2991 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2992 nid_alloc = cpuset_mem_spread_node();
2993 else if (current->mempolicy)
2994 nid_alloc = slab_node(current->mempolicy);
2995 if (nid_alloc != nid_here)
2996 return __cache_alloc_node(cachep, flags, nid_alloc);
2997 return NULL;
2998}
2999
e498be7d
CL
3000/*
3001 * A interface to enable slab creation on nodeid
1da177e4 3002 */
a737b3e2
AM
3003static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3004 int nodeid)
e498be7d
CL
3005{
3006 struct list_head *entry;
b28a02de
PE
3007 struct slab *slabp;
3008 struct kmem_list3 *l3;
3009 void *obj;
b28a02de
PE
3010 int x;
3011
3012 l3 = cachep->nodelists[nodeid];
3013 BUG_ON(!l3);
3014
a737b3e2 3015retry:
ca3b9b91 3016 check_irq_off();
b28a02de
PE
3017 spin_lock(&l3->list_lock);
3018 entry = l3->slabs_partial.next;
3019 if (entry == &l3->slabs_partial) {
3020 l3->free_touched = 1;
3021 entry = l3->slabs_free.next;
3022 if (entry == &l3->slabs_free)
3023 goto must_grow;
3024 }
3025
3026 slabp = list_entry(entry, struct slab, list);
3027 check_spinlock_acquired_node(cachep, nodeid);
3028 check_slabp(cachep, slabp);
3029
3030 STATS_INC_NODEALLOCS(cachep);
3031 STATS_INC_ACTIVE(cachep);
3032 STATS_SET_HIGH(cachep);
3033
3034 BUG_ON(slabp->inuse == cachep->num);
3035
78d382d7 3036 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3037 check_slabp(cachep, slabp);
3038 l3->free_objects--;
3039 /* move slabp to correct slabp list: */
3040 list_del(&slabp->list);
3041
a737b3e2 3042 if (slabp->free == BUFCTL_END)
b28a02de 3043 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3044 else
b28a02de 3045 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3046
b28a02de
PE
3047 spin_unlock(&l3->list_lock);
3048 goto done;
e498be7d 3049
a737b3e2 3050must_grow:
b28a02de
PE
3051 spin_unlock(&l3->list_lock);
3052 x = cache_grow(cachep, flags, nodeid);
1da177e4 3053
b28a02de
PE
3054 if (!x)
3055 return NULL;
e498be7d 3056
b28a02de 3057 goto retry;
a737b3e2 3058done:
b28a02de 3059 return obj;
e498be7d
CL
3060}
3061#endif
3062
3063/*
3064 * Caller needs to acquire correct kmem_list's list_lock
3065 */
343e0d7a 3066static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3067 int node)
1da177e4
LT
3068{
3069 int i;
e498be7d 3070 struct kmem_list3 *l3;
1da177e4
LT
3071
3072 for (i = 0; i < nr_objects; i++) {
3073 void *objp = objpp[i];
3074 struct slab *slabp;
1da177e4 3075
6ed5eb22 3076 slabp = virt_to_slab(objp);
ff69416e 3077 l3 = cachep->nodelists[node];
1da177e4 3078 list_del(&slabp->list);
ff69416e 3079 check_spinlock_acquired_node(cachep, node);
1da177e4 3080 check_slabp(cachep, slabp);
78d382d7 3081 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3082 STATS_DEC_ACTIVE(cachep);
e498be7d 3083 l3->free_objects++;
1da177e4
LT
3084 check_slabp(cachep, slabp);
3085
3086 /* fixup slab chains */
3087 if (slabp->inuse == 0) {
e498be7d
CL
3088 if (l3->free_objects > l3->free_limit) {
3089 l3->free_objects -= cachep->num;
2b2d5493
IM
3090 /*
3091 * It is safe to drop the lock. The slab is
3092 * no longer linked to the cache. cachep
3093 * cannot disappear - we are using it and
3094 * all destruction of caches must be
3095 * serialized properly by the user.
3096 */
3097 spin_unlock(&l3->list_lock);
1da177e4 3098 slab_destroy(cachep, slabp);
2b2d5493 3099 spin_lock(&l3->list_lock);
1da177e4 3100 } else {
e498be7d 3101 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3102 }
3103 } else {
3104 /* Unconditionally move a slab to the end of the
3105 * partial list on free - maximum time for the
3106 * other objects to be freed, too.
3107 */
e498be7d 3108 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3109 }
3110 }
3111}
3112
343e0d7a 3113static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3114{
3115 int batchcount;
e498be7d 3116 struct kmem_list3 *l3;
ff69416e 3117 int node = numa_node_id();
1da177e4
LT
3118
3119 batchcount = ac->batchcount;
3120#if DEBUG
3121 BUG_ON(!batchcount || batchcount > ac->avail);
3122#endif
3123 check_irq_off();
ff69416e 3124 l3 = cachep->nodelists[node];
873623df 3125 spin_lock(&l3->list_lock);
e498be7d
CL
3126 if (l3->shared) {
3127 struct array_cache *shared_array = l3->shared;
b28a02de 3128 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3129 if (max) {
3130 if (batchcount > max)
3131 batchcount = max;
e498be7d 3132 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3133 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3134 shared_array->avail += batchcount;
3135 goto free_done;
3136 }
3137 }
3138
ff69416e 3139 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3140free_done:
1da177e4
LT
3141#if STATS
3142 {
3143 int i = 0;
3144 struct list_head *p;
3145
e498be7d
CL
3146 p = l3->slabs_free.next;
3147 while (p != &(l3->slabs_free)) {
1da177e4
LT
3148 struct slab *slabp;
3149
3150 slabp = list_entry(p, struct slab, list);
3151 BUG_ON(slabp->inuse);
3152
3153 i++;
3154 p = p->next;
3155 }
3156 STATS_SET_FREEABLE(cachep, i);
3157 }
3158#endif
e498be7d 3159 spin_unlock(&l3->list_lock);
1da177e4 3160 ac->avail -= batchcount;
a737b3e2 3161 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3162}
3163
3164/*
a737b3e2
AM
3165 * Release an obj back to its cache. If the obj has a constructed state, it must
3166 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3167 */
873623df 3168static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3169{
9a2dba4b 3170 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3171
3172 check_irq_off();
3173 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3174
873623df 3175 if (cache_free_alien(cachep, objp))
729bd0b7
PE
3176 return;
3177
1da177e4
LT
3178 if (likely(ac->avail < ac->limit)) {
3179 STATS_INC_FREEHIT(cachep);
e498be7d 3180 ac->entry[ac->avail++] = objp;
1da177e4
LT
3181 return;
3182 } else {
3183 STATS_INC_FREEMISS(cachep);
3184 cache_flusharray(cachep, ac);
e498be7d 3185 ac->entry[ac->avail++] = objp;
1da177e4
LT
3186 }
3187}
3188
3189/**
3190 * kmem_cache_alloc - Allocate an object
3191 * @cachep: The cache to allocate from.
3192 * @flags: See kmalloc().
3193 *
3194 * Allocate an object from this cache. The flags are only relevant
3195 * if the cache has no available objects.
3196 */
343e0d7a 3197void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3198{
7fd6b141 3199 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3200}
3201EXPORT_SYMBOL(kmem_cache_alloc);
3202
a8c0f9a4
PE
3203/**
3204 * kmem_cache_alloc - Allocate an object. The memory is set to zero.
3205 * @cache: The cache to allocate from.
3206 * @flags: See kmalloc().
3207 *
3208 * Allocate an object from this cache and set the allocated memory to zero.
3209 * The flags are only relevant if the cache has no available objects.
3210 */
3211void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3212{
3213 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3214 if (ret)
3215 memset(ret, 0, obj_size(cache));
3216 return ret;
3217}
3218EXPORT_SYMBOL(kmem_cache_zalloc);
3219
1da177e4
LT
3220/**
3221 * kmem_ptr_validate - check if an untrusted pointer might
3222 * be a slab entry.
3223 * @cachep: the cache we're checking against
3224 * @ptr: pointer to validate
3225 *
3226 * This verifies that the untrusted pointer looks sane:
3227 * it is _not_ a guarantee that the pointer is actually
3228 * part of the slab cache in question, but it at least
3229 * validates that the pointer can be dereferenced and
3230 * looks half-way sane.
3231 *
3232 * Currently only used for dentry validation.
3233 */
343e0d7a 3234int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
1da177e4 3235{
b28a02de 3236 unsigned long addr = (unsigned long)ptr;
1da177e4 3237 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3238 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3239 unsigned long size = cachep->buffer_size;
1da177e4
LT
3240 struct page *page;
3241
3242 if (unlikely(addr < min_addr))
3243 goto out;
3244 if (unlikely(addr > (unsigned long)high_memory - size))
3245 goto out;
3246 if (unlikely(addr & align_mask))
3247 goto out;
3248 if (unlikely(!kern_addr_valid(addr)))
3249 goto out;
3250 if (unlikely(!kern_addr_valid(addr + size - 1)))
3251 goto out;
3252 page = virt_to_page(ptr);
3253 if (unlikely(!PageSlab(page)))
3254 goto out;
065d41cb 3255 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3256 goto out;
3257 return 1;
a737b3e2 3258out:
1da177e4
LT
3259 return 0;
3260}
3261
3262#ifdef CONFIG_NUMA
3263/**
3264 * kmem_cache_alloc_node - Allocate an object on the specified node
3265 * @cachep: The cache to allocate from.
3266 * @flags: See kmalloc().
3267 * @nodeid: node number of the target node.
3268 *
3269 * Identical to kmem_cache_alloc, except that this function is slow
3270 * and can sleep. And it will allocate memory on the given node, which
3271 * can improve the performance for cpu bound structures.
e498be7d
CL
3272 * New and improved: it will now make sure that the object gets
3273 * put on the correct node list so that there is no false sharing.
1da177e4 3274 */
343e0d7a 3275void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 3276{
e498be7d
CL
3277 unsigned long save_flags;
3278 void *ptr;
1da177e4 3279
e498be7d
CL
3280 cache_alloc_debugcheck_before(cachep, flags);
3281 local_irq_save(save_flags);
18f820f6
CL
3282
3283 if (nodeid == -1 || nodeid == numa_node_id() ||
a737b3e2 3284 !cachep->nodelists[nodeid])
5c382300
AK
3285 ptr = ____cache_alloc(cachep, flags);
3286 else
3287 ptr = __cache_alloc_node(cachep, flags, nodeid);
e498be7d 3288 local_irq_restore(save_flags);
18f820f6
CL
3289
3290 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3291 __builtin_return_address(0));
1da177e4 3292
e498be7d 3293 return ptr;
1da177e4
LT
3294}
3295EXPORT_SYMBOL(kmem_cache_alloc_node);
3296
dd0fc66f 3297void *kmalloc_node(size_t size, gfp_t flags, int node)
97e2bde4 3298{
343e0d7a 3299 struct kmem_cache *cachep;
97e2bde4
MS
3300
3301 cachep = kmem_find_general_cachep(size, flags);
3302 if (unlikely(cachep == NULL))
3303 return NULL;
3304 return kmem_cache_alloc_node(cachep, flags, node);
3305}
3306EXPORT_SYMBOL(kmalloc_node);
1da177e4
LT
3307#endif
3308
3309/**
800590f5 3310 * __do_kmalloc - allocate memory
1da177e4 3311 * @size: how many bytes of memory are required.
800590f5 3312 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3313 * @caller: function caller for debug tracking of the caller
1da177e4 3314 */
7fd6b141
PE
3315static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3316 void *caller)
1da177e4 3317{
343e0d7a 3318 struct kmem_cache *cachep;
1da177e4 3319
97e2bde4
MS
3320 /* If you want to save a few bytes .text space: replace
3321 * __ with kmem_.
3322 * Then kmalloc uses the uninlined functions instead of the inline
3323 * functions.
3324 */
3325 cachep = __find_general_cachep(size, flags);
dbdb9045
AM
3326 if (unlikely(cachep == NULL))
3327 return NULL;
7fd6b141
PE
3328 return __cache_alloc(cachep, flags, caller);
3329}
3330
7fd6b141
PE
3331
3332void *__kmalloc(size_t size, gfp_t flags)
3333{
871751e2 3334#ifndef CONFIG_DEBUG_SLAB
7fd6b141 3335 return __do_kmalloc(size, flags, NULL);
871751e2
AV
3336#else
3337 return __do_kmalloc(size, flags, __builtin_return_address(0));
3338#endif
1da177e4
LT
3339}
3340EXPORT_SYMBOL(__kmalloc);
3341
871751e2 3342#ifdef CONFIG_DEBUG_SLAB
7fd6b141
PE
3343void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3344{
3345 return __do_kmalloc(size, flags, caller);
3346}
3347EXPORT_SYMBOL(__kmalloc_track_caller);
7fd6b141
PE
3348#endif
3349
1da177e4
LT
3350#ifdef CONFIG_SMP
3351/**
3352 * __alloc_percpu - allocate one copy of the object for every present
3353 * cpu in the system, zeroing them.
3354 * Objects should be dereferenced using the per_cpu_ptr macro only.
3355 *
3356 * @size: how many bytes of memory are required.
1da177e4 3357 */
f9f75005 3358void *__alloc_percpu(size_t size)
1da177e4
LT
3359{
3360 int i;
b28a02de 3361 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
1da177e4
LT
3362
3363 if (!pdata)
3364 return NULL;
3365
e498be7d
CL
3366 /*
3367 * Cannot use for_each_online_cpu since a cpu may come online
3368 * and we have no way of figuring out how to fix the array
3369 * that we have allocated then....
3370 */
0a945022 3371 for_each_possible_cpu(i) {
e498be7d
CL
3372 int node = cpu_to_node(i);
3373
3374 if (node_online(node))
3375 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3376 else
3377 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
1da177e4
LT
3378
3379 if (!pdata->ptrs[i])
3380 goto unwind_oom;
3381 memset(pdata->ptrs[i], 0, size);
3382 }
3383
3384 /* Catch derefs w/o wrappers */
b28a02de 3385 return (void *)(~(unsigned long)pdata);
1da177e4 3386
a737b3e2 3387unwind_oom:
1da177e4
LT
3388 while (--i >= 0) {
3389 if (!cpu_possible(i))
3390 continue;
3391 kfree(pdata->ptrs[i]);
3392 }
3393 kfree(pdata);
3394 return NULL;
3395}
3396EXPORT_SYMBOL(__alloc_percpu);
3397#endif
3398
3399/**
3400 * kmem_cache_free - Deallocate an object
3401 * @cachep: The cache the allocation was from.
3402 * @objp: The previously allocated object.
3403 *
3404 * Free an object which was previously allocated from this
3405 * cache.
3406 */
343e0d7a 3407void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3408{
3409 unsigned long flags;
3410
ddc2e812
PE
3411 BUG_ON(virt_to_cache(objp) != cachep);
3412
1da177e4 3413 local_irq_save(flags);
873623df 3414 __cache_free(cachep, objp);
1da177e4
LT
3415 local_irq_restore(flags);
3416}
3417EXPORT_SYMBOL(kmem_cache_free);
3418
1da177e4
LT
3419/**
3420 * kfree - free previously allocated memory
3421 * @objp: pointer returned by kmalloc.
3422 *
80e93eff
PE
3423 * If @objp is NULL, no operation is performed.
3424 *
1da177e4
LT
3425 * Don't free memory not originally allocated by kmalloc()
3426 * or you will run into trouble.
3427 */
3428void kfree(const void *objp)
3429{
343e0d7a 3430 struct kmem_cache *c;
1da177e4
LT
3431 unsigned long flags;
3432
3433 if (unlikely(!objp))
3434 return;
3435 local_irq_save(flags);
3436 kfree_debugcheck(objp);
6ed5eb22 3437 c = virt_to_cache(objp);
f9b8404c 3438 debug_check_no_locks_freed(objp, obj_size(c));
873623df 3439 __cache_free(c, (void *)objp);
1da177e4
LT
3440 local_irq_restore(flags);
3441}
3442EXPORT_SYMBOL(kfree);
3443
3444#ifdef CONFIG_SMP
3445/**
3446 * free_percpu - free previously allocated percpu memory
3447 * @objp: pointer returned by alloc_percpu.
3448 *
3449 * Don't free memory not originally allocated by alloc_percpu()
3450 * The complemented objp is to check for that.
3451 */
b28a02de 3452void free_percpu(const void *objp)
1da177e4
LT
3453{
3454 int i;
b28a02de 3455 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
1da177e4 3456
e498be7d
CL
3457 /*
3458 * We allocate for all cpus so we cannot use for online cpu here.
3459 */
0a945022 3460 for_each_possible_cpu(i)
b28a02de 3461 kfree(p->ptrs[i]);
1da177e4
LT
3462 kfree(p);
3463}
3464EXPORT_SYMBOL(free_percpu);
3465#endif
3466
343e0d7a 3467unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3468{
3dafccf2 3469 return obj_size(cachep);
1da177e4
LT
3470}
3471EXPORT_SYMBOL(kmem_cache_size);
3472
343e0d7a 3473const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3474{
3475 return cachep->name;
3476}
3477EXPORT_SYMBOL_GPL(kmem_cache_name);
3478
e498be7d 3479/*
0718dc2a 3480 * This initializes kmem_list3 or resizes varioius caches for all nodes.
e498be7d 3481 */
343e0d7a 3482static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3483{
3484 int node;
3485 struct kmem_list3 *l3;
cafeb02e
CL
3486 struct array_cache *new_shared;
3487 struct array_cache **new_alien;
e498be7d
CL
3488
3489 for_each_online_node(node) {
cafeb02e 3490
a737b3e2
AM
3491 new_alien = alloc_alien_cache(node, cachep->limit);
3492 if (!new_alien)
e498be7d 3493 goto fail;
cafeb02e 3494
0718dc2a
CL
3495 new_shared = alloc_arraycache(node,
3496 cachep->shared*cachep->batchcount,
a737b3e2 3497 0xbaadf00d);
0718dc2a
CL
3498 if (!new_shared) {
3499 free_alien_cache(new_alien);
e498be7d 3500 goto fail;
0718dc2a 3501 }
cafeb02e 3502
a737b3e2
AM
3503 l3 = cachep->nodelists[node];
3504 if (l3) {
cafeb02e
CL
3505 struct array_cache *shared = l3->shared;
3506
e498be7d
CL
3507 spin_lock_irq(&l3->list_lock);
3508
cafeb02e 3509 if (shared)
0718dc2a
CL
3510 free_block(cachep, shared->entry,
3511 shared->avail, node);
e498be7d 3512
cafeb02e
CL
3513 l3->shared = new_shared;
3514 if (!l3->alien) {
e498be7d
CL
3515 l3->alien = new_alien;
3516 new_alien = NULL;
3517 }
b28a02de 3518 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3519 cachep->batchcount + cachep->num;
e498be7d 3520 spin_unlock_irq(&l3->list_lock);
cafeb02e 3521 kfree(shared);
e498be7d
CL
3522 free_alien_cache(new_alien);
3523 continue;
3524 }
a737b3e2 3525 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
0718dc2a
CL
3526 if (!l3) {
3527 free_alien_cache(new_alien);
3528 kfree(new_shared);
e498be7d 3529 goto fail;
0718dc2a 3530 }
e498be7d
CL
3531
3532 kmem_list3_init(l3);
3533 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3534 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3535 l3->shared = new_shared;
e498be7d 3536 l3->alien = new_alien;
b28a02de 3537 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3538 cachep->batchcount + cachep->num;
e498be7d
CL
3539 cachep->nodelists[node] = l3;
3540 }
cafeb02e 3541 return 0;
0718dc2a 3542
a737b3e2 3543fail:
0718dc2a
CL
3544 if (!cachep->next.next) {
3545 /* Cache is not active yet. Roll back what we did */
3546 node--;
3547 while (node >= 0) {
3548 if (cachep->nodelists[node]) {
3549 l3 = cachep->nodelists[node];
3550
3551 kfree(l3->shared);
3552 free_alien_cache(l3->alien);
3553 kfree(l3);
3554 cachep->nodelists[node] = NULL;
3555 }
3556 node--;
3557 }
3558 }
cafeb02e 3559 return -ENOMEM;
e498be7d
CL
3560}
3561
1da177e4 3562struct ccupdate_struct {
343e0d7a 3563 struct kmem_cache *cachep;
1da177e4
LT
3564 struct array_cache *new[NR_CPUS];
3565};
3566
3567static void do_ccupdate_local(void *info)
3568{
a737b3e2 3569 struct ccupdate_struct *new = info;
1da177e4
LT
3570 struct array_cache *old;
3571
3572 check_irq_off();
9a2dba4b 3573 old = cpu_cache_get(new->cachep);
e498be7d 3574
1da177e4
LT
3575 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3576 new->new[smp_processor_id()] = old;
3577}
3578
b5d8ca7c 3579/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3580static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3581 int batchcount, int shared)
1da177e4
LT
3582{
3583 struct ccupdate_struct new;
e498be7d 3584 int i, err;
1da177e4 3585
b28a02de 3586 memset(&new.new, 0, sizeof(new.new));
e498be7d 3587 for_each_online_cpu(i) {
a737b3e2
AM
3588 new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3589 batchcount);
e498be7d 3590 if (!new.new[i]) {
b28a02de
PE
3591 for (i--; i >= 0; i--)
3592 kfree(new.new[i]);
e498be7d 3593 return -ENOMEM;
1da177e4
LT
3594 }
3595 }
3596 new.cachep = cachep;
3597
a07fa394 3598 on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
e498be7d 3599
1da177e4 3600 check_irq_on();
1da177e4
LT
3601 cachep->batchcount = batchcount;
3602 cachep->limit = limit;
e498be7d 3603 cachep->shared = shared;
1da177e4 3604
e498be7d 3605 for_each_online_cpu(i) {
1da177e4
LT
3606 struct array_cache *ccold = new.new[i];
3607 if (!ccold)
3608 continue;
e498be7d 3609 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3610 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3611 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3612 kfree(ccold);
3613 }
1da177e4 3614
e498be7d
CL
3615 err = alloc_kmemlist(cachep);
3616 if (err) {
3617 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
b28a02de 3618 cachep->name, -err);
e498be7d 3619 BUG();
1da177e4 3620 }
1da177e4
LT
3621 return 0;
3622}
3623
b5d8ca7c 3624/* Called with cache_chain_mutex held always */
343e0d7a 3625static void enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
3626{
3627 int err;
3628 int limit, shared;
3629
a737b3e2
AM
3630 /*
3631 * The head array serves three purposes:
1da177e4
LT
3632 * - create a LIFO ordering, i.e. return objects that are cache-warm
3633 * - reduce the number of spinlock operations.
a737b3e2 3634 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3635 * bufctl chains: array operations are cheaper.
3636 * The numbers are guessed, we should auto-tune as described by
3637 * Bonwick.
3638 */
3dafccf2 3639 if (cachep->buffer_size > 131072)
1da177e4 3640 limit = 1;
3dafccf2 3641 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3642 limit = 8;
3dafccf2 3643 else if (cachep->buffer_size > 1024)
1da177e4 3644 limit = 24;
3dafccf2 3645 else if (cachep->buffer_size > 256)
1da177e4
LT
3646 limit = 54;
3647 else
3648 limit = 120;
3649
a737b3e2
AM
3650 /*
3651 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3652 * allocation behaviour: Most allocs on one cpu, most free operations
3653 * on another cpu. For these cases, an efficient object passing between
3654 * cpus is necessary. This is provided by a shared array. The array
3655 * replaces Bonwick's magazine layer.
3656 * On uniprocessor, it's functionally equivalent (but less efficient)
3657 * to a larger limit. Thus disabled by default.
3658 */
3659 shared = 0;
3660#ifdef CONFIG_SMP
3dafccf2 3661 if (cachep->buffer_size <= PAGE_SIZE)
1da177e4
LT
3662 shared = 8;
3663#endif
3664
3665#if DEBUG
a737b3e2
AM
3666 /*
3667 * With debugging enabled, large batchcount lead to excessively long
3668 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3669 */
3670 if (limit > 32)
3671 limit = 32;
3672#endif
b28a02de 3673 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
3674 if (err)
3675 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3676 cachep->name, -err);
1da177e4
LT
3677}
3678
1b55253a
CL
3679/*
3680 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
3681 * necessary. Note that the l3 listlock also protects the array_cache
3682 * if drain_array() is used on the shared array.
1b55253a
CL
3683 */
3684void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3685 struct array_cache *ac, int force, int node)
1da177e4
LT
3686{
3687 int tofree;
3688
1b55253a
CL
3689 if (!ac || !ac->avail)
3690 return;
1da177e4
LT
3691 if (ac->touched && !force) {
3692 ac->touched = 0;
b18e7e65 3693 } else {
1b55253a 3694 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
3695 if (ac->avail) {
3696 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3697 if (tofree > ac->avail)
3698 tofree = (ac->avail + 1) / 2;
3699 free_block(cachep, ac->entry, tofree, node);
3700 ac->avail -= tofree;
3701 memmove(ac->entry, &(ac->entry[tofree]),
3702 sizeof(void *) * ac->avail);
3703 }
1b55253a 3704 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
3705 }
3706}
3707
3708/**
3709 * cache_reap - Reclaim memory from caches.
1e5d5331 3710 * @unused: unused parameter
1da177e4
LT
3711 *
3712 * Called from workqueue/eventd every few seconds.
3713 * Purpose:
3714 * - clear the per-cpu caches for this CPU.
3715 * - return freeable pages to the main free memory pool.
3716 *
a737b3e2
AM
3717 * If we cannot acquire the cache chain mutex then just give up - we'll try
3718 * again on the next iteration.
1da177e4
LT
3719 */
3720static void cache_reap(void *unused)
3721{
7a7c381d 3722 struct kmem_cache *searchp;
e498be7d 3723 struct kmem_list3 *l3;
aab2207c 3724 int node = numa_node_id();
1da177e4 3725
fc0abb14 3726 if (!mutex_trylock(&cache_chain_mutex)) {
1da177e4 3727 /* Give up. Setup the next iteration. */
b28a02de
PE
3728 schedule_delayed_work(&__get_cpu_var(reap_work),
3729 REAPTIMEOUT_CPUC);
1da177e4
LT
3730 return;
3731 }
3732
7a7c381d 3733 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
3734 check_irq_on();
3735
35386e3b
CL
3736 /*
3737 * We only take the l3 lock if absolutely necessary and we
3738 * have established with reasonable certainty that
3739 * we can do some work if the lock was obtained.
3740 */
aab2207c 3741 l3 = searchp->nodelists[node];
35386e3b 3742
8fce4d8e 3743 reap_alien(searchp, l3);
1da177e4 3744
aab2207c 3745 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 3746
35386e3b
CL
3747 /*
3748 * These are racy checks but it does not matter
3749 * if we skip one check or scan twice.
3750 */
e498be7d 3751 if (time_after(l3->next_reap, jiffies))
35386e3b 3752 goto next;
1da177e4 3753
e498be7d 3754 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 3755
aab2207c 3756 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 3757
ed11d9eb 3758 if (l3->free_touched)
e498be7d 3759 l3->free_touched = 0;
ed11d9eb
CL
3760 else {
3761 int freed;
1da177e4 3762
ed11d9eb
CL
3763 freed = drain_freelist(searchp, l3, (l3->free_limit +
3764 5 * searchp->num - 1) / (5 * searchp->num));
3765 STATS_ADD_REAPED(searchp, freed);
3766 }
35386e3b 3767next:
1da177e4
LT
3768 cond_resched();
3769 }
3770 check_irq_on();
fc0abb14 3771 mutex_unlock(&cache_chain_mutex);
8fce4d8e 3772 next_reap_node();
2244b95a 3773 refresh_cpu_vm_stats(smp_processor_id());
a737b3e2 3774 /* Set up the next iteration */
cd61ef62 3775 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
1da177e4
LT
3776}
3777
3778#ifdef CONFIG_PROC_FS
3779
85289f98 3780static void print_slabinfo_header(struct seq_file *m)
1da177e4 3781{
85289f98
PE
3782 /*
3783 * Output format version, so at least we can change it
3784 * without _too_ many complaints.
3785 */
1da177e4 3786#if STATS
85289f98 3787 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 3788#else
85289f98 3789 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 3790#endif
85289f98
PE
3791 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3792 "<objperslab> <pagesperslab>");
3793 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3794 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 3795#if STATS
85289f98 3796 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 3797 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 3798 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 3799#endif
85289f98
PE
3800 seq_putc(m, '\n');
3801}
3802
3803static void *s_start(struct seq_file *m, loff_t *pos)
3804{
3805 loff_t n = *pos;
3806 struct list_head *p;
3807
fc0abb14 3808 mutex_lock(&cache_chain_mutex);
85289f98
PE
3809 if (!n)
3810 print_slabinfo_header(m);
1da177e4
LT
3811 p = cache_chain.next;
3812 while (n--) {
3813 p = p->next;
3814 if (p == &cache_chain)
3815 return NULL;
3816 }
343e0d7a 3817 return list_entry(p, struct kmem_cache, next);
1da177e4
LT
3818}
3819
3820static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3821{
343e0d7a 3822 struct kmem_cache *cachep = p;
1da177e4 3823 ++*pos;
a737b3e2
AM
3824 return cachep->next.next == &cache_chain ?
3825 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
1da177e4
LT
3826}
3827
3828static void s_stop(struct seq_file *m, void *p)
3829{
fc0abb14 3830 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
3831}
3832
3833static int s_show(struct seq_file *m, void *p)
3834{
343e0d7a 3835 struct kmem_cache *cachep = p;
b28a02de
PE
3836 struct slab *slabp;
3837 unsigned long active_objs;
3838 unsigned long num_objs;
3839 unsigned long active_slabs = 0;
3840 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3841 const char *name;
1da177e4 3842 char *error = NULL;
e498be7d
CL
3843 int node;
3844 struct kmem_list3 *l3;
1da177e4 3845
1da177e4
LT
3846 active_objs = 0;
3847 num_slabs = 0;
e498be7d
CL
3848 for_each_online_node(node) {
3849 l3 = cachep->nodelists[node];
3850 if (!l3)
3851 continue;
3852
ca3b9b91
RT
3853 check_irq_on();
3854 spin_lock_irq(&l3->list_lock);
e498be7d 3855
7a7c381d 3856 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
3857 if (slabp->inuse != cachep->num && !error)
3858 error = "slabs_full accounting error";
3859 active_objs += cachep->num;
3860 active_slabs++;
3861 }
7a7c381d 3862 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
3863 if (slabp->inuse == cachep->num && !error)
3864 error = "slabs_partial inuse accounting error";
3865 if (!slabp->inuse && !error)
3866 error = "slabs_partial/inuse accounting error";
3867 active_objs += slabp->inuse;
3868 active_slabs++;
3869 }
7a7c381d 3870 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
3871 if (slabp->inuse && !error)
3872 error = "slabs_free/inuse accounting error";
3873 num_slabs++;
3874 }
3875 free_objects += l3->free_objects;
4484ebf1
RT
3876 if (l3->shared)
3877 shared_avail += l3->shared->avail;
e498be7d 3878
ca3b9b91 3879 spin_unlock_irq(&l3->list_lock);
1da177e4 3880 }
b28a02de
PE
3881 num_slabs += active_slabs;
3882 num_objs = num_slabs * cachep->num;
e498be7d 3883 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
3884 error = "free_objects accounting error";
3885
b28a02de 3886 name = cachep->name;
1da177e4
LT
3887 if (error)
3888 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3889
3890 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 3891 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 3892 cachep->num, (1 << cachep->gfporder));
1da177e4 3893 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 3894 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 3895 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 3896 active_slabs, num_slabs, shared_avail);
1da177e4 3897#if STATS
b28a02de 3898 { /* list3 stats */
1da177e4
LT
3899 unsigned long high = cachep->high_mark;
3900 unsigned long allocs = cachep->num_allocations;
3901 unsigned long grown = cachep->grown;
3902 unsigned long reaped = cachep->reaped;
3903 unsigned long errors = cachep->errors;
3904 unsigned long max_freeable = cachep->max_freeable;
1da177e4 3905 unsigned long node_allocs = cachep->node_allocs;
e498be7d 3906 unsigned long node_frees = cachep->node_frees;
fb7faf33 3907 unsigned long overflows = cachep->node_overflow;
1da177e4 3908
e498be7d 3909 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 3910 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 3911 reaped, errors, max_freeable, node_allocs,
fb7faf33 3912 node_frees, overflows);
1da177e4
LT
3913 }
3914 /* cpu stats */
3915 {
3916 unsigned long allochit = atomic_read(&cachep->allochit);
3917 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3918 unsigned long freehit = atomic_read(&cachep->freehit);
3919 unsigned long freemiss = atomic_read(&cachep->freemiss);
3920
3921 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 3922 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
3923 }
3924#endif
3925 seq_putc(m, '\n');
1da177e4
LT
3926 return 0;
3927}
3928
3929/*
3930 * slabinfo_op - iterator that generates /proc/slabinfo
3931 *
3932 * Output layout:
3933 * cache-name
3934 * num-active-objs
3935 * total-objs
3936 * object size
3937 * num-active-slabs
3938 * total-slabs
3939 * num-pages-per-slab
3940 * + further values on SMP and with statistics enabled
3941 */
3942
3943struct seq_operations slabinfo_op = {
b28a02de
PE
3944 .start = s_start,
3945 .next = s_next,
3946 .stop = s_stop,
3947 .show = s_show,
1da177e4
LT
3948};
3949
3950#define MAX_SLABINFO_WRITE 128
3951/**
3952 * slabinfo_write - Tuning for the slab allocator
3953 * @file: unused
3954 * @buffer: user buffer
3955 * @count: data length
3956 * @ppos: unused
3957 */
b28a02de
PE
3958ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3959 size_t count, loff_t *ppos)
1da177e4 3960{
b28a02de 3961 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 3962 int limit, batchcount, shared, res;
7a7c381d 3963 struct kmem_cache *cachep;
b28a02de 3964
1da177e4
LT
3965 if (count > MAX_SLABINFO_WRITE)
3966 return -EINVAL;
3967 if (copy_from_user(&kbuf, buffer, count))
3968 return -EFAULT;
b28a02de 3969 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
3970
3971 tmp = strchr(kbuf, ' ');
3972 if (!tmp)
3973 return -EINVAL;
3974 *tmp = '\0';
3975 tmp++;
3976 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3977 return -EINVAL;
3978
3979 /* Find the cache in the chain of caches. */
fc0abb14 3980 mutex_lock(&cache_chain_mutex);
1da177e4 3981 res = -EINVAL;
7a7c381d 3982 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 3983 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
3984 if (limit < 1 || batchcount < 1 ||
3985 batchcount > limit || shared < 0) {
e498be7d 3986 res = 0;
1da177e4 3987 } else {
e498be7d 3988 res = do_tune_cpucache(cachep, limit,
b28a02de 3989 batchcount, shared);
1da177e4
LT
3990 }
3991 break;
3992 }
3993 }
fc0abb14 3994 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
3995 if (res >= 0)
3996 res = count;
3997 return res;
3998}
871751e2
AV
3999
4000#ifdef CONFIG_DEBUG_SLAB_LEAK
4001
4002static void *leaks_start(struct seq_file *m, loff_t *pos)
4003{
4004 loff_t n = *pos;
4005 struct list_head *p;
4006
4007 mutex_lock(&cache_chain_mutex);
4008 p = cache_chain.next;
4009 while (n--) {
4010 p = p->next;
4011 if (p == &cache_chain)
4012 return NULL;
4013 }
4014 return list_entry(p, struct kmem_cache, next);
4015}
4016
4017static inline int add_caller(unsigned long *n, unsigned long v)
4018{
4019 unsigned long *p;
4020 int l;
4021 if (!v)
4022 return 1;
4023 l = n[1];
4024 p = n + 2;
4025 while (l) {
4026 int i = l/2;
4027 unsigned long *q = p + 2 * i;
4028 if (*q == v) {
4029 q[1]++;
4030 return 1;
4031 }
4032 if (*q > v) {
4033 l = i;
4034 } else {
4035 p = q + 2;
4036 l -= i + 1;
4037 }
4038 }
4039 if (++n[1] == n[0])
4040 return 0;
4041 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4042 p[0] = v;
4043 p[1] = 1;
4044 return 1;
4045}
4046
4047static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4048{
4049 void *p;
4050 int i;
4051 if (n[0] == n[1])
4052 return;
4053 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4054 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4055 continue;
4056 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4057 return;
4058 }
4059}
4060
4061static void show_symbol(struct seq_file *m, unsigned long address)
4062{
4063#ifdef CONFIG_KALLSYMS
4064 char *modname;
4065 const char *name;
4066 unsigned long offset, size;
4067 char namebuf[KSYM_NAME_LEN+1];
4068
4069 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4070
4071 if (name) {
4072 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4073 if (modname)
4074 seq_printf(m, " [%s]", modname);
4075 return;
4076 }
4077#endif
4078 seq_printf(m, "%p", (void *)address);
4079}
4080
4081static int leaks_show(struct seq_file *m, void *p)
4082{
4083 struct kmem_cache *cachep = p;
871751e2
AV
4084 struct slab *slabp;
4085 struct kmem_list3 *l3;
4086 const char *name;
4087 unsigned long *n = m->private;
4088 int node;
4089 int i;
4090
4091 if (!(cachep->flags & SLAB_STORE_USER))
4092 return 0;
4093 if (!(cachep->flags & SLAB_RED_ZONE))
4094 return 0;
4095
4096 /* OK, we can do it */
4097
4098 n[1] = 0;
4099
4100 for_each_online_node(node) {
4101 l3 = cachep->nodelists[node];
4102 if (!l3)
4103 continue;
4104
4105 check_irq_on();
4106 spin_lock_irq(&l3->list_lock);
4107
7a7c381d 4108 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4109 handle_slab(n, cachep, slabp);
7a7c381d 4110 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4111 handle_slab(n, cachep, slabp);
871751e2
AV
4112 spin_unlock_irq(&l3->list_lock);
4113 }
4114 name = cachep->name;
4115 if (n[0] == n[1]) {
4116 /* Increase the buffer size */
4117 mutex_unlock(&cache_chain_mutex);
4118 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4119 if (!m->private) {
4120 /* Too bad, we are really out */
4121 m->private = n;
4122 mutex_lock(&cache_chain_mutex);
4123 return -ENOMEM;
4124 }
4125 *(unsigned long *)m->private = n[0] * 2;
4126 kfree(n);
4127 mutex_lock(&cache_chain_mutex);
4128 /* Now make sure this entry will be retried */
4129 m->count = m->size;
4130 return 0;
4131 }
4132 for (i = 0; i < n[1]; i++) {
4133 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4134 show_symbol(m, n[2*i+2]);
4135 seq_putc(m, '\n');
4136 }
4137 return 0;
4138}
4139
4140struct seq_operations slabstats_op = {
4141 .start = leaks_start,
4142 .next = s_next,
4143 .stop = s_stop,
4144 .show = leaks_show,
4145};
4146#endif
1da177e4
LT
4147#endif
4148
00e145b6
MS
4149/**
4150 * ksize - get the actual amount of memory allocated for a given object
4151 * @objp: Pointer to the object
4152 *
4153 * kmalloc may internally round up allocations and return more memory
4154 * than requested. ksize() can be used to determine the actual amount of
4155 * memory allocated. The caller may use this additional memory, even though
4156 * a smaller amount of memory was initially specified with the kmalloc call.
4157 * The caller must guarantee that objp points to a valid object previously
4158 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4159 * must not be freed during the duration of the call.
4160 */
1da177e4
LT
4161unsigned int ksize(const void *objp)
4162{
00e145b6
MS
4163 if (unlikely(objp == NULL))
4164 return 0;
1da177e4 4165
6ed5eb22 4166 return obj_size(virt_to_cache(objp));
1da177e4 4167}