]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/slab.c
mm/slab: remove BAD_ALIEN_MAGIC again
[mirror_ubuntu-kernels.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
f315e3fa
JK
160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163#if FREELIST_BYTE_INDEX
164typedef unsigned char freelist_idx_t;
165#else
166typedef unsigned short freelist_idx_t;
167#endif
168
30321c7b 169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 170
1da177e4
LT
171/*
172 * struct array_cache
173 *
1da177e4
LT
174 * Purpose:
175 * - LIFO ordering, to hand out cache-warm objects from _alloc
176 * - reduce the number of linked list operations
177 * - reduce spinlock operations
178 *
179 * The limit is stored in the per-cpu structure to reduce the data cache
180 * footprint.
181 *
182 */
183struct array_cache {
184 unsigned int avail;
185 unsigned int limit;
186 unsigned int batchcount;
187 unsigned int touched;
bda5b655 188 void *entry[]; /*
a737b3e2
AM
189 * Must have this definition in here for the proper
190 * alignment of array_cache. Also simplifies accessing
191 * the entries.
a737b3e2 192 */
1da177e4
LT
193};
194
c8522a3a
JK
195struct alien_cache {
196 spinlock_t lock;
197 struct array_cache ac;
198};
199
e498be7d
CL
200/*
201 * Need this for bootstrapping a per node allocator.
202 */
bf0dea23 203#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 204static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 205#define CACHE_CACHE 0
bf0dea23 206#define SIZE_NODE (MAX_NUMNODES)
e498be7d 207
ed11d9eb 208static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 209 struct kmem_cache_node *n, int tofree);
ed11d9eb 210static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
211 int node, struct list_head *list);
212static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 213static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 214static void cache_reap(struct work_struct *unused);
ed11d9eb 215
e0a42726
IM
216static int slab_early_init = 1;
217
ce8eb6c4 218#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 219
ce8eb6c4 220static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
221{
222 INIT_LIST_HEAD(&parent->slabs_full);
223 INIT_LIST_HEAD(&parent->slabs_partial);
224 INIT_LIST_HEAD(&parent->slabs_free);
225 parent->shared = NULL;
226 parent->alien = NULL;
2e1217cf 227 parent->colour_next = 0;
e498be7d
CL
228 spin_lock_init(&parent->list_lock);
229 parent->free_objects = 0;
230 parent->free_touched = 0;
231}
232
a737b3e2
AM
233#define MAKE_LIST(cachep, listp, slab, nodeid) \
234 do { \
235 INIT_LIST_HEAD(listp); \
18bf8541 236 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
237 } while (0)
238
a737b3e2
AM
239#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
240 do { \
e498be7d
CL
241 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
242 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
243 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
244 } while (0)
1da177e4 245
b03a017b 246#define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
1da177e4 247#define CFLGS_OFF_SLAB (0x80000000UL)
b03a017b 248#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
1da177e4
LT
249#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
250
251#define BATCHREFILL_LIMIT 16
a737b3e2
AM
252/*
253 * Optimization question: fewer reaps means less probability for unnessary
254 * cpucache drain/refill cycles.
1da177e4 255 *
dc6f3f27 256 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
257 * which could lock up otherwise freeable slabs.
258 */
5f0985bb
JZ
259#define REAPTIMEOUT_AC (2*HZ)
260#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
261
262#if STATS
263#define STATS_INC_ACTIVE(x) ((x)->num_active++)
264#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
265#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
266#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 267#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
268#define STATS_SET_HIGH(x) \
269 do { \
270 if ((x)->num_active > (x)->high_mark) \
271 (x)->high_mark = (x)->num_active; \
272 } while (0)
1da177e4
LT
273#define STATS_INC_ERR(x) ((x)->errors++)
274#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 275#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 276#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
277#define STATS_SET_FREEABLE(x, i) \
278 do { \
279 if ((x)->max_freeable < i) \
280 (x)->max_freeable = i; \
281 } while (0)
1da177e4
LT
282#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
283#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
284#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
285#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
286#else
287#define STATS_INC_ACTIVE(x) do { } while (0)
288#define STATS_DEC_ACTIVE(x) do { } while (0)
289#define STATS_INC_ALLOCED(x) do { } while (0)
290#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 291#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
292#define STATS_SET_HIGH(x) do { } while (0)
293#define STATS_INC_ERR(x) do { } while (0)
294#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 295#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 296#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 297#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
298#define STATS_INC_ALLOCHIT(x) do { } while (0)
299#define STATS_INC_ALLOCMISS(x) do { } while (0)
300#define STATS_INC_FREEHIT(x) do { } while (0)
301#define STATS_INC_FREEMISS(x) do { } while (0)
302#endif
303
304#if DEBUG
1da177e4 305
a737b3e2
AM
306/*
307 * memory layout of objects:
1da177e4 308 * 0 : objp
3dafccf2 309 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
310 * the end of an object is aligned with the end of the real
311 * allocation. Catches writes behind the end of the allocation.
3dafccf2 312 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 313 * redzone word.
3dafccf2 314 * cachep->obj_offset: The real object.
3b0efdfa
CL
315 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
316 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 317 * [BYTES_PER_WORD long]
1da177e4 318 */
343e0d7a 319static int obj_offset(struct kmem_cache *cachep)
1da177e4 320{
3dafccf2 321 return cachep->obj_offset;
1da177e4
LT
322}
323
b46b8f19 324static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
325{
326 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
327 return (unsigned long long*) (objp + obj_offset(cachep) -
328 sizeof(unsigned long long));
1da177e4
LT
329}
330
b46b8f19 331static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
332{
333 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
334 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 335 return (unsigned long long *)(objp + cachep->size -
b46b8f19 336 sizeof(unsigned long long) -
87a927c7 337 REDZONE_ALIGN);
3b0efdfa 338 return (unsigned long long *) (objp + cachep->size -
b46b8f19 339 sizeof(unsigned long long));
1da177e4
LT
340}
341
343e0d7a 342static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
343{
344 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 345 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
346}
347
348#else
349
3dafccf2 350#define obj_offset(x) 0
b46b8f19
DW
351#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
352#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
353#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
354
355#endif
356
03787301
JK
357#ifdef CONFIG_DEBUG_SLAB_LEAK
358
d31676df 359static inline bool is_store_user_clean(struct kmem_cache *cachep)
03787301 360{
d31676df
JK
361 return atomic_read(&cachep->store_user_clean) == 1;
362}
03787301 363
d31676df
JK
364static inline void set_store_user_clean(struct kmem_cache *cachep)
365{
366 atomic_set(&cachep->store_user_clean, 1);
367}
03787301 368
d31676df
JK
369static inline void set_store_user_dirty(struct kmem_cache *cachep)
370{
371 if (is_store_user_clean(cachep))
372 atomic_set(&cachep->store_user_clean, 0);
03787301
JK
373}
374
375#else
d31676df 376static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
03787301
JK
377
378#endif
379
1da177e4 380/*
3df1cccd
DR
381 * Do not go above this order unless 0 objects fit into the slab or
382 * overridden on the command line.
1da177e4 383 */
543585cc
DR
384#define SLAB_MAX_ORDER_HI 1
385#define SLAB_MAX_ORDER_LO 0
386static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 387static bool slab_max_order_set __initdata;
1da177e4 388
6ed5eb22
PE
389static inline struct kmem_cache *virt_to_cache(const void *obj)
390{
b49af68f 391 struct page *page = virt_to_head_page(obj);
35026088 392 return page->slab_cache;
6ed5eb22
PE
393}
394
8456a648 395static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
396 unsigned int idx)
397{
8456a648 398 return page->s_mem + cache->size * idx;
8fea4e96
PE
399}
400
6a2d7a95 401/*
3b0efdfa
CL
402 * We want to avoid an expensive divide : (offset / cache->size)
403 * Using the fact that size is a constant for a particular cache,
404 * we can replace (offset / cache->size) by
6a2d7a95
ED
405 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
406 */
407static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 408 const struct page *page, void *obj)
8fea4e96 409{
8456a648 410 u32 offset = (obj - page->s_mem);
6a2d7a95 411 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
412}
413
6fb92430 414#define BOOT_CPUCACHE_ENTRIES 1
1da177e4 415/* internal cache of cache description objs */
9b030cb8 416static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
417 .batchcount = 1,
418 .limit = BOOT_CPUCACHE_ENTRIES,
419 .shared = 1,
3b0efdfa 420 .size = sizeof(struct kmem_cache),
b28a02de 421 .name = "kmem_cache",
1da177e4
LT
422};
423
1871e52c 424static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 425
343e0d7a 426static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 427{
bf0dea23 428 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
429}
430
a737b3e2
AM
431/*
432 * Calculate the number of objects and left-over bytes for a given buffer size.
433 */
70f75067
JK
434static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
435 unsigned long flags, size_t *left_over)
fbaccacf 436{
70f75067 437 unsigned int num;
fbaccacf 438 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 439
fbaccacf
SR
440 /*
441 * The slab management structure can be either off the slab or
442 * on it. For the latter case, the memory allocated for a
443 * slab is used for:
444 *
fbaccacf 445 * - @buffer_size bytes for each object
2e6b3602
JK
446 * - One freelist_idx_t for each object
447 *
448 * We don't need to consider alignment of freelist because
449 * freelist will be at the end of slab page. The objects will be
450 * at the correct alignment.
fbaccacf
SR
451 *
452 * If the slab management structure is off the slab, then the
453 * alignment will already be calculated into the size. Because
454 * the slabs are all pages aligned, the objects will be at the
455 * correct alignment when allocated.
456 */
b03a017b 457 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
70f75067 458 num = slab_size / buffer_size;
2e6b3602 459 *left_over = slab_size % buffer_size;
fbaccacf 460 } else {
70f75067 461 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
2e6b3602
JK
462 *left_over = slab_size %
463 (buffer_size + sizeof(freelist_idx_t));
fbaccacf 464 }
70f75067
JK
465
466 return num;
1da177e4
LT
467}
468
f28510d3 469#if DEBUG
d40cee24 470#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 471
a737b3e2
AM
472static void __slab_error(const char *function, struct kmem_cache *cachep,
473 char *msg)
1da177e4 474{
1170532b 475 pr_err("slab error in %s(): cache `%s': %s\n",
b28a02de 476 function, cachep->name, msg);
1da177e4 477 dump_stack();
373d4d09 478 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 479}
f28510d3 480#endif
1da177e4 481
3395ee05
PM
482/*
483 * By default on NUMA we use alien caches to stage the freeing of
484 * objects allocated from other nodes. This causes massive memory
485 * inefficiencies when using fake NUMA setup to split memory into a
486 * large number of small nodes, so it can be disabled on the command
487 * line
488 */
489
490static int use_alien_caches __read_mostly = 1;
491static int __init noaliencache_setup(char *s)
492{
493 use_alien_caches = 0;
494 return 1;
495}
496__setup("noaliencache", noaliencache_setup);
497
3df1cccd
DR
498static int __init slab_max_order_setup(char *str)
499{
500 get_option(&str, &slab_max_order);
501 slab_max_order = slab_max_order < 0 ? 0 :
502 min(slab_max_order, MAX_ORDER - 1);
503 slab_max_order_set = true;
504
505 return 1;
506}
507__setup("slab_max_order=", slab_max_order_setup);
508
8fce4d8e
CL
509#ifdef CONFIG_NUMA
510/*
511 * Special reaping functions for NUMA systems called from cache_reap().
512 * These take care of doing round robin flushing of alien caches (containing
513 * objects freed on different nodes from which they were allocated) and the
514 * flushing of remote pcps by calling drain_node_pages.
515 */
1871e52c 516static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
517
518static void init_reap_node(int cpu)
519{
520 int node;
521
7d6e6d09 522 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 523 if (node == MAX_NUMNODES)
442295c9 524 node = first_node(node_online_map);
8fce4d8e 525
1871e52c 526 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
527}
528
529static void next_reap_node(void)
530{
909ea964 531 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 532
8fce4d8e
CL
533 node = next_node(node, node_online_map);
534 if (unlikely(node >= MAX_NUMNODES))
535 node = first_node(node_online_map);
909ea964 536 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
537}
538
539#else
540#define init_reap_node(cpu) do { } while (0)
541#define next_reap_node(void) do { } while (0)
542#endif
543
1da177e4
LT
544/*
545 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
546 * via the workqueue/eventd.
547 * Add the CPU number into the expiration time to minimize the possibility of
548 * the CPUs getting into lockstep and contending for the global cache chain
549 * lock.
550 */
0db0628d 551static void start_cpu_timer(int cpu)
1da177e4 552{
1871e52c 553 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
554
555 /*
556 * When this gets called from do_initcalls via cpucache_init(),
557 * init_workqueues() has already run, so keventd will be setup
558 * at that time.
559 */
52bad64d 560 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 561 init_reap_node(cpu);
203b42f7 562 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
563 schedule_delayed_work_on(cpu, reap_work,
564 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
565 }
566}
567
1fe00d50 568static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 569{
d5cff635
CM
570 /*
571 * The array_cache structures contain pointers to free object.
25985edc 572 * However, when such objects are allocated or transferred to another
d5cff635
CM
573 * cache the pointers are not cleared and they could be counted as
574 * valid references during a kmemleak scan. Therefore, kmemleak must
575 * not scan such objects.
576 */
1fe00d50
JK
577 kmemleak_no_scan(ac);
578 if (ac) {
579 ac->avail = 0;
580 ac->limit = limit;
581 ac->batchcount = batch;
582 ac->touched = 0;
1da177e4 583 }
1fe00d50
JK
584}
585
586static struct array_cache *alloc_arraycache(int node, int entries,
587 int batchcount, gfp_t gfp)
588{
5e804789 589 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
590 struct array_cache *ac = NULL;
591
592 ac = kmalloc_node(memsize, gfp, node);
593 init_arraycache(ac, entries, batchcount);
594 return ac;
1da177e4
LT
595}
596
f68f8ddd
JK
597static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
598 struct page *page, void *objp)
072bb0aa 599{
f68f8ddd
JK
600 struct kmem_cache_node *n;
601 int page_node;
602 LIST_HEAD(list);
072bb0aa 603
f68f8ddd
JK
604 page_node = page_to_nid(page);
605 n = get_node(cachep, page_node);
381760ea 606
f68f8ddd
JK
607 spin_lock(&n->list_lock);
608 free_block(cachep, &objp, 1, page_node, &list);
609 spin_unlock(&n->list_lock);
381760ea 610
f68f8ddd 611 slabs_destroy(cachep, &list);
072bb0aa
MG
612}
613
3ded175a
CL
614/*
615 * Transfer objects in one arraycache to another.
616 * Locking must be handled by the caller.
617 *
618 * Return the number of entries transferred.
619 */
620static int transfer_objects(struct array_cache *to,
621 struct array_cache *from, unsigned int max)
622{
623 /* Figure out how many entries to transfer */
732eacc0 624 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
625
626 if (!nr)
627 return 0;
628
629 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
630 sizeof(void *) *nr);
631
632 from->avail -= nr;
633 to->avail += nr;
3ded175a
CL
634 return nr;
635}
636
765c4507
CL
637#ifndef CONFIG_NUMA
638
639#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 640#define reap_alien(cachep, n) do { } while (0)
765c4507 641
c8522a3a
JK
642static inline struct alien_cache **alloc_alien_cache(int node,
643 int limit, gfp_t gfp)
765c4507 644{
8888177e 645 return NULL;
765c4507
CL
646}
647
c8522a3a 648static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
649{
650}
651
652static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
653{
654 return 0;
655}
656
657static inline void *alternate_node_alloc(struct kmem_cache *cachep,
658 gfp_t flags)
659{
660 return NULL;
661}
662
8b98c169 663static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
664 gfp_t flags, int nodeid)
665{
666 return NULL;
667}
668
4167e9b2
DR
669static inline gfp_t gfp_exact_node(gfp_t flags)
670{
444eb2a4 671 return flags & ~__GFP_NOFAIL;
4167e9b2
DR
672}
673
765c4507
CL
674#else /* CONFIG_NUMA */
675
8b98c169 676static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 677static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 678
c8522a3a
JK
679static struct alien_cache *__alloc_alien_cache(int node, int entries,
680 int batch, gfp_t gfp)
681{
5e804789 682 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
683 struct alien_cache *alc = NULL;
684
685 alc = kmalloc_node(memsize, gfp, node);
686 init_arraycache(&alc->ac, entries, batch);
49dfc304 687 spin_lock_init(&alc->lock);
c8522a3a
JK
688 return alc;
689}
690
691static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 692{
c8522a3a 693 struct alien_cache **alc_ptr;
5e804789 694 size_t memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
695 int i;
696
697 if (limit > 1)
698 limit = 12;
c8522a3a
JK
699 alc_ptr = kzalloc_node(memsize, gfp, node);
700 if (!alc_ptr)
701 return NULL;
702
703 for_each_node(i) {
704 if (i == node || !node_online(i))
705 continue;
706 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
707 if (!alc_ptr[i]) {
708 for (i--; i >= 0; i--)
709 kfree(alc_ptr[i]);
710 kfree(alc_ptr);
711 return NULL;
e498be7d
CL
712 }
713 }
c8522a3a 714 return alc_ptr;
e498be7d
CL
715}
716
c8522a3a 717static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
718{
719 int i;
720
c8522a3a 721 if (!alc_ptr)
e498be7d 722 return;
e498be7d 723 for_each_node(i)
c8522a3a
JK
724 kfree(alc_ptr[i]);
725 kfree(alc_ptr);
e498be7d
CL
726}
727
343e0d7a 728static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
729 struct array_cache *ac, int node,
730 struct list_head *list)
e498be7d 731{
18bf8541 732 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
733
734 if (ac->avail) {
ce8eb6c4 735 spin_lock(&n->list_lock);
e00946fe
CL
736 /*
737 * Stuff objects into the remote nodes shared array first.
738 * That way we could avoid the overhead of putting the objects
739 * into the free lists and getting them back later.
740 */
ce8eb6c4
CL
741 if (n->shared)
742 transfer_objects(n->shared, ac, ac->limit);
e00946fe 743
833b706c 744 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 745 ac->avail = 0;
ce8eb6c4 746 spin_unlock(&n->list_lock);
e498be7d
CL
747 }
748}
749
8fce4d8e
CL
750/*
751 * Called from cache_reap() to regularly drain alien caches round robin.
752 */
ce8eb6c4 753static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 754{
909ea964 755 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 756
ce8eb6c4 757 if (n->alien) {
c8522a3a
JK
758 struct alien_cache *alc = n->alien[node];
759 struct array_cache *ac;
760
761 if (alc) {
762 ac = &alc->ac;
49dfc304 763 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
764 LIST_HEAD(list);
765
766 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 767 spin_unlock_irq(&alc->lock);
833b706c 768 slabs_destroy(cachep, &list);
c8522a3a 769 }
8fce4d8e
CL
770 }
771 }
772}
773
a737b3e2 774static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 775 struct alien_cache **alien)
e498be7d 776{
b28a02de 777 int i = 0;
c8522a3a 778 struct alien_cache *alc;
e498be7d
CL
779 struct array_cache *ac;
780 unsigned long flags;
781
782 for_each_online_node(i) {
c8522a3a
JK
783 alc = alien[i];
784 if (alc) {
833b706c
JK
785 LIST_HEAD(list);
786
c8522a3a 787 ac = &alc->ac;
49dfc304 788 spin_lock_irqsave(&alc->lock, flags);
833b706c 789 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 790 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 791 slabs_destroy(cachep, &list);
e498be7d
CL
792 }
793 }
794}
729bd0b7 795
25c4f304
JK
796static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
797 int node, int page_node)
729bd0b7 798{
ce8eb6c4 799 struct kmem_cache_node *n;
c8522a3a
JK
800 struct alien_cache *alien = NULL;
801 struct array_cache *ac;
97654dfa 802 LIST_HEAD(list);
1ca4cb24 803
18bf8541 804 n = get_node(cachep, node);
729bd0b7 805 STATS_INC_NODEFREES(cachep);
25c4f304
JK
806 if (n->alien && n->alien[page_node]) {
807 alien = n->alien[page_node];
c8522a3a 808 ac = &alien->ac;
49dfc304 809 spin_lock(&alien->lock);
c8522a3a 810 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 811 STATS_INC_ACOVERFLOW(cachep);
25c4f304 812 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 813 }
f68f8ddd 814 ac->entry[ac->avail++] = objp;
49dfc304 815 spin_unlock(&alien->lock);
833b706c 816 slabs_destroy(cachep, &list);
729bd0b7 817 } else {
25c4f304 818 n = get_node(cachep, page_node);
18bf8541 819 spin_lock(&n->list_lock);
25c4f304 820 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 821 spin_unlock(&n->list_lock);
97654dfa 822 slabs_destroy(cachep, &list);
729bd0b7
PE
823 }
824 return 1;
825}
25c4f304
JK
826
827static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
828{
829 int page_node = page_to_nid(virt_to_page(objp));
830 int node = numa_mem_id();
831 /*
832 * Make sure we are not freeing a object from another node to the array
833 * cache on this cpu.
834 */
835 if (likely(node == page_node))
836 return 0;
837
838 return __cache_free_alien(cachep, objp, node, page_node);
839}
4167e9b2
DR
840
841/*
444eb2a4
MG
842 * Construct gfp mask to allocate from a specific node but do not reclaim or
843 * warn about failures.
4167e9b2
DR
844 */
845static inline gfp_t gfp_exact_node(gfp_t flags)
846{
444eb2a4 847 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
4167e9b2 848}
e498be7d
CL
849#endif
850
8f9f8d9e 851/*
6a67368c 852 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 853 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 854 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 855 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
856 * already in use.
857 *
18004c5d 858 * Must hold slab_mutex.
8f9f8d9e 859 */
6a67368c 860static int init_cache_node_node(int node)
8f9f8d9e
DR
861{
862 struct kmem_cache *cachep;
ce8eb6c4 863 struct kmem_cache_node *n;
5e804789 864 const size_t memsize = sizeof(struct kmem_cache_node);
8f9f8d9e 865
18004c5d 866 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e 867 /*
5f0985bb 868 * Set up the kmem_cache_node for cpu before we can
8f9f8d9e
DR
869 * begin anything. Make sure some other cpu on this
870 * node has not already allocated this
871 */
18bf8541
CL
872 n = get_node(cachep, node);
873 if (!n) {
ce8eb6c4
CL
874 n = kmalloc_node(memsize, GFP_KERNEL, node);
875 if (!n)
8f9f8d9e 876 return -ENOMEM;
ce8eb6c4 877 kmem_cache_node_init(n);
5f0985bb
JZ
878 n->next_reap = jiffies + REAPTIMEOUT_NODE +
879 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
8f9f8d9e
DR
880
881 /*
5f0985bb
JZ
882 * The kmem_cache_nodes don't come and go as CPUs
883 * come and go. slab_mutex is sufficient
8f9f8d9e
DR
884 * protection here.
885 */
ce8eb6c4 886 cachep->node[node] = n;
8f9f8d9e
DR
887 }
888
18bf8541
CL
889 spin_lock_irq(&n->list_lock);
890 n->free_limit =
8f9f8d9e
DR
891 (1 + nr_cpus_node(node)) *
892 cachep->batchcount + cachep->num;
18bf8541 893 spin_unlock_irq(&n->list_lock);
8f9f8d9e
DR
894 }
895 return 0;
896}
897
0fa8103b
WL
898static inline int slabs_tofree(struct kmem_cache *cachep,
899 struct kmem_cache_node *n)
900{
901 return (n->free_objects + cachep->num - 1) / cachep->num;
902}
903
0db0628d 904static void cpuup_canceled(long cpu)
fbf1e473
AM
905{
906 struct kmem_cache *cachep;
ce8eb6c4 907 struct kmem_cache_node *n = NULL;
7d6e6d09 908 int node = cpu_to_mem(cpu);
a70f7302 909 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 910
18004c5d 911 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
912 struct array_cache *nc;
913 struct array_cache *shared;
c8522a3a 914 struct alien_cache **alien;
97654dfa 915 LIST_HEAD(list);
fbf1e473 916
18bf8541 917 n = get_node(cachep, node);
ce8eb6c4 918 if (!n)
bf0dea23 919 continue;
fbf1e473 920
ce8eb6c4 921 spin_lock_irq(&n->list_lock);
fbf1e473 922
ce8eb6c4
CL
923 /* Free limit for this kmem_cache_node */
924 n->free_limit -= cachep->batchcount;
bf0dea23
JK
925
926 /* cpu is dead; no one can alloc from it. */
927 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
928 if (nc) {
97654dfa 929 free_block(cachep, nc->entry, nc->avail, node, &list);
bf0dea23
JK
930 nc->avail = 0;
931 }
fbf1e473 932
58463c1f 933 if (!cpumask_empty(mask)) {
ce8eb6c4 934 spin_unlock_irq(&n->list_lock);
bf0dea23 935 goto free_slab;
fbf1e473
AM
936 }
937
ce8eb6c4 938 shared = n->shared;
fbf1e473
AM
939 if (shared) {
940 free_block(cachep, shared->entry,
97654dfa 941 shared->avail, node, &list);
ce8eb6c4 942 n->shared = NULL;
fbf1e473
AM
943 }
944
ce8eb6c4
CL
945 alien = n->alien;
946 n->alien = NULL;
fbf1e473 947
ce8eb6c4 948 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
949
950 kfree(shared);
951 if (alien) {
952 drain_alien_cache(cachep, alien);
953 free_alien_cache(alien);
954 }
bf0dea23
JK
955
956free_slab:
97654dfa 957 slabs_destroy(cachep, &list);
fbf1e473
AM
958 }
959 /*
960 * In the previous loop, all the objects were freed to
961 * the respective cache's slabs, now we can go ahead and
962 * shrink each nodelist to its limit.
963 */
18004c5d 964 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 965 n = get_node(cachep, node);
ce8eb6c4 966 if (!n)
fbf1e473 967 continue;
0fa8103b 968 drain_freelist(cachep, n, slabs_tofree(cachep, n));
fbf1e473
AM
969 }
970}
971
0db0628d 972static int cpuup_prepare(long cpu)
1da177e4 973{
343e0d7a 974 struct kmem_cache *cachep;
ce8eb6c4 975 struct kmem_cache_node *n = NULL;
7d6e6d09 976 int node = cpu_to_mem(cpu);
8f9f8d9e 977 int err;
1da177e4 978
fbf1e473
AM
979 /*
980 * We need to do this right in the beginning since
981 * alloc_arraycache's are going to use this list.
982 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 983 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 984 */
6a67368c 985 err = init_cache_node_node(node);
8f9f8d9e
DR
986 if (err < 0)
987 goto bad;
fbf1e473
AM
988
989 /*
990 * Now we can go ahead with allocating the shared arrays and
991 * array caches
992 */
18004c5d 993 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473 994 struct array_cache *shared = NULL;
c8522a3a 995 struct alien_cache **alien = NULL;
fbf1e473 996
fbf1e473
AM
997 if (cachep->shared) {
998 shared = alloc_arraycache(node,
999 cachep->shared * cachep->batchcount,
83b519e8 1000 0xbaadf00d, GFP_KERNEL);
bf0dea23 1001 if (!shared)
1da177e4 1002 goto bad;
fbf1e473
AM
1003 }
1004 if (use_alien_caches) {
83b519e8 1005 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1006 if (!alien) {
1007 kfree(shared);
fbf1e473 1008 goto bad;
12d00f6a 1009 }
fbf1e473 1010 }
18bf8541 1011 n = get_node(cachep, node);
ce8eb6c4 1012 BUG_ON(!n);
fbf1e473 1013
ce8eb6c4
CL
1014 spin_lock_irq(&n->list_lock);
1015 if (!n->shared) {
fbf1e473
AM
1016 /*
1017 * We are serialised from CPU_DEAD or
1018 * CPU_UP_CANCELLED by the cpucontrol lock
1019 */
ce8eb6c4 1020 n->shared = shared;
fbf1e473
AM
1021 shared = NULL;
1022 }
4484ebf1 1023#ifdef CONFIG_NUMA
ce8eb6c4
CL
1024 if (!n->alien) {
1025 n->alien = alien;
fbf1e473 1026 alien = NULL;
1da177e4 1027 }
fbf1e473 1028#endif
ce8eb6c4 1029 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1030 kfree(shared);
1031 free_alien_cache(alien);
1032 }
ce79ddc8 1033
fbf1e473
AM
1034 return 0;
1035bad:
12d00f6a 1036 cpuup_canceled(cpu);
fbf1e473
AM
1037 return -ENOMEM;
1038}
1039
0db0628d 1040static int cpuup_callback(struct notifier_block *nfb,
fbf1e473
AM
1041 unsigned long action, void *hcpu)
1042{
1043 long cpu = (long)hcpu;
1044 int err = 0;
1045
1046 switch (action) {
fbf1e473
AM
1047 case CPU_UP_PREPARE:
1048 case CPU_UP_PREPARE_FROZEN:
18004c5d 1049 mutex_lock(&slab_mutex);
fbf1e473 1050 err = cpuup_prepare(cpu);
18004c5d 1051 mutex_unlock(&slab_mutex);
1da177e4
LT
1052 break;
1053 case CPU_ONLINE:
8bb78442 1054 case CPU_ONLINE_FROZEN:
1da177e4
LT
1055 start_cpu_timer(cpu);
1056 break;
1057#ifdef CONFIG_HOTPLUG_CPU
5830c590 1058 case CPU_DOWN_PREPARE:
8bb78442 1059 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1060 /*
18004c5d 1061 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1062 * held so that if cache_reap() is invoked it cannot do
1063 * anything expensive but will only modify reap_work
1064 * and reschedule the timer.
1065 */
afe2c511 1066 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1067 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1068 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1069 break;
1070 case CPU_DOWN_FAILED:
8bb78442 1071 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1072 start_cpu_timer(cpu);
1073 break;
1da177e4 1074 case CPU_DEAD:
8bb78442 1075 case CPU_DEAD_FROZEN:
4484ebf1
RT
1076 /*
1077 * Even if all the cpus of a node are down, we don't free the
ce8eb6c4 1078 * kmem_cache_node of any cache. This to avoid a race between
4484ebf1 1079 * cpu_down, and a kmalloc allocation from another cpu for
ce8eb6c4 1080 * memory from the node of the cpu going down. The node
4484ebf1
RT
1081 * structure is usually allocated from kmem_cache_create() and
1082 * gets destroyed at kmem_cache_destroy().
1083 */
183ff22b 1084 /* fall through */
8f5be20b 1085#endif
1da177e4 1086 case CPU_UP_CANCELED:
8bb78442 1087 case CPU_UP_CANCELED_FROZEN:
18004c5d 1088 mutex_lock(&slab_mutex);
fbf1e473 1089 cpuup_canceled(cpu);
18004c5d 1090 mutex_unlock(&slab_mutex);
1da177e4 1091 break;
1da177e4 1092 }
eac40680 1093 return notifier_from_errno(err);
1da177e4
LT
1094}
1095
0db0628d 1096static struct notifier_block cpucache_notifier = {
74b85f37
CS
1097 &cpuup_callback, NULL, 0
1098};
1da177e4 1099
8f9f8d9e
DR
1100#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1101/*
1102 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1103 * Returns -EBUSY if all objects cannot be drained so that the node is not
1104 * removed.
1105 *
18004c5d 1106 * Must hold slab_mutex.
8f9f8d9e 1107 */
6a67368c 1108static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1109{
1110 struct kmem_cache *cachep;
1111 int ret = 0;
1112
18004c5d 1113 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1114 struct kmem_cache_node *n;
8f9f8d9e 1115
18bf8541 1116 n = get_node(cachep, node);
ce8eb6c4 1117 if (!n)
8f9f8d9e
DR
1118 continue;
1119
0fa8103b 1120 drain_freelist(cachep, n, slabs_tofree(cachep, n));
8f9f8d9e 1121
ce8eb6c4
CL
1122 if (!list_empty(&n->slabs_full) ||
1123 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1124 ret = -EBUSY;
1125 break;
1126 }
1127 }
1128 return ret;
1129}
1130
1131static int __meminit slab_memory_callback(struct notifier_block *self,
1132 unsigned long action, void *arg)
1133{
1134 struct memory_notify *mnb = arg;
1135 int ret = 0;
1136 int nid;
1137
1138 nid = mnb->status_change_nid;
1139 if (nid < 0)
1140 goto out;
1141
1142 switch (action) {
1143 case MEM_GOING_ONLINE:
18004c5d 1144 mutex_lock(&slab_mutex);
6a67368c 1145 ret = init_cache_node_node(nid);
18004c5d 1146 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1147 break;
1148 case MEM_GOING_OFFLINE:
18004c5d 1149 mutex_lock(&slab_mutex);
6a67368c 1150 ret = drain_cache_node_node(nid);
18004c5d 1151 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1152 break;
1153 case MEM_ONLINE:
1154 case MEM_OFFLINE:
1155 case MEM_CANCEL_ONLINE:
1156 case MEM_CANCEL_OFFLINE:
1157 break;
1158 }
1159out:
5fda1bd5 1160 return notifier_from_errno(ret);
8f9f8d9e
DR
1161}
1162#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1163
e498be7d 1164/*
ce8eb6c4 1165 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1166 */
6744f087 1167static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1168 int nodeid)
e498be7d 1169{
6744f087 1170 struct kmem_cache_node *ptr;
e498be7d 1171
6744f087 1172 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1173 BUG_ON(!ptr);
1174
6744f087 1175 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1176 /*
1177 * Do not assume that spinlocks can be initialized via memcpy:
1178 */
1179 spin_lock_init(&ptr->list_lock);
1180
e498be7d 1181 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1182 cachep->node[nodeid] = ptr;
e498be7d
CL
1183}
1184
556a169d 1185/*
ce8eb6c4
CL
1186 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1187 * size of kmem_cache_node.
556a169d 1188 */
ce8eb6c4 1189static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1190{
1191 int node;
1192
1193 for_each_online_node(node) {
ce8eb6c4 1194 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1195 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1196 REAPTIMEOUT_NODE +
1197 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1198 }
1199}
1200
a737b3e2
AM
1201/*
1202 * Initialisation. Called after the page allocator have been initialised and
1203 * before smp_init().
1da177e4
LT
1204 */
1205void __init kmem_cache_init(void)
1206{
e498be7d
CL
1207 int i;
1208
68126702
JK
1209 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1210 sizeof(struct rcu_head));
9b030cb8
CL
1211 kmem_cache = &kmem_cache_boot;
1212
8888177e 1213 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
62918a03
SS
1214 use_alien_caches = 0;
1215
3c583465 1216 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1217 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1218
1da177e4
LT
1219 /*
1220 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1221 * page orders on machines with more than 32MB of memory if
1222 * not overridden on the command line.
1da177e4 1223 */
3df1cccd 1224 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1225 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1226
1da177e4
LT
1227 /* Bootstrap is tricky, because several objects are allocated
1228 * from caches that do not exist yet:
9b030cb8
CL
1229 * 1) initialize the kmem_cache cache: it contains the struct
1230 * kmem_cache structures of all caches, except kmem_cache itself:
1231 * kmem_cache is statically allocated.
e498be7d 1232 * Initially an __init data area is used for the head array and the
ce8eb6c4 1233 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1234 * array at the end of the bootstrap.
1da177e4 1235 * 2) Create the first kmalloc cache.
343e0d7a 1236 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1237 * An __init data area is used for the head array.
1238 * 3) Create the remaining kmalloc caches, with minimally sized
1239 * head arrays.
9b030cb8 1240 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1241 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1242 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1243 * the other cache's with kmalloc allocated memory.
1244 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1245 */
1246
9b030cb8 1247 /* 1) create the kmem_cache */
1da177e4 1248
8da3430d 1249 /*
b56efcf0 1250 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1251 */
2f9baa9f 1252 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1253 offsetof(struct kmem_cache, node) +
6744f087 1254 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1255 SLAB_HWCACHE_ALIGN);
1256 list_add(&kmem_cache->list, &slab_caches);
bf0dea23 1257 slab_state = PARTIAL;
1da177e4 1258
a737b3e2 1259 /*
bf0dea23
JK
1260 * Initialize the caches that provide memory for the kmem_cache_node
1261 * structures first. Without this, further allocations will bug.
e498be7d 1262 */
bf0dea23 1263 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
ce8eb6c4 1264 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
bf0dea23 1265 slab_state = PARTIAL_NODE;
34cc6990 1266 setup_kmalloc_cache_index_table();
e498be7d 1267
e0a42726
IM
1268 slab_early_init = 0;
1269
ce8eb6c4 1270 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1271 {
1ca4cb24
PE
1272 int nid;
1273
9c09a95c 1274 for_each_online_node(nid) {
ce8eb6c4 1275 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1276
bf0dea23 1277 init_list(kmalloc_caches[INDEX_NODE],
ce8eb6c4 1278 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1279 }
1280 }
1da177e4 1281
f97d5f63 1282 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1283}
1284
1285void __init kmem_cache_init_late(void)
1286{
1287 struct kmem_cache *cachep;
1288
97d06609 1289 slab_state = UP;
52cef189 1290
8429db5c 1291 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1292 mutex_lock(&slab_mutex);
1293 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1294 if (enable_cpucache(cachep, GFP_NOWAIT))
1295 BUG();
18004c5d 1296 mutex_unlock(&slab_mutex);
056c6241 1297
97d06609
CL
1298 /* Done! */
1299 slab_state = FULL;
1300
a737b3e2
AM
1301 /*
1302 * Register a cpu startup notifier callback that initializes
1303 * cpu_cache_get for all new cpus
1da177e4
LT
1304 */
1305 register_cpu_notifier(&cpucache_notifier);
1da177e4 1306
8f9f8d9e
DR
1307#ifdef CONFIG_NUMA
1308 /*
1309 * Register a memory hotplug callback that initializes and frees
6a67368c 1310 * node.
8f9f8d9e
DR
1311 */
1312 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1313#endif
1314
a737b3e2
AM
1315 /*
1316 * The reap timers are started later, with a module init call: That part
1317 * of the kernel is not yet operational.
1da177e4
LT
1318 */
1319}
1320
1321static int __init cpucache_init(void)
1322{
1323 int cpu;
1324
a737b3e2
AM
1325 /*
1326 * Register the timers that return unneeded pages to the page allocator
1da177e4 1327 */
e498be7d 1328 for_each_online_cpu(cpu)
a737b3e2 1329 start_cpu_timer(cpu);
a164f896
GC
1330
1331 /* Done! */
97d06609 1332 slab_state = FULL;
1da177e4
LT
1333 return 0;
1334}
1da177e4
LT
1335__initcall(cpucache_init);
1336
8bdec192
RA
1337static noinline void
1338slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1339{
9a02d699 1340#if DEBUG
ce8eb6c4 1341 struct kmem_cache_node *n;
8456a648 1342 struct page *page;
8bdec192
RA
1343 unsigned long flags;
1344 int node;
9a02d699
DR
1345 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1346 DEFAULT_RATELIMIT_BURST);
1347
1348 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1349 return;
8bdec192 1350
5b3810e5
VB
1351 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1352 nodeid, gfpflags, &gfpflags);
1353 pr_warn(" cache: %s, object size: %d, order: %d\n",
3b0efdfa 1354 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1355
18bf8541 1356 for_each_kmem_cache_node(cachep, node, n) {
8bdec192
RA
1357 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1358 unsigned long active_slabs = 0, num_slabs = 0;
1359
ce8eb6c4 1360 spin_lock_irqsave(&n->list_lock, flags);
8456a648 1361 list_for_each_entry(page, &n->slabs_full, lru) {
8bdec192
RA
1362 active_objs += cachep->num;
1363 active_slabs++;
1364 }
8456a648
JK
1365 list_for_each_entry(page, &n->slabs_partial, lru) {
1366 active_objs += page->active;
8bdec192
RA
1367 active_slabs++;
1368 }
8456a648 1369 list_for_each_entry(page, &n->slabs_free, lru)
8bdec192
RA
1370 num_slabs++;
1371
ce8eb6c4
CL
1372 free_objects += n->free_objects;
1373 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192
RA
1374
1375 num_slabs += active_slabs;
1376 num_objs = num_slabs * cachep->num;
5b3810e5 1377 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
8bdec192
RA
1378 node, active_slabs, num_slabs, active_objs, num_objs,
1379 free_objects);
1380 }
9a02d699 1381#endif
8bdec192
RA
1382}
1383
1da177e4 1384/*
8a7d9b43
WSH
1385 * Interface to system's page allocator. No need to hold the
1386 * kmem_cache_node ->list_lock.
1da177e4
LT
1387 *
1388 * If we requested dmaable memory, we will get it. Even if we
1389 * did not request dmaable memory, we might get it, but that
1390 * would be relatively rare and ignorable.
1391 */
0c3aa83e
JK
1392static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1393 int nodeid)
1da177e4
LT
1394{
1395 struct page *page;
e1b6aa6f 1396 int nr_pages;
765c4507 1397
a618e89f 1398 flags |= cachep->allocflags;
e12ba74d
MG
1399 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1400 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1401
96db800f 1402 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192 1403 if (!page) {
9a02d699 1404 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1405 return NULL;
8bdec192 1406 }
1da177e4 1407
f3ccb2c4
VD
1408 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1409 __free_pages(page, cachep->gfporder);
1410 return NULL;
1411 }
1412
e1b6aa6f 1413 nr_pages = (1 << cachep->gfporder);
1da177e4 1414 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1415 add_zone_page_state(page_zone(page),
1416 NR_SLAB_RECLAIMABLE, nr_pages);
1417 else
1418 add_zone_page_state(page_zone(page),
1419 NR_SLAB_UNRECLAIMABLE, nr_pages);
f68f8ddd 1420
a57a4988 1421 __SetPageSlab(page);
f68f8ddd
JK
1422 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1423 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
a57a4988 1424 SetPageSlabPfmemalloc(page);
072bb0aa 1425
b1eeab67
VN
1426 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1427 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1428
1429 if (cachep->ctor)
1430 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1431 else
1432 kmemcheck_mark_unallocated_pages(page, nr_pages);
1433 }
c175eea4 1434
0c3aa83e 1435 return page;
1da177e4
LT
1436}
1437
1438/*
1439 * Interface to system's page release.
1440 */
0c3aa83e 1441static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1442{
27ee57c9
VD
1443 int order = cachep->gfporder;
1444 unsigned long nr_freed = (1 << order);
1da177e4 1445
27ee57c9 1446 kmemcheck_free_shadow(page, order);
c175eea4 1447
972d1a7b
CL
1448 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1449 sub_zone_page_state(page_zone(page),
1450 NR_SLAB_RECLAIMABLE, nr_freed);
1451 else
1452 sub_zone_page_state(page_zone(page),
1453 NR_SLAB_UNRECLAIMABLE, nr_freed);
73293c2f 1454
a57a4988 1455 BUG_ON(!PageSlab(page));
73293c2f 1456 __ClearPageSlabPfmemalloc(page);
a57a4988 1457 __ClearPageSlab(page);
8456a648
JK
1458 page_mapcount_reset(page);
1459 page->mapping = NULL;
1f458cbf 1460
1da177e4
LT
1461 if (current->reclaim_state)
1462 current->reclaim_state->reclaimed_slab += nr_freed;
27ee57c9
VD
1463 memcg_uncharge_slab(page, order, cachep);
1464 __free_pages(page, order);
1da177e4
LT
1465}
1466
1467static void kmem_rcu_free(struct rcu_head *head)
1468{
68126702
JK
1469 struct kmem_cache *cachep;
1470 struct page *page;
1da177e4 1471
68126702
JK
1472 page = container_of(head, struct page, rcu_head);
1473 cachep = page->slab_cache;
1474
1475 kmem_freepages(cachep, page);
1da177e4
LT
1476}
1477
1478#if DEBUG
40b44137
JK
1479static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1480{
1481 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1482 (cachep->size % PAGE_SIZE) == 0)
1483 return true;
1484
1485 return false;
1486}
1da177e4
LT
1487
1488#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1489static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1490 unsigned long caller)
1da177e4 1491{
8c138bc0 1492 int size = cachep->object_size;
1da177e4 1493
3dafccf2 1494 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1495
b28a02de 1496 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1497 return;
1498
b28a02de
PE
1499 *addr++ = 0x12345678;
1500 *addr++ = caller;
1501 *addr++ = smp_processor_id();
1502 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1503 {
1504 unsigned long *sptr = &caller;
1505 unsigned long svalue;
1506
1507 while (!kstack_end(sptr)) {
1508 svalue = *sptr++;
1509 if (kernel_text_address(svalue)) {
b28a02de 1510 *addr++ = svalue;
1da177e4
LT
1511 size -= sizeof(unsigned long);
1512 if (size <= sizeof(unsigned long))
1513 break;
1514 }
1515 }
1516
1517 }
b28a02de 1518 *addr++ = 0x87654321;
1da177e4 1519}
40b44137
JK
1520
1521static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1522 int map, unsigned long caller)
1523{
1524 if (!is_debug_pagealloc_cache(cachep))
1525 return;
1526
1527 if (caller)
1528 store_stackinfo(cachep, objp, caller);
1529
1530 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1531}
1532
1533#else
1534static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1535 int map, unsigned long caller) {}
1536
1da177e4
LT
1537#endif
1538
343e0d7a 1539static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1540{
8c138bc0 1541 int size = cachep->object_size;
3dafccf2 1542 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1543
1544 memset(addr, val, size);
b28a02de 1545 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1546}
1547
1548static void dump_line(char *data, int offset, int limit)
1549{
1550 int i;
aa83aa40
DJ
1551 unsigned char error = 0;
1552 int bad_count = 0;
1553
1170532b 1554 pr_err("%03x: ", offset);
aa83aa40
DJ
1555 for (i = 0; i < limit; i++) {
1556 if (data[offset + i] != POISON_FREE) {
1557 error = data[offset + i];
1558 bad_count++;
1559 }
aa83aa40 1560 }
fdde6abb
SAS
1561 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1562 &data[offset], limit, 1);
aa83aa40
DJ
1563
1564 if (bad_count == 1) {
1565 error ^= POISON_FREE;
1566 if (!(error & (error - 1))) {
1170532b 1567 pr_err("Single bit error detected. Probably bad RAM.\n");
aa83aa40 1568#ifdef CONFIG_X86
1170532b 1569 pr_err("Run memtest86+ or a similar memory test tool.\n");
aa83aa40 1570#else
1170532b 1571 pr_err("Run a memory test tool.\n");
aa83aa40
DJ
1572#endif
1573 }
1574 }
1da177e4
LT
1575}
1576#endif
1577
1578#if DEBUG
1579
343e0d7a 1580static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1581{
1582 int i, size;
1583 char *realobj;
1584
1585 if (cachep->flags & SLAB_RED_ZONE) {
1170532b
JP
1586 pr_err("Redzone: 0x%llx/0x%llx\n",
1587 *dbg_redzone1(cachep, objp),
1588 *dbg_redzone2(cachep, objp));
1da177e4
LT
1589 }
1590
1591 if (cachep->flags & SLAB_STORE_USER) {
1170532b 1592 pr_err("Last user: [<%p>](%pSR)\n",
071361d3
JP
1593 *dbg_userword(cachep, objp),
1594 *dbg_userword(cachep, objp));
1da177e4 1595 }
3dafccf2 1596 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1597 size = cachep->object_size;
b28a02de 1598 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1599 int limit;
1600 limit = 16;
b28a02de
PE
1601 if (i + limit > size)
1602 limit = size - i;
1da177e4
LT
1603 dump_line(realobj, i, limit);
1604 }
1605}
1606
343e0d7a 1607static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1608{
1609 char *realobj;
1610 int size, i;
1611 int lines = 0;
1612
40b44137
JK
1613 if (is_debug_pagealloc_cache(cachep))
1614 return;
1615
3dafccf2 1616 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1617 size = cachep->object_size;
1da177e4 1618
b28a02de 1619 for (i = 0; i < size; i++) {
1da177e4 1620 char exp = POISON_FREE;
b28a02de 1621 if (i == size - 1)
1da177e4
LT
1622 exp = POISON_END;
1623 if (realobj[i] != exp) {
1624 int limit;
1625 /* Mismatch ! */
1626 /* Print header */
1627 if (lines == 0) {
1170532b
JP
1628 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1629 print_tainted(), cachep->name,
1630 realobj, size);
1da177e4
LT
1631 print_objinfo(cachep, objp, 0);
1632 }
1633 /* Hexdump the affected line */
b28a02de 1634 i = (i / 16) * 16;
1da177e4 1635 limit = 16;
b28a02de
PE
1636 if (i + limit > size)
1637 limit = size - i;
1da177e4
LT
1638 dump_line(realobj, i, limit);
1639 i += 16;
1640 lines++;
1641 /* Limit to 5 lines */
1642 if (lines > 5)
1643 break;
1644 }
1645 }
1646 if (lines != 0) {
1647 /* Print some data about the neighboring objects, if they
1648 * exist:
1649 */
8456a648 1650 struct page *page = virt_to_head_page(objp);
8fea4e96 1651 unsigned int objnr;
1da177e4 1652
8456a648 1653 objnr = obj_to_index(cachep, page, objp);
1da177e4 1654 if (objnr) {
8456a648 1655 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1656 realobj = (char *)objp + obj_offset(cachep);
1170532b 1657 pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1da177e4
LT
1658 print_objinfo(cachep, objp, 2);
1659 }
b28a02de 1660 if (objnr + 1 < cachep->num) {
8456a648 1661 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1662 realobj = (char *)objp + obj_offset(cachep);
1170532b 1663 pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1da177e4
LT
1664 print_objinfo(cachep, objp, 2);
1665 }
1666 }
1667}
1668#endif
1669
12dd36fa 1670#if DEBUG
8456a648
JK
1671static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1672 struct page *page)
1da177e4 1673{
1da177e4 1674 int i;
b03a017b
JK
1675
1676 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1677 poison_obj(cachep, page->freelist - obj_offset(cachep),
1678 POISON_FREE);
1679 }
1680
1da177e4 1681 for (i = 0; i < cachep->num; i++) {
8456a648 1682 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1683
1684 if (cachep->flags & SLAB_POISON) {
1da177e4 1685 check_poison_obj(cachep, objp);
40b44137 1686 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
1687 }
1688 if (cachep->flags & SLAB_RED_ZONE) {
1689 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 1690 slab_error(cachep, "start of a freed object was overwritten");
1da177e4 1691 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 1692 slab_error(cachep, "end of a freed object was overwritten");
1da177e4 1693 }
1da177e4 1694 }
12dd36fa 1695}
1da177e4 1696#else
8456a648
JK
1697static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1698 struct page *page)
12dd36fa 1699{
12dd36fa 1700}
1da177e4
LT
1701#endif
1702
911851e6
RD
1703/**
1704 * slab_destroy - destroy and release all objects in a slab
1705 * @cachep: cache pointer being destroyed
cb8ee1a3 1706 * @page: page pointer being destroyed
911851e6 1707 *
8a7d9b43
WSH
1708 * Destroy all the objs in a slab page, and release the mem back to the system.
1709 * Before calling the slab page must have been unlinked from the cache. The
1710 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1711 */
8456a648 1712static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1713{
7e007355 1714 void *freelist;
12dd36fa 1715
8456a648
JK
1716 freelist = page->freelist;
1717 slab_destroy_debugcheck(cachep, page);
bc4f610d
KS
1718 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1719 call_rcu(&page->rcu_head, kmem_rcu_free);
1720 else
0c3aa83e 1721 kmem_freepages(cachep, page);
68126702
JK
1722
1723 /*
8456a648 1724 * From now on, we don't use freelist
68126702
JK
1725 * although actual page can be freed in rcu context
1726 */
1727 if (OFF_SLAB(cachep))
8456a648 1728 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1729}
1730
97654dfa
JK
1731static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1732{
1733 struct page *page, *n;
1734
1735 list_for_each_entry_safe(page, n, list, lru) {
1736 list_del(&page->lru);
1737 slab_destroy(cachep, page);
1738 }
1739}
1740
4d268eba 1741/**
a70773dd
RD
1742 * calculate_slab_order - calculate size (page order) of slabs
1743 * @cachep: pointer to the cache that is being created
1744 * @size: size of objects to be created in this cache.
a70773dd
RD
1745 * @flags: slab allocation flags
1746 *
1747 * Also calculates the number of objects per slab.
4d268eba
PE
1748 *
1749 * This could be made much more intelligent. For now, try to avoid using
1750 * high order pages for slabs. When the gfp() functions are more friendly
1751 * towards high-order requests, this should be changed.
1752 */
a737b3e2 1753static size_t calculate_slab_order(struct kmem_cache *cachep,
2e6b3602 1754 size_t size, unsigned long flags)
4d268eba
PE
1755{
1756 size_t left_over = 0;
9888e6fa 1757 int gfporder;
4d268eba 1758
0aa817f0 1759 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1760 unsigned int num;
1761 size_t remainder;
1762
70f75067 1763 num = cache_estimate(gfporder, size, flags, &remainder);
4d268eba
PE
1764 if (!num)
1765 continue;
9888e6fa 1766
f315e3fa
JK
1767 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1768 if (num > SLAB_OBJ_MAX_NUM)
1769 break;
1770
b1ab41c4 1771 if (flags & CFLGS_OFF_SLAB) {
3217fd9b
JK
1772 struct kmem_cache *freelist_cache;
1773 size_t freelist_size;
1774
1775 freelist_size = num * sizeof(freelist_idx_t);
1776 freelist_cache = kmalloc_slab(freelist_size, 0u);
1777 if (!freelist_cache)
1778 continue;
1779
b1ab41c4 1780 /*
3217fd9b
JK
1781 * Needed to avoid possible looping condition
1782 * in cache_grow()
b1ab41c4 1783 */
3217fd9b
JK
1784 if (OFF_SLAB(freelist_cache))
1785 continue;
b1ab41c4 1786
3217fd9b
JK
1787 /* check if off slab has enough benefit */
1788 if (freelist_cache->size > cachep->size / 2)
1789 continue;
b1ab41c4 1790 }
4d268eba 1791
9888e6fa 1792 /* Found something acceptable - save it away */
4d268eba 1793 cachep->num = num;
9888e6fa 1794 cachep->gfporder = gfporder;
4d268eba
PE
1795 left_over = remainder;
1796
f78bb8ad
LT
1797 /*
1798 * A VFS-reclaimable slab tends to have most allocations
1799 * as GFP_NOFS and we really don't want to have to be allocating
1800 * higher-order pages when we are unable to shrink dcache.
1801 */
1802 if (flags & SLAB_RECLAIM_ACCOUNT)
1803 break;
1804
4d268eba
PE
1805 /*
1806 * Large number of objects is good, but very large slabs are
1807 * currently bad for the gfp()s.
1808 */
543585cc 1809 if (gfporder >= slab_max_order)
4d268eba
PE
1810 break;
1811
9888e6fa
LT
1812 /*
1813 * Acceptable internal fragmentation?
1814 */
a737b3e2 1815 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1816 break;
1817 }
1818 return left_over;
1819}
1820
bf0dea23
JK
1821static struct array_cache __percpu *alloc_kmem_cache_cpus(
1822 struct kmem_cache *cachep, int entries, int batchcount)
1823{
1824 int cpu;
1825 size_t size;
1826 struct array_cache __percpu *cpu_cache;
1827
1828 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 1829 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
1830
1831 if (!cpu_cache)
1832 return NULL;
1833
1834 for_each_possible_cpu(cpu) {
1835 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1836 entries, batchcount);
1837 }
1838
1839 return cpu_cache;
1840}
1841
83b519e8 1842static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 1843{
97d06609 1844 if (slab_state >= FULL)
83b519e8 1845 return enable_cpucache(cachep, gfp);
2ed3a4ef 1846
bf0dea23
JK
1847 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1848 if (!cachep->cpu_cache)
1849 return 1;
1850
97d06609 1851 if (slab_state == DOWN) {
bf0dea23
JK
1852 /* Creation of first cache (kmem_cache). */
1853 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 1854 } else if (slab_state == PARTIAL) {
bf0dea23
JK
1855 /* For kmem_cache_node */
1856 set_up_node(cachep, SIZE_NODE);
f30cf7d1 1857 } else {
bf0dea23 1858 int node;
f30cf7d1 1859
bf0dea23
JK
1860 for_each_online_node(node) {
1861 cachep->node[node] = kmalloc_node(
1862 sizeof(struct kmem_cache_node), gfp, node);
1863 BUG_ON(!cachep->node[node]);
1864 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
1865 }
1866 }
bf0dea23 1867
6a67368c 1868 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
1869 jiffies + REAPTIMEOUT_NODE +
1870 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
1871
1872 cpu_cache_get(cachep)->avail = 0;
1873 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1874 cpu_cache_get(cachep)->batchcount = 1;
1875 cpu_cache_get(cachep)->touched = 0;
1876 cachep->batchcount = 1;
1877 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 1878 return 0;
f30cf7d1
PE
1879}
1880
12220dea
JK
1881unsigned long kmem_cache_flags(unsigned long object_size,
1882 unsigned long flags, const char *name,
1883 void (*ctor)(void *))
1884{
1885 return flags;
1886}
1887
1888struct kmem_cache *
1889__kmem_cache_alias(const char *name, size_t size, size_t align,
1890 unsigned long flags, void (*ctor)(void *))
1891{
1892 struct kmem_cache *cachep;
1893
1894 cachep = find_mergeable(size, align, flags, name, ctor);
1895 if (cachep) {
1896 cachep->refcount++;
1897
1898 /*
1899 * Adjust the object sizes so that we clear
1900 * the complete object on kzalloc.
1901 */
1902 cachep->object_size = max_t(int, cachep->object_size, size);
1903 }
1904 return cachep;
1905}
1906
b03a017b
JK
1907static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1908 size_t size, unsigned long flags)
1909{
1910 size_t left;
1911
1912 cachep->num = 0;
1913
1914 if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1915 return false;
1916
1917 left = calculate_slab_order(cachep, size,
1918 flags | CFLGS_OBJFREELIST_SLAB);
1919 if (!cachep->num)
1920 return false;
1921
1922 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1923 return false;
1924
1925 cachep->colour = left / cachep->colour_off;
1926
1927 return true;
1928}
1929
158e319b
JK
1930static bool set_off_slab_cache(struct kmem_cache *cachep,
1931 size_t size, unsigned long flags)
1932{
1933 size_t left;
1934
1935 cachep->num = 0;
1936
1937 /*
3217fd9b
JK
1938 * Always use on-slab management when SLAB_NOLEAKTRACE
1939 * to avoid recursive calls into kmemleak.
158e319b 1940 */
158e319b
JK
1941 if (flags & SLAB_NOLEAKTRACE)
1942 return false;
1943
1944 /*
1945 * Size is large, assume best to place the slab management obj
1946 * off-slab (should allow better packing of objs).
1947 */
1948 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1949 if (!cachep->num)
1950 return false;
1951
1952 /*
1953 * If the slab has been placed off-slab, and we have enough space then
1954 * move it on-slab. This is at the expense of any extra colouring.
1955 */
1956 if (left >= cachep->num * sizeof(freelist_idx_t))
1957 return false;
1958
1959 cachep->colour = left / cachep->colour_off;
1960
1961 return true;
1962}
1963
1964static bool set_on_slab_cache(struct kmem_cache *cachep,
1965 size_t size, unsigned long flags)
1966{
1967 size_t left;
1968
1969 cachep->num = 0;
1970
1971 left = calculate_slab_order(cachep, size, flags);
1972 if (!cachep->num)
1973 return false;
1974
1975 cachep->colour = left / cachep->colour_off;
1976
1977 return true;
1978}
1979
1da177e4 1980/**
039363f3 1981 * __kmem_cache_create - Create a cache.
a755b76a 1982 * @cachep: cache management descriptor
1da177e4 1983 * @flags: SLAB flags
1da177e4
LT
1984 *
1985 * Returns a ptr to the cache on success, NULL on failure.
1986 * Cannot be called within a int, but can be interrupted.
20c2df83 1987 * The @ctor is run when new pages are allocated by the cache.
1da177e4 1988 *
1da177e4
LT
1989 * The flags are
1990 *
1991 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1992 * to catch references to uninitialised memory.
1993 *
1994 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1995 * for buffer overruns.
1996 *
1da177e4
LT
1997 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1998 * cacheline. This can be beneficial if you're counting cycles as closely
1999 * as davem.
2000 */
278b1bb1 2001int
8a13a4cc 2002__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4 2003{
d4a5fca5 2004 size_t ralign = BYTES_PER_WORD;
83b519e8 2005 gfp_t gfp;
278b1bb1 2006 int err;
8a13a4cc 2007 size_t size = cachep->size;
1da177e4 2008
1da177e4 2009#if DEBUG
1da177e4
LT
2010#if FORCED_DEBUG
2011 /*
2012 * Enable redzoning and last user accounting, except for caches with
2013 * large objects, if the increased size would increase the object size
2014 * above the next power of two: caches with object sizes just above a
2015 * power of two have a significant amount of internal fragmentation.
2016 */
87a927c7
DW
2017 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2018 2 * sizeof(unsigned long long)))
b28a02de 2019 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2020 if (!(flags & SLAB_DESTROY_BY_RCU))
2021 flags |= SLAB_POISON;
2022#endif
1da177e4 2023#endif
1da177e4 2024
a737b3e2
AM
2025 /*
2026 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2027 * unaligned accesses for some archs when redzoning is used, and makes
2028 * sure any on-slab bufctl's are also correctly aligned.
2029 */
b28a02de
PE
2030 if (size & (BYTES_PER_WORD - 1)) {
2031 size += (BYTES_PER_WORD - 1);
2032 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2033 }
2034
87a927c7
DW
2035 if (flags & SLAB_RED_ZONE) {
2036 ralign = REDZONE_ALIGN;
2037 /* If redzoning, ensure that the second redzone is suitably
2038 * aligned, by adjusting the object size accordingly. */
2039 size += REDZONE_ALIGN - 1;
2040 size &= ~(REDZONE_ALIGN - 1);
2041 }
ca5f9703 2042
a44b56d3 2043 /* 3) caller mandated alignment */
8a13a4cc
CL
2044 if (ralign < cachep->align) {
2045 ralign = cachep->align;
1da177e4 2046 }
3ff84a7f
PE
2047 /* disable debug if necessary */
2048 if (ralign > __alignof__(unsigned long long))
a44b56d3 2049 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2050 /*
ca5f9703 2051 * 4) Store it.
1da177e4 2052 */
8a13a4cc 2053 cachep->align = ralign;
158e319b
JK
2054 cachep->colour_off = cache_line_size();
2055 /* Offset must be a multiple of the alignment. */
2056 if (cachep->colour_off < cachep->align)
2057 cachep->colour_off = cachep->align;
1da177e4 2058
83b519e8
PE
2059 if (slab_is_available())
2060 gfp = GFP_KERNEL;
2061 else
2062 gfp = GFP_NOWAIT;
2063
1da177e4 2064#if DEBUG
1da177e4 2065
ca5f9703
PE
2066 /*
2067 * Both debugging options require word-alignment which is calculated
2068 * into align above.
2069 */
1da177e4 2070 if (flags & SLAB_RED_ZONE) {
1da177e4 2071 /* add space for red zone words */
3ff84a7f
PE
2072 cachep->obj_offset += sizeof(unsigned long long);
2073 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2074 }
2075 if (flags & SLAB_STORE_USER) {
ca5f9703 2076 /* user store requires one word storage behind the end of
87a927c7
DW
2077 * the real object. But if the second red zone needs to be
2078 * aligned to 64 bits, we must allow that much space.
1da177e4 2079 */
87a927c7
DW
2080 if (flags & SLAB_RED_ZONE)
2081 size += REDZONE_ALIGN;
2082 else
2083 size += BYTES_PER_WORD;
1da177e4 2084 }
832a15d2
JK
2085#endif
2086
7ed2f9e6
AP
2087 kasan_cache_create(cachep, &size, &flags);
2088
832a15d2
JK
2089 size = ALIGN(size, cachep->align);
2090 /*
2091 * We should restrict the number of objects in a slab to implement
2092 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2093 */
2094 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2095 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2096
2097#if DEBUG
03a2d2a3
JK
2098 /*
2099 * To activate debug pagealloc, off-slab management is necessary
2100 * requirement. In early phase of initialization, small sized slab
2101 * doesn't get initialized so it would not be possible. So, we need
2102 * to check size >= 256. It guarantees that all necessary small
2103 * sized slab is initialized in current slab initialization sequence.
2104 */
40323278 2105 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
f3a3c320
JK
2106 size >= 256 && cachep->object_size > cache_line_size()) {
2107 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2108 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2109
2110 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2111 flags |= CFLGS_OFF_SLAB;
2112 cachep->obj_offset += tmp_size - size;
2113 size = tmp_size;
2114 goto done;
2115 }
2116 }
1da177e4 2117 }
1da177e4
LT
2118#endif
2119
b03a017b
JK
2120 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2121 flags |= CFLGS_OBJFREELIST_SLAB;
2122 goto done;
2123 }
2124
158e319b 2125 if (set_off_slab_cache(cachep, size, flags)) {
1da177e4 2126 flags |= CFLGS_OFF_SLAB;
158e319b 2127 goto done;
832a15d2 2128 }
1da177e4 2129
158e319b
JK
2130 if (set_on_slab_cache(cachep, size, flags))
2131 goto done;
1da177e4 2132
158e319b 2133 return -E2BIG;
1da177e4 2134
158e319b
JK
2135done:
2136 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
1da177e4 2137 cachep->flags = flags;
a57a4988 2138 cachep->allocflags = __GFP_COMP;
4b51d669 2139 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2140 cachep->allocflags |= GFP_DMA;
3b0efdfa 2141 cachep->size = size;
6a2d7a95 2142 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2143
40b44137
JK
2144#if DEBUG
2145 /*
2146 * If we're going to use the generic kernel_map_pages()
2147 * poisoning, then it's going to smash the contents of
2148 * the redzone and userword anyhow, so switch them off.
2149 */
2150 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2151 (cachep->flags & SLAB_POISON) &&
2152 is_debug_pagealloc_cache(cachep))
2153 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2154#endif
2155
2156 if (OFF_SLAB(cachep)) {
158e319b
JK
2157 cachep->freelist_cache =
2158 kmalloc_slab(cachep->freelist_size, 0u);
e5ac9c5a 2159 }
1da177e4 2160
278b1bb1
CL
2161 err = setup_cpu_cache(cachep, gfp);
2162 if (err) {
52b4b950 2163 __kmem_cache_release(cachep);
278b1bb1 2164 return err;
2ed3a4ef 2165 }
1da177e4 2166
278b1bb1 2167 return 0;
1da177e4 2168}
1da177e4
LT
2169
2170#if DEBUG
2171static void check_irq_off(void)
2172{
2173 BUG_ON(!irqs_disabled());
2174}
2175
2176static void check_irq_on(void)
2177{
2178 BUG_ON(irqs_disabled());
2179}
2180
18726ca8
JK
2181static void check_mutex_acquired(void)
2182{
2183 BUG_ON(!mutex_is_locked(&slab_mutex));
2184}
2185
343e0d7a 2186static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2187{
2188#ifdef CONFIG_SMP
2189 check_irq_off();
18bf8541 2190 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2191#endif
2192}
e498be7d 2193
343e0d7a 2194static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2195{
2196#ifdef CONFIG_SMP
2197 check_irq_off();
18bf8541 2198 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2199#endif
2200}
2201
1da177e4
LT
2202#else
2203#define check_irq_off() do { } while(0)
2204#define check_irq_on() do { } while(0)
18726ca8 2205#define check_mutex_acquired() do { } while(0)
1da177e4 2206#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2207#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2208#endif
2209
18726ca8
JK
2210static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2211 int node, bool free_all, struct list_head *list)
2212{
2213 int tofree;
2214
2215 if (!ac || !ac->avail)
2216 return;
2217
2218 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2219 if (tofree > ac->avail)
2220 tofree = (ac->avail + 1) / 2;
2221
2222 free_block(cachep, ac->entry, tofree, node, list);
2223 ac->avail -= tofree;
2224 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2225}
aab2207c 2226
1da177e4
LT
2227static void do_drain(void *arg)
2228{
a737b3e2 2229 struct kmem_cache *cachep = arg;
1da177e4 2230 struct array_cache *ac;
7d6e6d09 2231 int node = numa_mem_id();
18bf8541 2232 struct kmem_cache_node *n;
97654dfa 2233 LIST_HEAD(list);
1da177e4
LT
2234
2235 check_irq_off();
9a2dba4b 2236 ac = cpu_cache_get(cachep);
18bf8541
CL
2237 n = get_node(cachep, node);
2238 spin_lock(&n->list_lock);
97654dfa 2239 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2240 spin_unlock(&n->list_lock);
97654dfa 2241 slabs_destroy(cachep, &list);
1da177e4
LT
2242 ac->avail = 0;
2243}
2244
343e0d7a 2245static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2246{
ce8eb6c4 2247 struct kmem_cache_node *n;
e498be7d 2248 int node;
18726ca8 2249 LIST_HEAD(list);
e498be7d 2250
15c8b6c1 2251 on_each_cpu(do_drain, cachep, 1);
1da177e4 2252 check_irq_on();
18bf8541
CL
2253 for_each_kmem_cache_node(cachep, node, n)
2254 if (n->alien)
ce8eb6c4 2255 drain_alien_cache(cachep, n->alien);
a4523a8b 2256
18726ca8
JK
2257 for_each_kmem_cache_node(cachep, node, n) {
2258 spin_lock_irq(&n->list_lock);
2259 drain_array_locked(cachep, n->shared, node, true, &list);
2260 spin_unlock_irq(&n->list_lock);
2261
2262 slabs_destroy(cachep, &list);
2263 }
1da177e4
LT
2264}
2265
ed11d9eb
CL
2266/*
2267 * Remove slabs from the list of free slabs.
2268 * Specify the number of slabs to drain in tofree.
2269 *
2270 * Returns the actual number of slabs released.
2271 */
2272static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2273 struct kmem_cache_node *n, int tofree)
1da177e4 2274{
ed11d9eb
CL
2275 struct list_head *p;
2276 int nr_freed;
8456a648 2277 struct page *page;
1da177e4 2278
ed11d9eb 2279 nr_freed = 0;
ce8eb6c4 2280 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2281
ce8eb6c4
CL
2282 spin_lock_irq(&n->list_lock);
2283 p = n->slabs_free.prev;
2284 if (p == &n->slabs_free) {
2285 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2286 goto out;
2287 }
1da177e4 2288
8456a648 2289 page = list_entry(p, struct page, lru);
8456a648 2290 list_del(&page->lru);
ed11d9eb
CL
2291 /*
2292 * Safe to drop the lock. The slab is no longer linked
2293 * to the cache.
2294 */
ce8eb6c4
CL
2295 n->free_objects -= cache->num;
2296 spin_unlock_irq(&n->list_lock);
8456a648 2297 slab_destroy(cache, page);
ed11d9eb 2298 nr_freed++;
1da177e4 2299 }
ed11d9eb
CL
2300out:
2301 return nr_freed;
1da177e4
LT
2302}
2303
d6e0b7fa 2304int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
e498be7d 2305{
18bf8541
CL
2306 int ret = 0;
2307 int node;
ce8eb6c4 2308 struct kmem_cache_node *n;
e498be7d
CL
2309
2310 drain_cpu_caches(cachep);
2311
2312 check_irq_on();
18bf8541 2313 for_each_kmem_cache_node(cachep, node, n) {
0fa8103b 2314 drain_freelist(cachep, n, slabs_tofree(cachep, n));
ed11d9eb 2315
ce8eb6c4
CL
2316 ret += !list_empty(&n->slabs_full) ||
2317 !list_empty(&n->slabs_partial);
e498be7d
CL
2318 }
2319 return (ret ? 1 : 0);
2320}
2321
945cf2b6 2322int __kmem_cache_shutdown(struct kmem_cache *cachep)
52b4b950
DS
2323{
2324 return __kmem_cache_shrink(cachep, false);
2325}
2326
2327void __kmem_cache_release(struct kmem_cache *cachep)
1da177e4 2328{
12c3667f 2329 int i;
ce8eb6c4 2330 struct kmem_cache_node *n;
1da177e4 2331
bf0dea23 2332 free_percpu(cachep->cpu_cache);
1da177e4 2333
ce8eb6c4 2334 /* NUMA: free the node structures */
18bf8541
CL
2335 for_each_kmem_cache_node(cachep, i, n) {
2336 kfree(n->shared);
2337 free_alien_cache(n->alien);
2338 kfree(n);
2339 cachep->node[i] = NULL;
12c3667f 2340 }
1da177e4 2341}
1da177e4 2342
e5ac9c5a
RT
2343/*
2344 * Get the memory for a slab management obj.
5f0985bb
JZ
2345 *
2346 * For a slab cache when the slab descriptor is off-slab, the
2347 * slab descriptor can't come from the same cache which is being created,
2348 * Because if it is the case, that means we defer the creation of
2349 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2350 * And we eventually call down to __kmem_cache_create(), which
2351 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2352 * This is a "chicken-and-egg" problem.
2353 *
2354 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2355 * which are all initialized during kmem_cache_init().
e5ac9c5a 2356 */
7e007355 2357static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2358 struct page *page, int colour_off,
2359 gfp_t local_flags, int nodeid)
1da177e4 2360{
7e007355 2361 void *freelist;
0c3aa83e 2362 void *addr = page_address(page);
b28a02de 2363
2e6b3602
JK
2364 page->s_mem = addr + colour_off;
2365 page->active = 0;
2366
b03a017b
JK
2367 if (OBJFREELIST_SLAB(cachep))
2368 freelist = NULL;
2369 else if (OFF_SLAB(cachep)) {
1da177e4 2370 /* Slab management obj is off-slab. */
8456a648 2371 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2372 local_flags, nodeid);
8456a648 2373 if (!freelist)
1da177e4
LT
2374 return NULL;
2375 } else {
2e6b3602
JK
2376 /* We will use last bytes at the slab for freelist */
2377 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2378 cachep->freelist_size;
1da177e4 2379 }
2e6b3602 2380
8456a648 2381 return freelist;
1da177e4
LT
2382}
2383
7cc68973 2384static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2385{
a41adfaa 2386 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2387}
2388
2389static inline void set_free_obj(struct page *page,
7cc68973 2390 unsigned int idx, freelist_idx_t val)
e5c58dfd 2391{
a41adfaa 2392 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2393}
2394
10b2e9e8 2395static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
1da177e4 2396{
10b2e9e8 2397#if DEBUG
1da177e4
LT
2398 int i;
2399
2400 for (i = 0; i < cachep->num; i++) {
8456a648 2401 void *objp = index_to_obj(cachep, page, i);
10b2e9e8 2402
1da177e4
LT
2403 if (cachep->flags & SLAB_STORE_USER)
2404 *dbg_userword(cachep, objp) = NULL;
2405
2406 if (cachep->flags & SLAB_RED_ZONE) {
2407 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2408 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2409 }
2410 /*
a737b3e2
AM
2411 * Constructors are not allowed to allocate memory from the same
2412 * cache which they are a constructor for. Otherwise, deadlock.
2413 * They must also be threaded.
1da177e4 2414 */
7ed2f9e6
AP
2415 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2416 kasan_unpoison_object_data(cachep,
2417 objp + obj_offset(cachep));
51cc5068 2418 cachep->ctor(objp + obj_offset(cachep));
7ed2f9e6
AP
2419 kasan_poison_object_data(
2420 cachep, objp + obj_offset(cachep));
2421 }
1da177e4
LT
2422
2423 if (cachep->flags & SLAB_RED_ZONE) {
2424 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 2425 slab_error(cachep, "constructor overwrote the end of an object");
1da177e4 2426 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 2427 slab_error(cachep, "constructor overwrote the start of an object");
1da177e4 2428 }
40b44137
JK
2429 /* need to poison the objs? */
2430 if (cachep->flags & SLAB_POISON) {
2431 poison_obj(cachep, objp, POISON_FREE);
2432 slab_kernel_map(cachep, objp, 0, 0);
2433 }
10b2e9e8 2434 }
1da177e4 2435#endif
10b2e9e8
JK
2436}
2437
2438static void cache_init_objs(struct kmem_cache *cachep,
2439 struct page *page)
2440{
2441 int i;
7ed2f9e6 2442 void *objp;
10b2e9e8
JK
2443
2444 cache_init_objs_debug(cachep, page);
2445
b03a017b
JK
2446 if (OBJFREELIST_SLAB(cachep)) {
2447 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2448 obj_offset(cachep);
2449 }
2450
10b2e9e8
JK
2451 for (i = 0; i < cachep->num; i++) {
2452 /* constructor could break poison info */
7ed2f9e6
AP
2453 if (DEBUG == 0 && cachep->ctor) {
2454 objp = index_to_obj(cachep, page, i);
2455 kasan_unpoison_object_data(cachep, objp);
2456 cachep->ctor(objp);
2457 kasan_poison_object_data(cachep, objp);
2458 }
10b2e9e8 2459
e5c58dfd 2460 set_free_obj(page, i, i);
1da177e4 2461 }
1da177e4
LT
2462}
2463
343e0d7a 2464static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2465{
4b51d669
CL
2466 if (CONFIG_ZONE_DMA_FLAG) {
2467 if (flags & GFP_DMA)
a618e89f 2468 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2469 else
a618e89f 2470 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2471 }
1da177e4
LT
2472}
2473
260b61dd 2474static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
78d382d7 2475{
b1cb0982 2476 void *objp;
78d382d7 2477
e5c58dfd 2478 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2479 page->active++;
78d382d7 2480
d31676df
JK
2481#if DEBUG
2482 if (cachep->flags & SLAB_STORE_USER)
2483 set_store_user_dirty(cachep);
2484#endif
2485
78d382d7
MD
2486 return objp;
2487}
2488
260b61dd
JK
2489static void slab_put_obj(struct kmem_cache *cachep,
2490 struct page *page, void *objp)
78d382d7 2491{
8456a648 2492 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2493#if DEBUG
16025177 2494 unsigned int i;
b1cb0982 2495
b1cb0982 2496 /* Verify double free bug */
8456a648 2497 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2498 if (get_free_obj(page, i) == objnr) {
1170532b 2499 pr_err("slab: double free detected in cache '%s', objp %p\n",
756a025f 2500 cachep->name, objp);
b1cb0982
JK
2501 BUG();
2502 }
78d382d7
MD
2503 }
2504#endif
8456a648 2505 page->active--;
b03a017b
JK
2506 if (!page->freelist)
2507 page->freelist = objp + obj_offset(cachep);
2508
e5c58dfd 2509 set_free_obj(page, page->active, objnr);
78d382d7
MD
2510}
2511
4776874f
PE
2512/*
2513 * Map pages beginning at addr to the given cache and slab. This is required
2514 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2515 * virtual address for kfree, ksize, and slab debugging.
4776874f 2516 */
8456a648 2517static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2518 void *freelist)
1da177e4 2519{
a57a4988 2520 page->slab_cache = cache;
8456a648 2521 page->freelist = freelist;
1da177e4
LT
2522}
2523
2524/*
2525 * Grow (by 1) the number of slabs within a cache. This is called by
2526 * kmem_cache_alloc() when there are no active objs left in a cache.
2527 */
3c517a61 2528static int cache_grow(struct kmem_cache *cachep,
0c3aa83e 2529 gfp_t flags, int nodeid, struct page *page)
1da177e4 2530{
7e007355 2531 void *freelist;
b28a02de
PE
2532 size_t offset;
2533 gfp_t local_flags;
ce8eb6c4 2534 struct kmem_cache_node *n;
1da177e4 2535
a737b3e2
AM
2536 /*
2537 * Be lazy and only check for valid flags here, keeping it out of the
2538 * critical path in kmem_cache_alloc().
1da177e4 2539 */
c871ac4e
AM
2540 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2541 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2542 BUG();
2543 }
6cb06229 2544 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2545
ce8eb6c4 2546 /* Take the node list lock to change the colour_next on this node */
1da177e4 2547 check_irq_off();
18bf8541 2548 n = get_node(cachep, nodeid);
ce8eb6c4 2549 spin_lock(&n->list_lock);
1da177e4
LT
2550
2551 /* Get colour for the slab, and cal the next value. */
ce8eb6c4
CL
2552 offset = n->colour_next;
2553 n->colour_next++;
2554 if (n->colour_next >= cachep->colour)
2555 n->colour_next = 0;
2556 spin_unlock(&n->list_lock);
1da177e4 2557
2e1217cf 2558 offset *= cachep->colour_off;
1da177e4 2559
d0164adc 2560 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2561 local_irq_enable();
2562
2563 /*
2564 * The test for missing atomic flag is performed here, rather than
2565 * the more obvious place, simply to reduce the critical path length
2566 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2567 * will eventually be caught here (where it matters).
2568 */
2569 kmem_flagcheck(cachep, flags);
2570
a737b3e2
AM
2571 /*
2572 * Get mem for the objs. Attempt to allocate a physical page from
2573 * 'nodeid'.
e498be7d 2574 */
0c3aa83e
JK
2575 if (!page)
2576 page = kmem_getpages(cachep, local_flags, nodeid);
2577 if (!page)
1da177e4
LT
2578 goto failed;
2579
2580 /* Get slab management. */
8456a648 2581 freelist = alloc_slabmgmt(cachep, page, offset,
6cb06229 2582 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
b03a017b 2583 if (OFF_SLAB(cachep) && !freelist)
1da177e4
LT
2584 goto opps1;
2585
8456a648 2586 slab_map_pages(cachep, page, freelist);
1da177e4 2587
7ed2f9e6 2588 kasan_poison_slab(page);
8456a648 2589 cache_init_objs(cachep, page);
1da177e4 2590
d0164adc 2591 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2592 local_irq_disable();
2593 check_irq_off();
ce8eb6c4 2594 spin_lock(&n->list_lock);
1da177e4
LT
2595
2596 /* Make slab active. */
8456a648 2597 list_add_tail(&page->lru, &(n->slabs_free));
1da177e4 2598 STATS_INC_GROWN(cachep);
ce8eb6c4
CL
2599 n->free_objects += cachep->num;
2600 spin_unlock(&n->list_lock);
1da177e4 2601 return 1;
a737b3e2 2602opps1:
0c3aa83e 2603 kmem_freepages(cachep, page);
a737b3e2 2604failed:
d0164adc 2605 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2606 local_irq_disable();
2607 return 0;
2608}
2609
2610#if DEBUG
2611
2612/*
2613 * Perform extra freeing checks:
2614 * - detect bad pointers.
2615 * - POISON/RED_ZONE checking
1da177e4
LT
2616 */
2617static void kfree_debugcheck(const void *objp)
2618{
1da177e4 2619 if (!virt_addr_valid(objp)) {
1170532b 2620 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
b28a02de
PE
2621 (unsigned long)objp);
2622 BUG();
1da177e4 2623 }
1da177e4
LT
2624}
2625
58ce1fd5
PE
2626static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2627{
b46b8f19 2628 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2629
2630 redzone1 = *dbg_redzone1(cache, obj);
2631 redzone2 = *dbg_redzone2(cache, obj);
2632
2633 /*
2634 * Redzone is ok.
2635 */
2636 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2637 return;
2638
2639 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2640 slab_error(cache, "double free detected");
2641 else
2642 slab_error(cache, "memory outside object was overwritten");
2643
1170532b
JP
2644 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2645 obj, redzone1, redzone2);
58ce1fd5
PE
2646}
2647
343e0d7a 2648static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2649 unsigned long caller)
1da177e4 2650{
1da177e4 2651 unsigned int objnr;
8456a648 2652 struct page *page;
1da177e4 2653
80cbd911
MW
2654 BUG_ON(virt_to_cache(objp) != cachep);
2655
3dafccf2 2656 objp -= obj_offset(cachep);
1da177e4 2657 kfree_debugcheck(objp);
b49af68f 2658 page = virt_to_head_page(objp);
1da177e4 2659
1da177e4 2660 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2661 verify_redzone_free(cachep, objp);
1da177e4
LT
2662 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2663 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2664 }
d31676df
JK
2665 if (cachep->flags & SLAB_STORE_USER) {
2666 set_store_user_dirty(cachep);
7c0cb9c6 2667 *dbg_userword(cachep, objp) = (void *)caller;
d31676df 2668 }
1da177e4 2669
8456a648 2670 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2671
2672 BUG_ON(objnr >= cachep->num);
8456a648 2673 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2674
1da177e4 2675 if (cachep->flags & SLAB_POISON) {
1da177e4 2676 poison_obj(cachep, objp, POISON_FREE);
40b44137 2677 slab_kernel_map(cachep, objp, 0, caller);
1da177e4
LT
2678 }
2679 return objp;
2680}
2681
1da177e4
LT
2682#else
2683#define kfree_debugcheck(x) do { } while(0)
2684#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2685#endif
2686
b03a017b
JK
2687static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2688 void **list)
2689{
2690#if DEBUG
2691 void *next = *list;
2692 void *objp;
2693
2694 while (next) {
2695 objp = next - obj_offset(cachep);
2696 next = *(void **)next;
2697 poison_obj(cachep, objp, POISON_FREE);
2698 }
2699#endif
2700}
2701
d8410234 2702static inline void fixup_slab_list(struct kmem_cache *cachep,
b03a017b
JK
2703 struct kmem_cache_node *n, struct page *page,
2704 void **list)
d8410234
JK
2705{
2706 /* move slabp to correct slabp list: */
2707 list_del(&page->lru);
b03a017b 2708 if (page->active == cachep->num) {
d8410234 2709 list_add(&page->lru, &n->slabs_full);
b03a017b
JK
2710 if (OBJFREELIST_SLAB(cachep)) {
2711#if DEBUG
2712 /* Poisoning will be done without holding the lock */
2713 if (cachep->flags & SLAB_POISON) {
2714 void **objp = page->freelist;
2715
2716 *objp = *list;
2717 *list = objp;
2718 }
2719#endif
2720 page->freelist = NULL;
2721 }
2722 } else
d8410234
JK
2723 list_add(&page->lru, &n->slabs_partial);
2724}
2725
f68f8ddd
JK
2726/* Try to find non-pfmemalloc slab if needed */
2727static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2728 struct page *page, bool pfmemalloc)
2729{
2730 if (!page)
2731 return NULL;
2732
2733 if (pfmemalloc)
2734 return page;
2735
2736 if (!PageSlabPfmemalloc(page))
2737 return page;
2738
2739 /* No need to keep pfmemalloc slab if we have enough free objects */
2740 if (n->free_objects > n->free_limit) {
2741 ClearPageSlabPfmemalloc(page);
2742 return page;
2743 }
2744
2745 /* Move pfmemalloc slab to the end of list to speed up next search */
2746 list_del(&page->lru);
2747 if (!page->active)
2748 list_add_tail(&page->lru, &n->slabs_free);
2749 else
2750 list_add_tail(&page->lru, &n->slabs_partial);
2751
2752 list_for_each_entry(page, &n->slabs_partial, lru) {
2753 if (!PageSlabPfmemalloc(page))
2754 return page;
2755 }
2756
2757 list_for_each_entry(page, &n->slabs_free, lru) {
2758 if (!PageSlabPfmemalloc(page))
2759 return page;
2760 }
2761
2762 return NULL;
2763}
2764
2765static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
7aa0d227
GT
2766{
2767 struct page *page;
2768
2769 page = list_first_entry_or_null(&n->slabs_partial,
2770 struct page, lru);
2771 if (!page) {
2772 n->free_touched = 1;
2773 page = list_first_entry_or_null(&n->slabs_free,
2774 struct page, lru);
2775 }
2776
f68f8ddd
JK
2777 if (sk_memalloc_socks())
2778 return get_valid_first_slab(n, page, pfmemalloc);
2779
7aa0d227
GT
2780 return page;
2781}
2782
f68f8ddd
JK
2783static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2784 struct kmem_cache_node *n, gfp_t flags)
2785{
2786 struct page *page;
2787 void *obj;
2788 void *list = NULL;
2789
2790 if (!gfp_pfmemalloc_allowed(flags))
2791 return NULL;
2792
2793 spin_lock(&n->list_lock);
2794 page = get_first_slab(n, true);
2795 if (!page) {
2796 spin_unlock(&n->list_lock);
2797 return NULL;
2798 }
2799
2800 obj = slab_get_obj(cachep, page);
2801 n->free_objects--;
2802
2803 fixup_slab_list(cachep, n, page, &list);
2804
2805 spin_unlock(&n->list_lock);
2806 fixup_objfreelist_debug(cachep, &list);
2807
2808 return obj;
2809}
2810
2811static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2812{
2813 int batchcount;
ce8eb6c4 2814 struct kmem_cache_node *n;
1da177e4 2815 struct array_cache *ac;
1ca4cb24 2816 int node;
b03a017b 2817 void *list = NULL;
1ca4cb24 2818
1da177e4 2819 check_irq_off();
7d6e6d09 2820 node = numa_mem_id();
f68f8ddd 2821
072bb0aa 2822retry:
9a2dba4b 2823 ac = cpu_cache_get(cachep);
1da177e4
LT
2824 batchcount = ac->batchcount;
2825 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2826 /*
2827 * If there was little recent activity on this cache, then
2828 * perform only a partial refill. Otherwise we could generate
2829 * refill bouncing.
1da177e4
LT
2830 */
2831 batchcount = BATCHREFILL_LIMIT;
2832 }
18bf8541 2833 n = get_node(cachep, node);
e498be7d 2834
ce8eb6c4
CL
2835 BUG_ON(ac->avail > 0 || !n);
2836 spin_lock(&n->list_lock);
1da177e4 2837
3ded175a 2838 /* See if we can refill from the shared array */
ce8eb6c4
CL
2839 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2840 n->shared->touched = 1;
3ded175a 2841 goto alloc_done;
44b57f1c 2842 }
3ded175a 2843
1da177e4 2844 while (batchcount > 0) {
8456a648 2845 struct page *page;
1da177e4 2846 /* Get slab alloc is to come from. */
f68f8ddd 2847 page = get_first_slab(n, false);
7aa0d227
GT
2848 if (!page)
2849 goto must_grow;
1da177e4 2850
1da177e4 2851 check_spinlock_acquired(cachep);
714b8171
PE
2852
2853 /*
2854 * The slab was either on partial or free list so
2855 * there must be at least one object available for
2856 * allocation.
2857 */
8456a648 2858 BUG_ON(page->active >= cachep->num);
714b8171 2859
8456a648 2860 while (page->active < cachep->num && batchcount--) {
1da177e4
LT
2861 STATS_INC_ALLOCED(cachep);
2862 STATS_INC_ACTIVE(cachep);
2863 STATS_SET_HIGH(cachep);
2864
f68f8ddd 2865 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
1da177e4 2866 }
1da177e4 2867
b03a017b 2868 fixup_slab_list(cachep, n, page, &list);
1da177e4
LT
2869 }
2870
a737b3e2 2871must_grow:
ce8eb6c4 2872 n->free_objects -= ac->avail;
a737b3e2 2873alloc_done:
ce8eb6c4 2874 spin_unlock(&n->list_lock);
b03a017b 2875 fixup_objfreelist_debug(cachep, &list);
1da177e4
LT
2876
2877 if (unlikely(!ac->avail)) {
2878 int x;
f68f8ddd
JK
2879
2880 /* Check if we can use obj in pfmemalloc slab */
2881 if (sk_memalloc_socks()) {
2882 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2883
2884 if (obj)
2885 return obj;
2886 }
2887
4167e9b2 2888 x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
e498be7d 2889
a737b3e2 2890 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2891 ac = cpu_cache_get(cachep);
51cd8e6f 2892 node = numa_mem_id();
072bb0aa
MG
2893
2894 /* no objects in sight? abort */
f68f8ddd 2895 if (!x && ac->avail == 0)
1da177e4
LT
2896 return NULL;
2897
a737b3e2 2898 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2899 goto retry;
2900 }
2901 ac->touched = 1;
072bb0aa 2902
f68f8ddd 2903 return ac->entry[--ac->avail];
1da177e4
LT
2904}
2905
a737b3e2
AM
2906static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2907 gfp_t flags)
1da177e4 2908{
d0164adc 2909 might_sleep_if(gfpflags_allow_blocking(flags));
1da177e4
LT
2910#if DEBUG
2911 kmem_flagcheck(cachep, flags);
2912#endif
2913}
2914
2915#if DEBUG
a737b3e2 2916static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 2917 gfp_t flags, void *objp, unsigned long caller)
1da177e4 2918{
b28a02de 2919 if (!objp)
1da177e4 2920 return objp;
b28a02de 2921 if (cachep->flags & SLAB_POISON) {
1da177e4 2922 check_poison_obj(cachep, objp);
40b44137 2923 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
2924 poison_obj(cachep, objp, POISON_INUSE);
2925 }
2926 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2927 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
2928
2929 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2930 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2931 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
756a025f 2932 slab_error(cachep, "double free, or memory outside object was overwritten");
1170532b
JP
2933 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2934 objp, *dbg_redzone1(cachep, objp),
2935 *dbg_redzone2(cachep, objp));
1da177e4
LT
2936 }
2937 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2938 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2939 }
03787301 2940
3dafccf2 2941 objp += obj_offset(cachep);
4f104934 2942 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 2943 cachep->ctor(objp);
7ea466f2
TH
2944 if (ARCH_SLAB_MINALIGN &&
2945 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
1170532b 2946 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 2947 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 2948 }
1da177e4
LT
2949 return objp;
2950}
2951#else
2952#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2953#endif
2954
343e0d7a 2955static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2956{
b28a02de 2957 void *objp;
1da177e4
LT
2958 struct array_cache *ac;
2959
5c382300 2960 check_irq_off();
8a8b6502 2961
9a2dba4b 2962 ac = cpu_cache_get(cachep);
1da177e4 2963 if (likely(ac->avail)) {
1da177e4 2964 ac->touched = 1;
f68f8ddd 2965 objp = ac->entry[--ac->avail];
072bb0aa 2966
f68f8ddd
JK
2967 STATS_INC_ALLOCHIT(cachep);
2968 goto out;
1da177e4 2969 }
072bb0aa
MG
2970
2971 STATS_INC_ALLOCMISS(cachep);
f68f8ddd 2972 objp = cache_alloc_refill(cachep, flags);
072bb0aa
MG
2973 /*
2974 * the 'ac' may be updated by cache_alloc_refill(),
2975 * and kmemleak_erase() requires its correct value.
2976 */
2977 ac = cpu_cache_get(cachep);
2978
2979out:
d5cff635
CM
2980 /*
2981 * To avoid a false negative, if an object that is in one of the
2982 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2983 * treat the array pointers as a reference to the object.
2984 */
f3d8b53a
O
2985 if (objp)
2986 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
2987 return objp;
2988}
2989
e498be7d 2990#ifdef CONFIG_NUMA
c61afb18 2991/*
2ad654bc 2992 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
2993 *
2994 * If we are in_interrupt, then process context, including cpusets and
2995 * mempolicy, may not apply and should not be used for allocation policy.
2996 */
2997static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2998{
2999 int nid_alloc, nid_here;
3000
765c4507 3001 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3002 return NULL;
7d6e6d09 3003 nid_alloc = nid_here = numa_mem_id();
c61afb18 3004 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3005 nid_alloc = cpuset_slab_spread_node();
c61afb18 3006 else if (current->mempolicy)
2a389610 3007 nid_alloc = mempolicy_slab_node();
c61afb18 3008 if (nid_alloc != nid_here)
8b98c169 3009 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3010 return NULL;
3011}
3012
765c4507
CL
3013/*
3014 * Fallback function if there was no memory available and no objects on a
3c517a61 3015 * certain node and fall back is permitted. First we scan all the
6a67368c 3016 * available node for available objects. If that fails then we
3c517a61
CL
3017 * perform an allocation without specifying a node. This allows the page
3018 * allocator to do its reclaim / fallback magic. We then insert the
3019 * slab into the proper nodelist and then allocate from it.
765c4507 3020 */
8c8cc2c1 3021static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3022{
8c8cc2c1
PE
3023 struct zonelist *zonelist;
3024 gfp_t local_flags;
dd1a239f 3025 struct zoneref *z;
54a6eb5c
MG
3026 struct zone *zone;
3027 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3028 void *obj = NULL;
3c517a61 3029 int nid;
cc9a6c87 3030 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3031
3032 if (flags & __GFP_THISNODE)
3033 return NULL;
3034
6cb06229 3035 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3036
cc9a6c87 3037retry_cpuset:
d26914d1 3038 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3039 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3040
3c517a61
CL
3041retry:
3042 /*
3043 * Look through allowed nodes for objects available
3044 * from existing per node queues.
3045 */
54a6eb5c
MG
3046 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3047 nid = zone_to_nid(zone);
aedb0eb1 3048
061d7074 3049 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
3050 get_node(cache, nid) &&
3051 get_node(cache, nid)->free_objects) {
3c517a61 3052 obj = ____cache_alloc_node(cache,
4167e9b2 3053 gfp_exact_node(flags), nid);
481c5346
CL
3054 if (obj)
3055 break;
3056 }
3c517a61
CL
3057 }
3058
cfce6604 3059 if (!obj) {
3c517a61
CL
3060 /*
3061 * This allocation will be performed within the constraints
3062 * of the current cpuset / memory policy requirements.
3063 * We may trigger various forms of reclaim on the allowed
3064 * set and go into memory reserves if necessary.
3065 */
0c3aa83e
JK
3066 struct page *page;
3067
d0164adc 3068 if (gfpflags_allow_blocking(local_flags))
dd47ea75
CL
3069 local_irq_enable();
3070 kmem_flagcheck(cache, flags);
0c3aa83e 3071 page = kmem_getpages(cache, local_flags, numa_mem_id());
d0164adc 3072 if (gfpflags_allow_blocking(local_flags))
dd47ea75 3073 local_irq_disable();
0c3aa83e 3074 if (page) {
3c517a61
CL
3075 /*
3076 * Insert into the appropriate per node queues
3077 */
0c3aa83e
JK
3078 nid = page_to_nid(page);
3079 if (cache_grow(cache, flags, nid, page)) {
3c517a61 3080 obj = ____cache_alloc_node(cache,
4167e9b2 3081 gfp_exact_node(flags), nid);
3c517a61
CL
3082 if (!obj)
3083 /*
3084 * Another processor may allocate the
3085 * objects in the slab since we are
3086 * not holding any locks.
3087 */
3088 goto retry;
3089 } else {
b6a60451 3090 /* cache_grow already freed obj */
3c517a61
CL
3091 obj = NULL;
3092 }
3093 }
aedb0eb1 3094 }
cc9a6c87 3095
d26914d1 3096 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3097 goto retry_cpuset;
765c4507
CL
3098 return obj;
3099}
3100
e498be7d
CL
3101/*
3102 * A interface to enable slab creation on nodeid
1da177e4 3103 */
8b98c169 3104static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3105 int nodeid)
e498be7d 3106{
8456a648 3107 struct page *page;
ce8eb6c4 3108 struct kmem_cache_node *n;
b28a02de 3109 void *obj;
b03a017b 3110 void *list = NULL;
b28a02de
PE
3111 int x;
3112
7c3fbbdd 3113 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3114 n = get_node(cachep, nodeid);
ce8eb6c4 3115 BUG_ON(!n);
b28a02de 3116
a737b3e2 3117retry:
ca3b9b91 3118 check_irq_off();
ce8eb6c4 3119 spin_lock(&n->list_lock);
f68f8ddd 3120 page = get_first_slab(n, false);
7aa0d227
GT
3121 if (!page)
3122 goto must_grow;
b28a02de 3123
b28a02de 3124 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3125
3126 STATS_INC_NODEALLOCS(cachep);
3127 STATS_INC_ACTIVE(cachep);
3128 STATS_SET_HIGH(cachep);
3129
8456a648 3130 BUG_ON(page->active == cachep->num);
b28a02de 3131
260b61dd 3132 obj = slab_get_obj(cachep, page);
ce8eb6c4 3133 n->free_objects--;
b28a02de 3134
b03a017b 3135 fixup_slab_list(cachep, n, page, &list);
e498be7d 3136
ce8eb6c4 3137 spin_unlock(&n->list_lock);
b03a017b 3138 fixup_objfreelist_debug(cachep, &list);
b28a02de 3139 goto done;
e498be7d 3140
a737b3e2 3141must_grow:
ce8eb6c4 3142 spin_unlock(&n->list_lock);
4167e9b2 3143 x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
765c4507
CL
3144 if (x)
3145 goto retry;
1da177e4 3146
8c8cc2c1 3147 return fallback_alloc(cachep, flags);
e498be7d 3148
a737b3e2 3149done:
b28a02de 3150 return obj;
e498be7d 3151}
8c8cc2c1 3152
8c8cc2c1 3153static __always_inline void *
48356303 3154slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3155 unsigned long caller)
8c8cc2c1
PE
3156{
3157 unsigned long save_flags;
3158 void *ptr;
7d6e6d09 3159 int slab_node = numa_mem_id();
8c8cc2c1 3160
dcce284a 3161 flags &= gfp_allowed_mask;
011eceaf
JDB
3162 cachep = slab_pre_alloc_hook(cachep, flags);
3163 if (unlikely(!cachep))
824ebef1
AM
3164 return NULL;
3165
8c8cc2c1
PE
3166 cache_alloc_debugcheck_before(cachep, flags);
3167 local_irq_save(save_flags);
3168
eacbbae3 3169 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3170 nodeid = slab_node;
8c8cc2c1 3171
18bf8541 3172 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3173 /* Node not bootstrapped yet */
3174 ptr = fallback_alloc(cachep, flags);
3175 goto out;
3176 }
3177
7d6e6d09 3178 if (nodeid == slab_node) {
8c8cc2c1
PE
3179 /*
3180 * Use the locally cached objects if possible.
3181 * However ____cache_alloc does not allow fallback
3182 * to other nodes. It may fail while we still have
3183 * objects on other nodes available.
3184 */
3185 ptr = ____cache_alloc(cachep, flags);
3186 if (ptr)
3187 goto out;
3188 }
3189 /* ___cache_alloc_node can fall back to other nodes */
3190 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3191 out:
3192 local_irq_restore(save_flags);
3193 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3194
d5e3ed66
JDB
3195 if (unlikely(flags & __GFP_ZERO) && ptr)
3196 memset(ptr, 0, cachep->object_size);
d07dbea4 3197
d5e3ed66 3198 slab_post_alloc_hook(cachep, flags, 1, &ptr);
8c8cc2c1
PE
3199 return ptr;
3200}
3201
3202static __always_inline void *
3203__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3204{
3205 void *objp;
3206
2ad654bc 3207 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3208 objp = alternate_node_alloc(cache, flags);
3209 if (objp)
3210 goto out;
3211 }
3212 objp = ____cache_alloc(cache, flags);
3213
3214 /*
3215 * We may just have run out of memory on the local node.
3216 * ____cache_alloc_node() knows how to locate memory on other nodes
3217 */
7d6e6d09
LS
3218 if (!objp)
3219 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3220
3221 out:
3222 return objp;
3223}
3224#else
3225
3226static __always_inline void *
3227__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3228{
3229 return ____cache_alloc(cachep, flags);
3230}
3231
3232#endif /* CONFIG_NUMA */
3233
3234static __always_inline void *
48356303 3235slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3236{
3237 unsigned long save_flags;
3238 void *objp;
3239
dcce284a 3240 flags &= gfp_allowed_mask;
011eceaf
JDB
3241 cachep = slab_pre_alloc_hook(cachep, flags);
3242 if (unlikely(!cachep))
824ebef1
AM
3243 return NULL;
3244
8c8cc2c1
PE
3245 cache_alloc_debugcheck_before(cachep, flags);
3246 local_irq_save(save_flags);
3247 objp = __do_cache_alloc(cachep, flags);
3248 local_irq_restore(save_flags);
3249 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3250 prefetchw(objp);
3251
d5e3ed66
JDB
3252 if (unlikely(flags & __GFP_ZERO) && objp)
3253 memset(objp, 0, cachep->object_size);
d07dbea4 3254
d5e3ed66 3255 slab_post_alloc_hook(cachep, flags, 1, &objp);
8c8cc2c1
PE
3256 return objp;
3257}
e498be7d
CL
3258
3259/*
5f0985bb 3260 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3261 * @list: List of detached free slabs should be freed by caller
e498be7d 3262 */
97654dfa
JK
3263static void free_block(struct kmem_cache *cachep, void **objpp,
3264 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3265{
3266 int i;
25c063fb 3267 struct kmem_cache_node *n = get_node(cachep, node);
1da177e4
LT
3268
3269 for (i = 0; i < nr_objects; i++) {
072bb0aa 3270 void *objp;
8456a648 3271 struct page *page;
1da177e4 3272
072bb0aa
MG
3273 objp = objpp[i];
3274
8456a648 3275 page = virt_to_head_page(objp);
8456a648 3276 list_del(&page->lru);
ff69416e 3277 check_spinlock_acquired_node(cachep, node);
260b61dd 3278 slab_put_obj(cachep, page, objp);
1da177e4 3279 STATS_DEC_ACTIVE(cachep);
ce8eb6c4 3280 n->free_objects++;
1da177e4
LT
3281
3282 /* fixup slab chains */
8456a648 3283 if (page->active == 0) {
ce8eb6c4
CL
3284 if (n->free_objects > n->free_limit) {
3285 n->free_objects -= cachep->num;
97654dfa 3286 list_add_tail(&page->lru, list);
1da177e4 3287 } else {
8456a648 3288 list_add(&page->lru, &n->slabs_free);
1da177e4
LT
3289 }
3290 } else {
3291 /* Unconditionally move a slab to the end of the
3292 * partial list on free - maximum time for the
3293 * other objects to be freed, too.
3294 */
8456a648 3295 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3296 }
3297 }
3298}
3299
343e0d7a 3300static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3301{
3302 int batchcount;
ce8eb6c4 3303 struct kmem_cache_node *n;
7d6e6d09 3304 int node = numa_mem_id();
97654dfa 3305 LIST_HEAD(list);
1da177e4
LT
3306
3307 batchcount = ac->batchcount;
260b61dd 3308
1da177e4 3309 check_irq_off();
18bf8541 3310 n = get_node(cachep, node);
ce8eb6c4
CL
3311 spin_lock(&n->list_lock);
3312 if (n->shared) {
3313 struct array_cache *shared_array = n->shared;
b28a02de 3314 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3315 if (max) {
3316 if (batchcount > max)
3317 batchcount = max;
e498be7d 3318 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3319 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3320 shared_array->avail += batchcount;
3321 goto free_done;
3322 }
3323 }
3324
97654dfa 3325 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3326free_done:
1da177e4
LT
3327#if STATS
3328 {
3329 int i = 0;
73c0219d 3330 struct page *page;
1da177e4 3331
73c0219d 3332 list_for_each_entry(page, &n->slabs_free, lru) {
8456a648 3333 BUG_ON(page->active);
1da177e4
LT
3334
3335 i++;
1da177e4
LT
3336 }
3337 STATS_SET_FREEABLE(cachep, i);
3338 }
3339#endif
ce8eb6c4 3340 spin_unlock(&n->list_lock);
97654dfa 3341 slabs_destroy(cachep, &list);
1da177e4 3342 ac->avail -= batchcount;
a737b3e2 3343 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3344}
3345
3346/*
a737b3e2
AM
3347 * Release an obj back to its cache. If the obj has a constructed state, it must
3348 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3349 */
a947eb95 3350static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3351 unsigned long caller)
1da177e4 3352{
9a2dba4b 3353 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4 3354
7ed2f9e6
AP
3355 kasan_slab_free(cachep, objp);
3356
1da177e4 3357 check_irq_off();
d5cff635 3358 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3359 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3360
8c138bc0 3361 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3362
1807a1aa
SS
3363 /*
3364 * Skip calling cache_free_alien() when the platform is not numa.
3365 * This will avoid cache misses that happen while accessing slabp (which
3366 * is per page memory reference) to get nodeid. Instead use a global
3367 * variable to skip the call, which is mostly likely to be present in
3368 * the cache.
3369 */
b6e68bc1 3370 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3371 return;
3372
3d880194 3373 if (ac->avail < ac->limit) {
1da177e4 3374 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3375 } else {
3376 STATS_INC_FREEMISS(cachep);
3377 cache_flusharray(cachep, ac);
1da177e4 3378 }
42c8c99c 3379
f68f8ddd
JK
3380 if (sk_memalloc_socks()) {
3381 struct page *page = virt_to_head_page(objp);
3382
3383 if (unlikely(PageSlabPfmemalloc(page))) {
3384 cache_free_pfmemalloc(cachep, page, objp);
3385 return;
3386 }
3387 }
3388
3389 ac->entry[ac->avail++] = objp;
1da177e4
LT
3390}
3391
3392/**
3393 * kmem_cache_alloc - Allocate an object
3394 * @cachep: The cache to allocate from.
3395 * @flags: See kmalloc().
3396 *
3397 * Allocate an object from this cache. The flags are only relevant
3398 * if the cache has no available objects.
3399 */
343e0d7a 3400void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3401{
48356303 3402 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3403
505f5dcb 3404 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3405 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3406 cachep->object_size, cachep->size, flags);
36555751
EGM
3407
3408 return ret;
1da177e4
LT
3409}
3410EXPORT_SYMBOL(kmem_cache_alloc);
3411
7b0501dd
JDB
3412static __always_inline void
3413cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3414 size_t size, void **p, unsigned long caller)
3415{
3416 size_t i;
3417
3418 for (i = 0; i < size; i++)
3419 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3420}
3421
865762a8 3422int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2a777eac 3423 void **p)
484748f0 3424{
2a777eac
JDB
3425 size_t i;
3426
3427 s = slab_pre_alloc_hook(s, flags);
3428 if (!s)
3429 return 0;
3430
3431 cache_alloc_debugcheck_before(s, flags);
3432
3433 local_irq_disable();
3434 for (i = 0; i < size; i++) {
3435 void *objp = __do_cache_alloc(s, flags);
3436
2a777eac
JDB
3437 if (unlikely(!objp))
3438 goto error;
3439 p[i] = objp;
3440 }
3441 local_irq_enable();
3442
7b0501dd
JDB
3443 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3444
2a777eac
JDB
3445 /* Clear memory outside IRQ disabled section */
3446 if (unlikely(flags & __GFP_ZERO))
3447 for (i = 0; i < size; i++)
3448 memset(p[i], 0, s->object_size);
3449
3450 slab_post_alloc_hook(s, flags, size, p);
3451 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3452 return size;
3453error:
3454 local_irq_enable();
7b0501dd 3455 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
2a777eac
JDB
3456 slab_post_alloc_hook(s, flags, i, p);
3457 __kmem_cache_free_bulk(s, i, p);
3458 return 0;
484748f0
CL
3459}
3460EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3461
0f24f128 3462#ifdef CONFIG_TRACING
85beb586 3463void *
4052147c 3464kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3465{
85beb586
SR
3466 void *ret;
3467
48356303 3468 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586 3469
505f5dcb 3470 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3471 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3472 size, cachep->size, flags);
85beb586 3473 return ret;
36555751 3474}
85beb586 3475EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3476#endif
3477
1da177e4 3478#ifdef CONFIG_NUMA
d0d04b78
ZL
3479/**
3480 * kmem_cache_alloc_node - Allocate an object on the specified node
3481 * @cachep: The cache to allocate from.
3482 * @flags: See kmalloc().
3483 * @nodeid: node number of the target node.
3484 *
3485 * Identical to kmem_cache_alloc but it will allocate memory on the given
3486 * node, which can improve the performance for cpu bound structures.
3487 *
3488 * Fallback to other node is possible if __GFP_THISNODE is not set.
3489 */
8b98c169
CH
3490void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3491{
48356303 3492 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3493
505f5dcb 3494 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3495 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3496 cachep->object_size, cachep->size,
ca2b84cb 3497 flags, nodeid);
36555751
EGM
3498
3499 return ret;
8b98c169 3500}
1da177e4
LT
3501EXPORT_SYMBOL(kmem_cache_alloc_node);
3502
0f24f128 3503#ifdef CONFIG_TRACING
4052147c 3504void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3505 gfp_t flags,
4052147c
EG
3506 int nodeid,
3507 size_t size)
36555751 3508{
85beb586
SR
3509 void *ret;
3510
592f4145 3511 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
505f5dcb
AP
3512
3513 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3514 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3515 size, cachep->size,
85beb586
SR
3516 flags, nodeid);
3517 return ret;
36555751 3518}
85beb586 3519EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3520#endif
3521
8b98c169 3522static __always_inline void *
7c0cb9c6 3523__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3524{
343e0d7a 3525 struct kmem_cache *cachep;
7ed2f9e6 3526 void *ret;
97e2bde4 3527
2c59dd65 3528 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3529 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3530 return cachep;
7ed2f9e6 3531 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
505f5dcb 3532 kasan_kmalloc(cachep, ret, size, flags);
7ed2f9e6
AP
3533
3534 return ret;
97e2bde4 3535}
8b98c169 3536
8b98c169
CH
3537void *__kmalloc_node(size_t size, gfp_t flags, int node)
3538{
7c0cb9c6 3539 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3540}
dbe5e69d 3541EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3542
3543void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3544 int node, unsigned long caller)
8b98c169 3545{
7c0cb9c6 3546 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3547}
3548EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3549#endif /* CONFIG_NUMA */
1da177e4
LT
3550
3551/**
800590f5 3552 * __do_kmalloc - allocate memory
1da177e4 3553 * @size: how many bytes of memory are required.
800590f5 3554 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3555 * @caller: function caller for debug tracking of the caller
1da177e4 3556 */
7fd6b141 3557static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3558 unsigned long caller)
1da177e4 3559{
343e0d7a 3560 struct kmem_cache *cachep;
36555751 3561 void *ret;
1da177e4 3562
2c59dd65 3563 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3564 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3565 return cachep;
48356303 3566 ret = slab_alloc(cachep, flags, caller);
36555751 3567
505f5dcb 3568 kasan_kmalloc(cachep, ret, size, flags);
7c0cb9c6 3569 trace_kmalloc(caller, ret,
3b0efdfa 3570 size, cachep->size, flags);
36555751
EGM
3571
3572 return ret;
7fd6b141
PE
3573}
3574
7fd6b141
PE
3575void *__kmalloc(size_t size, gfp_t flags)
3576{
7c0cb9c6 3577 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3578}
3579EXPORT_SYMBOL(__kmalloc);
3580
ce71e27c 3581void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3582{
7c0cb9c6 3583 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3584}
3585EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3586
1da177e4
LT
3587/**
3588 * kmem_cache_free - Deallocate an object
3589 * @cachep: The cache the allocation was from.
3590 * @objp: The previously allocated object.
3591 *
3592 * Free an object which was previously allocated from this
3593 * cache.
3594 */
343e0d7a 3595void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3596{
3597 unsigned long flags;
b9ce5ef4
GC
3598 cachep = cache_from_obj(cachep, objp);
3599 if (!cachep)
3600 return;
1da177e4
LT
3601
3602 local_irq_save(flags);
d97d476b 3603 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3604 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3605 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3606 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3607 local_irq_restore(flags);
36555751 3608
ca2b84cb 3609 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3610}
3611EXPORT_SYMBOL(kmem_cache_free);
3612
e6cdb58d
JDB
3613void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3614{
3615 struct kmem_cache *s;
3616 size_t i;
3617
3618 local_irq_disable();
3619 for (i = 0; i < size; i++) {
3620 void *objp = p[i];
3621
ca257195
JDB
3622 if (!orig_s) /* called via kfree_bulk */
3623 s = virt_to_cache(objp);
3624 else
3625 s = cache_from_obj(orig_s, objp);
e6cdb58d
JDB
3626
3627 debug_check_no_locks_freed(objp, s->object_size);
3628 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3629 debug_check_no_obj_freed(objp, s->object_size);
3630
3631 __cache_free(s, objp, _RET_IP_);
3632 }
3633 local_irq_enable();
3634
3635 /* FIXME: add tracing */
3636}
3637EXPORT_SYMBOL(kmem_cache_free_bulk);
3638
1da177e4
LT
3639/**
3640 * kfree - free previously allocated memory
3641 * @objp: pointer returned by kmalloc.
3642 *
80e93eff
PE
3643 * If @objp is NULL, no operation is performed.
3644 *
1da177e4
LT
3645 * Don't free memory not originally allocated by kmalloc()
3646 * or you will run into trouble.
3647 */
3648void kfree(const void *objp)
3649{
343e0d7a 3650 struct kmem_cache *c;
1da177e4
LT
3651 unsigned long flags;
3652
2121db74
PE
3653 trace_kfree(_RET_IP_, objp);
3654
6cb8f913 3655 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3656 return;
3657 local_irq_save(flags);
3658 kfree_debugcheck(objp);
6ed5eb22 3659 c = virt_to_cache(objp);
8c138bc0
CL
3660 debug_check_no_locks_freed(objp, c->object_size);
3661
3662 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3663 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3664 local_irq_restore(flags);
3665}
3666EXPORT_SYMBOL(kfree);
3667
e498be7d 3668/*
ce8eb6c4 3669 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3670 */
5f0985bb 3671static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3672{
3673 int node;
ce8eb6c4 3674 struct kmem_cache_node *n;
cafeb02e 3675 struct array_cache *new_shared;
c8522a3a 3676 struct alien_cache **new_alien = NULL;
e498be7d 3677
9c09a95c 3678 for_each_online_node(node) {
cafeb02e 3679
b455def2
L
3680 if (use_alien_caches) {
3681 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3682 if (!new_alien)
3683 goto fail;
3684 }
cafeb02e 3685
63109846
ED
3686 new_shared = NULL;
3687 if (cachep->shared) {
3688 new_shared = alloc_arraycache(node,
0718dc2a 3689 cachep->shared*cachep->batchcount,
83b519e8 3690 0xbaadf00d, gfp);
63109846
ED
3691 if (!new_shared) {
3692 free_alien_cache(new_alien);
3693 goto fail;
3694 }
0718dc2a 3695 }
cafeb02e 3696
18bf8541 3697 n = get_node(cachep, node);
ce8eb6c4
CL
3698 if (n) {
3699 struct array_cache *shared = n->shared;
97654dfa 3700 LIST_HEAD(list);
cafeb02e 3701
ce8eb6c4 3702 spin_lock_irq(&n->list_lock);
e498be7d 3703
cafeb02e 3704 if (shared)
0718dc2a 3705 free_block(cachep, shared->entry,
97654dfa 3706 shared->avail, node, &list);
e498be7d 3707
ce8eb6c4
CL
3708 n->shared = new_shared;
3709 if (!n->alien) {
3710 n->alien = new_alien;
e498be7d
CL
3711 new_alien = NULL;
3712 }
ce8eb6c4 3713 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3714 cachep->batchcount + cachep->num;
ce8eb6c4 3715 spin_unlock_irq(&n->list_lock);
97654dfa 3716 slabs_destroy(cachep, &list);
cafeb02e 3717 kfree(shared);
e498be7d
CL
3718 free_alien_cache(new_alien);
3719 continue;
3720 }
ce8eb6c4
CL
3721 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3722 if (!n) {
0718dc2a
CL
3723 free_alien_cache(new_alien);
3724 kfree(new_shared);
e498be7d 3725 goto fail;
0718dc2a 3726 }
e498be7d 3727
ce8eb6c4 3728 kmem_cache_node_init(n);
5f0985bb
JZ
3729 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3730 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
ce8eb6c4
CL
3731 n->shared = new_shared;
3732 n->alien = new_alien;
3733 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3734 cachep->batchcount + cachep->num;
ce8eb6c4 3735 cachep->node[node] = n;
e498be7d 3736 }
cafeb02e 3737 return 0;
0718dc2a 3738
a737b3e2 3739fail:
3b0efdfa 3740 if (!cachep->list.next) {
0718dc2a
CL
3741 /* Cache is not active yet. Roll back what we did */
3742 node--;
3743 while (node >= 0) {
18bf8541
CL
3744 n = get_node(cachep, node);
3745 if (n) {
ce8eb6c4
CL
3746 kfree(n->shared);
3747 free_alien_cache(n->alien);
3748 kfree(n);
6a67368c 3749 cachep->node[node] = NULL;
0718dc2a
CL
3750 }
3751 node--;
3752 }
3753 }
cafeb02e 3754 return -ENOMEM;
e498be7d
CL
3755}
3756
18004c5d 3757/* Always called with the slab_mutex held */
943a451a 3758static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3759 int batchcount, int shared, gfp_t gfp)
1da177e4 3760{
bf0dea23
JK
3761 struct array_cache __percpu *cpu_cache, *prev;
3762 int cpu;
1da177e4 3763
bf0dea23
JK
3764 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3765 if (!cpu_cache)
d2e7b7d0
SS
3766 return -ENOMEM;
3767
bf0dea23
JK
3768 prev = cachep->cpu_cache;
3769 cachep->cpu_cache = cpu_cache;
3770 kick_all_cpus_sync();
e498be7d 3771
1da177e4 3772 check_irq_on();
1da177e4
LT
3773 cachep->batchcount = batchcount;
3774 cachep->limit = limit;
e498be7d 3775 cachep->shared = shared;
1da177e4 3776
bf0dea23
JK
3777 if (!prev)
3778 goto alloc_node;
3779
3780 for_each_online_cpu(cpu) {
97654dfa 3781 LIST_HEAD(list);
18bf8541
CL
3782 int node;
3783 struct kmem_cache_node *n;
bf0dea23 3784 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3785
bf0dea23 3786 node = cpu_to_mem(cpu);
18bf8541
CL
3787 n = get_node(cachep, node);
3788 spin_lock_irq(&n->list_lock);
bf0dea23 3789 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3790 spin_unlock_irq(&n->list_lock);
97654dfa 3791 slabs_destroy(cachep, &list);
1da177e4 3792 }
bf0dea23
JK
3793 free_percpu(prev);
3794
3795alloc_node:
5f0985bb 3796 return alloc_kmem_cache_node(cachep, gfp);
1da177e4
LT
3797}
3798
943a451a
GC
3799static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3800 int batchcount, int shared, gfp_t gfp)
3801{
3802 int ret;
426589f5 3803 struct kmem_cache *c;
943a451a
GC
3804
3805 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3806
3807 if (slab_state < FULL)
3808 return ret;
3809
3810 if ((ret < 0) || !is_root_cache(cachep))
3811 return ret;
3812
426589f5
VD
3813 lockdep_assert_held(&slab_mutex);
3814 for_each_memcg_cache(c, cachep) {
3815 /* return value determined by the root cache only */
3816 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
943a451a
GC
3817 }
3818
3819 return ret;
3820}
3821
18004c5d 3822/* Called with slab_mutex held always */
83b519e8 3823static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3824{
3825 int err;
943a451a
GC
3826 int limit = 0;
3827 int shared = 0;
3828 int batchcount = 0;
3829
3830 if (!is_root_cache(cachep)) {
3831 struct kmem_cache *root = memcg_root_cache(cachep);
3832 limit = root->limit;
3833 shared = root->shared;
3834 batchcount = root->batchcount;
3835 }
1da177e4 3836
943a451a
GC
3837 if (limit && shared && batchcount)
3838 goto skip_setup;
a737b3e2
AM
3839 /*
3840 * The head array serves three purposes:
1da177e4
LT
3841 * - create a LIFO ordering, i.e. return objects that are cache-warm
3842 * - reduce the number of spinlock operations.
a737b3e2 3843 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3844 * bufctl chains: array operations are cheaper.
3845 * The numbers are guessed, we should auto-tune as described by
3846 * Bonwick.
3847 */
3b0efdfa 3848 if (cachep->size > 131072)
1da177e4 3849 limit = 1;
3b0efdfa 3850 else if (cachep->size > PAGE_SIZE)
1da177e4 3851 limit = 8;
3b0efdfa 3852 else if (cachep->size > 1024)
1da177e4 3853 limit = 24;
3b0efdfa 3854 else if (cachep->size > 256)
1da177e4
LT
3855 limit = 54;
3856 else
3857 limit = 120;
3858
a737b3e2
AM
3859 /*
3860 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3861 * allocation behaviour: Most allocs on one cpu, most free operations
3862 * on another cpu. For these cases, an efficient object passing between
3863 * cpus is necessary. This is provided by a shared array. The array
3864 * replaces Bonwick's magazine layer.
3865 * On uniprocessor, it's functionally equivalent (but less efficient)
3866 * to a larger limit. Thus disabled by default.
3867 */
3868 shared = 0;
3b0efdfa 3869 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3870 shared = 8;
1da177e4
LT
3871
3872#if DEBUG
a737b3e2
AM
3873 /*
3874 * With debugging enabled, large batchcount lead to excessively long
3875 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3876 */
3877 if (limit > 32)
3878 limit = 32;
3879#endif
943a451a
GC
3880 batchcount = (limit + 1) / 2;
3881skip_setup:
3882 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
1da177e4 3883 if (err)
1170532b 3884 pr_err("enable_cpucache failed for %s, error %d\n",
b28a02de 3885 cachep->name, -err);
2ed3a4ef 3886 return err;
1da177e4
LT
3887}
3888
1b55253a 3889/*
ce8eb6c4
CL
3890 * Drain an array if it contains any elements taking the node lock only if
3891 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3892 * if drain_array() is used on the shared array.
1b55253a 3893 */
ce8eb6c4 3894static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
18726ca8 3895 struct array_cache *ac, int node)
1da177e4 3896{
97654dfa 3897 LIST_HEAD(list);
18726ca8
JK
3898
3899 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3900 check_mutex_acquired();
1da177e4 3901
1b55253a
CL
3902 if (!ac || !ac->avail)
3903 return;
18726ca8
JK
3904
3905 if (ac->touched) {
1da177e4 3906 ac->touched = 0;
18726ca8 3907 return;
1da177e4 3908 }
18726ca8
JK
3909
3910 spin_lock_irq(&n->list_lock);
3911 drain_array_locked(cachep, ac, node, false, &list);
3912 spin_unlock_irq(&n->list_lock);
3913
3914 slabs_destroy(cachep, &list);
1da177e4
LT
3915}
3916
3917/**
3918 * cache_reap - Reclaim memory from caches.
05fb6bf0 3919 * @w: work descriptor
1da177e4
LT
3920 *
3921 * Called from workqueue/eventd every few seconds.
3922 * Purpose:
3923 * - clear the per-cpu caches for this CPU.
3924 * - return freeable pages to the main free memory pool.
3925 *
a737b3e2
AM
3926 * If we cannot acquire the cache chain mutex then just give up - we'll try
3927 * again on the next iteration.
1da177e4 3928 */
7c5cae36 3929static void cache_reap(struct work_struct *w)
1da177e4 3930{
7a7c381d 3931 struct kmem_cache *searchp;
ce8eb6c4 3932 struct kmem_cache_node *n;
7d6e6d09 3933 int node = numa_mem_id();
bf6aede7 3934 struct delayed_work *work = to_delayed_work(w);
1da177e4 3935
18004c5d 3936 if (!mutex_trylock(&slab_mutex))
1da177e4 3937 /* Give up. Setup the next iteration. */
7c5cae36 3938 goto out;
1da177e4 3939
18004c5d 3940 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
3941 check_irq_on();
3942
35386e3b 3943 /*
ce8eb6c4 3944 * We only take the node lock if absolutely necessary and we
35386e3b
CL
3945 * have established with reasonable certainty that
3946 * we can do some work if the lock was obtained.
3947 */
18bf8541 3948 n = get_node(searchp, node);
35386e3b 3949
ce8eb6c4 3950 reap_alien(searchp, n);
1da177e4 3951
18726ca8 3952 drain_array(searchp, n, cpu_cache_get(searchp), node);
1da177e4 3953
35386e3b
CL
3954 /*
3955 * These are racy checks but it does not matter
3956 * if we skip one check or scan twice.
3957 */
ce8eb6c4 3958 if (time_after(n->next_reap, jiffies))
35386e3b 3959 goto next;
1da177e4 3960
5f0985bb 3961 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 3962
18726ca8 3963 drain_array(searchp, n, n->shared, node);
1da177e4 3964
ce8eb6c4
CL
3965 if (n->free_touched)
3966 n->free_touched = 0;
ed11d9eb
CL
3967 else {
3968 int freed;
1da177e4 3969
ce8eb6c4 3970 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
3971 5 * searchp->num - 1) / (5 * searchp->num));
3972 STATS_ADD_REAPED(searchp, freed);
3973 }
35386e3b 3974next:
1da177e4
LT
3975 cond_resched();
3976 }
3977 check_irq_on();
18004c5d 3978 mutex_unlock(&slab_mutex);
8fce4d8e 3979 next_reap_node();
7c5cae36 3980out:
a737b3e2 3981 /* Set up the next iteration */
5f0985bb 3982 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
3983}
3984
158a9624 3985#ifdef CONFIG_SLABINFO
0d7561c6 3986void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 3987{
8456a648 3988 struct page *page;
b28a02de
PE
3989 unsigned long active_objs;
3990 unsigned long num_objs;
3991 unsigned long active_slabs = 0;
3992 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3993 const char *name;
1da177e4 3994 char *error = NULL;
e498be7d 3995 int node;
ce8eb6c4 3996 struct kmem_cache_node *n;
1da177e4 3997
1da177e4
LT
3998 active_objs = 0;
3999 num_slabs = 0;
18bf8541 4000 for_each_kmem_cache_node(cachep, node, n) {
e498be7d 4001
ca3b9b91 4002 check_irq_on();
ce8eb6c4 4003 spin_lock_irq(&n->list_lock);
e498be7d 4004
8456a648
JK
4005 list_for_each_entry(page, &n->slabs_full, lru) {
4006 if (page->active != cachep->num && !error)
e498be7d
CL
4007 error = "slabs_full accounting error";
4008 active_objs += cachep->num;
4009 active_slabs++;
4010 }
8456a648
JK
4011 list_for_each_entry(page, &n->slabs_partial, lru) {
4012 if (page->active == cachep->num && !error)
106a74e1 4013 error = "slabs_partial accounting error";
8456a648 4014 if (!page->active && !error)
106a74e1 4015 error = "slabs_partial accounting error";
8456a648 4016 active_objs += page->active;
e498be7d
CL
4017 active_slabs++;
4018 }
8456a648
JK
4019 list_for_each_entry(page, &n->slabs_free, lru) {
4020 if (page->active && !error)
106a74e1 4021 error = "slabs_free accounting error";
e498be7d
CL
4022 num_slabs++;
4023 }
ce8eb6c4
CL
4024 free_objects += n->free_objects;
4025 if (n->shared)
4026 shared_avail += n->shared->avail;
e498be7d 4027
ce8eb6c4 4028 spin_unlock_irq(&n->list_lock);
1da177e4 4029 }
b28a02de
PE
4030 num_slabs += active_slabs;
4031 num_objs = num_slabs * cachep->num;
e498be7d 4032 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4033 error = "free_objects accounting error";
4034
b28a02de 4035 name = cachep->name;
1da177e4 4036 if (error)
1170532b 4037 pr_err("slab: cache %s error: %s\n", name, error);
1da177e4 4038
0d7561c6
GC
4039 sinfo->active_objs = active_objs;
4040 sinfo->num_objs = num_objs;
4041 sinfo->active_slabs = active_slabs;
4042 sinfo->num_slabs = num_slabs;
4043 sinfo->shared_avail = shared_avail;
4044 sinfo->limit = cachep->limit;
4045 sinfo->batchcount = cachep->batchcount;
4046 sinfo->shared = cachep->shared;
4047 sinfo->objects_per_slab = cachep->num;
4048 sinfo->cache_order = cachep->gfporder;
4049}
4050
4051void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4052{
1da177e4 4053#if STATS
ce8eb6c4 4054 { /* node stats */
1da177e4
LT
4055 unsigned long high = cachep->high_mark;
4056 unsigned long allocs = cachep->num_allocations;
4057 unsigned long grown = cachep->grown;
4058 unsigned long reaped = cachep->reaped;
4059 unsigned long errors = cachep->errors;
4060 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4061 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4062 unsigned long node_frees = cachep->node_frees;
fb7faf33 4063 unsigned long overflows = cachep->node_overflow;
1da177e4 4064
756a025f 4065 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
e92dd4fd
JP
4066 allocs, high, grown,
4067 reaped, errors, max_freeable, node_allocs,
4068 node_frees, overflows);
1da177e4
LT
4069 }
4070 /* cpu stats */
4071 {
4072 unsigned long allochit = atomic_read(&cachep->allochit);
4073 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4074 unsigned long freehit = atomic_read(&cachep->freehit);
4075 unsigned long freemiss = atomic_read(&cachep->freemiss);
4076
4077 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4078 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4079 }
4080#endif
1da177e4
LT
4081}
4082
1da177e4
LT
4083#define MAX_SLABINFO_WRITE 128
4084/**
4085 * slabinfo_write - Tuning for the slab allocator
4086 * @file: unused
4087 * @buffer: user buffer
4088 * @count: data length
4089 * @ppos: unused
4090 */
b7454ad3 4091ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4092 size_t count, loff_t *ppos)
1da177e4 4093{
b28a02de 4094 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4095 int limit, batchcount, shared, res;
7a7c381d 4096 struct kmem_cache *cachep;
b28a02de 4097
1da177e4
LT
4098 if (count > MAX_SLABINFO_WRITE)
4099 return -EINVAL;
4100 if (copy_from_user(&kbuf, buffer, count))
4101 return -EFAULT;
b28a02de 4102 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4103
4104 tmp = strchr(kbuf, ' ');
4105 if (!tmp)
4106 return -EINVAL;
4107 *tmp = '\0';
4108 tmp++;
4109 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4110 return -EINVAL;
4111
4112 /* Find the cache in the chain of caches. */
18004c5d 4113 mutex_lock(&slab_mutex);
1da177e4 4114 res = -EINVAL;
18004c5d 4115 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4116 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4117 if (limit < 1 || batchcount < 1 ||
4118 batchcount > limit || shared < 0) {
e498be7d 4119 res = 0;
1da177e4 4120 } else {
e498be7d 4121 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4122 batchcount, shared,
4123 GFP_KERNEL);
1da177e4
LT
4124 }
4125 break;
4126 }
4127 }
18004c5d 4128 mutex_unlock(&slab_mutex);
1da177e4
LT
4129 if (res >= 0)
4130 res = count;
4131 return res;
4132}
871751e2
AV
4133
4134#ifdef CONFIG_DEBUG_SLAB_LEAK
4135
871751e2
AV
4136static inline int add_caller(unsigned long *n, unsigned long v)
4137{
4138 unsigned long *p;
4139 int l;
4140 if (!v)
4141 return 1;
4142 l = n[1];
4143 p = n + 2;
4144 while (l) {
4145 int i = l/2;
4146 unsigned long *q = p + 2 * i;
4147 if (*q == v) {
4148 q[1]++;
4149 return 1;
4150 }
4151 if (*q > v) {
4152 l = i;
4153 } else {
4154 p = q + 2;
4155 l -= i + 1;
4156 }
4157 }
4158 if (++n[1] == n[0])
4159 return 0;
4160 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4161 p[0] = v;
4162 p[1] = 1;
4163 return 1;
4164}
4165
8456a648
JK
4166static void handle_slab(unsigned long *n, struct kmem_cache *c,
4167 struct page *page)
871751e2
AV
4168{
4169 void *p;
d31676df
JK
4170 int i, j;
4171 unsigned long v;
b1cb0982 4172
871751e2
AV
4173 if (n[0] == n[1])
4174 return;
8456a648 4175 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
d31676df
JK
4176 bool active = true;
4177
4178 for (j = page->active; j < c->num; j++) {
4179 if (get_free_obj(page, j) == i) {
4180 active = false;
4181 break;
4182 }
4183 }
4184
4185 if (!active)
871751e2 4186 continue;
b1cb0982 4187
d31676df
JK
4188 /*
4189 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4190 * mapping is established when actual object allocation and
4191 * we could mistakenly access the unmapped object in the cpu
4192 * cache.
4193 */
4194 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4195 continue;
4196
4197 if (!add_caller(n, v))
871751e2
AV
4198 return;
4199 }
4200}
4201
4202static void show_symbol(struct seq_file *m, unsigned long address)
4203{
4204#ifdef CONFIG_KALLSYMS
871751e2 4205 unsigned long offset, size;
9281acea 4206 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4207
a5c43dae 4208 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4209 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4210 if (modname[0])
871751e2
AV
4211 seq_printf(m, " [%s]", modname);
4212 return;
4213 }
4214#endif
4215 seq_printf(m, "%p", (void *)address);
4216}
4217
4218static int leaks_show(struct seq_file *m, void *p)
4219{
0672aa7c 4220 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4221 struct page *page;
ce8eb6c4 4222 struct kmem_cache_node *n;
871751e2 4223 const char *name;
db845067 4224 unsigned long *x = m->private;
871751e2
AV
4225 int node;
4226 int i;
4227
4228 if (!(cachep->flags & SLAB_STORE_USER))
4229 return 0;
4230 if (!(cachep->flags & SLAB_RED_ZONE))
4231 return 0;
4232
d31676df
JK
4233 /*
4234 * Set store_user_clean and start to grab stored user information
4235 * for all objects on this cache. If some alloc/free requests comes
4236 * during the processing, information would be wrong so restart
4237 * whole processing.
4238 */
4239 do {
4240 set_store_user_clean(cachep);
4241 drain_cpu_caches(cachep);
4242
4243 x[1] = 0;
871751e2 4244
d31676df 4245 for_each_kmem_cache_node(cachep, node, n) {
871751e2 4246
d31676df
JK
4247 check_irq_on();
4248 spin_lock_irq(&n->list_lock);
871751e2 4249
d31676df
JK
4250 list_for_each_entry(page, &n->slabs_full, lru)
4251 handle_slab(x, cachep, page);
4252 list_for_each_entry(page, &n->slabs_partial, lru)
4253 handle_slab(x, cachep, page);
4254 spin_unlock_irq(&n->list_lock);
4255 }
4256 } while (!is_store_user_clean(cachep));
871751e2 4257
871751e2 4258 name = cachep->name;
db845067 4259 if (x[0] == x[1]) {
871751e2 4260 /* Increase the buffer size */
18004c5d 4261 mutex_unlock(&slab_mutex);
db845067 4262 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4263 if (!m->private) {
4264 /* Too bad, we are really out */
db845067 4265 m->private = x;
18004c5d 4266 mutex_lock(&slab_mutex);
871751e2
AV
4267 return -ENOMEM;
4268 }
db845067
CL
4269 *(unsigned long *)m->private = x[0] * 2;
4270 kfree(x);
18004c5d 4271 mutex_lock(&slab_mutex);
871751e2
AV
4272 /* Now make sure this entry will be retried */
4273 m->count = m->size;
4274 return 0;
4275 }
db845067
CL
4276 for (i = 0; i < x[1]; i++) {
4277 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4278 show_symbol(m, x[2*i+2]);
871751e2
AV
4279 seq_putc(m, '\n');
4280 }
d2e7b7d0 4281
871751e2
AV
4282 return 0;
4283}
4284
a0ec95a8 4285static const struct seq_operations slabstats_op = {
1df3b26f 4286 .start = slab_start,
276a2439
WL
4287 .next = slab_next,
4288 .stop = slab_stop,
871751e2
AV
4289 .show = leaks_show,
4290};
a0ec95a8
AD
4291
4292static int slabstats_open(struct inode *inode, struct file *file)
4293{
b208ce32
RJ
4294 unsigned long *n;
4295
4296 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4297 if (!n)
4298 return -ENOMEM;
4299
4300 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4301
4302 return 0;
a0ec95a8
AD
4303}
4304
4305static const struct file_operations proc_slabstats_operations = {
4306 .open = slabstats_open,
4307 .read = seq_read,
4308 .llseek = seq_lseek,
4309 .release = seq_release_private,
4310};
4311#endif
4312
4313static int __init slab_proc_init(void)
4314{
4315#ifdef CONFIG_DEBUG_SLAB_LEAK
4316 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4317#endif
a0ec95a8
AD
4318 return 0;
4319}
4320module_init(slab_proc_init);
1da177e4
LT
4321#endif
4322
00e145b6
MS
4323/**
4324 * ksize - get the actual amount of memory allocated for a given object
4325 * @objp: Pointer to the object
4326 *
4327 * kmalloc may internally round up allocations and return more memory
4328 * than requested. ksize() can be used to determine the actual amount of
4329 * memory allocated. The caller may use this additional memory, even though
4330 * a smaller amount of memory was initially specified with the kmalloc call.
4331 * The caller must guarantee that objp points to a valid object previously
4332 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4333 * must not be freed during the duration of the call.
4334 */
fd76bab2 4335size_t ksize(const void *objp)
1da177e4 4336{
7ed2f9e6
AP
4337 size_t size;
4338
ef8b4520
CL
4339 BUG_ON(!objp);
4340 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4341 return 0;
1da177e4 4342
7ed2f9e6
AP
4343 size = virt_to_cache(objp)->object_size;
4344 /* We assume that ksize callers could use the whole allocated area,
4345 * so we need to unpoison this area.
4346 */
505f5dcb 4347 kasan_krealloc(objp, size, GFP_NOWAIT);
7ed2f9e6
AP
4348
4349 return size;
1da177e4 4350}
b1aabecd 4351EXPORT_SYMBOL(ksize);