]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/slab.c
mm/sl[aou]b: Shrink __kmem_cache_create() parameter lists
[mirror_ubuntu-hirsute-kernel.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4 89#include <linux/slab.h>
97d06609 90#include "slab.h"
1da177e4 91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
a0ec95a8 99#include <linux/proc_fs.h>
1da177e4
LT
100#include <linux/seq_file.h>
101#include <linux/notifier.h>
102#include <linux/kallsyms.h>
103#include <linux/cpu.h>
104#include <linux/sysctl.h>
105#include <linux/module.h>
106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
c175eea4 117#include <linux/kmemcheck.h>
8f9f8d9e 118#include <linux/memory.h>
268bb0ce 119#include <linux/prefetch.h>
1da177e4 120
381760ea
MG
121#include <net/sock.h>
122
1da177e4
LT
123#include <asm/cacheflush.h>
124#include <asm/tlbflush.h>
125#include <asm/page.h>
126
4dee6b64
SR
127#include <trace/events/kmem.h>
128
072bb0aa
MG
129#include "internal.h"
130
1da177e4 131/*
50953fe9 132 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
133 * 0 for faster, smaller code (especially in the critical paths).
134 *
135 * STATS - 1 to collect stats for /proc/slabinfo.
136 * 0 for faster, smaller code (especially in the critical paths).
137 *
138 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
139 */
140
141#ifdef CONFIG_DEBUG_SLAB
142#define DEBUG 1
143#define STATS 1
144#define FORCED_DEBUG 1
145#else
146#define DEBUG 0
147#define STATS 0
148#define FORCED_DEBUG 0
149#endif
150
1da177e4
LT
151/* Shouldn't this be in a header file somewhere? */
152#define BYTES_PER_WORD sizeof(void *)
87a927c7 153#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 154
1da177e4
LT
155#ifndef ARCH_KMALLOC_FLAGS
156#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
157#endif
158
072bb0aa
MG
159/*
160 * true if a page was allocated from pfmemalloc reserves for network-based
161 * swap
162 */
163static bool pfmemalloc_active __read_mostly;
164
1da177e4
LT
165/* Legal flag mask for kmem_cache_create(). */
166#if DEBUG
50953fe9 167# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 168 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 169 SLAB_CACHE_DMA | \
5af60839 170 SLAB_STORE_USER | \
1da177e4 171 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 172 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 173 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4 174#else
ac2b898c 175# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 176 SLAB_CACHE_DMA | \
1da177e4 177 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 178 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 179 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4
LT
180#endif
181
182/*
183 * kmem_bufctl_t:
184 *
185 * Bufctl's are used for linking objs within a slab
186 * linked offsets.
187 *
188 * This implementation relies on "struct page" for locating the cache &
189 * slab an object belongs to.
190 * This allows the bufctl structure to be small (one int), but limits
191 * the number of objects a slab (not a cache) can contain when off-slab
192 * bufctls are used. The limit is the size of the largest general cache
193 * that does not use off-slab slabs.
194 * For 32bit archs with 4 kB pages, is this 56.
195 * This is not serious, as it is only for large objects, when it is unwise
196 * to have too many per slab.
197 * Note: This limit can be raised by introducing a general cache whose size
198 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
199 */
200
fa5b08d5 201typedef unsigned int kmem_bufctl_t;
1da177e4
LT
202#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
203#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
204#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
205#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 206
1da177e4
LT
207/*
208 * struct slab_rcu
209 *
210 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
211 * arrange for kmem_freepages to be called via RCU. This is useful if
212 * we need to approach a kernel structure obliquely, from its address
213 * obtained without the usual locking. We can lock the structure to
214 * stabilize it and check it's still at the given address, only if we
215 * can be sure that the memory has not been meanwhile reused for some
216 * other kind of object (which our subsystem's lock might corrupt).
217 *
218 * rcu_read_lock before reading the address, then rcu_read_unlock after
219 * taking the spinlock within the structure expected at that address.
1da177e4
LT
220 */
221struct slab_rcu {
b28a02de 222 struct rcu_head head;
343e0d7a 223 struct kmem_cache *cachep;
b28a02de 224 void *addr;
1da177e4
LT
225};
226
5bfe53a7
LJ
227/*
228 * struct slab
229 *
230 * Manages the objs in a slab. Placed either at the beginning of mem allocated
231 * for a slab, or allocated from an general cache.
232 * Slabs are chained into three list: fully used, partial, fully free slabs.
233 */
234struct slab {
235 union {
236 struct {
237 struct list_head list;
238 unsigned long colouroff;
239 void *s_mem; /* including colour offset */
240 unsigned int inuse; /* num of objs active in slab */
241 kmem_bufctl_t free;
242 unsigned short nodeid;
243 };
244 struct slab_rcu __slab_cover_slab_rcu;
245 };
246};
247
1da177e4
LT
248/*
249 * struct array_cache
250 *
1da177e4
LT
251 * Purpose:
252 * - LIFO ordering, to hand out cache-warm objects from _alloc
253 * - reduce the number of linked list operations
254 * - reduce spinlock operations
255 *
256 * The limit is stored in the per-cpu structure to reduce the data cache
257 * footprint.
258 *
259 */
260struct array_cache {
261 unsigned int avail;
262 unsigned int limit;
263 unsigned int batchcount;
264 unsigned int touched;
e498be7d 265 spinlock_t lock;
bda5b655 266 void *entry[]; /*
a737b3e2
AM
267 * Must have this definition in here for the proper
268 * alignment of array_cache. Also simplifies accessing
269 * the entries.
072bb0aa
MG
270 *
271 * Entries should not be directly dereferenced as
272 * entries belonging to slabs marked pfmemalloc will
273 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 274 */
1da177e4
LT
275};
276
072bb0aa
MG
277#define SLAB_OBJ_PFMEMALLOC 1
278static inline bool is_obj_pfmemalloc(void *objp)
279{
280 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
281}
282
283static inline void set_obj_pfmemalloc(void **objp)
284{
285 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
286 return;
287}
288
289static inline void clear_obj_pfmemalloc(void **objp)
290{
291 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
292}
293
a737b3e2
AM
294/*
295 * bootstrap: The caches do not work without cpuarrays anymore, but the
296 * cpuarrays are allocated from the generic caches...
1da177e4
LT
297 */
298#define BOOT_CPUCACHE_ENTRIES 1
299struct arraycache_init {
300 struct array_cache cache;
b28a02de 301 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
302};
303
304/*
e498be7d 305 * The slab lists for all objects.
1da177e4
LT
306 */
307struct kmem_list3 {
b28a02de
PE
308 struct list_head slabs_partial; /* partial list first, better asm code */
309 struct list_head slabs_full;
310 struct list_head slabs_free;
311 unsigned long free_objects;
b28a02de 312 unsigned int free_limit;
2e1217cf 313 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
314 spinlock_t list_lock;
315 struct array_cache *shared; /* shared per node */
316 struct array_cache **alien; /* on other nodes */
35386e3b
CL
317 unsigned long next_reap; /* updated without locking */
318 int free_touched; /* updated without locking */
1da177e4
LT
319};
320
e498be7d
CL
321/*
322 * Need this for bootstrapping a per node allocator.
323 */
556a169d 324#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
68a1b195 325static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
e498be7d 326#define CACHE_CACHE 0
556a169d
PE
327#define SIZE_AC MAX_NUMNODES
328#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 329
ed11d9eb
CL
330static int drain_freelist(struct kmem_cache *cache,
331 struct kmem_list3 *l3, int tofree);
332static void free_block(struct kmem_cache *cachep, void **objpp, int len,
333 int node);
83b519e8 334static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 335static void cache_reap(struct work_struct *unused);
ed11d9eb 336
e498be7d 337/*
a737b3e2
AM
338 * This function must be completely optimized away if a constant is passed to
339 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 340 */
7243cc05 341static __always_inline int index_of(const size_t size)
e498be7d 342{
5ec8a847
SR
343 extern void __bad_size(void);
344
e498be7d
CL
345 if (__builtin_constant_p(size)) {
346 int i = 0;
347
348#define CACHE(x) \
349 if (size <=x) \
350 return i; \
351 else \
352 i++;
1c61fc40 353#include <linux/kmalloc_sizes.h>
e498be7d 354#undef CACHE
5ec8a847 355 __bad_size();
7243cc05 356 } else
5ec8a847 357 __bad_size();
e498be7d
CL
358 return 0;
359}
360
e0a42726
IM
361static int slab_early_init = 1;
362
e498be7d
CL
363#define INDEX_AC index_of(sizeof(struct arraycache_init))
364#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 365
5295a74c 366static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
367{
368 INIT_LIST_HEAD(&parent->slabs_full);
369 INIT_LIST_HEAD(&parent->slabs_partial);
370 INIT_LIST_HEAD(&parent->slabs_free);
371 parent->shared = NULL;
372 parent->alien = NULL;
2e1217cf 373 parent->colour_next = 0;
e498be7d
CL
374 spin_lock_init(&parent->list_lock);
375 parent->free_objects = 0;
376 parent->free_touched = 0;
377}
378
a737b3e2
AM
379#define MAKE_LIST(cachep, listp, slab, nodeid) \
380 do { \
381 INIT_LIST_HEAD(listp); \
382 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
383 } while (0)
384
a737b3e2
AM
385#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
386 do { \
e498be7d
CL
387 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
388 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
389 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
390 } while (0)
1da177e4 391
1da177e4
LT
392#define CFLGS_OFF_SLAB (0x80000000UL)
393#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
394
395#define BATCHREFILL_LIMIT 16
a737b3e2
AM
396/*
397 * Optimization question: fewer reaps means less probability for unnessary
398 * cpucache drain/refill cycles.
1da177e4 399 *
dc6f3f27 400 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
401 * which could lock up otherwise freeable slabs.
402 */
403#define REAPTIMEOUT_CPUC (2*HZ)
404#define REAPTIMEOUT_LIST3 (4*HZ)
405
406#if STATS
407#define STATS_INC_ACTIVE(x) ((x)->num_active++)
408#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
409#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
410#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 411#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
412#define STATS_SET_HIGH(x) \
413 do { \
414 if ((x)->num_active > (x)->high_mark) \
415 (x)->high_mark = (x)->num_active; \
416 } while (0)
1da177e4
LT
417#define STATS_INC_ERR(x) ((x)->errors++)
418#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 419#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 420#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
421#define STATS_SET_FREEABLE(x, i) \
422 do { \
423 if ((x)->max_freeable < i) \
424 (x)->max_freeable = i; \
425 } while (0)
1da177e4
LT
426#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
427#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
428#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
429#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
430#else
431#define STATS_INC_ACTIVE(x) do { } while (0)
432#define STATS_DEC_ACTIVE(x) do { } while (0)
433#define STATS_INC_ALLOCED(x) do { } while (0)
434#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 435#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
436#define STATS_SET_HIGH(x) do { } while (0)
437#define STATS_INC_ERR(x) do { } while (0)
438#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 439#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 440#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 441#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
442#define STATS_INC_ALLOCHIT(x) do { } while (0)
443#define STATS_INC_ALLOCMISS(x) do { } while (0)
444#define STATS_INC_FREEHIT(x) do { } while (0)
445#define STATS_INC_FREEMISS(x) do { } while (0)
446#endif
447
448#if DEBUG
1da177e4 449
a737b3e2
AM
450/*
451 * memory layout of objects:
1da177e4 452 * 0 : objp
3dafccf2 453 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
454 * the end of an object is aligned with the end of the real
455 * allocation. Catches writes behind the end of the allocation.
3dafccf2 456 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 457 * redzone word.
3dafccf2 458 * cachep->obj_offset: The real object.
3b0efdfa
CL
459 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
460 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 461 * [BYTES_PER_WORD long]
1da177e4 462 */
343e0d7a 463static int obj_offset(struct kmem_cache *cachep)
1da177e4 464{
3dafccf2 465 return cachep->obj_offset;
1da177e4
LT
466}
467
b46b8f19 468static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
469{
470 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
471 return (unsigned long long*) (objp + obj_offset(cachep) -
472 sizeof(unsigned long long));
1da177e4
LT
473}
474
b46b8f19 475static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
476{
477 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
478 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 479 return (unsigned long long *)(objp + cachep->size -
b46b8f19 480 sizeof(unsigned long long) -
87a927c7 481 REDZONE_ALIGN);
3b0efdfa 482 return (unsigned long long *) (objp + cachep->size -
b46b8f19 483 sizeof(unsigned long long));
1da177e4
LT
484}
485
343e0d7a 486static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
487{
488 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 489 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
490}
491
492#else
493
3dafccf2 494#define obj_offset(x) 0
b46b8f19
DW
495#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
496#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
497#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
498
499#endif
500
0f24f128 501#ifdef CONFIG_TRACING
36555751
EGM
502size_t slab_buffer_size(struct kmem_cache *cachep)
503{
3b0efdfa 504 return cachep->size;
36555751
EGM
505}
506EXPORT_SYMBOL(slab_buffer_size);
507#endif
508
1da177e4 509/*
3df1cccd
DR
510 * Do not go above this order unless 0 objects fit into the slab or
511 * overridden on the command line.
1da177e4 512 */
543585cc
DR
513#define SLAB_MAX_ORDER_HI 1
514#define SLAB_MAX_ORDER_LO 0
515static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 516static bool slab_max_order_set __initdata;
1da177e4 517
6ed5eb22
PE
518static inline struct kmem_cache *virt_to_cache(const void *obj)
519{
b49af68f 520 struct page *page = virt_to_head_page(obj);
35026088 521 return page->slab_cache;
6ed5eb22
PE
522}
523
524static inline struct slab *virt_to_slab(const void *obj)
525{
b49af68f 526 struct page *page = virt_to_head_page(obj);
35026088
CL
527
528 VM_BUG_ON(!PageSlab(page));
529 return page->slab_page;
6ed5eb22
PE
530}
531
8fea4e96
PE
532static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
533 unsigned int idx)
534{
3b0efdfa 535 return slab->s_mem + cache->size * idx;
8fea4e96
PE
536}
537
6a2d7a95 538/*
3b0efdfa
CL
539 * We want to avoid an expensive divide : (offset / cache->size)
540 * Using the fact that size is a constant for a particular cache,
541 * we can replace (offset / cache->size) by
6a2d7a95
ED
542 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
543 */
544static inline unsigned int obj_to_index(const struct kmem_cache *cache,
545 const struct slab *slab, void *obj)
8fea4e96 546{
6a2d7a95
ED
547 u32 offset = (obj - slab->s_mem);
548 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
549}
550
a737b3e2
AM
551/*
552 * These are the default caches for kmalloc. Custom caches can have other sizes.
553 */
1da177e4
LT
554struct cache_sizes malloc_sizes[] = {
555#define CACHE(x) { .cs_size = (x) },
556#include <linux/kmalloc_sizes.h>
557 CACHE(ULONG_MAX)
558#undef CACHE
559};
560EXPORT_SYMBOL(malloc_sizes);
561
562/* Must match cache_sizes above. Out of line to keep cache footprint low. */
563struct cache_names {
564 char *name;
565 char *name_dma;
566};
567
568static struct cache_names __initdata cache_names[] = {
569#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
570#include <linux/kmalloc_sizes.h>
b28a02de 571 {NULL,}
1da177e4
LT
572#undef CACHE
573};
574
575static struct arraycache_init initarray_cache __initdata =
b28a02de 576 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 577static struct arraycache_init initarray_generic =
b28a02de 578 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
579
580/* internal cache of cache description objs */
9b030cb8
CL
581static struct kmem_list3 *kmem_cache_nodelists[MAX_NUMNODES];
582static struct kmem_cache kmem_cache_boot = {
583 .nodelists = kmem_cache_nodelists,
b28a02de
PE
584 .batchcount = 1,
585 .limit = BOOT_CPUCACHE_ENTRIES,
586 .shared = 1,
3b0efdfa 587 .size = sizeof(struct kmem_cache),
b28a02de 588 .name = "kmem_cache",
1da177e4
LT
589};
590
056c6241
RT
591#define BAD_ALIEN_MAGIC 0x01020304ul
592
f1aaee53
AV
593#ifdef CONFIG_LOCKDEP
594
595/*
596 * Slab sometimes uses the kmalloc slabs to store the slab headers
597 * for other slabs "off slab".
598 * The locking for this is tricky in that it nests within the locks
599 * of all other slabs in a few places; to deal with this special
600 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
601 *
602 * We set lock class for alien array caches which are up during init.
603 * The lock annotation will be lost if all cpus of a node goes down and
604 * then comes back up during hotplug
f1aaee53 605 */
056c6241
RT
606static struct lock_class_key on_slab_l3_key;
607static struct lock_class_key on_slab_alc_key;
608
83835b3d
PZ
609static struct lock_class_key debugobj_l3_key;
610static struct lock_class_key debugobj_alc_key;
611
612static void slab_set_lock_classes(struct kmem_cache *cachep,
613 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
614 int q)
615{
616 struct array_cache **alc;
617 struct kmem_list3 *l3;
618 int r;
619
620 l3 = cachep->nodelists[q];
621 if (!l3)
622 return;
623
624 lockdep_set_class(&l3->list_lock, l3_key);
625 alc = l3->alien;
626 /*
627 * FIXME: This check for BAD_ALIEN_MAGIC
628 * should go away when common slab code is taught to
629 * work even without alien caches.
630 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
631 * for alloc_alien_cache,
632 */
633 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
634 return;
635 for_each_node(r) {
636 if (alc[r])
637 lockdep_set_class(&alc[r]->lock, alc_key);
638 }
639}
640
641static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
642{
643 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
644}
645
646static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
647{
648 int node;
649
650 for_each_online_node(node)
651 slab_set_debugobj_lock_classes_node(cachep, node);
652}
653
ce79ddc8 654static void init_node_lock_keys(int q)
f1aaee53 655{
056c6241
RT
656 struct cache_sizes *s = malloc_sizes;
657
97d06609 658 if (slab_state < UP)
ce79ddc8
PE
659 return;
660
661 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
ce79ddc8 662 struct kmem_list3 *l3;
ce79ddc8
PE
663
664 l3 = s->cs_cachep->nodelists[q];
665 if (!l3 || OFF_SLAB(s->cs_cachep))
00afa758 666 continue;
83835b3d
PZ
667
668 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
669 &on_slab_alc_key, q);
f1aaee53
AV
670 }
671}
ce79ddc8
PE
672
673static inline void init_lock_keys(void)
674{
675 int node;
676
677 for_each_node(node)
678 init_node_lock_keys(node);
679}
f1aaee53 680#else
ce79ddc8
PE
681static void init_node_lock_keys(int q)
682{
683}
684
056c6241 685static inline void init_lock_keys(void)
f1aaee53
AV
686{
687}
83835b3d
PZ
688
689static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
690{
691}
692
693static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
694{
695}
f1aaee53
AV
696#endif
697
1871e52c 698static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 699
343e0d7a 700static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
701{
702 return cachep->array[smp_processor_id()];
703}
704
a737b3e2
AM
705static inline struct kmem_cache *__find_general_cachep(size_t size,
706 gfp_t gfpflags)
1da177e4
LT
707{
708 struct cache_sizes *csizep = malloc_sizes;
709
710#if DEBUG
711 /* This happens if someone tries to call
b28a02de
PE
712 * kmem_cache_create(), or __kmalloc(), before
713 * the generic caches are initialized.
714 */
c7e43c78 715 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 716#endif
6cb8f913
CL
717 if (!size)
718 return ZERO_SIZE_PTR;
719
1da177e4
LT
720 while (size > csizep->cs_size)
721 csizep++;
722
723 /*
0abf40c1 724 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
725 * has cs_{dma,}cachep==NULL. Thus no special case
726 * for large kmalloc calls required.
727 */
4b51d669 728#ifdef CONFIG_ZONE_DMA
1da177e4
LT
729 if (unlikely(gfpflags & GFP_DMA))
730 return csizep->cs_dmacachep;
4b51d669 731#endif
1da177e4
LT
732 return csizep->cs_cachep;
733}
734
b221385b 735static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
736{
737 return __find_general_cachep(size, gfpflags);
738}
97e2bde4 739
fbaccacf 740static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 741{
fbaccacf
SR
742 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
743}
1da177e4 744
a737b3e2
AM
745/*
746 * Calculate the number of objects and left-over bytes for a given buffer size.
747 */
fbaccacf
SR
748static void cache_estimate(unsigned long gfporder, size_t buffer_size,
749 size_t align, int flags, size_t *left_over,
750 unsigned int *num)
751{
752 int nr_objs;
753 size_t mgmt_size;
754 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 755
fbaccacf
SR
756 /*
757 * The slab management structure can be either off the slab or
758 * on it. For the latter case, the memory allocated for a
759 * slab is used for:
760 *
761 * - The struct slab
762 * - One kmem_bufctl_t for each object
763 * - Padding to respect alignment of @align
764 * - @buffer_size bytes for each object
765 *
766 * If the slab management structure is off the slab, then the
767 * alignment will already be calculated into the size. Because
768 * the slabs are all pages aligned, the objects will be at the
769 * correct alignment when allocated.
770 */
771 if (flags & CFLGS_OFF_SLAB) {
772 mgmt_size = 0;
773 nr_objs = slab_size / buffer_size;
774
775 if (nr_objs > SLAB_LIMIT)
776 nr_objs = SLAB_LIMIT;
777 } else {
778 /*
779 * Ignore padding for the initial guess. The padding
780 * is at most @align-1 bytes, and @buffer_size is at
781 * least @align. In the worst case, this result will
782 * be one greater than the number of objects that fit
783 * into the memory allocation when taking the padding
784 * into account.
785 */
786 nr_objs = (slab_size - sizeof(struct slab)) /
787 (buffer_size + sizeof(kmem_bufctl_t));
788
789 /*
790 * This calculated number will be either the right
791 * amount, or one greater than what we want.
792 */
793 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
794 > slab_size)
795 nr_objs--;
796
797 if (nr_objs > SLAB_LIMIT)
798 nr_objs = SLAB_LIMIT;
799
800 mgmt_size = slab_mgmt_size(nr_objs, align);
801 }
802 *num = nr_objs;
803 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
804}
805
d40cee24 806#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 807
a737b3e2
AM
808static void __slab_error(const char *function, struct kmem_cache *cachep,
809 char *msg)
1da177e4
LT
810{
811 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 812 function, cachep->name, msg);
1da177e4
LT
813 dump_stack();
814}
815
3395ee05
PM
816/*
817 * By default on NUMA we use alien caches to stage the freeing of
818 * objects allocated from other nodes. This causes massive memory
819 * inefficiencies when using fake NUMA setup to split memory into a
820 * large number of small nodes, so it can be disabled on the command
821 * line
822 */
823
824static int use_alien_caches __read_mostly = 1;
825static int __init noaliencache_setup(char *s)
826{
827 use_alien_caches = 0;
828 return 1;
829}
830__setup("noaliencache", noaliencache_setup);
831
3df1cccd
DR
832static int __init slab_max_order_setup(char *str)
833{
834 get_option(&str, &slab_max_order);
835 slab_max_order = slab_max_order < 0 ? 0 :
836 min(slab_max_order, MAX_ORDER - 1);
837 slab_max_order_set = true;
838
839 return 1;
840}
841__setup("slab_max_order=", slab_max_order_setup);
842
8fce4d8e
CL
843#ifdef CONFIG_NUMA
844/*
845 * Special reaping functions for NUMA systems called from cache_reap().
846 * These take care of doing round robin flushing of alien caches (containing
847 * objects freed on different nodes from which they were allocated) and the
848 * flushing of remote pcps by calling drain_node_pages.
849 */
1871e52c 850static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
851
852static void init_reap_node(int cpu)
853{
854 int node;
855
7d6e6d09 856 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 857 if (node == MAX_NUMNODES)
442295c9 858 node = first_node(node_online_map);
8fce4d8e 859
1871e52c 860 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
861}
862
863static void next_reap_node(void)
864{
909ea964 865 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 866
8fce4d8e
CL
867 node = next_node(node, node_online_map);
868 if (unlikely(node >= MAX_NUMNODES))
869 node = first_node(node_online_map);
909ea964 870 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
871}
872
873#else
874#define init_reap_node(cpu) do { } while (0)
875#define next_reap_node(void) do { } while (0)
876#endif
877
1da177e4
LT
878/*
879 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
880 * via the workqueue/eventd.
881 * Add the CPU number into the expiration time to minimize the possibility of
882 * the CPUs getting into lockstep and contending for the global cache chain
883 * lock.
884 */
897e679b 885static void __cpuinit start_cpu_timer(int cpu)
1da177e4 886{
1871e52c 887 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
888
889 /*
890 * When this gets called from do_initcalls via cpucache_init(),
891 * init_workqueues() has already run, so keventd will be setup
892 * at that time.
893 */
52bad64d 894 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 895 init_reap_node(cpu);
78b43536 896 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
2b284214
AV
897 schedule_delayed_work_on(cpu, reap_work,
898 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
899 }
900}
901
e498be7d 902static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 903 int batchcount, gfp_t gfp)
1da177e4 904{
b28a02de 905 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
906 struct array_cache *nc = NULL;
907
83b519e8 908 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
909 /*
910 * The array_cache structures contain pointers to free object.
25985edc 911 * However, when such objects are allocated or transferred to another
d5cff635
CM
912 * cache the pointers are not cleared and they could be counted as
913 * valid references during a kmemleak scan. Therefore, kmemleak must
914 * not scan such objects.
915 */
916 kmemleak_no_scan(nc);
1da177e4
LT
917 if (nc) {
918 nc->avail = 0;
919 nc->limit = entries;
920 nc->batchcount = batchcount;
921 nc->touched = 0;
e498be7d 922 spin_lock_init(&nc->lock);
1da177e4
LT
923 }
924 return nc;
925}
926
072bb0aa
MG
927static inline bool is_slab_pfmemalloc(struct slab *slabp)
928{
929 struct page *page = virt_to_page(slabp->s_mem);
930
931 return PageSlabPfmemalloc(page);
932}
933
934/* Clears pfmemalloc_active if no slabs have pfmalloc set */
935static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
936 struct array_cache *ac)
937{
938 struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
939 struct slab *slabp;
940 unsigned long flags;
941
942 if (!pfmemalloc_active)
943 return;
944
945 spin_lock_irqsave(&l3->list_lock, flags);
946 list_for_each_entry(slabp, &l3->slabs_full, list)
947 if (is_slab_pfmemalloc(slabp))
948 goto out;
949
950 list_for_each_entry(slabp, &l3->slabs_partial, list)
951 if (is_slab_pfmemalloc(slabp))
952 goto out;
953
954 list_for_each_entry(slabp, &l3->slabs_free, list)
955 if (is_slab_pfmemalloc(slabp))
956 goto out;
957
958 pfmemalloc_active = false;
959out:
960 spin_unlock_irqrestore(&l3->list_lock, flags);
961}
962
381760ea 963static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
964 gfp_t flags, bool force_refill)
965{
966 int i;
967 void *objp = ac->entry[--ac->avail];
968
969 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
970 if (unlikely(is_obj_pfmemalloc(objp))) {
971 struct kmem_list3 *l3;
972
973 if (gfp_pfmemalloc_allowed(flags)) {
974 clear_obj_pfmemalloc(&objp);
975 return objp;
976 }
977
978 /* The caller cannot use PFMEMALLOC objects, find another one */
979 for (i = 1; i < ac->avail; i++) {
980 /* If a !PFMEMALLOC object is found, swap them */
981 if (!is_obj_pfmemalloc(ac->entry[i])) {
982 objp = ac->entry[i];
983 ac->entry[i] = ac->entry[ac->avail];
984 ac->entry[ac->avail] = objp;
985 return objp;
986 }
987 }
988
989 /*
990 * If there are empty slabs on the slabs_free list and we are
991 * being forced to refill the cache, mark this one !pfmemalloc.
992 */
993 l3 = cachep->nodelists[numa_mem_id()];
994 if (!list_empty(&l3->slabs_free) && force_refill) {
995 struct slab *slabp = virt_to_slab(objp);
996 ClearPageSlabPfmemalloc(virt_to_page(slabp->s_mem));
997 clear_obj_pfmemalloc(&objp);
998 recheck_pfmemalloc_active(cachep, ac);
999 return objp;
1000 }
1001
1002 /* No !PFMEMALLOC objects available */
1003 ac->avail++;
1004 objp = NULL;
1005 }
1006
1007 return objp;
1008}
1009
381760ea
MG
1010static inline void *ac_get_obj(struct kmem_cache *cachep,
1011 struct array_cache *ac, gfp_t flags, bool force_refill)
1012{
1013 void *objp;
1014
1015 if (unlikely(sk_memalloc_socks()))
1016 objp = __ac_get_obj(cachep, ac, flags, force_refill);
1017 else
1018 objp = ac->entry[--ac->avail];
1019
1020 return objp;
1021}
1022
1023static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
1024 void *objp)
1025{
1026 if (unlikely(pfmemalloc_active)) {
1027 /* Some pfmemalloc slabs exist, check if this is one */
1028 struct page *page = virt_to_page(objp);
1029 if (PageSlabPfmemalloc(page))
1030 set_obj_pfmemalloc(&objp);
1031 }
1032
381760ea
MG
1033 return objp;
1034}
1035
1036static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1037 void *objp)
1038{
1039 if (unlikely(sk_memalloc_socks()))
1040 objp = __ac_put_obj(cachep, ac, objp);
1041
072bb0aa
MG
1042 ac->entry[ac->avail++] = objp;
1043}
1044
3ded175a
CL
1045/*
1046 * Transfer objects in one arraycache to another.
1047 * Locking must be handled by the caller.
1048 *
1049 * Return the number of entries transferred.
1050 */
1051static int transfer_objects(struct array_cache *to,
1052 struct array_cache *from, unsigned int max)
1053{
1054 /* Figure out how many entries to transfer */
732eacc0 1055 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
1056
1057 if (!nr)
1058 return 0;
1059
1060 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1061 sizeof(void *) *nr);
1062
1063 from->avail -= nr;
1064 to->avail += nr;
3ded175a
CL
1065 return nr;
1066}
1067
765c4507
CL
1068#ifndef CONFIG_NUMA
1069
1070#define drain_alien_cache(cachep, alien) do { } while (0)
1071#define reap_alien(cachep, l3) do { } while (0)
1072
83b519e8 1073static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
1074{
1075 return (struct array_cache **)BAD_ALIEN_MAGIC;
1076}
1077
1078static inline void free_alien_cache(struct array_cache **ac_ptr)
1079{
1080}
1081
1082static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1083{
1084 return 0;
1085}
1086
1087static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1088 gfp_t flags)
1089{
1090 return NULL;
1091}
1092
8b98c169 1093static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1094 gfp_t flags, int nodeid)
1095{
1096 return NULL;
1097}
1098
1099#else /* CONFIG_NUMA */
1100
8b98c169 1101static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1102static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1103
83b519e8 1104static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
1105{
1106 struct array_cache **ac_ptr;
8ef82866 1107 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1108 int i;
1109
1110 if (limit > 1)
1111 limit = 12;
f3186a9c 1112 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
1113 if (ac_ptr) {
1114 for_each_node(i) {
f3186a9c 1115 if (i == node || !node_online(i))
e498be7d 1116 continue;
83b519e8 1117 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 1118 if (!ac_ptr[i]) {
cc550def 1119 for (i--; i >= 0; i--)
e498be7d
CL
1120 kfree(ac_ptr[i]);
1121 kfree(ac_ptr);
1122 return NULL;
1123 }
1124 }
1125 }
1126 return ac_ptr;
1127}
1128
5295a74c 1129static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1130{
1131 int i;
1132
1133 if (!ac_ptr)
1134 return;
e498be7d 1135 for_each_node(i)
b28a02de 1136 kfree(ac_ptr[i]);
e498be7d
CL
1137 kfree(ac_ptr);
1138}
1139
343e0d7a 1140static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1141 struct array_cache *ac, int node)
e498be7d
CL
1142{
1143 struct kmem_list3 *rl3 = cachep->nodelists[node];
1144
1145 if (ac->avail) {
1146 spin_lock(&rl3->list_lock);
e00946fe
CL
1147 /*
1148 * Stuff objects into the remote nodes shared array first.
1149 * That way we could avoid the overhead of putting the objects
1150 * into the free lists and getting them back later.
1151 */
693f7d36
JS
1152 if (rl3->shared)
1153 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1154
ff69416e 1155 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1156 ac->avail = 0;
1157 spin_unlock(&rl3->list_lock);
1158 }
1159}
1160
8fce4d8e
CL
1161/*
1162 * Called from cache_reap() to regularly drain alien caches round robin.
1163 */
1164static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1165{
909ea964 1166 int node = __this_cpu_read(slab_reap_node);
8fce4d8e
CL
1167
1168 if (l3->alien) {
1169 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1170
1171 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1172 __drain_alien_cache(cachep, ac, node);
1173 spin_unlock_irq(&ac->lock);
1174 }
1175 }
1176}
1177
a737b3e2
AM
1178static void drain_alien_cache(struct kmem_cache *cachep,
1179 struct array_cache **alien)
e498be7d 1180{
b28a02de 1181 int i = 0;
e498be7d
CL
1182 struct array_cache *ac;
1183 unsigned long flags;
1184
1185 for_each_online_node(i) {
4484ebf1 1186 ac = alien[i];
e498be7d
CL
1187 if (ac) {
1188 spin_lock_irqsave(&ac->lock, flags);
1189 __drain_alien_cache(cachep, ac, i);
1190 spin_unlock_irqrestore(&ac->lock, flags);
1191 }
1192 }
1193}
729bd0b7 1194
873623df 1195static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1196{
1197 struct slab *slabp = virt_to_slab(objp);
1198 int nodeid = slabp->nodeid;
1199 struct kmem_list3 *l3;
1200 struct array_cache *alien = NULL;
1ca4cb24
PE
1201 int node;
1202
7d6e6d09 1203 node = numa_mem_id();
729bd0b7
PE
1204
1205 /*
1206 * Make sure we are not freeing a object from another node to the array
1207 * cache on this cpu.
1208 */
62918a03 1209 if (likely(slabp->nodeid == node))
729bd0b7
PE
1210 return 0;
1211
1ca4cb24 1212 l3 = cachep->nodelists[node];
729bd0b7
PE
1213 STATS_INC_NODEFREES(cachep);
1214 if (l3->alien && l3->alien[nodeid]) {
1215 alien = l3->alien[nodeid];
873623df 1216 spin_lock(&alien->lock);
729bd0b7
PE
1217 if (unlikely(alien->avail == alien->limit)) {
1218 STATS_INC_ACOVERFLOW(cachep);
1219 __drain_alien_cache(cachep, alien, nodeid);
1220 }
072bb0aa 1221 ac_put_obj(cachep, alien, objp);
729bd0b7
PE
1222 spin_unlock(&alien->lock);
1223 } else {
1224 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1225 free_block(cachep, &objp, 1, nodeid);
1226 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1227 }
1228 return 1;
1229}
e498be7d
CL
1230#endif
1231
8f9f8d9e
DR
1232/*
1233 * Allocates and initializes nodelists for a node on each slab cache, used for
1234 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1235 * will be allocated off-node since memory is not yet online for the new node.
1236 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1237 * already in use.
1238 *
18004c5d 1239 * Must hold slab_mutex.
8f9f8d9e
DR
1240 */
1241static int init_cache_nodelists_node(int node)
1242{
1243 struct kmem_cache *cachep;
1244 struct kmem_list3 *l3;
1245 const int memsize = sizeof(struct kmem_list3);
1246
18004c5d 1247 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1248 /*
1249 * Set up the size64 kmemlist for cpu before we can
1250 * begin anything. Make sure some other cpu on this
1251 * node has not already allocated this
1252 */
1253 if (!cachep->nodelists[node]) {
1254 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1255 if (!l3)
1256 return -ENOMEM;
1257 kmem_list3_init(l3);
1258 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1259 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1260
1261 /*
1262 * The l3s don't come and go as CPUs come and
18004c5d 1263 * go. slab_mutex is sufficient
8f9f8d9e
DR
1264 * protection here.
1265 */
1266 cachep->nodelists[node] = l3;
1267 }
1268
1269 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1270 cachep->nodelists[node]->free_limit =
1271 (1 + nr_cpus_node(node)) *
1272 cachep->batchcount + cachep->num;
1273 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1274 }
1275 return 0;
1276}
1277
fbf1e473
AM
1278static void __cpuinit cpuup_canceled(long cpu)
1279{
1280 struct kmem_cache *cachep;
1281 struct kmem_list3 *l3 = NULL;
7d6e6d09 1282 int node = cpu_to_mem(cpu);
a70f7302 1283 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1284
18004c5d 1285 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1286 struct array_cache *nc;
1287 struct array_cache *shared;
1288 struct array_cache **alien;
fbf1e473 1289
fbf1e473
AM
1290 /* cpu is dead; no one can alloc from it. */
1291 nc = cachep->array[cpu];
1292 cachep->array[cpu] = NULL;
1293 l3 = cachep->nodelists[node];
1294
1295 if (!l3)
1296 goto free_array_cache;
1297
1298 spin_lock_irq(&l3->list_lock);
1299
1300 /* Free limit for this kmem_list3 */
1301 l3->free_limit -= cachep->batchcount;
1302 if (nc)
1303 free_block(cachep, nc->entry, nc->avail, node);
1304
58463c1f 1305 if (!cpumask_empty(mask)) {
fbf1e473
AM
1306 spin_unlock_irq(&l3->list_lock);
1307 goto free_array_cache;
1308 }
1309
1310 shared = l3->shared;
1311 if (shared) {
1312 free_block(cachep, shared->entry,
1313 shared->avail, node);
1314 l3->shared = NULL;
1315 }
1316
1317 alien = l3->alien;
1318 l3->alien = NULL;
1319
1320 spin_unlock_irq(&l3->list_lock);
1321
1322 kfree(shared);
1323 if (alien) {
1324 drain_alien_cache(cachep, alien);
1325 free_alien_cache(alien);
1326 }
1327free_array_cache:
1328 kfree(nc);
1329 }
1330 /*
1331 * In the previous loop, all the objects were freed to
1332 * the respective cache's slabs, now we can go ahead and
1333 * shrink each nodelist to its limit.
1334 */
18004c5d 1335 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1336 l3 = cachep->nodelists[node];
1337 if (!l3)
1338 continue;
1339 drain_freelist(cachep, l3, l3->free_objects);
1340 }
1341}
1342
1343static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1344{
343e0d7a 1345 struct kmem_cache *cachep;
e498be7d 1346 struct kmem_list3 *l3 = NULL;
7d6e6d09 1347 int node = cpu_to_mem(cpu);
8f9f8d9e 1348 int err;
1da177e4 1349
fbf1e473
AM
1350 /*
1351 * We need to do this right in the beginning since
1352 * alloc_arraycache's are going to use this list.
1353 * kmalloc_node allows us to add the slab to the right
1354 * kmem_list3 and not this cpu's kmem_list3
1355 */
8f9f8d9e
DR
1356 err = init_cache_nodelists_node(node);
1357 if (err < 0)
1358 goto bad;
fbf1e473
AM
1359
1360 /*
1361 * Now we can go ahead with allocating the shared arrays and
1362 * array caches
1363 */
18004c5d 1364 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1365 struct array_cache *nc;
1366 struct array_cache *shared = NULL;
1367 struct array_cache **alien = NULL;
1368
1369 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1370 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1371 if (!nc)
1372 goto bad;
1373 if (cachep->shared) {
1374 shared = alloc_arraycache(node,
1375 cachep->shared * cachep->batchcount,
83b519e8 1376 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1377 if (!shared) {
1378 kfree(nc);
1da177e4 1379 goto bad;
12d00f6a 1380 }
fbf1e473
AM
1381 }
1382 if (use_alien_caches) {
83b519e8 1383 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1384 if (!alien) {
1385 kfree(shared);
1386 kfree(nc);
fbf1e473 1387 goto bad;
12d00f6a 1388 }
fbf1e473
AM
1389 }
1390 cachep->array[cpu] = nc;
1391 l3 = cachep->nodelists[node];
1392 BUG_ON(!l3);
1393
1394 spin_lock_irq(&l3->list_lock);
1395 if (!l3->shared) {
1396 /*
1397 * We are serialised from CPU_DEAD or
1398 * CPU_UP_CANCELLED by the cpucontrol lock
1399 */
1400 l3->shared = shared;
1401 shared = NULL;
1402 }
4484ebf1 1403#ifdef CONFIG_NUMA
fbf1e473
AM
1404 if (!l3->alien) {
1405 l3->alien = alien;
1406 alien = NULL;
1da177e4 1407 }
fbf1e473
AM
1408#endif
1409 spin_unlock_irq(&l3->list_lock);
1410 kfree(shared);
1411 free_alien_cache(alien);
83835b3d
PZ
1412 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1413 slab_set_debugobj_lock_classes_node(cachep, node);
fbf1e473 1414 }
ce79ddc8
PE
1415 init_node_lock_keys(node);
1416
fbf1e473
AM
1417 return 0;
1418bad:
12d00f6a 1419 cpuup_canceled(cpu);
fbf1e473
AM
1420 return -ENOMEM;
1421}
1422
1423static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1424 unsigned long action, void *hcpu)
1425{
1426 long cpu = (long)hcpu;
1427 int err = 0;
1428
1429 switch (action) {
fbf1e473
AM
1430 case CPU_UP_PREPARE:
1431 case CPU_UP_PREPARE_FROZEN:
18004c5d 1432 mutex_lock(&slab_mutex);
fbf1e473 1433 err = cpuup_prepare(cpu);
18004c5d 1434 mutex_unlock(&slab_mutex);
1da177e4
LT
1435 break;
1436 case CPU_ONLINE:
8bb78442 1437 case CPU_ONLINE_FROZEN:
1da177e4
LT
1438 start_cpu_timer(cpu);
1439 break;
1440#ifdef CONFIG_HOTPLUG_CPU
5830c590 1441 case CPU_DOWN_PREPARE:
8bb78442 1442 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1443 /*
18004c5d 1444 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1445 * held so that if cache_reap() is invoked it cannot do
1446 * anything expensive but will only modify reap_work
1447 * and reschedule the timer.
1448 */
afe2c511 1449 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1450 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1451 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1452 break;
1453 case CPU_DOWN_FAILED:
8bb78442 1454 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1455 start_cpu_timer(cpu);
1456 break;
1da177e4 1457 case CPU_DEAD:
8bb78442 1458 case CPU_DEAD_FROZEN:
4484ebf1
RT
1459 /*
1460 * Even if all the cpus of a node are down, we don't free the
1461 * kmem_list3 of any cache. This to avoid a race between
1462 * cpu_down, and a kmalloc allocation from another cpu for
1463 * memory from the node of the cpu going down. The list3
1464 * structure is usually allocated from kmem_cache_create() and
1465 * gets destroyed at kmem_cache_destroy().
1466 */
183ff22b 1467 /* fall through */
8f5be20b 1468#endif
1da177e4 1469 case CPU_UP_CANCELED:
8bb78442 1470 case CPU_UP_CANCELED_FROZEN:
18004c5d 1471 mutex_lock(&slab_mutex);
fbf1e473 1472 cpuup_canceled(cpu);
18004c5d 1473 mutex_unlock(&slab_mutex);
1da177e4 1474 break;
1da177e4 1475 }
eac40680 1476 return notifier_from_errno(err);
1da177e4
LT
1477}
1478
74b85f37
CS
1479static struct notifier_block __cpuinitdata cpucache_notifier = {
1480 &cpuup_callback, NULL, 0
1481};
1da177e4 1482
8f9f8d9e
DR
1483#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1484/*
1485 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1486 * Returns -EBUSY if all objects cannot be drained so that the node is not
1487 * removed.
1488 *
18004c5d 1489 * Must hold slab_mutex.
8f9f8d9e
DR
1490 */
1491static int __meminit drain_cache_nodelists_node(int node)
1492{
1493 struct kmem_cache *cachep;
1494 int ret = 0;
1495
18004c5d 1496 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1497 struct kmem_list3 *l3;
1498
1499 l3 = cachep->nodelists[node];
1500 if (!l3)
1501 continue;
1502
1503 drain_freelist(cachep, l3, l3->free_objects);
1504
1505 if (!list_empty(&l3->slabs_full) ||
1506 !list_empty(&l3->slabs_partial)) {
1507 ret = -EBUSY;
1508 break;
1509 }
1510 }
1511 return ret;
1512}
1513
1514static int __meminit slab_memory_callback(struct notifier_block *self,
1515 unsigned long action, void *arg)
1516{
1517 struct memory_notify *mnb = arg;
1518 int ret = 0;
1519 int nid;
1520
1521 nid = mnb->status_change_nid;
1522 if (nid < 0)
1523 goto out;
1524
1525 switch (action) {
1526 case MEM_GOING_ONLINE:
18004c5d 1527 mutex_lock(&slab_mutex);
8f9f8d9e 1528 ret = init_cache_nodelists_node(nid);
18004c5d 1529 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1530 break;
1531 case MEM_GOING_OFFLINE:
18004c5d 1532 mutex_lock(&slab_mutex);
8f9f8d9e 1533 ret = drain_cache_nodelists_node(nid);
18004c5d 1534 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1535 break;
1536 case MEM_ONLINE:
1537 case MEM_OFFLINE:
1538 case MEM_CANCEL_ONLINE:
1539 case MEM_CANCEL_OFFLINE:
1540 break;
1541 }
1542out:
5fda1bd5 1543 return notifier_from_errno(ret);
8f9f8d9e
DR
1544}
1545#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1546
e498be7d
CL
1547/*
1548 * swap the static kmem_list3 with kmalloced memory
1549 */
8f9f8d9e
DR
1550static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1551 int nodeid)
e498be7d
CL
1552{
1553 struct kmem_list3 *ptr;
1554
83b519e8 1555 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
e498be7d
CL
1556 BUG_ON(!ptr);
1557
e498be7d 1558 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1559 /*
1560 * Do not assume that spinlocks can be initialized via memcpy:
1561 */
1562 spin_lock_init(&ptr->list_lock);
1563
e498be7d
CL
1564 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1565 cachep->nodelists[nodeid] = ptr;
e498be7d
CL
1566}
1567
556a169d
PE
1568/*
1569 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1570 * size of kmem_list3.
1571 */
1572static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1573{
1574 int node;
1575
1576 for_each_online_node(node) {
1577 cachep->nodelists[node] = &initkmem_list3[index + node];
1578 cachep->nodelists[node]->next_reap = jiffies +
1579 REAPTIMEOUT_LIST3 +
1580 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1581 }
1582}
1583
a737b3e2
AM
1584/*
1585 * Initialisation. Called after the page allocator have been initialised and
1586 * before smp_init().
1da177e4
LT
1587 */
1588void __init kmem_cache_init(void)
1589{
1590 size_t left_over;
1591 struct cache_sizes *sizes;
1592 struct cache_names *names;
e498be7d 1593 int i;
07ed76b2 1594 int order;
1ca4cb24 1595 int node;
e498be7d 1596
9b030cb8
CL
1597 kmem_cache = &kmem_cache_boot;
1598
b6e68bc1 1599 if (num_possible_nodes() == 1)
62918a03
SS
1600 use_alien_caches = 0;
1601
e498be7d
CL
1602 for (i = 0; i < NUM_INIT_LISTS; i++) {
1603 kmem_list3_init(&initkmem_list3[i]);
1604 if (i < MAX_NUMNODES)
9b030cb8 1605 kmem_cache->nodelists[i] = NULL;
e498be7d 1606 }
9b030cb8 1607 set_up_list3s(kmem_cache, CACHE_CACHE);
1da177e4
LT
1608
1609 /*
1610 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1611 * page orders on machines with more than 32MB of memory if
1612 * not overridden on the command line.
1da177e4 1613 */
3df1cccd 1614 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1615 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1616
1da177e4
LT
1617 /* Bootstrap is tricky, because several objects are allocated
1618 * from caches that do not exist yet:
9b030cb8
CL
1619 * 1) initialize the kmem_cache cache: it contains the struct
1620 * kmem_cache structures of all caches, except kmem_cache itself:
1621 * kmem_cache is statically allocated.
e498be7d
CL
1622 * Initially an __init data area is used for the head array and the
1623 * kmem_list3 structures, it's replaced with a kmalloc allocated
1624 * array at the end of the bootstrap.
1da177e4 1625 * 2) Create the first kmalloc cache.
343e0d7a 1626 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1627 * An __init data area is used for the head array.
1628 * 3) Create the remaining kmalloc caches, with minimally sized
1629 * head arrays.
9b030cb8 1630 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1631 * kmalloc cache with kmalloc allocated arrays.
9b030cb8 1632 * 5) Replace the __init data for kmem_list3 for kmem_cache and
e498be7d
CL
1633 * the other cache's with kmalloc allocated memory.
1634 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1635 */
1636
7d6e6d09 1637 node = numa_mem_id();
1ca4cb24 1638
9b030cb8 1639 /* 1) create the kmem_cache */
18004c5d 1640 INIT_LIST_HEAD(&slab_caches);
9b030cb8
CL
1641 list_add(&kmem_cache->list, &slab_caches);
1642 kmem_cache->colour_off = cache_line_size();
1643 kmem_cache->array[smp_processor_id()] = &initarray_cache.cache;
1644 kmem_cache->nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1da177e4 1645
8da3430d 1646 /*
b56efcf0 1647 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1648 */
9b030cb8 1649 kmem_cache->size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
b56efcf0 1650 nr_node_ids * sizeof(struct kmem_list3 *);
9b030cb8
CL
1651 kmem_cache->object_size = kmem_cache->size;
1652 kmem_cache->size = ALIGN(kmem_cache->object_size,
a737b3e2 1653 cache_line_size());
9b030cb8
CL
1654 kmem_cache->reciprocal_buffer_size =
1655 reciprocal_value(kmem_cache->size);
1da177e4 1656
07ed76b2 1657 for (order = 0; order < MAX_ORDER; order++) {
9b030cb8
CL
1658 cache_estimate(order, kmem_cache->size,
1659 cache_line_size(), 0, &left_over, &kmem_cache->num);
1660 if (kmem_cache->num)
07ed76b2
JS
1661 break;
1662 }
9b030cb8
CL
1663 BUG_ON(!kmem_cache->num);
1664 kmem_cache->gfporder = order;
1665 kmem_cache->colour = left_over / kmem_cache->colour_off;
1666 kmem_cache->slab_size = ALIGN(kmem_cache->num * sizeof(kmem_bufctl_t) +
b28a02de 1667 sizeof(struct slab), cache_line_size());
1da177e4
LT
1668
1669 /* 2+3) create the kmalloc caches */
1670 sizes = malloc_sizes;
1671 names = cache_names;
1672
a737b3e2
AM
1673 /*
1674 * Initialize the caches that provide memory for the array cache and the
1675 * kmem_list3 structures first. Without this, further allocations will
1676 * bug.
e498be7d
CL
1677 */
1678
278b1bb1 1679 sizes[INDEX_AC].cs_cachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
8a13a4cc
CL
1680 sizes[INDEX_AC].cs_cachep->name = names[INDEX_AC].name;
1681 sizes[INDEX_AC].cs_cachep->size = sizes[INDEX_AC].cs_size;
1682 sizes[INDEX_AC].cs_cachep->object_size = sizes[INDEX_AC].cs_size;
1683 sizes[INDEX_AC].cs_cachep->align = ARCH_KMALLOC_MINALIGN;
1684 __kmem_cache_create(sizes[INDEX_AC].cs_cachep, ARCH_KMALLOC_FLAGS|SLAB_PANIC);
7c9adf5a 1685 list_add(&sizes[INDEX_AC].cs_cachep->list, &slab_caches);
8a13a4cc 1686
a737b3e2 1687 if (INDEX_AC != INDEX_L3) {
278b1bb1 1688 sizes[INDEX_L3].cs_cachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
8a13a4cc
CL
1689 sizes[INDEX_L3].cs_cachep->name = names[INDEX_L3].name;
1690 sizes[INDEX_L3].cs_cachep->size = sizes[INDEX_L3].cs_size;
1691 sizes[INDEX_L3].cs_cachep->object_size = sizes[INDEX_L3].cs_size;
1692 sizes[INDEX_L3].cs_cachep->align = ARCH_KMALLOC_MINALIGN;
1693 __kmem_cache_create(sizes[INDEX_L3].cs_cachep, ARCH_KMALLOC_FLAGS|SLAB_PANIC);
7c9adf5a 1694 list_add(&sizes[INDEX_L3].cs_cachep->list, &slab_caches);
a737b3e2 1695 }
e498be7d 1696
e0a42726
IM
1697 slab_early_init = 0;
1698
1da177e4 1699 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1700 /*
1701 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1702 * This should be particularly beneficial on SMP boxes, as it
1703 * eliminates "false sharing".
1704 * Note for systems short on memory removing the alignment will
e498be7d
CL
1705 * allow tighter packing of the smaller caches.
1706 */
a737b3e2 1707 if (!sizes->cs_cachep) {
278b1bb1 1708 sizes->cs_cachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
8a13a4cc
CL
1709 sizes->cs_cachep->name = names->name;
1710 sizes->cs_cachep->size = sizes->cs_size;
1711 sizes->cs_cachep->object_size = sizes->cs_size;
1712 sizes->cs_cachep->align = ARCH_KMALLOC_MINALIGN;
1713 __kmem_cache_create(sizes->cs_cachep, ARCH_KMALLOC_FLAGS|SLAB_PANIC);
7c9adf5a 1714 list_add(&sizes->cs_cachep->list, &slab_caches);
a737b3e2 1715 }
4b51d669 1716#ifdef CONFIG_ZONE_DMA
278b1bb1 1717 sizes->cs_dmacachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
8a13a4cc
CL
1718 sizes->cs_dmacachep->name = names->name_dma;
1719 sizes->cs_dmacachep->size = sizes->cs_size;
1720 sizes->cs_dmacachep->object_size = sizes->cs_size;
1721 sizes->cs_dmacachep->align = ARCH_KMALLOC_MINALIGN;
278b1bb1 1722 __kmem_cache_create(sizes->cs_dmacachep,
8a13a4cc 1723 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA| SLAB_PANIC);
7c9adf5a 1724 list_add(&sizes->cs_dmacachep->list, &slab_caches);
4b51d669 1725#endif
1da177e4
LT
1726 sizes++;
1727 names++;
1728 }
1729 /* 4) Replace the bootstrap head arrays */
1730 {
2b2d5493 1731 struct array_cache *ptr;
e498be7d 1732
83b519e8 1733 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1734
9b030cb8
CL
1735 BUG_ON(cpu_cache_get(kmem_cache) != &initarray_cache.cache);
1736 memcpy(ptr, cpu_cache_get(kmem_cache),
b28a02de 1737 sizeof(struct arraycache_init));
2b2d5493
IM
1738 /*
1739 * Do not assume that spinlocks can be initialized via memcpy:
1740 */
1741 spin_lock_init(&ptr->lock);
1742
9b030cb8 1743 kmem_cache->array[smp_processor_id()] = ptr;
e498be7d 1744
83b519e8 1745 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1746
9a2dba4b 1747 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1748 != &initarray_generic.cache);
9a2dba4b 1749 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1750 sizeof(struct arraycache_init));
2b2d5493
IM
1751 /*
1752 * Do not assume that spinlocks can be initialized via memcpy:
1753 */
1754 spin_lock_init(&ptr->lock);
1755
e498be7d 1756 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1757 ptr;
1da177e4 1758 }
e498be7d
CL
1759 /* 5) Replace the bootstrap kmem_list3's */
1760 {
1ca4cb24
PE
1761 int nid;
1762
9c09a95c 1763 for_each_online_node(nid) {
9b030cb8 1764 init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1765
e498be7d 1766 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1767 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1768
1769 if (INDEX_AC != INDEX_L3) {
1770 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1771 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1772 }
1773 }
1774 }
1da177e4 1775
97d06609 1776 slab_state = UP;
8429db5c
PE
1777}
1778
1779void __init kmem_cache_init_late(void)
1780{
1781 struct kmem_cache *cachep;
1782
97d06609 1783 slab_state = UP;
52cef189 1784
30765b92
PZ
1785 /* Annotate slab for lockdep -- annotate the malloc caches */
1786 init_lock_keys();
1787
8429db5c 1788 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1789 mutex_lock(&slab_mutex);
1790 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1791 if (enable_cpucache(cachep, GFP_NOWAIT))
1792 BUG();
18004c5d 1793 mutex_unlock(&slab_mutex);
056c6241 1794
97d06609
CL
1795 /* Done! */
1796 slab_state = FULL;
1797
a737b3e2
AM
1798 /*
1799 * Register a cpu startup notifier callback that initializes
1800 * cpu_cache_get for all new cpus
1da177e4
LT
1801 */
1802 register_cpu_notifier(&cpucache_notifier);
1da177e4 1803
8f9f8d9e
DR
1804#ifdef CONFIG_NUMA
1805 /*
1806 * Register a memory hotplug callback that initializes and frees
1807 * nodelists.
1808 */
1809 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1810#endif
1811
a737b3e2
AM
1812 /*
1813 * The reap timers are started later, with a module init call: That part
1814 * of the kernel is not yet operational.
1da177e4
LT
1815 */
1816}
1817
1818static int __init cpucache_init(void)
1819{
1820 int cpu;
1821
a737b3e2
AM
1822 /*
1823 * Register the timers that return unneeded pages to the page allocator
1da177e4 1824 */
e498be7d 1825 for_each_online_cpu(cpu)
a737b3e2 1826 start_cpu_timer(cpu);
a164f896
GC
1827
1828 /* Done! */
97d06609 1829 slab_state = FULL;
1da177e4
LT
1830 return 0;
1831}
1da177e4
LT
1832__initcall(cpucache_init);
1833
8bdec192
RA
1834static noinline void
1835slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1836{
1837 struct kmem_list3 *l3;
1838 struct slab *slabp;
1839 unsigned long flags;
1840 int node;
1841
1842 printk(KERN_WARNING
1843 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1844 nodeid, gfpflags);
1845 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1846 cachep->name, cachep->size, cachep->gfporder);
8bdec192
RA
1847
1848 for_each_online_node(node) {
1849 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1850 unsigned long active_slabs = 0, num_slabs = 0;
1851
1852 l3 = cachep->nodelists[node];
1853 if (!l3)
1854 continue;
1855
1856 spin_lock_irqsave(&l3->list_lock, flags);
1857 list_for_each_entry(slabp, &l3->slabs_full, list) {
1858 active_objs += cachep->num;
1859 active_slabs++;
1860 }
1861 list_for_each_entry(slabp, &l3->slabs_partial, list) {
1862 active_objs += slabp->inuse;
1863 active_slabs++;
1864 }
1865 list_for_each_entry(slabp, &l3->slabs_free, list)
1866 num_slabs++;
1867
1868 free_objects += l3->free_objects;
1869 spin_unlock_irqrestore(&l3->list_lock, flags);
1870
1871 num_slabs += active_slabs;
1872 num_objs = num_slabs * cachep->num;
1873 printk(KERN_WARNING
1874 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1875 node, active_slabs, num_slabs, active_objs, num_objs,
1876 free_objects);
1877 }
1878}
1879
1da177e4
LT
1880/*
1881 * Interface to system's page allocator. No need to hold the cache-lock.
1882 *
1883 * If we requested dmaable memory, we will get it. Even if we
1884 * did not request dmaable memory, we might get it, but that
1885 * would be relatively rare and ignorable.
1886 */
343e0d7a 1887static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1888{
1889 struct page *page;
e1b6aa6f 1890 int nr_pages;
1da177e4
LT
1891 int i;
1892
d6fef9da 1893#ifndef CONFIG_MMU
e1b6aa6f
CH
1894 /*
1895 * Nommu uses slab's for process anonymous memory allocations, and thus
1896 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1897 */
e1b6aa6f 1898 flags |= __GFP_COMP;
d6fef9da 1899#endif
765c4507 1900
a618e89f 1901 flags |= cachep->allocflags;
e12ba74d
MG
1902 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1903 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1904
517d0869 1905 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192
RA
1906 if (!page) {
1907 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1908 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1909 return NULL;
8bdec192 1910 }
1da177e4 1911
b37f1dd0 1912 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
072bb0aa
MG
1913 if (unlikely(page->pfmemalloc))
1914 pfmemalloc_active = true;
1915
e1b6aa6f 1916 nr_pages = (1 << cachep->gfporder);
1da177e4 1917 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1918 add_zone_page_state(page_zone(page),
1919 NR_SLAB_RECLAIMABLE, nr_pages);
1920 else
1921 add_zone_page_state(page_zone(page),
1922 NR_SLAB_UNRECLAIMABLE, nr_pages);
072bb0aa 1923 for (i = 0; i < nr_pages; i++) {
e1b6aa6f 1924 __SetPageSlab(page + i);
c175eea4 1925
072bb0aa
MG
1926 if (page->pfmemalloc)
1927 SetPageSlabPfmemalloc(page + i);
1928 }
1929
b1eeab67
VN
1930 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1931 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1932
1933 if (cachep->ctor)
1934 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1935 else
1936 kmemcheck_mark_unallocated_pages(page, nr_pages);
1937 }
c175eea4 1938
e1b6aa6f 1939 return page_address(page);
1da177e4
LT
1940}
1941
1942/*
1943 * Interface to system's page release.
1944 */
343e0d7a 1945static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1946{
b28a02de 1947 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1948 struct page *page = virt_to_page(addr);
1949 const unsigned long nr_freed = i;
1950
b1eeab67 1951 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1952
972d1a7b
CL
1953 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1954 sub_zone_page_state(page_zone(page),
1955 NR_SLAB_RECLAIMABLE, nr_freed);
1956 else
1957 sub_zone_page_state(page_zone(page),
1958 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1959 while (i--) {
f205b2fe 1960 BUG_ON(!PageSlab(page));
072bb0aa 1961 __ClearPageSlabPfmemalloc(page);
f205b2fe 1962 __ClearPageSlab(page);
1da177e4
LT
1963 page++;
1964 }
1da177e4
LT
1965 if (current->reclaim_state)
1966 current->reclaim_state->reclaimed_slab += nr_freed;
1967 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1968}
1969
1970static void kmem_rcu_free(struct rcu_head *head)
1971{
b28a02de 1972 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1973 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1974
1975 kmem_freepages(cachep, slab_rcu->addr);
1976 if (OFF_SLAB(cachep))
1977 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1978}
1979
1980#if DEBUG
1981
1982#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1983static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1984 unsigned long caller)
1da177e4 1985{
8c138bc0 1986 int size = cachep->object_size;
1da177e4 1987
3dafccf2 1988 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1989
b28a02de 1990 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1991 return;
1992
b28a02de
PE
1993 *addr++ = 0x12345678;
1994 *addr++ = caller;
1995 *addr++ = smp_processor_id();
1996 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1997 {
1998 unsigned long *sptr = &caller;
1999 unsigned long svalue;
2000
2001 while (!kstack_end(sptr)) {
2002 svalue = *sptr++;
2003 if (kernel_text_address(svalue)) {
b28a02de 2004 *addr++ = svalue;
1da177e4
LT
2005 size -= sizeof(unsigned long);
2006 if (size <= sizeof(unsigned long))
2007 break;
2008 }
2009 }
2010
2011 }
b28a02de 2012 *addr++ = 0x87654321;
1da177e4
LT
2013}
2014#endif
2015
343e0d7a 2016static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 2017{
8c138bc0 2018 int size = cachep->object_size;
3dafccf2 2019 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
2020
2021 memset(addr, val, size);
b28a02de 2022 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
2023}
2024
2025static void dump_line(char *data, int offset, int limit)
2026{
2027 int i;
aa83aa40
DJ
2028 unsigned char error = 0;
2029 int bad_count = 0;
2030
fdde6abb 2031 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
2032 for (i = 0; i < limit; i++) {
2033 if (data[offset + i] != POISON_FREE) {
2034 error = data[offset + i];
2035 bad_count++;
2036 }
aa83aa40 2037 }
fdde6abb
SAS
2038 print_hex_dump(KERN_CONT, "", 0, 16, 1,
2039 &data[offset], limit, 1);
aa83aa40
DJ
2040
2041 if (bad_count == 1) {
2042 error ^= POISON_FREE;
2043 if (!(error & (error - 1))) {
2044 printk(KERN_ERR "Single bit error detected. Probably "
2045 "bad RAM.\n");
2046#ifdef CONFIG_X86
2047 printk(KERN_ERR "Run memtest86+ or a similar memory "
2048 "test tool.\n");
2049#else
2050 printk(KERN_ERR "Run a memory test tool.\n");
2051#endif
2052 }
2053 }
1da177e4
LT
2054}
2055#endif
2056
2057#if DEBUG
2058
343e0d7a 2059static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
2060{
2061 int i, size;
2062 char *realobj;
2063
2064 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 2065 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
2066 *dbg_redzone1(cachep, objp),
2067 *dbg_redzone2(cachep, objp));
1da177e4
LT
2068 }
2069
2070 if (cachep->flags & SLAB_STORE_USER) {
2071 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 2072 *dbg_userword(cachep, objp));
1da177e4 2073 print_symbol("(%s)",
a737b3e2 2074 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
2075 printk("\n");
2076 }
3dafccf2 2077 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 2078 size = cachep->object_size;
b28a02de 2079 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
2080 int limit;
2081 limit = 16;
b28a02de
PE
2082 if (i + limit > size)
2083 limit = size - i;
1da177e4
LT
2084 dump_line(realobj, i, limit);
2085 }
2086}
2087
343e0d7a 2088static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
2089{
2090 char *realobj;
2091 int size, i;
2092 int lines = 0;
2093
3dafccf2 2094 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 2095 size = cachep->object_size;
1da177e4 2096
b28a02de 2097 for (i = 0; i < size; i++) {
1da177e4 2098 char exp = POISON_FREE;
b28a02de 2099 if (i == size - 1)
1da177e4
LT
2100 exp = POISON_END;
2101 if (realobj[i] != exp) {
2102 int limit;
2103 /* Mismatch ! */
2104 /* Print header */
2105 if (lines == 0) {
b28a02de 2106 printk(KERN_ERR
face37f5
DJ
2107 "Slab corruption (%s): %s start=%p, len=%d\n",
2108 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
2109 print_objinfo(cachep, objp, 0);
2110 }
2111 /* Hexdump the affected line */
b28a02de 2112 i = (i / 16) * 16;
1da177e4 2113 limit = 16;
b28a02de
PE
2114 if (i + limit > size)
2115 limit = size - i;
1da177e4
LT
2116 dump_line(realobj, i, limit);
2117 i += 16;
2118 lines++;
2119 /* Limit to 5 lines */
2120 if (lines > 5)
2121 break;
2122 }
2123 }
2124 if (lines != 0) {
2125 /* Print some data about the neighboring objects, if they
2126 * exist:
2127 */
6ed5eb22 2128 struct slab *slabp = virt_to_slab(objp);
8fea4e96 2129 unsigned int objnr;
1da177e4 2130
8fea4e96 2131 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 2132 if (objnr) {
8fea4e96 2133 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 2134 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2135 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 2136 realobj, size);
1da177e4
LT
2137 print_objinfo(cachep, objp, 2);
2138 }
b28a02de 2139 if (objnr + 1 < cachep->num) {
8fea4e96 2140 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 2141 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2142 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 2143 realobj, size);
1da177e4
LT
2144 print_objinfo(cachep, objp, 2);
2145 }
2146 }
2147}
2148#endif
2149
12dd36fa 2150#if DEBUG
e79aec29 2151static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 2152{
1da177e4
LT
2153 int i;
2154 for (i = 0; i < cachep->num; i++) {
8fea4e96 2155 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2156
2157 if (cachep->flags & SLAB_POISON) {
2158#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2159 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 2160 OFF_SLAB(cachep))
b28a02de 2161 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2162 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2163 else
2164 check_poison_obj(cachep, objp);
2165#else
2166 check_poison_obj(cachep, objp);
2167#endif
2168 }
2169 if (cachep->flags & SLAB_RED_ZONE) {
2170 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2171 slab_error(cachep, "start of a freed object "
b28a02de 2172 "was overwritten");
1da177e4
LT
2173 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2174 slab_error(cachep, "end of a freed object "
b28a02de 2175 "was overwritten");
1da177e4 2176 }
1da177e4 2177 }
12dd36fa 2178}
1da177e4 2179#else
e79aec29 2180static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 2181{
12dd36fa 2182}
1da177e4
LT
2183#endif
2184
911851e6
RD
2185/**
2186 * slab_destroy - destroy and release all objects in a slab
2187 * @cachep: cache pointer being destroyed
2188 * @slabp: slab pointer being destroyed
2189 *
12dd36fa 2190 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
2191 * Before calling the slab must have been unlinked from the cache. The
2192 * cache-lock is not held/needed.
12dd36fa 2193 */
343e0d7a 2194static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
2195{
2196 void *addr = slabp->s_mem - slabp->colouroff;
2197
e79aec29 2198 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
2199 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2200 struct slab_rcu *slab_rcu;
2201
b28a02de 2202 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
2203 slab_rcu->cachep = cachep;
2204 slab_rcu->addr = addr;
2205 call_rcu(&slab_rcu->head, kmem_rcu_free);
2206 } else {
2207 kmem_freepages(cachep, addr);
873623df
IM
2208 if (OFF_SLAB(cachep))
2209 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
2210 }
2211}
2212
4d268eba 2213/**
a70773dd
RD
2214 * calculate_slab_order - calculate size (page order) of slabs
2215 * @cachep: pointer to the cache that is being created
2216 * @size: size of objects to be created in this cache.
2217 * @align: required alignment for the objects.
2218 * @flags: slab allocation flags
2219 *
2220 * Also calculates the number of objects per slab.
4d268eba
PE
2221 *
2222 * This could be made much more intelligent. For now, try to avoid using
2223 * high order pages for slabs. When the gfp() functions are more friendly
2224 * towards high-order requests, this should be changed.
2225 */
a737b3e2 2226static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2227 size_t size, size_t align, unsigned long flags)
4d268eba 2228{
b1ab41c4 2229 unsigned long offslab_limit;
4d268eba 2230 size_t left_over = 0;
9888e6fa 2231 int gfporder;
4d268eba 2232
0aa817f0 2233 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2234 unsigned int num;
2235 size_t remainder;
2236
9888e6fa 2237 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2238 if (!num)
2239 continue;
9888e6fa 2240
b1ab41c4
IM
2241 if (flags & CFLGS_OFF_SLAB) {
2242 /*
2243 * Max number of objs-per-slab for caches which
2244 * use off-slab slabs. Needed to avoid a possible
2245 * looping condition in cache_grow().
2246 */
2247 offslab_limit = size - sizeof(struct slab);
2248 offslab_limit /= sizeof(kmem_bufctl_t);
2249
2250 if (num > offslab_limit)
2251 break;
2252 }
4d268eba 2253
9888e6fa 2254 /* Found something acceptable - save it away */
4d268eba 2255 cachep->num = num;
9888e6fa 2256 cachep->gfporder = gfporder;
4d268eba
PE
2257 left_over = remainder;
2258
f78bb8ad
LT
2259 /*
2260 * A VFS-reclaimable slab tends to have most allocations
2261 * as GFP_NOFS and we really don't want to have to be allocating
2262 * higher-order pages when we are unable to shrink dcache.
2263 */
2264 if (flags & SLAB_RECLAIM_ACCOUNT)
2265 break;
2266
4d268eba
PE
2267 /*
2268 * Large number of objects is good, but very large slabs are
2269 * currently bad for the gfp()s.
2270 */
543585cc 2271 if (gfporder >= slab_max_order)
4d268eba
PE
2272 break;
2273
9888e6fa
LT
2274 /*
2275 * Acceptable internal fragmentation?
2276 */
a737b3e2 2277 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2278 break;
2279 }
2280 return left_over;
2281}
2282
83b519e8 2283static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2284{
97d06609 2285 if (slab_state >= FULL)
83b519e8 2286 return enable_cpucache(cachep, gfp);
2ed3a4ef 2287
97d06609 2288 if (slab_state == DOWN) {
f30cf7d1
PE
2289 /*
2290 * Note: the first kmem_cache_create must create the cache
2291 * that's used by kmalloc(24), otherwise the creation of
2292 * further caches will BUG().
2293 */
2294 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2295
2296 /*
2297 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2298 * the first cache, then we need to set up all its list3s,
2299 * otherwise the creation of further caches will BUG().
2300 */
2301 set_up_list3s(cachep, SIZE_AC);
2302 if (INDEX_AC == INDEX_L3)
97d06609 2303 slab_state = PARTIAL_L3;
f30cf7d1 2304 else
97d06609 2305 slab_state = PARTIAL_ARRAYCACHE;
f30cf7d1
PE
2306 } else {
2307 cachep->array[smp_processor_id()] =
83b519e8 2308 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1 2309
97d06609 2310 if (slab_state == PARTIAL_ARRAYCACHE) {
f30cf7d1 2311 set_up_list3s(cachep, SIZE_L3);
97d06609 2312 slab_state = PARTIAL_L3;
f30cf7d1
PE
2313 } else {
2314 int node;
556a169d 2315 for_each_online_node(node) {
f30cf7d1
PE
2316 cachep->nodelists[node] =
2317 kmalloc_node(sizeof(struct kmem_list3),
eb91f1d0 2318 gfp, node);
f30cf7d1
PE
2319 BUG_ON(!cachep->nodelists[node]);
2320 kmem_list3_init(cachep->nodelists[node]);
2321 }
2322 }
2323 }
7d6e6d09 2324 cachep->nodelists[numa_mem_id()]->next_reap =
f30cf7d1
PE
2325 jiffies + REAPTIMEOUT_LIST3 +
2326 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2327
2328 cpu_cache_get(cachep)->avail = 0;
2329 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2330 cpu_cache_get(cachep)->batchcount = 1;
2331 cpu_cache_get(cachep)->touched = 0;
2332 cachep->batchcount = 1;
2333 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2334 return 0;
f30cf7d1
PE
2335}
2336
1da177e4 2337/**
039363f3 2338 * __kmem_cache_create - Create a cache.
1da177e4
LT
2339 * @name: A string which is used in /proc/slabinfo to identify this cache.
2340 * @size: The size of objects to be created in this cache.
2341 * @align: The required alignment for the objects.
2342 * @flags: SLAB flags
2343 * @ctor: A constructor for the objects.
1da177e4
LT
2344 *
2345 * Returns a ptr to the cache on success, NULL on failure.
2346 * Cannot be called within a int, but can be interrupted.
20c2df83 2347 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2348 *
1da177e4
LT
2349 * The flags are
2350 *
2351 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2352 * to catch references to uninitialised memory.
2353 *
2354 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2355 * for buffer overruns.
2356 *
1da177e4
LT
2357 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2358 * cacheline. This can be beneficial if you're counting cycles as closely
2359 * as davem.
2360 */
278b1bb1 2361int
8a13a4cc 2362__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4
LT
2363{
2364 size_t left_over, slab_size, ralign;
83b519e8 2365 gfp_t gfp;
278b1bb1 2366 int err;
8a13a4cc 2367 size_t size = cachep->size;
1da177e4 2368
1da177e4 2369#if DEBUG
1da177e4
LT
2370#if FORCED_DEBUG
2371 /*
2372 * Enable redzoning and last user accounting, except for caches with
2373 * large objects, if the increased size would increase the object size
2374 * above the next power of two: caches with object sizes just above a
2375 * power of two have a significant amount of internal fragmentation.
2376 */
87a927c7
DW
2377 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2378 2 * sizeof(unsigned long long)))
b28a02de 2379 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2380 if (!(flags & SLAB_DESTROY_BY_RCU))
2381 flags |= SLAB_POISON;
2382#endif
2383 if (flags & SLAB_DESTROY_BY_RCU)
2384 BUG_ON(flags & SLAB_POISON);
2385#endif
1da177e4 2386 /*
a737b3e2
AM
2387 * Always checks flags, a caller might be expecting debug support which
2388 * isn't available.
1da177e4 2389 */
40094fa6 2390 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2391
a737b3e2
AM
2392 /*
2393 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2394 * unaligned accesses for some archs when redzoning is used, and makes
2395 * sure any on-slab bufctl's are also correctly aligned.
2396 */
b28a02de
PE
2397 if (size & (BYTES_PER_WORD - 1)) {
2398 size += (BYTES_PER_WORD - 1);
2399 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2400 }
2401
a737b3e2
AM
2402 /* calculate the final buffer alignment: */
2403
1da177e4
LT
2404 /* 1) arch recommendation: can be overridden for debug */
2405 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2406 /*
2407 * Default alignment: as specified by the arch code. Except if
2408 * an object is really small, then squeeze multiple objects into
2409 * one cacheline.
1da177e4
LT
2410 */
2411 ralign = cache_line_size();
b28a02de 2412 while (size <= ralign / 2)
1da177e4
LT
2413 ralign /= 2;
2414 } else {
2415 ralign = BYTES_PER_WORD;
2416 }
ca5f9703
PE
2417
2418 /*
87a927c7
DW
2419 * Redzoning and user store require word alignment or possibly larger.
2420 * Note this will be overridden by architecture or caller mandated
2421 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2422 */
87a927c7
DW
2423 if (flags & SLAB_STORE_USER)
2424 ralign = BYTES_PER_WORD;
2425
2426 if (flags & SLAB_RED_ZONE) {
2427 ralign = REDZONE_ALIGN;
2428 /* If redzoning, ensure that the second redzone is suitably
2429 * aligned, by adjusting the object size accordingly. */
2430 size += REDZONE_ALIGN - 1;
2431 size &= ~(REDZONE_ALIGN - 1);
2432 }
ca5f9703 2433
a44b56d3 2434 /* 2) arch mandated alignment */
1da177e4
LT
2435 if (ralign < ARCH_SLAB_MINALIGN) {
2436 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2437 }
a44b56d3 2438 /* 3) caller mandated alignment */
8a13a4cc
CL
2439 if (ralign < cachep->align) {
2440 ralign = cachep->align;
1da177e4 2441 }
3ff84a7f
PE
2442 /* disable debug if necessary */
2443 if (ralign > __alignof__(unsigned long long))
a44b56d3 2444 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2445 /*
ca5f9703 2446 * 4) Store it.
1da177e4 2447 */
8a13a4cc 2448 cachep->align = ralign;
1da177e4 2449
83b519e8
PE
2450 if (slab_is_available())
2451 gfp = GFP_KERNEL;
2452 else
2453 gfp = GFP_NOWAIT;
2454
b56efcf0 2455 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
1da177e4 2456#if DEBUG
1da177e4 2457
ca5f9703
PE
2458 /*
2459 * Both debugging options require word-alignment which is calculated
2460 * into align above.
2461 */
1da177e4 2462 if (flags & SLAB_RED_ZONE) {
1da177e4 2463 /* add space for red zone words */
3ff84a7f
PE
2464 cachep->obj_offset += sizeof(unsigned long long);
2465 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2466 }
2467 if (flags & SLAB_STORE_USER) {
ca5f9703 2468 /* user store requires one word storage behind the end of
87a927c7
DW
2469 * the real object. But if the second red zone needs to be
2470 * aligned to 64 bits, we must allow that much space.
1da177e4 2471 */
87a927c7
DW
2472 if (flags & SLAB_RED_ZONE)
2473 size += REDZONE_ALIGN;
2474 else
2475 size += BYTES_PER_WORD;
1da177e4
LT
2476 }
2477#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2478 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3b0efdfa 2479 && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
1ab335d8 2480 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
1da177e4
LT
2481 size = PAGE_SIZE;
2482 }
2483#endif
2484#endif
2485
e0a42726
IM
2486 /*
2487 * Determine if the slab management is 'on' or 'off' slab.
2488 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2489 * it too early on. Always use on-slab management when
2490 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2491 */
e7cb55b9
CM
2492 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2493 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2494 /*
2495 * Size is large, assume best to place the slab management obj
2496 * off-slab (should allow better packing of objs).
2497 */
2498 flags |= CFLGS_OFF_SLAB;
2499
8a13a4cc 2500 size = ALIGN(size, cachep->align);
1da177e4 2501
8a13a4cc 2502 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
1da177e4 2503
8a13a4cc 2504 if (!cachep->num)
278b1bb1 2505 return -E2BIG;
8a13a4cc 2506
b28a02de 2507 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
8a13a4cc 2508 + sizeof(struct slab), cachep->align);
1da177e4
LT
2509
2510 /*
2511 * If the slab has been placed off-slab, and we have enough space then
2512 * move it on-slab. This is at the expense of any extra colouring.
2513 */
2514 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2515 flags &= ~CFLGS_OFF_SLAB;
2516 left_over -= slab_size;
2517 }
2518
2519 if (flags & CFLGS_OFF_SLAB) {
2520 /* really off slab. No need for manual alignment */
b28a02de
PE
2521 slab_size =
2522 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
67461365
RL
2523
2524#ifdef CONFIG_PAGE_POISONING
2525 /* If we're going to use the generic kernel_map_pages()
2526 * poisoning, then it's going to smash the contents of
2527 * the redzone and userword anyhow, so switch them off.
2528 */
2529 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2530 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2531#endif
1da177e4
LT
2532 }
2533
2534 cachep->colour_off = cache_line_size();
2535 /* Offset must be a multiple of the alignment. */
8a13a4cc
CL
2536 if (cachep->colour_off < cachep->align)
2537 cachep->colour_off = cachep->align;
b28a02de 2538 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2539 cachep->slab_size = slab_size;
2540 cachep->flags = flags;
a618e89f 2541 cachep->allocflags = 0;
4b51d669 2542 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2543 cachep->allocflags |= GFP_DMA;
3b0efdfa 2544 cachep->size = size;
6a2d7a95 2545 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2546
e5ac9c5a 2547 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2548 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2549 /*
2550 * This is a possibility for one of the malloc_sizes caches.
2551 * But since we go off slab only for object size greater than
2552 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2553 * this should not happen at all.
2554 * But leave a BUG_ON for some lucky dude.
2555 */
6cb8f913 2556 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2557 }
7c9adf5a 2558 cachep->refcount = 1;
1da177e4 2559
278b1bb1
CL
2560 err = setup_cpu_cache(cachep, gfp);
2561 if (err) {
12c3667f 2562 __kmem_cache_shutdown(cachep);
278b1bb1 2563 return err;
2ed3a4ef 2564 }
1da177e4 2565
83835b3d
PZ
2566 if (flags & SLAB_DEBUG_OBJECTS) {
2567 /*
2568 * Would deadlock through slab_destroy()->call_rcu()->
2569 * debug_object_activate()->kmem_cache_alloc().
2570 */
2571 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2572
2573 slab_set_debugobj_lock_classes(cachep);
2574 }
2575
278b1bb1 2576 return 0;
1da177e4 2577}
1da177e4
LT
2578
2579#if DEBUG
2580static void check_irq_off(void)
2581{
2582 BUG_ON(!irqs_disabled());
2583}
2584
2585static void check_irq_on(void)
2586{
2587 BUG_ON(irqs_disabled());
2588}
2589
343e0d7a 2590static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2591{
2592#ifdef CONFIG_SMP
2593 check_irq_off();
7d6e6d09 2594 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
1da177e4
LT
2595#endif
2596}
e498be7d 2597
343e0d7a 2598static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2599{
2600#ifdef CONFIG_SMP
2601 check_irq_off();
2602 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2603#endif
2604}
2605
1da177e4
LT
2606#else
2607#define check_irq_off() do { } while(0)
2608#define check_irq_on() do { } while(0)
2609#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2610#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2611#endif
2612
aab2207c
CL
2613static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2614 struct array_cache *ac,
2615 int force, int node);
2616
1da177e4
LT
2617static void do_drain(void *arg)
2618{
a737b3e2 2619 struct kmem_cache *cachep = arg;
1da177e4 2620 struct array_cache *ac;
7d6e6d09 2621 int node = numa_mem_id();
1da177e4
LT
2622
2623 check_irq_off();
9a2dba4b 2624 ac = cpu_cache_get(cachep);
ff69416e
CL
2625 spin_lock(&cachep->nodelists[node]->list_lock);
2626 free_block(cachep, ac->entry, ac->avail, node);
2627 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2628 ac->avail = 0;
2629}
2630
343e0d7a 2631static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2632{
e498be7d
CL
2633 struct kmem_list3 *l3;
2634 int node;
2635
15c8b6c1 2636 on_each_cpu(do_drain, cachep, 1);
1da177e4 2637 check_irq_on();
b28a02de 2638 for_each_online_node(node) {
e498be7d 2639 l3 = cachep->nodelists[node];
a4523a8b
RD
2640 if (l3 && l3->alien)
2641 drain_alien_cache(cachep, l3->alien);
2642 }
2643
2644 for_each_online_node(node) {
2645 l3 = cachep->nodelists[node];
2646 if (l3)
aab2207c 2647 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2648 }
1da177e4
LT
2649}
2650
ed11d9eb
CL
2651/*
2652 * Remove slabs from the list of free slabs.
2653 * Specify the number of slabs to drain in tofree.
2654 *
2655 * Returns the actual number of slabs released.
2656 */
2657static int drain_freelist(struct kmem_cache *cache,
2658 struct kmem_list3 *l3, int tofree)
1da177e4 2659{
ed11d9eb
CL
2660 struct list_head *p;
2661 int nr_freed;
1da177e4 2662 struct slab *slabp;
1da177e4 2663
ed11d9eb
CL
2664 nr_freed = 0;
2665 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2666
ed11d9eb 2667 spin_lock_irq(&l3->list_lock);
e498be7d 2668 p = l3->slabs_free.prev;
ed11d9eb
CL
2669 if (p == &l3->slabs_free) {
2670 spin_unlock_irq(&l3->list_lock);
2671 goto out;
2672 }
1da177e4 2673
ed11d9eb 2674 slabp = list_entry(p, struct slab, list);
1da177e4 2675#if DEBUG
40094fa6 2676 BUG_ON(slabp->inuse);
1da177e4
LT
2677#endif
2678 list_del(&slabp->list);
ed11d9eb
CL
2679 /*
2680 * Safe to drop the lock. The slab is no longer linked
2681 * to the cache.
2682 */
2683 l3->free_objects -= cache->num;
e498be7d 2684 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2685 slab_destroy(cache, slabp);
2686 nr_freed++;
1da177e4 2687 }
ed11d9eb
CL
2688out:
2689 return nr_freed;
1da177e4
LT
2690}
2691
18004c5d 2692/* Called with slab_mutex held to protect against cpu hotplug */
343e0d7a 2693static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2694{
2695 int ret = 0, i = 0;
2696 struct kmem_list3 *l3;
2697
2698 drain_cpu_caches(cachep);
2699
2700 check_irq_on();
2701 for_each_online_node(i) {
2702 l3 = cachep->nodelists[i];
ed11d9eb
CL
2703 if (!l3)
2704 continue;
2705
2706 drain_freelist(cachep, l3, l3->free_objects);
2707
2708 ret += !list_empty(&l3->slabs_full) ||
2709 !list_empty(&l3->slabs_partial);
e498be7d
CL
2710 }
2711 return (ret ? 1 : 0);
2712}
2713
1da177e4
LT
2714/**
2715 * kmem_cache_shrink - Shrink a cache.
2716 * @cachep: The cache to shrink.
2717 *
2718 * Releases as many slabs as possible for a cache.
2719 * To help debugging, a zero exit status indicates all slabs were released.
2720 */
343e0d7a 2721int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2722{
8f5be20b 2723 int ret;
40094fa6 2724 BUG_ON(!cachep || in_interrupt());
1da177e4 2725
95402b38 2726 get_online_cpus();
18004c5d 2727 mutex_lock(&slab_mutex);
8f5be20b 2728 ret = __cache_shrink(cachep);
18004c5d 2729 mutex_unlock(&slab_mutex);
95402b38 2730 put_online_cpus();
8f5be20b 2731 return ret;
1da177e4
LT
2732}
2733EXPORT_SYMBOL(kmem_cache_shrink);
2734
945cf2b6 2735int __kmem_cache_shutdown(struct kmem_cache *cachep)
1da177e4 2736{
12c3667f
CL
2737 int i;
2738 struct kmem_list3 *l3;
2739 int rc = __cache_shrink(cachep);
2740
2741 if (rc)
2742 return rc;
2743
2744 for_each_online_cpu(i)
2745 kfree(cachep->array[i]);
2746
2747 /* NUMA: free the list3 structures */
2748 for_each_online_node(i) {
2749 l3 = cachep->nodelists[i];
2750 if (l3) {
2751 kfree(l3->shared);
2752 free_alien_cache(l3->alien);
2753 kfree(l3);
2754 }
2755 }
2756 return 0;
1da177e4 2757}
1da177e4 2758
e5ac9c5a
RT
2759/*
2760 * Get the memory for a slab management obj.
2761 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2762 * always come from malloc_sizes caches. The slab descriptor cannot
2763 * come from the same cache which is getting created because,
2764 * when we are searching for an appropriate cache for these
2765 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2766 * If we are creating a malloc_sizes cache here it would not be visible to
2767 * kmem_find_general_cachep till the initialization is complete.
2768 * Hence we cannot have slabp_cache same as the original cache.
2769 */
343e0d7a 2770static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2771 int colour_off, gfp_t local_flags,
2772 int nodeid)
1da177e4
LT
2773{
2774 struct slab *slabp;
b28a02de 2775
1da177e4
LT
2776 if (OFF_SLAB(cachep)) {
2777 /* Slab management obj is off-slab. */
5b74ada7 2778 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2779 local_flags, nodeid);
d5cff635
CM
2780 /*
2781 * If the first object in the slab is leaked (it's allocated
2782 * but no one has a reference to it), we want to make sure
2783 * kmemleak does not treat the ->s_mem pointer as a reference
2784 * to the object. Otherwise we will not report the leak.
2785 */
c017b4be
CM
2786 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2787 local_flags);
1da177e4
LT
2788 if (!slabp)
2789 return NULL;
2790 } else {
b28a02de 2791 slabp = objp + colour_off;
1da177e4
LT
2792 colour_off += cachep->slab_size;
2793 }
2794 slabp->inuse = 0;
2795 slabp->colouroff = colour_off;
b28a02de 2796 slabp->s_mem = objp + colour_off;
5b74ada7 2797 slabp->nodeid = nodeid;
e51bfd0a 2798 slabp->free = 0;
1da177e4
LT
2799 return slabp;
2800}
2801
2802static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2803{
b28a02de 2804 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2805}
2806
343e0d7a 2807static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2808 struct slab *slabp)
1da177e4
LT
2809{
2810 int i;
2811
2812 for (i = 0; i < cachep->num; i++) {
8fea4e96 2813 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2814#if DEBUG
2815 /* need to poison the objs? */
2816 if (cachep->flags & SLAB_POISON)
2817 poison_obj(cachep, objp, POISON_FREE);
2818 if (cachep->flags & SLAB_STORE_USER)
2819 *dbg_userword(cachep, objp) = NULL;
2820
2821 if (cachep->flags & SLAB_RED_ZONE) {
2822 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2823 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2824 }
2825 /*
a737b3e2
AM
2826 * Constructors are not allowed to allocate memory from the same
2827 * cache which they are a constructor for. Otherwise, deadlock.
2828 * They must also be threaded.
1da177e4
LT
2829 */
2830 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2831 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2832
2833 if (cachep->flags & SLAB_RED_ZONE) {
2834 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2835 slab_error(cachep, "constructor overwrote the"
b28a02de 2836 " end of an object");
1da177e4
LT
2837 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2838 slab_error(cachep, "constructor overwrote the"
b28a02de 2839 " start of an object");
1da177e4 2840 }
3b0efdfa 2841 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2842 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2843 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2844 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2845#else
2846 if (cachep->ctor)
51cc5068 2847 cachep->ctor(objp);
1da177e4 2848#endif
b28a02de 2849 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2850 }
b28a02de 2851 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2852}
2853
343e0d7a 2854static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2855{
4b51d669
CL
2856 if (CONFIG_ZONE_DMA_FLAG) {
2857 if (flags & GFP_DMA)
a618e89f 2858 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2859 else
a618e89f 2860 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2861 }
1da177e4
LT
2862}
2863
a737b3e2
AM
2864static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2865 int nodeid)
78d382d7 2866{
8fea4e96 2867 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2868 kmem_bufctl_t next;
2869
2870 slabp->inuse++;
2871 next = slab_bufctl(slabp)[slabp->free];
2872#if DEBUG
2873 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2874 WARN_ON(slabp->nodeid != nodeid);
2875#endif
2876 slabp->free = next;
2877
2878 return objp;
2879}
2880
a737b3e2
AM
2881static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2882 void *objp, int nodeid)
78d382d7 2883{
8fea4e96 2884 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2885
2886#if DEBUG
2887 /* Verify that the slab belongs to the intended node */
2888 WARN_ON(slabp->nodeid != nodeid);
2889
871751e2 2890 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2891 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2892 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2893 BUG();
2894 }
2895#endif
2896 slab_bufctl(slabp)[objnr] = slabp->free;
2897 slabp->free = objnr;
2898 slabp->inuse--;
2899}
2900
4776874f
PE
2901/*
2902 * Map pages beginning at addr to the given cache and slab. This is required
2903 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2904 * virtual address for kfree, ksize, and slab debugging.
4776874f
PE
2905 */
2906static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2907 void *addr)
1da177e4 2908{
4776874f 2909 int nr_pages;
1da177e4
LT
2910 struct page *page;
2911
4776874f 2912 page = virt_to_page(addr);
84097518 2913
4776874f 2914 nr_pages = 1;
84097518 2915 if (likely(!PageCompound(page)))
4776874f
PE
2916 nr_pages <<= cache->gfporder;
2917
1da177e4 2918 do {
35026088
CL
2919 page->slab_cache = cache;
2920 page->slab_page = slab;
1da177e4 2921 page++;
4776874f 2922 } while (--nr_pages);
1da177e4
LT
2923}
2924
2925/*
2926 * Grow (by 1) the number of slabs within a cache. This is called by
2927 * kmem_cache_alloc() when there are no active objs left in a cache.
2928 */
3c517a61
CL
2929static int cache_grow(struct kmem_cache *cachep,
2930 gfp_t flags, int nodeid, void *objp)
1da177e4 2931{
b28a02de 2932 struct slab *slabp;
b28a02de
PE
2933 size_t offset;
2934 gfp_t local_flags;
e498be7d 2935 struct kmem_list3 *l3;
1da177e4 2936
a737b3e2
AM
2937 /*
2938 * Be lazy and only check for valid flags here, keeping it out of the
2939 * critical path in kmem_cache_alloc().
1da177e4 2940 */
6cb06229
CL
2941 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2942 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2943
2e1217cf 2944 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2945 check_irq_off();
2e1217cf
RT
2946 l3 = cachep->nodelists[nodeid];
2947 spin_lock(&l3->list_lock);
1da177e4
LT
2948
2949 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2950 offset = l3->colour_next;
2951 l3->colour_next++;
2952 if (l3->colour_next >= cachep->colour)
2953 l3->colour_next = 0;
2954 spin_unlock(&l3->list_lock);
1da177e4 2955
2e1217cf 2956 offset *= cachep->colour_off;
1da177e4
LT
2957
2958 if (local_flags & __GFP_WAIT)
2959 local_irq_enable();
2960
2961 /*
2962 * The test for missing atomic flag is performed here, rather than
2963 * the more obvious place, simply to reduce the critical path length
2964 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2965 * will eventually be caught here (where it matters).
2966 */
2967 kmem_flagcheck(cachep, flags);
2968
a737b3e2
AM
2969 /*
2970 * Get mem for the objs. Attempt to allocate a physical page from
2971 * 'nodeid'.
e498be7d 2972 */
3c517a61 2973 if (!objp)
b8c1c5da 2974 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2975 if (!objp)
1da177e4
LT
2976 goto failed;
2977
2978 /* Get slab management. */
3c517a61 2979 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2980 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2981 if (!slabp)
1da177e4
LT
2982 goto opps1;
2983
4776874f 2984 slab_map_pages(cachep, slabp, objp);
1da177e4 2985
a35afb83 2986 cache_init_objs(cachep, slabp);
1da177e4
LT
2987
2988 if (local_flags & __GFP_WAIT)
2989 local_irq_disable();
2990 check_irq_off();
e498be7d 2991 spin_lock(&l3->list_lock);
1da177e4
LT
2992
2993 /* Make slab active. */
e498be7d 2994 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2995 STATS_INC_GROWN(cachep);
e498be7d
CL
2996 l3->free_objects += cachep->num;
2997 spin_unlock(&l3->list_lock);
1da177e4 2998 return 1;
a737b3e2 2999opps1:
1da177e4 3000 kmem_freepages(cachep, objp);
a737b3e2 3001failed:
1da177e4
LT
3002 if (local_flags & __GFP_WAIT)
3003 local_irq_disable();
3004 return 0;
3005}
3006
3007#if DEBUG
3008
3009/*
3010 * Perform extra freeing checks:
3011 * - detect bad pointers.
3012 * - POISON/RED_ZONE checking
1da177e4
LT
3013 */
3014static void kfree_debugcheck(const void *objp)
3015{
1da177e4
LT
3016 if (!virt_addr_valid(objp)) {
3017 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
3018 (unsigned long)objp);
3019 BUG();
1da177e4 3020 }
1da177e4
LT
3021}
3022
58ce1fd5
PE
3023static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
3024{
b46b8f19 3025 unsigned long long redzone1, redzone2;
58ce1fd5
PE
3026
3027 redzone1 = *dbg_redzone1(cache, obj);
3028 redzone2 = *dbg_redzone2(cache, obj);
3029
3030 /*
3031 * Redzone is ok.
3032 */
3033 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
3034 return;
3035
3036 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
3037 slab_error(cache, "double free detected");
3038 else
3039 slab_error(cache, "memory outside object was overwritten");
3040
b46b8f19 3041 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
3042 obj, redzone1, redzone2);
3043}
3044
343e0d7a 3045static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 3046 void *caller)
1da177e4
LT
3047{
3048 struct page *page;
3049 unsigned int objnr;
3050 struct slab *slabp;
3051
80cbd911
MW
3052 BUG_ON(virt_to_cache(objp) != cachep);
3053
3dafccf2 3054 objp -= obj_offset(cachep);
1da177e4 3055 kfree_debugcheck(objp);
b49af68f 3056 page = virt_to_head_page(objp);
1da177e4 3057
35026088 3058 slabp = page->slab_page;
1da177e4
LT
3059
3060 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 3061 verify_redzone_free(cachep, objp);
1da177e4
LT
3062 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3063 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3064 }
3065 if (cachep->flags & SLAB_STORE_USER)
3066 *dbg_userword(cachep, objp) = caller;
3067
8fea4e96 3068 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
3069
3070 BUG_ON(objnr >= cachep->num);
8fea4e96 3071 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 3072
871751e2
AV
3073#ifdef CONFIG_DEBUG_SLAB_LEAK
3074 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3075#endif
1da177e4
LT
3076 if (cachep->flags & SLAB_POISON) {
3077#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3078 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 3079 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 3080 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3081 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
3082 } else {
3083 poison_obj(cachep, objp, POISON_FREE);
3084 }
3085#else
3086 poison_obj(cachep, objp, POISON_FREE);
3087#endif
3088 }
3089 return objp;
3090}
3091
343e0d7a 3092static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
3093{
3094 kmem_bufctl_t i;
3095 int entries = 0;
b28a02de 3096
1da177e4
LT
3097 /* Check slab's freelist to see if this obj is there. */
3098 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3099 entries++;
3100 if (entries > cachep->num || i >= cachep->num)
3101 goto bad;
3102 }
3103 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
3104bad:
3105 printk(KERN_ERR "slab: Internal list corruption detected in "
face37f5
DJ
3106 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3107 cachep->name, cachep->num, slabp, slabp->inuse,
3108 print_tainted());
fdde6abb
SAS
3109 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3110 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3111 1);
1da177e4
LT
3112 BUG();
3113 }
3114}
3115#else
3116#define kfree_debugcheck(x) do { } while(0)
3117#define cache_free_debugcheck(x,objp,z) (objp)
3118#define check_slabp(x,y) do { } while(0)
3119#endif
3120
072bb0aa
MG
3121static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
3122 bool force_refill)
1da177e4
LT
3123{
3124 int batchcount;
3125 struct kmem_list3 *l3;
3126 struct array_cache *ac;
1ca4cb24
PE
3127 int node;
3128
1da177e4 3129 check_irq_off();
7d6e6d09 3130 node = numa_mem_id();
072bb0aa
MG
3131 if (unlikely(force_refill))
3132 goto force_grow;
3133retry:
9a2dba4b 3134 ac = cpu_cache_get(cachep);
1da177e4
LT
3135 batchcount = ac->batchcount;
3136 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
3137 /*
3138 * If there was little recent activity on this cache, then
3139 * perform only a partial refill. Otherwise we could generate
3140 * refill bouncing.
1da177e4
LT
3141 */
3142 batchcount = BATCHREFILL_LIMIT;
3143 }
1ca4cb24 3144 l3 = cachep->nodelists[node];
e498be7d
CL
3145
3146 BUG_ON(ac->avail > 0 || !l3);
3147 spin_lock(&l3->list_lock);
1da177e4 3148
3ded175a 3149 /* See if we can refill from the shared array */
44b57f1c
NP
3150 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3151 l3->shared->touched = 1;
3ded175a 3152 goto alloc_done;
44b57f1c 3153 }
3ded175a 3154
1da177e4
LT
3155 while (batchcount > 0) {
3156 struct list_head *entry;
3157 struct slab *slabp;
3158 /* Get slab alloc is to come from. */
3159 entry = l3->slabs_partial.next;
3160 if (entry == &l3->slabs_partial) {
3161 l3->free_touched = 1;
3162 entry = l3->slabs_free.next;
3163 if (entry == &l3->slabs_free)
3164 goto must_grow;
3165 }
3166
3167 slabp = list_entry(entry, struct slab, list);
3168 check_slabp(cachep, slabp);
3169 check_spinlock_acquired(cachep);
714b8171
PE
3170
3171 /*
3172 * The slab was either on partial or free list so
3173 * there must be at least one object available for
3174 * allocation.
3175 */
249b9f33 3176 BUG_ON(slabp->inuse >= cachep->num);
714b8171 3177
1da177e4 3178 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3179 STATS_INC_ALLOCED(cachep);
3180 STATS_INC_ACTIVE(cachep);
3181 STATS_SET_HIGH(cachep);
3182
072bb0aa
MG
3183 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3184 node));
1da177e4
LT
3185 }
3186 check_slabp(cachep, slabp);
3187
3188 /* move slabp to correct slabp list: */
3189 list_del(&slabp->list);
3190 if (slabp->free == BUFCTL_END)
3191 list_add(&slabp->list, &l3->slabs_full);
3192 else
3193 list_add(&slabp->list, &l3->slabs_partial);
3194 }
3195
a737b3e2 3196must_grow:
1da177e4 3197 l3->free_objects -= ac->avail;
a737b3e2 3198alloc_done:
e498be7d 3199 spin_unlock(&l3->list_lock);
1da177e4
LT
3200
3201 if (unlikely(!ac->avail)) {
3202 int x;
072bb0aa 3203force_grow:
3c517a61 3204 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3205
a737b3e2 3206 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3207 ac = cpu_cache_get(cachep);
072bb0aa
MG
3208
3209 /* no objects in sight? abort */
3210 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
3211 return NULL;
3212
a737b3e2 3213 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3214 goto retry;
3215 }
3216 ac->touched = 1;
072bb0aa
MG
3217
3218 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
3219}
3220
a737b3e2
AM
3221static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3222 gfp_t flags)
1da177e4
LT
3223{
3224 might_sleep_if(flags & __GFP_WAIT);
3225#if DEBUG
3226 kmem_flagcheck(cachep, flags);
3227#endif
3228}
3229
3230#if DEBUG
a737b3e2
AM
3231static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3232 gfp_t flags, void *objp, void *caller)
1da177e4 3233{
b28a02de 3234 if (!objp)
1da177e4 3235 return objp;
b28a02de 3236 if (cachep->flags & SLAB_POISON) {
1da177e4 3237#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3238 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3239 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3240 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
3241 else
3242 check_poison_obj(cachep, objp);
3243#else
3244 check_poison_obj(cachep, objp);
3245#endif
3246 poison_obj(cachep, objp, POISON_INUSE);
3247 }
3248 if (cachep->flags & SLAB_STORE_USER)
3249 *dbg_userword(cachep, objp) = caller;
3250
3251 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3252 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3253 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3254 slab_error(cachep, "double free, or memory outside"
3255 " object was overwritten");
b28a02de 3256 printk(KERN_ERR
b46b8f19 3257 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3258 objp, *dbg_redzone1(cachep, objp),
3259 *dbg_redzone2(cachep, objp));
1da177e4
LT
3260 }
3261 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3262 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3263 }
871751e2
AV
3264#ifdef CONFIG_DEBUG_SLAB_LEAK
3265 {
3266 struct slab *slabp;
3267 unsigned objnr;
3268
35026088 3269 slabp = virt_to_head_page(objp)->slab_page;
3b0efdfa 3270 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
871751e2
AV
3271 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3272 }
3273#endif
3dafccf2 3274 objp += obj_offset(cachep);
4f104934 3275 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3276 cachep->ctor(objp);
7ea466f2
TH
3277 if (ARCH_SLAB_MINALIGN &&
3278 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 3279 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3280 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3281 }
1da177e4
LT
3282 return objp;
3283}
3284#else
3285#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3286#endif
3287
773ff60e 3288static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502 3289{
9b030cb8 3290 if (cachep == kmem_cache)
773ff60e 3291 return false;
8a8b6502 3292
8c138bc0 3293 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
3294}
3295
343e0d7a 3296static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3297{
b28a02de 3298 void *objp;
1da177e4 3299 struct array_cache *ac;
072bb0aa 3300 bool force_refill = false;
1da177e4 3301
5c382300 3302 check_irq_off();
8a8b6502 3303
9a2dba4b 3304 ac = cpu_cache_get(cachep);
1da177e4 3305 if (likely(ac->avail)) {
1da177e4 3306 ac->touched = 1;
072bb0aa
MG
3307 objp = ac_get_obj(cachep, ac, flags, false);
3308
ddbf2e83 3309 /*
072bb0aa
MG
3310 * Allow for the possibility all avail objects are not allowed
3311 * by the current flags
ddbf2e83 3312 */
072bb0aa
MG
3313 if (objp) {
3314 STATS_INC_ALLOCHIT(cachep);
3315 goto out;
3316 }
3317 force_refill = true;
1da177e4 3318 }
072bb0aa
MG
3319
3320 STATS_INC_ALLOCMISS(cachep);
3321 objp = cache_alloc_refill(cachep, flags, force_refill);
3322 /*
3323 * the 'ac' may be updated by cache_alloc_refill(),
3324 * and kmemleak_erase() requires its correct value.
3325 */
3326 ac = cpu_cache_get(cachep);
3327
3328out:
d5cff635
CM
3329 /*
3330 * To avoid a false negative, if an object that is in one of the
3331 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3332 * treat the array pointers as a reference to the object.
3333 */
f3d8b53a
O
3334 if (objp)
3335 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3336 return objp;
3337}
3338
e498be7d 3339#ifdef CONFIG_NUMA
c61afb18 3340/*
b2455396 3341 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3342 *
3343 * If we are in_interrupt, then process context, including cpusets and
3344 * mempolicy, may not apply and should not be used for allocation policy.
3345 */
3346static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3347{
3348 int nid_alloc, nid_here;
3349
765c4507 3350 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3351 return NULL;
7d6e6d09 3352 nid_alloc = nid_here = numa_mem_id();
c61afb18 3353 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3354 nid_alloc = cpuset_slab_spread_node();
c61afb18 3355 else if (current->mempolicy)
e7b691b0 3356 nid_alloc = slab_node();
c61afb18 3357 if (nid_alloc != nid_here)
8b98c169 3358 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3359 return NULL;
3360}
3361
765c4507
CL
3362/*
3363 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3364 * certain node and fall back is permitted. First we scan all the
3365 * available nodelists for available objects. If that fails then we
3366 * perform an allocation without specifying a node. This allows the page
3367 * allocator to do its reclaim / fallback magic. We then insert the
3368 * slab into the proper nodelist and then allocate from it.
765c4507 3369 */
8c8cc2c1 3370static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3371{
8c8cc2c1
PE
3372 struct zonelist *zonelist;
3373 gfp_t local_flags;
dd1a239f 3374 struct zoneref *z;
54a6eb5c
MG
3375 struct zone *zone;
3376 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3377 void *obj = NULL;
3c517a61 3378 int nid;
cc9a6c87 3379 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3380
3381 if (flags & __GFP_THISNODE)
3382 return NULL;
3383
6cb06229 3384 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3385
cc9a6c87
MG
3386retry_cpuset:
3387 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 3388 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87 3389
3c517a61
CL
3390retry:
3391 /*
3392 * Look through allowed nodes for objects available
3393 * from existing per node queues.
3394 */
54a6eb5c
MG
3395 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3396 nid = zone_to_nid(zone);
aedb0eb1 3397
54a6eb5c 3398 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3c517a61 3399 cache->nodelists[nid] &&
481c5346 3400 cache->nodelists[nid]->free_objects) {
3c517a61
CL
3401 obj = ____cache_alloc_node(cache,
3402 flags | GFP_THISNODE, nid);
481c5346
CL
3403 if (obj)
3404 break;
3405 }
3c517a61
CL
3406 }
3407
cfce6604 3408 if (!obj) {
3c517a61
CL
3409 /*
3410 * This allocation will be performed within the constraints
3411 * of the current cpuset / memory policy requirements.
3412 * We may trigger various forms of reclaim on the allowed
3413 * set and go into memory reserves if necessary.
3414 */
dd47ea75
CL
3415 if (local_flags & __GFP_WAIT)
3416 local_irq_enable();
3417 kmem_flagcheck(cache, flags);
7d6e6d09 3418 obj = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3419 if (local_flags & __GFP_WAIT)
3420 local_irq_disable();
3c517a61
CL
3421 if (obj) {
3422 /*
3423 * Insert into the appropriate per node queues
3424 */
3425 nid = page_to_nid(virt_to_page(obj));
3426 if (cache_grow(cache, flags, nid, obj)) {
3427 obj = ____cache_alloc_node(cache,
3428 flags | GFP_THISNODE, nid);
3429 if (!obj)
3430 /*
3431 * Another processor may allocate the
3432 * objects in the slab since we are
3433 * not holding any locks.
3434 */
3435 goto retry;
3436 } else {
b6a60451 3437 /* cache_grow already freed obj */
3c517a61
CL
3438 obj = NULL;
3439 }
3440 }
aedb0eb1 3441 }
cc9a6c87
MG
3442
3443 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3444 goto retry_cpuset;
765c4507
CL
3445 return obj;
3446}
3447
e498be7d
CL
3448/*
3449 * A interface to enable slab creation on nodeid
1da177e4 3450 */
8b98c169 3451static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3452 int nodeid)
e498be7d
CL
3453{
3454 struct list_head *entry;
b28a02de
PE
3455 struct slab *slabp;
3456 struct kmem_list3 *l3;
3457 void *obj;
b28a02de
PE
3458 int x;
3459
3460 l3 = cachep->nodelists[nodeid];
3461 BUG_ON(!l3);
3462
a737b3e2 3463retry:
ca3b9b91 3464 check_irq_off();
b28a02de
PE
3465 spin_lock(&l3->list_lock);
3466 entry = l3->slabs_partial.next;
3467 if (entry == &l3->slabs_partial) {
3468 l3->free_touched = 1;
3469 entry = l3->slabs_free.next;
3470 if (entry == &l3->slabs_free)
3471 goto must_grow;
3472 }
3473
3474 slabp = list_entry(entry, struct slab, list);
3475 check_spinlock_acquired_node(cachep, nodeid);
3476 check_slabp(cachep, slabp);
3477
3478 STATS_INC_NODEALLOCS(cachep);
3479 STATS_INC_ACTIVE(cachep);
3480 STATS_SET_HIGH(cachep);
3481
3482 BUG_ON(slabp->inuse == cachep->num);
3483
78d382d7 3484 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3485 check_slabp(cachep, slabp);
3486 l3->free_objects--;
3487 /* move slabp to correct slabp list: */
3488 list_del(&slabp->list);
3489
a737b3e2 3490 if (slabp->free == BUFCTL_END)
b28a02de 3491 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3492 else
b28a02de 3493 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3494
b28a02de
PE
3495 spin_unlock(&l3->list_lock);
3496 goto done;
e498be7d 3497
a737b3e2 3498must_grow:
b28a02de 3499 spin_unlock(&l3->list_lock);
3c517a61 3500 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3501 if (x)
3502 goto retry;
1da177e4 3503
8c8cc2c1 3504 return fallback_alloc(cachep, flags);
e498be7d 3505
a737b3e2 3506done:
b28a02de 3507 return obj;
e498be7d 3508}
8c8cc2c1
PE
3509
3510/**
3511 * kmem_cache_alloc_node - Allocate an object on the specified node
3512 * @cachep: The cache to allocate from.
3513 * @flags: See kmalloc().
3514 * @nodeid: node number of the target node.
3515 * @caller: return address of caller, used for debug information
3516 *
3517 * Identical to kmem_cache_alloc but it will allocate memory on the given
3518 * node, which can improve the performance for cpu bound structures.
3519 *
3520 * Fallback to other node is possible if __GFP_THISNODE is not set.
3521 */
3522static __always_inline void *
3523__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3524 void *caller)
3525{
3526 unsigned long save_flags;
3527 void *ptr;
7d6e6d09 3528 int slab_node = numa_mem_id();
8c8cc2c1 3529
dcce284a 3530 flags &= gfp_allowed_mask;
7e85ee0c 3531
cf40bd16
NP
3532 lockdep_trace_alloc(flags);
3533
773ff60e 3534 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3535 return NULL;
3536
8c8cc2c1
PE
3537 cache_alloc_debugcheck_before(cachep, flags);
3538 local_irq_save(save_flags);
3539
eacbbae3 3540 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3541 nodeid = slab_node;
8c8cc2c1
PE
3542
3543 if (unlikely(!cachep->nodelists[nodeid])) {
3544 /* Node not bootstrapped yet */
3545 ptr = fallback_alloc(cachep, flags);
3546 goto out;
3547 }
3548
7d6e6d09 3549 if (nodeid == slab_node) {
8c8cc2c1
PE
3550 /*
3551 * Use the locally cached objects if possible.
3552 * However ____cache_alloc does not allow fallback
3553 * to other nodes. It may fail while we still have
3554 * objects on other nodes available.
3555 */
3556 ptr = ____cache_alloc(cachep, flags);
3557 if (ptr)
3558 goto out;
3559 }
3560 /* ___cache_alloc_node can fall back to other nodes */
3561 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3562 out:
3563 local_irq_restore(save_flags);
3564 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3565 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3566 flags);
8c8cc2c1 3567
c175eea4 3568 if (likely(ptr))
8c138bc0 3569 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
c175eea4 3570
d07dbea4 3571 if (unlikely((flags & __GFP_ZERO) && ptr))
8c138bc0 3572 memset(ptr, 0, cachep->object_size);
d07dbea4 3573
8c8cc2c1
PE
3574 return ptr;
3575}
3576
3577static __always_inline void *
3578__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3579{
3580 void *objp;
3581
3582 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3583 objp = alternate_node_alloc(cache, flags);
3584 if (objp)
3585 goto out;
3586 }
3587 objp = ____cache_alloc(cache, flags);
3588
3589 /*
3590 * We may just have run out of memory on the local node.
3591 * ____cache_alloc_node() knows how to locate memory on other nodes
3592 */
7d6e6d09
LS
3593 if (!objp)
3594 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3595
3596 out:
3597 return objp;
3598}
3599#else
3600
3601static __always_inline void *
3602__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3603{
3604 return ____cache_alloc(cachep, flags);
3605}
3606
3607#endif /* CONFIG_NUMA */
3608
3609static __always_inline void *
3610__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3611{
3612 unsigned long save_flags;
3613 void *objp;
3614
dcce284a 3615 flags &= gfp_allowed_mask;
7e85ee0c 3616
cf40bd16
NP
3617 lockdep_trace_alloc(flags);
3618
773ff60e 3619 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3620 return NULL;
3621
8c8cc2c1
PE
3622 cache_alloc_debugcheck_before(cachep, flags);
3623 local_irq_save(save_flags);
3624 objp = __do_cache_alloc(cachep, flags);
3625 local_irq_restore(save_flags);
3626 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3627 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3628 flags);
8c8cc2c1
PE
3629 prefetchw(objp);
3630
c175eea4 3631 if (likely(objp))
8c138bc0 3632 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
c175eea4 3633
d07dbea4 3634 if (unlikely((flags & __GFP_ZERO) && objp))
8c138bc0 3635 memset(objp, 0, cachep->object_size);
d07dbea4 3636
8c8cc2c1
PE
3637 return objp;
3638}
e498be7d
CL
3639
3640/*
3641 * Caller needs to acquire correct kmem_list's list_lock
3642 */
343e0d7a 3643static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3644 int node)
1da177e4
LT
3645{
3646 int i;
e498be7d 3647 struct kmem_list3 *l3;
1da177e4
LT
3648
3649 for (i = 0; i < nr_objects; i++) {
072bb0aa 3650 void *objp;
1da177e4 3651 struct slab *slabp;
1da177e4 3652
072bb0aa
MG
3653 clear_obj_pfmemalloc(&objpp[i]);
3654 objp = objpp[i];
3655
6ed5eb22 3656 slabp = virt_to_slab(objp);
ff69416e 3657 l3 = cachep->nodelists[node];
1da177e4 3658 list_del(&slabp->list);
ff69416e 3659 check_spinlock_acquired_node(cachep, node);
1da177e4 3660 check_slabp(cachep, slabp);
78d382d7 3661 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3662 STATS_DEC_ACTIVE(cachep);
e498be7d 3663 l3->free_objects++;
1da177e4
LT
3664 check_slabp(cachep, slabp);
3665
3666 /* fixup slab chains */
3667 if (slabp->inuse == 0) {
e498be7d
CL
3668 if (l3->free_objects > l3->free_limit) {
3669 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3670 /* No need to drop any previously held
3671 * lock here, even if we have a off-slab slab
3672 * descriptor it is guaranteed to come from
3673 * a different cache, refer to comments before
3674 * alloc_slabmgmt.
3675 */
1da177e4
LT
3676 slab_destroy(cachep, slabp);
3677 } else {
e498be7d 3678 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3679 }
3680 } else {
3681 /* Unconditionally move a slab to the end of the
3682 * partial list on free - maximum time for the
3683 * other objects to be freed, too.
3684 */
e498be7d 3685 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3686 }
3687 }
3688}
3689
343e0d7a 3690static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3691{
3692 int batchcount;
e498be7d 3693 struct kmem_list3 *l3;
7d6e6d09 3694 int node = numa_mem_id();
1da177e4
LT
3695
3696 batchcount = ac->batchcount;
3697#if DEBUG
3698 BUG_ON(!batchcount || batchcount > ac->avail);
3699#endif
3700 check_irq_off();
ff69416e 3701 l3 = cachep->nodelists[node];
873623df 3702 spin_lock(&l3->list_lock);
e498be7d
CL
3703 if (l3->shared) {
3704 struct array_cache *shared_array = l3->shared;
b28a02de 3705 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3706 if (max) {
3707 if (batchcount > max)
3708 batchcount = max;
e498be7d 3709 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3710 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3711 shared_array->avail += batchcount;
3712 goto free_done;
3713 }
3714 }
3715
ff69416e 3716 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3717free_done:
1da177e4
LT
3718#if STATS
3719 {
3720 int i = 0;
3721 struct list_head *p;
3722
e498be7d
CL
3723 p = l3->slabs_free.next;
3724 while (p != &(l3->slabs_free)) {
1da177e4
LT
3725 struct slab *slabp;
3726
3727 slabp = list_entry(p, struct slab, list);
3728 BUG_ON(slabp->inuse);
3729
3730 i++;
3731 p = p->next;
3732 }
3733 STATS_SET_FREEABLE(cachep, i);
3734 }
3735#endif
e498be7d 3736 spin_unlock(&l3->list_lock);
1da177e4 3737 ac->avail -= batchcount;
a737b3e2 3738 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3739}
3740
3741/*
a737b3e2
AM
3742 * Release an obj back to its cache. If the obj has a constructed state, it must
3743 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3744 */
a947eb95
SS
3745static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3746 void *caller)
1da177e4 3747{
9a2dba4b 3748 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3749
3750 check_irq_off();
d5cff635 3751 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3752 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3753
8c138bc0 3754 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3755
1807a1aa
SS
3756 /*
3757 * Skip calling cache_free_alien() when the platform is not numa.
3758 * This will avoid cache misses that happen while accessing slabp (which
3759 * is per page memory reference) to get nodeid. Instead use a global
3760 * variable to skip the call, which is mostly likely to be present in
3761 * the cache.
3762 */
b6e68bc1 3763 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3764 return;
3765
1da177e4
LT
3766 if (likely(ac->avail < ac->limit)) {
3767 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3768 } else {
3769 STATS_INC_FREEMISS(cachep);
3770 cache_flusharray(cachep, ac);
1da177e4 3771 }
42c8c99c 3772
072bb0aa 3773 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3774}
3775
3776/**
3777 * kmem_cache_alloc - Allocate an object
3778 * @cachep: The cache to allocate from.
3779 * @flags: See kmalloc().
3780 *
3781 * Allocate an object from this cache. The flags are only relevant
3782 * if the cache has no available objects.
3783 */
343e0d7a 3784void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3785{
36555751
EGM
3786 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3787
ca2b84cb 3788 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3789 cachep->object_size, cachep->size, flags);
36555751
EGM
3790
3791 return ret;
1da177e4
LT
3792}
3793EXPORT_SYMBOL(kmem_cache_alloc);
3794
0f24f128 3795#ifdef CONFIG_TRACING
85beb586
SR
3796void *
3797kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
36555751 3798{
85beb586
SR
3799 void *ret;
3800
3801 ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3802
3803 trace_kmalloc(_RET_IP_, ret,
3804 size, slab_buffer_size(cachep), flags);
3805 return ret;
36555751 3806}
85beb586 3807EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3808#endif
3809
1da177e4 3810#ifdef CONFIG_NUMA
8b98c169
CH
3811void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3812{
36555751
EGM
3813 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3814 __builtin_return_address(0));
3815
ca2b84cb 3816 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3817 cachep->object_size, cachep->size,
ca2b84cb 3818 flags, nodeid);
36555751
EGM
3819
3820 return ret;
8b98c169 3821}
1da177e4
LT
3822EXPORT_SYMBOL(kmem_cache_alloc_node);
3823
0f24f128 3824#ifdef CONFIG_TRACING
85beb586
SR
3825void *kmem_cache_alloc_node_trace(size_t size,
3826 struct kmem_cache *cachep,
3827 gfp_t flags,
3828 int nodeid)
36555751 3829{
85beb586
SR
3830 void *ret;
3831
3832 ret = __cache_alloc_node(cachep, flags, nodeid,
36555751 3833 __builtin_return_address(0));
85beb586
SR
3834 trace_kmalloc_node(_RET_IP_, ret,
3835 size, slab_buffer_size(cachep),
3836 flags, nodeid);
3837 return ret;
36555751 3838}
85beb586 3839EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3840#endif
3841
8b98c169
CH
3842static __always_inline void *
3843__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3844{
343e0d7a 3845 struct kmem_cache *cachep;
97e2bde4
MS
3846
3847 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3848 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3849 return cachep;
85beb586 3850 return kmem_cache_alloc_node_trace(size, cachep, flags, node);
97e2bde4 3851}
8b98c169 3852
0bb38a5c 3853#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3854void *__kmalloc_node(size_t size, gfp_t flags, int node)
3855{
3856 return __do_kmalloc_node(size, flags, node,
3857 __builtin_return_address(0));
3858}
dbe5e69d 3859EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3860
3861void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3862 int node, unsigned long caller)
8b98c169 3863{
ce71e27c 3864 return __do_kmalloc_node(size, flags, node, (void *)caller);
8b98c169
CH
3865}
3866EXPORT_SYMBOL(__kmalloc_node_track_caller);
3867#else
3868void *__kmalloc_node(size_t size, gfp_t flags, int node)
3869{
3870 return __do_kmalloc_node(size, flags, node, NULL);
3871}
3872EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3873#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3874#endif /* CONFIG_NUMA */
1da177e4
LT
3875
3876/**
800590f5 3877 * __do_kmalloc - allocate memory
1da177e4 3878 * @size: how many bytes of memory are required.
800590f5 3879 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3880 * @caller: function caller for debug tracking of the caller
1da177e4 3881 */
7fd6b141
PE
3882static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3883 void *caller)
1da177e4 3884{
343e0d7a 3885 struct kmem_cache *cachep;
36555751 3886 void *ret;
1da177e4 3887
97e2bde4
MS
3888 /* If you want to save a few bytes .text space: replace
3889 * __ with kmem_.
3890 * Then kmalloc uses the uninlined functions instead of the inline
3891 * functions.
3892 */
3893 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3894 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3895 return cachep;
36555751
EGM
3896 ret = __cache_alloc(cachep, flags, caller);
3897
ca2b84cb 3898 trace_kmalloc((unsigned long) caller, ret,
3b0efdfa 3899 size, cachep->size, flags);
36555751
EGM
3900
3901 return ret;
7fd6b141
PE
3902}
3903
7fd6b141 3904
0bb38a5c 3905#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3906void *__kmalloc(size_t size, gfp_t flags)
3907{
871751e2 3908 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3909}
3910EXPORT_SYMBOL(__kmalloc);
3911
ce71e27c 3912void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3913{
ce71e27c 3914 return __do_kmalloc(size, flags, (void *)caller);
7fd6b141
PE
3915}
3916EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3917
3918#else
3919void *__kmalloc(size_t size, gfp_t flags)
3920{
3921 return __do_kmalloc(size, flags, NULL);
3922}
3923EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3924#endif
3925
1da177e4
LT
3926/**
3927 * kmem_cache_free - Deallocate an object
3928 * @cachep: The cache the allocation was from.
3929 * @objp: The previously allocated object.
3930 *
3931 * Free an object which was previously allocated from this
3932 * cache.
3933 */
343e0d7a 3934void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3935{
3936 unsigned long flags;
3937
3938 local_irq_save(flags);
d97d476b 3939 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3940 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3941 debug_check_no_obj_freed(objp, cachep->object_size);
a947eb95 3942 __cache_free(cachep, objp, __builtin_return_address(0));
1da177e4 3943 local_irq_restore(flags);
36555751 3944
ca2b84cb 3945 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3946}
3947EXPORT_SYMBOL(kmem_cache_free);
3948
1da177e4
LT
3949/**
3950 * kfree - free previously allocated memory
3951 * @objp: pointer returned by kmalloc.
3952 *
80e93eff
PE
3953 * If @objp is NULL, no operation is performed.
3954 *
1da177e4
LT
3955 * Don't free memory not originally allocated by kmalloc()
3956 * or you will run into trouble.
3957 */
3958void kfree(const void *objp)
3959{
343e0d7a 3960 struct kmem_cache *c;
1da177e4
LT
3961 unsigned long flags;
3962
2121db74
PE
3963 trace_kfree(_RET_IP_, objp);
3964
6cb8f913 3965 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3966 return;
3967 local_irq_save(flags);
3968 kfree_debugcheck(objp);
6ed5eb22 3969 c = virt_to_cache(objp);
8c138bc0
CL
3970 debug_check_no_locks_freed(objp, c->object_size);
3971
3972 debug_check_no_obj_freed(objp, c->object_size);
a947eb95 3973 __cache_free(c, (void *)objp, __builtin_return_address(0));
1da177e4
LT
3974 local_irq_restore(flags);
3975}
3976EXPORT_SYMBOL(kfree);
3977
343e0d7a 3978unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3979{
8c138bc0 3980 return cachep->object_size;
1da177e4
LT
3981}
3982EXPORT_SYMBOL(kmem_cache_size);
3983
e498be7d 3984/*
183ff22b 3985 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 3986 */
83b519e8 3987static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3988{
3989 int node;
3990 struct kmem_list3 *l3;
cafeb02e 3991 struct array_cache *new_shared;
3395ee05 3992 struct array_cache **new_alien = NULL;
e498be7d 3993
9c09a95c 3994 for_each_online_node(node) {
cafeb02e 3995
3395ee05 3996 if (use_alien_caches) {
83b519e8 3997 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3998 if (!new_alien)
3999 goto fail;
4000 }
cafeb02e 4001
63109846
ED
4002 new_shared = NULL;
4003 if (cachep->shared) {
4004 new_shared = alloc_arraycache(node,
0718dc2a 4005 cachep->shared*cachep->batchcount,
83b519e8 4006 0xbaadf00d, gfp);
63109846
ED
4007 if (!new_shared) {
4008 free_alien_cache(new_alien);
4009 goto fail;
4010 }
0718dc2a 4011 }
cafeb02e 4012
a737b3e2
AM
4013 l3 = cachep->nodelists[node];
4014 if (l3) {
cafeb02e
CL
4015 struct array_cache *shared = l3->shared;
4016
e498be7d
CL
4017 spin_lock_irq(&l3->list_lock);
4018
cafeb02e 4019 if (shared)
0718dc2a
CL
4020 free_block(cachep, shared->entry,
4021 shared->avail, node);
e498be7d 4022
cafeb02e
CL
4023 l3->shared = new_shared;
4024 if (!l3->alien) {
e498be7d
CL
4025 l3->alien = new_alien;
4026 new_alien = NULL;
4027 }
b28a02de 4028 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 4029 cachep->batchcount + cachep->num;
e498be7d 4030 spin_unlock_irq(&l3->list_lock);
cafeb02e 4031 kfree(shared);
e498be7d
CL
4032 free_alien_cache(new_alien);
4033 continue;
4034 }
83b519e8 4035 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
0718dc2a
CL
4036 if (!l3) {
4037 free_alien_cache(new_alien);
4038 kfree(new_shared);
e498be7d 4039 goto fail;
0718dc2a 4040 }
e498be7d
CL
4041
4042 kmem_list3_init(l3);
4043 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 4044 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 4045 l3->shared = new_shared;
e498be7d 4046 l3->alien = new_alien;
b28a02de 4047 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 4048 cachep->batchcount + cachep->num;
e498be7d
CL
4049 cachep->nodelists[node] = l3;
4050 }
cafeb02e 4051 return 0;
0718dc2a 4052
a737b3e2 4053fail:
3b0efdfa 4054 if (!cachep->list.next) {
0718dc2a
CL
4055 /* Cache is not active yet. Roll back what we did */
4056 node--;
4057 while (node >= 0) {
4058 if (cachep->nodelists[node]) {
4059 l3 = cachep->nodelists[node];
4060
4061 kfree(l3->shared);
4062 free_alien_cache(l3->alien);
4063 kfree(l3);
4064 cachep->nodelists[node] = NULL;
4065 }
4066 node--;
4067 }
4068 }
cafeb02e 4069 return -ENOMEM;
e498be7d
CL
4070}
4071
1da177e4 4072struct ccupdate_struct {
343e0d7a 4073 struct kmem_cache *cachep;
acfe7d74 4074 struct array_cache *new[0];
1da177e4
LT
4075};
4076
4077static void do_ccupdate_local(void *info)
4078{
a737b3e2 4079 struct ccupdate_struct *new = info;
1da177e4
LT
4080 struct array_cache *old;
4081
4082 check_irq_off();
9a2dba4b 4083 old = cpu_cache_get(new->cachep);
e498be7d 4084
1da177e4
LT
4085 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4086 new->new[smp_processor_id()] = old;
4087}
4088
18004c5d 4089/* Always called with the slab_mutex held */
a737b3e2 4090static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 4091 int batchcount, int shared, gfp_t gfp)
1da177e4 4092{
d2e7b7d0 4093 struct ccupdate_struct *new;
2ed3a4ef 4094 int i;
1da177e4 4095
acfe7d74
ED
4096 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4097 gfp);
d2e7b7d0
SS
4098 if (!new)
4099 return -ENOMEM;
4100
e498be7d 4101 for_each_online_cpu(i) {
7d6e6d09 4102 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 4103 batchcount, gfp);
d2e7b7d0 4104 if (!new->new[i]) {
b28a02de 4105 for (i--; i >= 0; i--)
d2e7b7d0
SS
4106 kfree(new->new[i]);
4107 kfree(new);
e498be7d 4108 return -ENOMEM;
1da177e4
LT
4109 }
4110 }
d2e7b7d0 4111 new->cachep = cachep;
1da177e4 4112
15c8b6c1 4113 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 4114
1da177e4 4115 check_irq_on();
1da177e4
LT
4116 cachep->batchcount = batchcount;
4117 cachep->limit = limit;
e498be7d 4118 cachep->shared = shared;
1da177e4 4119
e498be7d 4120 for_each_online_cpu(i) {
d2e7b7d0 4121 struct array_cache *ccold = new->new[i];
1da177e4
LT
4122 if (!ccold)
4123 continue;
7d6e6d09
LS
4124 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4125 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4126 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
1da177e4
LT
4127 kfree(ccold);
4128 }
d2e7b7d0 4129 kfree(new);
83b519e8 4130 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
4131}
4132
18004c5d 4133/* Called with slab_mutex held always */
83b519e8 4134static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
4135{
4136 int err;
4137 int limit, shared;
4138
a737b3e2
AM
4139 /*
4140 * The head array serves three purposes:
1da177e4
LT
4141 * - create a LIFO ordering, i.e. return objects that are cache-warm
4142 * - reduce the number of spinlock operations.
a737b3e2 4143 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4144 * bufctl chains: array operations are cheaper.
4145 * The numbers are guessed, we should auto-tune as described by
4146 * Bonwick.
4147 */
3b0efdfa 4148 if (cachep->size > 131072)
1da177e4 4149 limit = 1;
3b0efdfa 4150 else if (cachep->size > PAGE_SIZE)
1da177e4 4151 limit = 8;
3b0efdfa 4152 else if (cachep->size > 1024)
1da177e4 4153 limit = 24;
3b0efdfa 4154 else if (cachep->size > 256)
1da177e4
LT
4155 limit = 54;
4156 else
4157 limit = 120;
4158
a737b3e2
AM
4159 /*
4160 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4161 * allocation behaviour: Most allocs on one cpu, most free operations
4162 * on another cpu. For these cases, an efficient object passing between
4163 * cpus is necessary. This is provided by a shared array. The array
4164 * replaces Bonwick's magazine layer.
4165 * On uniprocessor, it's functionally equivalent (but less efficient)
4166 * to a larger limit. Thus disabled by default.
4167 */
4168 shared = 0;
3b0efdfa 4169 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4170 shared = 8;
1da177e4
LT
4171
4172#if DEBUG
a737b3e2
AM
4173 /*
4174 * With debugging enabled, large batchcount lead to excessively long
4175 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4176 */
4177 if (limit > 32)
4178 limit = 32;
4179#endif
83b519e8 4180 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
1da177e4
LT
4181 if (err)
4182 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4183 cachep->name, -err);
2ed3a4ef 4184 return err;
1da177e4
LT
4185}
4186
1b55253a
CL
4187/*
4188 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4189 * necessary. Note that the l3 listlock also protects the array_cache
4190 * if drain_array() is used on the shared array.
1b55253a 4191 */
68a1b195 4192static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
1b55253a 4193 struct array_cache *ac, int force, int node)
1da177e4
LT
4194{
4195 int tofree;
4196
1b55253a
CL
4197 if (!ac || !ac->avail)
4198 return;
1da177e4
LT
4199 if (ac->touched && !force) {
4200 ac->touched = 0;
b18e7e65 4201 } else {
1b55253a 4202 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4203 if (ac->avail) {
4204 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4205 if (tofree > ac->avail)
4206 tofree = (ac->avail + 1) / 2;
4207 free_block(cachep, ac->entry, tofree, node);
4208 ac->avail -= tofree;
4209 memmove(ac->entry, &(ac->entry[tofree]),
4210 sizeof(void *) * ac->avail);
4211 }
1b55253a 4212 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4213 }
4214}
4215
4216/**
4217 * cache_reap - Reclaim memory from caches.
05fb6bf0 4218 * @w: work descriptor
1da177e4
LT
4219 *
4220 * Called from workqueue/eventd every few seconds.
4221 * Purpose:
4222 * - clear the per-cpu caches for this CPU.
4223 * - return freeable pages to the main free memory pool.
4224 *
a737b3e2
AM
4225 * If we cannot acquire the cache chain mutex then just give up - we'll try
4226 * again on the next iteration.
1da177e4 4227 */
7c5cae36 4228static void cache_reap(struct work_struct *w)
1da177e4 4229{
7a7c381d 4230 struct kmem_cache *searchp;
e498be7d 4231 struct kmem_list3 *l3;
7d6e6d09 4232 int node = numa_mem_id();
bf6aede7 4233 struct delayed_work *work = to_delayed_work(w);
1da177e4 4234
18004c5d 4235 if (!mutex_trylock(&slab_mutex))
1da177e4 4236 /* Give up. Setup the next iteration. */
7c5cae36 4237 goto out;
1da177e4 4238
18004c5d 4239 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4240 check_irq_on();
4241
35386e3b
CL
4242 /*
4243 * We only take the l3 lock if absolutely necessary and we
4244 * have established with reasonable certainty that
4245 * we can do some work if the lock was obtained.
4246 */
aab2207c 4247 l3 = searchp->nodelists[node];
35386e3b 4248
8fce4d8e 4249 reap_alien(searchp, l3);
1da177e4 4250
aab2207c 4251 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4252
35386e3b
CL
4253 /*
4254 * These are racy checks but it does not matter
4255 * if we skip one check or scan twice.
4256 */
e498be7d 4257 if (time_after(l3->next_reap, jiffies))
35386e3b 4258 goto next;
1da177e4 4259
e498be7d 4260 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4261
aab2207c 4262 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4263
ed11d9eb 4264 if (l3->free_touched)
e498be7d 4265 l3->free_touched = 0;
ed11d9eb
CL
4266 else {
4267 int freed;
1da177e4 4268
ed11d9eb
CL
4269 freed = drain_freelist(searchp, l3, (l3->free_limit +
4270 5 * searchp->num - 1) / (5 * searchp->num));
4271 STATS_ADD_REAPED(searchp, freed);
4272 }
35386e3b 4273next:
1da177e4
LT
4274 cond_resched();
4275 }
4276 check_irq_on();
18004c5d 4277 mutex_unlock(&slab_mutex);
8fce4d8e 4278 next_reap_node();
7c5cae36 4279out:
a737b3e2 4280 /* Set up the next iteration */
7c5cae36 4281 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4282}
4283
158a9624 4284#ifdef CONFIG_SLABINFO
1da177e4 4285
85289f98 4286static void print_slabinfo_header(struct seq_file *m)
1da177e4 4287{
85289f98
PE
4288 /*
4289 * Output format version, so at least we can change it
4290 * without _too_ many complaints.
4291 */
1da177e4 4292#if STATS
85289f98 4293 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4294#else
85289f98 4295 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4296#endif
85289f98
PE
4297 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4298 "<objperslab> <pagesperslab>");
4299 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4300 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4301#if STATS
85289f98 4302 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4303 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4304 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4305#endif
85289f98
PE
4306 seq_putc(m, '\n');
4307}
4308
4309static void *s_start(struct seq_file *m, loff_t *pos)
4310{
4311 loff_t n = *pos;
85289f98 4312
18004c5d 4313 mutex_lock(&slab_mutex);
85289f98
PE
4314 if (!n)
4315 print_slabinfo_header(m);
b92151ba 4316
18004c5d 4317 return seq_list_start(&slab_caches, *pos);
1da177e4
LT
4318}
4319
4320static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4321{
18004c5d 4322 return seq_list_next(p, &slab_caches, pos);
1da177e4
LT
4323}
4324
4325static void s_stop(struct seq_file *m, void *p)
4326{
18004c5d 4327 mutex_unlock(&slab_mutex);
1da177e4
LT
4328}
4329
4330static int s_show(struct seq_file *m, void *p)
4331{
3b0efdfa 4332 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
b28a02de
PE
4333 struct slab *slabp;
4334 unsigned long active_objs;
4335 unsigned long num_objs;
4336 unsigned long active_slabs = 0;
4337 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4338 const char *name;
1da177e4 4339 char *error = NULL;
e498be7d
CL
4340 int node;
4341 struct kmem_list3 *l3;
1da177e4 4342
1da177e4
LT
4343 active_objs = 0;
4344 num_slabs = 0;
e498be7d
CL
4345 for_each_online_node(node) {
4346 l3 = cachep->nodelists[node];
4347 if (!l3)
4348 continue;
4349
ca3b9b91
RT
4350 check_irq_on();
4351 spin_lock_irq(&l3->list_lock);
e498be7d 4352
7a7c381d 4353 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4354 if (slabp->inuse != cachep->num && !error)
4355 error = "slabs_full accounting error";
4356 active_objs += cachep->num;
4357 active_slabs++;
4358 }
7a7c381d 4359 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4360 if (slabp->inuse == cachep->num && !error)
4361 error = "slabs_partial inuse accounting error";
4362 if (!slabp->inuse && !error)
4363 error = "slabs_partial/inuse accounting error";
4364 active_objs += slabp->inuse;
4365 active_slabs++;
4366 }
7a7c381d 4367 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4368 if (slabp->inuse && !error)
4369 error = "slabs_free/inuse accounting error";
4370 num_slabs++;
4371 }
4372 free_objects += l3->free_objects;
4484ebf1
RT
4373 if (l3->shared)
4374 shared_avail += l3->shared->avail;
e498be7d 4375
ca3b9b91 4376 spin_unlock_irq(&l3->list_lock);
1da177e4 4377 }
b28a02de
PE
4378 num_slabs += active_slabs;
4379 num_objs = num_slabs * cachep->num;
e498be7d 4380 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4381 error = "free_objects accounting error";
4382
b28a02de 4383 name = cachep->name;
1da177e4
LT
4384 if (error)
4385 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4386
4387 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3b0efdfa 4388 name, active_objs, num_objs, cachep->size,
b28a02de 4389 cachep->num, (1 << cachep->gfporder));
1da177e4 4390 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4391 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4392 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4393 active_slabs, num_slabs, shared_avail);
1da177e4 4394#if STATS
b28a02de 4395 { /* list3 stats */
1da177e4
LT
4396 unsigned long high = cachep->high_mark;
4397 unsigned long allocs = cachep->num_allocations;
4398 unsigned long grown = cachep->grown;
4399 unsigned long reaped = cachep->reaped;
4400 unsigned long errors = cachep->errors;
4401 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4402 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4403 unsigned long node_frees = cachep->node_frees;
fb7faf33 4404 unsigned long overflows = cachep->node_overflow;
1da177e4 4405
e92dd4fd
JP
4406 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4407 "%4lu %4lu %4lu %4lu %4lu",
4408 allocs, high, grown,
4409 reaped, errors, max_freeable, node_allocs,
4410 node_frees, overflows);
1da177e4
LT
4411 }
4412 /* cpu stats */
4413 {
4414 unsigned long allochit = atomic_read(&cachep->allochit);
4415 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4416 unsigned long freehit = atomic_read(&cachep->freehit);
4417 unsigned long freemiss = atomic_read(&cachep->freemiss);
4418
4419 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4420 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4421 }
4422#endif
4423 seq_putc(m, '\n');
1da177e4
LT
4424 return 0;
4425}
4426
4427/*
4428 * slabinfo_op - iterator that generates /proc/slabinfo
4429 *
4430 * Output layout:
4431 * cache-name
4432 * num-active-objs
4433 * total-objs
4434 * object size
4435 * num-active-slabs
4436 * total-slabs
4437 * num-pages-per-slab
4438 * + further values on SMP and with statistics enabled
4439 */
4440
7b3c3a50 4441static const struct seq_operations slabinfo_op = {
b28a02de
PE
4442 .start = s_start,
4443 .next = s_next,
4444 .stop = s_stop,
4445 .show = s_show,
1da177e4
LT
4446};
4447
4448#define MAX_SLABINFO_WRITE 128
4449/**
4450 * slabinfo_write - Tuning for the slab allocator
4451 * @file: unused
4452 * @buffer: user buffer
4453 * @count: data length
4454 * @ppos: unused
4455 */
68a1b195 4456static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4457 size_t count, loff_t *ppos)
1da177e4 4458{
b28a02de 4459 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4460 int limit, batchcount, shared, res;
7a7c381d 4461 struct kmem_cache *cachep;
b28a02de 4462
1da177e4
LT
4463 if (count > MAX_SLABINFO_WRITE)
4464 return -EINVAL;
4465 if (copy_from_user(&kbuf, buffer, count))
4466 return -EFAULT;
b28a02de 4467 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4468
4469 tmp = strchr(kbuf, ' ');
4470 if (!tmp)
4471 return -EINVAL;
4472 *tmp = '\0';
4473 tmp++;
4474 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4475 return -EINVAL;
4476
4477 /* Find the cache in the chain of caches. */
18004c5d 4478 mutex_lock(&slab_mutex);
1da177e4 4479 res = -EINVAL;
18004c5d 4480 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4481 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4482 if (limit < 1 || batchcount < 1 ||
4483 batchcount > limit || shared < 0) {
e498be7d 4484 res = 0;
1da177e4 4485 } else {
e498be7d 4486 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4487 batchcount, shared,
4488 GFP_KERNEL);
1da177e4
LT
4489 }
4490 break;
4491 }
4492 }
18004c5d 4493 mutex_unlock(&slab_mutex);
1da177e4
LT
4494 if (res >= 0)
4495 res = count;
4496 return res;
4497}
871751e2 4498
7b3c3a50
AD
4499static int slabinfo_open(struct inode *inode, struct file *file)
4500{
4501 return seq_open(file, &slabinfo_op);
4502}
4503
4504static const struct file_operations proc_slabinfo_operations = {
4505 .open = slabinfo_open,
4506 .read = seq_read,
4507 .write = slabinfo_write,
4508 .llseek = seq_lseek,
4509 .release = seq_release,
4510};
4511
871751e2
AV
4512#ifdef CONFIG_DEBUG_SLAB_LEAK
4513
4514static void *leaks_start(struct seq_file *m, loff_t *pos)
4515{
18004c5d
CL
4516 mutex_lock(&slab_mutex);
4517 return seq_list_start(&slab_caches, *pos);
871751e2
AV
4518}
4519
4520static inline int add_caller(unsigned long *n, unsigned long v)
4521{
4522 unsigned long *p;
4523 int l;
4524 if (!v)
4525 return 1;
4526 l = n[1];
4527 p = n + 2;
4528 while (l) {
4529 int i = l/2;
4530 unsigned long *q = p + 2 * i;
4531 if (*q == v) {
4532 q[1]++;
4533 return 1;
4534 }
4535 if (*q > v) {
4536 l = i;
4537 } else {
4538 p = q + 2;
4539 l -= i + 1;
4540 }
4541 }
4542 if (++n[1] == n[0])
4543 return 0;
4544 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4545 p[0] = v;
4546 p[1] = 1;
4547 return 1;
4548}
4549
4550static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4551{
4552 void *p;
4553 int i;
4554 if (n[0] == n[1])
4555 return;
3b0efdfa 4556 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
871751e2
AV
4557 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4558 continue;
4559 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4560 return;
4561 }
4562}
4563
4564static void show_symbol(struct seq_file *m, unsigned long address)
4565{
4566#ifdef CONFIG_KALLSYMS
871751e2 4567 unsigned long offset, size;
9281acea 4568 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4569
a5c43dae 4570 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4571 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4572 if (modname[0])
871751e2
AV
4573 seq_printf(m, " [%s]", modname);
4574 return;
4575 }
4576#endif
4577 seq_printf(m, "%p", (void *)address);
4578}
4579
4580static int leaks_show(struct seq_file *m, void *p)
4581{
0672aa7c 4582 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
871751e2
AV
4583 struct slab *slabp;
4584 struct kmem_list3 *l3;
4585 const char *name;
4586 unsigned long *n = m->private;
4587 int node;
4588 int i;
4589
4590 if (!(cachep->flags & SLAB_STORE_USER))
4591 return 0;
4592 if (!(cachep->flags & SLAB_RED_ZONE))
4593 return 0;
4594
4595 /* OK, we can do it */
4596
4597 n[1] = 0;
4598
4599 for_each_online_node(node) {
4600 l3 = cachep->nodelists[node];
4601 if (!l3)
4602 continue;
4603
4604 check_irq_on();
4605 spin_lock_irq(&l3->list_lock);
4606
7a7c381d 4607 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4608 handle_slab(n, cachep, slabp);
7a7c381d 4609 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4610 handle_slab(n, cachep, slabp);
871751e2
AV
4611 spin_unlock_irq(&l3->list_lock);
4612 }
4613 name = cachep->name;
4614 if (n[0] == n[1]) {
4615 /* Increase the buffer size */
18004c5d 4616 mutex_unlock(&slab_mutex);
871751e2
AV
4617 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4618 if (!m->private) {
4619 /* Too bad, we are really out */
4620 m->private = n;
18004c5d 4621 mutex_lock(&slab_mutex);
871751e2
AV
4622 return -ENOMEM;
4623 }
4624 *(unsigned long *)m->private = n[0] * 2;
4625 kfree(n);
18004c5d 4626 mutex_lock(&slab_mutex);
871751e2
AV
4627 /* Now make sure this entry will be retried */
4628 m->count = m->size;
4629 return 0;
4630 }
4631 for (i = 0; i < n[1]; i++) {
4632 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4633 show_symbol(m, n[2*i+2]);
4634 seq_putc(m, '\n');
4635 }
d2e7b7d0 4636
871751e2
AV
4637 return 0;
4638}
4639
a0ec95a8 4640static const struct seq_operations slabstats_op = {
871751e2
AV
4641 .start = leaks_start,
4642 .next = s_next,
4643 .stop = s_stop,
4644 .show = leaks_show,
4645};
a0ec95a8
AD
4646
4647static int slabstats_open(struct inode *inode, struct file *file)
4648{
4649 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4650 int ret = -ENOMEM;
4651 if (n) {
4652 ret = seq_open(file, &slabstats_op);
4653 if (!ret) {
4654 struct seq_file *m = file->private_data;
4655 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4656 m->private = n;
4657 n = NULL;
4658 }
4659 kfree(n);
4660 }
4661 return ret;
4662}
4663
4664static const struct file_operations proc_slabstats_operations = {
4665 .open = slabstats_open,
4666 .read = seq_read,
4667 .llseek = seq_lseek,
4668 .release = seq_release_private,
4669};
4670#endif
4671
4672static int __init slab_proc_init(void)
4673{
ab067e99 4674 proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
a0ec95a8
AD
4675#ifdef CONFIG_DEBUG_SLAB_LEAK
4676 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4677#endif
a0ec95a8
AD
4678 return 0;
4679}
4680module_init(slab_proc_init);
1da177e4
LT
4681#endif
4682
00e145b6
MS
4683/**
4684 * ksize - get the actual amount of memory allocated for a given object
4685 * @objp: Pointer to the object
4686 *
4687 * kmalloc may internally round up allocations and return more memory
4688 * than requested. ksize() can be used to determine the actual amount of
4689 * memory allocated. The caller may use this additional memory, even though
4690 * a smaller amount of memory was initially specified with the kmalloc call.
4691 * The caller must guarantee that objp points to a valid object previously
4692 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4693 * must not be freed during the duration of the call.
4694 */
fd76bab2 4695size_t ksize(const void *objp)
1da177e4 4696{
ef8b4520
CL
4697 BUG_ON(!objp);
4698 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4699 return 0;
1da177e4 4700
8c138bc0 4701 return virt_to_cache(objp)->object_size;
1da177e4 4702}
b1aabecd 4703EXPORT_SYMBOL(ksize);