]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/slab.c
mm, sl[aou]b: Common definition for boot state of the slab allocators
[mirror_ubuntu-zesty-kernel.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4 89#include <linux/slab.h>
97d06609 90#include "slab.h"
1da177e4 91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
a0ec95a8 99#include <linux/proc_fs.h>
1da177e4
LT
100#include <linux/seq_file.h>
101#include <linux/notifier.h>
102#include <linux/kallsyms.h>
103#include <linux/cpu.h>
104#include <linux/sysctl.h>
105#include <linux/module.h>
106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
c175eea4 117#include <linux/kmemcheck.h>
8f9f8d9e 118#include <linux/memory.h>
268bb0ce 119#include <linux/prefetch.h>
1da177e4 120
1da177e4
LT
121#include <asm/cacheflush.h>
122#include <asm/tlbflush.h>
123#include <asm/page.h>
124
4dee6b64
SR
125#include <trace/events/kmem.h>
126
1da177e4 127/*
50953fe9 128 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
129 * 0 for faster, smaller code (especially in the critical paths).
130 *
131 * STATS - 1 to collect stats for /proc/slabinfo.
132 * 0 for faster, smaller code (especially in the critical paths).
133 *
134 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
135 */
136
137#ifdef CONFIG_DEBUG_SLAB
138#define DEBUG 1
139#define STATS 1
140#define FORCED_DEBUG 1
141#else
142#define DEBUG 0
143#define STATS 0
144#define FORCED_DEBUG 0
145#endif
146
1da177e4
LT
147/* Shouldn't this be in a header file somewhere? */
148#define BYTES_PER_WORD sizeof(void *)
87a927c7 149#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 150
1da177e4
LT
151#ifndef ARCH_KMALLOC_FLAGS
152#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
153#endif
154
155/* Legal flag mask for kmem_cache_create(). */
156#if DEBUG
50953fe9 157# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 158 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 159 SLAB_CACHE_DMA | \
5af60839 160 SLAB_STORE_USER | \
1da177e4 161 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 162 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 163 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4 164#else
ac2b898c 165# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 166 SLAB_CACHE_DMA | \
1da177e4 167 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 168 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 169 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4
LT
170#endif
171
172/*
173 * kmem_bufctl_t:
174 *
175 * Bufctl's are used for linking objs within a slab
176 * linked offsets.
177 *
178 * This implementation relies on "struct page" for locating the cache &
179 * slab an object belongs to.
180 * This allows the bufctl structure to be small (one int), but limits
181 * the number of objects a slab (not a cache) can contain when off-slab
182 * bufctls are used. The limit is the size of the largest general cache
183 * that does not use off-slab slabs.
184 * For 32bit archs with 4 kB pages, is this 56.
185 * This is not serious, as it is only for large objects, when it is unwise
186 * to have too many per slab.
187 * Note: This limit can be raised by introducing a general cache whose size
188 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
189 */
190
fa5b08d5 191typedef unsigned int kmem_bufctl_t;
1da177e4
LT
192#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
193#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
194#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
195#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 196
1da177e4
LT
197/*
198 * struct slab_rcu
199 *
200 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
201 * arrange for kmem_freepages to be called via RCU. This is useful if
202 * we need to approach a kernel structure obliquely, from its address
203 * obtained without the usual locking. We can lock the structure to
204 * stabilize it and check it's still at the given address, only if we
205 * can be sure that the memory has not been meanwhile reused for some
206 * other kind of object (which our subsystem's lock might corrupt).
207 *
208 * rcu_read_lock before reading the address, then rcu_read_unlock after
209 * taking the spinlock within the structure expected at that address.
1da177e4
LT
210 */
211struct slab_rcu {
b28a02de 212 struct rcu_head head;
343e0d7a 213 struct kmem_cache *cachep;
b28a02de 214 void *addr;
1da177e4
LT
215};
216
5bfe53a7
LJ
217/*
218 * struct slab
219 *
220 * Manages the objs in a slab. Placed either at the beginning of mem allocated
221 * for a slab, or allocated from an general cache.
222 * Slabs are chained into three list: fully used, partial, fully free slabs.
223 */
224struct slab {
225 union {
226 struct {
227 struct list_head list;
228 unsigned long colouroff;
229 void *s_mem; /* including colour offset */
230 unsigned int inuse; /* num of objs active in slab */
231 kmem_bufctl_t free;
232 unsigned short nodeid;
233 };
234 struct slab_rcu __slab_cover_slab_rcu;
235 };
236};
237
1da177e4
LT
238/*
239 * struct array_cache
240 *
1da177e4
LT
241 * Purpose:
242 * - LIFO ordering, to hand out cache-warm objects from _alloc
243 * - reduce the number of linked list operations
244 * - reduce spinlock operations
245 *
246 * The limit is stored in the per-cpu structure to reduce the data cache
247 * footprint.
248 *
249 */
250struct array_cache {
251 unsigned int avail;
252 unsigned int limit;
253 unsigned int batchcount;
254 unsigned int touched;
e498be7d 255 spinlock_t lock;
bda5b655 256 void *entry[]; /*
a737b3e2
AM
257 * Must have this definition in here for the proper
258 * alignment of array_cache. Also simplifies accessing
259 * the entries.
a737b3e2 260 */
1da177e4
LT
261};
262
a737b3e2
AM
263/*
264 * bootstrap: The caches do not work without cpuarrays anymore, but the
265 * cpuarrays are allocated from the generic caches...
1da177e4
LT
266 */
267#define BOOT_CPUCACHE_ENTRIES 1
268struct arraycache_init {
269 struct array_cache cache;
b28a02de 270 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
271};
272
273/*
e498be7d 274 * The slab lists for all objects.
1da177e4
LT
275 */
276struct kmem_list3 {
b28a02de
PE
277 struct list_head slabs_partial; /* partial list first, better asm code */
278 struct list_head slabs_full;
279 struct list_head slabs_free;
280 unsigned long free_objects;
b28a02de 281 unsigned int free_limit;
2e1217cf 282 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
283 spinlock_t list_lock;
284 struct array_cache *shared; /* shared per node */
285 struct array_cache **alien; /* on other nodes */
35386e3b
CL
286 unsigned long next_reap; /* updated without locking */
287 int free_touched; /* updated without locking */
1da177e4
LT
288};
289
e498be7d
CL
290/*
291 * Need this for bootstrapping a per node allocator.
292 */
556a169d 293#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
68a1b195 294static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
e498be7d 295#define CACHE_CACHE 0
556a169d
PE
296#define SIZE_AC MAX_NUMNODES
297#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 298
ed11d9eb
CL
299static int drain_freelist(struct kmem_cache *cache,
300 struct kmem_list3 *l3, int tofree);
301static void free_block(struct kmem_cache *cachep, void **objpp, int len,
302 int node);
83b519e8 303static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 304static void cache_reap(struct work_struct *unused);
ed11d9eb 305
e498be7d 306/*
a737b3e2
AM
307 * This function must be completely optimized away if a constant is passed to
308 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 309 */
7243cc05 310static __always_inline int index_of(const size_t size)
e498be7d 311{
5ec8a847
SR
312 extern void __bad_size(void);
313
e498be7d
CL
314 if (__builtin_constant_p(size)) {
315 int i = 0;
316
317#define CACHE(x) \
318 if (size <=x) \
319 return i; \
320 else \
321 i++;
1c61fc40 322#include <linux/kmalloc_sizes.h>
e498be7d 323#undef CACHE
5ec8a847 324 __bad_size();
7243cc05 325 } else
5ec8a847 326 __bad_size();
e498be7d
CL
327 return 0;
328}
329
e0a42726
IM
330static int slab_early_init = 1;
331
e498be7d
CL
332#define INDEX_AC index_of(sizeof(struct arraycache_init))
333#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 334
5295a74c 335static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
336{
337 INIT_LIST_HEAD(&parent->slabs_full);
338 INIT_LIST_HEAD(&parent->slabs_partial);
339 INIT_LIST_HEAD(&parent->slabs_free);
340 parent->shared = NULL;
341 parent->alien = NULL;
2e1217cf 342 parent->colour_next = 0;
e498be7d
CL
343 spin_lock_init(&parent->list_lock);
344 parent->free_objects = 0;
345 parent->free_touched = 0;
346}
347
a737b3e2
AM
348#define MAKE_LIST(cachep, listp, slab, nodeid) \
349 do { \
350 INIT_LIST_HEAD(listp); \
351 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
352 } while (0)
353
a737b3e2
AM
354#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
355 do { \
e498be7d
CL
356 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
357 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
358 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
359 } while (0)
1da177e4 360
1da177e4
LT
361#define CFLGS_OFF_SLAB (0x80000000UL)
362#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
363
364#define BATCHREFILL_LIMIT 16
a737b3e2
AM
365/*
366 * Optimization question: fewer reaps means less probability for unnessary
367 * cpucache drain/refill cycles.
1da177e4 368 *
dc6f3f27 369 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
370 * which could lock up otherwise freeable slabs.
371 */
372#define REAPTIMEOUT_CPUC (2*HZ)
373#define REAPTIMEOUT_LIST3 (4*HZ)
374
375#if STATS
376#define STATS_INC_ACTIVE(x) ((x)->num_active++)
377#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
378#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
379#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 380#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
381#define STATS_SET_HIGH(x) \
382 do { \
383 if ((x)->num_active > (x)->high_mark) \
384 (x)->high_mark = (x)->num_active; \
385 } while (0)
1da177e4
LT
386#define STATS_INC_ERR(x) ((x)->errors++)
387#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 388#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 389#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
390#define STATS_SET_FREEABLE(x, i) \
391 do { \
392 if ((x)->max_freeable < i) \
393 (x)->max_freeable = i; \
394 } while (0)
1da177e4
LT
395#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
396#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
397#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
398#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
399#else
400#define STATS_INC_ACTIVE(x) do { } while (0)
401#define STATS_DEC_ACTIVE(x) do { } while (0)
402#define STATS_INC_ALLOCED(x) do { } while (0)
403#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 404#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
405#define STATS_SET_HIGH(x) do { } while (0)
406#define STATS_INC_ERR(x) do { } while (0)
407#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 408#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 409#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 410#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
411#define STATS_INC_ALLOCHIT(x) do { } while (0)
412#define STATS_INC_ALLOCMISS(x) do { } while (0)
413#define STATS_INC_FREEHIT(x) do { } while (0)
414#define STATS_INC_FREEMISS(x) do { } while (0)
415#endif
416
417#if DEBUG
1da177e4 418
a737b3e2
AM
419/*
420 * memory layout of objects:
1da177e4 421 * 0 : objp
3dafccf2 422 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
423 * the end of an object is aligned with the end of the real
424 * allocation. Catches writes behind the end of the allocation.
3dafccf2 425 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 426 * redzone word.
3dafccf2 427 * cachep->obj_offset: The real object.
3b0efdfa
CL
428 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
429 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 430 * [BYTES_PER_WORD long]
1da177e4 431 */
343e0d7a 432static int obj_offset(struct kmem_cache *cachep)
1da177e4 433{
3dafccf2 434 return cachep->obj_offset;
1da177e4
LT
435}
436
b46b8f19 437static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
438{
439 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
440 return (unsigned long long*) (objp + obj_offset(cachep) -
441 sizeof(unsigned long long));
1da177e4
LT
442}
443
b46b8f19 444static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
445{
446 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
447 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 448 return (unsigned long long *)(objp + cachep->size -
b46b8f19 449 sizeof(unsigned long long) -
87a927c7 450 REDZONE_ALIGN);
3b0efdfa 451 return (unsigned long long *) (objp + cachep->size -
b46b8f19 452 sizeof(unsigned long long));
1da177e4
LT
453}
454
343e0d7a 455static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
456{
457 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 458 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
459}
460
461#else
462
3dafccf2 463#define obj_offset(x) 0
b46b8f19
DW
464#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
465#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
466#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
467
468#endif
469
0f24f128 470#ifdef CONFIG_TRACING
36555751
EGM
471size_t slab_buffer_size(struct kmem_cache *cachep)
472{
3b0efdfa 473 return cachep->size;
36555751
EGM
474}
475EXPORT_SYMBOL(slab_buffer_size);
476#endif
477
1da177e4 478/*
3df1cccd
DR
479 * Do not go above this order unless 0 objects fit into the slab or
480 * overridden on the command line.
1da177e4 481 */
543585cc
DR
482#define SLAB_MAX_ORDER_HI 1
483#define SLAB_MAX_ORDER_LO 0
484static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 485static bool slab_max_order_set __initdata;
1da177e4 486
065d41cb
PE
487static inline struct kmem_cache *page_get_cache(struct page *page)
488{
d85f3385 489 page = compound_head(page);
ddc2e812 490 BUG_ON(!PageSlab(page));
e571b0ad 491 return page->slab_cache;
065d41cb
PE
492}
493
6ed5eb22
PE
494static inline struct kmem_cache *virt_to_cache(const void *obj)
495{
b49af68f 496 struct page *page = virt_to_head_page(obj);
35026088 497 return page->slab_cache;
6ed5eb22
PE
498}
499
500static inline struct slab *virt_to_slab(const void *obj)
501{
b49af68f 502 struct page *page = virt_to_head_page(obj);
35026088
CL
503
504 VM_BUG_ON(!PageSlab(page));
505 return page->slab_page;
6ed5eb22
PE
506}
507
8fea4e96
PE
508static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
509 unsigned int idx)
510{
3b0efdfa 511 return slab->s_mem + cache->size * idx;
8fea4e96
PE
512}
513
6a2d7a95 514/*
3b0efdfa
CL
515 * We want to avoid an expensive divide : (offset / cache->size)
516 * Using the fact that size is a constant for a particular cache,
517 * we can replace (offset / cache->size) by
6a2d7a95
ED
518 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
519 */
520static inline unsigned int obj_to_index(const struct kmem_cache *cache,
521 const struct slab *slab, void *obj)
8fea4e96 522{
6a2d7a95
ED
523 u32 offset = (obj - slab->s_mem);
524 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
525}
526
a737b3e2
AM
527/*
528 * These are the default caches for kmalloc. Custom caches can have other sizes.
529 */
1da177e4
LT
530struct cache_sizes malloc_sizes[] = {
531#define CACHE(x) { .cs_size = (x) },
532#include <linux/kmalloc_sizes.h>
533 CACHE(ULONG_MAX)
534#undef CACHE
535};
536EXPORT_SYMBOL(malloc_sizes);
537
538/* Must match cache_sizes above. Out of line to keep cache footprint low. */
539struct cache_names {
540 char *name;
541 char *name_dma;
542};
543
544static struct cache_names __initdata cache_names[] = {
545#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
546#include <linux/kmalloc_sizes.h>
b28a02de 547 {NULL,}
1da177e4
LT
548#undef CACHE
549};
550
551static struct arraycache_init initarray_cache __initdata =
b28a02de 552 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 553static struct arraycache_init initarray_generic =
b28a02de 554 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
555
556/* internal cache of cache description objs */
b56efcf0 557static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
343e0d7a 558static struct kmem_cache cache_cache = {
b56efcf0 559 .nodelists = cache_cache_nodelists,
b28a02de
PE
560 .batchcount = 1,
561 .limit = BOOT_CPUCACHE_ENTRIES,
562 .shared = 1,
3b0efdfa 563 .size = sizeof(struct kmem_cache),
b28a02de 564 .name = "kmem_cache",
1da177e4
LT
565};
566
056c6241
RT
567#define BAD_ALIEN_MAGIC 0x01020304ul
568
f1aaee53
AV
569#ifdef CONFIG_LOCKDEP
570
571/*
572 * Slab sometimes uses the kmalloc slabs to store the slab headers
573 * for other slabs "off slab".
574 * The locking for this is tricky in that it nests within the locks
575 * of all other slabs in a few places; to deal with this special
576 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
577 *
578 * We set lock class for alien array caches which are up during init.
579 * The lock annotation will be lost if all cpus of a node goes down and
580 * then comes back up during hotplug
f1aaee53 581 */
056c6241
RT
582static struct lock_class_key on_slab_l3_key;
583static struct lock_class_key on_slab_alc_key;
584
83835b3d
PZ
585static struct lock_class_key debugobj_l3_key;
586static struct lock_class_key debugobj_alc_key;
587
588static void slab_set_lock_classes(struct kmem_cache *cachep,
589 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
590 int q)
591{
592 struct array_cache **alc;
593 struct kmem_list3 *l3;
594 int r;
595
596 l3 = cachep->nodelists[q];
597 if (!l3)
598 return;
599
600 lockdep_set_class(&l3->list_lock, l3_key);
601 alc = l3->alien;
602 /*
603 * FIXME: This check for BAD_ALIEN_MAGIC
604 * should go away when common slab code is taught to
605 * work even without alien caches.
606 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
607 * for alloc_alien_cache,
608 */
609 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
610 return;
611 for_each_node(r) {
612 if (alc[r])
613 lockdep_set_class(&alc[r]->lock, alc_key);
614 }
615}
616
617static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
618{
619 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
620}
621
622static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
623{
624 int node;
625
626 for_each_online_node(node)
627 slab_set_debugobj_lock_classes_node(cachep, node);
628}
629
ce79ddc8 630static void init_node_lock_keys(int q)
f1aaee53 631{
056c6241
RT
632 struct cache_sizes *s = malloc_sizes;
633
97d06609 634 if (slab_state < UP)
ce79ddc8
PE
635 return;
636
637 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
ce79ddc8 638 struct kmem_list3 *l3;
ce79ddc8
PE
639
640 l3 = s->cs_cachep->nodelists[q];
641 if (!l3 || OFF_SLAB(s->cs_cachep))
00afa758 642 continue;
83835b3d
PZ
643
644 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
645 &on_slab_alc_key, q);
f1aaee53
AV
646 }
647}
ce79ddc8
PE
648
649static inline void init_lock_keys(void)
650{
651 int node;
652
653 for_each_node(node)
654 init_node_lock_keys(node);
655}
f1aaee53 656#else
ce79ddc8
PE
657static void init_node_lock_keys(int q)
658{
659}
660
056c6241 661static inline void init_lock_keys(void)
f1aaee53
AV
662{
663}
83835b3d
PZ
664
665static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
666{
667}
668
669static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
670{
671}
f1aaee53
AV
672#endif
673
8f5be20b 674/*
95402b38 675 * Guard access to the cache-chain.
8f5be20b 676 */
fc0abb14 677static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
678static struct list_head cache_chain;
679
1871e52c 680static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 681
343e0d7a 682static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
683{
684 return cachep->array[smp_processor_id()];
685}
686
a737b3e2
AM
687static inline struct kmem_cache *__find_general_cachep(size_t size,
688 gfp_t gfpflags)
1da177e4
LT
689{
690 struct cache_sizes *csizep = malloc_sizes;
691
692#if DEBUG
693 /* This happens if someone tries to call
b28a02de
PE
694 * kmem_cache_create(), or __kmalloc(), before
695 * the generic caches are initialized.
696 */
c7e43c78 697 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 698#endif
6cb8f913
CL
699 if (!size)
700 return ZERO_SIZE_PTR;
701
1da177e4
LT
702 while (size > csizep->cs_size)
703 csizep++;
704
705 /*
0abf40c1 706 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
707 * has cs_{dma,}cachep==NULL. Thus no special case
708 * for large kmalloc calls required.
709 */
4b51d669 710#ifdef CONFIG_ZONE_DMA
1da177e4
LT
711 if (unlikely(gfpflags & GFP_DMA))
712 return csizep->cs_dmacachep;
4b51d669 713#endif
1da177e4
LT
714 return csizep->cs_cachep;
715}
716
b221385b 717static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
718{
719 return __find_general_cachep(size, gfpflags);
720}
97e2bde4 721
fbaccacf 722static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 723{
fbaccacf
SR
724 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
725}
1da177e4 726
a737b3e2
AM
727/*
728 * Calculate the number of objects and left-over bytes for a given buffer size.
729 */
fbaccacf
SR
730static void cache_estimate(unsigned long gfporder, size_t buffer_size,
731 size_t align, int flags, size_t *left_over,
732 unsigned int *num)
733{
734 int nr_objs;
735 size_t mgmt_size;
736 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 737
fbaccacf
SR
738 /*
739 * The slab management structure can be either off the slab or
740 * on it. For the latter case, the memory allocated for a
741 * slab is used for:
742 *
743 * - The struct slab
744 * - One kmem_bufctl_t for each object
745 * - Padding to respect alignment of @align
746 * - @buffer_size bytes for each object
747 *
748 * If the slab management structure is off the slab, then the
749 * alignment will already be calculated into the size. Because
750 * the slabs are all pages aligned, the objects will be at the
751 * correct alignment when allocated.
752 */
753 if (flags & CFLGS_OFF_SLAB) {
754 mgmt_size = 0;
755 nr_objs = slab_size / buffer_size;
756
757 if (nr_objs > SLAB_LIMIT)
758 nr_objs = SLAB_LIMIT;
759 } else {
760 /*
761 * Ignore padding for the initial guess. The padding
762 * is at most @align-1 bytes, and @buffer_size is at
763 * least @align. In the worst case, this result will
764 * be one greater than the number of objects that fit
765 * into the memory allocation when taking the padding
766 * into account.
767 */
768 nr_objs = (slab_size - sizeof(struct slab)) /
769 (buffer_size + sizeof(kmem_bufctl_t));
770
771 /*
772 * This calculated number will be either the right
773 * amount, or one greater than what we want.
774 */
775 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
776 > slab_size)
777 nr_objs--;
778
779 if (nr_objs > SLAB_LIMIT)
780 nr_objs = SLAB_LIMIT;
781
782 mgmt_size = slab_mgmt_size(nr_objs, align);
783 }
784 *num = nr_objs;
785 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
786}
787
d40cee24 788#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 789
a737b3e2
AM
790static void __slab_error(const char *function, struct kmem_cache *cachep,
791 char *msg)
1da177e4
LT
792{
793 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 794 function, cachep->name, msg);
1da177e4
LT
795 dump_stack();
796}
797
3395ee05
PM
798/*
799 * By default on NUMA we use alien caches to stage the freeing of
800 * objects allocated from other nodes. This causes massive memory
801 * inefficiencies when using fake NUMA setup to split memory into a
802 * large number of small nodes, so it can be disabled on the command
803 * line
804 */
805
806static int use_alien_caches __read_mostly = 1;
807static int __init noaliencache_setup(char *s)
808{
809 use_alien_caches = 0;
810 return 1;
811}
812__setup("noaliencache", noaliencache_setup);
813
3df1cccd
DR
814static int __init slab_max_order_setup(char *str)
815{
816 get_option(&str, &slab_max_order);
817 slab_max_order = slab_max_order < 0 ? 0 :
818 min(slab_max_order, MAX_ORDER - 1);
819 slab_max_order_set = true;
820
821 return 1;
822}
823__setup("slab_max_order=", slab_max_order_setup);
824
8fce4d8e
CL
825#ifdef CONFIG_NUMA
826/*
827 * Special reaping functions for NUMA systems called from cache_reap().
828 * These take care of doing round robin flushing of alien caches (containing
829 * objects freed on different nodes from which they were allocated) and the
830 * flushing of remote pcps by calling drain_node_pages.
831 */
1871e52c 832static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
833
834static void init_reap_node(int cpu)
835{
836 int node;
837
7d6e6d09 838 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 839 if (node == MAX_NUMNODES)
442295c9 840 node = first_node(node_online_map);
8fce4d8e 841
1871e52c 842 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
843}
844
845static void next_reap_node(void)
846{
909ea964 847 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 848
8fce4d8e
CL
849 node = next_node(node, node_online_map);
850 if (unlikely(node >= MAX_NUMNODES))
851 node = first_node(node_online_map);
909ea964 852 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
853}
854
855#else
856#define init_reap_node(cpu) do { } while (0)
857#define next_reap_node(void) do { } while (0)
858#endif
859
1da177e4
LT
860/*
861 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
862 * via the workqueue/eventd.
863 * Add the CPU number into the expiration time to minimize the possibility of
864 * the CPUs getting into lockstep and contending for the global cache chain
865 * lock.
866 */
897e679b 867static void __cpuinit start_cpu_timer(int cpu)
1da177e4 868{
1871e52c 869 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
870
871 /*
872 * When this gets called from do_initcalls via cpucache_init(),
873 * init_workqueues() has already run, so keventd will be setup
874 * at that time.
875 */
52bad64d 876 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 877 init_reap_node(cpu);
78b43536 878 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
2b284214
AV
879 schedule_delayed_work_on(cpu, reap_work,
880 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
881 }
882}
883
e498be7d 884static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 885 int batchcount, gfp_t gfp)
1da177e4 886{
b28a02de 887 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
888 struct array_cache *nc = NULL;
889
83b519e8 890 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
891 /*
892 * The array_cache structures contain pointers to free object.
25985edc 893 * However, when such objects are allocated or transferred to another
d5cff635
CM
894 * cache the pointers are not cleared and they could be counted as
895 * valid references during a kmemleak scan. Therefore, kmemleak must
896 * not scan such objects.
897 */
898 kmemleak_no_scan(nc);
1da177e4
LT
899 if (nc) {
900 nc->avail = 0;
901 nc->limit = entries;
902 nc->batchcount = batchcount;
903 nc->touched = 0;
e498be7d 904 spin_lock_init(&nc->lock);
1da177e4
LT
905 }
906 return nc;
907}
908
3ded175a
CL
909/*
910 * Transfer objects in one arraycache to another.
911 * Locking must be handled by the caller.
912 *
913 * Return the number of entries transferred.
914 */
915static int transfer_objects(struct array_cache *to,
916 struct array_cache *from, unsigned int max)
917{
918 /* Figure out how many entries to transfer */
732eacc0 919 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
920
921 if (!nr)
922 return 0;
923
924 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
925 sizeof(void *) *nr);
926
927 from->avail -= nr;
928 to->avail += nr;
3ded175a
CL
929 return nr;
930}
931
765c4507
CL
932#ifndef CONFIG_NUMA
933
934#define drain_alien_cache(cachep, alien) do { } while (0)
935#define reap_alien(cachep, l3) do { } while (0)
936
83b519e8 937static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
938{
939 return (struct array_cache **)BAD_ALIEN_MAGIC;
940}
941
942static inline void free_alien_cache(struct array_cache **ac_ptr)
943{
944}
945
946static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
947{
948 return 0;
949}
950
951static inline void *alternate_node_alloc(struct kmem_cache *cachep,
952 gfp_t flags)
953{
954 return NULL;
955}
956
8b98c169 957static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
958 gfp_t flags, int nodeid)
959{
960 return NULL;
961}
962
963#else /* CONFIG_NUMA */
964
8b98c169 965static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 966static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 967
83b519e8 968static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
969{
970 struct array_cache **ac_ptr;
8ef82866 971 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
972 int i;
973
974 if (limit > 1)
975 limit = 12;
f3186a9c 976 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
977 if (ac_ptr) {
978 for_each_node(i) {
f3186a9c 979 if (i == node || !node_online(i))
e498be7d 980 continue;
83b519e8 981 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 982 if (!ac_ptr[i]) {
cc550def 983 for (i--; i >= 0; i--)
e498be7d
CL
984 kfree(ac_ptr[i]);
985 kfree(ac_ptr);
986 return NULL;
987 }
988 }
989 }
990 return ac_ptr;
991}
992
5295a74c 993static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
994{
995 int i;
996
997 if (!ac_ptr)
998 return;
e498be7d 999 for_each_node(i)
b28a02de 1000 kfree(ac_ptr[i]);
e498be7d
CL
1001 kfree(ac_ptr);
1002}
1003
343e0d7a 1004static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1005 struct array_cache *ac, int node)
e498be7d
CL
1006{
1007 struct kmem_list3 *rl3 = cachep->nodelists[node];
1008
1009 if (ac->avail) {
1010 spin_lock(&rl3->list_lock);
e00946fe
CL
1011 /*
1012 * Stuff objects into the remote nodes shared array first.
1013 * That way we could avoid the overhead of putting the objects
1014 * into the free lists and getting them back later.
1015 */
693f7d36
JS
1016 if (rl3->shared)
1017 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1018
ff69416e 1019 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1020 ac->avail = 0;
1021 spin_unlock(&rl3->list_lock);
1022 }
1023}
1024
8fce4d8e
CL
1025/*
1026 * Called from cache_reap() to regularly drain alien caches round robin.
1027 */
1028static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1029{
909ea964 1030 int node = __this_cpu_read(slab_reap_node);
8fce4d8e
CL
1031
1032 if (l3->alien) {
1033 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1034
1035 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1036 __drain_alien_cache(cachep, ac, node);
1037 spin_unlock_irq(&ac->lock);
1038 }
1039 }
1040}
1041
a737b3e2
AM
1042static void drain_alien_cache(struct kmem_cache *cachep,
1043 struct array_cache **alien)
e498be7d 1044{
b28a02de 1045 int i = 0;
e498be7d
CL
1046 struct array_cache *ac;
1047 unsigned long flags;
1048
1049 for_each_online_node(i) {
4484ebf1 1050 ac = alien[i];
e498be7d
CL
1051 if (ac) {
1052 spin_lock_irqsave(&ac->lock, flags);
1053 __drain_alien_cache(cachep, ac, i);
1054 spin_unlock_irqrestore(&ac->lock, flags);
1055 }
1056 }
1057}
729bd0b7 1058
873623df 1059static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1060{
1061 struct slab *slabp = virt_to_slab(objp);
1062 int nodeid = slabp->nodeid;
1063 struct kmem_list3 *l3;
1064 struct array_cache *alien = NULL;
1ca4cb24
PE
1065 int node;
1066
7d6e6d09 1067 node = numa_mem_id();
729bd0b7
PE
1068
1069 /*
1070 * Make sure we are not freeing a object from another node to the array
1071 * cache on this cpu.
1072 */
62918a03 1073 if (likely(slabp->nodeid == node))
729bd0b7
PE
1074 return 0;
1075
1ca4cb24 1076 l3 = cachep->nodelists[node];
729bd0b7
PE
1077 STATS_INC_NODEFREES(cachep);
1078 if (l3->alien && l3->alien[nodeid]) {
1079 alien = l3->alien[nodeid];
873623df 1080 spin_lock(&alien->lock);
729bd0b7
PE
1081 if (unlikely(alien->avail == alien->limit)) {
1082 STATS_INC_ACOVERFLOW(cachep);
1083 __drain_alien_cache(cachep, alien, nodeid);
1084 }
1085 alien->entry[alien->avail++] = objp;
1086 spin_unlock(&alien->lock);
1087 } else {
1088 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1089 free_block(cachep, &objp, 1, nodeid);
1090 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1091 }
1092 return 1;
1093}
e498be7d
CL
1094#endif
1095
8f9f8d9e
DR
1096/*
1097 * Allocates and initializes nodelists for a node on each slab cache, used for
1098 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1099 * will be allocated off-node since memory is not yet online for the new node.
1100 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1101 * already in use.
1102 *
1103 * Must hold cache_chain_mutex.
1104 */
1105static int init_cache_nodelists_node(int node)
1106{
1107 struct kmem_cache *cachep;
1108 struct kmem_list3 *l3;
1109 const int memsize = sizeof(struct kmem_list3);
1110
3b0efdfa 1111 list_for_each_entry(cachep, &cache_chain, list) {
8f9f8d9e
DR
1112 /*
1113 * Set up the size64 kmemlist for cpu before we can
1114 * begin anything. Make sure some other cpu on this
1115 * node has not already allocated this
1116 */
1117 if (!cachep->nodelists[node]) {
1118 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1119 if (!l3)
1120 return -ENOMEM;
1121 kmem_list3_init(l3);
1122 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1123 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1124
1125 /*
1126 * The l3s don't come and go as CPUs come and
1127 * go. cache_chain_mutex is sufficient
1128 * protection here.
1129 */
1130 cachep->nodelists[node] = l3;
1131 }
1132
1133 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1134 cachep->nodelists[node]->free_limit =
1135 (1 + nr_cpus_node(node)) *
1136 cachep->batchcount + cachep->num;
1137 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1138 }
1139 return 0;
1140}
1141
fbf1e473
AM
1142static void __cpuinit cpuup_canceled(long cpu)
1143{
1144 struct kmem_cache *cachep;
1145 struct kmem_list3 *l3 = NULL;
7d6e6d09 1146 int node = cpu_to_mem(cpu);
a70f7302 1147 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1148
3b0efdfa 1149 list_for_each_entry(cachep, &cache_chain, list) {
fbf1e473
AM
1150 struct array_cache *nc;
1151 struct array_cache *shared;
1152 struct array_cache **alien;
fbf1e473 1153
fbf1e473
AM
1154 /* cpu is dead; no one can alloc from it. */
1155 nc = cachep->array[cpu];
1156 cachep->array[cpu] = NULL;
1157 l3 = cachep->nodelists[node];
1158
1159 if (!l3)
1160 goto free_array_cache;
1161
1162 spin_lock_irq(&l3->list_lock);
1163
1164 /* Free limit for this kmem_list3 */
1165 l3->free_limit -= cachep->batchcount;
1166 if (nc)
1167 free_block(cachep, nc->entry, nc->avail, node);
1168
58463c1f 1169 if (!cpumask_empty(mask)) {
fbf1e473
AM
1170 spin_unlock_irq(&l3->list_lock);
1171 goto free_array_cache;
1172 }
1173
1174 shared = l3->shared;
1175 if (shared) {
1176 free_block(cachep, shared->entry,
1177 shared->avail, node);
1178 l3->shared = NULL;
1179 }
1180
1181 alien = l3->alien;
1182 l3->alien = NULL;
1183
1184 spin_unlock_irq(&l3->list_lock);
1185
1186 kfree(shared);
1187 if (alien) {
1188 drain_alien_cache(cachep, alien);
1189 free_alien_cache(alien);
1190 }
1191free_array_cache:
1192 kfree(nc);
1193 }
1194 /*
1195 * In the previous loop, all the objects were freed to
1196 * the respective cache's slabs, now we can go ahead and
1197 * shrink each nodelist to its limit.
1198 */
3b0efdfa 1199 list_for_each_entry(cachep, &cache_chain, list) {
fbf1e473
AM
1200 l3 = cachep->nodelists[node];
1201 if (!l3)
1202 continue;
1203 drain_freelist(cachep, l3, l3->free_objects);
1204 }
1205}
1206
1207static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1208{
343e0d7a 1209 struct kmem_cache *cachep;
e498be7d 1210 struct kmem_list3 *l3 = NULL;
7d6e6d09 1211 int node = cpu_to_mem(cpu);
8f9f8d9e 1212 int err;
1da177e4 1213
fbf1e473
AM
1214 /*
1215 * We need to do this right in the beginning since
1216 * alloc_arraycache's are going to use this list.
1217 * kmalloc_node allows us to add the slab to the right
1218 * kmem_list3 and not this cpu's kmem_list3
1219 */
8f9f8d9e
DR
1220 err = init_cache_nodelists_node(node);
1221 if (err < 0)
1222 goto bad;
fbf1e473
AM
1223
1224 /*
1225 * Now we can go ahead with allocating the shared arrays and
1226 * array caches
1227 */
3b0efdfa 1228 list_for_each_entry(cachep, &cache_chain, list) {
fbf1e473
AM
1229 struct array_cache *nc;
1230 struct array_cache *shared = NULL;
1231 struct array_cache **alien = NULL;
1232
1233 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1234 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1235 if (!nc)
1236 goto bad;
1237 if (cachep->shared) {
1238 shared = alloc_arraycache(node,
1239 cachep->shared * cachep->batchcount,
83b519e8 1240 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1241 if (!shared) {
1242 kfree(nc);
1da177e4 1243 goto bad;
12d00f6a 1244 }
fbf1e473
AM
1245 }
1246 if (use_alien_caches) {
83b519e8 1247 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1248 if (!alien) {
1249 kfree(shared);
1250 kfree(nc);
fbf1e473 1251 goto bad;
12d00f6a 1252 }
fbf1e473
AM
1253 }
1254 cachep->array[cpu] = nc;
1255 l3 = cachep->nodelists[node];
1256 BUG_ON(!l3);
1257
1258 spin_lock_irq(&l3->list_lock);
1259 if (!l3->shared) {
1260 /*
1261 * We are serialised from CPU_DEAD or
1262 * CPU_UP_CANCELLED by the cpucontrol lock
1263 */
1264 l3->shared = shared;
1265 shared = NULL;
1266 }
4484ebf1 1267#ifdef CONFIG_NUMA
fbf1e473
AM
1268 if (!l3->alien) {
1269 l3->alien = alien;
1270 alien = NULL;
1da177e4 1271 }
fbf1e473
AM
1272#endif
1273 spin_unlock_irq(&l3->list_lock);
1274 kfree(shared);
1275 free_alien_cache(alien);
83835b3d
PZ
1276 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1277 slab_set_debugobj_lock_classes_node(cachep, node);
fbf1e473 1278 }
ce79ddc8
PE
1279 init_node_lock_keys(node);
1280
fbf1e473
AM
1281 return 0;
1282bad:
12d00f6a 1283 cpuup_canceled(cpu);
fbf1e473
AM
1284 return -ENOMEM;
1285}
1286
1287static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1288 unsigned long action, void *hcpu)
1289{
1290 long cpu = (long)hcpu;
1291 int err = 0;
1292
1293 switch (action) {
fbf1e473
AM
1294 case CPU_UP_PREPARE:
1295 case CPU_UP_PREPARE_FROZEN:
95402b38 1296 mutex_lock(&cache_chain_mutex);
fbf1e473 1297 err = cpuup_prepare(cpu);
95402b38 1298 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1299 break;
1300 case CPU_ONLINE:
8bb78442 1301 case CPU_ONLINE_FROZEN:
1da177e4
LT
1302 start_cpu_timer(cpu);
1303 break;
1304#ifdef CONFIG_HOTPLUG_CPU
5830c590 1305 case CPU_DOWN_PREPARE:
8bb78442 1306 case CPU_DOWN_PREPARE_FROZEN:
5830c590
CL
1307 /*
1308 * Shutdown cache reaper. Note that the cache_chain_mutex is
1309 * held so that if cache_reap() is invoked it cannot do
1310 * anything expensive but will only modify reap_work
1311 * and reschedule the timer.
1312 */
afe2c511 1313 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1314 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1315 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1316 break;
1317 case CPU_DOWN_FAILED:
8bb78442 1318 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1319 start_cpu_timer(cpu);
1320 break;
1da177e4 1321 case CPU_DEAD:
8bb78442 1322 case CPU_DEAD_FROZEN:
4484ebf1
RT
1323 /*
1324 * Even if all the cpus of a node are down, we don't free the
1325 * kmem_list3 of any cache. This to avoid a race between
1326 * cpu_down, and a kmalloc allocation from another cpu for
1327 * memory from the node of the cpu going down. The list3
1328 * structure is usually allocated from kmem_cache_create() and
1329 * gets destroyed at kmem_cache_destroy().
1330 */
183ff22b 1331 /* fall through */
8f5be20b 1332#endif
1da177e4 1333 case CPU_UP_CANCELED:
8bb78442 1334 case CPU_UP_CANCELED_FROZEN:
95402b38 1335 mutex_lock(&cache_chain_mutex);
fbf1e473 1336 cpuup_canceled(cpu);
fc0abb14 1337 mutex_unlock(&cache_chain_mutex);
1da177e4 1338 break;
1da177e4 1339 }
eac40680 1340 return notifier_from_errno(err);
1da177e4
LT
1341}
1342
74b85f37
CS
1343static struct notifier_block __cpuinitdata cpucache_notifier = {
1344 &cpuup_callback, NULL, 0
1345};
1da177e4 1346
8f9f8d9e
DR
1347#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1348/*
1349 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1350 * Returns -EBUSY if all objects cannot be drained so that the node is not
1351 * removed.
1352 *
1353 * Must hold cache_chain_mutex.
1354 */
1355static int __meminit drain_cache_nodelists_node(int node)
1356{
1357 struct kmem_cache *cachep;
1358 int ret = 0;
1359
3b0efdfa 1360 list_for_each_entry(cachep, &cache_chain, list) {
8f9f8d9e
DR
1361 struct kmem_list3 *l3;
1362
1363 l3 = cachep->nodelists[node];
1364 if (!l3)
1365 continue;
1366
1367 drain_freelist(cachep, l3, l3->free_objects);
1368
1369 if (!list_empty(&l3->slabs_full) ||
1370 !list_empty(&l3->slabs_partial)) {
1371 ret = -EBUSY;
1372 break;
1373 }
1374 }
1375 return ret;
1376}
1377
1378static int __meminit slab_memory_callback(struct notifier_block *self,
1379 unsigned long action, void *arg)
1380{
1381 struct memory_notify *mnb = arg;
1382 int ret = 0;
1383 int nid;
1384
1385 nid = mnb->status_change_nid;
1386 if (nid < 0)
1387 goto out;
1388
1389 switch (action) {
1390 case MEM_GOING_ONLINE:
1391 mutex_lock(&cache_chain_mutex);
1392 ret = init_cache_nodelists_node(nid);
1393 mutex_unlock(&cache_chain_mutex);
1394 break;
1395 case MEM_GOING_OFFLINE:
1396 mutex_lock(&cache_chain_mutex);
1397 ret = drain_cache_nodelists_node(nid);
1398 mutex_unlock(&cache_chain_mutex);
1399 break;
1400 case MEM_ONLINE:
1401 case MEM_OFFLINE:
1402 case MEM_CANCEL_ONLINE:
1403 case MEM_CANCEL_OFFLINE:
1404 break;
1405 }
1406out:
5fda1bd5 1407 return notifier_from_errno(ret);
8f9f8d9e
DR
1408}
1409#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1410
e498be7d
CL
1411/*
1412 * swap the static kmem_list3 with kmalloced memory
1413 */
8f9f8d9e
DR
1414static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1415 int nodeid)
e498be7d
CL
1416{
1417 struct kmem_list3 *ptr;
1418
83b519e8 1419 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
e498be7d
CL
1420 BUG_ON(!ptr);
1421
e498be7d 1422 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1423 /*
1424 * Do not assume that spinlocks can be initialized via memcpy:
1425 */
1426 spin_lock_init(&ptr->list_lock);
1427
e498be7d
CL
1428 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1429 cachep->nodelists[nodeid] = ptr;
e498be7d
CL
1430}
1431
556a169d
PE
1432/*
1433 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1434 * size of kmem_list3.
1435 */
1436static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1437{
1438 int node;
1439
1440 for_each_online_node(node) {
1441 cachep->nodelists[node] = &initkmem_list3[index + node];
1442 cachep->nodelists[node]->next_reap = jiffies +
1443 REAPTIMEOUT_LIST3 +
1444 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1445 }
1446}
1447
a737b3e2
AM
1448/*
1449 * Initialisation. Called after the page allocator have been initialised and
1450 * before smp_init().
1da177e4
LT
1451 */
1452void __init kmem_cache_init(void)
1453{
1454 size_t left_over;
1455 struct cache_sizes *sizes;
1456 struct cache_names *names;
e498be7d 1457 int i;
07ed76b2 1458 int order;
1ca4cb24 1459 int node;
e498be7d 1460
b6e68bc1 1461 if (num_possible_nodes() == 1)
62918a03
SS
1462 use_alien_caches = 0;
1463
e498be7d
CL
1464 for (i = 0; i < NUM_INIT_LISTS; i++) {
1465 kmem_list3_init(&initkmem_list3[i]);
1466 if (i < MAX_NUMNODES)
1467 cache_cache.nodelists[i] = NULL;
1468 }
556a169d 1469 set_up_list3s(&cache_cache, CACHE_CACHE);
1da177e4
LT
1470
1471 /*
1472 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1473 * page orders on machines with more than 32MB of memory if
1474 * not overridden on the command line.
1da177e4 1475 */
3df1cccd 1476 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1477 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1478
1da177e4
LT
1479 /* Bootstrap is tricky, because several objects are allocated
1480 * from caches that do not exist yet:
a737b3e2
AM
1481 * 1) initialize the cache_cache cache: it contains the struct
1482 * kmem_cache structures of all caches, except cache_cache itself:
1483 * cache_cache is statically allocated.
e498be7d
CL
1484 * Initially an __init data area is used for the head array and the
1485 * kmem_list3 structures, it's replaced with a kmalloc allocated
1486 * array at the end of the bootstrap.
1da177e4 1487 * 2) Create the first kmalloc cache.
343e0d7a 1488 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1489 * An __init data area is used for the head array.
1490 * 3) Create the remaining kmalloc caches, with minimally sized
1491 * head arrays.
1da177e4
LT
1492 * 4) Replace the __init data head arrays for cache_cache and the first
1493 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1494 * 5) Replace the __init data for kmem_list3 for cache_cache and
1495 * the other cache's with kmalloc allocated memory.
1496 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1497 */
1498
7d6e6d09 1499 node = numa_mem_id();
1ca4cb24 1500
1da177e4 1501 /* 1) create the cache_cache */
1da177e4 1502 INIT_LIST_HEAD(&cache_chain);
3b0efdfa 1503 list_add(&cache_cache.list, &cache_chain);
1da177e4
LT
1504 cache_cache.colour_off = cache_line_size();
1505 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
ec1f5eee 1506 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1da177e4 1507
8da3430d 1508 /*
b56efcf0 1509 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1510 */
3b0efdfa 1511 cache_cache.size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
b56efcf0 1512 nr_node_ids * sizeof(struct kmem_list3 *);
3b0efdfa
CL
1513 cache_cache.object_size = cache_cache.size;
1514 cache_cache.size = ALIGN(cache_cache.size,
a737b3e2 1515 cache_line_size());
6a2d7a95 1516 cache_cache.reciprocal_buffer_size =
3b0efdfa 1517 reciprocal_value(cache_cache.size);
1da177e4 1518
07ed76b2 1519 for (order = 0; order < MAX_ORDER; order++) {
3b0efdfa 1520 cache_estimate(order, cache_cache.size,
07ed76b2
JS
1521 cache_line_size(), 0, &left_over, &cache_cache.num);
1522 if (cache_cache.num)
1523 break;
1524 }
40094fa6 1525 BUG_ON(!cache_cache.num);
07ed76b2 1526 cache_cache.gfporder = order;
b28a02de 1527 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1528 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1529 sizeof(struct slab), cache_line_size());
1da177e4
LT
1530
1531 /* 2+3) create the kmalloc caches */
1532 sizes = malloc_sizes;
1533 names = cache_names;
1534
a737b3e2
AM
1535 /*
1536 * Initialize the caches that provide memory for the array cache and the
1537 * kmem_list3 structures first. Without this, further allocations will
1538 * bug.
e498be7d
CL
1539 */
1540
039363f3 1541 sizes[INDEX_AC].cs_cachep = __kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1542 sizes[INDEX_AC].cs_size,
1543 ARCH_KMALLOC_MINALIGN,
1544 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1545 NULL);
e498be7d 1546
a737b3e2 1547 if (INDEX_AC != INDEX_L3) {
e498be7d 1548 sizes[INDEX_L3].cs_cachep =
039363f3 1549 __kmem_cache_create(names[INDEX_L3].name,
a737b3e2
AM
1550 sizes[INDEX_L3].cs_size,
1551 ARCH_KMALLOC_MINALIGN,
1552 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1553 NULL);
a737b3e2 1554 }
e498be7d 1555
e0a42726
IM
1556 slab_early_init = 0;
1557
1da177e4 1558 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1559 /*
1560 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1561 * This should be particularly beneficial on SMP boxes, as it
1562 * eliminates "false sharing".
1563 * Note for systems short on memory removing the alignment will
e498be7d
CL
1564 * allow tighter packing of the smaller caches.
1565 */
a737b3e2 1566 if (!sizes->cs_cachep) {
039363f3 1567 sizes->cs_cachep = __kmem_cache_create(names->name,
a737b3e2
AM
1568 sizes->cs_size,
1569 ARCH_KMALLOC_MINALIGN,
1570 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1571 NULL);
a737b3e2 1572 }
4b51d669 1573#ifdef CONFIG_ZONE_DMA
039363f3 1574 sizes->cs_dmacachep = __kmem_cache_create(
4b51d669 1575 names->name_dma,
a737b3e2
AM
1576 sizes->cs_size,
1577 ARCH_KMALLOC_MINALIGN,
1578 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1579 SLAB_PANIC,
20c2df83 1580 NULL);
4b51d669 1581#endif
1da177e4
LT
1582 sizes++;
1583 names++;
1584 }
1585 /* 4) Replace the bootstrap head arrays */
1586 {
2b2d5493 1587 struct array_cache *ptr;
e498be7d 1588
83b519e8 1589 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1590
9a2dba4b
PE
1591 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1592 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1593 sizeof(struct arraycache_init));
2b2d5493
IM
1594 /*
1595 * Do not assume that spinlocks can be initialized via memcpy:
1596 */
1597 spin_lock_init(&ptr->lock);
1598
1da177e4 1599 cache_cache.array[smp_processor_id()] = ptr;
e498be7d 1600
83b519e8 1601 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1602
9a2dba4b 1603 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1604 != &initarray_generic.cache);
9a2dba4b 1605 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1606 sizeof(struct arraycache_init));
2b2d5493
IM
1607 /*
1608 * Do not assume that spinlocks can be initialized via memcpy:
1609 */
1610 spin_lock_init(&ptr->lock);
1611
e498be7d 1612 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1613 ptr;
1da177e4 1614 }
e498be7d
CL
1615 /* 5) Replace the bootstrap kmem_list3's */
1616 {
1ca4cb24
PE
1617 int nid;
1618
9c09a95c 1619 for_each_online_node(nid) {
ec1f5eee 1620 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1621
e498be7d 1622 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1623 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1624
1625 if (INDEX_AC != INDEX_L3) {
1626 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1627 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1628 }
1629 }
1630 }
1da177e4 1631
97d06609 1632 slab_state = UP;
8429db5c
PE
1633}
1634
1635void __init kmem_cache_init_late(void)
1636{
1637 struct kmem_cache *cachep;
1638
97d06609 1639 slab_state = UP;
52cef189 1640
30765b92
PZ
1641 /* Annotate slab for lockdep -- annotate the malloc caches */
1642 init_lock_keys();
1643
8429db5c
PE
1644 /* 6) resize the head arrays to their final sizes */
1645 mutex_lock(&cache_chain_mutex);
3b0efdfa 1646 list_for_each_entry(cachep, &cache_chain, list)
8429db5c
PE
1647 if (enable_cpucache(cachep, GFP_NOWAIT))
1648 BUG();
1649 mutex_unlock(&cache_chain_mutex);
056c6241 1650
97d06609
CL
1651 /* Done! */
1652 slab_state = FULL;
1653
a737b3e2
AM
1654 /*
1655 * Register a cpu startup notifier callback that initializes
1656 * cpu_cache_get for all new cpus
1da177e4
LT
1657 */
1658 register_cpu_notifier(&cpucache_notifier);
1da177e4 1659
8f9f8d9e
DR
1660#ifdef CONFIG_NUMA
1661 /*
1662 * Register a memory hotplug callback that initializes and frees
1663 * nodelists.
1664 */
1665 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1666#endif
1667
a737b3e2
AM
1668 /*
1669 * The reap timers are started later, with a module init call: That part
1670 * of the kernel is not yet operational.
1da177e4
LT
1671 */
1672}
1673
1674static int __init cpucache_init(void)
1675{
1676 int cpu;
1677
a737b3e2
AM
1678 /*
1679 * Register the timers that return unneeded pages to the page allocator
1da177e4 1680 */
e498be7d 1681 for_each_online_cpu(cpu)
a737b3e2 1682 start_cpu_timer(cpu);
a164f896
GC
1683
1684 /* Done! */
97d06609 1685 slab_state = FULL;
1da177e4
LT
1686 return 0;
1687}
1da177e4
LT
1688__initcall(cpucache_init);
1689
8bdec192
RA
1690static noinline void
1691slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1692{
1693 struct kmem_list3 *l3;
1694 struct slab *slabp;
1695 unsigned long flags;
1696 int node;
1697
1698 printk(KERN_WARNING
1699 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1700 nodeid, gfpflags);
1701 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1702 cachep->name, cachep->size, cachep->gfporder);
8bdec192
RA
1703
1704 for_each_online_node(node) {
1705 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1706 unsigned long active_slabs = 0, num_slabs = 0;
1707
1708 l3 = cachep->nodelists[node];
1709 if (!l3)
1710 continue;
1711
1712 spin_lock_irqsave(&l3->list_lock, flags);
1713 list_for_each_entry(slabp, &l3->slabs_full, list) {
1714 active_objs += cachep->num;
1715 active_slabs++;
1716 }
1717 list_for_each_entry(slabp, &l3->slabs_partial, list) {
1718 active_objs += slabp->inuse;
1719 active_slabs++;
1720 }
1721 list_for_each_entry(slabp, &l3->slabs_free, list)
1722 num_slabs++;
1723
1724 free_objects += l3->free_objects;
1725 spin_unlock_irqrestore(&l3->list_lock, flags);
1726
1727 num_slabs += active_slabs;
1728 num_objs = num_slabs * cachep->num;
1729 printk(KERN_WARNING
1730 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1731 node, active_slabs, num_slabs, active_objs, num_objs,
1732 free_objects);
1733 }
1734}
1735
1da177e4
LT
1736/*
1737 * Interface to system's page allocator. No need to hold the cache-lock.
1738 *
1739 * If we requested dmaable memory, we will get it. Even if we
1740 * did not request dmaable memory, we might get it, but that
1741 * would be relatively rare and ignorable.
1742 */
343e0d7a 1743static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1744{
1745 struct page *page;
e1b6aa6f 1746 int nr_pages;
1da177e4
LT
1747 int i;
1748
d6fef9da 1749#ifndef CONFIG_MMU
e1b6aa6f
CH
1750 /*
1751 * Nommu uses slab's for process anonymous memory allocations, and thus
1752 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1753 */
e1b6aa6f 1754 flags |= __GFP_COMP;
d6fef9da 1755#endif
765c4507 1756
a618e89f 1757 flags |= cachep->allocflags;
e12ba74d
MG
1758 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1759 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1760
517d0869 1761 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192
RA
1762 if (!page) {
1763 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1764 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1765 return NULL;
8bdec192 1766 }
1da177e4 1767
e1b6aa6f 1768 nr_pages = (1 << cachep->gfporder);
1da177e4 1769 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1770 add_zone_page_state(page_zone(page),
1771 NR_SLAB_RECLAIMABLE, nr_pages);
1772 else
1773 add_zone_page_state(page_zone(page),
1774 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1775 for (i = 0; i < nr_pages; i++)
1776 __SetPageSlab(page + i);
c175eea4 1777
b1eeab67
VN
1778 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1779 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1780
1781 if (cachep->ctor)
1782 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1783 else
1784 kmemcheck_mark_unallocated_pages(page, nr_pages);
1785 }
c175eea4 1786
e1b6aa6f 1787 return page_address(page);
1da177e4
LT
1788}
1789
1790/*
1791 * Interface to system's page release.
1792 */
343e0d7a 1793static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1794{
b28a02de 1795 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1796 struct page *page = virt_to_page(addr);
1797 const unsigned long nr_freed = i;
1798
b1eeab67 1799 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1800
972d1a7b
CL
1801 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1802 sub_zone_page_state(page_zone(page),
1803 NR_SLAB_RECLAIMABLE, nr_freed);
1804 else
1805 sub_zone_page_state(page_zone(page),
1806 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1807 while (i--) {
f205b2fe
NP
1808 BUG_ON(!PageSlab(page));
1809 __ClearPageSlab(page);
1da177e4
LT
1810 page++;
1811 }
1da177e4
LT
1812 if (current->reclaim_state)
1813 current->reclaim_state->reclaimed_slab += nr_freed;
1814 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1815}
1816
1817static void kmem_rcu_free(struct rcu_head *head)
1818{
b28a02de 1819 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1820 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1821
1822 kmem_freepages(cachep, slab_rcu->addr);
1823 if (OFF_SLAB(cachep))
1824 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1825}
1826
1827#if DEBUG
1828
1829#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1830static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1831 unsigned long caller)
1da177e4 1832{
8c138bc0 1833 int size = cachep->object_size;
1da177e4 1834
3dafccf2 1835 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1836
b28a02de 1837 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1838 return;
1839
b28a02de
PE
1840 *addr++ = 0x12345678;
1841 *addr++ = caller;
1842 *addr++ = smp_processor_id();
1843 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1844 {
1845 unsigned long *sptr = &caller;
1846 unsigned long svalue;
1847
1848 while (!kstack_end(sptr)) {
1849 svalue = *sptr++;
1850 if (kernel_text_address(svalue)) {
b28a02de 1851 *addr++ = svalue;
1da177e4
LT
1852 size -= sizeof(unsigned long);
1853 if (size <= sizeof(unsigned long))
1854 break;
1855 }
1856 }
1857
1858 }
b28a02de 1859 *addr++ = 0x87654321;
1da177e4
LT
1860}
1861#endif
1862
343e0d7a 1863static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1864{
8c138bc0 1865 int size = cachep->object_size;
3dafccf2 1866 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1867
1868 memset(addr, val, size);
b28a02de 1869 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1870}
1871
1872static void dump_line(char *data, int offset, int limit)
1873{
1874 int i;
aa83aa40
DJ
1875 unsigned char error = 0;
1876 int bad_count = 0;
1877
fdde6abb 1878 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
1879 for (i = 0; i < limit; i++) {
1880 if (data[offset + i] != POISON_FREE) {
1881 error = data[offset + i];
1882 bad_count++;
1883 }
aa83aa40 1884 }
fdde6abb
SAS
1885 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1886 &data[offset], limit, 1);
aa83aa40
DJ
1887
1888 if (bad_count == 1) {
1889 error ^= POISON_FREE;
1890 if (!(error & (error - 1))) {
1891 printk(KERN_ERR "Single bit error detected. Probably "
1892 "bad RAM.\n");
1893#ifdef CONFIG_X86
1894 printk(KERN_ERR "Run memtest86+ or a similar memory "
1895 "test tool.\n");
1896#else
1897 printk(KERN_ERR "Run a memory test tool.\n");
1898#endif
1899 }
1900 }
1da177e4
LT
1901}
1902#endif
1903
1904#if DEBUG
1905
343e0d7a 1906static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1907{
1908 int i, size;
1909 char *realobj;
1910
1911 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1912 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1913 *dbg_redzone1(cachep, objp),
1914 *dbg_redzone2(cachep, objp));
1da177e4
LT
1915 }
1916
1917 if (cachep->flags & SLAB_STORE_USER) {
1918 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1919 *dbg_userword(cachep, objp));
1da177e4 1920 print_symbol("(%s)",
a737b3e2 1921 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1922 printk("\n");
1923 }
3dafccf2 1924 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1925 size = cachep->object_size;
b28a02de 1926 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1927 int limit;
1928 limit = 16;
b28a02de
PE
1929 if (i + limit > size)
1930 limit = size - i;
1da177e4
LT
1931 dump_line(realobj, i, limit);
1932 }
1933}
1934
343e0d7a 1935static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1936{
1937 char *realobj;
1938 int size, i;
1939 int lines = 0;
1940
3dafccf2 1941 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1942 size = cachep->object_size;
1da177e4 1943
b28a02de 1944 for (i = 0; i < size; i++) {
1da177e4 1945 char exp = POISON_FREE;
b28a02de 1946 if (i == size - 1)
1da177e4
LT
1947 exp = POISON_END;
1948 if (realobj[i] != exp) {
1949 int limit;
1950 /* Mismatch ! */
1951 /* Print header */
1952 if (lines == 0) {
b28a02de 1953 printk(KERN_ERR
face37f5
DJ
1954 "Slab corruption (%s): %s start=%p, len=%d\n",
1955 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
1956 print_objinfo(cachep, objp, 0);
1957 }
1958 /* Hexdump the affected line */
b28a02de 1959 i = (i / 16) * 16;
1da177e4 1960 limit = 16;
b28a02de
PE
1961 if (i + limit > size)
1962 limit = size - i;
1da177e4
LT
1963 dump_line(realobj, i, limit);
1964 i += 16;
1965 lines++;
1966 /* Limit to 5 lines */
1967 if (lines > 5)
1968 break;
1969 }
1970 }
1971 if (lines != 0) {
1972 /* Print some data about the neighboring objects, if they
1973 * exist:
1974 */
6ed5eb22 1975 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1976 unsigned int objnr;
1da177e4 1977
8fea4e96 1978 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1979 if (objnr) {
8fea4e96 1980 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1981 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1982 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1983 realobj, size);
1da177e4
LT
1984 print_objinfo(cachep, objp, 2);
1985 }
b28a02de 1986 if (objnr + 1 < cachep->num) {
8fea4e96 1987 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1988 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1989 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1990 realobj, size);
1da177e4
LT
1991 print_objinfo(cachep, objp, 2);
1992 }
1993 }
1994}
1995#endif
1996
12dd36fa 1997#if DEBUG
e79aec29 1998static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1999{
1da177e4
LT
2000 int i;
2001 for (i = 0; i < cachep->num; i++) {
8fea4e96 2002 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2003
2004 if (cachep->flags & SLAB_POISON) {
2005#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2006 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 2007 OFF_SLAB(cachep))
b28a02de 2008 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2009 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2010 else
2011 check_poison_obj(cachep, objp);
2012#else
2013 check_poison_obj(cachep, objp);
2014#endif
2015 }
2016 if (cachep->flags & SLAB_RED_ZONE) {
2017 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2018 slab_error(cachep, "start of a freed object "
b28a02de 2019 "was overwritten");
1da177e4
LT
2020 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2021 slab_error(cachep, "end of a freed object "
b28a02de 2022 "was overwritten");
1da177e4 2023 }
1da177e4 2024 }
12dd36fa 2025}
1da177e4 2026#else
e79aec29 2027static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 2028{
12dd36fa 2029}
1da177e4
LT
2030#endif
2031
911851e6
RD
2032/**
2033 * slab_destroy - destroy and release all objects in a slab
2034 * @cachep: cache pointer being destroyed
2035 * @slabp: slab pointer being destroyed
2036 *
12dd36fa 2037 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
2038 * Before calling the slab must have been unlinked from the cache. The
2039 * cache-lock is not held/needed.
12dd36fa 2040 */
343e0d7a 2041static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
2042{
2043 void *addr = slabp->s_mem - slabp->colouroff;
2044
e79aec29 2045 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
2046 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2047 struct slab_rcu *slab_rcu;
2048
b28a02de 2049 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
2050 slab_rcu->cachep = cachep;
2051 slab_rcu->addr = addr;
2052 call_rcu(&slab_rcu->head, kmem_rcu_free);
2053 } else {
2054 kmem_freepages(cachep, addr);
873623df
IM
2055 if (OFF_SLAB(cachep))
2056 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
2057 }
2058}
2059
117f6eb1
CL
2060static void __kmem_cache_destroy(struct kmem_cache *cachep)
2061{
2062 int i;
2063 struct kmem_list3 *l3;
2064
2065 for_each_online_cpu(i)
2066 kfree(cachep->array[i]);
2067
2068 /* NUMA: free the list3 structures */
2069 for_each_online_node(i) {
2070 l3 = cachep->nodelists[i];
2071 if (l3) {
2072 kfree(l3->shared);
2073 free_alien_cache(l3->alien);
2074 kfree(l3);
2075 }
2076 }
2077 kmem_cache_free(&cache_cache, cachep);
2078}
2079
2080
4d268eba 2081/**
a70773dd
RD
2082 * calculate_slab_order - calculate size (page order) of slabs
2083 * @cachep: pointer to the cache that is being created
2084 * @size: size of objects to be created in this cache.
2085 * @align: required alignment for the objects.
2086 * @flags: slab allocation flags
2087 *
2088 * Also calculates the number of objects per slab.
4d268eba
PE
2089 *
2090 * This could be made much more intelligent. For now, try to avoid using
2091 * high order pages for slabs. When the gfp() functions are more friendly
2092 * towards high-order requests, this should be changed.
2093 */
a737b3e2 2094static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2095 size_t size, size_t align, unsigned long flags)
4d268eba 2096{
b1ab41c4 2097 unsigned long offslab_limit;
4d268eba 2098 size_t left_over = 0;
9888e6fa 2099 int gfporder;
4d268eba 2100
0aa817f0 2101 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2102 unsigned int num;
2103 size_t remainder;
2104
9888e6fa 2105 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2106 if (!num)
2107 continue;
9888e6fa 2108
b1ab41c4
IM
2109 if (flags & CFLGS_OFF_SLAB) {
2110 /*
2111 * Max number of objs-per-slab for caches which
2112 * use off-slab slabs. Needed to avoid a possible
2113 * looping condition in cache_grow().
2114 */
2115 offslab_limit = size - sizeof(struct slab);
2116 offslab_limit /= sizeof(kmem_bufctl_t);
2117
2118 if (num > offslab_limit)
2119 break;
2120 }
4d268eba 2121
9888e6fa 2122 /* Found something acceptable - save it away */
4d268eba 2123 cachep->num = num;
9888e6fa 2124 cachep->gfporder = gfporder;
4d268eba
PE
2125 left_over = remainder;
2126
f78bb8ad
LT
2127 /*
2128 * A VFS-reclaimable slab tends to have most allocations
2129 * as GFP_NOFS and we really don't want to have to be allocating
2130 * higher-order pages when we are unable to shrink dcache.
2131 */
2132 if (flags & SLAB_RECLAIM_ACCOUNT)
2133 break;
2134
4d268eba
PE
2135 /*
2136 * Large number of objects is good, but very large slabs are
2137 * currently bad for the gfp()s.
2138 */
543585cc 2139 if (gfporder >= slab_max_order)
4d268eba
PE
2140 break;
2141
9888e6fa
LT
2142 /*
2143 * Acceptable internal fragmentation?
2144 */
a737b3e2 2145 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2146 break;
2147 }
2148 return left_over;
2149}
2150
83b519e8 2151static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2152{
97d06609 2153 if (slab_state >= FULL)
83b519e8 2154 return enable_cpucache(cachep, gfp);
2ed3a4ef 2155
97d06609 2156 if (slab_state == DOWN) {
f30cf7d1
PE
2157 /*
2158 * Note: the first kmem_cache_create must create the cache
2159 * that's used by kmalloc(24), otherwise the creation of
2160 * further caches will BUG().
2161 */
2162 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2163
2164 /*
2165 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2166 * the first cache, then we need to set up all its list3s,
2167 * otherwise the creation of further caches will BUG().
2168 */
2169 set_up_list3s(cachep, SIZE_AC);
2170 if (INDEX_AC == INDEX_L3)
97d06609 2171 slab_state = PARTIAL_L3;
f30cf7d1 2172 else
97d06609 2173 slab_state = PARTIAL_ARRAYCACHE;
f30cf7d1
PE
2174 } else {
2175 cachep->array[smp_processor_id()] =
83b519e8 2176 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1 2177
97d06609 2178 if (slab_state == PARTIAL_ARRAYCACHE) {
f30cf7d1 2179 set_up_list3s(cachep, SIZE_L3);
97d06609 2180 slab_state = PARTIAL_L3;
f30cf7d1
PE
2181 } else {
2182 int node;
556a169d 2183 for_each_online_node(node) {
f30cf7d1
PE
2184 cachep->nodelists[node] =
2185 kmalloc_node(sizeof(struct kmem_list3),
eb91f1d0 2186 gfp, node);
f30cf7d1
PE
2187 BUG_ON(!cachep->nodelists[node]);
2188 kmem_list3_init(cachep->nodelists[node]);
2189 }
2190 }
2191 }
7d6e6d09 2192 cachep->nodelists[numa_mem_id()]->next_reap =
f30cf7d1
PE
2193 jiffies + REAPTIMEOUT_LIST3 +
2194 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2195
2196 cpu_cache_get(cachep)->avail = 0;
2197 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2198 cpu_cache_get(cachep)->batchcount = 1;
2199 cpu_cache_get(cachep)->touched = 0;
2200 cachep->batchcount = 1;
2201 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2202 return 0;
f30cf7d1
PE
2203}
2204
1da177e4 2205/**
039363f3 2206 * __kmem_cache_create - Create a cache.
1da177e4
LT
2207 * @name: A string which is used in /proc/slabinfo to identify this cache.
2208 * @size: The size of objects to be created in this cache.
2209 * @align: The required alignment for the objects.
2210 * @flags: SLAB flags
2211 * @ctor: A constructor for the objects.
1da177e4
LT
2212 *
2213 * Returns a ptr to the cache on success, NULL on failure.
2214 * Cannot be called within a int, but can be interrupted.
20c2df83 2215 * The @ctor is run when new pages are allocated by the cache.
1da177e4
LT
2216 *
2217 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2218 * the module calling this has to destroy the cache before getting unloaded.
2219 *
1da177e4
LT
2220 * The flags are
2221 *
2222 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2223 * to catch references to uninitialised memory.
2224 *
2225 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2226 * for buffer overruns.
2227 *
1da177e4
LT
2228 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2229 * cacheline. This can be beneficial if you're counting cycles as closely
2230 * as davem.
2231 */
343e0d7a 2232struct kmem_cache *
039363f3 2233__kmem_cache_create (const char *name, size_t size, size_t align,
51cc5068 2234 unsigned long flags, void (*ctor)(void *))
1da177e4
LT
2235{
2236 size_t left_over, slab_size, ralign;
7a7c381d 2237 struct kmem_cache *cachep = NULL, *pc;
83b519e8 2238 gfp_t gfp;
1da177e4
LT
2239
2240 /*
2241 * Sanity checks... these are all serious usage bugs.
2242 */
a737b3e2 2243 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
20c2df83 2244 size > KMALLOC_MAX_SIZE) {
d40cee24 2245 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
a737b3e2 2246 name);
b28a02de
PE
2247 BUG();
2248 }
1da177e4 2249
f0188f47 2250 /*
8f5be20b 2251 * We use cache_chain_mutex to ensure a consistent view of
174596a0 2252 * cpu_online_mask as well. Please see cpuup_callback
f0188f47 2253 */
83b519e8
PE
2254 if (slab_is_available()) {
2255 get_online_cpus();
2256 mutex_lock(&cache_chain_mutex);
2257 }
4f12bb4f 2258
3b0efdfa 2259 list_for_each_entry(pc, &cache_chain, list) {
4f12bb4f
AM
2260 char tmp;
2261 int res;
2262
2263 /*
2264 * This happens when the module gets unloaded and doesn't
2265 * destroy its slab cache and no-one else reuses the vmalloc
2266 * area of the module. Print a warning.
2267 */
138ae663 2268 res = probe_kernel_address(pc->name, tmp);
4f12bb4f 2269 if (res) {
b4169525 2270 printk(KERN_ERR
2271 "SLAB: cache with size %d has lost its name\n",
3b0efdfa 2272 pc->size);
4f12bb4f
AM
2273 continue;
2274 }
2275
b28a02de 2276 if (!strcmp(pc->name, name)) {
b4169525 2277 printk(KERN_ERR
2278 "kmem_cache_create: duplicate cache %s\n", name);
4f12bb4f
AM
2279 dump_stack();
2280 goto oops;
2281 }
2282 }
2283
1da177e4
LT
2284#if DEBUG
2285 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1da177e4
LT
2286#if FORCED_DEBUG
2287 /*
2288 * Enable redzoning and last user accounting, except for caches with
2289 * large objects, if the increased size would increase the object size
2290 * above the next power of two: caches with object sizes just above a
2291 * power of two have a significant amount of internal fragmentation.
2292 */
87a927c7
DW
2293 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2294 2 * sizeof(unsigned long long)))
b28a02de 2295 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2296 if (!(flags & SLAB_DESTROY_BY_RCU))
2297 flags |= SLAB_POISON;
2298#endif
2299 if (flags & SLAB_DESTROY_BY_RCU)
2300 BUG_ON(flags & SLAB_POISON);
2301#endif
1da177e4 2302 /*
a737b3e2
AM
2303 * Always checks flags, a caller might be expecting debug support which
2304 * isn't available.
1da177e4 2305 */
40094fa6 2306 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2307
a737b3e2
AM
2308 /*
2309 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2310 * unaligned accesses for some archs when redzoning is used, and makes
2311 * sure any on-slab bufctl's are also correctly aligned.
2312 */
b28a02de
PE
2313 if (size & (BYTES_PER_WORD - 1)) {
2314 size += (BYTES_PER_WORD - 1);
2315 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2316 }
2317
a737b3e2
AM
2318 /* calculate the final buffer alignment: */
2319
1da177e4
LT
2320 /* 1) arch recommendation: can be overridden for debug */
2321 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2322 /*
2323 * Default alignment: as specified by the arch code. Except if
2324 * an object is really small, then squeeze multiple objects into
2325 * one cacheline.
1da177e4
LT
2326 */
2327 ralign = cache_line_size();
b28a02de 2328 while (size <= ralign / 2)
1da177e4
LT
2329 ralign /= 2;
2330 } else {
2331 ralign = BYTES_PER_WORD;
2332 }
ca5f9703
PE
2333
2334 /*
87a927c7
DW
2335 * Redzoning and user store require word alignment or possibly larger.
2336 * Note this will be overridden by architecture or caller mandated
2337 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2338 */
87a927c7
DW
2339 if (flags & SLAB_STORE_USER)
2340 ralign = BYTES_PER_WORD;
2341
2342 if (flags & SLAB_RED_ZONE) {
2343 ralign = REDZONE_ALIGN;
2344 /* If redzoning, ensure that the second redzone is suitably
2345 * aligned, by adjusting the object size accordingly. */
2346 size += REDZONE_ALIGN - 1;
2347 size &= ~(REDZONE_ALIGN - 1);
2348 }
ca5f9703 2349
a44b56d3 2350 /* 2) arch mandated alignment */
1da177e4
LT
2351 if (ralign < ARCH_SLAB_MINALIGN) {
2352 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2353 }
a44b56d3 2354 /* 3) caller mandated alignment */
1da177e4
LT
2355 if (ralign < align) {
2356 ralign = align;
1da177e4 2357 }
3ff84a7f
PE
2358 /* disable debug if necessary */
2359 if (ralign > __alignof__(unsigned long long))
a44b56d3 2360 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2361 /*
ca5f9703 2362 * 4) Store it.
1da177e4
LT
2363 */
2364 align = ralign;
2365
83b519e8
PE
2366 if (slab_is_available())
2367 gfp = GFP_KERNEL;
2368 else
2369 gfp = GFP_NOWAIT;
2370
1da177e4 2371 /* Get cache's description obj. */
83b519e8 2372 cachep = kmem_cache_zalloc(&cache_cache, gfp);
1da177e4 2373 if (!cachep)
039363f3 2374 return NULL;
1da177e4 2375
b56efcf0 2376 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
3b0efdfa
CL
2377 cachep->object_size = size;
2378 cachep->align = align;
1da177e4 2379#if DEBUG
1da177e4 2380
ca5f9703
PE
2381 /*
2382 * Both debugging options require word-alignment which is calculated
2383 * into align above.
2384 */
1da177e4 2385 if (flags & SLAB_RED_ZONE) {
1da177e4 2386 /* add space for red zone words */
3ff84a7f
PE
2387 cachep->obj_offset += sizeof(unsigned long long);
2388 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2389 }
2390 if (flags & SLAB_STORE_USER) {
ca5f9703 2391 /* user store requires one word storage behind the end of
87a927c7
DW
2392 * the real object. But if the second red zone needs to be
2393 * aligned to 64 bits, we must allow that much space.
1da177e4 2394 */
87a927c7
DW
2395 if (flags & SLAB_RED_ZONE)
2396 size += REDZONE_ALIGN;
2397 else
2398 size += BYTES_PER_WORD;
1da177e4
LT
2399 }
2400#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2401 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3b0efdfa 2402 && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
1ab335d8 2403 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
1da177e4
LT
2404 size = PAGE_SIZE;
2405 }
2406#endif
2407#endif
2408
e0a42726
IM
2409 /*
2410 * Determine if the slab management is 'on' or 'off' slab.
2411 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2412 * it too early on. Always use on-slab management when
2413 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2414 */
e7cb55b9
CM
2415 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2416 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2417 /*
2418 * Size is large, assume best to place the slab management obj
2419 * off-slab (should allow better packing of objs).
2420 */
2421 flags |= CFLGS_OFF_SLAB;
2422
2423 size = ALIGN(size, align);
2424
f78bb8ad 2425 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2426
2427 if (!cachep->num) {
b4169525 2428 printk(KERN_ERR
2429 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4 2430 kmem_cache_free(&cache_cache, cachep);
039363f3 2431 return NULL;
1da177e4 2432 }
b28a02de
PE
2433 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2434 + sizeof(struct slab), align);
1da177e4
LT
2435
2436 /*
2437 * If the slab has been placed off-slab, and we have enough space then
2438 * move it on-slab. This is at the expense of any extra colouring.
2439 */
2440 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2441 flags &= ~CFLGS_OFF_SLAB;
2442 left_over -= slab_size;
2443 }
2444
2445 if (flags & CFLGS_OFF_SLAB) {
2446 /* really off slab. No need for manual alignment */
b28a02de
PE
2447 slab_size =
2448 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
67461365
RL
2449
2450#ifdef CONFIG_PAGE_POISONING
2451 /* If we're going to use the generic kernel_map_pages()
2452 * poisoning, then it's going to smash the contents of
2453 * the redzone and userword anyhow, so switch them off.
2454 */
2455 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2456 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2457#endif
1da177e4
LT
2458 }
2459
2460 cachep->colour_off = cache_line_size();
2461 /* Offset must be a multiple of the alignment. */
2462 if (cachep->colour_off < align)
2463 cachep->colour_off = align;
b28a02de 2464 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2465 cachep->slab_size = slab_size;
2466 cachep->flags = flags;
a618e89f 2467 cachep->allocflags = 0;
4b51d669 2468 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2469 cachep->allocflags |= GFP_DMA;
3b0efdfa 2470 cachep->size = size;
6a2d7a95 2471 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2472
e5ac9c5a 2473 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2474 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2475 /*
2476 * This is a possibility for one of the malloc_sizes caches.
2477 * But since we go off slab only for object size greater than
2478 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2479 * this should not happen at all.
2480 * But leave a BUG_ON for some lucky dude.
2481 */
6cb8f913 2482 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2483 }
1da177e4 2484 cachep->ctor = ctor;
1da177e4
LT
2485 cachep->name = name;
2486
83b519e8 2487 if (setup_cpu_cache(cachep, gfp)) {
2ed3a4ef 2488 __kmem_cache_destroy(cachep);
039363f3 2489 return NULL;
2ed3a4ef 2490 }
1da177e4 2491
83835b3d
PZ
2492 if (flags & SLAB_DEBUG_OBJECTS) {
2493 /*
2494 * Would deadlock through slab_destroy()->call_rcu()->
2495 * debug_object_activate()->kmem_cache_alloc().
2496 */
2497 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2498
2499 slab_set_debugobj_lock_classes(cachep);
2500 }
2501
1da177e4 2502 /* cache setup completed, link it into the list */
3b0efdfa 2503 list_add(&cachep->list, &cache_chain);
a737b3e2 2504oops:
83b519e8
PE
2505 if (slab_is_available()) {
2506 mutex_unlock(&cache_chain_mutex);
2507 put_online_cpus();
2508 }
1da177e4
LT
2509 return cachep;
2510}
1da177e4
LT
2511
2512#if DEBUG
2513static void check_irq_off(void)
2514{
2515 BUG_ON(!irqs_disabled());
2516}
2517
2518static void check_irq_on(void)
2519{
2520 BUG_ON(irqs_disabled());
2521}
2522
343e0d7a 2523static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2524{
2525#ifdef CONFIG_SMP
2526 check_irq_off();
7d6e6d09 2527 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
1da177e4
LT
2528#endif
2529}
e498be7d 2530
343e0d7a 2531static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2532{
2533#ifdef CONFIG_SMP
2534 check_irq_off();
2535 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2536#endif
2537}
2538
1da177e4
LT
2539#else
2540#define check_irq_off() do { } while(0)
2541#define check_irq_on() do { } while(0)
2542#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2543#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2544#endif
2545
aab2207c
CL
2546static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2547 struct array_cache *ac,
2548 int force, int node);
2549
1da177e4
LT
2550static void do_drain(void *arg)
2551{
a737b3e2 2552 struct kmem_cache *cachep = arg;
1da177e4 2553 struct array_cache *ac;
7d6e6d09 2554 int node = numa_mem_id();
1da177e4
LT
2555
2556 check_irq_off();
9a2dba4b 2557 ac = cpu_cache_get(cachep);
ff69416e
CL
2558 spin_lock(&cachep->nodelists[node]->list_lock);
2559 free_block(cachep, ac->entry, ac->avail, node);
2560 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2561 ac->avail = 0;
2562}
2563
343e0d7a 2564static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2565{
e498be7d
CL
2566 struct kmem_list3 *l3;
2567 int node;
2568
15c8b6c1 2569 on_each_cpu(do_drain, cachep, 1);
1da177e4 2570 check_irq_on();
b28a02de 2571 for_each_online_node(node) {
e498be7d 2572 l3 = cachep->nodelists[node];
a4523a8b
RD
2573 if (l3 && l3->alien)
2574 drain_alien_cache(cachep, l3->alien);
2575 }
2576
2577 for_each_online_node(node) {
2578 l3 = cachep->nodelists[node];
2579 if (l3)
aab2207c 2580 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2581 }
1da177e4
LT
2582}
2583
ed11d9eb
CL
2584/*
2585 * Remove slabs from the list of free slabs.
2586 * Specify the number of slabs to drain in tofree.
2587 *
2588 * Returns the actual number of slabs released.
2589 */
2590static int drain_freelist(struct kmem_cache *cache,
2591 struct kmem_list3 *l3, int tofree)
1da177e4 2592{
ed11d9eb
CL
2593 struct list_head *p;
2594 int nr_freed;
1da177e4 2595 struct slab *slabp;
1da177e4 2596
ed11d9eb
CL
2597 nr_freed = 0;
2598 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2599
ed11d9eb 2600 spin_lock_irq(&l3->list_lock);
e498be7d 2601 p = l3->slabs_free.prev;
ed11d9eb
CL
2602 if (p == &l3->slabs_free) {
2603 spin_unlock_irq(&l3->list_lock);
2604 goto out;
2605 }
1da177e4 2606
ed11d9eb 2607 slabp = list_entry(p, struct slab, list);
1da177e4 2608#if DEBUG
40094fa6 2609 BUG_ON(slabp->inuse);
1da177e4
LT
2610#endif
2611 list_del(&slabp->list);
ed11d9eb
CL
2612 /*
2613 * Safe to drop the lock. The slab is no longer linked
2614 * to the cache.
2615 */
2616 l3->free_objects -= cache->num;
e498be7d 2617 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2618 slab_destroy(cache, slabp);
2619 nr_freed++;
1da177e4 2620 }
ed11d9eb
CL
2621out:
2622 return nr_freed;
1da177e4
LT
2623}
2624
8f5be20b 2625/* Called with cache_chain_mutex held to protect against cpu hotplug */
343e0d7a 2626static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2627{
2628 int ret = 0, i = 0;
2629 struct kmem_list3 *l3;
2630
2631 drain_cpu_caches(cachep);
2632
2633 check_irq_on();
2634 for_each_online_node(i) {
2635 l3 = cachep->nodelists[i];
ed11d9eb
CL
2636 if (!l3)
2637 continue;
2638
2639 drain_freelist(cachep, l3, l3->free_objects);
2640
2641 ret += !list_empty(&l3->slabs_full) ||
2642 !list_empty(&l3->slabs_partial);
e498be7d
CL
2643 }
2644 return (ret ? 1 : 0);
2645}
2646
1da177e4
LT
2647/**
2648 * kmem_cache_shrink - Shrink a cache.
2649 * @cachep: The cache to shrink.
2650 *
2651 * Releases as many slabs as possible for a cache.
2652 * To help debugging, a zero exit status indicates all slabs were released.
2653 */
343e0d7a 2654int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2655{
8f5be20b 2656 int ret;
40094fa6 2657 BUG_ON(!cachep || in_interrupt());
1da177e4 2658
95402b38 2659 get_online_cpus();
8f5be20b
RT
2660 mutex_lock(&cache_chain_mutex);
2661 ret = __cache_shrink(cachep);
2662 mutex_unlock(&cache_chain_mutex);
95402b38 2663 put_online_cpus();
8f5be20b 2664 return ret;
1da177e4
LT
2665}
2666EXPORT_SYMBOL(kmem_cache_shrink);
2667
2668/**
2669 * kmem_cache_destroy - delete a cache
2670 * @cachep: the cache to destroy
2671 *
72fd4a35 2672 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2673 *
2674 * It is expected this function will be called by a module when it is
2675 * unloaded. This will remove the cache completely, and avoid a duplicate
2676 * cache being allocated each time a module is loaded and unloaded, if the
2677 * module doesn't have persistent in-kernel storage across loads and unloads.
2678 *
2679 * The cache must be empty before calling this function.
2680 *
25985edc 2681 * The caller must guarantee that no one will allocate memory from the cache
1da177e4
LT
2682 * during the kmem_cache_destroy().
2683 */
133d205a 2684void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2685{
40094fa6 2686 BUG_ON(!cachep || in_interrupt());
1da177e4 2687
1da177e4 2688 /* Find the cache in the chain of caches. */
95402b38 2689 get_online_cpus();
fc0abb14 2690 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2691 /*
2692 * the chain is never empty, cache_cache is never destroyed
2693 */
3b0efdfa 2694 list_del(&cachep->list);
1da177e4
LT
2695 if (__cache_shrink(cachep)) {
2696 slab_error(cachep, "Can't free all objects");
3b0efdfa 2697 list_add(&cachep->list, &cache_chain);
fc0abb14 2698 mutex_unlock(&cache_chain_mutex);
95402b38 2699 put_online_cpus();
133d205a 2700 return;
1da177e4
LT
2701 }
2702
2703 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
7ed9f7e5 2704 rcu_barrier();
1da177e4 2705
117f6eb1 2706 __kmem_cache_destroy(cachep);
8f5be20b 2707 mutex_unlock(&cache_chain_mutex);
95402b38 2708 put_online_cpus();
1da177e4
LT
2709}
2710EXPORT_SYMBOL(kmem_cache_destroy);
2711
e5ac9c5a
RT
2712/*
2713 * Get the memory for a slab management obj.
2714 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2715 * always come from malloc_sizes caches. The slab descriptor cannot
2716 * come from the same cache which is getting created because,
2717 * when we are searching for an appropriate cache for these
2718 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2719 * If we are creating a malloc_sizes cache here it would not be visible to
2720 * kmem_find_general_cachep till the initialization is complete.
2721 * Hence we cannot have slabp_cache same as the original cache.
2722 */
343e0d7a 2723static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2724 int colour_off, gfp_t local_flags,
2725 int nodeid)
1da177e4
LT
2726{
2727 struct slab *slabp;
b28a02de 2728
1da177e4
LT
2729 if (OFF_SLAB(cachep)) {
2730 /* Slab management obj is off-slab. */
5b74ada7 2731 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2732 local_flags, nodeid);
d5cff635
CM
2733 /*
2734 * If the first object in the slab is leaked (it's allocated
2735 * but no one has a reference to it), we want to make sure
2736 * kmemleak does not treat the ->s_mem pointer as a reference
2737 * to the object. Otherwise we will not report the leak.
2738 */
c017b4be
CM
2739 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2740 local_flags);
1da177e4
LT
2741 if (!slabp)
2742 return NULL;
2743 } else {
b28a02de 2744 slabp = objp + colour_off;
1da177e4
LT
2745 colour_off += cachep->slab_size;
2746 }
2747 slabp->inuse = 0;
2748 slabp->colouroff = colour_off;
b28a02de 2749 slabp->s_mem = objp + colour_off;
5b74ada7 2750 slabp->nodeid = nodeid;
e51bfd0a 2751 slabp->free = 0;
1da177e4
LT
2752 return slabp;
2753}
2754
2755static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2756{
b28a02de 2757 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2758}
2759
343e0d7a 2760static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2761 struct slab *slabp)
1da177e4
LT
2762{
2763 int i;
2764
2765 for (i = 0; i < cachep->num; i++) {
8fea4e96 2766 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2767#if DEBUG
2768 /* need to poison the objs? */
2769 if (cachep->flags & SLAB_POISON)
2770 poison_obj(cachep, objp, POISON_FREE);
2771 if (cachep->flags & SLAB_STORE_USER)
2772 *dbg_userword(cachep, objp) = NULL;
2773
2774 if (cachep->flags & SLAB_RED_ZONE) {
2775 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2776 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2777 }
2778 /*
a737b3e2
AM
2779 * Constructors are not allowed to allocate memory from the same
2780 * cache which they are a constructor for. Otherwise, deadlock.
2781 * They must also be threaded.
1da177e4
LT
2782 */
2783 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2784 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2785
2786 if (cachep->flags & SLAB_RED_ZONE) {
2787 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2788 slab_error(cachep, "constructor overwrote the"
b28a02de 2789 " end of an object");
1da177e4
LT
2790 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2791 slab_error(cachep, "constructor overwrote the"
b28a02de 2792 " start of an object");
1da177e4 2793 }
3b0efdfa 2794 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2795 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2796 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2797 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2798#else
2799 if (cachep->ctor)
51cc5068 2800 cachep->ctor(objp);
1da177e4 2801#endif
b28a02de 2802 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2803 }
b28a02de 2804 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2805}
2806
343e0d7a 2807static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2808{
4b51d669
CL
2809 if (CONFIG_ZONE_DMA_FLAG) {
2810 if (flags & GFP_DMA)
a618e89f 2811 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2812 else
a618e89f 2813 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2814 }
1da177e4
LT
2815}
2816
a737b3e2
AM
2817static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2818 int nodeid)
78d382d7 2819{
8fea4e96 2820 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2821 kmem_bufctl_t next;
2822
2823 slabp->inuse++;
2824 next = slab_bufctl(slabp)[slabp->free];
2825#if DEBUG
2826 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2827 WARN_ON(slabp->nodeid != nodeid);
2828#endif
2829 slabp->free = next;
2830
2831 return objp;
2832}
2833
a737b3e2
AM
2834static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2835 void *objp, int nodeid)
78d382d7 2836{
8fea4e96 2837 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2838
2839#if DEBUG
2840 /* Verify that the slab belongs to the intended node */
2841 WARN_ON(slabp->nodeid != nodeid);
2842
871751e2 2843 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2844 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2845 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2846 BUG();
2847 }
2848#endif
2849 slab_bufctl(slabp)[objnr] = slabp->free;
2850 slabp->free = objnr;
2851 slabp->inuse--;
2852}
2853
4776874f
PE
2854/*
2855 * Map pages beginning at addr to the given cache and slab. This is required
2856 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2857 * virtual address for kfree, ksize, and slab debugging.
4776874f
PE
2858 */
2859static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2860 void *addr)
1da177e4 2861{
4776874f 2862 int nr_pages;
1da177e4
LT
2863 struct page *page;
2864
4776874f 2865 page = virt_to_page(addr);
84097518 2866
4776874f 2867 nr_pages = 1;
84097518 2868 if (likely(!PageCompound(page)))
4776874f
PE
2869 nr_pages <<= cache->gfporder;
2870
1da177e4 2871 do {
35026088
CL
2872 page->slab_cache = cache;
2873 page->slab_page = slab;
1da177e4 2874 page++;
4776874f 2875 } while (--nr_pages);
1da177e4
LT
2876}
2877
2878/*
2879 * Grow (by 1) the number of slabs within a cache. This is called by
2880 * kmem_cache_alloc() when there are no active objs left in a cache.
2881 */
3c517a61
CL
2882static int cache_grow(struct kmem_cache *cachep,
2883 gfp_t flags, int nodeid, void *objp)
1da177e4 2884{
b28a02de 2885 struct slab *slabp;
b28a02de
PE
2886 size_t offset;
2887 gfp_t local_flags;
e498be7d 2888 struct kmem_list3 *l3;
1da177e4 2889
a737b3e2
AM
2890 /*
2891 * Be lazy and only check for valid flags here, keeping it out of the
2892 * critical path in kmem_cache_alloc().
1da177e4 2893 */
6cb06229
CL
2894 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2895 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2896
2e1217cf 2897 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2898 check_irq_off();
2e1217cf
RT
2899 l3 = cachep->nodelists[nodeid];
2900 spin_lock(&l3->list_lock);
1da177e4
LT
2901
2902 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2903 offset = l3->colour_next;
2904 l3->colour_next++;
2905 if (l3->colour_next >= cachep->colour)
2906 l3->colour_next = 0;
2907 spin_unlock(&l3->list_lock);
1da177e4 2908
2e1217cf 2909 offset *= cachep->colour_off;
1da177e4
LT
2910
2911 if (local_flags & __GFP_WAIT)
2912 local_irq_enable();
2913
2914 /*
2915 * The test for missing atomic flag is performed here, rather than
2916 * the more obvious place, simply to reduce the critical path length
2917 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2918 * will eventually be caught here (where it matters).
2919 */
2920 kmem_flagcheck(cachep, flags);
2921
a737b3e2
AM
2922 /*
2923 * Get mem for the objs. Attempt to allocate a physical page from
2924 * 'nodeid'.
e498be7d 2925 */
3c517a61 2926 if (!objp)
b8c1c5da 2927 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2928 if (!objp)
1da177e4
LT
2929 goto failed;
2930
2931 /* Get slab management. */
3c517a61 2932 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2933 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2934 if (!slabp)
1da177e4
LT
2935 goto opps1;
2936
4776874f 2937 slab_map_pages(cachep, slabp, objp);
1da177e4 2938
a35afb83 2939 cache_init_objs(cachep, slabp);
1da177e4
LT
2940
2941 if (local_flags & __GFP_WAIT)
2942 local_irq_disable();
2943 check_irq_off();
e498be7d 2944 spin_lock(&l3->list_lock);
1da177e4
LT
2945
2946 /* Make slab active. */
e498be7d 2947 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2948 STATS_INC_GROWN(cachep);
e498be7d
CL
2949 l3->free_objects += cachep->num;
2950 spin_unlock(&l3->list_lock);
1da177e4 2951 return 1;
a737b3e2 2952opps1:
1da177e4 2953 kmem_freepages(cachep, objp);
a737b3e2 2954failed:
1da177e4
LT
2955 if (local_flags & __GFP_WAIT)
2956 local_irq_disable();
2957 return 0;
2958}
2959
2960#if DEBUG
2961
2962/*
2963 * Perform extra freeing checks:
2964 * - detect bad pointers.
2965 * - POISON/RED_ZONE checking
1da177e4
LT
2966 */
2967static void kfree_debugcheck(const void *objp)
2968{
1da177e4
LT
2969 if (!virt_addr_valid(objp)) {
2970 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2971 (unsigned long)objp);
2972 BUG();
1da177e4 2973 }
1da177e4
LT
2974}
2975
58ce1fd5
PE
2976static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2977{
b46b8f19 2978 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2979
2980 redzone1 = *dbg_redzone1(cache, obj);
2981 redzone2 = *dbg_redzone2(cache, obj);
2982
2983 /*
2984 * Redzone is ok.
2985 */
2986 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2987 return;
2988
2989 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2990 slab_error(cache, "double free detected");
2991 else
2992 slab_error(cache, "memory outside object was overwritten");
2993
b46b8f19 2994 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2995 obj, redzone1, redzone2);
2996}
2997
343e0d7a 2998static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2999 void *caller)
1da177e4
LT
3000{
3001 struct page *page;
3002 unsigned int objnr;
3003 struct slab *slabp;
3004
80cbd911
MW
3005 BUG_ON(virt_to_cache(objp) != cachep);
3006
3dafccf2 3007 objp -= obj_offset(cachep);
1da177e4 3008 kfree_debugcheck(objp);
b49af68f 3009 page = virt_to_head_page(objp);
1da177e4 3010
35026088 3011 slabp = page->slab_page;
1da177e4
LT
3012
3013 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 3014 verify_redzone_free(cachep, objp);
1da177e4
LT
3015 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3016 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3017 }
3018 if (cachep->flags & SLAB_STORE_USER)
3019 *dbg_userword(cachep, objp) = caller;
3020
8fea4e96 3021 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
3022
3023 BUG_ON(objnr >= cachep->num);
8fea4e96 3024 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 3025
871751e2
AV
3026#ifdef CONFIG_DEBUG_SLAB_LEAK
3027 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3028#endif
1da177e4
LT
3029 if (cachep->flags & SLAB_POISON) {
3030#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3031 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 3032 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 3033 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3034 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
3035 } else {
3036 poison_obj(cachep, objp, POISON_FREE);
3037 }
3038#else
3039 poison_obj(cachep, objp, POISON_FREE);
3040#endif
3041 }
3042 return objp;
3043}
3044
343e0d7a 3045static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
3046{
3047 kmem_bufctl_t i;
3048 int entries = 0;
b28a02de 3049
1da177e4
LT
3050 /* Check slab's freelist to see if this obj is there. */
3051 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3052 entries++;
3053 if (entries > cachep->num || i >= cachep->num)
3054 goto bad;
3055 }
3056 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
3057bad:
3058 printk(KERN_ERR "slab: Internal list corruption detected in "
face37f5
DJ
3059 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3060 cachep->name, cachep->num, slabp, slabp->inuse,
3061 print_tainted());
fdde6abb
SAS
3062 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3063 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3064 1);
1da177e4
LT
3065 BUG();
3066 }
3067}
3068#else
3069#define kfree_debugcheck(x) do { } while(0)
3070#define cache_free_debugcheck(x,objp,z) (objp)
3071#define check_slabp(x,y) do { } while(0)
3072#endif
3073
343e0d7a 3074static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
3075{
3076 int batchcount;
3077 struct kmem_list3 *l3;
3078 struct array_cache *ac;
1ca4cb24
PE
3079 int node;
3080
6d2144d3 3081retry:
1da177e4 3082 check_irq_off();
7d6e6d09 3083 node = numa_mem_id();
9a2dba4b 3084 ac = cpu_cache_get(cachep);
1da177e4
LT
3085 batchcount = ac->batchcount;
3086 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
3087 /*
3088 * If there was little recent activity on this cache, then
3089 * perform only a partial refill. Otherwise we could generate
3090 * refill bouncing.
1da177e4
LT
3091 */
3092 batchcount = BATCHREFILL_LIMIT;
3093 }
1ca4cb24 3094 l3 = cachep->nodelists[node];
e498be7d
CL
3095
3096 BUG_ON(ac->avail > 0 || !l3);
3097 spin_lock(&l3->list_lock);
1da177e4 3098
3ded175a 3099 /* See if we can refill from the shared array */
44b57f1c
NP
3100 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3101 l3->shared->touched = 1;
3ded175a 3102 goto alloc_done;
44b57f1c 3103 }
3ded175a 3104
1da177e4
LT
3105 while (batchcount > 0) {
3106 struct list_head *entry;
3107 struct slab *slabp;
3108 /* Get slab alloc is to come from. */
3109 entry = l3->slabs_partial.next;
3110 if (entry == &l3->slabs_partial) {
3111 l3->free_touched = 1;
3112 entry = l3->slabs_free.next;
3113 if (entry == &l3->slabs_free)
3114 goto must_grow;
3115 }
3116
3117 slabp = list_entry(entry, struct slab, list);
3118 check_slabp(cachep, slabp);
3119 check_spinlock_acquired(cachep);
714b8171
PE
3120
3121 /*
3122 * The slab was either on partial or free list so
3123 * there must be at least one object available for
3124 * allocation.
3125 */
249b9f33 3126 BUG_ON(slabp->inuse >= cachep->num);
714b8171 3127
1da177e4 3128 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3129 STATS_INC_ALLOCED(cachep);
3130 STATS_INC_ACTIVE(cachep);
3131 STATS_SET_HIGH(cachep);
3132
78d382d7 3133 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 3134 node);
1da177e4
LT
3135 }
3136 check_slabp(cachep, slabp);
3137
3138 /* move slabp to correct slabp list: */
3139 list_del(&slabp->list);
3140 if (slabp->free == BUFCTL_END)
3141 list_add(&slabp->list, &l3->slabs_full);
3142 else
3143 list_add(&slabp->list, &l3->slabs_partial);
3144 }
3145
a737b3e2 3146must_grow:
1da177e4 3147 l3->free_objects -= ac->avail;
a737b3e2 3148alloc_done:
e498be7d 3149 spin_unlock(&l3->list_lock);
1da177e4
LT
3150
3151 if (unlikely(!ac->avail)) {
3152 int x;
3c517a61 3153 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3154
a737b3e2 3155 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3156 ac = cpu_cache_get(cachep);
a737b3e2 3157 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
3158 return NULL;
3159
a737b3e2 3160 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3161 goto retry;
3162 }
3163 ac->touched = 1;
e498be7d 3164 return ac->entry[--ac->avail];
1da177e4
LT
3165}
3166
a737b3e2
AM
3167static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3168 gfp_t flags)
1da177e4
LT
3169{
3170 might_sleep_if(flags & __GFP_WAIT);
3171#if DEBUG
3172 kmem_flagcheck(cachep, flags);
3173#endif
3174}
3175
3176#if DEBUG
a737b3e2
AM
3177static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3178 gfp_t flags, void *objp, void *caller)
1da177e4 3179{
b28a02de 3180 if (!objp)
1da177e4 3181 return objp;
b28a02de 3182 if (cachep->flags & SLAB_POISON) {
1da177e4 3183#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3184 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3185 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3186 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
3187 else
3188 check_poison_obj(cachep, objp);
3189#else
3190 check_poison_obj(cachep, objp);
3191#endif
3192 poison_obj(cachep, objp, POISON_INUSE);
3193 }
3194 if (cachep->flags & SLAB_STORE_USER)
3195 *dbg_userword(cachep, objp) = caller;
3196
3197 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3198 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3199 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3200 slab_error(cachep, "double free, or memory outside"
3201 " object was overwritten");
b28a02de 3202 printk(KERN_ERR
b46b8f19 3203 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3204 objp, *dbg_redzone1(cachep, objp),
3205 *dbg_redzone2(cachep, objp));
1da177e4
LT
3206 }
3207 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3208 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3209 }
871751e2
AV
3210#ifdef CONFIG_DEBUG_SLAB_LEAK
3211 {
3212 struct slab *slabp;
3213 unsigned objnr;
3214
35026088 3215 slabp = virt_to_head_page(objp)->slab_page;
3b0efdfa 3216 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
871751e2
AV
3217 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3218 }
3219#endif
3dafccf2 3220 objp += obj_offset(cachep);
4f104934 3221 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3222 cachep->ctor(objp);
7ea466f2
TH
3223 if (ARCH_SLAB_MINALIGN &&
3224 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 3225 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3226 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3227 }
1da177e4
LT
3228 return objp;
3229}
3230#else
3231#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3232#endif
3233
773ff60e 3234static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502
AM
3235{
3236 if (cachep == &cache_cache)
773ff60e 3237 return false;
8a8b6502 3238
8c138bc0 3239 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
3240}
3241
343e0d7a 3242static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3243{
b28a02de 3244 void *objp;
1da177e4
LT
3245 struct array_cache *ac;
3246
5c382300 3247 check_irq_off();
8a8b6502 3248
9a2dba4b 3249 ac = cpu_cache_get(cachep);
1da177e4
LT
3250 if (likely(ac->avail)) {
3251 STATS_INC_ALLOCHIT(cachep);
3252 ac->touched = 1;
e498be7d 3253 objp = ac->entry[--ac->avail];
1da177e4
LT
3254 } else {
3255 STATS_INC_ALLOCMISS(cachep);
3256 objp = cache_alloc_refill(cachep, flags);
ddbf2e83
O
3257 /*
3258 * the 'ac' may be updated by cache_alloc_refill(),
3259 * and kmemleak_erase() requires its correct value.
3260 */
3261 ac = cpu_cache_get(cachep);
1da177e4 3262 }
d5cff635
CM
3263 /*
3264 * To avoid a false negative, if an object that is in one of the
3265 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3266 * treat the array pointers as a reference to the object.
3267 */
f3d8b53a
O
3268 if (objp)
3269 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3270 return objp;
3271}
3272
e498be7d 3273#ifdef CONFIG_NUMA
c61afb18 3274/*
b2455396 3275 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3276 *
3277 * If we are in_interrupt, then process context, including cpusets and
3278 * mempolicy, may not apply and should not be used for allocation policy.
3279 */
3280static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3281{
3282 int nid_alloc, nid_here;
3283
765c4507 3284 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3285 return NULL;
7d6e6d09 3286 nid_alloc = nid_here = numa_mem_id();
c61afb18 3287 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3288 nid_alloc = cpuset_slab_spread_node();
c61afb18 3289 else if (current->mempolicy)
e7b691b0 3290 nid_alloc = slab_node();
c61afb18 3291 if (nid_alloc != nid_here)
8b98c169 3292 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3293 return NULL;
3294}
3295
765c4507
CL
3296/*
3297 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3298 * certain node and fall back is permitted. First we scan all the
3299 * available nodelists for available objects. If that fails then we
3300 * perform an allocation without specifying a node. This allows the page
3301 * allocator to do its reclaim / fallback magic. We then insert the
3302 * slab into the proper nodelist and then allocate from it.
765c4507 3303 */
8c8cc2c1 3304static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3305{
8c8cc2c1
PE
3306 struct zonelist *zonelist;
3307 gfp_t local_flags;
dd1a239f 3308 struct zoneref *z;
54a6eb5c
MG
3309 struct zone *zone;
3310 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3311 void *obj = NULL;
3c517a61 3312 int nid;
cc9a6c87 3313 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3314
3315 if (flags & __GFP_THISNODE)
3316 return NULL;
3317
6cb06229 3318 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3319
cc9a6c87
MG
3320retry_cpuset:
3321 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 3322 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87 3323
3c517a61
CL
3324retry:
3325 /*
3326 * Look through allowed nodes for objects available
3327 * from existing per node queues.
3328 */
54a6eb5c
MG
3329 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3330 nid = zone_to_nid(zone);
aedb0eb1 3331
54a6eb5c 3332 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3c517a61 3333 cache->nodelists[nid] &&
481c5346 3334 cache->nodelists[nid]->free_objects) {
3c517a61
CL
3335 obj = ____cache_alloc_node(cache,
3336 flags | GFP_THISNODE, nid);
481c5346
CL
3337 if (obj)
3338 break;
3339 }
3c517a61
CL
3340 }
3341
cfce6604 3342 if (!obj) {
3c517a61
CL
3343 /*
3344 * This allocation will be performed within the constraints
3345 * of the current cpuset / memory policy requirements.
3346 * We may trigger various forms of reclaim on the allowed
3347 * set and go into memory reserves if necessary.
3348 */
dd47ea75
CL
3349 if (local_flags & __GFP_WAIT)
3350 local_irq_enable();
3351 kmem_flagcheck(cache, flags);
7d6e6d09 3352 obj = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3353 if (local_flags & __GFP_WAIT)
3354 local_irq_disable();
3c517a61
CL
3355 if (obj) {
3356 /*
3357 * Insert into the appropriate per node queues
3358 */
3359 nid = page_to_nid(virt_to_page(obj));
3360 if (cache_grow(cache, flags, nid, obj)) {
3361 obj = ____cache_alloc_node(cache,
3362 flags | GFP_THISNODE, nid);
3363 if (!obj)
3364 /*
3365 * Another processor may allocate the
3366 * objects in the slab since we are
3367 * not holding any locks.
3368 */
3369 goto retry;
3370 } else {
b6a60451 3371 /* cache_grow already freed obj */
3c517a61
CL
3372 obj = NULL;
3373 }
3374 }
aedb0eb1 3375 }
cc9a6c87
MG
3376
3377 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3378 goto retry_cpuset;
765c4507
CL
3379 return obj;
3380}
3381
e498be7d
CL
3382/*
3383 * A interface to enable slab creation on nodeid
1da177e4 3384 */
8b98c169 3385static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3386 int nodeid)
e498be7d
CL
3387{
3388 struct list_head *entry;
b28a02de
PE
3389 struct slab *slabp;
3390 struct kmem_list3 *l3;
3391 void *obj;
b28a02de
PE
3392 int x;
3393
3394 l3 = cachep->nodelists[nodeid];
3395 BUG_ON(!l3);
3396
a737b3e2 3397retry:
ca3b9b91 3398 check_irq_off();
b28a02de
PE
3399 spin_lock(&l3->list_lock);
3400 entry = l3->slabs_partial.next;
3401 if (entry == &l3->slabs_partial) {
3402 l3->free_touched = 1;
3403 entry = l3->slabs_free.next;
3404 if (entry == &l3->slabs_free)
3405 goto must_grow;
3406 }
3407
3408 slabp = list_entry(entry, struct slab, list);
3409 check_spinlock_acquired_node(cachep, nodeid);
3410 check_slabp(cachep, slabp);
3411
3412 STATS_INC_NODEALLOCS(cachep);
3413 STATS_INC_ACTIVE(cachep);
3414 STATS_SET_HIGH(cachep);
3415
3416 BUG_ON(slabp->inuse == cachep->num);
3417
78d382d7 3418 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3419 check_slabp(cachep, slabp);
3420 l3->free_objects--;
3421 /* move slabp to correct slabp list: */
3422 list_del(&slabp->list);
3423
a737b3e2 3424 if (slabp->free == BUFCTL_END)
b28a02de 3425 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3426 else
b28a02de 3427 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3428
b28a02de
PE
3429 spin_unlock(&l3->list_lock);
3430 goto done;
e498be7d 3431
a737b3e2 3432must_grow:
b28a02de 3433 spin_unlock(&l3->list_lock);
3c517a61 3434 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3435 if (x)
3436 goto retry;
1da177e4 3437
8c8cc2c1 3438 return fallback_alloc(cachep, flags);
e498be7d 3439
a737b3e2 3440done:
b28a02de 3441 return obj;
e498be7d 3442}
8c8cc2c1
PE
3443
3444/**
3445 * kmem_cache_alloc_node - Allocate an object on the specified node
3446 * @cachep: The cache to allocate from.
3447 * @flags: See kmalloc().
3448 * @nodeid: node number of the target node.
3449 * @caller: return address of caller, used for debug information
3450 *
3451 * Identical to kmem_cache_alloc but it will allocate memory on the given
3452 * node, which can improve the performance for cpu bound structures.
3453 *
3454 * Fallback to other node is possible if __GFP_THISNODE is not set.
3455 */
3456static __always_inline void *
3457__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3458 void *caller)
3459{
3460 unsigned long save_flags;
3461 void *ptr;
7d6e6d09 3462 int slab_node = numa_mem_id();
8c8cc2c1 3463
dcce284a 3464 flags &= gfp_allowed_mask;
7e85ee0c 3465
cf40bd16
NP
3466 lockdep_trace_alloc(flags);
3467
773ff60e 3468 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3469 return NULL;
3470
8c8cc2c1
PE
3471 cache_alloc_debugcheck_before(cachep, flags);
3472 local_irq_save(save_flags);
3473
eacbbae3 3474 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3475 nodeid = slab_node;
8c8cc2c1
PE
3476
3477 if (unlikely(!cachep->nodelists[nodeid])) {
3478 /* Node not bootstrapped yet */
3479 ptr = fallback_alloc(cachep, flags);
3480 goto out;
3481 }
3482
7d6e6d09 3483 if (nodeid == slab_node) {
8c8cc2c1
PE
3484 /*
3485 * Use the locally cached objects if possible.
3486 * However ____cache_alloc does not allow fallback
3487 * to other nodes. It may fail while we still have
3488 * objects on other nodes available.
3489 */
3490 ptr = ____cache_alloc(cachep, flags);
3491 if (ptr)
3492 goto out;
3493 }
3494 /* ___cache_alloc_node can fall back to other nodes */
3495 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3496 out:
3497 local_irq_restore(save_flags);
3498 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3499 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3500 flags);
8c8cc2c1 3501
c175eea4 3502 if (likely(ptr))
8c138bc0 3503 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
c175eea4 3504
d07dbea4 3505 if (unlikely((flags & __GFP_ZERO) && ptr))
8c138bc0 3506 memset(ptr, 0, cachep->object_size);
d07dbea4 3507
8c8cc2c1
PE
3508 return ptr;
3509}
3510
3511static __always_inline void *
3512__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3513{
3514 void *objp;
3515
3516 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3517 objp = alternate_node_alloc(cache, flags);
3518 if (objp)
3519 goto out;
3520 }
3521 objp = ____cache_alloc(cache, flags);
3522
3523 /*
3524 * We may just have run out of memory on the local node.
3525 * ____cache_alloc_node() knows how to locate memory on other nodes
3526 */
7d6e6d09
LS
3527 if (!objp)
3528 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3529
3530 out:
3531 return objp;
3532}
3533#else
3534
3535static __always_inline void *
3536__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3537{
3538 return ____cache_alloc(cachep, flags);
3539}
3540
3541#endif /* CONFIG_NUMA */
3542
3543static __always_inline void *
3544__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3545{
3546 unsigned long save_flags;
3547 void *objp;
3548
dcce284a 3549 flags &= gfp_allowed_mask;
7e85ee0c 3550
cf40bd16
NP
3551 lockdep_trace_alloc(flags);
3552
773ff60e 3553 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3554 return NULL;
3555
8c8cc2c1
PE
3556 cache_alloc_debugcheck_before(cachep, flags);
3557 local_irq_save(save_flags);
3558 objp = __do_cache_alloc(cachep, flags);
3559 local_irq_restore(save_flags);
3560 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3561 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3562 flags);
8c8cc2c1
PE
3563 prefetchw(objp);
3564
c175eea4 3565 if (likely(objp))
8c138bc0 3566 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
c175eea4 3567
d07dbea4 3568 if (unlikely((flags & __GFP_ZERO) && objp))
8c138bc0 3569 memset(objp, 0, cachep->object_size);
d07dbea4 3570
8c8cc2c1
PE
3571 return objp;
3572}
e498be7d
CL
3573
3574/*
3575 * Caller needs to acquire correct kmem_list's list_lock
3576 */
343e0d7a 3577static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3578 int node)
1da177e4
LT
3579{
3580 int i;
e498be7d 3581 struct kmem_list3 *l3;
1da177e4
LT
3582
3583 for (i = 0; i < nr_objects; i++) {
3584 void *objp = objpp[i];
3585 struct slab *slabp;
1da177e4 3586
6ed5eb22 3587 slabp = virt_to_slab(objp);
ff69416e 3588 l3 = cachep->nodelists[node];
1da177e4 3589 list_del(&slabp->list);
ff69416e 3590 check_spinlock_acquired_node(cachep, node);
1da177e4 3591 check_slabp(cachep, slabp);
78d382d7 3592 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3593 STATS_DEC_ACTIVE(cachep);
e498be7d 3594 l3->free_objects++;
1da177e4
LT
3595 check_slabp(cachep, slabp);
3596
3597 /* fixup slab chains */
3598 if (slabp->inuse == 0) {
e498be7d
CL
3599 if (l3->free_objects > l3->free_limit) {
3600 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3601 /* No need to drop any previously held
3602 * lock here, even if we have a off-slab slab
3603 * descriptor it is guaranteed to come from
3604 * a different cache, refer to comments before
3605 * alloc_slabmgmt.
3606 */
1da177e4
LT
3607 slab_destroy(cachep, slabp);
3608 } else {
e498be7d 3609 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3610 }
3611 } else {
3612 /* Unconditionally move a slab to the end of the
3613 * partial list on free - maximum time for the
3614 * other objects to be freed, too.
3615 */
e498be7d 3616 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3617 }
3618 }
3619}
3620
343e0d7a 3621static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3622{
3623 int batchcount;
e498be7d 3624 struct kmem_list3 *l3;
7d6e6d09 3625 int node = numa_mem_id();
1da177e4
LT
3626
3627 batchcount = ac->batchcount;
3628#if DEBUG
3629 BUG_ON(!batchcount || batchcount > ac->avail);
3630#endif
3631 check_irq_off();
ff69416e 3632 l3 = cachep->nodelists[node];
873623df 3633 spin_lock(&l3->list_lock);
e498be7d
CL
3634 if (l3->shared) {
3635 struct array_cache *shared_array = l3->shared;
b28a02de 3636 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3637 if (max) {
3638 if (batchcount > max)
3639 batchcount = max;
e498be7d 3640 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3641 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3642 shared_array->avail += batchcount;
3643 goto free_done;
3644 }
3645 }
3646
ff69416e 3647 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3648free_done:
1da177e4
LT
3649#if STATS
3650 {
3651 int i = 0;
3652 struct list_head *p;
3653
e498be7d
CL
3654 p = l3->slabs_free.next;
3655 while (p != &(l3->slabs_free)) {
1da177e4
LT
3656 struct slab *slabp;
3657
3658 slabp = list_entry(p, struct slab, list);
3659 BUG_ON(slabp->inuse);
3660
3661 i++;
3662 p = p->next;
3663 }
3664 STATS_SET_FREEABLE(cachep, i);
3665 }
3666#endif
e498be7d 3667 spin_unlock(&l3->list_lock);
1da177e4 3668 ac->avail -= batchcount;
a737b3e2 3669 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3670}
3671
3672/*
a737b3e2
AM
3673 * Release an obj back to its cache. If the obj has a constructed state, it must
3674 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3675 */
a947eb95
SS
3676static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3677 void *caller)
1da177e4 3678{
9a2dba4b 3679 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3680
3681 check_irq_off();
d5cff635 3682 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3683 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3684
8c138bc0 3685 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3686
1807a1aa
SS
3687 /*
3688 * Skip calling cache_free_alien() when the platform is not numa.
3689 * This will avoid cache misses that happen while accessing slabp (which
3690 * is per page memory reference) to get nodeid. Instead use a global
3691 * variable to skip the call, which is mostly likely to be present in
3692 * the cache.
3693 */
b6e68bc1 3694 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3695 return;
3696
1da177e4
LT
3697 if (likely(ac->avail < ac->limit)) {
3698 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3699 } else {
3700 STATS_INC_FREEMISS(cachep);
3701 cache_flusharray(cachep, ac);
1da177e4 3702 }
42c8c99c
ZJ
3703
3704 ac->entry[ac->avail++] = objp;
1da177e4
LT
3705}
3706
3707/**
3708 * kmem_cache_alloc - Allocate an object
3709 * @cachep: The cache to allocate from.
3710 * @flags: See kmalloc().
3711 *
3712 * Allocate an object from this cache. The flags are only relevant
3713 * if the cache has no available objects.
3714 */
343e0d7a 3715void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3716{
36555751
EGM
3717 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3718
ca2b84cb 3719 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3720 cachep->object_size, cachep->size, flags);
36555751
EGM
3721
3722 return ret;
1da177e4
LT
3723}
3724EXPORT_SYMBOL(kmem_cache_alloc);
3725
0f24f128 3726#ifdef CONFIG_TRACING
85beb586
SR
3727void *
3728kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
36555751 3729{
85beb586
SR
3730 void *ret;
3731
3732 ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3733
3734 trace_kmalloc(_RET_IP_, ret,
3735 size, slab_buffer_size(cachep), flags);
3736 return ret;
36555751 3737}
85beb586 3738EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3739#endif
3740
1da177e4 3741#ifdef CONFIG_NUMA
8b98c169
CH
3742void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3743{
36555751
EGM
3744 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3745 __builtin_return_address(0));
3746
ca2b84cb 3747 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3748 cachep->object_size, cachep->size,
ca2b84cb 3749 flags, nodeid);
36555751
EGM
3750
3751 return ret;
8b98c169 3752}
1da177e4
LT
3753EXPORT_SYMBOL(kmem_cache_alloc_node);
3754
0f24f128 3755#ifdef CONFIG_TRACING
85beb586
SR
3756void *kmem_cache_alloc_node_trace(size_t size,
3757 struct kmem_cache *cachep,
3758 gfp_t flags,
3759 int nodeid)
36555751 3760{
85beb586
SR
3761 void *ret;
3762
3763 ret = __cache_alloc_node(cachep, flags, nodeid,
36555751 3764 __builtin_return_address(0));
85beb586
SR
3765 trace_kmalloc_node(_RET_IP_, ret,
3766 size, slab_buffer_size(cachep),
3767 flags, nodeid);
3768 return ret;
36555751 3769}
85beb586 3770EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3771#endif
3772
8b98c169
CH
3773static __always_inline void *
3774__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3775{
343e0d7a 3776 struct kmem_cache *cachep;
97e2bde4
MS
3777
3778 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3779 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3780 return cachep;
85beb586 3781 return kmem_cache_alloc_node_trace(size, cachep, flags, node);
97e2bde4 3782}
8b98c169 3783
0bb38a5c 3784#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3785void *__kmalloc_node(size_t size, gfp_t flags, int node)
3786{
3787 return __do_kmalloc_node(size, flags, node,
3788 __builtin_return_address(0));
3789}
dbe5e69d 3790EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3791
3792void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3793 int node, unsigned long caller)
8b98c169 3794{
ce71e27c 3795 return __do_kmalloc_node(size, flags, node, (void *)caller);
8b98c169
CH
3796}
3797EXPORT_SYMBOL(__kmalloc_node_track_caller);
3798#else
3799void *__kmalloc_node(size_t size, gfp_t flags, int node)
3800{
3801 return __do_kmalloc_node(size, flags, node, NULL);
3802}
3803EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3804#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3805#endif /* CONFIG_NUMA */
1da177e4
LT
3806
3807/**
800590f5 3808 * __do_kmalloc - allocate memory
1da177e4 3809 * @size: how many bytes of memory are required.
800590f5 3810 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3811 * @caller: function caller for debug tracking of the caller
1da177e4 3812 */
7fd6b141
PE
3813static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3814 void *caller)
1da177e4 3815{
343e0d7a 3816 struct kmem_cache *cachep;
36555751 3817 void *ret;
1da177e4 3818
97e2bde4
MS
3819 /* If you want to save a few bytes .text space: replace
3820 * __ with kmem_.
3821 * Then kmalloc uses the uninlined functions instead of the inline
3822 * functions.
3823 */
3824 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3825 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3826 return cachep;
36555751
EGM
3827 ret = __cache_alloc(cachep, flags, caller);
3828
ca2b84cb 3829 trace_kmalloc((unsigned long) caller, ret,
3b0efdfa 3830 size, cachep->size, flags);
36555751
EGM
3831
3832 return ret;
7fd6b141
PE
3833}
3834
7fd6b141 3835
0bb38a5c 3836#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3837void *__kmalloc(size_t size, gfp_t flags)
3838{
871751e2 3839 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3840}
3841EXPORT_SYMBOL(__kmalloc);
3842
ce71e27c 3843void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3844{
ce71e27c 3845 return __do_kmalloc(size, flags, (void *)caller);
7fd6b141
PE
3846}
3847EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3848
3849#else
3850void *__kmalloc(size_t size, gfp_t flags)
3851{
3852 return __do_kmalloc(size, flags, NULL);
3853}
3854EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3855#endif
3856
1da177e4
LT
3857/**
3858 * kmem_cache_free - Deallocate an object
3859 * @cachep: The cache the allocation was from.
3860 * @objp: The previously allocated object.
3861 *
3862 * Free an object which was previously allocated from this
3863 * cache.
3864 */
343e0d7a 3865void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3866{
3867 unsigned long flags;
3868
3869 local_irq_save(flags);
d97d476b 3870 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3871 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3872 debug_check_no_obj_freed(objp, cachep->object_size);
a947eb95 3873 __cache_free(cachep, objp, __builtin_return_address(0));
1da177e4 3874 local_irq_restore(flags);
36555751 3875
ca2b84cb 3876 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3877}
3878EXPORT_SYMBOL(kmem_cache_free);
3879
1da177e4
LT
3880/**
3881 * kfree - free previously allocated memory
3882 * @objp: pointer returned by kmalloc.
3883 *
80e93eff
PE
3884 * If @objp is NULL, no operation is performed.
3885 *
1da177e4
LT
3886 * Don't free memory not originally allocated by kmalloc()
3887 * or you will run into trouble.
3888 */
3889void kfree(const void *objp)
3890{
343e0d7a 3891 struct kmem_cache *c;
1da177e4
LT
3892 unsigned long flags;
3893
2121db74
PE
3894 trace_kfree(_RET_IP_, objp);
3895
6cb8f913 3896 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3897 return;
3898 local_irq_save(flags);
3899 kfree_debugcheck(objp);
6ed5eb22 3900 c = virt_to_cache(objp);
8c138bc0
CL
3901 debug_check_no_locks_freed(objp, c->object_size);
3902
3903 debug_check_no_obj_freed(objp, c->object_size);
a947eb95 3904 __cache_free(c, (void *)objp, __builtin_return_address(0));
1da177e4
LT
3905 local_irq_restore(flags);
3906}
3907EXPORT_SYMBOL(kfree);
3908
343e0d7a 3909unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3910{
8c138bc0 3911 return cachep->object_size;
1da177e4
LT
3912}
3913EXPORT_SYMBOL(kmem_cache_size);
3914
e498be7d 3915/*
183ff22b 3916 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 3917 */
83b519e8 3918static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3919{
3920 int node;
3921 struct kmem_list3 *l3;
cafeb02e 3922 struct array_cache *new_shared;
3395ee05 3923 struct array_cache **new_alien = NULL;
e498be7d 3924
9c09a95c 3925 for_each_online_node(node) {
cafeb02e 3926
3395ee05 3927 if (use_alien_caches) {
83b519e8 3928 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3929 if (!new_alien)
3930 goto fail;
3931 }
cafeb02e 3932
63109846
ED
3933 new_shared = NULL;
3934 if (cachep->shared) {
3935 new_shared = alloc_arraycache(node,
0718dc2a 3936 cachep->shared*cachep->batchcount,
83b519e8 3937 0xbaadf00d, gfp);
63109846
ED
3938 if (!new_shared) {
3939 free_alien_cache(new_alien);
3940 goto fail;
3941 }
0718dc2a 3942 }
cafeb02e 3943
a737b3e2
AM
3944 l3 = cachep->nodelists[node];
3945 if (l3) {
cafeb02e
CL
3946 struct array_cache *shared = l3->shared;
3947
e498be7d
CL
3948 spin_lock_irq(&l3->list_lock);
3949
cafeb02e 3950 if (shared)
0718dc2a
CL
3951 free_block(cachep, shared->entry,
3952 shared->avail, node);
e498be7d 3953
cafeb02e
CL
3954 l3->shared = new_shared;
3955 if (!l3->alien) {
e498be7d
CL
3956 l3->alien = new_alien;
3957 new_alien = NULL;
3958 }
b28a02de 3959 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3960 cachep->batchcount + cachep->num;
e498be7d 3961 spin_unlock_irq(&l3->list_lock);
cafeb02e 3962 kfree(shared);
e498be7d
CL
3963 free_alien_cache(new_alien);
3964 continue;
3965 }
83b519e8 3966 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
0718dc2a
CL
3967 if (!l3) {
3968 free_alien_cache(new_alien);
3969 kfree(new_shared);
e498be7d 3970 goto fail;
0718dc2a 3971 }
e498be7d
CL
3972
3973 kmem_list3_init(l3);
3974 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3975 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3976 l3->shared = new_shared;
e498be7d 3977 l3->alien = new_alien;
b28a02de 3978 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3979 cachep->batchcount + cachep->num;
e498be7d
CL
3980 cachep->nodelists[node] = l3;
3981 }
cafeb02e 3982 return 0;
0718dc2a 3983
a737b3e2 3984fail:
3b0efdfa 3985 if (!cachep->list.next) {
0718dc2a
CL
3986 /* Cache is not active yet. Roll back what we did */
3987 node--;
3988 while (node >= 0) {
3989 if (cachep->nodelists[node]) {
3990 l3 = cachep->nodelists[node];
3991
3992 kfree(l3->shared);
3993 free_alien_cache(l3->alien);
3994 kfree(l3);
3995 cachep->nodelists[node] = NULL;
3996 }
3997 node--;
3998 }
3999 }
cafeb02e 4000 return -ENOMEM;
e498be7d
CL
4001}
4002
1da177e4 4003struct ccupdate_struct {
343e0d7a 4004 struct kmem_cache *cachep;
acfe7d74 4005 struct array_cache *new[0];
1da177e4
LT
4006};
4007
4008static void do_ccupdate_local(void *info)
4009{
a737b3e2 4010 struct ccupdate_struct *new = info;
1da177e4
LT
4011 struct array_cache *old;
4012
4013 check_irq_off();
9a2dba4b 4014 old = cpu_cache_get(new->cachep);
e498be7d 4015
1da177e4
LT
4016 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4017 new->new[smp_processor_id()] = old;
4018}
4019
b5d8ca7c 4020/* Always called with the cache_chain_mutex held */
a737b3e2 4021static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 4022 int batchcount, int shared, gfp_t gfp)
1da177e4 4023{
d2e7b7d0 4024 struct ccupdate_struct *new;
2ed3a4ef 4025 int i;
1da177e4 4026
acfe7d74
ED
4027 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4028 gfp);
d2e7b7d0
SS
4029 if (!new)
4030 return -ENOMEM;
4031
e498be7d 4032 for_each_online_cpu(i) {
7d6e6d09 4033 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 4034 batchcount, gfp);
d2e7b7d0 4035 if (!new->new[i]) {
b28a02de 4036 for (i--; i >= 0; i--)
d2e7b7d0
SS
4037 kfree(new->new[i]);
4038 kfree(new);
e498be7d 4039 return -ENOMEM;
1da177e4
LT
4040 }
4041 }
d2e7b7d0 4042 new->cachep = cachep;
1da177e4 4043
15c8b6c1 4044 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 4045
1da177e4 4046 check_irq_on();
1da177e4
LT
4047 cachep->batchcount = batchcount;
4048 cachep->limit = limit;
e498be7d 4049 cachep->shared = shared;
1da177e4 4050
e498be7d 4051 for_each_online_cpu(i) {
d2e7b7d0 4052 struct array_cache *ccold = new->new[i];
1da177e4
LT
4053 if (!ccold)
4054 continue;
7d6e6d09
LS
4055 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4056 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4057 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
1da177e4
LT
4058 kfree(ccold);
4059 }
d2e7b7d0 4060 kfree(new);
83b519e8 4061 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
4062}
4063
b5d8ca7c 4064/* Called with cache_chain_mutex held always */
83b519e8 4065static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
4066{
4067 int err;
4068 int limit, shared;
4069
a737b3e2
AM
4070 /*
4071 * The head array serves three purposes:
1da177e4
LT
4072 * - create a LIFO ordering, i.e. return objects that are cache-warm
4073 * - reduce the number of spinlock operations.
a737b3e2 4074 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4075 * bufctl chains: array operations are cheaper.
4076 * The numbers are guessed, we should auto-tune as described by
4077 * Bonwick.
4078 */
3b0efdfa 4079 if (cachep->size > 131072)
1da177e4 4080 limit = 1;
3b0efdfa 4081 else if (cachep->size > PAGE_SIZE)
1da177e4 4082 limit = 8;
3b0efdfa 4083 else if (cachep->size > 1024)
1da177e4 4084 limit = 24;
3b0efdfa 4085 else if (cachep->size > 256)
1da177e4
LT
4086 limit = 54;
4087 else
4088 limit = 120;
4089
a737b3e2
AM
4090 /*
4091 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4092 * allocation behaviour: Most allocs on one cpu, most free operations
4093 * on another cpu. For these cases, an efficient object passing between
4094 * cpus is necessary. This is provided by a shared array. The array
4095 * replaces Bonwick's magazine layer.
4096 * On uniprocessor, it's functionally equivalent (but less efficient)
4097 * to a larger limit. Thus disabled by default.
4098 */
4099 shared = 0;
3b0efdfa 4100 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4101 shared = 8;
1da177e4
LT
4102
4103#if DEBUG
a737b3e2
AM
4104 /*
4105 * With debugging enabled, large batchcount lead to excessively long
4106 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4107 */
4108 if (limit > 32)
4109 limit = 32;
4110#endif
83b519e8 4111 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
1da177e4
LT
4112 if (err)
4113 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4114 cachep->name, -err);
2ed3a4ef 4115 return err;
1da177e4
LT
4116}
4117
1b55253a
CL
4118/*
4119 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4120 * necessary. Note that the l3 listlock also protects the array_cache
4121 * if drain_array() is used on the shared array.
1b55253a 4122 */
68a1b195 4123static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
1b55253a 4124 struct array_cache *ac, int force, int node)
1da177e4
LT
4125{
4126 int tofree;
4127
1b55253a
CL
4128 if (!ac || !ac->avail)
4129 return;
1da177e4
LT
4130 if (ac->touched && !force) {
4131 ac->touched = 0;
b18e7e65 4132 } else {
1b55253a 4133 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4134 if (ac->avail) {
4135 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4136 if (tofree > ac->avail)
4137 tofree = (ac->avail + 1) / 2;
4138 free_block(cachep, ac->entry, tofree, node);
4139 ac->avail -= tofree;
4140 memmove(ac->entry, &(ac->entry[tofree]),
4141 sizeof(void *) * ac->avail);
4142 }
1b55253a 4143 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4144 }
4145}
4146
4147/**
4148 * cache_reap - Reclaim memory from caches.
05fb6bf0 4149 * @w: work descriptor
1da177e4
LT
4150 *
4151 * Called from workqueue/eventd every few seconds.
4152 * Purpose:
4153 * - clear the per-cpu caches for this CPU.
4154 * - return freeable pages to the main free memory pool.
4155 *
a737b3e2
AM
4156 * If we cannot acquire the cache chain mutex then just give up - we'll try
4157 * again on the next iteration.
1da177e4 4158 */
7c5cae36 4159static void cache_reap(struct work_struct *w)
1da177e4 4160{
7a7c381d 4161 struct kmem_cache *searchp;
e498be7d 4162 struct kmem_list3 *l3;
7d6e6d09 4163 int node = numa_mem_id();
bf6aede7 4164 struct delayed_work *work = to_delayed_work(w);
1da177e4 4165
7c5cae36 4166 if (!mutex_trylock(&cache_chain_mutex))
1da177e4 4167 /* Give up. Setup the next iteration. */
7c5cae36 4168 goto out;
1da177e4 4169
3b0efdfa 4170 list_for_each_entry(searchp, &cache_chain, list) {
1da177e4
LT
4171 check_irq_on();
4172
35386e3b
CL
4173 /*
4174 * We only take the l3 lock if absolutely necessary and we
4175 * have established with reasonable certainty that
4176 * we can do some work if the lock was obtained.
4177 */
aab2207c 4178 l3 = searchp->nodelists[node];
35386e3b 4179
8fce4d8e 4180 reap_alien(searchp, l3);
1da177e4 4181
aab2207c 4182 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4183
35386e3b
CL
4184 /*
4185 * These are racy checks but it does not matter
4186 * if we skip one check or scan twice.
4187 */
e498be7d 4188 if (time_after(l3->next_reap, jiffies))
35386e3b 4189 goto next;
1da177e4 4190
e498be7d 4191 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4192
aab2207c 4193 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4194
ed11d9eb 4195 if (l3->free_touched)
e498be7d 4196 l3->free_touched = 0;
ed11d9eb
CL
4197 else {
4198 int freed;
1da177e4 4199
ed11d9eb
CL
4200 freed = drain_freelist(searchp, l3, (l3->free_limit +
4201 5 * searchp->num - 1) / (5 * searchp->num));
4202 STATS_ADD_REAPED(searchp, freed);
4203 }
35386e3b 4204next:
1da177e4
LT
4205 cond_resched();
4206 }
4207 check_irq_on();
fc0abb14 4208 mutex_unlock(&cache_chain_mutex);
8fce4d8e 4209 next_reap_node();
7c5cae36 4210out:
a737b3e2 4211 /* Set up the next iteration */
7c5cae36 4212 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4213}
4214
158a9624 4215#ifdef CONFIG_SLABINFO
1da177e4 4216
85289f98 4217static void print_slabinfo_header(struct seq_file *m)
1da177e4 4218{
85289f98
PE
4219 /*
4220 * Output format version, so at least we can change it
4221 * without _too_ many complaints.
4222 */
1da177e4 4223#if STATS
85289f98 4224 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4225#else
85289f98 4226 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4227#endif
85289f98
PE
4228 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4229 "<objperslab> <pagesperslab>");
4230 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4231 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4232#if STATS
85289f98 4233 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4234 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4235 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4236#endif
85289f98
PE
4237 seq_putc(m, '\n');
4238}
4239
4240static void *s_start(struct seq_file *m, loff_t *pos)
4241{
4242 loff_t n = *pos;
85289f98 4243
fc0abb14 4244 mutex_lock(&cache_chain_mutex);
85289f98
PE
4245 if (!n)
4246 print_slabinfo_header(m);
b92151ba
PE
4247
4248 return seq_list_start(&cache_chain, *pos);
1da177e4
LT
4249}
4250
4251static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4252{
b92151ba 4253 return seq_list_next(p, &cache_chain, pos);
1da177e4
LT
4254}
4255
4256static void s_stop(struct seq_file *m, void *p)
4257{
fc0abb14 4258 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4259}
4260
4261static int s_show(struct seq_file *m, void *p)
4262{
3b0efdfa 4263 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
b28a02de
PE
4264 struct slab *slabp;
4265 unsigned long active_objs;
4266 unsigned long num_objs;
4267 unsigned long active_slabs = 0;
4268 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4269 const char *name;
1da177e4 4270 char *error = NULL;
e498be7d
CL
4271 int node;
4272 struct kmem_list3 *l3;
1da177e4 4273
1da177e4
LT
4274 active_objs = 0;
4275 num_slabs = 0;
e498be7d
CL
4276 for_each_online_node(node) {
4277 l3 = cachep->nodelists[node];
4278 if (!l3)
4279 continue;
4280
ca3b9b91
RT
4281 check_irq_on();
4282 spin_lock_irq(&l3->list_lock);
e498be7d 4283
7a7c381d 4284 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4285 if (slabp->inuse != cachep->num && !error)
4286 error = "slabs_full accounting error";
4287 active_objs += cachep->num;
4288 active_slabs++;
4289 }
7a7c381d 4290 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4291 if (slabp->inuse == cachep->num && !error)
4292 error = "slabs_partial inuse accounting error";
4293 if (!slabp->inuse && !error)
4294 error = "slabs_partial/inuse accounting error";
4295 active_objs += slabp->inuse;
4296 active_slabs++;
4297 }
7a7c381d 4298 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4299 if (slabp->inuse && !error)
4300 error = "slabs_free/inuse accounting error";
4301 num_slabs++;
4302 }
4303 free_objects += l3->free_objects;
4484ebf1
RT
4304 if (l3->shared)
4305 shared_avail += l3->shared->avail;
e498be7d 4306
ca3b9b91 4307 spin_unlock_irq(&l3->list_lock);
1da177e4 4308 }
b28a02de
PE
4309 num_slabs += active_slabs;
4310 num_objs = num_slabs * cachep->num;
e498be7d 4311 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4312 error = "free_objects accounting error";
4313
b28a02de 4314 name = cachep->name;
1da177e4
LT
4315 if (error)
4316 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4317
4318 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3b0efdfa 4319 name, active_objs, num_objs, cachep->size,
b28a02de 4320 cachep->num, (1 << cachep->gfporder));
1da177e4 4321 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4322 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4323 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4324 active_slabs, num_slabs, shared_avail);
1da177e4 4325#if STATS
b28a02de 4326 { /* list3 stats */
1da177e4
LT
4327 unsigned long high = cachep->high_mark;
4328 unsigned long allocs = cachep->num_allocations;
4329 unsigned long grown = cachep->grown;
4330 unsigned long reaped = cachep->reaped;
4331 unsigned long errors = cachep->errors;
4332 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4333 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4334 unsigned long node_frees = cachep->node_frees;
fb7faf33 4335 unsigned long overflows = cachep->node_overflow;
1da177e4 4336
e92dd4fd
JP
4337 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4338 "%4lu %4lu %4lu %4lu %4lu",
4339 allocs, high, grown,
4340 reaped, errors, max_freeable, node_allocs,
4341 node_frees, overflows);
1da177e4
LT
4342 }
4343 /* cpu stats */
4344 {
4345 unsigned long allochit = atomic_read(&cachep->allochit);
4346 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4347 unsigned long freehit = atomic_read(&cachep->freehit);
4348 unsigned long freemiss = atomic_read(&cachep->freemiss);
4349
4350 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4351 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4352 }
4353#endif
4354 seq_putc(m, '\n');
1da177e4
LT
4355 return 0;
4356}
4357
4358/*
4359 * slabinfo_op - iterator that generates /proc/slabinfo
4360 *
4361 * Output layout:
4362 * cache-name
4363 * num-active-objs
4364 * total-objs
4365 * object size
4366 * num-active-slabs
4367 * total-slabs
4368 * num-pages-per-slab
4369 * + further values on SMP and with statistics enabled
4370 */
4371
7b3c3a50 4372static const struct seq_operations slabinfo_op = {
b28a02de
PE
4373 .start = s_start,
4374 .next = s_next,
4375 .stop = s_stop,
4376 .show = s_show,
1da177e4
LT
4377};
4378
4379#define MAX_SLABINFO_WRITE 128
4380/**
4381 * slabinfo_write - Tuning for the slab allocator
4382 * @file: unused
4383 * @buffer: user buffer
4384 * @count: data length
4385 * @ppos: unused
4386 */
68a1b195 4387static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4388 size_t count, loff_t *ppos)
1da177e4 4389{
b28a02de 4390 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4391 int limit, batchcount, shared, res;
7a7c381d 4392 struct kmem_cache *cachep;
b28a02de 4393
1da177e4
LT
4394 if (count > MAX_SLABINFO_WRITE)
4395 return -EINVAL;
4396 if (copy_from_user(&kbuf, buffer, count))
4397 return -EFAULT;
b28a02de 4398 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4399
4400 tmp = strchr(kbuf, ' ');
4401 if (!tmp)
4402 return -EINVAL;
4403 *tmp = '\0';
4404 tmp++;
4405 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4406 return -EINVAL;
4407
4408 /* Find the cache in the chain of caches. */
fc0abb14 4409 mutex_lock(&cache_chain_mutex);
1da177e4 4410 res = -EINVAL;
3b0efdfa 4411 list_for_each_entry(cachep, &cache_chain, list) {
1da177e4 4412 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4413 if (limit < 1 || batchcount < 1 ||
4414 batchcount > limit || shared < 0) {
e498be7d 4415 res = 0;
1da177e4 4416 } else {
e498be7d 4417 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4418 batchcount, shared,
4419 GFP_KERNEL);
1da177e4
LT
4420 }
4421 break;
4422 }
4423 }
fc0abb14 4424 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4425 if (res >= 0)
4426 res = count;
4427 return res;
4428}
871751e2 4429
7b3c3a50
AD
4430static int slabinfo_open(struct inode *inode, struct file *file)
4431{
4432 return seq_open(file, &slabinfo_op);
4433}
4434
4435static const struct file_operations proc_slabinfo_operations = {
4436 .open = slabinfo_open,
4437 .read = seq_read,
4438 .write = slabinfo_write,
4439 .llseek = seq_lseek,
4440 .release = seq_release,
4441};
4442
871751e2
AV
4443#ifdef CONFIG_DEBUG_SLAB_LEAK
4444
4445static void *leaks_start(struct seq_file *m, loff_t *pos)
4446{
871751e2 4447 mutex_lock(&cache_chain_mutex);
b92151ba 4448 return seq_list_start(&cache_chain, *pos);
871751e2
AV
4449}
4450
4451static inline int add_caller(unsigned long *n, unsigned long v)
4452{
4453 unsigned long *p;
4454 int l;
4455 if (!v)
4456 return 1;
4457 l = n[1];
4458 p = n + 2;
4459 while (l) {
4460 int i = l/2;
4461 unsigned long *q = p + 2 * i;
4462 if (*q == v) {
4463 q[1]++;
4464 return 1;
4465 }
4466 if (*q > v) {
4467 l = i;
4468 } else {
4469 p = q + 2;
4470 l -= i + 1;
4471 }
4472 }
4473 if (++n[1] == n[0])
4474 return 0;
4475 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4476 p[0] = v;
4477 p[1] = 1;
4478 return 1;
4479}
4480
4481static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4482{
4483 void *p;
4484 int i;
4485 if (n[0] == n[1])
4486 return;
3b0efdfa 4487 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
871751e2
AV
4488 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4489 continue;
4490 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4491 return;
4492 }
4493}
4494
4495static void show_symbol(struct seq_file *m, unsigned long address)
4496{
4497#ifdef CONFIG_KALLSYMS
871751e2 4498 unsigned long offset, size;
9281acea 4499 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4500
a5c43dae 4501 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4502 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4503 if (modname[0])
871751e2
AV
4504 seq_printf(m, " [%s]", modname);
4505 return;
4506 }
4507#endif
4508 seq_printf(m, "%p", (void *)address);
4509}
4510
4511static int leaks_show(struct seq_file *m, void *p)
4512{
0672aa7c 4513 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
871751e2
AV
4514 struct slab *slabp;
4515 struct kmem_list3 *l3;
4516 const char *name;
4517 unsigned long *n = m->private;
4518 int node;
4519 int i;
4520
4521 if (!(cachep->flags & SLAB_STORE_USER))
4522 return 0;
4523 if (!(cachep->flags & SLAB_RED_ZONE))
4524 return 0;
4525
4526 /* OK, we can do it */
4527
4528 n[1] = 0;
4529
4530 for_each_online_node(node) {
4531 l3 = cachep->nodelists[node];
4532 if (!l3)
4533 continue;
4534
4535 check_irq_on();
4536 spin_lock_irq(&l3->list_lock);
4537
7a7c381d 4538 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4539 handle_slab(n, cachep, slabp);
7a7c381d 4540 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4541 handle_slab(n, cachep, slabp);
871751e2
AV
4542 spin_unlock_irq(&l3->list_lock);
4543 }
4544 name = cachep->name;
4545 if (n[0] == n[1]) {
4546 /* Increase the buffer size */
4547 mutex_unlock(&cache_chain_mutex);
4548 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4549 if (!m->private) {
4550 /* Too bad, we are really out */
4551 m->private = n;
4552 mutex_lock(&cache_chain_mutex);
4553 return -ENOMEM;
4554 }
4555 *(unsigned long *)m->private = n[0] * 2;
4556 kfree(n);
4557 mutex_lock(&cache_chain_mutex);
4558 /* Now make sure this entry will be retried */
4559 m->count = m->size;
4560 return 0;
4561 }
4562 for (i = 0; i < n[1]; i++) {
4563 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4564 show_symbol(m, n[2*i+2]);
4565 seq_putc(m, '\n');
4566 }
d2e7b7d0 4567
871751e2
AV
4568 return 0;
4569}
4570
a0ec95a8 4571static const struct seq_operations slabstats_op = {
871751e2
AV
4572 .start = leaks_start,
4573 .next = s_next,
4574 .stop = s_stop,
4575 .show = leaks_show,
4576};
a0ec95a8
AD
4577
4578static int slabstats_open(struct inode *inode, struct file *file)
4579{
4580 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4581 int ret = -ENOMEM;
4582 if (n) {
4583 ret = seq_open(file, &slabstats_op);
4584 if (!ret) {
4585 struct seq_file *m = file->private_data;
4586 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4587 m->private = n;
4588 n = NULL;
4589 }
4590 kfree(n);
4591 }
4592 return ret;
4593}
4594
4595static const struct file_operations proc_slabstats_operations = {
4596 .open = slabstats_open,
4597 .read = seq_read,
4598 .llseek = seq_lseek,
4599 .release = seq_release_private,
4600};
4601#endif
4602
4603static int __init slab_proc_init(void)
4604{
ab067e99 4605 proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
a0ec95a8
AD
4606#ifdef CONFIG_DEBUG_SLAB_LEAK
4607 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4608#endif
a0ec95a8
AD
4609 return 0;
4610}
4611module_init(slab_proc_init);
1da177e4
LT
4612#endif
4613
00e145b6
MS
4614/**
4615 * ksize - get the actual amount of memory allocated for a given object
4616 * @objp: Pointer to the object
4617 *
4618 * kmalloc may internally round up allocations and return more memory
4619 * than requested. ksize() can be used to determine the actual amount of
4620 * memory allocated. The caller may use this additional memory, even though
4621 * a smaller amount of memory was initially specified with the kmalloc call.
4622 * The caller must guarantee that objp points to a valid object previously
4623 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4624 * must not be freed during the duration of the call.
4625 */
fd76bab2 4626size_t ksize(const void *objp)
1da177e4 4627{
ef8b4520
CL
4628 BUG_ON(!objp);
4629 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4630 return 0;
1da177e4 4631
8c138bc0 4632 return virt_to_cache(objp)->object_size;
1da177e4 4633}
b1aabecd 4634EXPORT_SYMBOL(ksize);