]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/slab.c
slab: remove colouroff in struct slab
[mirror_ubuntu-zesty-kernel.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
072bb0aa
MG
160/*
161 * true if a page was allocated from pfmemalloc reserves for network-based
162 * swap
163 */
164static bool pfmemalloc_active __read_mostly;
165
1da177e4
LT
166/*
167 * kmem_bufctl_t:
168 *
169 * Bufctl's are used for linking objs within a slab
170 * linked offsets.
171 *
172 * This implementation relies on "struct page" for locating the cache &
173 * slab an object belongs to.
174 * This allows the bufctl structure to be small (one int), but limits
175 * the number of objects a slab (not a cache) can contain when off-slab
176 * bufctls are used. The limit is the size of the largest general cache
177 * that does not use off-slab slabs.
178 * For 32bit archs with 4 kB pages, is this 56.
179 * This is not serious, as it is only for large objects, when it is unwise
180 * to have too many per slab.
181 * Note: This limit can be raised by introducing a general cache whose size
182 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
183 */
184
fa5b08d5 185typedef unsigned int kmem_bufctl_t;
1da177e4
LT
186#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
187#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
188#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
189#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 190
1da177e4
LT
191/*
192 * struct slab_rcu
193 *
194 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
195 * arrange for kmem_freepages to be called via RCU. This is useful if
196 * we need to approach a kernel structure obliquely, from its address
197 * obtained without the usual locking. We can lock the structure to
198 * stabilize it and check it's still at the given address, only if we
199 * can be sure that the memory has not been meanwhile reused for some
200 * other kind of object (which our subsystem's lock might corrupt).
201 *
202 * rcu_read_lock before reading the address, then rcu_read_unlock after
203 * taking the spinlock within the structure expected at that address.
1da177e4
LT
204 */
205struct slab_rcu {
b28a02de 206 struct rcu_head head;
343e0d7a 207 struct kmem_cache *cachep;
0c3aa83e 208 struct page *page;
1da177e4
LT
209};
210
5bfe53a7
LJ
211/*
212 * struct slab
213 *
214 * Manages the objs in a slab. Placed either at the beginning of mem allocated
215 * for a slab, or allocated from an general cache.
216 * Slabs are chained into three list: fully used, partial, fully free slabs.
217 */
218struct slab {
219 union {
220 struct {
221 struct list_head list;
5bfe53a7
LJ
222 void *s_mem; /* including colour offset */
223 unsigned int inuse; /* num of objs active in slab */
224 kmem_bufctl_t free;
225 unsigned short nodeid;
226 };
227 struct slab_rcu __slab_cover_slab_rcu;
228 };
229};
230
1da177e4
LT
231/*
232 * struct array_cache
233 *
1da177e4
LT
234 * Purpose:
235 * - LIFO ordering, to hand out cache-warm objects from _alloc
236 * - reduce the number of linked list operations
237 * - reduce spinlock operations
238 *
239 * The limit is stored in the per-cpu structure to reduce the data cache
240 * footprint.
241 *
242 */
243struct array_cache {
244 unsigned int avail;
245 unsigned int limit;
246 unsigned int batchcount;
247 unsigned int touched;
e498be7d 248 spinlock_t lock;
bda5b655 249 void *entry[]; /*
a737b3e2
AM
250 * Must have this definition in here for the proper
251 * alignment of array_cache. Also simplifies accessing
252 * the entries.
072bb0aa
MG
253 *
254 * Entries should not be directly dereferenced as
255 * entries belonging to slabs marked pfmemalloc will
256 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 257 */
1da177e4
LT
258};
259
072bb0aa
MG
260#define SLAB_OBJ_PFMEMALLOC 1
261static inline bool is_obj_pfmemalloc(void *objp)
262{
263 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
264}
265
266static inline void set_obj_pfmemalloc(void **objp)
267{
268 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
269 return;
270}
271
272static inline void clear_obj_pfmemalloc(void **objp)
273{
274 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
275}
276
a737b3e2
AM
277/*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
1da177e4
LT
280 */
281#define BOOT_CPUCACHE_ENTRIES 1
282struct arraycache_init {
283 struct array_cache cache;
b28a02de 284 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
285};
286
e498be7d
CL
287/*
288 * Need this for bootstrapping a per node allocator.
289 */
556a169d 290#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
ce8eb6c4 291static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 292#define CACHE_CACHE 0
556a169d 293#define SIZE_AC MAX_NUMNODES
ce8eb6c4 294#define SIZE_NODE (2 * MAX_NUMNODES)
e498be7d 295
ed11d9eb 296static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 297 struct kmem_cache_node *n, int tofree);
ed11d9eb
CL
298static void free_block(struct kmem_cache *cachep, void **objpp, int len,
299 int node);
83b519e8 300static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 301static void cache_reap(struct work_struct *unused);
ed11d9eb 302
e0a42726
IM
303static int slab_early_init = 1;
304
e3366016 305#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
ce8eb6c4 306#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 307
ce8eb6c4 308static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
309{
310 INIT_LIST_HEAD(&parent->slabs_full);
311 INIT_LIST_HEAD(&parent->slabs_partial);
312 INIT_LIST_HEAD(&parent->slabs_free);
313 parent->shared = NULL;
314 parent->alien = NULL;
2e1217cf 315 parent->colour_next = 0;
e498be7d
CL
316 spin_lock_init(&parent->list_lock);
317 parent->free_objects = 0;
318 parent->free_touched = 0;
319}
320
a737b3e2
AM
321#define MAKE_LIST(cachep, listp, slab, nodeid) \
322 do { \
323 INIT_LIST_HEAD(listp); \
6a67368c 324 list_splice(&(cachep->node[nodeid]->slab), listp); \
e498be7d
CL
325 } while (0)
326
a737b3e2
AM
327#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
328 do { \
e498be7d
CL
329 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
330 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
331 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
332 } while (0)
1da177e4 333
1da177e4
LT
334#define CFLGS_OFF_SLAB (0x80000000UL)
335#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
336
337#define BATCHREFILL_LIMIT 16
a737b3e2
AM
338/*
339 * Optimization question: fewer reaps means less probability for unnessary
340 * cpucache drain/refill cycles.
1da177e4 341 *
dc6f3f27 342 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
343 * which could lock up otherwise freeable slabs.
344 */
345#define REAPTIMEOUT_CPUC (2*HZ)
346#define REAPTIMEOUT_LIST3 (4*HZ)
347
348#if STATS
349#define STATS_INC_ACTIVE(x) ((x)->num_active++)
350#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
351#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
352#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 353#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
354#define STATS_SET_HIGH(x) \
355 do { \
356 if ((x)->num_active > (x)->high_mark) \
357 (x)->high_mark = (x)->num_active; \
358 } while (0)
1da177e4
LT
359#define STATS_INC_ERR(x) ((x)->errors++)
360#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 361#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 362#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
363#define STATS_SET_FREEABLE(x, i) \
364 do { \
365 if ((x)->max_freeable < i) \
366 (x)->max_freeable = i; \
367 } while (0)
1da177e4
LT
368#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
369#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
370#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
371#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
372#else
373#define STATS_INC_ACTIVE(x) do { } while (0)
374#define STATS_DEC_ACTIVE(x) do { } while (0)
375#define STATS_INC_ALLOCED(x) do { } while (0)
376#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 377#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
378#define STATS_SET_HIGH(x) do { } while (0)
379#define STATS_INC_ERR(x) do { } while (0)
380#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 381#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 382#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 383#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
384#define STATS_INC_ALLOCHIT(x) do { } while (0)
385#define STATS_INC_ALLOCMISS(x) do { } while (0)
386#define STATS_INC_FREEHIT(x) do { } while (0)
387#define STATS_INC_FREEMISS(x) do { } while (0)
388#endif
389
390#if DEBUG
1da177e4 391
a737b3e2
AM
392/*
393 * memory layout of objects:
1da177e4 394 * 0 : objp
3dafccf2 395 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
396 * the end of an object is aligned with the end of the real
397 * allocation. Catches writes behind the end of the allocation.
3dafccf2 398 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 399 * redzone word.
3dafccf2 400 * cachep->obj_offset: The real object.
3b0efdfa
CL
401 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
402 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 403 * [BYTES_PER_WORD long]
1da177e4 404 */
343e0d7a 405static int obj_offset(struct kmem_cache *cachep)
1da177e4 406{
3dafccf2 407 return cachep->obj_offset;
1da177e4
LT
408}
409
b46b8f19 410static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
411{
412 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
413 return (unsigned long long*) (objp + obj_offset(cachep) -
414 sizeof(unsigned long long));
1da177e4
LT
415}
416
b46b8f19 417static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
418{
419 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
420 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 421 return (unsigned long long *)(objp + cachep->size -
b46b8f19 422 sizeof(unsigned long long) -
87a927c7 423 REDZONE_ALIGN);
3b0efdfa 424 return (unsigned long long *) (objp + cachep->size -
b46b8f19 425 sizeof(unsigned long long));
1da177e4
LT
426}
427
343e0d7a 428static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
429{
430 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 431 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
432}
433
434#else
435
3dafccf2 436#define obj_offset(x) 0
b46b8f19
DW
437#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
438#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
439#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
440
441#endif
442
1da177e4 443/*
3df1cccd
DR
444 * Do not go above this order unless 0 objects fit into the slab or
445 * overridden on the command line.
1da177e4 446 */
543585cc
DR
447#define SLAB_MAX_ORDER_HI 1
448#define SLAB_MAX_ORDER_LO 0
449static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 450static bool slab_max_order_set __initdata;
1da177e4 451
6ed5eb22
PE
452static inline struct kmem_cache *virt_to_cache(const void *obj)
453{
b49af68f 454 struct page *page = virt_to_head_page(obj);
35026088 455 return page->slab_cache;
6ed5eb22
PE
456}
457
458static inline struct slab *virt_to_slab(const void *obj)
459{
b49af68f 460 struct page *page = virt_to_head_page(obj);
35026088
CL
461
462 VM_BUG_ON(!PageSlab(page));
463 return page->slab_page;
6ed5eb22
PE
464}
465
8fea4e96
PE
466static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
467 unsigned int idx)
468{
3b0efdfa 469 return slab->s_mem + cache->size * idx;
8fea4e96
PE
470}
471
6a2d7a95 472/*
3b0efdfa
CL
473 * We want to avoid an expensive divide : (offset / cache->size)
474 * Using the fact that size is a constant for a particular cache,
475 * we can replace (offset / cache->size) by
6a2d7a95
ED
476 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
477 */
478static inline unsigned int obj_to_index(const struct kmem_cache *cache,
479 const struct slab *slab, void *obj)
8fea4e96 480{
6a2d7a95
ED
481 u32 offset = (obj - slab->s_mem);
482 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
483}
484
1da177e4 485static struct arraycache_init initarray_generic =
b28a02de 486 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
487
488/* internal cache of cache description objs */
9b030cb8 489static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
490 .batchcount = 1,
491 .limit = BOOT_CPUCACHE_ENTRIES,
492 .shared = 1,
3b0efdfa 493 .size = sizeof(struct kmem_cache),
b28a02de 494 .name = "kmem_cache",
1da177e4
LT
495};
496
056c6241
RT
497#define BAD_ALIEN_MAGIC 0x01020304ul
498
f1aaee53
AV
499#ifdef CONFIG_LOCKDEP
500
501/*
502 * Slab sometimes uses the kmalloc slabs to store the slab headers
503 * for other slabs "off slab".
504 * The locking for this is tricky in that it nests within the locks
505 * of all other slabs in a few places; to deal with this special
506 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
507 *
508 * We set lock class for alien array caches which are up during init.
509 * The lock annotation will be lost if all cpus of a node goes down and
510 * then comes back up during hotplug
f1aaee53 511 */
056c6241
RT
512static struct lock_class_key on_slab_l3_key;
513static struct lock_class_key on_slab_alc_key;
514
83835b3d
PZ
515static struct lock_class_key debugobj_l3_key;
516static struct lock_class_key debugobj_alc_key;
517
518static void slab_set_lock_classes(struct kmem_cache *cachep,
519 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
520 int q)
521{
522 struct array_cache **alc;
ce8eb6c4 523 struct kmem_cache_node *n;
83835b3d
PZ
524 int r;
525
ce8eb6c4
CL
526 n = cachep->node[q];
527 if (!n)
83835b3d
PZ
528 return;
529
ce8eb6c4
CL
530 lockdep_set_class(&n->list_lock, l3_key);
531 alc = n->alien;
83835b3d
PZ
532 /*
533 * FIXME: This check for BAD_ALIEN_MAGIC
534 * should go away when common slab code is taught to
535 * work even without alien caches.
536 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
537 * for alloc_alien_cache,
538 */
539 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
540 return;
541 for_each_node(r) {
542 if (alc[r])
543 lockdep_set_class(&alc[r]->lock, alc_key);
544 }
545}
546
547static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
548{
549 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
550}
551
552static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
553{
554 int node;
555
556 for_each_online_node(node)
557 slab_set_debugobj_lock_classes_node(cachep, node);
558}
559
ce79ddc8 560static void init_node_lock_keys(int q)
f1aaee53 561{
e3366016 562 int i;
056c6241 563
97d06609 564 if (slab_state < UP)
ce79ddc8
PE
565 return;
566
0f8f8094 567 for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
ce8eb6c4 568 struct kmem_cache_node *n;
e3366016
CL
569 struct kmem_cache *cache = kmalloc_caches[i];
570
571 if (!cache)
572 continue;
ce79ddc8 573
ce8eb6c4
CL
574 n = cache->node[q];
575 if (!n || OFF_SLAB(cache))
00afa758 576 continue;
83835b3d 577
e3366016 578 slab_set_lock_classes(cache, &on_slab_l3_key,
83835b3d 579 &on_slab_alc_key, q);
f1aaee53
AV
580 }
581}
ce79ddc8 582
6ccfb5bc
GC
583static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
584{
6a67368c 585 if (!cachep->node[q])
6ccfb5bc
GC
586 return;
587
588 slab_set_lock_classes(cachep, &on_slab_l3_key,
589 &on_slab_alc_key, q);
590}
591
592static inline void on_slab_lock_classes(struct kmem_cache *cachep)
593{
594 int node;
595
596 VM_BUG_ON(OFF_SLAB(cachep));
597 for_each_node(node)
598 on_slab_lock_classes_node(cachep, node);
599}
600
ce79ddc8
PE
601static inline void init_lock_keys(void)
602{
603 int node;
604
605 for_each_node(node)
606 init_node_lock_keys(node);
607}
f1aaee53 608#else
ce79ddc8
PE
609static void init_node_lock_keys(int q)
610{
611}
612
056c6241 613static inline void init_lock_keys(void)
f1aaee53
AV
614{
615}
83835b3d 616
6ccfb5bc
GC
617static inline void on_slab_lock_classes(struct kmem_cache *cachep)
618{
619}
620
621static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
622{
623}
624
83835b3d
PZ
625static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
626{
627}
628
629static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
630{
631}
f1aaee53
AV
632#endif
633
1871e52c 634static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 635
343e0d7a 636static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
637{
638 return cachep->array[smp_processor_id()];
639}
640
fbaccacf 641static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 642{
fbaccacf
SR
643 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
644}
1da177e4 645
a737b3e2
AM
646/*
647 * Calculate the number of objects and left-over bytes for a given buffer size.
648 */
fbaccacf
SR
649static void cache_estimate(unsigned long gfporder, size_t buffer_size,
650 size_t align, int flags, size_t *left_over,
651 unsigned int *num)
652{
653 int nr_objs;
654 size_t mgmt_size;
655 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 656
fbaccacf
SR
657 /*
658 * The slab management structure can be either off the slab or
659 * on it. For the latter case, the memory allocated for a
660 * slab is used for:
661 *
662 * - The struct slab
663 * - One kmem_bufctl_t for each object
664 * - Padding to respect alignment of @align
665 * - @buffer_size bytes for each object
666 *
667 * If the slab management structure is off the slab, then the
668 * alignment will already be calculated into the size. Because
669 * the slabs are all pages aligned, the objects will be at the
670 * correct alignment when allocated.
671 */
672 if (flags & CFLGS_OFF_SLAB) {
673 mgmt_size = 0;
674 nr_objs = slab_size / buffer_size;
675
676 if (nr_objs > SLAB_LIMIT)
677 nr_objs = SLAB_LIMIT;
678 } else {
679 /*
680 * Ignore padding for the initial guess. The padding
681 * is at most @align-1 bytes, and @buffer_size is at
682 * least @align. In the worst case, this result will
683 * be one greater than the number of objects that fit
684 * into the memory allocation when taking the padding
685 * into account.
686 */
687 nr_objs = (slab_size - sizeof(struct slab)) /
688 (buffer_size + sizeof(kmem_bufctl_t));
689
690 /*
691 * This calculated number will be either the right
692 * amount, or one greater than what we want.
693 */
694 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
695 > slab_size)
696 nr_objs--;
697
698 if (nr_objs > SLAB_LIMIT)
699 nr_objs = SLAB_LIMIT;
700
701 mgmt_size = slab_mgmt_size(nr_objs, align);
702 }
703 *num = nr_objs;
704 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
705}
706
f28510d3 707#if DEBUG
d40cee24 708#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 709
a737b3e2
AM
710static void __slab_error(const char *function, struct kmem_cache *cachep,
711 char *msg)
1da177e4
LT
712{
713 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 714 function, cachep->name, msg);
1da177e4 715 dump_stack();
373d4d09 716 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 717}
f28510d3 718#endif
1da177e4 719
3395ee05
PM
720/*
721 * By default on NUMA we use alien caches to stage the freeing of
722 * objects allocated from other nodes. This causes massive memory
723 * inefficiencies when using fake NUMA setup to split memory into a
724 * large number of small nodes, so it can be disabled on the command
725 * line
726 */
727
728static int use_alien_caches __read_mostly = 1;
729static int __init noaliencache_setup(char *s)
730{
731 use_alien_caches = 0;
732 return 1;
733}
734__setup("noaliencache", noaliencache_setup);
735
3df1cccd
DR
736static int __init slab_max_order_setup(char *str)
737{
738 get_option(&str, &slab_max_order);
739 slab_max_order = slab_max_order < 0 ? 0 :
740 min(slab_max_order, MAX_ORDER - 1);
741 slab_max_order_set = true;
742
743 return 1;
744}
745__setup("slab_max_order=", slab_max_order_setup);
746
8fce4d8e
CL
747#ifdef CONFIG_NUMA
748/*
749 * Special reaping functions for NUMA systems called from cache_reap().
750 * These take care of doing round robin flushing of alien caches (containing
751 * objects freed on different nodes from which they were allocated) and the
752 * flushing of remote pcps by calling drain_node_pages.
753 */
1871e52c 754static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
755
756static void init_reap_node(int cpu)
757{
758 int node;
759
7d6e6d09 760 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 761 if (node == MAX_NUMNODES)
442295c9 762 node = first_node(node_online_map);
8fce4d8e 763
1871e52c 764 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
765}
766
767static void next_reap_node(void)
768{
909ea964 769 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 770
8fce4d8e
CL
771 node = next_node(node, node_online_map);
772 if (unlikely(node >= MAX_NUMNODES))
773 node = first_node(node_online_map);
909ea964 774 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
775}
776
777#else
778#define init_reap_node(cpu) do { } while (0)
779#define next_reap_node(void) do { } while (0)
780#endif
781
1da177e4
LT
782/*
783 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
784 * via the workqueue/eventd.
785 * Add the CPU number into the expiration time to minimize the possibility of
786 * the CPUs getting into lockstep and contending for the global cache chain
787 * lock.
788 */
0db0628d 789static void start_cpu_timer(int cpu)
1da177e4 790{
1871e52c 791 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
792
793 /*
794 * When this gets called from do_initcalls via cpucache_init(),
795 * init_workqueues() has already run, so keventd will be setup
796 * at that time.
797 */
52bad64d 798 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 799 init_reap_node(cpu);
203b42f7 800 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
801 schedule_delayed_work_on(cpu, reap_work,
802 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
803 }
804}
805
e498be7d 806static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 807 int batchcount, gfp_t gfp)
1da177e4 808{
b28a02de 809 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
810 struct array_cache *nc = NULL;
811
83b519e8 812 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
813 /*
814 * The array_cache structures contain pointers to free object.
25985edc 815 * However, when such objects are allocated or transferred to another
d5cff635
CM
816 * cache the pointers are not cleared and they could be counted as
817 * valid references during a kmemleak scan. Therefore, kmemleak must
818 * not scan such objects.
819 */
820 kmemleak_no_scan(nc);
1da177e4
LT
821 if (nc) {
822 nc->avail = 0;
823 nc->limit = entries;
824 nc->batchcount = batchcount;
825 nc->touched = 0;
e498be7d 826 spin_lock_init(&nc->lock);
1da177e4
LT
827 }
828 return nc;
829}
830
072bb0aa
MG
831static inline bool is_slab_pfmemalloc(struct slab *slabp)
832{
833 struct page *page = virt_to_page(slabp->s_mem);
834
835 return PageSlabPfmemalloc(page);
836}
837
838/* Clears pfmemalloc_active if no slabs have pfmalloc set */
839static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
840 struct array_cache *ac)
841{
ce8eb6c4 842 struct kmem_cache_node *n = cachep->node[numa_mem_id()];
072bb0aa
MG
843 struct slab *slabp;
844 unsigned long flags;
845
846 if (!pfmemalloc_active)
847 return;
848
ce8eb6c4
CL
849 spin_lock_irqsave(&n->list_lock, flags);
850 list_for_each_entry(slabp, &n->slabs_full, list)
072bb0aa
MG
851 if (is_slab_pfmemalloc(slabp))
852 goto out;
853
ce8eb6c4 854 list_for_each_entry(slabp, &n->slabs_partial, list)
072bb0aa
MG
855 if (is_slab_pfmemalloc(slabp))
856 goto out;
857
ce8eb6c4 858 list_for_each_entry(slabp, &n->slabs_free, list)
072bb0aa
MG
859 if (is_slab_pfmemalloc(slabp))
860 goto out;
861
862 pfmemalloc_active = false;
863out:
ce8eb6c4 864 spin_unlock_irqrestore(&n->list_lock, flags);
072bb0aa
MG
865}
866
381760ea 867static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
868 gfp_t flags, bool force_refill)
869{
870 int i;
871 void *objp = ac->entry[--ac->avail];
872
873 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
874 if (unlikely(is_obj_pfmemalloc(objp))) {
ce8eb6c4 875 struct kmem_cache_node *n;
072bb0aa
MG
876
877 if (gfp_pfmemalloc_allowed(flags)) {
878 clear_obj_pfmemalloc(&objp);
879 return objp;
880 }
881
882 /* The caller cannot use PFMEMALLOC objects, find another one */
d014dc2e 883 for (i = 0; i < ac->avail; i++) {
072bb0aa
MG
884 /* If a !PFMEMALLOC object is found, swap them */
885 if (!is_obj_pfmemalloc(ac->entry[i])) {
886 objp = ac->entry[i];
887 ac->entry[i] = ac->entry[ac->avail];
888 ac->entry[ac->avail] = objp;
889 return objp;
890 }
891 }
892
893 /*
894 * If there are empty slabs on the slabs_free list and we are
895 * being forced to refill the cache, mark this one !pfmemalloc.
896 */
ce8eb6c4
CL
897 n = cachep->node[numa_mem_id()];
898 if (!list_empty(&n->slabs_free) && force_refill) {
072bb0aa 899 struct slab *slabp = virt_to_slab(objp);
30c29bea 900 ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
072bb0aa
MG
901 clear_obj_pfmemalloc(&objp);
902 recheck_pfmemalloc_active(cachep, ac);
903 return objp;
904 }
905
906 /* No !PFMEMALLOC objects available */
907 ac->avail++;
908 objp = NULL;
909 }
910
911 return objp;
912}
913
381760ea
MG
914static inline void *ac_get_obj(struct kmem_cache *cachep,
915 struct array_cache *ac, gfp_t flags, bool force_refill)
916{
917 void *objp;
918
919 if (unlikely(sk_memalloc_socks()))
920 objp = __ac_get_obj(cachep, ac, flags, force_refill);
921 else
922 objp = ac->entry[--ac->avail];
923
924 return objp;
925}
926
927static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
928 void *objp)
929{
930 if (unlikely(pfmemalloc_active)) {
931 /* Some pfmemalloc slabs exist, check if this is one */
73293c2f
JK
932 struct slab *slabp = virt_to_slab(objp);
933 struct page *page = virt_to_head_page(slabp->s_mem);
072bb0aa
MG
934 if (PageSlabPfmemalloc(page))
935 set_obj_pfmemalloc(&objp);
936 }
937
381760ea
MG
938 return objp;
939}
940
941static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
942 void *objp)
943{
944 if (unlikely(sk_memalloc_socks()))
945 objp = __ac_put_obj(cachep, ac, objp);
946
072bb0aa
MG
947 ac->entry[ac->avail++] = objp;
948}
949
3ded175a
CL
950/*
951 * Transfer objects in one arraycache to another.
952 * Locking must be handled by the caller.
953 *
954 * Return the number of entries transferred.
955 */
956static int transfer_objects(struct array_cache *to,
957 struct array_cache *from, unsigned int max)
958{
959 /* Figure out how many entries to transfer */
732eacc0 960 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
961
962 if (!nr)
963 return 0;
964
965 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
966 sizeof(void *) *nr);
967
968 from->avail -= nr;
969 to->avail += nr;
3ded175a
CL
970 return nr;
971}
972
765c4507
CL
973#ifndef CONFIG_NUMA
974
975#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 976#define reap_alien(cachep, n) do { } while (0)
765c4507 977
83b519e8 978static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
979{
980 return (struct array_cache **)BAD_ALIEN_MAGIC;
981}
982
983static inline void free_alien_cache(struct array_cache **ac_ptr)
984{
985}
986
987static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
988{
989 return 0;
990}
991
992static inline void *alternate_node_alloc(struct kmem_cache *cachep,
993 gfp_t flags)
994{
995 return NULL;
996}
997
8b98c169 998static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
999 gfp_t flags, int nodeid)
1000{
1001 return NULL;
1002}
1003
1004#else /* CONFIG_NUMA */
1005
8b98c169 1006static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1007static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1008
83b519e8 1009static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
1010{
1011 struct array_cache **ac_ptr;
8ef82866 1012 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1013 int i;
1014
1015 if (limit > 1)
1016 limit = 12;
f3186a9c 1017 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
1018 if (ac_ptr) {
1019 for_each_node(i) {
f3186a9c 1020 if (i == node || !node_online(i))
e498be7d 1021 continue;
83b519e8 1022 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 1023 if (!ac_ptr[i]) {
cc550def 1024 for (i--; i >= 0; i--)
e498be7d
CL
1025 kfree(ac_ptr[i]);
1026 kfree(ac_ptr);
1027 return NULL;
1028 }
1029 }
1030 }
1031 return ac_ptr;
1032}
1033
5295a74c 1034static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1035{
1036 int i;
1037
1038 if (!ac_ptr)
1039 return;
e498be7d 1040 for_each_node(i)
b28a02de 1041 kfree(ac_ptr[i]);
e498be7d
CL
1042 kfree(ac_ptr);
1043}
1044
343e0d7a 1045static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1046 struct array_cache *ac, int node)
e498be7d 1047{
ce8eb6c4 1048 struct kmem_cache_node *n = cachep->node[node];
e498be7d
CL
1049
1050 if (ac->avail) {
ce8eb6c4 1051 spin_lock(&n->list_lock);
e00946fe
CL
1052 /*
1053 * Stuff objects into the remote nodes shared array first.
1054 * That way we could avoid the overhead of putting the objects
1055 * into the free lists and getting them back later.
1056 */
ce8eb6c4
CL
1057 if (n->shared)
1058 transfer_objects(n->shared, ac, ac->limit);
e00946fe 1059
ff69416e 1060 free_block(cachep, ac->entry, ac->avail, node);
e498be7d 1061 ac->avail = 0;
ce8eb6c4 1062 spin_unlock(&n->list_lock);
e498be7d
CL
1063 }
1064}
1065
8fce4d8e
CL
1066/*
1067 * Called from cache_reap() to regularly drain alien caches round robin.
1068 */
ce8eb6c4 1069static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 1070{
909ea964 1071 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 1072
ce8eb6c4
CL
1073 if (n->alien) {
1074 struct array_cache *ac = n->alien[node];
e00946fe
CL
1075
1076 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1077 __drain_alien_cache(cachep, ac, node);
1078 spin_unlock_irq(&ac->lock);
1079 }
1080 }
1081}
1082
a737b3e2
AM
1083static void drain_alien_cache(struct kmem_cache *cachep,
1084 struct array_cache **alien)
e498be7d 1085{
b28a02de 1086 int i = 0;
e498be7d
CL
1087 struct array_cache *ac;
1088 unsigned long flags;
1089
1090 for_each_online_node(i) {
4484ebf1 1091 ac = alien[i];
e498be7d
CL
1092 if (ac) {
1093 spin_lock_irqsave(&ac->lock, flags);
1094 __drain_alien_cache(cachep, ac, i);
1095 spin_unlock_irqrestore(&ac->lock, flags);
1096 }
1097 }
1098}
729bd0b7 1099
873623df 1100static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1101{
1102 struct slab *slabp = virt_to_slab(objp);
1103 int nodeid = slabp->nodeid;
ce8eb6c4 1104 struct kmem_cache_node *n;
729bd0b7 1105 struct array_cache *alien = NULL;
1ca4cb24
PE
1106 int node;
1107
7d6e6d09 1108 node = numa_mem_id();
729bd0b7
PE
1109
1110 /*
1111 * Make sure we are not freeing a object from another node to the array
1112 * cache on this cpu.
1113 */
62918a03 1114 if (likely(slabp->nodeid == node))
729bd0b7
PE
1115 return 0;
1116
ce8eb6c4 1117 n = cachep->node[node];
729bd0b7 1118 STATS_INC_NODEFREES(cachep);
ce8eb6c4
CL
1119 if (n->alien && n->alien[nodeid]) {
1120 alien = n->alien[nodeid];
873623df 1121 spin_lock(&alien->lock);
729bd0b7
PE
1122 if (unlikely(alien->avail == alien->limit)) {
1123 STATS_INC_ACOVERFLOW(cachep);
1124 __drain_alien_cache(cachep, alien, nodeid);
1125 }
072bb0aa 1126 ac_put_obj(cachep, alien, objp);
729bd0b7
PE
1127 spin_unlock(&alien->lock);
1128 } else {
6a67368c 1129 spin_lock(&(cachep->node[nodeid])->list_lock);
729bd0b7 1130 free_block(cachep, &objp, 1, nodeid);
6a67368c 1131 spin_unlock(&(cachep->node[nodeid])->list_lock);
729bd0b7
PE
1132 }
1133 return 1;
1134}
e498be7d
CL
1135#endif
1136
8f9f8d9e 1137/*
6a67368c 1138 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 1139 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 1140 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 1141 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
1142 * already in use.
1143 *
18004c5d 1144 * Must hold slab_mutex.
8f9f8d9e 1145 */
6a67368c 1146static int init_cache_node_node(int node)
8f9f8d9e
DR
1147{
1148 struct kmem_cache *cachep;
ce8eb6c4 1149 struct kmem_cache_node *n;
6744f087 1150 const int memsize = sizeof(struct kmem_cache_node);
8f9f8d9e 1151
18004c5d 1152 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1153 /*
1154 * Set up the size64 kmemlist for cpu before we can
1155 * begin anything. Make sure some other cpu on this
1156 * node has not already allocated this
1157 */
6a67368c 1158 if (!cachep->node[node]) {
ce8eb6c4
CL
1159 n = kmalloc_node(memsize, GFP_KERNEL, node);
1160 if (!n)
8f9f8d9e 1161 return -ENOMEM;
ce8eb6c4
CL
1162 kmem_cache_node_init(n);
1163 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
8f9f8d9e
DR
1164 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1165
1166 /*
1167 * The l3s don't come and go as CPUs come and
18004c5d 1168 * go. slab_mutex is sufficient
8f9f8d9e
DR
1169 * protection here.
1170 */
ce8eb6c4 1171 cachep->node[node] = n;
8f9f8d9e
DR
1172 }
1173
6a67368c
CL
1174 spin_lock_irq(&cachep->node[node]->list_lock);
1175 cachep->node[node]->free_limit =
8f9f8d9e
DR
1176 (1 + nr_cpus_node(node)) *
1177 cachep->batchcount + cachep->num;
6a67368c 1178 spin_unlock_irq(&cachep->node[node]->list_lock);
8f9f8d9e
DR
1179 }
1180 return 0;
1181}
1182
0fa8103b
WL
1183static inline int slabs_tofree(struct kmem_cache *cachep,
1184 struct kmem_cache_node *n)
1185{
1186 return (n->free_objects + cachep->num - 1) / cachep->num;
1187}
1188
0db0628d 1189static void cpuup_canceled(long cpu)
fbf1e473
AM
1190{
1191 struct kmem_cache *cachep;
ce8eb6c4 1192 struct kmem_cache_node *n = NULL;
7d6e6d09 1193 int node = cpu_to_mem(cpu);
a70f7302 1194 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1195
18004c5d 1196 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1197 struct array_cache *nc;
1198 struct array_cache *shared;
1199 struct array_cache **alien;
fbf1e473 1200
fbf1e473
AM
1201 /* cpu is dead; no one can alloc from it. */
1202 nc = cachep->array[cpu];
1203 cachep->array[cpu] = NULL;
ce8eb6c4 1204 n = cachep->node[node];
fbf1e473 1205
ce8eb6c4 1206 if (!n)
fbf1e473
AM
1207 goto free_array_cache;
1208
ce8eb6c4 1209 spin_lock_irq(&n->list_lock);
fbf1e473 1210
ce8eb6c4
CL
1211 /* Free limit for this kmem_cache_node */
1212 n->free_limit -= cachep->batchcount;
fbf1e473
AM
1213 if (nc)
1214 free_block(cachep, nc->entry, nc->avail, node);
1215
58463c1f 1216 if (!cpumask_empty(mask)) {
ce8eb6c4 1217 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1218 goto free_array_cache;
1219 }
1220
ce8eb6c4 1221 shared = n->shared;
fbf1e473
AM
1222 if (shared) {
1223 free_block(cachep, shared->entry,
1224 shared->avail, node);
ce8eb6c4 1225 n->shared = NULL;
fbf1e473
AM
1226 }
1227
ce8eb6c4
CL
1228 alien = n->alien;
1229 n->alien = NULL;
fbf1e473 1230
ce8eb6c4 1231 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1232
1233 kfree(shared);
1234 if (alien) {
1235 drain_alien_cache(cachep, alien);
1236 free_alien_cache(alien);
1237 }
1238free_array_cache:
1239 kfree(nc);
1240 }
1241 /*
1242 * In the previous loop, all the objects were freed to
1243 * the respective cache's slabs, now we can go ahead and
1244 * shrink each nodelist to its limit.
1245 */
18004c5d 1246 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4
CL
1247 n = cachep->node[node];
1248 if (!n)
fbf1e473 1249 continue;
0fa8103b 1250 drain_freelist(cachep, n, slabs_tofree(cachep, n));
fbf1e473
AM
1251 }
1252}
1253
0db0628d 1254static int cpuup_prepare(long cpu)
1da177e4 1255{
343e0d7a 1256 struct kmem_cache *cachep;
ce8eb6c4 1257 struct kmem_cache_node *n = NULL;
7d6e6d09 1258 int node = cpu_to_mem(cpu);
8f9f8d9e 1259 int err;
1da177e4 1260
fbf1e473
AM
1261 /*
1262 * We need to do this right in the beginning since
1263 * alloc_arraycache's are going to use this list.
1264 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1265 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1266 */
6a67368c 1267 err = init_cache_node_node(node);
8f9f8d9e
DR
1268 if (err < 0)
1269 goto bad;
fbf1e473
AM
1270
1271 /*
1272 * Now we can go ahead with allocating the shared arrays and
1273 * array caches
1274 */
18004c5d 1275 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1276 struct array_cache *nc;
1277 struct array_cache *shared = NULL;
1278 struct array_cache **alien = NULL;
1279
1280 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1281 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1282 if (!nc)
1283 goto bad;
1284 if (cachep->shared) {
1285 shared = alloc_arraycache(node,
1286 cachep->shared * cachep->batchcount,
83b519e8 1287 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1288 if (!shared) {
1289 kfree(nc);
1da177e4 1290 goto bad;
12d00f6a 1291 }
fbf1e473
AM
1292 }
1293 if (use_alien_caches) {
83b519e8 1294 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1295 if (!alien) {
1296 kfree(shared);
1297 kfree(nc);
fbf1e473 1298 goto bad;
12d00f6a 1299 }
fbf1e473
AM
1300 }
1301 cachep->array[cpu] = nc;
ce8eb6c4
CL
1302 n = cachep->node[node];
1303 BUG_ON(!n);
fbf1e473 1304
ce8eb6c4
CL
1305 spin_lock_irq(&n->list_lock);
1306 if (!n->shared) {
fbf1e473
AM
1307 /*
1308 * We are serialised from CPU_DEAD or
1309 * CPU_UP_CANCELLED by the cpucontrol lock
1310 */
ce8eb6c4 1311 n->shared = shared;
fbf1e473
AM
1312 shared = NULL;
1313 }
4484ebf1 1314#ifdef CONFIG_NUMA
ce8eb6c4
CL
1315 if (!n->alien) {
1316 n->alien = alien;
fbf1e473 1317 alien = NULL;
1da177e4 1318 }
fbf1e473 1319#endif
ce8eb6c4 1320 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1321 kfree(shared);
1322 free_alien_cache(alien);
83835b3d
PZ
1323 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1324 slab_set_debugobj_lock_classes_node(cachep, node);
6ccfb5bc
GC
1325 else if (!OFF_SLAB(cachep) &&
1326 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1327 on_slab_lock_classes_node(cachep, node);
fbf1e473 1328 }
ce79ddc8
PE
1329 init_node_lock_keys(node);
1330
fbf1e473
AM
1331 return 0;
1332bad:
12d00f6a 1333 cpuup_canceled(cpu);
fbf1e473
AM
1334 return -ENOMEM;
1335}
1336
0db0628d 1337static int cpuup_callback(struct notifier_block *nfb,
fbf1e473
AM
1338 unsigned long action, void *hcpu)
1339{
1340 long cpu = (long)hcpu;
1341 int err = 0;
1342
1343 switch (action) {
fbf1e473
AM
1344 case CPU_UP_PREPARE:
1345 case CPU_UP_PREPARE_FROZEN:
18004c5d 1346 mutex_lock(&slab_mutex);
fbf1e473 1347 err = cpuup_prepare(cpu);
18004c5d 1348 mutex_unlock(&slab_mutex);
1da177e4
LT
1349 break;
1350 case CPU_ONLINE:
8bb78442 1351 case CPU_ONLINE_FROZEN:
1da177e4
LT
1352 start_cpu_timer(cpu);
1353 break;
1354#ifdef CONFIG_HOTPLUG_CPU
5830c590 1355 case CPU_DOWN_PREPARE:
8bb78442 1356 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1357 /*
18004c5d 1358 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1359 * held so that if cache_reap() is invoked it cannot do
1360 * anything expensive but will only modify reap_work
1361 * and reschedule the timer.
1362 */
afe2c511 1363 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1364 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1365 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1366 break;
1367 case CPU_DOWN_FAILED:
8bb78442 1368 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1369 start_cpu_timer(cpu);
1370 break;
1da177e4 1371 case CPU_DEAD:
8bb78442 1372 case CPU_DEAD_FROZEN:
4484ebf1
RT
1373 /*
1374 * Even if all the cpus of a node are down, we don't free the
ce8eb6c4 1375 * kmem_cache_node of any cache. This to avoid a race between
4484ebf1 1376 * cpu_down, and a kmalloc allocation from another cpu for
ce8eb6c4 1377 * memory from the node of the cpu going down. The node
4484ebf1
RT
1378 * structure is usually allocated from kmem_cache_create() and
1379 * gets destroyed at kmem_cache_destroy().
1380 */
183ff22b 1381 /* fall through */
8f5be20b 1382#endif
1da177e4 1383 case CPU_UP_CANCELED:
8bb78442 1384 case CPU_UP_CANCELED_FROZEN:
18004c5d 1385 mutex_lock(&slab_mutex);
fbf1e473 1386 cpuup_canceled(cpu);
18004c5d 1387 mutex_unlock(&slab_mutex);
1da177e4 1388 break;
1da177e4 1389 }
eac40680 1390 return notifier_from_errno(err);
1da177e4
LT
1391}
1392
0db0628d 1393static struct notifier_block cpucache_notifier = {
74b85f37
CS
1394 &cpuup_callback, NULL, 0
1395};
1da177e4 1396
8f9f8d9e
DR
1397#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1398/*
1399 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1400 * Returns -EBUSY if all objects cannot be drained so that the node is not
1401 * removed.
1402 *
18004c5d 1403 * Must hold slab_mutex.
8f9f8d9e 1404 */
6a67368c 1405static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1406{
1407 struct kmem_cache *cachep;
1408 int ret = 0;
1409
18004c5d 1410 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1411 struct kmem_cache_node *n;
8f9f8d9e 1412
ce8eb6c4
CL
1413 n = cachep->node[node];
1414 if (!n)
8f9f8d9e
DR
1415 continue;
1416
0fa8103b 1417 drain_freelist(cachep, n, slabs_tofree(cachep, n));
8f9f8d9e 1418
ce8eb6c4
CL
1419 if (!list_empty(&n->slabs_full) ||
1420 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1421 ret = -EBUSY;
1422 break;
1423 }
1424 }
1425 return ret;
1426}
1427
1428static int __meminit slab_memory_callback(struct notifier_block *self,
1429 unsigned long action, void *arg)
1430{
1431 struct memory_notify *mnb = arg;
1432 int ret = 0;
1433 int nid;
1434
1435 nid = mnb->status_change_nid;
1436 if (nid < 0)
1437 goto out;
1438
1439 switch (action) {
1440 case MEM_GOING_ONLINE:
18004c5d 1441 mutex_lock(&slab_mutex);
6a67368c 1442 ret = init_cache_node_node(nid);
18004c5d 1443 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1444 break;
1445 case MEM_GOING_OFFLINE:
18004c5d 1446 mutex_lock(&slab_mutex);
6a67368c 1447 ret = drain_cache_node_node(nid);
18004c5d 1448 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1449 break;
1450 case MEM_ONLINE:
1451 case MEM_OFFLINE:
1452 case MEM_CANCEL_ONLINE:
1453 case MEM_CANCEL_OFFLINE:
1454 break;
1455 }
1456out:
5fda1bd5 1457 return notifier_from_errno(ret);
8f9f8d9e
DR
1458}
1459#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1460
e498be7d 1461/*
ce8eb6c4 1462 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1463 */
6744f087 1464static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1465 int nodeid)
e498be7d 1466{
6744f087 1467 struct kmem_cache_node *ptr;
e498be7d 1468
6744f087 1469 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1470 BUG_ON(!ptr);
1471
6744f087 1472 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1473 /*
1474 * Do not assume that spinlocks can be initialized via memcpy:
1475 */
1476 spin_lock_init(&ptr->list_lock);
1477
e498be7d 1478 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1479 cachep->node[nodeid] = ptr;
e498be7d
CL
1480}
1481
556a169d 1482/*
ce8eb6c4
CL
1483 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1484 * size of kmem_cache_node.
556a169d 1485 */
ce8eb6c4 1486static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1487{
1488 int node;
1489
1490 for_each_online_node(node) {
ce8eb6c4 1491 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1492 cachep->node[node]->next_reap = jiffies +
556a169d
PE
1493 REAPTIMEOUT_LIST3 +
1494 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1495 }
1496}
1497
3c583465
CL
1498/*
1499 * The memory after the last cpu cache pointer is used for the
6a67368c 1500 * the node pointer.
3c583465 1501 */
6a67368c 1502static void setup_node_pointer(struct kmem_cache *cachep)
3c583465 1503{
6a67368c 1504 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
3c583465
CL
1505}
1506
a737b3e2
AM
1507/*
1508 * Initialisation. Called after the page allocator have been initialised and
1509 * before smp_init().
1da177e4
LT
1510 */
1511void __init kmem_cache_init(void)
1512{
e498be7d
CL
1513 int i;
1514
9b030cb8 1515 kmem_cache = &kmem_cache_boot;
6a67368c 1516 setup_node_pointer(kmem_cache);
9b030cb8 1517
b6e68bc1 1518 if (num_possible_nodes() == 1)
62918a03
SS
1519 use_alien_caches = 0;
1520
3c583465 1521 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1522 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1523
ce8eb6c4 1524 set_up_node(kmem_cache, CACHE_CACHE);
1da177e4
LT
1525
1526 /*
1527 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1528 * page orders on machines with more than 32MB of memory if
1529 * not overridden on the command line.
1da177e4 1530 */
3df1cccd 1531 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1532 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1533
1da177e4
LT
1534 /* Bootstrap is tricky, because several objects are allocated
1535 * from caches that do not exist yet:
9b030cb8
CL
1536 * 1) initialize the kmem_cache cache: it contains the struct
1537 * kmem_cache structures of all caches, except kmem_cache itself:
1538 * kmem_cache is statically allocated.
e498be7d 1539 * Initially an __init data area is used for the head array and the
ce8eb6c4 1540 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1541 * array at the end of the bootstrap.
1da177e4 1542 * 2) Create the first kmalloc cache.
343e0d7a 1543 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1544 * An __init data area is used for the head array.
1545 * 3) Create the remaining kmalloc caches, with minimally sized
1546 * head arrays.
9b030cb8 1547 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1548 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1549 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1550 * the other cache's with kmalloc allocated memory.
1551 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1552 */
1553
9b030cb8 1554 /* 1) create the kmem_cache */
1da177e4 1555
8da3430d 1556 /*
b56efcf0 1557 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1558 */
2f9baa9f
CL
1559 create_boot_cache(kmem_cache, "kmem_cache",
1560 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
6744f087 1561 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1562 SLAB_HWCACHE_ALIGN);
1563 list_add(&kmem_cache->list, &slab_caches);
1da177e4
LT
1564
1565 /* 2+3) create the kmalloc caches */
1da177e4 1566
a737b3e2
AM
1567 /*
1568 * Initialize the caches that provide memory for the array cache and the
ce8eb6c4 1569 * kmem_cache_node structures first. Without this, further allocations will
a737b3e2 1570 * bug.
e498be7d
CL
1571 */
1572
e3366016
CL
1573 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1574 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
45530c44 1575
ce8eb6c4
CL
1576 if (INDEX_AC != INDEX_NODE)
1577 kmalloc_caches[INDEX_NODE] =
1578 create_kmalloc_cache("kmalloc-node",
1579 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
e498be7d 1580
e0a42726
IM
1581 slab_early_init = 0;
1582
1da177e4
LT
1583 /* 4) Replace the bootstrap head arrays */
1584 {
2b2d5493 1585 struct array_cache *ptr;
e498be7d 1586
83b519e8 1587 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1588
9b030cb8 1589 memcpy(ptr, cpu_cache_get(kmem_cache),
b28a02de 1590 sizeof(struct arraycache_init));
2b2d5493
IM
1591 /*
1592 * Do not assume that spinlocks can be initialized via memcpy:
1593 */
1594 spin_lock_init(&ptr->lock);
1595
9b030cb8 1596 kmem_cache->array[smp_processor_id()] = ptr;
e498be7d 1597
83b519e8 1598 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1599
e3366016 1600 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
b28a02de 1601 != &initarray_generic.cache);
e3366016 1602 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
b28a02de 1603 sizeof(struct arraycache_init));
2b2d5493
IM
1604 /*
1605 * Do not assume that spinlocks can be initialized via memcpy:
1606 */
1607 spin_lock_init(&ptr->lock);
1608
e3366016 1609 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1da177e4 1610 }
ce8eb6c4 1611 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1612 {
1ca4cb24
PE
1613 int nid;
1614
9c09a95c 1615 for_each_online_node(nid) {
ce8eb6c4 1616 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1617
e3366016 1618 init_list(kmalloc_caches[INDEX_AC],
ce8eb6c4 1619 &init_kmem_cache_node[SIZE_AC + nid], nid);
e498be7d 1620
ce8eb6c4
CL
1621 if (INDEX_AC != INDEX_NODE) {
1622 init_list(kmalloc_caches[INDEX_NODE],
1623 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1624 }
1625 }
1626 }
1da177e4 1627
f97d5f63 1628 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1629}
1630
1631void __init kmem_cache_init_late(void)
1632{
1633 struct kmem_cache *cachep;
1634
97d06609 1635 slab_state = UP;
52cef189 1636
8429db5c 1637 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1638 mutex_lock(&slab_mutex);
1639 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1640 if (enable_cpucache(cachep, GFP_NOWAIT))
1641 BUG();
18004c5d 1642 mutex_unlock(&slab_mutex);
056c6241 1643
947ca185
MW
1644 /* Annotate slab for lockdep -- annotate the malloc caches */
1645 init_lock_keys();
1646
97d06609
CL
1647 /* Done! */
1648 slab_state = FULL;
1649
a737b3e2
AM
1650 /*
1651 * Register a cpu startup notifier callback that initializes
1652 * cpu_cache_get for all new cpus
1da177e4
LT
1653 */
1654 register_cpu_notifier(&cpucache_notifier);
1da177e4 1655
8f9f8d9e
DR
1656#ifdef CONFIG_NUMA
1657 /*
1658 * Register a memory hotplug callback that initializes and frees
6a67368c 1659 * node.
8f9f8d9e
DR
1660 */
1661 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1662#endif
1663
a737b3e2
AM
1664 /*
1665 * The reap timers are started later, with a module init call: That part
1666 * of the kernel is not yet operational.
1da177e4
LT
1667 */
1668}
1669
1670static int __init cpucache_init(void)
1671{
1672 int cpu;
1673
a737b3e2
AM
1674 /*
1675 * Register the timers that return unneeded pages to the page allocator
1da177e4 1676 */
e498be7d 1677 for_each_online_cpu(cpu)
a737b3e2 1678 start_cpu_timer(cpu);
a164f896
GC
1679
1680 /* Done! */
97d06609 1681 slab_state = FULL;
1da177e4
LT
1682 return 0;
1683}
1da177e4
LT
1684__initcall(cpucache_init);
1685
8bdec192
RA
1686static noinline void
1687slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1688{
ce8eb6c4 1689 struct kmem_cache_node *n;
8bdec192
RA
1690 struct slab *slabp;
1691 unsigned long flags;
1692 int node;
1693
1694 printk(KERN_WARNING
1695 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1696 nodeid, gfpflags);
1697 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1698 cachep->name, cachep->size, cachep->gfporder);
8bdec192
RA
1699
1700 for_each_online_node(node) {
1701 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1702 unsigned long active_slabs = 0, num_slabs = 0;
1703
ce8eb6c4
CL
1704 n = cachep->node[node];
1705 if (!n)
8bdec192
RA
1706 continue;
1707
ce8eb6c4
CL
1708 spin_lock_irqsave(&n->list_lock, flags);
1709 list_for_each_entry(slabp, &n->slabs_full, list) {
8bdec192
RA
1710 active_objs += cachep->num;
1711 active_slabs++;
1712 }
ce8eb6c4 1713 list_for_each_entry(slabp, &n->slabs_partial, list) {
8bdec192
RA
1714 active_objs += slabp->inuse;
1715 active_slabs++;
1716 }
ce8eb6c4 1717 list_for_each_entry(slabp, &n->slabs_free, list)
8bdec192
RA
1718 num_slabs++;
1719
ce8eb6c4
CL
1720 free_objects += n->free_objects;
1721 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192
RA
1722
1723 num_slabs += active_slabs;
1724 num_objs = num_slabs * cachep->num;
1725 printk(KERN_WARNING
1726 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1727 node, active_slabs, num_slabs, active_objs, num_objs,
1728 free_objects);
1729 }
1730}
1731
1da177e4
LT
1732/*
1733 * Interface to system's page allocator. No need to hold the cache-lock.
1734 *
1735 * If we requested dmaable memory, we will get it. Even if we
1736 * did not request dmaable memory, we might get it, but that
1737 * would be relatively rare and ignorable.
1738 */
0c3aa83e
JK
1739static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1740 int nodeid)
1da177e4
LT
1741{
1742 struct page *page;
e1b6aa6f 1743 int nr_pages;
1da177e4
LT
1744 int i;
1745
d6fef9da 1746#ifndef CONFIG_MMU
e1b6aa6f
CH
1747 /*
1748 * Nommu uses slab's for process anonymous memory allocations, and thus
1749 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1750 */
e1b6aa6f 1751 flags |= __GFP_COMP;
d6fef9da 1752#endif
765c4507 1753
a618e89f 1754 flags |= cachep->allocflags;
e12ba74d
MG
1755 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1756 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1757
517d0869 1758 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192
RA
1759 if (!page) {
1760 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1761 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1762 return NULL;
8bdec192 1763 }
1da177e4 1764
b37f1dd0 1765 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
072bb0aa
MG
1766 if (unlikely(page->pfmemalloc))
1767 pfmemalloc_active = true;
1768
e1b6aa6f 1769 nr_pages = (1 << cachep->gfporder);
1da177e4 1770 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1771 add_zone_page_state(page_zone(page),
1772 NR_SLAB_RECLAIMABLE, nr_pages);
1773 else
1774 add_zone_page_state(page_zone(page),
1775 NR_SLAB_UNRECLAIMABLE, nr_pages);
072bb0aa 1776 for (i = 0; i < nr_pages; i++) {
e1b6aa6f 1777 __SetPageSlab(page + i);
c175eea4 1778
072bb0aa 1779 if (page->pfmemalloc)
73293c2f 1780 SetPageSlabPfmemalloc(page);
072bb0aa 1781 }
1f458cbf 1782 memcg_bind_pages(cachep, cachep->gfporder);
072bb0aa 1783
b1eeab67
VN
1784 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1785 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1786
1787 if (cachep->ctor)
1788 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1789 else
1790 kmemcheck_mark_unallocated_pages(page, nr_pages);
1791 }
c175eea4 1792
0c3aa83e 1793 return page;
1da177e4
LT
1794}
1795
1796/*
1797 * Interface to system's page release.
1798 */
0c3aa83e 1799static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1800{
b28a02de 1801 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1802 const unsigned long nr_freed = i;
1803
b1eeab67 1804 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1805
972d1a7b
CL
1806 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1807 sub_zone_page_state(page_zone(page),
1808 NR_SLAB_RECLAIMABLE, nr_freed);
1809 else
1810 sub_zone_page_state(page_zone(page),
1811 NR_SLAB_UNRECLAIMABLE, nr_freed);
73293c2f
JK
1812
1813 __ClearPageSlabPfmemalloc(page);
1da177e4 1814 while (i--) {
f205b2fe
NP
1815 BUG_ON(!PageSlab(page));
1816 __ClearPageSlab(page);
1da177e4
LT
1817 page++;
1818 }
1f458cbf
GC
1819
1820 memcg_release_pages(cachep, cachep->gfporder);
1da177e4
LT
1821 if (current->reclaim_state)
1822 current->reclaim_state->reclaimed_slab += nr_freed;
0c3aa83e 1823 __free_memcg_kmem_pages(page, cachep->gfporder);
1da177e4
LT
1824}
1825
1826static void kmem_rcu_free(struct rcu_head *head)
1827{
b28a02de 1828 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1829 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4 1830
0c3aa83e 1831 kmem_freepages(cachep, slab_rcu->page);
1da177e4
LT
1832 if (OFF_SLAB(cachep))
1833 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1834}
1835
1836#if DEBUG
1837
1838#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1839static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1840 unsigned long caller)
1da177e4 1841{
8c138bc0 1842 int size = cachep->object_size;
1da177e4 1843
3dafccf2 1844 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1845
b28a02de 1846 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1847 return;
1848
b28a02de
PE
1849 *addr++ = 0x12345678;
1850 *addr++ = caller;
1851 *addr++ = smp_processor_id();
1852 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1853 {
1854 unsigned long *sptr = &caller;
1855 unsigned long svalue;
1856
1857 while (!kstack_end(sptr)) {
1858 svalue = *sptr++;
1859 if (kernel_text_address(svalue)) {
b28a02de 1860 *addr++ = svalue;
1da177e4
LT
1861 size -= sizeof(unsigned long);
1862 if (size <= sizeof(unsigned long))
1863 break;
1864 }
1865 }
1866
1867 }
b28a02de 1868 *addr++ = 0x87654321;
1da177e4
LT
1869}
1870#endif
1871
343e0d7a 1872static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1873{
8c138bc0 1874 int size = cachep->object_size;
3dafccf2 1875 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1876
1877 memset(addr, val, size);
b28a02de 1878 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1879}
1880
1881static void dump_line(char *data, int offset, int limit)
1882{
1883 int i;
aa83aa40
DJ
1884 unsigned char error = 0;
1885 int bad_count = 0;
1886
fdde6abb 1887 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
1888 for (i = 0; i < limit; i++) {
1889 if (data[offset + i] != POISON_FREE) {
1890 error = data[offset + i];
1891 bad_count++;
1892 }
aa83aa40 1893 }
fdde6abb
SAS
1894 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1895 &data[offset], limit, 1);
aa83aa40
DJ
1896
1897 if (bad_count == 1) {
1898 error ^= POISON_FREE;
1899 if (!(error & (error - 1))) {
1900 printk(KERN_ERR "Single bit error detected. Probably "
1901 "bad RAM.\n");
1902#ifdef CONFIG_X86
1903 printk(KERN_ERR "Run memtest86+ or a similar memory "
1904 "test tool.\n");
1905#else
1906 printk(KERN_ERR "Run a memory test tool.\n");
1907#endif
1908 }
1909 }
1da177e4
LT
1910}
1911#endif
1912
1913#if DEBUG
1914
343e0d7a 1915static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1916{
1917 int i, size;
1918 char *realobj;
1919
1920 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1921 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1922 *dbg_redzone1(cachep, objp),
1923 *dbg_redzone2(cachep, objp));
1da177e4
LT
1924 }
1925
1926 if (cachep->flags & SLAB_STORE_USER) {
071361d3
JP
1927 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1928 *dbg_userword(cachep, objp),
1929 *dbg_userword(cachep, objp));
1da177e4 1930 }
3dafccf2 1931 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1932 size = cachep->object_size;
b28a02de 1933 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1934 int limit;
1935 limit = 16;
b28a02de
PE
1936 if (i + limit > size)
1937 limit = size - i;
1da177e4
LT
1938 dump_line(realobj, i, limit);
1939 }
1940}
1941
343e0d7a 1942static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1943{
1944 char *realobj;
1945 int size, i;
1946 int lines = 0;
1947
3dafccf2 1948 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1949 size = cachep->object_size;
1da177e4 1950
b28a02de 1951 for (i = 0; i < size; i++) {
1da177e4 1952 char exp = POISON_FREE;
b28a02de 1953 if (i == size - 1)
1da177e4
LT
1954 exp = POISON_END;
1955 if (realobj[i] != exp) {
1956 int limit;
1957 /* Mismatch ! */
1958 /* Print header */
1959 if (lines == 0) {
b28a02de 1960 printk(KERN_ERR
face37f5
DJ
1961 "Slab corruption (%s): %s start=%p, len=%d\n",
1962 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
1963 print_objinfo(cachep, objp, 0);
1964 }
1965 /* Hexdump the affected line */
b28a02de 1966 i = (i / 16) * 16;
1da177e4 1967 limit = 16;
b28a02de
PE
1968 if (i + limit > size)
1969 limit = size - i;
1da177e4
LT
1970 dump_line(realobj, i, limit);
1971 i += 16;
1972 lines++;
1973 /* Limit to 5 lines */
1974 if (lines > 5)
1975 break;
1976 }
1977 }
1978 if (lines != 0) {
1979 /* Print some data about the neighboring objects, if they
1980 * exist:
1981 */
6ed5eb22 1982 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1983 unsigned int objnr;
1da177e4 1984
8fea4e96 1985 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1986 if (objnr) {
8fea4e96 1987 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1988 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1989 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1990 realobj, size);
1da177e4
LT
1991 print_objinfo(cachep, objp, 2);
1992 }
b28a02de 1993 if (objnr + 1 < cachep->num) {
8fea4e96 1994 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1995 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1996 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1997 realobj, size);
1da177e4
LT
1998 print_objinfo(cachep, objp, 2);
1999 }
2000 }
2001}
2002#endif
2003
12dd36fa 2004#if DEBUG
e79aec29 2005static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 2006{
1da177e4
LT
2007 int i;
2008 for (i = 0; i < cachep->num; i++) {
8fea4e96 2009 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2010
2011 if (cachep->flags & SLAB_POISON) {
2012#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2013 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 2014 OFF_SLAB(cachep))
b28a02de 2015 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2016 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2017 else
2018 check_poison_obj(cachep, objp);
2019#else
2020 check_poison_obj(cachep, objp);
2021#endif
2022 }
2023 if (cachep->flags & SLAB_RED_ZONE) {
2024 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2025 slab_error(cachep, "start of a freed object "
b28a02de 2026 "was overwritten");
1da177e4
LT
2027 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2028 slab_error(cachep, "end of a freed object "
b28a02de 2029 "was overwritten");
1da177e4 2030 }
1da177e4 2031 }
12dd36fa 2032}
1da177e4 2033#else
e79aec29 2034static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 2035{
12dd36fa 2036}
1da177e4
LT
2037#endif
2038
911851e6
RD
2039/**
2040 * slab_destroy - destroy and release all objects in a slab
2041 * @cachep: cache pointer being destroyed
2042 * @slabp: slab pointer being destroyed
2043 *
12dd36fa 2044 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
2045 * Before calling the slab must have been unlinked from the cache. The
2046 * cache-lock is not held/needed.
12dd36fa 2047 */
343e0d7a 2048static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 2049{
0c3aa83e 2050 struct page *page = virt_to_head_page(slabp->s_mem);
12dd36fa 2051
e79aec29 2052 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
2053 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2054 struct slab_rcu *slab_rcu;
2055
b28a02de 2056 slab_rcu = (struct slab_rcu *)slabp;
1da177e4 2057 slab_rcu->cachep = cachep;
0c3aa83e 2058 slab_rcu->page = page;
1da177e4
LT
2059 call_rcu(&slab_rcu->head, kmem_rcu_free);
2060 } else {
0c3aa83e 2061 kmem_freepages(cachep, page);
873623df
IM
2062 if (OFF_SLAB(cachep))
2063 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
2064 }
2065}
2066
4d268eba 2067/**
a70773dd
RD
2068 * calculate_slab_order - calculate size (page order) of slabs
2069 * @cachep: pointer to the cache that is being created
2070 * @size: size of objects to be created in this cache.
2071 * @align: required alignment for the objects.
2072 * @flags: slab allocation flags
2073 *
2074 * Also calculates the number of objects per slab.
4d268eba
PE
2075 *
2076 * This could be made much more intelligent. For now, try to avoid using
2077 * high order pages for slabs. When the gfp() functions are more friendly
2078 * towards high-order requests, this should be changed.
2079 */
a737b3e2 2080static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2081 size_t size, size_t align, unsigned long flags)
4d268eba 2082{
b1ab41c4 2083 unsigned long offslab_limit;
4d268eba 2084 size_t left_over = 0;
9888e6fa 2085 int gfporder;
4d268eba 2086
0aa817f0 2087 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2088 unsigned int num;
2089 size_t remainder;
2090
9888e6fa 2091 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2092 if (!num)
2093 continue;
9888e6fa 2094
b1ab41c4
IM
2095 if (flags & CFLGS_OFF_SLAB) {
2096 /*
2097 * Max number of objs-per-slab for caches which
2098 * use off-slab slabs. Needed to avoid a possible
2099 * looping condition in cache_grow().
2100 */
2101 offslab_limit = size - sizeof(struct slab);
2102 offslab_limit /= sizeof(kmem_bufctl_t);
2103
2104 if (num > offslab_limit)
2105 break;
2106 }
4d268eba 2107
9888e6fa 2108 /* Found something acceptable - save it away */
4d268eba 2109 cachep->num = num;
9888e6fa 2110 cachep->gfporder = gfporder;
4d268eba
PE
2111 left_over = remainder;
2112
f78bb8ad
LT
2113 /*
2114 * A VFS-reclaimable slab tends to have most allocations
2115 * as GFP_NOFS and we really don't want to have to be allocating
2116 * higher-order pages when we are unable to shrink dcache.
2117 */
2118 if (flags & SLAB_RECLAIM_ACCOUNT)
2119 break;
2120
4d268eba
PE
2121 /*
2122 * Large number of objects is good, but very large slabs are
2123 * currently bad for the gfp()s.
2124 */
543585cc 2125 if (gfporder >= slab_max_order)
4d268eba
PE
2126 break;
2127
9888e6fa
LT
2128 /*
2129 * Acceptable internal fragmentation?
2130 */
a737b3e2 2131 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2132 break;
2133 }
2134 return left_over;
2135}
2136
83b519e8 2137static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2138{
97d06609 2139 if (slab_state >= FULL)
83b519e8 2140 return enable_cpucache(cachep, gfp);
2ed3a4ef 2141
97d06609 2142 if (slab_state == DOWN) {
f30cf7d1 2143 /*
2f9baa9f 2144 * Note: Creation of first cache (kmem_cache).
ce8eb6c4 2145 * The setup_node is taken care
2f9baa9f
CL
2146 * of by the caller of __kmem_cache_create
2147 */
2148 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2149 slab_state = PARTIAL;
2150 } else if (slab_state == PARTIAL) {
2151 /*
2152 * Note: the second kmem_cache_create must create the cache
f30cf7d1
PE
2153 * that's used by kmalloc(24), otherwise the creation of
2154 * further caches will BUG().
2155 */
2156 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2157
2158 /*
ce8eb6c4
CL
2159 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2160 * the second cache, then we need to set up all its node/,
f30cf7d1
PE
2161 * otherwise the creation of further caches will BUG().
2162 */
ce8eb6c4
CL
2163 set_up_node(cachep, SIZE_AC);
2164 if (INDEX_AC == INDEX_NODE)
2165 slab_state = PARTIAL_NODE;
f30cf7d1 2166 else
97d06609 2167 slab_state = PARTIAL_ARRAYCACHE;
f30cf7d1 2168 } else {
2f9baa9f 2169 /* Remaining boot caches */
f30cf7d1 2170 cachep->array[smp_processor_id()] =
83b519e8 2171 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1 2172
97d06609 2173 if (slab_state == PARTIAL_ARRAYCACHE) {
ce8eb6c4
CL
2174 set_up_node(cachep, SIZE_NODE);
2175 slab_state = PARTIAL_NODE;
f30cf7d1
PE
2176 } else {
2177 int node;
556a169d 2178 for_each_online_node(node) {
6a67368c 2179 cachep->node[node] =
6744f087 2180 kmalloc_node(sizeof(struct kmem_cache_node),
eb91f1d0 2181 gfp, node);
6a67368c 2182 BUG_ON(!cachep->node[node]);
ce8eb6c4 2183 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
2184 }
2185 }
2186 }
6a67368c 2187 cachep->node[numa_mem_id()]->next_reap =
f30cf7d1
PE
2188 jiffies + REAPTIMEOUT_LIST3 +
2189 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2190
2191 cpu_cache_get(cachep)->avail = 0;
2192 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2193 cpu_cache_get(cachep)->batchcount = 1;
2194 cpu_cache_get(cachep)->touched = 0;
2195 cachep->batchcount = 1;
2196 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2197 return 0;
f30cf7d1
PE
2198}
2199
1da177e4 2200/**
039363f3 2201 * __kmem_cache_create - Create a cache.
a755b76a 2202 * @cachep: cache management descriptor
1da177e4 2203 * @flags: SLAB flags
1da177e4
LT
2204 *
2205 * Returns a ptr to the cache on success, NULL on failure.
2206 * Cannot be called within a int, but can be interrupted.
20c2df83 2207 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2208 *
1da177e4
LT
2209 * The flags are
2210 *
2211 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2212 * to catch references to uninitialised memory.
2213 *
2214 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2215 * for buffer overruns.
2216 *
1da177e4
LT
2217 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2218 * cacheline. This can be beneficial if you're counting cycles as closely
2219 * as davem.
2220 */
278b1bb1 2221int
8a13a4cc 2222__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4
LT
2223{
2224 size_t left_over, slab_size, ralign;
83b519e8 2225 gfp_t gfp;
278b1bb1 2226 int err;
8a13a4cc 2227 size_t size = cachep->size;
1da177e4 2228
1da177e4 2229#if DEBUG
1da177e4
LT
2230#if FORCED_DEBUG
2231 /*
2232 * Enable redzoning and last user accounting, except for caches with
2233 * large objects, if the increased size would increase the object size
2234 * above the next power of two: caches with object sizes just above a
2235 * power of two have a significant amount of internal fragmentation.
2236 */
87a927c7
DW
2237 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2238 2 * sizeof(unsigned long long)))
b28a02de 2239 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2240 if (!(flags & SLAB_DESTROY_BY_RCU))
2241 flags |= SLAB_POISON;
2242#endif
2243 if (flags & SLAB_DESTROY_BY_RCU)
2244 BUG_ON(flags & SLAB_POISON);
2245#endif
1da177e4 2246
a737b3e2
AM
2247 /*
2248 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2249 * unaligned accesses for some archs when redzoning is used, and makes
2250 * sure any on-slab bufctl's are also correctly aligned.
2251 */
b28a02de
PE
2252 if (size & (BYTES_PER_WORD - 1)) {
2253 size += (BYTES_PER_WORD - 1);
2254 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2255 }
2256
ca5f9703 2257 /*
87a927c7
DW
2258 * Redzoning and user store require word alignment or possibly larger.
2259 * Note this will be overridden by architecture or caller mandated
2260 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2261 */
87a927c7
DW
2262 if (flags & SLAB_STORE_USER)
2263 ralign = BYTES_PER_WORD;
2264
2265 if (flags & SLAB_RED_ZONE) {
2266 ralign = REDZONE_ALIGN;
2267 /* If redzoning, ensure that the second redzone is suitably
2268 * aligned, by adjusting the object size accordingly. */
2269 size += REDZONE_ALIGN - 1;
2270 size &= ~(REDZONE_ALIGN - 1);
2271 }
ca5f9703 2272
a44b56d3 2273 /* 3) caller mandated alignment */
8a13a4cc
CL
2274 if (ralign < cachep->align) {
2275 ralign = cachep->align;
1da177e4 2276 }
3ff84a7f
PE
2277 /* disable debug if necessary */
2278 if (ralign > __alignof__(unsigned long long))
a44b56d3 2279 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2280 /*
ca5f9703 2281 * 4) Store it.
1da177e4 2282 */
8a13a4cc 2283 cachep->align = ralign;
1da177e4 2284
83b519e8
PE
2285 if (slab_is_available())
2286 gfp = GFP_KERNEL;
2287 else
2288 gfp = GFP_NOWAIT;
2289
6a67368c 2290 setup_node_pointer(cachep);
1da177e4 2291#if DEBUG
1da177e4 2292
ca5f9703
PE
2293 /*
2294 * Both debugging options require word-alignment which is calculated
2295 * into align above.
2296 */
1da177e4 2297 if (flags & SLAB_RED_ZONE) {
1da177e4 2298 /* add space for red zone words */
3ff84a7f
PE
2299 cachep->obj_offset += sizeof(unsigned long long);
2300 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2301 }
2302 if (flags & SLAB_STORE_USER) {
ca5f9703 2303 /* user store requires one word storage behind the end of
87a927c7
DW
2304 * the real object. But if the second red zone needs to be
2305 * aligned to 64 bits, we must allow that much space.
1da177e4 2306 */
87a927c7
DW
2307 if (flags & SLAB_RED_ZONE)
2308 size += REDZONE_ALIGN;
2309 else
2310 size += BYTES_PER_WORD;
1da177e4
LT
2311 }
2312#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
ce8eb6c4 2313 if (size >= kmalloc_size(INDEX_NODE + 1)
608da7e3
TH
2314 && cachep->object_size > cache_line_size()
2315 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2316 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
1da177e4
LT
2317 size = PAGE_SIZE;
2318 }
2319#endif
2320#endif
2321
e0a42726
IM
2322 /*
2323 * Determine if the slab management is 'on' or 'off' slab.
2324 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2325 * it too early on. Always use on-slab management when
2326 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2327 */
e7cb55b9
CM
2328 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2329 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2330 /*
2331 * Size is large, assume best to place the slab management obj
2332 * off-slab (should allow better packing of objs).
2333 */
2334 flags |= CFLGS_OFF_SLAB;
2335
8a13a4cc 2336 size = ALIGN(size, cachep->align);
1da177e4 2337
8a13a4cc 2338 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
1da177e4 2339
8a13a4cc 2340 if (!cachep->num)
278b1bb1 2341 return -E2BIG;
1da177e4 2342
b28a02de 2343 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
8a13a4cc 2344 + sizeof(struct slab), cachep->align);
1da177e4
LT
2345
2346 /*
2347 * If the slab has been placed off-slab, and we have enough space then
2348 * move it on-slab. This is at the expense of any extra colouring.
2349 */
2350 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2351 flags &= ~CFLGS_OFF_SLAB;
2352 left_over -= slab_size;
2353 }
2354
2355 if (flags & CFLGS_OFF_SLAB) {
2356 /* really off slab. No need for manual alignment */
b28a02de
PE
2357 slab_size =
2358 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
67461365
RL
2359
2360#ifdef CONFIG_PAGE_POISONING
2361 /* If we're going to use the generic kernel_map_pages()
2362 * poisoning, then it's going to smash the contents of
2363 * the redzone and userword anyhow, so switch them off.
2364 */
2365 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2366 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2367#endif
1da177e4
LT
2368 }
2369
2370 cachep->colour_off = cache_line_size();
2371 /* Offset must be a multiple of the alignment. */
8a13a4cc
CL
2372 if (cachep->colour_off < cachep->align)
2373 cachep->colour_off = cachep->align;
b28a02de 2374 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2375 cachep->slab_size = slab_size;
2376 cachep->flags = flags;
a618e89f 2377 cachep->allocflags = 0;
4b51d669 2378 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2379 cachep->allocflags |= GFP_DMA;
3b0efdfa 2380 cachep->size = size;
6a2d7a95 2381 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2382
e5ac9c5a 2383 if (flags & CFLGS_OFF_SLAB) {
2c59dd65 2384 cachep->slabp_cache = kmalloc_slab(slab_size, 0u);
e5ac9c5a
RT
2385 /*
2386 * This is a possibility for one of the malloc_sizes caches.
2387 * But since we go off slab only for object size greater than
2388 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2389 * this should not happen at all.
2390 * But leave a BUG_ON for some lucky dude.
2391 */
6cb8f913 2392 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2393 }
1da177e4 2394
278b1bb1
CL
2395 err = setup_cpu_cache(cachep, gfp);
2396 if (err) {
12c3667f 2397 __kmem_cache_shutdown(cachep);
278b1bb1 2398 return err;
2ed3a4ef 2399 }
1da177e4 2400
83835b3d
PZ
2401 if (flags & SLAB_DEBUG_OBJECTS) {
2402 /*
2403 * Would deadlock through slab_destroy()->call_rcu()->
2404 * debug_object_activate()->kmem_cache_alloc().
2405 */
2406 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2407
2408 slab_set_debugobj_lock_classes(cachep);
6ccfb5bc
GC
2409 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2410 on_slab_lock_classes(cachep);
83835b3d 2411
278b1bb1 2412 return 0;
1da177e4 2413}
1da177e4
LT
2414
2415#if DEBUG
2416static void check_irq_off(void)
2417{
2418 BUG_ON(!irqs_disabled());
2419}
2420
2421static void check_irq_on(void)
2422{
2423 BUG_ON(irqs_disabled());
2424}
2425
343e0d7a 2426static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2427{
2428#ifdef CONFIG_SMP
2429 check_irq_off();
6a67368c 2430 assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
1da177e4
LT
2431#endif
2432}
e498be7d 2433
343e0d7a 2434static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2435{
2436#ifdef CONFIG_SMP
2437 check_irq_off();
6a67368c 2438 assert_spin_locked(&cachep->node[node]->list_lock);
e498be7d
CL
2439#endif
2440}
2441
1da177e4
LT
2442#else
2443#define check_irq_off() do { } while(0)
2444#define check_irq_on() do { } while(0)
2445#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2446#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2447#endif
2448
ce8eb6c4 2449static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
aab2207c
CL
2450 struct array_cache *ac,
2451 int force, int node);
2452
1da177e4
LT
2453static void do_drain(void *arg)
2454{
a737b3e2 2455 struct kmem_cache *cachep = arg;
1da177e4 2456 struct array_cache *ac;
7d6e6d09 2457 int node = numa_mem_id();
1da177e4
LT
2458
2459 check_irq_off();
9a2dba4b 2460 ac = cpu_cache_get(cachep);
6a67368c 2461 spin_lock(&cachep->node[node]->list_lock);
ff69416e 2462 free_block(cachep, ac->entry, ac->avail, node);
6a67368c 2463 spin_unlock(&cachep->node[node]->list_lock);
1da177e4
LT
2464 ac->avail = 0;
2465}
2466
343e0d7a 2467static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2468{
ce8eb6c4 2469 struct kmem_cache_node *n;
e498be7d
CL
2470 int node;
2471
15c8b6c1 2472 on_each_cpu(do_drain, cachep, 1);
1da177e4 2473 check_irq_on();
b28a02de 2474 for_each_online_node(node) {
ce8eb6c4
CL
2475 n = cachep->node[node];
2476 if (n && n->alien)
2477 drain_alien_cache(cachep, n->alien);
a4523a8b
RD
2478 }
2479
2480 for_each_online_node(node) {
ce8eb6c4
CL
2481 n = cachep->node[node];
2482 if (n)
2483 drain_array(cachep, n, n->shared, 1, node);
e498be7d 2484 }
1da177e4
LT
2485}
2486
ed11d9eb
CL
2487/*
2488 * Remove slabs from the list of free slabs.
2489 * Specify the number of slabs to drain in tofree.
2490 *
2491 * Returns the actual number of slabs released.
2492 */
2493static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2494 struct kmem_cache_node *n, int tofree)
1da177e4 2495{
ed11d9eb
CL
2496 struct list_head *p;
2497 int nr_freed;
1da177e4 2498 struct slab *slabp;
1da177e4 2499
ed11d9eb 2500 nr_freed = 0;
ce8eb6c4 2501 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2502
ce8eb6c4
CL
2503 spin_lock_irq(&n->list_lock);
2504 p = n->slabs_free.prev;
2505 if (p == &n->slabs_free) {
2506 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2507 goto out;
2508 }
1da177e4 2509
ed11d9eb 2510 slabp = list_entry(p, struct slab, list);
1da177e4 2511#if DEBUG
40094fa6 2512 BUG_ON(slabp->inuse);
1da177e4
LT
2513#endif
2514 list_del(&slabp->list);
ed11d9eb
CL
2515 /*
2516 * Safe to drop the lock. The slab is no longer linked
2517 * to the cache.
2518 */
ce8eb6c4
CL
2519 n->free_objects -= cache->num;
2520 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2521 slab_destroy(cache, slabp);
2522 nr_freed++;
1da177e4 2523 }
ed11d9eb
CL
2524out:
2525 return nr_freed;
1da177e4
LT
2526}
2527
18004c5d 2528/* Called with slab_mutex held to protect against cpu hotplug */
343e0d7a 2529static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2530{
2531 int ret = 0, i = 0;
ce8eb6c4 2532 struct kmem_cache_node *n;
e498be7d
CL
2533
2534 drain_cpu_caches(cachep);
2535
2536 check_irq_on();
2537 for_each_online_node(i) {
ce8eb6c4
CL
2538 n = cachep->node[i];
2539 if (!n)
ed11d9eb
CL
2540 continue;
2541
0fa8103b 2542 drain_freelist(cachep, n, slabs_tofree(cachep, n));
ed11d9eb 2543
ce8eb6c4
CL
2544 ret += !list_empty(&n->slabs_full) ||
2545 !list_empty(&n->slabs_partial);
e498be7d
CL
2546 }
2547 return (ret ? 1 : 0);
2548}
2549
1da177e4
LT
2550/**
2551 * kmem_cache_shrink - Shrink a cache.
2552 * @cachep: The cache to shrink.
2553 *
2554 * Releases as many slabs as possible for a cache.
2555 * To help debugging, a zero exit status indicates all slabs were released.
2556 */
343e0d7a 2557int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2558{
8f5be20b 2559 int ret;
40094fa6 2560 BUG_ON(!cachep || in_interrupt());
1da177e4 2561
95402b38 2562 get_online_cpus();
18004c5d 2563 mutex_lock(&slab_mutex);
8f5be20b 2564 ret = __cache_shrink(cachep);
18004c5d 2565 mutex_unlock(&slab_mutex);
95402b38 2566 put_online_cpus();
8f5be20b 2567 return ret;
1da177e4
LT
2568}
2569EXPORT_SYMBOL(kmem_cache_shrink);
2570
945cf2b6 2571int __kmem_cache_shutdown(struct kmem_cache *cachep)
1da177e4 2572{
12c3667f 2573 int i;
ce8eb6c4 2574 struct kmem_cache_node *n;
12c3667f 2575 int rc = __cache_shrink(cachep);
1da177e4 2576
12c3667f
CL
2577 if (rc)
2578 return rc;
1da177e4 2579
12c3667f
CL
2580 for_each_online_cpu(i)
2581 kfree(cachep->array[i]);
1da177e4 2582
ce8eb6c4 2583 /* NUMA: free the node structures */
12c3667f 2584 for_each_online_node(i) {
ce8eb6c4
CL
2585 n = cachep->node[i];
2586 if (n) {
2587 kfree(n->shared);
2588 free_alien_cache(n->alien);
2589 kfree(n);
12c3667f
CL
2590 }
2591 }
2592 return 0;
1da177e4 2593}
1da177e4 2594
e5ac9c5a
RT
2595/*
2596 * Get the memory for a slab management obj.
2597 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2598 * always come from malloc_sizes caches. The slab descriptor cannot
2599 * come from the same cache which is getting created because,
2600 * when we are searching for an appropriate cache for these
2601 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2602 * If we are creating a malloc_sizes cache here it would not be visible to
2603 * kmem_find_general_cachep till the initialization is complete.
2604 * Hence we cannot have slabp_cache same as the original cache.
2605 */
0c3aa83e
JK
2606static struct slab *alloc_slabmgmt(struct kmem_cache *cachep,
2607 struct page *page, int colour_off,
2608 gfp_t local_flags, int nodeid)
1da177e4
LT
2609{
2610 struct slab *slabp;
0c3aa83e 2611 void *addr = page_address(page);
b28a02de 2612
1da177e4
LT
2613 if (OFF_SLAB(cachep)) {
2614 /* Slab management obj is off-slab. */
5b74ada7 2615 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2616 local_flags, nodeid);
d5cff635
CM
2617 /*
2618 * If the first object in the slab is leaked (it's allocated
2619 * but no one has a reference to it), we want to make sure
2620 * kmemleak does not treat the ->s_mem pointer as a reference
2621 * to the object. Otherwise we will not report the leak.
2622 */
c017b4be
CM
2623 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2624 local_flags);
1da177e4
LT
2625 if (!slabp)
2626 return NULL;
2627 } else {
0c3aa83e 2628 slabp = addr + colour_off;
1da177e4
LT
2629 colour_off += cachep->slab_size;
2630 }
2631 slabp->inuse = 0;
0c3aa83e 2632 slabp->s_mem = addr + colour_off;
5b74ada7 2633 slabp->nodeid = nodeid;
e51bfd0a 2634 slabp->free = 0;
1da177e4
LT
2635 return slabp;
2636}
2637
2638static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2639{
b28a02de 2640 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2641}
2642
343e0d7a 2643static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2644 struct slab *slabp)
1da177e4
LT
2645{
2646 int i;
2647
2648 for (i = 0; i < cachep->num; i++) {
8fea4e96 2649 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2650#if DEBUG
2651 /* need to poison the objs? */
2652 if (cachep->flags & SLAB_POISON)
2653 poison_obj(cachep, objp, POISON_FREE);
2654 if (cachep->flags & SLAB_STORE_USER)
2655 *dbg_userword(cachep, objp) = NULL;
2656
2657 if (cachep->flags & SLAB_RED_ZONE) {
2658 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2659 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2660 }
2661 /*
a737b3e2
AM
2662 * Constructors are not allowed to allocate memory from the same
2663 * cache which they are a constructor for. Otherwise, deadlock.
2664 * They must also be threaded.
1da177e4
LT
2665 */
2666 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2667 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2668
2669 if (cachep->flags & SLAB_RED_ZONE) {
2670 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2671 slab_error(cachep, "constructor overwrote the"
b28a02de 2672 " end of an object");
1da177e4
LT
2673 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2674 slab_error(cachep, "constructor overwrote the"
b28a02de 2675 " start of an object");
1da177e4 2676 }
3b0efdfa 2677 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2678 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2679 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2680 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2681#else
2682 if (cachep->ctor)
51cc5068 2683 cachep->ctor(objp);
1da177e4 2684#endif
b28a02de 2685 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2686 }
b28a02de 2687 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2688}
2689
343e0d7a 2690static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2691{
4b51d669
CL
2692 if (CONFIG_ZONE_DMA_FLAG) {
2693 if (flags & GFP_DMA)
a618e89f 2694 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2695 else
a618e89f 2696 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2697 }
1da177e4
LT
2698}
2699
a737b3e2
AM
2700static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2701 int nodeid)
78d382d7 2702{
8fea4e96 2703 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2704 kmem_bufctl_t next;
2705
2706 slabp->inuse++;
2707 next = slab_bufctl(slabp)[slabp->free];
2708#if DEBUG
2709 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2710 WARN_ON(slabp->nodeid != nodeid);
2711#endif
2712 slabp->free = next;
2713
2714 return objp;
2715}
2716
a737b3e2
AM
2717static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2718 void *objp, int nodeid)
78d382d7 2719{
8fea4e96 2720 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2721
2722#if DEBUG
2723 /* Verify that the slab belongs to the intended node */
2724 WARN_ON(slabp->nodeid != nodeid);
2725
871751e2 2726 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2727 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2728 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2729 BUG();
2730 }
2731#endif
2732 slab_bufctl(slabp)[objnr] = slabp->free;
2733 slabp->free = objnr;
2734 slabp->inuse--;
2735}
2736
4776874f
PE
2737/*
2738 * Map pages beginning at addr to the given cache and slab. This is required
2739 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2740 * virtual address for kfree, ksize, and slab debugging.
4776874f
PE
2741 */
2742static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
0c3aa83e 2743 struct page *page)
1da177e4 2744{
4776874f 2745 int nr_pages;
84097518 2746
4776874f 2747 nr_pages = 1;
84097518 2748 if (likely(!PageCompound(page)))
4776874f
PE
2749 nr_pages <<= cache->gfporder;
2750
1da177e4 2751 do {
35026088
CL
2752 page->slab_cache = cache;
2753 page->slab_page = slab;
1da177e4 2754 page++;
4776874f 2755 } while (--nr_pages);
1da177e4
LT
2756}
2757
2758/*
2759 * Grow (by 1) the number of slabs within a cache. This is called by
2760 * kmem_cache_alloc() when there are no active objs left in a cache.
2761 */
3c517a61 2762static int cache_grow(struct kmem_cache *cachep,
0c3aa83e 2763 gfp_t flags, int nodeid, struct page *page)
1da177e4 2764{
b28a02de 2765 struct slab *slabp;
b28a02de
PE
2766 size_t offset;
2767 gfp_t local_flags;
ce8eb6c4 2768 struct kmem_cache_node *n;
1da177e4 2769
a737b3e2
AM
2770 /*
2771 * Be lazy and only check for valid flags here, keeping it out of the
2772 * critical path in kmem_cache_alloc().
1da177e4 2773 */
6cb06229
CL
2774 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2775 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2776
ce8eb6c4 2777 /* Take the node list lock to change the colour_next on this node */
1da177e4 2778 check_irq_off();
ce8eb6c4
CL
2779 n = cachep->node[nodeid];
2780 spin_lock(&n->list_lock);
1da177e4
LT
2781
2782 /* Get colour for the slab, and cal the next value. */
ce8eb6c4
CL
2783 offset = n->colour_next;
2784 n->colour_next++;
2785 if (n->colour_next >= cachep->colour)
2786 n->colour_next = 0;
2787 spin_unlock(&n->list_lock);
1da177e4 2788
2e1217cf 2789 offset *= cachep->colour_off;
1da177e4
LT
2790
2791 if (local_flags & __GFP_WAIT)
2792 local_irq_enable();
2793
2794 /*
2795 * The test for missing atomic flag is performed here, rather than
2796 * the more obvious place, simply to reduce the critical path length
2797 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2798 * will eventually be caught here (where it matters).
2799 */
2800 kmem_flagcheck(cachep, flags);
2801
a737b3e2
AM
2802 /*
2803 * Get mem for the objs. Attempt to allocate a physical page from
2804 * 'nodeid'.
e498be7d 2805 */
0c3aa83e
JK
2806 if (!page)
2807 page = kmem_getpages(cachep, local_flags, nodeid);
2808 if (!page)
1da177e4
LT
2809 goto failed;
2810
2811 /* Get slab management. */
0c3aa83e 2812 slabp = alloc_slabmgmt(cachep, page, offset,
6cb06229 2813 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2814 if (!slabp)
1da177e4
LT
2815 goto opps1;
2816
0c3aa83e 2817 slab_map_pages(cachep, slabp, page);
1da177e4 2818
a35afb83 2819 cache_init_objs(cachep, slabp);
1da177e4
LT
2820
2821 if (local_flags & __GFP_WAIT)
2822 local_irq_disable();
2823 check_irq_off();
ce8eb6c4 2824 spin_lock(&n->list_lock);
1da177e4
LT
2825
2826 /* Make slab active. */
ce8eb6c4 2827 list_add_tail(&slabp->list, &(n->slabs_free));
1da177e4 2828 STATS_INC_GROWN(cachep);
ce8eb6c4
CL
2829 n->free_objects += cachep->num;
2830 spin_unlock(&n->list_lock);
1da177e4 2831 return 1;
a737b3e2 2832opps1:
0c3aa83e 2833 kmem_freepages(cachep, page);
a737b3e2 2834failed:
1da177e4
LT
2835 if (local_flags & __GFP_WAIT)
2836 local_irq_disable();
2837 return 0;
2838}
2839
2840#if DEBUG
2841
2842/*
2843 * Perform extra freeing checks:
2844 * - detect bad pointers.
2845 * - POISON/RED_ZONE checking
1da177e4
LT
2846 */
2847static void kfree_debugcheck(const void *objp)
2848{
1da177e4
LT
2849 if (!virt_addr_valid(objp)) {
2850 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2851 (unsigned long)objp);
2852 BUG();
1da177e4 2853 }
1da177e4
LT
2854}
2855
58ce1fd5
PE
2856static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2857{
b46b8f19 2858 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2859
2860 redzone1 = *dbg_redzone1(cache, obj);
2861 redzone2 = *dbg_redzone2(cache, obj);
2862
2863 /*
2864 * Redzone is ok.
2865 */
2866 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2867 return;
2868
2869 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2870 slab_error(cache, "double free detected");
2871 else
2872 slab_error(cache, "memory outside object was overwritten");
2873
b46b8f19 2874 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2875 obj, redzone1, redzone2);
2876}
2877
343e0d7a 2878static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2879 unsigned long caller)
1da177e4
LT
2880{
2881 struct page *page;
2882 unsigned int objnr;
2883 struct slab *slabp;
2884
80cbd911
MW
2885 BUG_ON(virt_to_cache(objp) != cachep);
2886
3dafccf2 2887 objp -= obj_offset(cachep);
1da177e4 2888 kfree_debugcheck(objp);
b49af68f 2889 page = virt_to_head_page(objp);
1da177e4 2890
35026088 2891 slabp = page->slab_page;
1da177e4
LT
2892
2893 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2894 verify_redzone_free(cachep, objp);
1da177e4
LT
2895 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2896 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2897 }
2898 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2899 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4 2900
8fea4e96 2901 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2902
2903 BUG_ON(objnr >= cachep->num);
8fea4e96 2904 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2905
871751e2
AV
2906#ifdef CONFIG_DEBUG_SLAB_LEAK
2907 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2908#endif
1da177e4
LT
2909 if (cachep->flags & SLAB_POISON) {
2910#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2911 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
7c0cb9c6 2912 store_stackinfo(cachep, objp, caller);
b28a02de 2913 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2914 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2915 } else {
2916 poison_obj(cachep, objp, POISON_FREE);
2917 }
2918#else
2919 poison_obj(cachep, objp, POISON_FREE);
2920#endif
2921 }
2922 return objp;
2923}
2924
343e0d7a 2925static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2926{
2927 kmem_bufctl_t i;
2928 int entries = 0;
b28a02de 2929
1da177e4
LT
2930 /* Check slab's freelist to see if this obj is there. */
2931 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2932 entries++;
2933 if (entries > cachep->num || i >= cachep->num)
2934 goto bad;
2935 }
2936 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2937bad:
2938 printk(KERN_ERR "slab: Internal list corruption detected in "
face37f5
DJ
2939 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
2940 cachep->name, cachep->num, slabp, slabp->inuse,
2941 print_tainted());
fdde6abb
SAS
2942 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
2943 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
2944 1);
1da177e4
LT
2945 BUG();
2946 }
2947}
2948#else
2949#define kfree_debugcheck(x) do { } while(0)
2950#define cache_free_debugcheck(x,objp,z) (objp)
2951#define check_slabp(x,y) do { } while(0)
2952#endif
2953
072bb0aa
MG
2954static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2955 bool force_refill)
1da177e4
LT
2956{
2957 int batchcount;
ce8eb6c4 2958 struct kmem_cache_node *n;
1da177e4 2959 struct array_cache *ac;
1ca4cb24
PE
2960 int node;
2961
1da177e4 2962 check_irq_off();
7d6e6d09 2963 node = numa_mem_id();
072bb0aa
MG
2964 if (unlikely(force_refill))
2965 goto force_grow;
2966retry:
9a2dba4b 2967 ac = cpu_cache_get(cachep);
1da177e4
LT
2968 batchcount = ac->batchcount;
2969 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2970 /*
2971 * If there was little recent activity on this cache, then
2972 * perform only a partial refill. Otherwise we could generate
2973 * refill bouncing.
1da177e4
LT
2974 */
2975 batchcount = BATCHREFILL_LIMIT;
2976 }
ce8eb6c4 2977 n = cachep->node[node];
e498be7d 2978
ce8eb6c4
CL
2979 BUG_ON(ac->avail > 0 || !n);
2980 spin_lock(&n->list_lock);
1da177e4 2981
3ded175a 2982 /* See if we can refill from the shared array */
ce8eb6c4
CL
2983 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2984 n->shared->touched = 1;
3ded175a 2985 goto alloc_done;
44b57f1c 2986 }
3ded175a 2987
1da177e4
LT
2988 while (batchcount > 0) {
2989 struct list_head *entry;
2990 struct slab *slabp;
2991 /* Get slab alloc is to come from. */
ce8eb6c4
CL
2992 entry = n->slabs_partial.next;
2993 if (entry == &n->slabs_partial) {
2994 n->free_touched = 1;
2995 entry = n->slabs_free.next;
2996 if (entry == &n->slabs_free)
1da177e4
LT
2997 goto must_grow;
2998 }
2999
3000 slabp = list_entry(entry, struct slab, list);
3001 check_slabp(cachep, slabp);
3002 check_spinlock_acquired(cachep);
714b8171
PE
3003
3004 /*
3005 * The slab was either on partial or free list so
3006 * there must be at least one object available for
3007 * allocation.
3008 */
249b9f33 3009 BUG_ON(slabp->inuse >= cachep->num);
714b8171 3010
1da177e4 3011 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3012 STATS_INC_ALLOCED(cachep);
3013 STATS_INC_ACTIVE(cachep);
3014 STATS_SET_HIGH(cachep);
3015
072bb0aa
MG
3016 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3017 node));
1da177e4
LT
3018 }
3019 check_slabp(cachep, slabp);
3020
3021 /* move slabp to correct slabp list: */
3022 list_del(&slabp->list);
3023 if (slabp->free == BUFCTL_END)
ce8eb6c4 3024 list_add(&slabp->list, &n->slabs_full);
1da177e4 3025 else
ce8eb6c4 3026 list_add(&slabp->list, &n->slabs_partial);
1da177e4
LT
3027 }
3028
a737b3e2 3029must_grow:
ce8eb6c4 3030 n->free_objects -= ac->avail;
a737b3e2 3031alloc_done:
ce8eb6c4 3032 spin_unlock(&n->list_lock);
1da177e4
LT
3033
3034 if (unlikely(!ac->avail)) {
3035 int x;
072bb0aa 3036force_grow:
3c517a61 3037 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3038
a737b3e2 3039 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3040 ac = cpu_cache_get(cachep);
51cd8e6f 3041 node = numa_mem_id();
072bb0aa
MG
3042
3043 /* no objects in sight? abort */
3044 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
3045 return NULL;
3046
a737b3e2 3047 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3048 goto retry;
3049 }
3050 ac->touched = 1;
072bb0aa
MG
3051
3052 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
3053}
3054
a737b3e2
AM
3055static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3056 gfp_t flags)
1da177e4
LT
3057{
3058 might_sleep_if(flags & __GFP_WAIT);
3059#if DEBUG
3060 kmem_flagcheck(cachep, flags);
3061#endif
3062}
3063
3064#if DEBUG
a737b3e2 3065static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 3066 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3067{
b28a02de 3068 if (!objp)
1da177e4 3069 return objp;
b28a02de 3070 if (cachep->flags & SLAB_POISON) {
1da177e4 3071#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3072 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3073 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3074 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
3075 else
3076 check_poison_obj(cachep, objp);
3077#else
3078 check_poison_obj(cachep, objp);
3079#endif
3080 poison_obj(cachep, objp, POISON_INUSE);
3081 }
3082 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3083 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3084
3085 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3086 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3087 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3088 slab_error(cachep, "double free, or memory outside"
3089 " object was overwritten");
b28a02de 3090 printk(KERN_ERR
b46b8f19 3091 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3092 objp, *dbg_redzone1(cachep, objp),
3093 *dbg_redzone2(cachep, objp));
1da177e4
LT
3094 }
3095 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3096 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3097 }
871751e2
AV
3098#ifdef CONFIG_DEBUG_SLAB_LEAK
3099 {
3100 struct slab *slabp;
3101 unsigned objnr;
3102
35026088 3103 slabp = virt_to_head_page(objp)->slab_page;
3b0efdfa 3104 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
871751e2
AV
3105 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3106 }
3107#endif
3dafccf2 3108 objp += obj_offset(cachep);
4f104934 3109 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3110 cachep->ctor(objp);
7ea466f2
TH
3111 if (ARCH_SLAB_MINALIGN &&
3112 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 3113 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3114 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3115 }
1da177e4
LT
3116 return objp;
3117}
3118#else
3119#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3120#endif
3121
773ff60e 3122static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502 3123{
9b030cb8 3124 if (cachep == kmem_cache)
773ff60e 3125 return false;
8a8b6502 3126
8c138bc0 3127 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
3128}
3129
343e0d7a 3130static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3131{
b28a02de 3132 void *objp;
1da177e4 3133 struct array_cache *ac;
072bb0aa 3134 bool force_refill = false;
1da177e4 3135
5c382300 3136 check_irq_off();
8a8b6502 3137
9a2dba4b 3138 ac = cpu_cache_get(cachep);
1da177e4 3139 if (likely(ac->avail)) {
1da177e4 3140 ac->touched = 1;
072bb0aa
MG
3141 objp = ac_get_obj(cachep, ac, flags, false);
3142
ddbf2e83 3143 /*
072bb0aa
MG
3144 * Allow for the possibility all avail objects are not allowed
3145 * by the current flags
ddbf2e83 3146 */
072bb0aa
MG
3147 if (objp) {
3148 STATS_INC_ALLOCHIT(cachep);
3149 goto out;
3150 }
3151 force_refill = true;
1da177e4 3152 }
072bb0aa
MG
3153
3154 STATS_INC_ALLOCMISS(cachep);
3155 objp = cache_alloc_refill(cachep, flags, force_refill);
3156 /*
3157 * the 'ac' may be updated by cache_alloc_refill(),
3158 * and kmemleak_erase() requires its correct value.
3159 */
3160 ac = cpu_cache_get(cachep);
3161
3162out:
d5cff635
CM
3163 /*
3164 * To avoid a false negative, if an object that is in one of the
3165 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3166 * treat the array pointers as a reference to the object.
3167 */
f3d8b53a
O
3168 if (objp)
3169 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3170 return objp;
3171}
3172
e498be7d 3173#ifdef CONFIG_NUMA
c61afb18 3174/*
b2455396 3175 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3176 *
3177 * If we are in_interrupt, then process context, including cpusets and
3178 * mempolicy, may not apply and should not be used for allocation policy.
3179 */
3180static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3181{
3182 int nid_alloc, nid_here;
3183
765c4507 3184 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3185 return NULL;
7d6e6d09 3186 nid_alloc = nid_here = numa_mem_id();
c61afb18 3187 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3188 nid_alloc = cpuset_slab_spread_node();
c61afb18 3189 else if (current->mempolicy)
e7b691b0 3190 nid_alloc = slab_node();
c61afb18 3191 if (nid_alloc != nid_here)
8b98c169 3192 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3193 return NULL;
3194}
3195
765c4507
CL
3196/*
3197 * Fallback function if there was no memory available and no objects on a
3c517a61 3198 * certain node and fall back is permitted. First we scan all the
6a67368c 3199 * available node for available objects. If that fails then we
3c517a61
CL
3200 * perform an allocation without specifying a node. This allows the page
3201 * allocator to do its reclaim / fallback magic. We then insert the
3202 * slab into the proper nodelist and then allocate from it.
765c4507 3203 */
8c8cc2c1 3204static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3205{
8c8cc2c1
PE
3206 struct zonelist *zonelist;
3207 gfp_t local_flags;
dd1a239f 3208 struct zoneref *z;
54a6eb5c
MG
3209 struct zone *zone;
3210 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3211 void *obj = NULL;
3c517a61 3212 int nid;
cc9a6c87 3213 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3214
3215 if (flags & __GFP_THISNODE)
3216 return NULL;
3217
6cb06229 3218 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3219
cc9a6c87
MG
3220retry_cpuset:
3221 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 3222 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87 3223
3c517a61
CL
3224retry:
3225 /*
3226 * Look through allowed nodes for objects available
3227 * from existing per node queues.
3228 */
54a6eb5c
MG
3229 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3230 nid = zone_to_nid(zone);
aedb0eb1 3231
54a6eb5c 3232 if (cpuset_zone_allowed_hardwall(zone, flags) &&
6a67368c
CL
3233 cache->node[nid] &&
3234 cache->node[nid]->free_objects) {
3c517a61
CL
3235 obj = ____cache_alloc_node(cache,
3236 flags | GFP_THISNODE, nid);
481c5346
CL
3237 if (obj)
3238 break;
3239 }
3c517a61
CL
3240 }
3241
cfce6604 3242 if (!obj) {
3c517a61
CL
3243 /*
3244 * This allocation will be performed within the constraints
3245 * of the current cpuset / memory policy requirements.
3246 * We may trigger various forms of reclaim on the allowed
3247 * set and go into memory reserves if necessary.
3248 */
0c3aa83e
JK
3249 struct page *page;
3250
dd47ea75
CL
3251 if (local_flags & __GFP_WAIT)
3252 local_irq_enable();
3253 kmem_flagcheck(cache, flags);
0c3aa83e 3254 page = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3255 if (local_flags & __GFP_WAIT)
3256 local_irq_disable();
0c3aa83e 3257 if (page) {
3c517a61
CL
3258 /*
3259 * Insert into the appropriate per node queues
3260 */
0c3aa83e
JK
3261 nid = page_to_nid(page);
3262 if (cache_grow(cache, flags, nid, page)) {
3c517a61
CL
3263 obj = ____cache_alloc_node(cache,
3264 flags | GFP_THISNODE, nid);
3265 if (!obj)
3266 /*
3267 * Another processor may allocate the
3268 * objects in the slab since we are
3269 * not holding any locks.
3270 */
3271 goto retry;
3272 } else {
b6a60451 3273 /* cache_grow already freed obj */
3c517a61
CL
3274 obj = NULL;
3275 }
3276 }
aedb0eb1 3277 }
cc9a6c87
MG
3278
3279 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3280 goto retry_cpuset;
765c4507
CL
3281 return obj;
3282}
3283
e498be7d
CL
3284/*
3285 * A interface to enable slab creation on nodeid
1da177e4 3286 */
8b98c169 3287static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3288 int nodeid)
e498be7d
CL
3289{
3290 struct list_head *entry;
b28a02de 3291 struct slab *slabp;
ce8eb6c4 3292 struct kmem_cache_node *n;
b28a02de 3293 void *obj;
b28a02de
PE
3294 int x;
3295
14e50c6a 3296 VM_BUG_ON(nodeid > num_online_nodes());
ce8eb6c4
CL
3297 n = cachep->node[nodeid];
3298 BUG_ON(!n);
b28a02de 3299
a737b3e2 3300retry:
ca3b9b91 3301 check_irq_off();
ce8eb6c4
CL
3302 spin_lock(&n->list_lock);
3303 entry = n->slabs_partial.next;
3304 if (entry == &n->slabs_partial) {
3305 n->free_touched = 1;
3306 entry = n->slabs_free.next;
3307 if (entry == &n->slabs_free)
b28a02de
PE
3308 goto must_grow;
3309 }
3310
3311 slabp = list_entry(entry, struct slab, list);
3312 check_spinlock_acquired_node(cachep, nodeid);
3313 check_slabp(cachep, slabp);
3314
3315 STATS_INC_NODEALLOCS(cachep);
3316 STATS_INC_ACTIVE(cachep);
3317 STATS_SET_HIGH(cachep);
3318
3319 BUG_ON(slabp->inuse == cachep->num);
3320
78d382d7 3321 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de 3322 check_slabp(cachep, slabp);
ce8eb6c4 3323 n->free_objects--;
b28a02de
PE
3324 /* move slabp to correct slabp list: */
3325 list_del(&slabp->list);
3326
a737b3e2 3327 if (slabp->free == BUFCTL_END)
ce8eb6c4 3328 list_add(&slabp->list, &n->slabs_full);
a737b3e2 3329 else
ce8eb6c4 3330 list_add(&slabp->list, &n->slabs_partial);
e498be7d 3331
ce8eb6c4 3332 spin_unlock(&n->list_lock);
b28a02de 3333 goto done;
e498be7d 3334
a737b3e2 3335must_grow:
ce8eb6c4 3336 spin_unlock(&n->list_lock);
3c517a61 3337 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3338 if (x)
3339 goto retry;
1da177e4 3340
8c8cc2c1 3341 return fallback_alloc(cachep, flags);
e498be7d 3342
a737b3e2 3343done:
b28a02de 3344 return obj;
e498be7d 3345}
8c8cc2c1 3346
8c8cc2c1 3347static __always_inline void *
48356303 3348slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3349 unsigned long caller)
8c8cc2c1
PE
3350{
3351 unsigned long save_flags;
3352 void *ptr;
7d6e6d09 3353 int slab_node = numa_mem_id();
8c8cc2c1 3354
dcce284a 3355 flags &= gfp_allowed_mask;
7e85ee0c 3356
cf40bd16
NP
3357 lockdep_trace_alloc(flags);
3358
773ff60e 3359 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3360 return NULL;
3361
d79923fa
GC
3362 cachep = memcg_kmem_get_cache(cachep, flags);
3363
8c8cc2c1
PE
3364 cache_alloc_debugcheck_before(cachep, flags);
3365 local_irq_save(save_flags);
3366
eacbbae3 3367 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3368 nodeid = slab_node;
8c8cc2c1 3369
6a67368c 3370 if (unlikely(!cachep->node[nodeid])) {
8c8cc2c1
PE
3371 /* Node not bootstrapped yet */
3372 ptr = fallback_alloc(cachep, flags);
3373 goto out;
3374 }
3375
7d6e6d09 3376 if (nodeid == slab_node) {
8c8cc2c1
PE
3377 /*
3378 * Use the locally cached objects if possible.
3379 * However ____cache_alloc does not allow fallback
3380 * to other nodes. It may fail while we still have
3381 * objects on other nodes available.
3382 */
3383 ptr = ____cache_alloc(cachep, flags);
3384 if (ptr)
3385 goto out;
3386 }
3387 /* ___cache_alloc_node can fall back to other nodes */
3388 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3389 out:
3390 local_irq_restore(save_flags);
3391 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3392 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3393 flags);
8c8cc2c1 3394
c175eea4 3395 if (likely(ptr))
8c138bc0 3396 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
c175eea4 3397
d07dbea4 3398 if (unlikely((flags & __GFP_ZERO) && ptr))
8c138bc0 3399 memset(ptr, 0, cachep->object_size);
d07dbea4 3400
8c8cc2c1
PE
3401 return ptr;
3402}
3403
3404static __always_inline void *
3405__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3406{
3407 void *objp;
3408
3409 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3410 objp = alternate_node_alloc(cache, flags);
3411 if (objp)
3412 goto out;
3413 }
3414 objp = ____cache_alloc(cache, flags);
3415
3416 /*
3417 * We may just have run out of memory on the local node.
3418 * ____cache_alloc_node() knows how to locate memory on other nodes
3419 */
7d6e6d09
LS
3420 if (!objp)
3421 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3422
3423 out:
3424 return objp;
3425}
3426#else
3427
3428static __always_inline void *
3429__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3430{
3431 return ____cache_alloc(cachep, flags);
3432}
3433
3434#endif /* CONFIG_NUMA */
3435
3436static __always_inline void *
48356303 3437slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3438{
3439 unsigned long save_flags;
3440 void *objp;
3441
dcce284a 3442 flags &= gfp_allowed_mask;
7e85ee0c 3443
cf40bd16
NP
3444 lockdep_trace_alloc(flags);
3445
773ff60e 3446 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3447 return NULL;
3448
d79923fa
GC
3449 cachep = memcg_kmem_get_cache(cachep, flags);
3450
8c8cc2c1
PE
3451 cache_alloc_debugcheck_before(cachep, flags);
3452 local_irq_save(save_flags);
3453 objp = __do_cache_alloc(cachep, flags);
3454 local_irq_restore(save_flags);
3455 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3456 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3457 flags);
8c8cc2c1
PE
3458 prefetchw(objp);
3459
c175eea4 3460 if (likely(objp))
8c138bc0 3461 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
c175eea4 3462
d07dbea4 3463 if (unlikely((flags & __GFP_ZERO) && objp))
8c138bc0 3464 memset(objp, 0, cachep->object_size);
d07dbea4 3465
8c8cc2c1
PE
3466 return objp;
3467}
e498be7d
CL
3468
3469/*
3470 * Caller needs to acquire correct kmem_list's list_lock
3471 */
343e0d7a 3472static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3473 int node)
1da177e4
LT
3474{
3475 int i;
ce8eb6c4 3476 struct kmem_cache_node *n;
1da177e4
LT
3477
3478 for (i = 0; i < nr_objects; i++) {
072bb0aa 3479 void *objp;
1da177e4 3480 struct slab *slabp;
1da177e4 3481
072bb0aa
MG
3482 clear_obj_pfmemalloc(&objpp[i]);
3483 objp = objpp[i];
3484
6ed5eb22 3485 slabp = virt_to_slab(objp);
ce8eb6c4 3486 n = cachep->node[node];
1da177e4 3487 list_del(&slabp->list);
ff69416e 3488 check_spinlock_acquired_node(cachep, node);
1da177e4 3489 check_slabp(cachep, slabp);
78d382d7 3490 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3491 STATS_DEC_ACTIVE(cachep);
ce8eb6c4 3492 n->free_objects++;
1da177e4
LT
3493 check_slabp(cachep, slabp);
3494
3495 /* fixup slab chains */
3496 if (slabp->inuse == 0) {
ce8eb6c4
CL
3497 if (n->free_objects > n->free_limit) {
3498 n->free_objects -= cachep->num;
e5ac9c5a
RT
3499 /* No need to drop any previously held
3500 * lock here, even if we have a off-slab slab
3501 * descriptor it is guaranteed to come from
3502 * a different cache, refer to comments before
3503 * alloc_slabmgmt.
3504 */
1da177e4
LT
3505 slab_destroy(cachep, slabp);
3506 } else {
ce8eb6c4 3507 list_add(&slabp->list, &n->slabs_free);
1da177e4
LT
3508 }
3509 } else {
3510 /* Unconditionally move a slab to the end of the
3511 * partial list on free - maximum time for the
3512 * other objects to be freed, too.
3513 */
ce8eb6c4 3514 list_add_tail(&slabp->list, &n->slabs_partial);
1da177e4
LT
3515 }
3516 }
3517}
3518
343e0d7a 3519static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3520{
3521 int batchcount;
ce8eb6c4 3522 struct kmem_cache_node *n;
7d6e6d09 3523 int node = numa_mem_id();
1da177e4
LT
3524
3525 batchcount = ac->batchcount;
3526#if DEBUG
3527 BUG_ON(!batchcount || batchcount > ac->avail);
3528#endif
3529 check_irq_off();
ce8eb6c4
CL
3530 n = cachep->node[node];
3531 spin_lock(&n->list_lock);
3532 if (n->shared) {
3533 struct array_cache *shared_array = n->shared;
b28a02de 3534 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3535 if (max) {
3536 if (batchcount > max)
3537 batchcount = max;
e498be7d 3538 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3539 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3540 shared_array->avail += batchcount;
3541 goto free_done;
3542 }
3543 }
3544
ff69416e 3545 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3546free_done:
1da177e4
LT
3547#if STATS
3548 {
3549 int i = 0;
3550 struct list_head *p;
3551
ce8eb6c4
CL
3552 p = n->slabs_free.next;
3553 while (p != &(n->slabs_free)) {
1da177e4
LT
3554 struct slab *slabp;
3555
3556 slabp = list_entry(p, struct slab, list);
3557 BUG_ON(slabp->inuse);
3558
3559 i++;
3560 p = p->next;
3561 }
3562 STATS_SET_FREEABLE(cachep, i);
3563 }
3564#endif
ce8eb6c4 3565 spin_unlock(&n->list_lock);
1da177e4 3566 ac->avail -= batchcount;
a737b3e2 3567 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3568}
3569
3570/*
a737b3e2
AM
3571 * Release an obj back to its cache. If the obj has a constructed state, it must
3572 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3573 */
a947eb95 3574static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3575 unsigned long caller)
1da177e4 3576{
9a2dba4b 3577 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3578
3579 check_irq_off();
d5cff635 3580 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3581 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3582
8c138bc0 3583 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3584
1807a1aa
SS
3585 /*
3586 * Skip calling cache_free_alien() when the platform is not numa.
3587 * This will avoid cache misses that happen while accessing slabp (which
3588 * is per page memory reference) to get nodeid. Instead use a global
3589 * variable to skip the call, which is mostly likely to be present in
3590 * the cache.
3591 */
b6e68bc1 3592 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3593 return;
3594
1da177e4
LT
3595 if (likely(ac->avail < ac->limit)) {
3596 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3597 } else {
3598 STATS_INC_FREEMISS(cachep);
3599 cache_flusharray(cachep, ac);
1da177e4 3600 }
42c8c99c 3601
072bb0aa 3602 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3603}
3604
3605/**
3606 * kmem_cache_alloc - Allocate an object
3607 * @cachep: The cache to allocate from.
3608 * @flags: See kmalloc().
3609 *
3610 * Allocate an object from this cache. The flags are only relevant
3611 * if the cache has no available objects.
3612 */
343e0d7a 3613void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3614{
48356303 3615 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3616
ca2b84cb 3617 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3618 cachep->object_size, cachep->size, flags);
36555751
EGM
3619
3620 return ret;
1da177e4
LT
3621}
3622EXPORT_SYMBOL(kmem_cache_alloc);
3623
0f24f128 3624#ifdef CONFIG_TRACING
85beb586 3625void *
4052147c 3626kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3627{
85beb586
SR
3628 void *ret;
3629
48356303 3630 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586
SR
3631
3632 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3633 size, cachep->size, flags);
85beb586 3634 return ret;
36555751 3635}
85beb586 3636EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3637#endif
3638
1da177e4 3639#ifdef CONFIG_NUMA
d0d04b78
ZL
3640/**
3641 * kmem_cache_alloc_node - Allocate an object on the specified node
3642 * @cachep: The cache to allocate from.
3643 * @flags: See kmalloc().
3644 * @nodeid: node number of the target node.
3645 *
3646 * Identical to kmem_cache_alloc but it will allocate memory on the given
3647 * node, which can improve the performance for cpu bound structures.
3648 *
3649 * Fallback to other node is possible if __GFP_THISNODE is not set.
3650 */
8b98c169
CH
3651void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3652{
48356303 3653 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3654
ca2b84cb 3655 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3656 cachep->object_size, cachep->size,
ca2b84cb 3657 flags, nodeid);
36555751
EGM
3658
3659 return ret;
8b98c169 3660}
1da177e4
LT
3661EXPORT_SYMBOL(kmem_cache_alloc_node);
3662
0f24f128 3663#ifdef CONFIG_TRACING
4052147c 3664void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3665 gfp_t flags,
4052147c
EG
3666 int nodeid,
3667 size_t size)
36555751 3668{
85beb586
SR
3669 void *ret;
3670
592f4145 3671 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
7c0cb9c6 3672
85beb586 3673 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3674 size, cachep->size,
85beb586
SR
3675 flags, nodeid);
3676 return ret;
36555751 3677}
85beb586 3678EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3679#endif
3680
8b98c169 3681static __always_inline void *
7c0cb9c6 3682__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3683{
343e0d7a 3684 struct kmem_cache *cachep;
97e2bde4 3685
2c59dd65 3686 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3687 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3688 return cachep;
4052147c 3689 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
97e2bde4 3690}
8b98c169 3691
0bb38a5c 3692#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3693void *__kmalloc_node(size_t size, gfp_t flags, int node)
3694{
7c0cb9c6 3695 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3696}
dbe5e69d 3697EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3698
3699void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3700 int node, unsigned long caller)
8b98c169 3701{
7c0cb9c6 3702 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3703}
3704EXPORT_SYMBOL(__kmalloc_node_track_caller);
3705#else
3706void *__kmalloc_node(size_t size, gfp_t flags, int node)
3707{
7c0cb9c6 3708 return __do_kmalloc_node(size, flags, node, 0);
8b98c169
CH
3709}
3710EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3711#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3712#endif /* CONFIG_NUMA */
1da177e4
LT
3713
3714/**
800590f5 3715 * __do_kmalloc - allocate memory
1da177e4 3716 * @size: how many bytes of memory are required.
800590f5 3717 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3718 * @caller: function caller for debug tracking of the caller
1da177e4 3719 */
7fd6b141 3720static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3721 unsigned long caller)
1da177e4 3722{
343e0d7a 3723 struct kmem_cache *cachep;
36555751 3724 void *ret;
1da177e4 3725
97e2bde4
MS
3726 /* If you want to save a few bytes .text space: replace
3727 * __ with kmem_.
3728 * Then kmalloc uses the uninlined functions instead of the inline
3729 * functions.
3730 */
2c59dd65 3731 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3732 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3733 return cachep;
48356303 3734 ret = slab_alloc(cachep, flags, caller);
36555751 3735
7c0cb9c6 3736 trace_kmalloc(caller, ret,
3b0efdfa 3737 size, cachep->size, flags);
36555751
EGM
3738
3739 return ret;
7fd6b141
PE
3740}
3741
7fd6b141 3742
0bb38a5c 3743#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3744void *__kmalloc(size_t size, gfp_t flags)
3745{
7c0cb9c6 3746 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3747}
3748EXPORT_SYMBOL(__kmalloc);
3749
ce71e27c 3750void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3751{
7c0cb9c6 3752 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3753}
3754EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3755
3756#else
3757void *__kmalloc(size_t size, gfp_t flags)
3758{
7c0cb9c6 3759 return __do_kmalloc(size, flags, 0);
1d2c8eea
CH
3760}
3761EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3762#endif
3763
1da177e4
LT
3764/**
3765 * kmem_cache_free - Deallocate an object
3766 * @cachep: The cache the allocation was from.
3767 * @objp: The previously allocated object.
3768 *
3769 * Free an object which was previously allocated from this
3770 * cache.
3771 */
343e0d7a 3772void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3773{
3774 unsigned long flags;
b9ce5ef4
GC
3775 cachep = cache_from_obj(cachep, objp);
3776 if (!cachep)
3777 return;
1da177e4
LT
3778
3779 local_irq_save(flags);
d97d476b 3780 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3781 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3782 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3783 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3784 local_irq_restore(flags);
36555751 3785
ca2b84cb 3786 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3787}
3788EXPORT_SYMBOL(kmem_cache_free);
3789
1da177e4
LT
3790/**
3791 * kfree - free previously allocated memory
3792 * @objp: pointer returned by kmalloc.
3793 *
80e93eff
PE
3794 * If @objp is NULL, no operation is performed.
3795 *
1da177e4
LT
3796 * Don't free memory not originally allocated by kmalloc()
3797 * or you will run into trouble.
3798 */
3799void kfree(const void *objp)
3800{
343e0d7a 3801 struct kmem_cache *c;
1da177e4
LT
3802 unsigned long flags;
3803
2121db74
PE
3804 trace_kfree(_RET_IP_, objp);
3805
6cb8f913 3806 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3807 return;
3808 local_irq_save(flags);
3809 kfree_debugcheck(objp);
6ed5eb22 3810 c = virt_to_cache(objp);
8c138bc0
CL
3811 debug_check_no_locks_freed(objp, c->object_size);
3812
3813 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3814 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3815 local_irq_restore(flags);
3816}
3817EXPORT_SYMBOL(kfree);
3818
e498be7d 3819/*
ce8eb6c4 3820 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3821 */
83b519e8 3822static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3823{
3824 int node;
ce8eb6c4 3825 struct kmem_cache_node *n;
cafeb02e 3826 struct array_cache *new_shared;
3395ee05 3827 struct array_cache **new_alien = NULL;
e498be7d 3828
9c09a95c 3829 for_each_online_node(node) {
cafeb02e 3830
3395ee05 3831 if (use_alien_caches) {
83b519e8 3832 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3833 if (!new_alien)
3834 goto fail;
3835 }
cafeb02e 3836
63109846
ED
3837 new_shared = NULL;
3838 if (cachep->shared) {
3839 new_shared = alloc_arraycache(node,
0718dc2a 3840 cachep->shared*cachep->batchcount,
83b519e8 3841 0xbaadf00d, gfp);
63109846
ED
3842 if (!new_shared) {
3843 free_alien_cache(new_alien);
3844 goto fail;
3845 }
0718dc2a 3846 }
cafeb02e 3847
ce8eb6c4
CL
3848 n = cachep->node[node];
3849 if (n) {
3850 struct array_cache *shared = n->shared;
cafeb02e 3851
ce8eb6c4 3852 spin_lock_irq(&n->list_lock);
e498be7d 3853
cafeb02e 3854 if (shared)
0718dc2a
CL
3855 free_block(cachep, shared->entry,
3856 shared->avail, node);
e498be7d 3857
ce8eb6c4
CL
3858 n->shared = new_shared;
3859 if (!n->alien) {
3860 n->alien = new_alien;
e498be7d
CL
3861 new_alien = NULL;
3862 }
ce8eb6c4 3863 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3864 cachep->batchcount + cachep->num;
ce8eb6c4 3865 spin_unlock_irq(&n->list_lock);
cafeb02e 3866 kfree(shared);
e498be7d
CL
3867 free_alien_cache(new_alien);
3868 continue;
3869 }
ce8eb6c4
CL
3870 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3871 if (!n) {
0718dc2a
CL
3872 free_alien_cache(new_alien);
3873 kfree(new_shared);
e498be7d 3874 goto fail;
0718dc2a 3875 }
e498be7d 3876
ce8eb6c4
CL
3877 kmem_cache_node_init(n);
3878 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3879 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
ce8eb6c4
CL
3880 n->shared = new_shared;
3881 n->alien = new_alien;
3882 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3883 cachep->batchcount + cachep->num;
ce8eb6c4 3884 cachep->node[node] = n;
e498be7d 3885 }
cafeb02e 3886 return 0;
0718dc2a 3887
a737b3e2 3888fail:
3b0efdfa 3889 if (!cachep->list.next) {
0718dc2a
CL
3890 /* Cache is not active yet. Roll back what we did */
3891 node--;
3892 while (node >= 0) {
6a67368c 3893 if (cachep->node[node]) {
ce8eb6c4 3894 n = cachep->node[node];
0718dc2a 3895
ce8eb6c4
CL
3896 kfree(n->shared);
3897 free_alien_cache(n->alien);
3898 kfree(n);
6a67368c 3899 cachep->node[node] = NULL;
0718dc2a
CL
3900 }
3901 node--;
3902 }
3903 }
cafeb02e 3904 return -ENOMEM;
e498be7d
CL
3905}
3906
1da177e4 3907struct ccupdate_struct {
343e0d7a 3908 struct kmem_cache *cachep;
acfe7d74 3909 struct array_cache *new[0];
1da177e4
LT
3910};
3911
3912static void do_ccupdate_local(void *info)
3913{
a737b3e2 3914 struct ccupdate_struct *new = info;
1da177e4
LT
3915 struct array_cache *old;
3916
3917 check_irq_off();
9a2dba4b 3918 old = cpu_cache_get(new->cachep);
e498be7d 3919
1da177e4
LT
3920 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3921 new->new[smp_processor_id()] = old;
3922}
3923
18004c5d 3924/* Always called with the slab_mutex held */
943a451a 3925static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3926 int batchcount, int shared, gfp_t gfp)
1da177e4 3927{
d2e7b7d0 3928 struct ccupdate_struct *new;
2ed3a4ef 3929 int i;
1da177e4 3930
acfe7d74
ED
3931 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3932 gfp);
d2e7b7d0
SS
3933 if (!new)
3934 return -ENOMEM;
3935
e498be7d 3936 for_each_online_cpu(i) {
7d6e6d09 3937 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 3938 batchcount, gfp);
d2e7b7d0 3939 if (!new->new[i]) {
b28a02de 3940 for (i--; i >= 0; i--)
d2e7b7d0
SS
3941 kfree(new->new[i]);
3942 kfree(new);
e498be7d 3943 return -ENOMEM;
1da177e4
LT
3944 }
3945 }
d2e7b7d0 3946 new->cachep = cachep;
1da177e4 3947
15c8b6c1 3948 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 3949
1da177e4 3950 check_irq_on();
1da177e4
LT
3951 cachep->batchcount = batchcount;
3952 cachep->limit = limit;
e498be7d 3953 cachep->shared = shared;
1da177e4 3954
e498be7d 3955 for_each_online_cpu(i) {
d2e7b7d0 3956 struct array_cache *ccold = new->new[i];
1da177e4
LT
3957 if (!ccold)
3958 continue;
6a67368c 3959 spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
7d6e6d09 3960 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
6a67368c 3961 spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
1da177e4
LT
3962 kfree(ccold);
3963 }
d2e7b7d0 3964 kfree(new);
83b519e8 3965 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
3966}
3967
943a451a
GC
3968static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3969 int batchcount, int shared, gfp_t gfp)
3970{
3971 int ret;
3972 struct kmem_cache *c = NULL;
3973 int i = 0;
3974
3975 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3976
3977 if (slab_state < FULL)
3978 return ret;
3979
3980 if ((ret < 0) || !is_root_cache(cachep))
3981 return ret;
3982
ebe945c2 3983 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
943a451a
GC
3984 for_each_memcg_cache_index(i) {
3985 c = cache_from_memcg(cachep, i);
3986 if (c)
3987 /* return value determined by the parent cache only */
3988 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3989 }
3990
3991 return ret;
3992}
3993
18004c5d 3994/* Called with slab_mutex held always */
83b519e8 3995static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3996{
3997 int err;
943a451a
GC
3998 int limit = 0;
3999 int shared = 0;
4000 int batchcount = 0;
4001
4002 if (!is_root_cache(cachep)) {
4003 struct kmem_cache *root = memcg_root_cache(cachep);
4004 limit = root->limit;
4005 shared = root->shared;
4006 batchcount = root->batchcount;
4007 }
1da177e4 4008
943a451a
GC
4009 if (limit && shared && batchcount)
4010 goto skip_setup;
a737b3e2
AM
4011 /*
4012 * The head array serves three purposes:
1da177e4
LT
4013 * - create a LIFO ordering, i.e. return objects that are cache-warm
4014 * - reduce the number of spinlock operations.
a737b3e2 4015 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4016 * bufctl chains: array operations are cheaper.
4017 * The numbers are guessed, we should auto-tune as described by
4018 * Bonwick.
4019 */
3b0efdfa 4020 if (cachep->size > 131072)
1da177e4 4021 limit = 1;
3b0efdfa 4022 else if (cachep->size > PAGE_SIZE)
1da177e4 4023 limit = 8;
3b0efdfa 4024 else if (cachep->size > 1024)
1da177e4 4025 limit = 24;
3b0efdfa 4026 else if (cachep->size > 256)
1da177e4
LT
4027 limit = 54;
4028 else
4029 limit = 120;
4030
a737b3e2
AM
4031 /*
4032 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4033 * allocation behaviour: Most allocs on one cpu, most free operations
4034 * on another cpu. For these cases, an efficient object passing between
4035 * cpus is necessary. This is provided by a shared array. The array
4036 * replaces Bonwick's magazine layer.
4037 * On uniprocessor, it's functionally equivalent (but less efficient)
4038 * to a larger limit. Thus disabled by default.
4039 */
4040 shared = 0;
3b0efdfa 4041 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4042 shared = 8;
1da177e4
LT
4043
4044#if DEBUG
a737b3e2
AM
4045 /*
4046 * With debugging enabled, large batchcount lead to excessively long
4047 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4048 */
4049 if (limit > 32)
4050 limit = 32;
4051#endif
943a451a
GC
4052 batchcount = (limit + 1) / 2;
4053skip_setup:
4054 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
1da177e4
LT
4055 if (err)
4056 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4057 cachep->name, -err);
2ed3a4ef 4058 return err;
1da177e4
LT
4059}
4060
1b55253a 4061/*
ce8eb6c4
CL
4062 * Drain an array if it contains any elements taking the node lock only if
4063 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 4064 * if drain_array() is used on the shared array.
1b55253a 4065 */
ce8eb6c4 4066static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
1b55253a 4067 struct array_cache *ac, int force, int node)
1da177e4
LT
4068{
4069 int tofree;
4070
1b55253a
CL
4071 if (!ac || !ac->avail)
4072 return;
1da177e4
LT
4073 if (ac->touched && !force) {
4074 ac->touched = 0;
b18e7e65 4075 } else {
ce8eb6c4 4076 spin_lock_irq(&n->list_lock);
b18e7e65
CL
4077 if (ac->avail) {
4078 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4079 if (tofree > ac->avail)
4080 tofree = (ac->avail + 1) / 2;
4081 free_block(cachep, ac->entry, tofree, node);
4082 ac->avail -= tofree;
4083 memmove(ac->entry, &(ac->entry[tofree]),
4084 sizeof(void *) * ac->avail);
4085 }
ce8eb6c4 4086 spin_unlock_irq(&n->list_lock);
1da177e4
LT
4087 }
4088}
4089
4090/**
4091 * cache_reap - Reclaim memory from caches.
05fb6bf0 4092 * @w: work descriptor
1da177e4
LT
4093 *
4094 * Called from workqueue/eventd every few seconds.
4095 * Purpose:
4096 * - clear the per-cpu caches for this CPU.
4097 * - return freeable pages to the main free memory pool.
4098 *
a737b3e2
AM
4099 * If we cannot acquire the cache chain mutex then just give up - we'll try
4100 * again on the next iteration.
1da177e4 4101 */
7c5cae36 4102static void cache_reap(struct work_struct *w)
1da177e4 4103{
7a7c381d 4104 struct kmem_cache *searchp;
ce8eb6c4 4105 struct kmem_cache_node *n;
7d6e6d09 4106 int node = numa_mem_id();
bf6aede7 4107 struct delayed_work *work = to_delayed_work(w);
1da177e4 4108
18004c5d 4109 if (!mutex_trylock(&slab_mutex))
1da177e4 4110 /* Give up. Setup the next iteration. */
7c5cae36 4111 goto out;
1da177e4 4112
18004c5d 4113 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4114 check_irq_on();
4115
35386e3b 4116 /*
ce8eb6c4 4117 * We only take the node lock if absolutely necessary and we
35386e3b
CL
4118 * have established with reasonable certainty that
4119 * we can do some work if the lock was obtained.
4120 */
ce8eb6c4 4121 n = searchp->node[node];
35386e3b 4122
ce8eb6c4 4123 reap_alien(searchp, n);
1da177e4 4124
ce8eb6c4 4125 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
1da177e4 4126
35386e3b
CL
4127 /*
4128 * These are racy checks but it does not matter
4129 * if we skip one check or scan twice.
4130 */
ce8eb6c4 4131 if (time_after(n->next_reap, jiffies))
35386e3b 4132 goto next;
1da177e4 4133
ce8eb6c4 4134 n->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4135
ce8eb6c4 4136 drain_array(searchp, n, n->shared, 0, node);
1da177e4 4137
ce8eb6c4
CL
4138 if (n->free_touched)
4139 n->free_touched = 0;
ed11d9eb
CL
4140 else {
4141 int freed;
1da177e4 4142
ce8eb6c4 4143 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
4144 5 * searchp->num - 1) / (5 * searchp->num));
4145 STATS_ADD_REAPED(searchp, freed);
4146 }
35386e3b 4147next:
1da177e4
LT
4148 cond_resched();
4149 }
4150 check_irq_on();
18004c5d 4151 mutex_unlock(&slab_mutex);
8fce4d8e 4152 next_reap_node();
7c5cae36 4153out:
a737b3e2 4154 /* Set up the next iteration */
7c5cae36 4155 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4156}
4157
158a9624 4158#ifdef CONFIG_SLABINFO
0d7561c6 4159void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4160{
b28a02de
PE
4161 struct slab *slabp;
4162 unsigned long active_objs;
4163 unsigned long num_objs;
4164 unsigned long active_slabs = 0;
4165 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4166 const char *name;
1da177e4 4167 char *error = NULL;
e498be7d 4168 int node;
ce8eb6c4 4169 struct kmem_cache_node *n;
1da177e4 4170
1da177e4
LT
4171 active_objs = 0;
4172 num_slabs = 0;
e498be7d 4173 for_each_online_node(node) {
ce8eb6c4
CL
4174 n = cachep->node[node];
4175 if (!n)
e498be7d
CL
4176 continue;
4177
ca3b9b91 4178 check_irq_on();
ce8eb6c4 4179 spin_lock_irq(&n->list_lock);
e498be7d 4180
ce8eb6c4 4181 list_for_each_entry(slabp, &n->slabs_full, list) {
e498be7d
CL
4182 if (slabp->inuse != cachep->num && !error)
4183 error = "slabs_full accounting error";
4184 active_objs += cachep->num;
4185 active_slabs++;
4186 }
ce8eb6c4 4187 list_for_each_entry(slabp, &n->slabs_partial, list) {
e498be7d
CL
4188 if (slabp->inuse == cachep->num && !error)
4189 error = "slabs_partial inuse accounting error";
4190 if (!slabp->inuse && !error)
4191 error = "slabs_partial/inuse accounting error";
4192 active_objs += slabp->inuse;
4193 active_slabs++;
4194 }
ce8eb6c4 4195 list_for_each_entry(slabp, &n->slabs_free, list) {
e498be7d
CL
4196 if (slabp->inuse && !error)
4197 error = "slabs_free/inuse accounting error";
4198 num_slabs++;
4199 }
ce8eb6c4
CL
4200 free_objects += n->free_objects;
4201 if (n->shared)
4202 shared_avail += n->shared->avail;
e498be7d 4203
ce8eb6c4 4204 spin_unlock_irq(&n->list_lock);
1da177e4 4205 }
b28a02de
PE
4206 num_slabs += active_slabs;
4207 num_objs = num_slabs * cachep->num;
e498be7d 4208 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4209 error = "free_objects accounting error";
4210
b28a02de 4211 name = cachep->name;
1da177e4
LT
4212 if (error)
4213 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4214
0d7561c6
GC
4215 sinfo->active_objs = active_objs;
4216 sinfo->num_objs = num_objs;
4217 sinfo->active_slabs = active_slabs;
4218 sinfo->num_slabs = num_slabs;
4219 sinfo->shared_avail = shared_avail;
4220 sinfo->limit = cachep->limit;
4221 sinfo->batchcount = cachep->batchcount;
4222 sinfo->shared = cachep->shared;
4223 sinfo->objects_per_slab = cachep->num;
4224 sinfo->cache_order = cachep->gfporder;
4225}
4226
4227void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4228{
1da177e4 4229#if STATS
ce8eb6c4 4230 { /* node stats */
1da177e4
LT
4231 unsigned long high = cachep->high_mark;
4232 unsigned long allocs = cachep->num_allocations;
4233 unsigned long grown = cachep->grown;
4234 unsigned long reaped = cachep->reaped;
4235 unsigned long errors = cachep->errors;
4236 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4237 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4238 unsigned long node_frees = cachep->node_frees;
fb7faf33 4239 unsigned long overflows = cachep->node_overflow;
1da177e4 4240
e92dd4fd
JP
4241 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4242 "%4lu %4lu %4lu %4lu %4lu",
4243 allocs, high, grown,
4244 reaped, errors, max_freeable, node_allocs,
4245 node_frees, overflows);
1da177e4
LT
4246 }
4247 /* cpu stats */
4248 {
4249 unsigned long allochit = atomic_read(&cachep->allochit);
4250 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4251 unsigned long freehit = atomic_read(&cachep->freehit);
4252 unsigned long freemiss = atomic_read(&cachep->freemiss);
4253
4254 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4255 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4256 }
4257#endif
1da177e4
LT
4258}
4259
1da177e4
LT
4260#define MAX_SLABINFO_WRITE 128
4261/**
4262 * slabinfo_write - Tuning for the slab allocator
4263 * @file: unused
4264 * @buffer: user buffer
4265 * @count: data length
4266 * @ppos: unused
4267 */
b7454ad3 4268ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4269 size_t count, loff_t *ppos)
1da177e4 4270{
b28a02de 4271 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4272 int limit, batchcount, shared, res;
7a7c381d 4273 struct kmem_cache *cachep;
b28a02de 4274
1da177e4
LT
4275 if (count > MAX_SLABINFO_WRITE)
4276 return -EINVAL;
4277 if (copy_from_user(&kbuf, buffer, count))
4278 return -EFAULT;
b28a02de 4279 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4280
4281 tmp = strchr(kbuf, ' ');
4282 if (!tmp)
4283 return -EINVAL;
4284 *tmp = '\0';
4285 tmp++;
4286 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4287 return -EINVAL;
4288
4289 /* Find the cache in the chain of caches. */
18004c5d 4290 mutex_lock(&slab_mutex);
1da177e4 4291 res = -EINVAL;
18004c5d 4292 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4293 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4294 if (limit < 1 || batchcount < 1 ||
4295 batchcount > limit || shared < 0) {
e498be7d 4296 res = 0;
1da177e4 4297 } else {
e498be7d 4298 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4299 batchcount, shared,
4300 GFP_KERNEL);
1da177e4
LT
4301 }
4302 break;
4303 }
4304 }
18004c5d 4305 mutex_unlock(&slab_mutex);
1da177e4
LT
4306 if (res >= 0)
4307 res = count;
4308 return res;
4309}
871751e2
AV
4310
4311#ifdef CONFIG_DEBUG_SLAB_LEAK
4312
4313static void *leaks_start(struct seq_file *m, loff_t *pos)
4314{
18004c5d
CL
4315 mutex_lock(&slab_mutex);
4316 return seq_list_start(&slab_caches, *pos);
871751e2
AV
4317}
4318
4319static inline int add_caller(unsigned long *n, unsigned long v)
4320{
4321 unsigned long *p;
4322 int l;
4323 if (!v)
4324 return 1;
4325 l = n[1];
4326 p = n + 2;
4327 while (l) {
4328 int i = l/2;
4329 unsigned long *q = p + 2 * i;
4330 if (*q == v) {
4331 q[1]++;
4332 return 1;
4333 }
4334 if (*q > v) {
4335 l = i;
4336 } else {
4337 p = q + 2;
4338 l -= i + 1;
4339 }
4340 }
4341 if (++n[1] == n[0])
4342 return 0;
4343 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4344 p[0] = v;
4345 p[1] = 1;
4346 return 1;
4347}
4348
4349static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4350{
4351 void *p;
4352 int i;
4353 if (n[0] == n[1])
4354 return;
3b0efdfa 4355 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
871751e2
AV
4356 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4357 continue;
4358 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4359 return;
4360 }
4361}
4362
4363static void show_symbol(struct seq_file *m, unsigned long address)
4364{
4365#ifdef CONFIG_KALLSYMS
871751e2 4366 unsigned long offset, size;
9281acea 4367 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4368
a5c43dae 4369 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4370 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4371 if (modname[0])
871751e2
AV
4372 seq_printf(m, " [%s]", modname);
4373 return;
4374 }
4375#endif
4376 seq_printf(m, "%p", (void *)address);
4377}
4378
4379static int leaks_show(struct seq_file *m, void *p)
4380{
0672aa7c 4381 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
871751e2 4382 struct slab *slabp;
ce8eb6c4 4383 struct kmem_cache_node *n;
871751e2 4384 const char *name;
db845067 4385 unsigned long *x = m->private;
871751e2
AV
4386 int node;
4387 int i;
4388
4389 if (!(cachep->flags & SLAB_STORE_USER))
4390 return 0;
4391 if (!(cachep->flags & SLAB_RED_ZONE))
4392 return 0;
4393
4394 /* OK, we can do it */
4395
db845067 4396 x[1] = 0;
871751e2
AV
4397
4398 for_each_online_node(node) {
ce8eb6c4
CL
4399 n = cachep->node[node];
4400 if (!n)
871751e2
AV
4401 continue;
4402
4403 check_irq_on();
ce8eb6c4 4404 spin_lock_irq(&n->list_lock);
871751e2 4405
ce8eb6c4 4406 list_for_each_entry(slabp, &n->slabs_full, list)
db845067 4407 handle_slab(x, cachep, slabp);
ce8eb6c4 4408 list_for_each_entry(slabp, &n->slabs_partial, list)
db845067 4409 handle_slab(x, cachep, slabp);
ce8eb6c4 4410 spin_unlock_irq(&n->list_lock);
871751e2
AV
4411 }
4412 name = cachep->name;
db845067 4413 if (x[0] == x[1]) {
871751e2 4414 /* Increase the buffer size */
18004c5d 4415 mutex_unlock(&slab_mutex);
db845067 4416 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4417 if (!m->private) {
4418 /* Too bad, we are really out */
db845067 4419 m->private = x;
18004c5d 4420 mutex_lock(&slab_mutex);
871751e2
AV
4421 return -ENOMEM;
4422 }
db845067
CL
4423 *(unsigned long *)m->private = x[0] * 2;
4424 kfree(x);
18004c5d 4425 mutex_lock(&slab_mutex);
871751e2
AV
4426 /* Now make sure this entry will be retried */
4427 m->count = m->size;
4428 return 0;
4429 }
db845067
CL
4430 for (i = 0; i < x[1]; i++) {
4431 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4432 show_symbol(m, x[2*i+2]);
871751e2
AV
4433 seq_putc(m, '\n');
4434 }
d2e7b7d0 4435
871751e2
AV
4436 return 0;
4437}
4438
a0ec95a8 4439static const struct seq_operations slabstats_op = {
871751e2 4440 .start = leaks_start,
276a2439
WL
4441 .next = slab_next,
4442 .stop = slab_stop,
871751e2
AV
4443 .show = leaks_show,
4444};
a0ec95a8
AD
4445
4446static int slabstats_open(struct inode *inode, struct file *file)
4447{
4448 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4449 int ret = -ENOMEM;
4450 if (n) {
4451 ret = seq_open(file, &slabstats_op);
4452 if (!ret) {
4453 struct seq_file *m = file->private_data;
4454 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4455 m->private = n;
4456 n = NULL;
4457 }
4458 kfree(n);
4459 }
4460 return ret;
4461}
4462
4463static const struct file_operations proc_slabstats_operations = {
4464 .open = slabstats_open,
4465 .read = seq_read,
4466 .llseek = seq_lseek,
4467 .release = seq_release_private,
4468};
4469#endif
4470
4471static int __init slab_proc_init(void)
4472{
4473#ifdef CONFIG_DEBUG_SLAB_LEAK
4474 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4475#endif
a0ec95a8
AD
4476 return 0;
4477}
4478module_init(slab_proc_init);
1da177e4
LT
4479#endif
4480
00e145b6
MS
4481/**
4482 * ksize - get the actual amount of memory allocated for a given object
4483 * @objp: Pointer to the object
4484 *
4485 * kmalloc may internally round up allocations and return more memory
4486 * than requested. ksize() can be used to determine the actual amount of
4487 * memory allocated. The caller may use this additional memory, even though
4488 * a smaller amount of memory was initially specified with the kmalloc call.
4489 * The caller must guarantee that objp points to a valid object previously
4490 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4491 * must not be freed during the duration of the call.
4492 */
fd76bab2 4493size_t ksize(const void *objp)
1da177e4 4494{
ef8b4520
CL
4495 BUG_ON(!objp);
4496 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4497 return 0;
1da177e4 4498
8c138bc0 4499 return virt_to_cache(objp)->object_size;
1da177e4 4500}
b1aabecd 4501EXPORT_SYMBOL(ksize);