]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/slab.c
lib/test_kasan: Add test for double-kzfree detection
[mirror_ubuntu-jammy-kernel.git] / mm / slab.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
183ff22b 30 * slabs and you must pass objects with the same initializations to
1da177e4
LT
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
a737b3e2 54 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
343e0d7a 59 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
18004c5d 72 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
e498be7d
CL
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
88 */
89
1da177e4
LT
90#include <linux/slab.h>
91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
a0ec95a8 99#include <linux/proc_fs.h>
1da177e4
LT
100#include <linux/seq_file.h>
101#include <linux/notifier.h>
102#include <linux/kallsyms.h>
103#include <linux/cpu.h>
104#include <linux/sysctl.h>
105#include <linux/module.h>
106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
3f8c2452 119#include <linux/sched/task_stack.h>
1da177e4 120
381760ea
MG
121#include <net/sock.h>
122
1da177e4
LT
123#include <asm/cacheflush.h>
124#include <asm/tlbflush.h>
125#include <asm/page.h>
126
4dee6b64
SR
127#include <trace/events/kmem.h>
128
072bb0aa
MG
129#include "internal.h"
130
b9ce5ef4
GC
131#include "slab.h"
132
1da177e4 133/*
50953fe9 134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
135 * 0 for faster, smaller code (especially in the critical paths).
136 *
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
139 *
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 */
142
143#ifdef CONFIG_DEBUG_SLAB
144#define DEBUG 1
145#define STATS 1
146#define FORCED_DEBUG 1
147#else
148#define DEBUG 0
149#define STATS 0
150#define FORCED_DEBUG 0
151#endif
152
1da177e4
LT
153/* Shouldn't this be in a header file somewhere? */
154#define BYTES_PER_WORD sizeof(void *)
87a927c7 155#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 156
1da177e4
LT
157#ifndef ARCH_KMALLOC_FLAGS
158#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159#endif
160
f315e3fa
JK
161#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163
164#if FREELIST_BYTE_INDEX
165typedef unsigned char freelist_idx_t;
166#else
167typedef unsigned short freelist_idx_t;
168#endif
169
30321c7b 170#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 171
1da177e4
LT
172/*
173 * struct array_cache
174 *
1da177e4
LT
175 * Purpose:
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
179 *
180 * The limit is stored in the per-cpu structure to reduce the data cache
181 * footprint.
182 *
183 */
184struct array_cache {
185 unsigned int avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int touched;
bda5b655 189 void *entry[]; /*
a737b3e2
AM
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
192 * the entries.
a737b3e2 193 */
1da177e4
LT
194};
195
c8522a3a
JK
196struct alien_cache {
197 spinlock_t lock;
198 struct array_cache ac;
199};
200
e498be7d
CL
201/*
202 * Need this for bootstrapping a per node allocator.
203 */
bf0dea23 204#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 205static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 206#define CACHE_CACHE 0
bf0dea23 207#define SIZE_NODE (MAX_NUMNODES)
e498be7d 208
ed11d9eb 209static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 210 struct kmem_cache_node *n, int tofree);
ed11d9eb 211static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
212 int node, struct list_head *list);
213static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 214static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 215static void cache_reap(struct work_struct *unused);
ed11d9eb 216
76b342bd
JK
217static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 void **list);
219static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
221 void **list);
e0a42726
IM
222static int slab_early_init = 1;
223
ce8eb6c4 224#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 225
ce8eb6c4 226static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
227{
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
bf00bd34 231 parent->total_slabs = 0;
f728b0a5 232 parent->free_slabs = 0;
e498be7d
CL
233 parent->shared = NULL;
234 parent->alien = NULL;
2e1217cf 235 parent->colour_next = 0;
e498be7d
CL
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
239}
240
a737b3e2
AM
241#define MAKE_LIST(cachep, listp, slab, nodeid) \
242 do { \
243 INIT_LIST_HEAD(listp); \
18bf8541 244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
245 } while (0)
246
a737b3e2
AM
247#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 do { \
e498be7d
CL
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 } while (0)
1da177e4 253
4fd0b46e
AD
254#define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
255#define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
b03a017b 256#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
1da177e4
LT
257#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
258
259#define BATCHREFILL_LIMIT 16
a737b3e2
AM
260/*
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
1da177e4 263 *
dc6f3f27 264 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
265 * which could lock up otherwise freeable slabs.
266 */
5f0985bb
JZ
267#define REAPTIMEOUT_AC (2*HZ)
268#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
269
270#if STATS
271#define STATS_INC_ACTIVE(x) ((x)->num_active++)
272#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 275#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
276#define STATS_SET_HIGH(x) \
277 do { \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
280 } while (0)
1da177e4
LT
281#define STATS_INC_ERR(x) ((x)->errors++)
282#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 283#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 284#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
285#define STATS_SET_FREEABLE(x, i) \
286 do { \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
289 } while (0)
1da177e4
LT
290#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294#else
295#define STATS_INC_ACTIVE(x) do { } while (0)
296#define STATS_DEC_ACTIVE(x) do { } while (0)
297#define STATS_INC_ALLOCED(x) do { } while (0)
298#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 299#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
300#define STATS_SET_HIGH(x) do { } while (0)
301#define STATS_INC_ERR(x) do { } while (0)
302#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 303#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 304#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 305#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
306#define STATS_INC_ALLOCHIT(x) do { } while (0)
307#define STATS_INC_ALLOCMISS(x) do { } while (0)
308#define STATS_INC_FREEHIT(x) do { } while (0)
309#define STATS_INC_FREEMISS(x) do { } while (0)
310#endif
311
312#if DEBUG
1da177e4 313
a737b3e2
AM
314/*
315 * memory layout of objects:
1da177e4 316 * 0 : objp
3dafccf2 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
3dafccf2 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 321 * redzone word.
3dafccf2 322 * cachep->obj_offset: The real object.
3b0efdfa
CL
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 325 * [BYTES_PER_WORD long]
1da177e4 326 */
343e0d7a 327static int obj_offset(struct kmem_cache *cachep)
1da177e4 328{
3dafccf2 329 return cachep->obj_offset;
1da177e4
LT
330}
331
b46b8f19 332static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
333{
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
1da177e4
LT
337}
338
b46b8f19 339static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
340{
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 343 return (unsigned long long *)(objp + cachep->size -
b46b8f19 344 sizeof(unsigned long long) -
87a927c7 345 REDZONE_ALIGN);
3b0efdfa 346 return (unsigned long long *) (objp + cachep->size -
b46b8f19 347 sizeof(unsigned long long));
1da177e4
LT
348}
349
343e0d7a 350static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
351{
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
354}
355
356#else
357
3dafccf2 358#define obj_offset(x) 0
b46b8f19
DW
359#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
361#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
362
363#endif
364
1da177e4 365/*
3df1cccd
DR
366 * Do not go above this order unless 0 objects fit into the slab or
367 * overridden on the command line.
1da177e4 368 */
543585cc
DR
369#define SLAB_MAX_ORDER_HI 1
370#define SLAB_MAX_ORDER_LO 0
371static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 372static bool slab_max_order_set __initdata;
1da177e4 373
8456a648 374static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
375 unsigned int idx)
376{
8456a648 377 return page->s_mem + cache->size * idx;
8fea4e96
PE
378}
379
6fb92430 380#define BOOT_CPUCACHE_ENTRIES 1
1da177e4 381/* internal cache of cache description objs */
9b030cb8 382static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
383 .batchcount = 1,
384 .limit = BOOT_CPUCACHE_ENTRIES,
385 .shared = 1,
3b0efdfa 386 .size = sizeof(struct kmem_cache),
b28a02de 387 .name = "kmem_cache",
1da177e4
LT
388};
389
1871e52c 390static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 391
343e0d7a 392static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 393{
bf0dea23 394 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
395}
396
a737b3e2
AM
397/*
398 * Calculate the number of objects and left-over bytes for a given buffer size.
399 */
70f75067 400static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
d50112ed 401 slab_flags_t flags, size_t *left_over)
fbaccacf 402{
70f75067 403 unsigned int num;
fbaccacf 404 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 405
fbaccacf
SR
406 /*
407 * The slab management structure can be either off the slab or
408 * on it. For the latter case, the memory allocated for a
409 * slab is used for:
410 *
fbaccacf 411 * - @buffer_size bytes for each object
2e6b3602
JK
412 * - One freelist_idx_t for each object
413 *
414 * We don't need to consider alignment of freelist because
415 * freelist will be at the end of slab page. The objects will be
416 * at the correct alignment.
fbaccacf
SR
417 *
418 * If the slab management structure is off the slab, then the
419 * alignment will already be calculated into the size. Because
420 * the slabs are all pages aligned, the objects will be at the
421 * correct alignment when allocated.
422 */
b03a017b 423 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
70f75067 424 num = slab_size / buffer_size;
2e6b3602 425 *left_over = slab_size % buffer_size;
fbaccacf 426 } else {
70f75067 427 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
2e6b3602
JK
428 *left_over = slab_size %
429 (buffer_size + sizeof(freelist_idx_t));
fbaccacf 430 }
70f75067
JK
431
432 return num;
1da177e4
LT
433}
434
f28510d3 435#if DEBUG
d40cee24 436#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 437
a737b3e2
AM
438static void __slab_error(const char *function, struct kmem_cache *cachep,
439 char *msg)
1da177e4 440{
1170532b 441 pr_err("slab error in %s(): cache `%s': %s\n",
b28a02de 442 function, cachep->name, msg);
1da177e4 443 dump_stack();
373d4d09 444 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 445}
f28510d3 446#endif
1da177e4 447
3395ee05
PM
448/*
449 * By default on NUMA we use alien caches to stage the freeing of
450 * objects allocated from other nodes. This causes massive memory
451 * inefficiencies when using fake NUMA setup to split memory into a
452 * large number of small nodes, so it can be disabled on the command
453 * line
454 */
455
456static int use_alien_caches __read_mostly = 1;
457static int __init noaliencache_setup(char *s)
458{
459 use_alien_caches = 0;
460 return 1;
461}
462__setup("noaliencache", noaliencache_setup);
463
3df1cccd
DR
464static int __init slab_max_order_setup(char *str)
465{
466 get_option(&str, &slab_max_order);
467 slab_max_order = slab_max_order < 0 ? 0 :
468 min(slab_max_order, MAX_ORDER - 1);
469 slab_max_order_set = true;
470
471 return 1;
472}
473__setup("slab_max_order=", slab_max_order_setup);
474
8fce4d8e
CL
475#ifdef CONFIG_NUMA
476/*
477 * Special reaping functions for NUMA systems called from cache_reap().
478 * These take care of doing round robin flushing of alien caches (containing
479 * objects freed on different nodes from which they were allocated) and the
480 * flushing of remote pcps by calling drain_node_pages.
481 */
1871e52c 482static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
483
484static void init_reap_node(int cpu)
485{
0edaf86c
AM
486 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
487 node_online_map);
8fce4d8e
CL
488}
489
490static void next_reap_node(void)
491{
909ea964 492 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 493
0edaf86c 494 node = next_node_in(node, node_online_map);
909ea964 495 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
496}
497
498#else
499#define init_reap_node(cpu) do { } while (0)
500#define next_reap_node(void) do { } while (0)
501#endif
502
1da177e4
LT
503/*
504 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
505 * via the workqueue/eventd.
506 * Add the CPU number into the expiration time to minimize the possibility of
507 * the CPUs getting into lockstep and contending for the global cache chain
508 * lock.
509 */
0db0628d 510static void start_cpu_timer(int cpu)
1da177e4 511{
1871e52c 512 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4 513
eac0337a 514 if (reap_work->work.func == NULL) {
8fce4d8e 515 init_reap_node(cpu);
203b42f7 516 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
517 schedule_delayed_work_on(cpu, reap_work,
518 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
519 }
520}
521
1fe00d50 522static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 523{
1fe00d50
JK
524 if (ac) {
525 ac->avail = 0;
526 ac->limit = limit;
527 ac->batchcount = batch;
528 ac->touched = 0;
1da177e4 529 }
1fe00d50
JK
530}
531
532static struct array_cache *alloc_arraycache(int node, int entries,
533 int batchcount, gfp_t gfp)
534{
5e804789 535 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
536 struct array_cache *ac = NULL;
537
538 ac = kmalloc_node(memsize, gfp, node);
92d1d07d
QC
539 /*
540 * The array_cache structures contain pointers to free object.
541 * However, when such objects are allocated or transferred to another
542 * cache the pointers are not cleared and they could be counted as
543 * valid references during a kmemleak scan. Therefore, kmemleak must
544 * not scan such objects.
545 */
546 kmemleak_no_scan(ac);
1fe00d50
JK
547 init_arraycache(ac, entries, batchcount);
548 return ac;
1da177e4
LT
549}
550
f68f8ddd
JK
551static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
552 struct page *page, void *objp)
072bb0aa 553{
f68f8ddd
JK
554 struct kmem_cache_node *n;
555 int page_node;
556 LIST_HEAD(list);
072bb0aa 557
f68f8ddd
JK
558 page_node = page_to_nid(page);
559 n = get_node(cachep, page_node);
381760ea 560
f68f8ddd
JK
561 spin_lock(&n->list_lock);
562 free_block(cachep, &objp, 1, page_node, &list);
563 spin_unlock(&n->list_lock);
381760ea 564
f68f8ddd 565 slabs_destroy(cachep, &list);
072bb0aa
MG
566}
567
3ded175a
CL
568/*
569 * Transfer objects in one arraycache to another.
570 * Locking must be handled by the caller.
571 *
572 * Return the number of entries transferred.
573 */
574static int transfer_objects(struct array_cache *to,
575 struct array_cache *from, unsigned int max)
576{
577 /* Figure out how many entries to transfer */
732eacc0 578 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
579
580 if (!nr)
581 return 0;
582
583 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
584 sizeof(void *) *nr);
585
586 from->avail -= nr;
587 to->avail += nr;
3ded175a
CL
588 return nr;
589}
590
765c4507
CL
591#ifndef CONFIG_NUMA
592
593#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 594#define reap_alien(cachep, n) do { } while (0)
765c4507 595
c8522a3a
JK
596static inline struct alien_cache **alloc_alien_cache(int node,
597 int limit, gfp_t gfp)
765c4507 598{
8888177e 599 return NULL;
765c4507
CL
600}
601
c8522a3a 602static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
603{
604}
605
606static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
607{
608 return 0;
609}
610
611static inline void *alternate_node_alloc(struct kmem_cache *cachep,
612 gfp_t flags)
613{
614 return NULL;
615}
616
8b98c169 617static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
618 gfp_t flags, int nodeid)
619{
620 return NULL;
621}
622
4167e9b2
DR
623static inline gfp_t gfp_exact_node(gfp_t flags)
624{
444eb2a4 625 return flags & ~__GFP_NOFAIL;
4167e9b2
DR
626}
627
765c4507
CL
628#else /* CONFIG_NUMA */
629
8b98c169 630static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 631static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 632
c8522a3a
JK
633static struct alien_cache *__alloc_alien_cache(int node, int entries,
634 int batch, gfp_t gfp)
635{
5e804789 636 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
637 struct alien_cache *alc = NULL;
638
639 alc = kmalloc_node(memsize, gfp, node);
09c2e76e 640 if (alc) {
92d1d07d 641 kmemleak_no_scan(alc);
09c2e76e
CL
642 init_arraycache(&alc->ac, entries, batch);
643 spin_lock_init(&alc->lock);
644 }
c8522a3a
JK
645 return alc;
646}
647
648static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 649{
c8522a3a 650 struct alien_cache **alc_ptr;
e498be7d
CL
651 int i;
652
653 if (limit > 1)
654 limit = 12;
b9726c26 655 alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
c8522a3a
JK
656 if (!alc_ptr)
657 return NULL;
658
659 for_each_node(i) {
660 if (i == node || !node_online(i))
661 continue;
662 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
663 if (!alc_ptr[i]) {
664 for (i--; i >= 0; i--)
665 kfree(alc_ptr[i]);
666 kfree(alc_ptr);
667 return NULL;
e498be7d
CL
668 }
669 }
c8522a3a 670 return alc_ptr;
e498be7d
CL
671}
672
c8522a3a 673static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
674{
675 int i;
676
c8522a3a 677 if (!alc_ptr)
e498be7d 678 return;
e498be7d 679 for_each_node(i)
c8522a3a
JK
680 kfree(alc_ptr[i]);
681 kfree(alc_ptr);
e498be7d
CL
682}
683
343e0d7a 684static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
685 struct array_cache *ac, int node,
686 struct list_head *list)
e498be7d 687{
18bf8541 688 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
689
690 if (ac->avail) {
ce8eb6c4 691 spin_lock(&n->list_lock);
e00946fe
CL
692 /*
693 * Stuff objects into the remote nodes shared array first.
694 * That way we could avoid the overhead of putting the objects
695 * into the free lists and getting them back later.
696 */
ce8eb6c4
CL
697 if (n->shared)
698 transfer_objects(n->shared, ac, ac->limit);
e00946fe 699
833b706c 700 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 701 ac->avail = 0;
ce8eb6c4 702 spin_unlock(&n->list_lock);
e498be7d
CL
703 }
704}
705
8fce4d8e
CL
706/*
707 * Called from cache_reap() to regularly drain alien caches round robin.
708 */
ce8eb6c4 709static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 710{
909ea964 711 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 712
ce8eb6c4 713 if (n->alien) {
c8522a3a
JK
714 struct alien_cache *alc = n->alien[node];
715 struct array_cache *ac;
716
717 if (alc) {
718 ac = &alc->ac;
49dfc304 719 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
720 LIST_HEAD(list);
721
722 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 723 spin_unlock_irq(&alc->lock);
833b706c 724 slabs_destroy(cachep, &list);
c8522a3a 725 }
8fce4d8e
CL
726 }
727 }
728}
729
a737b3e2 730static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 731 struct alien_cache **alien)
e498be7d 732{
b28a02de 733 int i = 0;
c8522a3a 734 struct alien_cache *alc;
e498be7d
CL
735 struct array_cache *ac;
736 unsigned long flags;
737
738 for_each_online_node(i) {
c8522a3a
JK
739 alc = alien[i];
740 if (alc) {
833b706c
JK
741 LIST_HEAD(list);
742
c8522a3a 743 ac = &alc->ac;
49dfc304 744 spin_lock_irqsave(&alc->lock, flags);
833b706c 745 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 746 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 747 slabs_destroy(cachep, &list);
e498be7d
CL
748 }
749 }
750}
729bd0b7 751
25c4f304
JK
752static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
753 int node, int page_node)
729bd0b7 754{
ce8eb6c4 755 struct kmem_cache_node *n;
c8522a3a
JK
756 struct alien_cache *alien = NULL;
757 struct array_cache *ac;
97654dfa 758 LIST_HEAD(list);
1ca4cb24 759
18bf8541 760 n = get_node(cachep, node);
729bd0b7 761 STATS_INC_NODEFREES(cachep);
25c4f304
JK
762 if (n->alien && n->alien[page_node]) {
763 alien = n->alien[page_node];
c8522a3a 764 ac = &alien->ac;
49dfc304 765 spin_lock(&alien->lock);
c8522a3a 766 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 767 STATS_INC_ACOVERFLOW(cachep);
25c4f304 768 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 769 }
f68f8ddd 770 ac->entry[ac->avail++] = objp;
49dfc304 771 spin_unlock(&alien->lock);
833b706c 772 slabs_destroy(cachep, &list);
729bd0b7 773 } else {
25c4f304 774 n = get_node(cachep, page_node);
18bf8541 775 spin_lock(&n->list_lock);
25c4f304 776 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 777 spin_unlock(&n->list_lock);
97654dfa 778 slabs_destroy(cachep, &list);
729bd0b7
PE
779 }
780 return 1;
781}
25c4f304
JK
782
783static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
784{
785 int page_node = page_to_nid(virt_to_page(objp));
786 int node = numa_mem_id();
787 /*
788 * Make sure we are not freeing a object from another node to the array
789 * cache on this cpu.
790 */
791 if (likely(node == page_node))
792 return 0;
793
794 return __cache_free_alien(cachep, objp, node, page_node);
795}
4167e9b2
DR
796
797/*
444eb2a4
MG
798 * Construct gfp mask to allocate from a specific node but do not reclaim or
799 * warn about failures.
4167e9b2
DR
800 */
801static inline gfp_t gfp_exact_node(gfp_t flags)
802{
444eb2a4 803 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
4167e9b2 804}
e498be7d
CL
805#endif
806
ded0ecf6
JK
807static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
808{
809 struct kmem_cache_node *n;
810
811 /*
812 * Set up the kmem_cache_node for cpu before we can
813 * begin anything. Make sure some other cpu on this
814 * node has not already allocated this
815 */
816 n = get_node(cachep, node);
817 if (n) {
818 spin_lock_irq(&n->list_lock);
819 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
820 cachep->num;
821 spin_unlock_irq(&n->list_lock);
822
823 return 0;
824 }
825
826 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
827 if (!n)
828 return -ENOMEM;
829
830 kmem_cache_node_init(n);
831 n->next_reap = jiffies + REAPTIMEOUT_NODE +
832 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
833
834 n->free_limit =
835 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
836
837 /*
838 * The kmem_cache_nodes don't come and go as CPUs
839 * come and go. slab_mutex is sufficient
840 * protection here.
841 */
842 cachep->node[node] = n;
843
844 return 0;
845}
846
6731d4f1 847#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
8f9f8d9e 848/*
6a67368c 849 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 850 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 851 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 852 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
853 * already in use.
854 *
18004c5d 855 * Must hold slab_mutex.
8f9f8d9e 856 */
6a67368c 857static int init_cache_node_node(int node)
8f9f8d9e 858{
ded0ecf6 859 int ret;
8f9f8d9e 860 struct kmem_cache *cachep;
8f9f8d9e 861
18004c5d 862 list_for_each_entry(cachep, &slab_caches, list) {
ded0ecf6
JK
863 ret = init_cache_node(cachep, node, GFP_KERNEL);
864 if (ret)
865 return ret;
8f9f8d9e 866 }
ded0ecf6 867
8f9f8d9e
DR
868 return 0;
869}
6731d4f1 870#endif
8f9f8d9e 871
c3d332b6
JK
872static int setup_kmem_cache_node(struct kmem_cache *cachep,
873 int node, gfp_t gfp, bool force_change)
874{
875 int ret = -ENOMEM;
876 struct kmem_cache_node *n;
877 struct array_cache *old_shared = NULL;
878 struct array_cache *new_shared = NULL;
879 struct alien_cache **new_alien = NULL;
880 LIST_HEAD(list);
881
882 if (use_alien_caches) {
883 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
884 if (!new_alien)
885 goto fail;
886 }
887
888 if (cachep->shared) {
889 new_shared = alloc_arraycache(node,
890 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
891 if (!new_shared)
892 goto fail;
893 }
894
895 ret = init_cache_node(cachep, node, gfp);
896 if (ret)
897 goto fail;
898
899 n = get_node(cachep, node);
900 spin_lock_irq(&n->list_lock);
901 if (n->shared && force_change) {
902 free_block(cachep, n->shared->entry,
903 n->shared->avail, node, &list);
904 n->shared->avail = 0;
905 }
906
907 if (!n->shared || force_change) {
908 old_shared = n->shared;
909 n->shared = new_shared;
910 new_shared = NULL;
911 }
912
913 if (!n->alien) {
914 n->alien = new_alien;
915 new_alien = NULL;
916 }
917
918 spin_unlock_irq(&n->list_lock);
919 slabs_destroy(cachep, &list);
920
801faf0d
JK
921 /*
922 * To protect lockless access to n->shared during irq disabled context.
923 * If n->shared isn't NULL in irq disabled context, accessing to it is
924 * guaranteed to be valid until irq is re-enabled, because it will be
6564a25e 925 * freed after synchronize_rcu().
801faf0d 926 */
86d9f485 927 if (old_shared && force_change)
6564a25e 928 synchronize_rcu();
801faf0d 929
c3d332b6
JK
930fail:
931 kfree(old_shared);
932 kfree(new_shared);
933 free_alien_cache(new_alien);
934
935 return ret;
936}
937
6731d4f1
SAS
938#ifdef CONFIG_SMP
939
0db0628d 940static void cpuup_canceled(long cpu)
fbf1e473
AM
941{
942 struct kmem_cache *cachep;
ce8eb6c4 943 struct kmem_cache_node *n = NULL;
7d6e6d09 944 int node = cpu_to_mem(cpu);
a70f7302 945 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 946
18004c5d 947 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
948 struct array_cache *nc;
949 struct array_cache *shared;
c8522a3a 950 struct alien_cache **alien;
97654dfa 951 LIST_HEAD(list);
fbf1e473 952
18bf8541 953 n = get_node(cachep, node);
ce8eb6c4 954 if (!n)
bf0dea23 955 continue;
fbf1e473 956
ce8eb6c4 957 spin_lock_irq(&n->list_lock);
fbf1e473 958
ce8eb6c4
CL
959 /* Free limit for this kmem_cache_node */
960 n->free_limit -= cachep->batchcount;
bf0dea23
JK
961
962 /* cpu is dead; no one can alloc from it. */
963 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
517f9f1e
LR
964 free_block(cachep, nc->entry, nc->avail, node, &list);
965 nc->avail = 0;
fbf1e473 966
58463c1f 967 if (!cpumask_empty(mask)) {
ce8eb6c4 968 spin_unlock_irq(&n->list_lock);
bf0dea23 969 goto free_slab;
fbf1e473
AM
970 }
971
ce8eb6c4 972 shared = n->shared;
fbf1e473
AM
973 if (shared) {
974 free_block(cachep, shared->entry,
97654dfa 975 shared->avail, node, &list);
ce8eb6c4 976 n->shared = NULL;
fbf1e473
AM
977 }
978
ce8eb6c4
CL
979 alien = n->alien;
980 n->alien = NULL;
fbf1e473 981
ce8eb6c4 982 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
983
984 kfree(shared);
985 if (alien) {
986 drain_alien_cache(cachep, alien);
987 free_alien_cache(alien);
988 }
bf0dea23
JK
989
990free_slab:
97654dfa 991 slabs_destroy(cachep, &list);
fbf1e473
AM
992 }
993 /*
994 * In the previous loop, all the objects were freed to
995 * the respective cache's slabs, now we can go ahead and
996 * shrink each nodelist to its limit.
997 */
18004c5d 998 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 999 n = get_node(cachep, node);
ce8eb6c4 1000 if (!n)
fbf1e473 1001 continue;
a5aa63a5 1002 drain_freelist(cachep, n, INT_MAX);
fbf1e473
AM
1003 }
1004}
1005
0db0628d 1006static int cpuup_prepare(long cpu)
1da177e4 1007{
343e0d7a 1008 struct kmem_cache *cachep;
7d6e6d09 1009 int node = cpu_to_mem(cpu);
8f9f8d9e 1010 int err;
1da177e4 1011
fbf1e473
AM
1012 /*
1013 * We need to do this right in the beginning since
1014 * alloc_arraycache's are going to use this list.
1015 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1016 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1017 */
6a67368c 1018 err = init_cache_node_node(node);
8f9f8d9e
DR
1019 if (err < 0)
1020 goto bad;
fbf1e473
AM
1021
1022 /*
1023 * Now we can go ahead with allocating the shared arrays and
1024 * array caches
1025 */
18004c5d 1026 list_for_each_entry(cachep, &slab_caches, list) {
c3d332b6
JK
1027 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1028 if (err)
1029 goto bad;
fbf1e473 1030 }
ce79ddc8 1031
fbf1e473
AM
1032 return 0;
1033bad:
12d00f6a 1034 cpuup_canceled(cpu);
fbf1e473
AM
1035 return -ENOMEM;
1036}
1037
6731d4f1 1038int slab_prepare_cpu(unsigned int cpu)
fbf1e473 1039{
6731d4f1 1040 int err;
fbf1e473 1041
6731d4f1
SAS
1042 mutex_lock(&slab_mutex);
1043 err = cpuup_prepare(cpu);
1044 mutex_unlock(&slab_mutex);
1045 return err;
1046}
1047
1048/*
1049 * This is called for a failed online attempt and for a successful
1050 * offline.
1051 *
1052 * Even if all the cpus of a node are down, we don't free the
1053 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1054 * a kmalloc allocation from another cpu for memory from the node of
1055 * the cpu going down. The list3 structure is usually allocated from
1056 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1057 */
1058int slab_dead_cpu(unsigned int cpu)
1059{
1060 mutex_lock(&slab_mutex);
1061 cpuup_canceled(cpu);
1062 mutex_unlock(&slab_mutex);
1063 return 0;
1064}
8f5be20b 1065#endif
6731d4f1
SAS
1066
1067static int slab_online_cpu(unsigned int cpu)
1068{
1069 start_cpu_timer(cpu);
1070 return 0;
1da177e4
LT
1071}
1072
6731d4f1
SAS
1073static int slab_offline_cpu(unsigned int cpu)
1074{
1075 /*
1076 * Shutdown cache reaper. Note that the slab_mutex is held so
1077 * that if cache_reap() is invoked it cannot do anything
1078 * expensive but will only modify reap_work and reschedule the
1079 * timer.
1080 */
1081 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1082 /* Now the cache_reaper is guaranteed to be not running. */
1083 per_cpu(slab_reap_work, cpu).work.func = NULL;
1084 return 0;
1085}
1da177e4 1086
8f9f8d9e
DR
1087#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1088/*
1089 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1090 * Returns -EBUSY if all objects cannot be drained so that the node is not
1091 * removed.
1092 *
18004c5d 1093 * Must hold slab_mutex.
8f9f8d9e 1094 */
6a67368c 1095static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1096{
1097 struct kmem_cache *cachep;
1098 int ret = 0;
1099
18004c5d 1100 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1101 struct kmem_cache_node *n;
8f9f8d9e 1102
18bf8541 1103 n = get_node(cachep, node);
ce8eb6c4 1104 if (!n)
8f9f8d9e
DR
1105 continue;
1106
a5aa63a5 1107 drain_freelist(cachep, n, INT_MAX);
8f9f8d9e 1108
ce8eb6c4
CL
1109 if (!list_empty(&n->slabs_full) ||
1110 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1111 ret = -EBUSY;
1112 break;
1113 }
1114 }
1115 return ret;
1116}
1117
1118static int __meminit slab_memory_callback(struct notifier_block *self,
1119 unsigned long action, void *arg)
1120{
1121 struct memory_notify *mnb = arg;
1122 int ret = 0;
1123 int nid;
1124
1125 nid = mnb->status_change_nid;
1126 if (nid < 0)
1127 goto out;
1128
1129 switch (action) {
1130 case MEM_GOING_ONLINE:
18004c5d 1131 mutex_lock(&slab_mutex);
6a67368c 1132 ret = init_cache_node_node(nid);
18004c5d 1133 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1134 break;
1135 case MEM_GOING_OFFLINE:
18004c5d 1136 mutex_lock(&slab_mutex);
6a67368c 1137 ret = drain_cache_node_node(nid);
18004c5d 1138 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1139 break;
1140 case MEM_ONLINE:
1141 case MEM_OFFLINE:
1142 case MEM_CANCEL_ONLINE:
1143 case MEM_CANCEL_OFFLINE:
1144 break;
1145 }
1146out:
5fda1bd5 1147 return notifier_from_errno(ret);
8f9f8d9e
DR
1148}
1149#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1150
e498be7d 1151/*
ce8eb6c4 1152 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1153 */
6744f087 1154static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1155 int nodeid)
e498be7d 1156{
6744f087 1157 struct kmem_cache_node *ptr;
e498be7d 1158
6744f087 1159 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1160 BUG_ON(!ptr);
1161
6744f087 1162 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1163 /*
1164 * Do not assume that spinlocks can be initialized via memcpy:
1165 */
1166 spin_lock_init(&ptr->list_lock);
1167
e498be7d 1168 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1169 cachep->node[nodeid] = ptr;
e498be7d
CL
1170}
1171
556a169d 1172/*
ce8eb6c4
CL
1173 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1174 * size of kmem_cache_node.
556a169d 1175 */
ce8eb6c4 1176static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1177{
1178 int node;
1179
1180 for_each_online_node(node) {
ce8eb6c4 1181 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1182 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1183 REAPTIMEOUT_NODE +
1184 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1185 }
1186}
1187
a737b3e2
AM
1188/*
1189 * Initialisation. Called after the page allocator have been initialised and
1190 * before smp_init().
1da177e4
LT
1191 */
1192void __init kmem_cache_init(void)
1193{
e498be7d
CL
1194 int i;
1195
9b030cb8
CL
1196 kmem_cache = &kmem_cache_boot;
1197
8888177e 1198 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
62918a03
SS
1199 use_alien_caches = 0;
1200
3c583465 1201 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1202 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1203
1da177e4
LT
1204 /*
1205 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1206 * page orders on machines with more than 32MB of memory if
1207 * not overridden on the command line.
1da177e4 1208 */
ca79b0c2 1209 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
543585cc 1210 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1211
1da177e4
LT
1212 /* Bootstrap is tricky, because several objects are allocated
1213 * from caches that do not exist yet:
9b030cb8
CL
1214 * 1) initialize the kmem_cache cache: it contains the struct
1215 * kmem_cache structures of all caches, except kmem_cache itself:
1216 * kmem_cache is statically allocated.
e498be7d 1217 * Initially an __init data area is used for the head array and the
ce8eb6c4 1218 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1219 * array at the end of the bootstrap.
1da177e4 1220 * 2) Create the first kmalloc cache.
343e0d7a 1221 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1222 * An __init data area is used for the head array.
1223 * 3) Create the remaining kmalloc caches, with minimally sized
1224 * head arrays.
9b030cb8 1225 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1226 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1227 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1228 * the other cache's with kmalloc allocated memory.
1229 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1230 */
1231
9b030cb8 1232 /* 1) create the kmem_cache */
1da177e4 1233
8da3430d 1234 /*
b56efcf0 1235 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1236 */
2f9baa9f 1237 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1238 offsetof(struct kmem_cache, node) +
6744f087 1239 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 1240 SLAB_HWCACHE_ALIGN, 0, 0);
2f9baa9f 1241 list_add(&kmem_cache->list, &slab_caches);
880cd276 1242 memcg_link_cache(kmem_cache);
bf0dea23 1243 slab_state = PARTIAL;
1da177e4 1244
a737b3e2 1245 /*
bf0dea23
JK
1246 * Initialize the caches that provide memory for the kmem_cache_node
1247 * structures first. Without this, further allocations will bug.
e498be7d 1248 */
cc252eae 1249 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
af3b5f87 1250 kmalloc_info[INDEX_NODE].name,
6c0c21ad
DW
1251 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
1252 0, kmalloc_size(INDEX_NODE));
bf0dea23 1253 slab_state = PARTIAL_NODE;
34cc6990 1254 setup_kmalloc_cache_index_table();
e498be7d 1255
e0a42726
IM
1256 slab_early_init = 0;
1257
ce8eb6c4 1258 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1259 {
1ca4cb24
PE
1260 int nid;
1261
9c09a95c 1262 for_each_online_node(nid) {
ce8eb6c4 1263 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1264
cc252eae 1265 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
ce8eb6c4 1266 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1267 }
1268 }
1da177e4 1269
f97d5f63 1270 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1271}
1272
1273void __init kmem_cache_init_late(void)
1274{
1275 struct kmem_cache *cachep;
1276
8429db5c 1277 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1278 mutex_lock(&slab_mutex);
1279 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1280 if (enable_cpucache(cachep, GFP_NOWAIT))
1281 BUG();
18004c5d 1282 mutex_unlock(&slab_mutex);
056c6241 1283
97d06609
CL
1284 /* Done! */
1285 slab_state = FULL;
1286
8f9f8d9e
DR
1287#ifdef CONFIG_NUMA
1288 /*
1289 * Register a memory hotplug callback that initializes and frees
6a67368c 1290 * node.
8f9f8d9e
DR
1291 */
1292 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1293#endif
1294
a737b3e2
AM
1295 /*
1296 * The reap timers are started later, with a module init call: That part
1297 * of the kernel is not yet operational.
1da177e4
LT
1298 */
1299}
1300
1301static int __init cpucache_init(void)
1302{
6731d4f1 1303 int ret;
1da177e4 1304
a737b3e2
AM
1305 /*
1306 * Register the timers that return unneeded pages to the page allocator
1da177e4 1307 */
6731d4f1
SAS
1308 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1309 slab_online_cpu, slab_offline_cpu);
1310 WARN_ON(ret < 0);
a164f896 1311
1da177e4
LT
1312 return 0;
1313}
1da177e4
LT
1314__initcall(cpucache_init);
1315
8bdec192
RA
1316static noinline void
1317slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1318{
9a02d699 1319#if DEBUG
ce8eb6c4 1320 struct kmem_cache_node *n;
8bdec192
RA
1321 unsigned long flags;
1322 int node;
9a02d699
DR
1323 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1324 DEFAULT_RATELIMIT_BURST);
1325
1326 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1327 return;
8bdec192 1328
5b3810e5
VB
1329 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1330 nodeid, gfpflags, &gfpflags);
1331 pr_warn(" cache: %s, object size: %d, order: %d\n",
3b0efdfa 1332 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1333
18bf8541 1334 for_each_kmem_cache_node(cachep, node, n) {
bf00bd34 1335 unsigned long total_slabs, free_slabs, free_objs;
8bdec192 1336
ce8eb6c4 1337 spin_lock_irqsave(&n->list_lock, flags);
bf00bd34
DR
1338 total_slabs = n->total_slabs;
1339 free_slabs = n->free_slabs;
1340 free_objs = n->free_objects;
ce8eb6c4 1341 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192 1342
bf00bd34
DR
1343 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1344 node, total_slabs - free_slabs, total_slabs,
1345 (total_slabs * cachep->num) - free_objs,
1346 total_slabs * cachep->num);
8bdec192 1347 }
9a02d699 1348#endif
8bdec192
RA
1349}
1350
1da177e4 1351/*
8a7d9b43
WSH
1352 * Interface to system's page allocator. No need to hold the
1353 * kmem_cache_node ->list_lock.
1da177e4
LT
1354 *
1355 * If we requested dmaable memory, we will get it. Even if we
1356 * did not request dmaable memory, we might get it, but that
1357 * would be relatively rare and ignorable.
1358 */
0c3aa83e
JK
1359static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1360 int nodeid)
1da177e4
LT
1361{
1362 struct page *page;
e1b6aa6f 1363 int nr_pages;
765c4507 1364
a618e89f 1365 flags |= cachep->allocflags;
e1b6aa6f 1366
75f296d9 1367 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
8bdec192 1368 if (!page) {
9a02d699 1369 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1370 return NULL;
8bdec192 1371 }
1da177e4 1372
f3ccb2c4
VD
1373 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1374 __free_pages(page, cachep->gfporder);
1375 return NULL;
1376 }
1377
e1b6aa6f 1378 nr_pages = (1 << cachep->gfporder);
1da177e4 1379 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
7779f212 1380 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
972d1a7b 1381 else
7779f212 1382 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
f68f8ddd 1383
a57a4988 1384 __SetPageSlab(page);
f68f8ddd
JK
1385 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1386 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
a57a4988 1387 SetPageSlabPfmemalloc(page);
072bb0aa 1388
0c3aa83e 1389 return page;
1da177e4
LT
1390}
1391
1392/*
1393 * Interface to system's page release.
1394 */
0c3aa83e 1395static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1396{
27ee57c9
VD
1397 int order = cachep->gfporder;
1398 unsigned long nr_freed = (1 << order);
1da177e4 1399
972d1a7b 1400 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
7779f212 1401 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
972d1a7b 1402 else
7779f212 1403 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
73293c2f 1404
a57a4988 1405 BUG_ON(!PageSlab(page));
73293c2f 1406 __ClearPageSlabPfmemalloc(page);
a57a4988 1407 __ClearPageSlab(page);
8456a648
JK
1408 page_mapcount_reset(page);
1409 page->mapping = NULL;
1f458cbf 1410
1da177e4
LT
1411 if (current->reclaim_state)
1412 current->reclaim_state->reclaimed_slab += nr_freed;
27ee57c9
VD
1413 memcg_uncharge_slab(page, order, cachep);
1414 __free_pages(page, order);
1da177e4
LT
1415}
1416
1417static void kmem_rcu_free(struct rcu_head *head)
1418{
68126702
JK
1419 struct kmem_cache *cachep;
1420 struct page *page;
1da177e4 1421
68126702
JK
1422 page = container_of(head, struct page, rcu_head);
1423 cachep = page->slab_cache;
1424
1425 kmem_freepages(cachep, page);
1da177e4
LT
1426}
1427
1428#if DEBUG
40b44137
JK
1429static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1430{
1431 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1432 (cachep->size % PAGE_SIZE) == 0)
1433 return true;
1434
1435 return false;
1436}
1da177e4
LT
1437
1438#ifdef CONFIG_DEBUG_PAGEALLOC
80552f0f 1439static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
40b44137
JK
1440{
1441 if (!is_debug_pagealloc_cache(cachep))
1442 return;
1443
40b44137
JK
1444 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1445}
1446
1447#else
1448static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
80552f0f 1449 int map) {}
40b44137 1450
1da177e4
LT
1451#endif
1452
343e0d7a 1453static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1454{
8c138bc0 1455 int size = cachep->object_size;
3dafccf2 1456 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1457
1458 memset(addr, val, size);
b28a02de 1459 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1460}
1461
1462static void dump_line(char *data, int offset, int limit)
1463{
1464 int i;
aa83aa40
DJ
1465 unsigned char error = 0;
1466 int bad_count = 0;
1467
1170532b 1468 pr_err("%03x: ", offset);
aa83aa40
DJ
1469 for (i = 0; i < limit; i++) {
1470 if (data[offset + i] != POISON_FREE) {
1471 error = data[offset + i];
1472 bad_count++;
1473 }
aa83aa40 1474 }
fdde6abb
SAS
1475 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1476 &data[offset], limit, 1);
aa83aa40
DJ
1477
1478 if (bad_count == 1) {
1479 error ^= POISON_FREE;
1480 if (!(error & (error - 1))) {
1170532b 1481 pr_err("Single bit error detected. Probably bad RAM.\n");
aa83aa40 1482#ifdef CONFIG_X86
1170532b 1483 pr_err("Run memtest86+ or a similar memory test tool.\n");
aa83aa40 1484#else
1170532b 1485 pr_err("Run a memory test tool.\n");
aa83aa40
DJ
1486#endif
1487 }
1488 }
1da177e4
LT
1489}
1490#endif
1491
1492#if DEBUG
1493
343e0d7a 1494static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1495{
1496 int i, size;
1497 char *realobj;
1498
1499 if (cachep->flags & SLAB_RED_ZONE) {
1170532b
JP
1500 pr_err("Redzone: 0x%llx/0x%llx\n",
1501 *dbg_redzone1(cachep, objp),
1502 *dbg_redzone2(cachep, objp));
1da177e4
LT
1503 }
1504
85c3e4a5
GU
1505 if (cachep->flags & SLAB_STORE_USER)
1506 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
3dafccf2 1507 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1508 size = cachep->object_size;
b28a02de 1509 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1510 int limit;
1511 limit = 16;
b28a02de
PE
1512 if (i + limit > size)
1513 limit = size - i;
1da177e4
LT
1514 dump_line(realobj, i, limit);
1515 }
1516}
1517
343e0d7a 1518static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1519{
1520 char *realobj;
1521 int size, i;
1522 int lines = 0;
1523
40b44137
JK
1524 if (is_debug_pagealloc_cache(cachep))
1525 return;
1526
3dafccf2 1527 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1528 size = cachep->object_size;
1da177e4 1529
b28a02de 1530 for (i = 0; i < size; i++) {
1da177e4 1531 char exp = POISON_FREE;
b28a02de 1532 if (i == size - 1)
1da177e4
LT
1533 exp = POISON_END;
1534 if (realobj[i] != exp) {
1535 int limit;
1536 /* Mismatch ! */
1537 /* Print header */
1538 if (lines == 0) {
85c3e4a5 1539 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1170532b
JP
1540 print_tainted(), cachep->name,
1541 realobj, size);
1da177e4
LT
1542 print_objinfo(cachep, objp, 0);
1543 }
1544 /* Hexdump the affected line */
b28a02de 1545 i = (i / 16) * 16;
1da177e4 1546 limit = 16;
b28a02de
PE
1547 if (i + limit > size)
1548 limit = size - i;
1da177e4
LT
1549 dump_line(realobj, i, limit);
1550 i += 16;
1551 lines++;
1552 /* Limit to 5 lines */
1553 if (lines > 5)
1554 break;
1555 }
1556 }
1557 if (lines != 0) {
1558 /* Print some data about the neighboring objects, if they
1559 * exist:
1560 */
8456a648 1561 struct page *page = virt_to_head_page(objp);
8fea4e96 1562 unsigned int objnr;
1da177e4 1563
8456a648 1564 objnr = obj_to_index(cachep, page, objp);
1da177e4 1565 if (objnr) {
8456a648 1566 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1567 realobj = (char *)objp + obj_offset(cachep);
85c3e4a5 1568 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1da177e4
LT
1569 print_objinfo(cachep, objp, 2);
1570 }
b28a02de 1571 if (objnr + 1 < cachep->num) {
8456a648 1572 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1573 realobj = (char *)objp + obj_offset(cachep);
85c3e4a5 1574 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1da177e4
LT
1575 print_objinfo(cachep, objp, 2);
1576 }
1577 }
1578}
1579#endif
1580
12dd36fa 1581#if DEBUG
8456a648
JK
1582static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1583 struct page *page)
1da177e4 1584{
1da177e4 1585 int i;
b03a017b
JK
1586
1587 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1588 poison_obj(cachep, page->freelist - obj_offset(cachep),
1589 POISON_FREE);
1590 }
1591
1da177e4 1592 for (i = 0; i < cachep->num; i++) {
8456a648 1593 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1594
1595 if (cachep->flags & SLAB_POISON) {
1da177e4 1596 check_poison_obj(cachep, objp);
80552f0f 1597 slab_kernel_map(cachep, objp, 1);
1da177e4
LT
1598 }
1599 if (cachep->flags & SLAB_RED_ZONE) {
1600 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 1601 slab_error(cachep, "start of a freed object was overwritten");
1da177e4 1602 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 1603 slab_error(cachep, "end of a freed object was overwritten");
1da177e4 1604 }
1da177e4 1605 }
12dd36fa 1606}
1da177e4 1607#else
8456a648
JK
1608static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1609 struct page *page)
12dd36fa 1610{
12dd36fa 1611}
1da177e4
LT
1612#endif
1613
911851e6
RD
1614/**
1615 * slab_destroy - destroy and release all objects in a slab
1616 * @cachep: cache pointer being destroyed
cb8ee1a3 1617 * @page: page pointer being destroyed
911851e6 1618 *
8a7d9b43
WSH
1619 * Destroy all the objs in a slab page, and release the mem back to the system.
1620 * Before calling the slab page must have been unlinked from the cache. The
1621 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1622 */
8456a648 1623static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1624{
7e007355 1625 void *freelist;
12dd36fa 1626
8456a648
JK
1627 freelist = page->freelist;
1628 slab_destroy_debugcheck(cachep, page);
5f0d5a3a 1629 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
bc4f610d
KS
1630 call_rcu(&page->rcu_head, kmem_rcu_free);
1631 else
0c3aa83e 1632 kmem_freepages(cachep, page);
68126702
JK
1633
1634 /*
8456a648 1635 * From now on, we don't use freelist
68126702
JK
1636 * although actual page can be freed in rcu context
1637 */
1638 if (OFF_SLAB(cachep))
8456a648 1639 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1640}
1641
97654dfa
JK
1642static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1643{
1644 struct page *page, *n;
1645
16cb0ec7
TH
1646 list_for_each_entry_safe(page, n, list, slab_list) {
1647 list_del(&page->slab_list);
97654dfa
JK
1648 slab_destroy(cachep, page);
1649 }
1650}
1651
4d268eba 1652/**
a70773dd
RD
1653 * calculate_slab_order - calculate size (page order) of slabs
1654 * @cachep: pointer to the cache that is being created
1655 * @size: size of objects to be created in this cache.
a70773dd
RD
1656 * @flags: slab allocation flags
1657 *
1658 * Also calculates the number of objects per slab.
4d268eba
PE
1659 *
1660 * This could be made much more intelligent. For now, try to avoid using
1661 * high order pages for slabs. When the gfp() functions are more friendly
1662 * towards high-order requests, this should be changed.
a862f68a
MR
1663 *
1664 * Return: number of left-over bytes in a slab
4d268eba 1665 */
a737b3e2 1666static size_t calculate_slab_order(struct kmem_cache *cachep,
d50112ed 1667 size_t size, slab_flags_t flags)
4d268eba
PE
1668{
1669 size_t left_over = 0;
9888e6fa 1670 int gfporder;
4d268eba 1671
0aa817f0 1672 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1673 unsigned int num;
1674 size_t remainder;
1675
70f75067 1676 num = cache_estimate(gfporder, size, flags, &remainder);
4d268eba
PE
1677 if (!num)
1678 continue;
9888e6fa 1679
f315e3fa
JK
1680 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1681 if (num > SLAB_OBJ_MAX_NUM)
1682 break;
1683
b1ab41c4 1684 if (flags & CFLGS_OFF_SLAB) {
3217fd9b
JK
1685 struct kmem_cache *freelist_cache;
1686 size_t freelist_size;
1687
1688 freelist_size = num * sizeof(freelist_idx_t);
1689 freelist_cache = kmalloc_slab(freelist_size, 0u);
1690 if (!freelist_cache)
1691 continue;
1692
b1ab41c4 1693 /*
3217fd9b 1694 * Needed to avoid possible looping condition
76b342bd 1695 * in cache_grow_begin()
b1ab41c4 1696 */
3217fd9b
JK
1697 if (OFF_SLAB(freelist_cache))
1698 continue;
b1ab41c4 1699
3217fd9b
JK
1700 /* check if off slab has enough benefit */
1701 if (freelist_cache->size > cachep->size / 2)
1702 continue;
b1ab41c4 1703 }
4d268eba 1704
9888e6fa 1705 /* Found something acceptable - save it away */
4d268eba 1706 cachep->num = num;
9888e6fa 1707 cachep->gfporder = gfporder;
4d268eba
PE
1708 left_over = remainder;
1709
f78bb8ad
LT
1710 /*
1711 * A VFS-reclaimable slab tends to have most allocations
1712 * as GFP_NOFS and we really don't want to have to be allocating
1713 * higher-order pages when we are unable to shrink dcache.
1714 */
1715 if (flags & SLAB_RECLAIM_ACCOUNT)
1716 break;
1717
4d268eba
PE
1718 /*
1719 * Large number of objects is good, but very large slabs are
1720 * currently bad for the gfp()s.
1721 */
543585cc 1722 if (gfporder >= slab_max_order)
4d268eba
PE
1723 break;
1724
9888e6fa
LT
1725 /*
1726 * Acceptable internal fragmentation?
1727 */
a737b3e2 1728 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1729 break;
1730 }
1731 return left_over;
1732}
1733
bf0dea23
JK
1734static struct array_cache __percpu *alloc_kmem_cache_cpus(
1735 struct kmem_cache *cachep, int entries, int batchcount)
1736{
1737 int cpu;
1738 size_t size;
1739 struct array_cache __percpu *cpu_cache;
1740
1741 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 1742 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
1743
1744 if (!cpu_cache)
1745 return NULL;
1746
1747 for_each_possible_cpu(cpu) {
1748 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1749 entries, batchcount);
1750 }
1751
1752 return cpu_cache;
1753}
1754
bd721ea7 1755static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 1756{
97d06609 1757 if (slab_state >= FULL)
83b519e8 1758 return enable_cpucache(cachep, gfp);
2ed3a4ef 1759
bf0dea23
JK
1760 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1761 if (!cachep->cpu_cache)
1762 return 1;
1763
97d06609 1764 if (slab_state == DOWN) {
bf0dea23
JK
1765 /* Creation of first cache (kmem_cache). */
1766 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 1767 } else if (slab_state == PARTIAL) {
bf0dea23
JK
1768 /* For kmem_cache_node */
1769 set_up_node(cachep, SIZE_NODE);
f30cf7d1 1770 } else {
bf0dea23 1771 int node;
f30cf7d1 1772
bf0dea23
JK
1773 for_each_online_node(node) {
1774 cachep->node[node] = kmalloc_node(
1775 sizeof(struct kmem_cache_node), gfp, node);
1776 BUG_ON(!cachep->node[node]);
1777 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
1778 }
1779 }
bf0dea23 1780
6a67368c 1781 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
1782 jiffies + REAPTIMEOUT_NODE +
1783 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
1784
1785 cpu_cache_get(cachep)->avail = 0;
1786 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1787 cpu_cache_get(cachep)->batchcount = 1;
1788 cpu_cache_get(cachep)->touched = 0;
1789 cachep->batchcount = 1;
1790 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 1791 return 0;
f30cf7d1
PE
1792}
1793
0293d1fd 1794slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1795 slab_flags_t flags, const char *name,
12220dea
JK
1796 void (*ctor)(void *))
1797{
1798 return flags;
1799}
1800
1801struct kmem_cache *
f4957d5b 1802__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 1803 slab_flags_t flags, void (*ctor)(void *))
12220dea
JK
1804{
1805 struct kmem_cache *cachep;
1806
1807 cachep = find_mergeable(size, align, flags, name, ctor);
1808 if (cachep) {
1809 cachep->refcount++;
1810
1811 /*
1812 * Adjust the object sizes so that we clear
1813 * the complete object on kzalloc.
1814 */
1815 cachep->object_size = max_t(int, cachep->object_size, size);
1816 }
1817 return cachep;
1818}
1819
b03a017b 1820static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
d50112ed 1821 size_t size, slab_flags_t flags)
b03a017b
JK
1822{
1823 size_t left;
1824
1825 cachep->num = 0;
1826
5f0d5a3a 1827 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
b03a017b
JK
1828 return false;
1829
1830 left = calculate_slab_order(cachep, size,
1831 flags | CFLGS_OBJFREELIST_SLAB);
1832 if (!cachep->num)
1833 return false;
1834
1835 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1836 return false;
1837
1838 cachep->colour = left / cachep->colour_off;
1839
1840 return true;
1841}
1842
158e319b 1843static bool set_off_slab_cache(struct kmem_cache *cachep,
d50112ed 1844 size_t size, slab_flags_t flags)
158e319b
JK
1845{
1846 size_t left;
1847
1848 cachep->num = 0;
1849
1850 /*
3217fd9b
JK
1851 * Always use on-slab management when SLAB_NOLEAKTRACE
1852 * to avoid recursive calls into kmemleak.
158e319b 1853 */
158e319b
JK
1854 if (flags & SLAB_NOLEAKTRACE)
1855 return false;
1856
1857 /*
1858 * Size is large, assume best to place the slab management obj
1859 * off-slab (should allow better packing of objs).
1860 */
1861 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1862 if (!cachep->num)
1863 return false;
1864
1865 /*
1866 * If the slab has been placed off-slab, and we have enough space then
1867 * move it on-slab. This is at the expense of any extra colouring.
1868 */
1869 if (left >= cachep->num * sizeof(freelist_idx_t))
1870 return false;
1871
1872 cachep->colour = left / cachep->colour_off;
1873
1874 return true;
1875}
1876
1877static bool set_on_slab_cache(struct kmem_cache *cachep,
d50112ed 1878 size_t size, slab_flags_t flags)
158e319b
JK
1879{
1880 size_t left;
1881
1882 cachep->num = 0;
1883
1884 left = calculate_slab_order(cachep, size, flags);
1885 if (!cachep->num)
1886 return false;
1887
1888 cachep->colour = left / cachep->colour_off;
1889
1890 return true;
1891}
1892
1da177e4 1893/**
039363f3 1894 * __kmem_cache_create - Create a cache.
a755b76a 1895 * @cachep: cache management descriptor
1da177e4 1896 * @flags: SLAB flags
1da177e4
LT
1897 *
1898 * Returns a ptr to the cache on success, NULL on failure.
1899 * Cannot be called within a int, but can be interrupted.
20c2df83 1900 * The @ctor is run when new pages are allocated by the cache.
1da177e4 1901 *
1da177e4
LT
1902 * The flags are
1903 *
1904 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1905 * to catch references to uninitialised memory.
1906 *
1907 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1908 * for buffer overruns.
1909 *
1da177e4
LT
1910 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1911 * cacheline. This can be beneficial if you're counting cycles as closely
1912 * as davem.
a862f68a
MR
1913 *
1914 * Return: a pointer to the created cache or %NULL in case of error
1da177e4 1915 */
d50112ed 1916int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1da177e4 1917{
d4a5fca5 1918 size_t ralign = BYTES_PER_WORD;
83b519e8 1919 gfp_t gfp;
278b1bb1 1920 int err;
be4a7988 1921 unsigned int size = cachep->size;
1da177e4 1922
1da177e4 1923#if DEBUG
1da177e4
LT
1924#if FORCED_DEBUG
1925 /*
1926 * Enable redzoning and last user accounting, except for caches with
1927 * large objects, if the increased size would increase the object size
1928 * above the next power of two: caches with object sizes just above a
1929 * power of two have a significant amount of internal fragmentation.
1930 */
87a927c7
DW
1931 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1932 2 * sizeof(unsigned long long)))
b28a02de 1933 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
5f0d5a3a 1934 if (!(flags & SLAB_TYPESAFE_BY_RCU))
1da177e4
LT
1935 flags |= SLAB_POISON;
1936#endif
1da177e4 1937#endif
1da177e4 1938
a737b3e2
AM
1939 /*
1940 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
1941 * unaligned accesses for some archs when redzoning is used, and makes
1942 * sure any on-slab bufctl's are also correctly aligned.
1943 */
e0771950 1944 size = ALIGN(size, BYTES_PER_WORD);
1da177e4 1945
87a927c7
DW
1946 if (flags & SLAB_RED_ZONE) {
1947 ralign = REDZONE_ALIGN;
1948 /* If redzoning, ensure that the second redzone is suitably
1949 * aligned, by adjusting the object size accordingly. */
e0771950 1950 size = ALIGN(size, REDZONE_ALIGN);
87a927c7 1951 }
ca5f9703 1952
a44b56d3 1953 /* 3) caller mandated alignment */
8a13a4cc
CL
1954 if (ralign < cachep->align) {
1955 ralign = cachep->align;
1da177e4 1956 }
3ff84a7f
PE
1957 /* disable debug if necessary */
1958 if (ralign > __alignof__(unsigned long long))
a44b56d3 1959 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 1960 /*
ca5f9703 1961 * 4) Store it.
1da177e4 1962 */
8a13a4cc 1963 cachep->align = ralign;
158e319b
JK
1964 cachep->colour_off = cache_line_size();
1965 /* Offset must be a multiple of the alignment. */
1966 if (cachep->colour_off < cachep->align)
1967 cachep->colour_off = cachep->align;
1da177e4 1968
83b519e8
PE
1969 if (slab_is_available())
1970 gfp = GFP_KERNEL;
1971 else
1972 gfp = GFP_NOWAIT;
1973
1da177e4 1974#if DEBUG
1da177e4 1975
ca5f9703
PE
1976 /*
1977 * Both debugging options require word-alignment which is calculated
1978 * into align above.
1979 */
1da177e4 1980 if (flags & SLAB_RED_ZONE) {
1da177e4 1981 /* add space for red zone words */
3ff84a7f
PE
1982 cachep->obj_offset += sizeof(unsigned long long);
1983 size += 2 * sizeof(unsigned long long);
1da177e4
LT
1984 }
1985 if (flags & SLAB_STORE_USER) {
ca5f9703 1986 /* user store requires one word storage behind the end of
87a927c7
DW
1987 * the real object. But if the second red zone needs to be
1988 * aligned to 64 bits, we must allow that much space.
1da177e4 1989 */
87a927c7
DW
1990 if (flags & SLAB_RED_ZONE)
1991 size += REDZONE_ALIGN;
1992 else
1993 size += BYTES_PER_WORD;
1da177e4 1994 }
832a15d2
JK
1995#endif
1996
7ed2f9e6
AP
1997 kasan_cache_create(cachep, &size, &flags);
1998
832a15d2
JK
1999 size = ALIGN(size, cachep->align);
2000 /*
2001 * We should restrict the number of objects in a slab to implement
2002 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2003 */
2004 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2005 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2006
2007#if DEBUG
03a2d2a3
JK
2008 /*
2009 * To activate debug pagealloc, off-slab management is necessary
2010 * requirement. In early phase of initialization, small sized slab
2011 * doesn't get initialized so it would not be possible. So, we need
2012 * to check size >= 256. It guarantees that all necessary small
2013 * sized slab is initialized in current slab initialization sequence.
2014 */
40323278 2015 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
f3a3c320
JK
2016 size >= 256 && cachep->object_size > cache_line_size()) {
2017 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2018 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2019
2020 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2021 flags |= CFLGS_OFF_SLAB;
2022 cachep->obj_offset += tmp_size - size;
2023 size = tmp_size;
2024 goto done;
2025 }
2026 }
1da177e4 2027 }
1da177e4
LT
2028#endif
2029
b03a017b
JK
2030 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2031 flags |= CFLGS_OBJFREELIST_SLAB;
2032 goto done;
2033 }
2034
158e319b 2035 if (set_off_slab_cache(cachep, size, flags)) {
1da177e4 2036 flags |= CFLGS_OFF_SLAB;
158e319b 2037 goto done;
832a15d2 2038 }
1da177e4 2039
158e319b
JK
2040 if (set_on_slab_cache(cachep, size, flags))
2041 goto done;
1da177e4 2042
158e319b 2043 return -E2BIG;
1da177e4 2044
158e319b
JK
2045done:
2046 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
1da177e4 2047 cachep->flags = flags;
a57a4988 2048 cachep->allocflags = __GFP_COMP;
a3187e43 2049 if (flags & SLAB_CACHE_DMA)
a618e89f 2050 cachep->allocflags |= GFP_DMA;
6d6ea1e9
NB
2051 if (flags & SLAB_CACHE_DMA32)
2052 cachep->allocflags |= GFP_DMA32;
a3ba0744
DR
2053 if (flags & SLAB_RECLAIM_ACCOUNT)
2054 cachep->allocflags |= __GFP_RECLAIMABLE;
3b0efdfa 2055 cachep->size = size;
6a2d7a95 2056 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2057
40b44137
JK
2058#if DEBUG
2059 /*
2060 * If we're going to use the generic kernel_map_pages()
2061 * poisoning, then it's going to smash the contents of
2062 * the redzone and userword anyhow, so switch them off.
2063 */
2064 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2065 (cachep->flags & SLAB_POISON) &&
2066 is_debug_pagealloc_cache(cachep))
2067 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2068#endif
2069
2070 if (OFF_SLAB(cachep)) {
158e319b
JK
2071 cachep->freelist_cache =
2072 kmalloc_slab(cachep->freelist_size, 0u);
e5ac9c5a 2073 }
1da177e4 2074
278b1bb1
CL
2075 err = setup_cpu_cache(cachep, gfp);
2076 if (err) {
52b4b950 2077 __kmem_cache_release(cachep);
278b1bb1 2078 return err;
2ed3a4ef 2079 }
1da177e4 2080
278b1bb1 2081 return 0;
1da177e4 2082}
1da177e4
LT
2083
2084#if DEBUG
2085static void check_irq_off(void)
2086{
2087 BUG_ON(!irqs_disabled());
2088}
2089
2090static void check_irq_on(void)
2091{
2092 BUG_ON(irqs_disabled());
2093}
2094
18726ca8
JK
2095static void check_mutex_acquired(void)
2096{
2097 BUG_ON(!mutex_is_locked(&slab_mutex));
2098}
2099
343e0d7a 2100static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2101{
2102#ifdef CONFIG_SMP
2103 check_irq_off();
18bf8541 2104 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2105#endif
2106}
e498be7d 2107
343e0d7a 2108static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2109{
2110#ifdef CONFIG_SMP
2111 check_irq_off();
18bf8541 2112 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2113#endif
2114}
2115
1da177e4
LT
2116#else
2117#define check_irq_off() do { } while(0)
2118#define check_irq_on() do { } while(0)
18726ca8 2119#define check_mutex_acquired() do { } while(0)
1da177e4 2120#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2121#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2122#endif
2123
18726ca8
JK
2124static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2125 int node, bool free_all, struct list_head *list)
2126{
2127 int tofree;
2128
2129 if (!ac || !ac->avail)
2130 return;
2131
2132 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2133 if (tofree > ac->avail)
2134 tofree = (ac->avail + 1) / 2;
2135
2136 free_block(cachep, ac->entry, tofree, node, list);
2137 ac->avail -= tofree;
2138 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2139}
aab2207c 2140
1da177e4
LT
2141static void do_drain(void *arg)
2142{
a737b3e2 2143 struct kmem_cache *cachep = arg;
1da177e4 2144 struct array_cache *ac;
7d6e6d09 2145 int node = numa_mem_id();
18bf8541 2146 struct kmem_cache_node *n;
97654dfa 2147 LIST_HEAD(list);
1da177e4
LT
2148
2149 check_irq_off();
9a2dba4b 2150 ac = cpu_cache_get(cachep);
18bf8541
CL
2151 n = get_node(cachep, node);
2152 spin_lock(&n->list_lock);
97654dfa 2153 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2154 spin_unlock(&n->list_lock);
97654dfa 2155 slabs_destroy(cachep, &list);
1da177e4
LT
2156 ac->avail = 0;
2157}
2158
343e0d7a 2159static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2160{
ce8eb6c4 2161 struct kmem_cache_node *n;
e498be7d 2162 int node;
18726ca8 2163 LIST_HEAD(list);
e498be7d 2164
15c8b6c1 2165 on_each_cpu(do_drain, cachep, 1);
1da177e4 2166 check_irq_on();
18bf8541
CL
2167 for_each_kmem_cache_node(cachep, node, n)
2168 if (n->alien)
ce8eb6c4 2169 drain_alien_cache(cachep, n->alien);
a4523a8b 2170
18726ca8
JK
2171 for_each_kmem_cache_node(cachep, node, n) {
2172 spin_lock_irq(&n->list_lock);
2173 drain_array_locked(cachep, n->shared, node, true, &list);
2174 spin_unlock_irq(&n->list_lock);
2175
2176 slabs_destroy(cachep, &list);
2177 }
1da177e4
LT
2178}
2179
ed11d9eb
CL
2180/*
2181 * Remove slabs from the list of free slabs.
2182 * Specify the number of slabs to drain in tofree.
2183 *
2184 * Returns the actual number of slabs released.
2185 */
2186static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2187 struct kmem_cache_node *n, int tofree)
1da177e4 2188{
ed11d9eb
CL
2189 struct list_head *p;
2190 int nr_freed;
8456a648 2191 struct page *page;
1da177e4 2192
ed11d9eb 2193 nr_freed = 0;
ce8eb6c4 2194 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2195
ce8eb6c4
CL
2196 spin_lock_irq(&n->list_lock);
2197 p = n->slabs_free.prev;
2198 if (p == &n->slabs_free) {
2199 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2200 goto out;
2201 }
1da177e4 2202
16cb0ec7
TH
2203 page = list_entry(p, struct page, slab_list);
2204 list_del(&page->slab_list);
f728b0a5 2205 n->free_slabs--;
bf00bd34 2206 n->total_slabs--;
ed11d9eb
CL
2207 /*
2208 * Safe to drop the lock. The slab is no longer linked
2209 * to the cache.
2210 */
ce8eb6c4
CL
2211 n->free_objects -= cache->num;
2212 spin_unlock_irq(&n->list_lock);
8456a648 2213 slab_destroy(cache, page);
ed11d9eb 2214 nr_freed++;
1da177e4 2215 }
ed11d9eb
CL
2216out:
2217 return nr_freed;
1da177e4
LT
2218}
2219
f9e13c0a
SB
2220bool __kmem_cache_empty(struct kmem_cache *s)
2221{
2222 int node;
2223 struct kmem_cache_node *n;
2224
2225 for_each_kmem_cache_node(s, node, n)
2226 if (!list_empty(&n->slabs_full) ||
2227 !list_empty(&n->slabs_partial))
2228 return false;
2229 return true;
2230}
2231
c9fc5864 2232int __kmem_cache_shrink(struct kmem_cache *cachep)
e498be7d 2233{
18bf8541
CL
2234 int ret = 0;
2235 int node;
ce8eb6c4 2236 struct kmem_cache_node *n;
e498be7d
CL
2237
2238 drain_cpu_caches(cachep);
2239
2240 check_irq_on();
18bf8541 2241 for_each_kmem_cache_node(cachep, node, n) {
a5aa63a5 2242 drain_freelist(cachep, n, INT_MAX);
ed11d9eb 2243
ce8eb6c4
CL
2244 ret += !list_empty(&n->slabs_full) ||
2245 !list_empty(&n->slabs_partial);
e498be7d
CL
2246 }
2247 return (ret ? 1 : 0);
2248}
2249
c9fc5864
TH
2250#ifdef CONFIG_MEMCG
2251void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2252{
2253 __kmem_cache_shrink(cachep);
2254}
2255#endif
2256
945cf2b6 2257int __kmem_cache_shutdown(struct kmem_cache *cachep)
52b4b950 2258{
c9fc5864 2259 return __kmem_cache_shrink(cachep);
52b4b950
DS
2260}
2261
2262void __kmem_cache_release(struct kmem_cache *cachep)
1da177e4 2263{
12c3667f 2264 int i;
ce8eb6c4 2265 struct kmem_cache_node *n;
1da177e4 2266
c7ce4f60
TG
2267 cache_random_seq_destroy(cachep);
2268
bf0dea23 2269 free_percpu(cachep->cpu_cache);
1da177e4 2270
ce8eb6c4 2271 /* NUMA: free the node structures */
18bf8541
CL
2272 for_each_kmem_cache_node(cachep, i, n) {
2273 kfree(n->shared);
2274 free_alien_cache(n->alien);
2275 kfree(n);
2276 cachep->node[i] = NULL;
12c3667f 2277 }
1da177e4 2278}
1da177e4 2279
e5ac9c5a
RT
2280/*
2281 * Get the memory for a slab management obj.
5f0985bb
JZ
2282 *
2283 * For a slab cache when the slab descriptor is off-slab, the
2284 * slab descriptor can't come from the same cache which is being created,
2285 * Because if it is the case, that means we defer the creation of
2286 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2287 * And we eventually call down to __kmem_cache_create(), which
2288 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2289 * This is a "chicken-and-egg" problem.
2290 *
2291 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2292 * which are all initialized during kmem_cache_init().
e5ac9c5a 2293 */
7e007355 2294static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2295 struct page *page, int colour_off,
2296 gfp_t local_flags, int nodeid)
1da177e4 2297{
7e007355 2298 void *freelist;
0c3aa83e 2299 void *addr = page_address(page);
b28a02de 2300
51dedad0 2301 page->s_mem = addr + colour_off;
2e6b3602
JK
2302 page->active = 0;
2303
b03a017b
JK
2304 if (OBJFREELIST_SLAB(cachep))
2305 freelist = NULL;
2306 else if (OFF_SLAB(cachep)) {
1da177e4 2307 /* Slab management obj is off-slab. */
8456a648 2308 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2309 local_flags, nodeid);
8456a648 2310 if (!freelist)
1da177e4
LT
2311 return NULL;
2312 } else {
2e6b3602
JK
2313 /* We will use last bytes at the slab for freelist */
2314 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2315 cachep->freelist_size;
1da177e4 2316 }
2e6b3602 2317
8456a648 2318 return freelist;
1da177e4
LT
2319}
2320
7cc68973 2321static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2322{
a41adfaa 2323 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2324}
2325
2326static inline void set_free_obj(struct page *page,
7cc68973 2327 unsigned int idx, freelist_idx_t val)
e5c58dfd 2328{
a41adfaa 2329 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2330}
2331
10b2e9e8 2332static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
1da177e4 2333{
10b2e9e8 2334#if DEBUG
1da177e4
LT
2335 int i;
2336
2337 for (i = 0; i < cachep->num; i++) {
8456a648 2338 void *objp = index_to_obj(cachep, page, i);
10b2e9e8 2339
1da177e4
LT
2340 if (cachep->flags & SLAB_STORE_USER)
2341 *dbg_userword(cachep, objp) = NULL;
2342
2343 if (cachep->flags & SLAB_RED_ZONE) {
2344 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2345 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2346 }
2347 /*
a737b3e2
AM
2348 * Constructors are not allowed to allocate memory from the same
2349 * cache which they are a constructor for. Otherwise, deadlock.
2350 * They must also be threaded.
1da177e4 2351 */
7ed2f9e6
AP
2352 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2353 kasan_unpoison_object_data(cachep,
2354 objp + obj_offset(cachep));
51cc5068 2355 cachep->ctor(objp + obj_offset(cachep));
7ed2f9e6
AP
2356 kasan_poison_object_data(
2357 cachep, objp + obj_offset(cachep));
2358 }
1da177e4
LT
2359
2360 if (cachep->flags & SLAB_RED_ZONE) {
2361 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 2362 slab_error(cachep, "constructor overwrote the end of an object");
1da177e4 2363 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 2364 slab_error(cachep, "constructor overwrote the start of an object");
1da177e4 2365 }
40b44137
JK
2366 /* need to poison the objs? */
2367 if (cachep->flags & SLAB_POISON) {
2368 poison_obj(cachep, objp, POISON_FREE);
80552f0f 2369 slab_kernel_map(cachep, objp, 0);
40b44137 2370 }
10b2e9e8 2371 }
1da177e4 2372#endif
10b2e9e8
JK
2373}
2374
c7ce4f60
TG
2375#ifdef CONFIG_SLAB_FREELIST_RANDOM
2376/* Hold information during a freelist initialization */
2377union freelist_init_state {
2378 struct {
2379 unsigned int pos;
7c00fce9 2380 unsigned int *list;
c7ce4f60 2381 unsigned int count;
c7ce4f60
TG
2382 };
2383 struct rnd_state rnd_state;
2384};
2385
2386/*
2387 * Initialize the state based on the randomization methode available.
2388 * return true if the pre-computed list is available, false otherwize.
2389 */
2390static bool freelist_state_initialize(union freelist_init_state *state,
2391 struct kmem_cache *cachep,
2392 unsigned int count)
2393{
2394 bool ret;
2395 unsigned int rand;
2396
2397 /* Use best entropy available to define a random shift */
7c00fce9 2398 rand = get_random_int();
c7ce4f60
TG
2399
2400 /* Use a random state if the pre-computed list is not available */
2401 if (!cachep->random_seq) {
2402 prandom_seed_state(&state->rnd_state, rand);
2403 ret = false;
2404 } else {
2405 state->list = cachep->random_seq;
2406 state->count = count;
c4e490cf 2407 state->pos = rand % count;
c7ce4f60
TG
2408 ret = true;
2409 }
2410 return ret;
2411}
2412
2413/* Get the next entry on the list and randomize it using a random shift */
2414static freelist_idx_t next_random_slot(union freelist_init_state *state)
2415{
c4e490cf
JS
2416 if (state->pos >= state->count)
2417 state->pos = 0;
2418 return state->list[state->pos++];
c7ce4f60
TG
2419}
2420
7c00fce9
TG
2421/* Swap two freelist entries */
2422static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2423{
2424 swap(((freelist_idx_t *)page->freelist)[a],
2425 ((freelist_idx_t *)page->freelist)[b]);
2426}
2427
c7ce4f60
TG
2428/*
2429 * Shuffle the freelist initialization state based on pre-computed lists.
2430 * return true if the list was successfully shuffled, false otherwise.
2431 */
2432static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2433{
7c00fce9 2434 unsigned int objfreelist = 0, i, rand, count = cachep->num;
c7ce4f60
TG
2435 union freelist_init_state state;
2436 bool precomputed;
2437
2438 if (count < 2)
2439 return false;
2440
2441 precomputed = freelist_state_initialize(&state, cachep, count);
2442
2443 /* Take a random entry as the objfreelist */
2444 if (OBJFREELIST_SLAB(cachep)) {
2445 if (!precomputed)
2446 objfreelist = count - 1;
2447 else
2448 objfreelist = next_random_slot(&state);
2449 page->freelist = index_to_obj(cachep, page, objfreelist) +
2450 obj_offset(cachep);
2451 count--;
2452 }
2453
2454 /*
2455 * On early boot, generate the list dynamically.
2456 * Later use a pre-computed list for speed.
2457 */
2458 if (!precomputed) {
7c00fce9
TG
2459 for (i = 0; i < count; i++)
2460 set_free_obj(page, i, i);
2461
2462 /* Fisher-Yates shuffle */
2463 for (i = count - 1; i > 0; i--) {
2464 rand = prandom_u32_state(&state.rnd_state);
2465 rand %= (i + 1);
2466 swap_free_obj(page, i, rand);
2467 }
c7ce4f60
TG
2468 } else {
2469 for (i = 0; i < count; i++)
2470 set_free_obj(page, i, next_random_slot(&state));
2471 }
2472
2473 if (OBJFREELIST_SLAB(cachep))
2474 set_free_obj(page, cachep->num - 1, objfreelist);
2475
2476 return true;
2477}
2478#else
2479static inline bool shuffle_freelist(struct kmem_cache *cachep,
2480 struct page *page)
2481{
2482 return false;
2483}
2484#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2485
10b2e9e8
JK
2486static void cache_init_objs(struct kmem_cache *cachep,
2487 struct page *page)
2488{
2489 int i;
7ed2f9e6 2490 void *objp;
c7ce4f60 2491 bool shuffled;
10b2e9e8
JK
2492
2493 cache_init_objs_debug(cachep, page);
2494
c7ce4f60
TG
2495 /* Try to randomize the freelist if enabled */
2496 shuffled = shuffle_freelist(cachep, page);
2497
2498 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
b03a017b
JK
2499 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2500 obj_offset(cachep);
2501 }
2502
10b2e9e8 2503 for (i = 0; i < cachep->num; i++) {
b3cbd9bf 2504 objp = index_to_obj(cachep, page, i);
4d176711 2505 objp = kasan_init_slab_obj(cachep, objp);
b3cbd9bf 2506
10b2e9e8 2507 /* constructor could break poison info */
7ed2f9e6 2508 if (DEBUG == 0 && cachep->ctor) {
7ed2f9e6
AP
2509 kasan_unpoison_object_data(cachep, objp);
2510 cachep->ctor(objp);
2511 kasan_poison_object_data(cachep, objp);
2512 }
10b2e9e8 2513
c7ce4f60
TG
2514 if (!shuffled)
2515 set_free_obj(page, i, i);
1da177e4 2516 }
1da177e4
LT
2517}
2518
260b61dd 2519static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
78d382d7 2520{
b1cb0982 2521 void *objp;
78d382d7 2522
e5c58dfd 2523 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2524 page->active++;
78d382d7
MD
2525
2526 return objp;
2527}
2528
260b61dd
JK
2529static void slab_put_obj(struct kmem_cache *cachep,
2530 struct page *page, void *objp)
78d382d7 2531{
8456a648 2532 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2533#if DEBUG
16025177 2534 unsigned int i;
b1cb0982 2535
b1cb0982 2536 /* Verify double free bug */
8456a648 2537 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2538 if (get_free_obj(page, i) == objnr) {
85c3e4a5 2539 pr_err("slab: double free detected in cache '%s', objp %px\n",
756a025f 2540 cachep->name, objp);
b1cb0982
JK
2541 BUG();
2542 }
78d382d7
MD
2543 }
2544#endif
8456a648 2545 page->active--;
b03a017b
JK
2546 if (!page->freelist)
2547 page->freelist = objp + obj_offset(cachep);
2548
e5c58dfd 2549 set_free_obj(page, page->active, objnr);
78d382d7
MD
2550}
2551
4776874f
PE
2552/*
2553 * Map pages beginning at addr to the given cache and slab. This is required
2554 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2555 * virtual address for kfree, ksize, and slab debugging.
4776874f 2556 */
8456a648 2557static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2558 void *freelist)
1da177e4 2559{
a57a4988 2560 page->slab_cache = cache;
8456a648 2561 page->freelist = freelist;
1da177e4
LT
2562}
2563
2564/*
2565 * Grow (by 1) the number of slabs within a cache. This is called by
2566 * kmem_cache_alloc() when there are no active objs left in a cache.
2567 */
76b342bd
JK
2568static struct page *cache_grow_begin(struct kmem_cache *cachep,
2569 gfp_t flags, int nodeid)
1da177e4 2570{
7e007355 2571 void *freelist;
b28a02de
PE
2572 size_t offset;
2573 gfp_t local_flags;
511e3a05 2574 int page_node;
ce8eb6c4 2575 struct kmem_cache_node *n;
511e3a05 2576 struct page *page;
1da177e4 2577
a737b3e2
AM
2578 /*
2579 * Be lazy and only check for valid flags here, keeping it out of the
2580 * critical path in kmem_cache_alloc().
1da177e4 2581 */
c871ac4e 2582 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 2583 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
2584 flags &= ~GFP_SLAB_BUG_MASK;
2585 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2586 invalid_mask, &invalid_mask, flags, &flags);
2587 dump_stack();
c871ac4e 2588 }
128227e7 2589 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
6cb06229 2590 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2591
1da177e4 2592 check_irq_off();
d0164adc 2593 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2594 local_irq_enable();
2595
a737b3e2
AM
2596 /*
2597 * Get mem for the objs. Attempt to allocate a physical page from
2598 * 'nodeid'.
e498be7d 2599 */
511e3a05 2600 page = kmem_getpages(cachep, local_flags, nodeid);
0c3aa83e 2601 if (!page)
1da177e4
LT
2602 goto failed;
2603
511e3a05
JK
2604 page_node = page_to_nid(page);
2605 n = get_node(cachep, page_node);
03d1d43a
JK
2606
2607 /* Get colour for the slab, and cal the next value. */
2608 n->colour_next++;
2609 if (n->colour_next >= cachep->colour)
2610 n->colour_next = 0;
2611
2612 offset = n->colour_next;
2613 if (offset >= cachep->colour)
2614 offset = 0;
2615
2616 offset *= cachep->colour_off;
2617
51dedad0
AK
2618 /*
2619 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2620 * page_address() in the latter returns a non-tagged pointer,
2621 * as it should be for slab pages.
2622 */
2623 kasan_poison_slab(page);
2624
1da177e4 2625 /* Get slab management. */
8456a648 2626 freelist = alloc_slabmgmt(cachep, page, offset,
511e3a05 2627 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
b03a017b 2628 if (OFF_SLAB(cachep) && !freelist)
1da177e4
LT
2629 goto opps1;
2630
8456a648 2631 slab_map_pages(cachep, page, freelist);
1da177e4 2632
8456a648 2633 cache_init_objs(cachep, page);
1da177e4 2634
d0164adc 2635 if (gfpflags_allow_blocking(local_flags))
1da177e4 2636 local_irq_disable();
1da177e4 2637
76b342bd
JK
2638 return page;
2639
a737b3e2 2640opps1:
0c3aa83e 2641 kmem_freepages(cachep, page);
a737b3e2 2642failed:
d0164adc 2643 if (gfpflags_allow_blocking(local_flags))
1da177e4 2644 local_irq_disable();
76b342bd
JK
2645 return NULL;
2646}
2647
2648static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2649{
2650 struct kmem_cache_node *n;
2651 void *list = NULL;
2652
2653 check_irq_off();
2654
2655 if (!page)
2656 return;
2657
16cb0ec7 2658 INIT_LIST_HEAD(&page->slab_list);
76b342bd
JK
2659 n = get_node(cachep, page_to_nid(page));
2660
2661 spin_lock(&n->list_lock);
bf00bd34 2662 n->total_slabs++;
f728b0a5 2663 if (!page->active) {
16cb0ec7 2664 list_add_tail(&page->slab_list, &n->slabs_free);
f728b0a5 2665 n->free_slabs++;
bf00bd34 2666 } else
76b342bd 2667 fixup_slab_list(cachep, n, page, &list);
07a63c41 2668
76b342bd
JK
2669 STATS_INC_GROWN(cachep);
2670 n->free_objects += cachep->num - page->active;
2671 spin_unlock(&n->list_lock);
2672
2673 fixup_objfreelist_debug(cachep, &list);
1da177e4
LT
2674}
2675
2676#if DEBUG
2677
2678/*
2679 * Perform extra freeing checks:
2680 * - detect bad pointers.
2681 * - POISON/RED_ZONE checking
1da177e4
LT
2682 */
2683static void kfree_debugcheck(const void *objp)
2684{
1da177e4 2685 if (!virt_addr_valid(objp)) {
1170532b 2686 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
b28a02de
PE
2687 (unsigned long)objp);
2688 BUG();
1da177e4 2689 }
1da177e4
LT
2690}
2691
58ce1fd5
PE
2692static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2693{
b46b8f19 2694 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2695
2696 redzone1 = *dbg_redzone1(cache, obj);
2697 redzone2 = *dbg_redzone2(cache, obj);
2698
2699 /*
2700 * Redzone is ok.
2701 */
2702 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2703 return;
2704
2705 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2706 slab_error(cache, "double free detected");
2707 else
2708 slab_error(cache, "memory outside object was overwritten");
2709
85c3e4a5 2710 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
1170532b 2711 obj, redzone1, redzone2);
58ce1fd5
PE
2712}
2713
343e0d7a 2714static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2715 unsigned long caller)
1da177e4 2716{
1da177e4 2717 unsigned int objnr;
8456a648 2718 struct page *page;
1da177e4 2719
80cbd911
MW
2720 BUG_ON(virt_to_cache(objp) != cachep);
2721
3dafccf2 2722 objp -= obj_offset(cachep);
1da177e4 2723 kfree_debugcheck(objp);
b49af68f 2724 page = virt_to_head_page(objp);
1da177e4 2725
1da177e4 2726 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2727 verify_redzone_free(cachep, objp);
1da177e4
LT
2728 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2729 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2730 }
7878c231 2731 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2732 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4 2733
8456a648 2734 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2735
2736 BUG_ON(objnr >= cachep->num);
8456a648 2737 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2738
1da177e4 2739 if (cachep->flags & SLAB_POISON) {
1da177e4 2740 poison_obj(cachep, objp, POISON_FREE);
80552f0f 2741 slab_kernel_map(cachep, objp, 0);
1da177e4
LT
2742 }
2743 return objp;
2744}
2745
1da177e4
LT
2746#else
2747#define kfree_debugcheck(x) do { } while(0)
2748#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2749#endif
2750
b03a017b
JK
2751static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2752 void **list)
2753{
2754#if DEBUG
2755 void *next = *list;
2756 void *objp;
2757
2758 while (next) {
2759 objp = next - obj_offset(cachep);
2760 next = *(void **)next;
2761 poison_obj(cachep, objp, POISON_FREE);
2762 }
2763#endif
2764}
2765
d8410234 2766static inline void fixup_slab_list(struct kmem_cache *cachep,
b03a017b
JK
2767 struct kmem_cache_node *n, struct page *page,
2768 void **list)
d8410234
JK
2769{
2770 /* move slabp to correct slabp list: */
16cb0ec7 2771 list_del(&page->slab_list);
b03a017b 2772 if (page->active == cachep->num) {
16cb0ec7 2773 list_add(&page->slab_list, &n->slabs_full);
b03a017b
JK
2774 if (OBJFREELIST_SLAB(cachep)) {
2775#if DEBUG
2776 /* Poisoning will be done without holding the lock */
2777 if (cachep->flags & SLAB_POISON) {
2778 void **objp = page->freelist;
2779
2780 *objp = *list;
2781 *list = objp;
2782 }
2783#endif
2784 page->freelist = NULL;
2785 }
2786 } else
16cb0ec7 2787 list_add(&page->slab_list, &n->slabs_partial);
d8410234
JK
2788}
2789
f68f8ddd
JK
2790/* Try to find non-pfmemalloc slab if needed */
2791static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
bf00bd34 2792 struct page *page, bool pfmemalloc)
f68f8ddd
JK
2793{
2794 if (!page)
2795 return NULL;
2796
2797 if (pfmemalloc)
2798 return page;
2799
2800 if (!PageSlabPfmemalloc(page))
2801 return page;
2802
2803 /* No need to keep pfmemalloc slab if we have enough free objects */
2804 if (n->free_objects > n->free_limit) {
2805 ClearPageSlabPfmemalloc(page);
2806 return page;
2807 }
2808
2809 /* Move pfmemalloc slab to the end of list to speed up next search */
16cb0ec7 2810 list_del(&page->slab_list);
bf00bd34 2811 if (!page->active) {
16cb0ec7 2812 list_add_tail(&page->slab_list, &n->slabs_free);
bf00bd34 2813 n->free_slabs++;
f728b0a5 2814 } else
16cb0ec7 2815 list_add_tail(&page->slab_list, &n->slabs_partial);
f68f8ddd 2816
16cb0ec7 2817 list_for_each_entry(page, &n->slabs_partial, slab_list) {
f68f8ddd
JK
2818 if (!PageSlabPfmemalloc(page))
2819 return page;
2820 }
2821
f728b0a5 2822 n->free_touched = 1;
16cb0ec7 2823 list_for_each_entry(page, &n->slabs_free, slab_list) {
f728b0a5 2824 if (!PageSlabPfmemalloc(page)) {
bf00bd34 2825 n->free_slabs--;
f68f8ddd 2826 return page;
f728b0a5 2827 }
f68f8ddd
JK
2828 }
2829
2830 return NULL;
2831}
2832
2833static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
7aa0d227
GT
2834{
2835 struct page *page;
2836
f728b0a5 2837 assert_spin_locked(&n->list_lock);
16cb0ec7
TH
2838 page = list_first_entry_or_null(&n->slabs_partial, struct page,
2839 slab_list);
7aa0d227
GT
2840 if (!page) {
2841 n->free_touched = 1;
bf00bd34 2842 page = list_first_entry_or_null(&n->slabs_free, struct page,
16cb0ec7 2843 slab_list);
f728b0a5 2844 if (page)
bf00bd34 2845 n->free_slabs--;
7aa0d227
GT
2846 }
2847
f68f8ddd 2848 if (sk_memalloc_socks())
bf00bd34 2849 page = get_valid_first_slab(n, page, pfmemalloc);
f68f8ddd 2850
7aa0d227
GT
2851 return page;
2852}
2853
f68f8ddd
JK
2854static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2855 struct kmem_cache_node *n, gfp_t flags)
2856{
2857 struct page *page;
2858 void *obj;
2859 void *list = NULL;
2860
2861 if (!gfp_pfmemalloc_allowed(flags))
2862 return NULL;
2863
2864 spin_lock(&n->list_lock);
2865 page = get_first_slab(n, true);
2866 if (!page) {
2867 spin_unlock(&n->list_lock);
2868 return NULL;
2869 }
2870
2871 obj = slab_get_obj(cachep, page);
2872 n->free_objects--;
2873
2874 fixup_slab_list(cachep, n, page, &list);
2875
2876 spin_unlock(&n->list_lock);
2877 fixup_objfreelist_debug(cachep, &list);
2878
2879 return obj;
2880}
2881
213b4695
JK
2882/*
2883 * Slab list should be fixed up by fixup_slab_list() for existing slab
2884 * or cache_grow_end() for new slab
2885 */
2886static __always_inline int alloc_block(struct kmem_cache *cachep,
2887 struct array_cache *ac, struct page *page, int batchcount)
2888{
2889 /*
2890 * There must be at least one object available for
2891 * allocation.
2892 */
2893 BUG_ON(page->active >= cachep->num);
2894
2895 while (page->active < cachep->num && batchcount--) {
2896 STATS_INC_ALLOCED(cachep);
2897 STATS_INC_ACTIVE(cachep);
2898 STATS_SET_HIGH(cachep);
2899
2900 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2901 }
2902
2903 return batchcount;
2904}
2905
f68f8ddd 2906static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2907{
2908 int batchcount;
ce8eb6c4 2909 struct kmem_cache_node *n;
801faf0d 2910 struct array_cache *ac, *shared;
1ca4cb24 2911 int node;
b03a017b 2912 void *list = NULL;
76b342bd 2913 struct page *page;
1ca4cb24 2914
1da177e4 2915 check_irq_off();
7d6e6d09 2916 node = numa_mem_id();
f68f8ddd 2917
9a2dba4b 2918 ac = cpu_cache_get(cachep);
1da177e4
LT
2919 batchcount = ac->batchcount;
2920 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2921 /*
2922 * If there was little recent activity on this cache, then
2923 * perform only a partial refill. Otherwise we could generate
2924 * refill bouncing.
1da177e4
LT
2925 */
2926 batchcount = BATCHREFILL_LIMIT;
2927 }
18bf8541 2928 n = get_node(cachep, node);
e498be7d 2929
ce8eb6c4 2930 BUG_ON(ac->avail > 0 || !n);
801faf0d
JK
2931 shared = READ_ONCE(n->shared);
2932 if (!n->free_objects && (!shared || !shared->avail))
2933 goto direct_grow;
2934
ce8eb6c4 2935 spin_lock(&n->list_lock);
801faf0d 2936 shared = READ_ONCE(n->shared);
1da177e4 2937
3ded175a 2938 /* See if we can refill from the shared array */
801faf0d
JK
2939 if (shared && transfer_objects(ac, shared, batchcount)) {
2940 shared->touched = 1;
3ded175a 2941 goto alloc_done;
44b57f1c 2942 }
3ded175a 2943
1da177e4 2944 while (batchcount > 0) {
1da177e4 2945 /* Get slab alloc is to come from. */
f68f8ddd 2946 page = get_first_slab(n, false);
7aa0d227
GT
2947 if (!page)
2948 goto must_grow;
1da177e4 2949
1da177e4 2950 check_spinlock_acquired(cachep);
714b8171 2951
213b4695 2952 batchcount = alloc_block(cachep, ac, page, batchcount);
b03a017b 2953 fixup_slab_list(cachep, n, page, &list);
1da177e4
LT
2954 }
2955
a737b3e2 2956must_grow:
ce8eb6c4 2957 n->free_objects -= ac->avail;
a737b3e2 2958alloc_done:
ce8eb6c4 2959 spin_unlock(&n->list_lock);
b03a017b 2960 fixup_objfreelist_debug(cachep, &list);
1da177e4 2961
801faf0d 2962direct_grow:
1da177e4 2963 if (unlikely(!ac->avail)) {
f68f8ddd
JK
2964 /* Check if we can use obj in pfmemalloc slab */
2965 if (sk_memalloc_socks()) {
2966 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2967
2968 if (obj)
2969 return obj;
2970 }
2971
76b342bd 2972 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
e498be7d 2973
76b342bd
JK
2974 /*
2975 * cache_grow_begin() can reenable interrupts,
2976 * then ac could change.
2977 */
9a2dba4b 2978 ac = cpu_cache_get(cachep);
213b4695
JK
2979 if (!ac->avail && page)
2980 alloc_block(cachep, ac, page, batchcount);
2981 cache_grow_end(cachep, page);
072bb0aa 2982
213b4695 2983 if (!ac->avail)
1da177e4 2984 return NULL;
1da177e4
LT
2985 }
2986 ac->touched = 1;
072bb0aa 2987
f68f8ddd 2988 return ac->entry[--ac->avail];
1da177e4
LT
2989}
2990
a737b3e2
AM
2991static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2992 gfp_t flags)
1da177e4 2993{
d0164adc 2994 might_sleep_if(gfpflags_allow_blocking(flags));
1da177e4
LT
2995}
2996
2997#if DEBUG
a737b3e2 2998static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 2999 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3000{
128227e7 3001 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
b28a02de 3002 if (!objp)
1da177e4 3003 return objp;
b28a02de 3004 if (cachep->flags & SLAB_POISON) {
1da177e4 3005 check_poison_obj(cachep, objp);
80552f0f 3006 slab_kernel_map(cachep, objp, 1);
1da177e4
LT
3007 poison_obj(cachep, objp, POISON_INUSE);
3008 }
3009 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3010 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3011
3012 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3013 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3014 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
756a025f 3015 slab_error(cachep, "double free, or memory outside object was overwritten");
85c3e4a5 3016 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
1170532b
JP
3017 objp, *dbg_redzone1(cachep, objp),
3018 *dbg_redzone2(cachep, objp));
1da177e4
LT
3019 }
3020 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3021 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3022 }
03787301 3023
3dafccf2 3024 objp += obj_offset(cachep);
4f104934 3025 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3026 cachep->ctor(objp);
7ea466f2
TH
3027 if (ARCH_SLAB_MINALIGN &&
3028 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
85c3e4a5 3029 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3030 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3031 }
1da177e4
LT
3032 return objp;
3033}
3034#else
3035#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3036#endif
3037
343e0d7a 3038static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3039{
b28a02de 3040 void *objp;
1da177e4
LT
3041 struct array_cache *ac;
3042
5c382300 3043 check_irq_off();
8a8b6502 3044
9a2dba4b 3045 ac = cpu_cache_get(cachep);
1da177e4 3046 if (likely(ac->avail)) {
1da177e4 3047 ac->touched = 1;
f68f8ddd 3048 objp = ac->entry[--ac->avail];
072bb0aa 3049
f68f8ddd
JK
3050 STATS_INC_ALLOCHIT(cachep);
3051 goto out;
1da177e4 3052 }
072bb0aa
MG
3053
3054 STATS_INC_ALLOCMISS(cachep);
f68f8ddd 3055 objp = cache_alloc_refill(cachep, flags);
072bb0aa
MG
3056 /*
3057 * the 'ac' may be updated by cache_alloc_refill(),
3058 * and kmemleak_erase() requires its correct value.
3059 */
3060 ac = cpu_cache_get(cachep);
3061
3062out:
d5cff635
CM
3063 /*
3064 * To avoid a false negative, if an object that is in one of the
3065 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3066 * treat the array pointers as a reference to the object.
3067 */
f3d8b53a
O
3068 if (objp)
3069 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3070 return objp;
3071}
3072
e498be7d 3073#ifdef CONFIG_NUMA
c61afb18 3074/*
2ad654bc 3075 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
3076 *
3077 * If we are in_interrupt, then process context, including cpusets and
3078 * mempolicy, may not apply and should not be used for allocation policy.
3079 */
3080static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3081{
3082 int nid_alloc, nid_here;
3083
765c4507 3084 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3085 return NULL;
7d6e6d09 3086 nid_alloc = nid_here = numa_mem_id();
c61afb18 3087 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3088 nid_alloc = cpuset_slab_spread_node();
c61afb18 3089 else if (current->mempolicy)
2a389610 3090 nid_alloc = mempolicy_slab_node();
c61afb18 3091 if (nid_alloc != nid_here)
8b98c169 3092 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3093 return NULL;
3094}
3095
765c4507
CL
3096/*
3097 * Fallback function if there was no memory available and no objects on a
3c517a61 3098 * certain node and fall back is permitted. First we scan all the
6a67368c 3099 * available node for available objects. If that fails then we
3c517a61
CL
3100 * perform an allocation without specifying a node. This allows the page
3101 * allocator to do its reclaim / fallback magic. We then insert the
3102 * slab into the proper nodelist and then allocate from it.
765c4507 3103 */
8c8cc2c1 3104static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3105{
8c8cc2c1 3106 struct zonelist *zonelist;
dd1a239f 3107 struct zoneref *z;
54a6eb5c
MG
3108 struct zone *zone;
3109 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3110 void *obj = NULL;
76b342bd 3111 struct page *page;
3c517a61 3112 int nid;
cc9a6c87 3113 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3114
3115 if (flags & __GFP_THISNODE)
3116 return NULL;
3117
cc9a6c87 3118retry_cpuset:
d26914d1 3119 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3120 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3121
3c517a61
CL
3122retry:
3123 /*
3124 * Look through allowed nodes for objects available
3125 * from existing per node queues.
3126 */
54a6eb5c
MG
3127 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3128 nid = zone_to_nid(zone);
aedb0eb1 3129
061d7074 3130 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
3131 get_node(cache, nid) &&
3132 get_node(cache, nid)->free_objects) {
3c517a61 3133 obj = ____cache_alloc_node(cache,
4167e9b2 3134 gfp_exact_node(flags), nid);
481c5346
CL
3135 if (obj)
3136 break;
3137 }
3c517a61
CL
3138 }
3139
cfce6604 3140 if (!obj) {
3c517a61
CL
3141 /*
3142 * This allocation will be performed within the constraints
3143 * of the current cpuset / memory policy requirements.
3144 * We may trigger various forms of reclaim on the allowed
3145 * set and go into memory reserves if necessary.
3146 */
76b342bd
JK
3147 page = cache_grow_begin(cache, flags, numa_mem_id());
3148 cache_grow_end(cache, page);
3149 if (page) {
3150 nid = page_to_nid(page);
511e3a05
JK
3151 obj = ____cache_alloc_node(cache,
3152 gfp_exact_node(flags), nid);
0c3aa83e 3153
3c517a61 3154 /*
511e3a05
JK
3155 * Another processor may allocate the objects in
3156 * the slab since we are not holding any locks.
3c517a61 3157 */
511e3a05
JK
3158 if (!obj)
3159 goto retry;
3c517a61 3160 }
aedb0eb1 3161 }
cc9a6c87 3162
d26914d1 3163 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3164 goto retry_cpuset;
765c4507
CL
3165 return obj;
3166}
3167
e498be7d
CL
3168/*
3169 * A interface to enable slab creation on nodeid
1da177e4 3170 */
8b98c169 3171static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3172 int nodeid)
e498be7d 3173{
8456a648 3174 struct page *page;
ce8eb6c4 3175 struct kmem_cache_node *n;
213b4695 3176 void *obj = NULL;
b03a017b 3177 void *list = NULL;
b28a02de 3178
7c3fbbdd 3179 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3180 n = get_node(cachep, nodeid);
ce8eb6c4 3181 BUG_ON(!n);
b28a02de 3182
ca3b9b91 3183 check_irq_off();
ce8eb6c4 3184 spin_lock(&n->list_lock);
f68f8ddd 3185 page = get_first_slab(n, false);
7aa0d227
GT
3186 if (!page)
3187 goto must_grow;
b28a02de 3188
b28a02de 3189 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3190
3191 STATS_INC_NODEALLOCS(cachep);
3192 STATS_INC_ACTIVE(cachep);
3193 STATS_SET_HIGH(cachep);
3194
8456a648 3195 BUG_ON(page->active == cachep->num);
b28a02de 3196
260b61dd 3197 obj = slab_get_obj(cachep, page);
ce8eb6c4 3198 n->free_objects--;
b28a02de 3199
b03a017b 3200 fixup_slab_list(cachep, n, page, &list);
e498be7d 3201
ce8eb6c4 3202 spin_unlock(&n->list_lock);
b03a017b 3203 fixup_objfreelist_debug(cachep, &list);
213b4695 3204 return obj;
e498be7d 3205
a737b3e2 3206must_grow:
ce8eb6c4 3207 spin_unlock(&n->list_lock);
76b342bd 3208 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
213b4695
JK
3209 if (page) {
3210 /* This slab isn't counted yet so don't update free_objects */
3211 obj = slab_get_obj(cachep, page);
3212 }
76b342bd 3213 cache_grow_end(cachep, page);
1da177e4 3214
213b4695 3215 return obj ? obj : fallback_alloc(cachep, flags);
e498be7d 3216}
8c8cc2c1 3217
8c8cc2c1 3218static __always_inline void *
48356303 3219slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3220 unsigned long caller)
8c8cc2c1
PE
3221{
3222 unsigned long save_flags;
3223 void *ptr;
7d6e6d09 3224 int slab_node = numa_mem_id();
8c8cc2c1 3225
dcce284a 3226 flags &= gfp_allowed_mask;
011eceaf
JDB
3227 cachep = slab_pre_alloc_hook(cachep, flags);
3228 if (unlikely(!cachep))
824ebef1
AM
3229 return NULL;
3230
8c8cc2c1
PE
3231 cache_alloc_debugcheck_before(cachep, flags);
3232 local_irq_save(save_flags);
3233
eacbbae3 3234 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3235 nodeid = slab_node;
8c8cc2c1 3236
18bf8541 3237 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3238 /* Node not bootstrapped yet */
3239 ptr = fallback_alloc(cachep, flags);
3240 goto out;
3241 }
3242
7d6e6d09 3243 if (nodeid == slab_node) {
8c8cc2c1
PE
3244 /*
3245 * Use the locally cached objects if possible.
3246 * However ____cache_alloc does not allow fallback
3247 * to other nodes. It may fail while we still have
3248 * objects on other nodes available.
3249 */
3250 ptr = ____cache_alloc(cachep, flags);
3251 if (ptr)
3252 goto out;
3253 }
3254 /* ___cache_alloc_node can fall back to other nodes */
3255 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3256 out:
3257 local_irq_restore(save_flags);
3258 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3259
d5e3ed66
JDB
3260 if (unlikely(flags & __GFP_ZERO) && ptr)
3261 memset(ptr, 0, cachep->object_size);
d07dbea4 3262
d5e3ed66 3263 slab_post_alloc_hook(cachep, flags, 1, &ptr);
8c8cc2c1
PE
3264 return ptr;
3265}
3266
3267static __always_inline void *
3268__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3269{
3270 void *objp;
3271
2ad654bc 3272 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3273 objp = alternate_node_alloc(cache, flags);
3274 if (objp)
3275 goto out;
3276 }
3277 objp = ____cache_alloc(cache, flags);
3278
3279 /*
3280 * We may just have run out of memory on the local node.
3281 * ____cache_alloc_node() knows how to locate memory on other nodes
3282 */
7d6e6d09
LS
3283 if (!objp)
3284 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3285
3286 out:
3287 return objp;
3288}
3289#else
3290
3291static __always_inline void *
3292__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3293{
3294 return ____cache_alloc(cachep, flags);
3295}
3296
3297#endif /* CONFIG_NUMA */
3298
3299static __always_inline void *
48356303 3300slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3301{
3302 unsigned long save_flags;
3303 void *objp;
3304
dcce284a 3305 flags &= gfp_allowed_mask;
011eceaf
JDB
3306 cachep = slab_pre_alloc_hook(cachep, flags);
3307 if (unlikely(!cachep))
824ebef1
AM
3308 return NULL;
3309
8c8cc2c1
PE
3310 cache_alloc_debugcheck_before(cachep, flags);
3311 local_irq_save(save_flags);
3312 objp = __do_cache_alloc(cachep, flags);
3313 local_irq_restore(save_flags);
3314 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3315 prefetchw(objp);
3316
d5e3ed66
JDB
3317 if (unlikely(flags & __GFP_ZERO) && objp)
3318 memset(objp, 0, cachep->object_size);
d07dbea4 3319
d5e3ed66 3320 slab_post_alloc_hook(cachep, flags, 1, &objp);
8c8cc2c1
PE
3321 return objp;
3322}
e498be7d
CL
3323
3324/*
5f0985bb 3325 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3326 * @list: List of detached free slabs should be freed by caller
e498be7d 3327 */
97654dfa
JK
3328static void free_block(struct kmem_cache *cachep, void **objpp,
3329 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3330{
3331 int i;
25c063fb 3332 struct kmem_cache_node *n = get_node(cachep, node);
6052b788
JK
3333 struct page *page;
3334
3335 n->free_objects += nr_objects;
1da177e4
LT
3336
3337 for (i = 0; i < nr_objects; i++) {
072bb0aa 3338 void *objp;
8456a648 3339 struct page *page;
1da177e4 3340
072bb0aa
MG
3341 objp = objpp[i];
3342
8456a648 3343 page = virt_to_head_page(objp);
16cb0ec7 3344 list_del(&page->slab_list);
ff69416e 3345 check_spinlock_acquired_node(cachep, node);
260b61dd 3346 slab_put_obj(cachep, page, objp);
1da177e4 3347 STATS_DEC_ACTIVE(cachep);
1da177e4
LT
3348
3349 /* fixup slab chains */
f728b0a5 3350 if (page->active == 0) {
16cb0ec7 3351 list_add(&page->slab_list, &n->slabs_free);
f728b0a5 3352 n->free_slabs++;
f728b0a5 3353 } else {
1da177e4
LT
3354 /* Unconditionally move a slab to the end of the
3355 * partial list on free - maximum time for the
3356 * other objects to be freed, too.
3357 */
16cb0ec7 3358 list_add_tail(&page->slab_list, &n->slabs_partial);
1da177e4
LT
3359 }
3360 }
6052b788
JK
3361
3362 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3363 n->free_objects -= cachep->num;
3364
16cb0ec7
TH
3365 page = list_last_entry(&n->slabs_free, struct page, slab_list);
3366 list_move(&page->slab_list, list);
f728b0a5 3367 n->free_slabs--;
bf00bd34 3368 n->total_slabs--;
6052b788 3369 }
1da177e4
LT
3370}
3371
343e0d7a 3372static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3373{
3374 int batchcount;
ce8eb6c4 3375 struct kmem_cache_node *n;
7d6e6d09 3376 int node = numa_mem_id();
97654dfa 3377 LIST_HEAD(list);
1da177e4
LT
3378
3379 batchcount = ac->batchcount;
260b61dd 3380
1da177e4 3381 check_irq_off();
18bf8541 3382 n = get_node(cachep, node);
ce8eb6c4
CL
3383 spin_lock(&n->list_lock);
3384 if (n->shared) {
3385 struct array_cache *shared_array = n->shared;
b28a02de 3386 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3387 if (max) {
3388 if (batchcount > max)
3389 batchcount = max;
e498be7d 3390 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3391 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3392 shared_array->avail += batchcount;
3393 goto free_done;
3394 }
3395 }
3396
97654dfa 3397 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3398free_done:
1da177e4
LT
3399#if STATS
3400 {
3401 int i = 0;
73c0219d 3402 struct page *page;
1da177e4 3403
16cb0ec7 3404 list_for_each_entry(page, &n->slabs_free, slab_list) {
8456a648 3405 BUG_ON(page->active);
1da177e4
LT
3406
3407 i++;
1da177e4
LT
3408 }
3409 STATS_SET_FREEABLE(cachep, i);
3410 }
3411#endif
ce8eb6c4 3412 spin_unlock(&n->list_lock);
97654dfa 3413 slabs_destroy(cachep, &list);
1da177e4 3414 ac->avail -= batchcount;
a737b3e2 3415 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3416}
3417
3418/*
a737b3e2
AM
3419 * Release an obj back to its cache. If the obj has a constructed state, it must
3420 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3421 */
ee3ce779
DV
3422static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3423 unsigned long caller)
1da177e4 3424{
55834c59 3425 /* Put the object into the quarantine, don't touch it for now. */
ee3ce779 3426 if (kasan_slab_free(cachep, objp, _RET_IP_))
55834c59
AP
3427 return;
3428
3429 ___cache_free(cachep, objp, caller);
3430}
1da177e4 3431
55834c59
AP
3432void ___cache_free(struct kmem_cache *cachep, void *objp,
3433 unsigned long caller)
3434{
3435 struct array_cache *ac = cpu_cache_get(cachep);
7ed2f9e6 3436
1da177e4 3437 check_irq_off();
d5cff635 3438 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3439 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3440
1807a1aa
SS
3441 /*
3442 * Skip calling cache_free_alien() when the platform is not numa.
3443 * This will avoid cache misses that happen while accessing slabp (which
3444 * is per page memory reference) to get nodeid. Instead use a global
3445 * variable to skip the call, which is mostly likely to be present in
3446 * the cache.
3447 */
b6e68bc1 3448 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3449 return;
3450
3d880194 3451 if (ac->avail < ac->limit) {
1da177e4 3452 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3453 } else {
3454 STATS_INC_FREEMISS(cachep);
3455 cache_flusharray(cachep, ac);
1da177e4 3456 }
42c8c99c 3457
f68f8ddd
JK
3458 if (sk_memalloc_socks()) {
3459 struct page *page = virt_to_head_page(objp);
3460
3461 if (unlikely(PageSlabPfmemalloc(page))) {
3462 cache_free_pfmemalloc(cachep, page, objp);
3463 return;
3464 }
3465 }
3466
3467 ac->entry[ac->avail++] = objp;
1da177e4
LT
3468}
3469
3470/**
3471 * kmem_cache_alloc - Allocate an object
3472 * @cachep: The cache to allocate from.
3473 * @flags: See kmalloc().
3474 *
3475 * Allocate an object from this cache. The flags are only relevant
3476 * if the cache has no available objects.
a862f68a
MR
3477 *
3478 * Return: pointer to the new object or %NULL in case of error
1da177e4 3479 */
343e0d7a 3480void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3481{
48356303 3482 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3483
ca2b84cb 3484 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3485 cachep->object_size, cachep->size, flags);
36555751
EGM
3486
3487 return ret;
1da177e4
LT
3488}
3489EXPORT_SYMBOL(kmem_cache_alloc);
3490
7b0501dd
JDB
3491static __always_inline void
3492cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3493 size_t size, void **p, unsigned long caller)
3494{
3495 size_t i;
3496
3497 for (i = 0; i < size; i++)
3498 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3499}
3500
865762a8 3501int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2a777eac 3502 void **p)
484748f0 3503{
2a777eac
JDB
3504 size_t i;
3505
3506 s = slab_pre_alloc_hook(s, flags);
3507 if (!s)
3508 return 0;
3509
3510 cache_alloc_debugcheck_before(s, flags);
3511
3512 local_irq_disable();
3513 for (i = 0; i < size; i++) {
3514 void *objp = __do_cache_alloc(s, flags);
3515
2a777eac
JDB
3516 if (unlikely(!objp))
3517 goto error;
3518 p[i] = objp;
3519 }
3520 local_irq_enable();
3521
7b0501dd
JDB
3522 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3523
2a777eac
JDB
3524 /* Clear memory outside IRQ disabled section */
3525 if (unlikely(flags & __GFP_ZERO))
3526 for (i = 0; i < size; i++)
3527 memset(p[i], 0, s->object_size);
3528
3529 slab_post_alloc_hook(s, flags, size, p);
3530 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3531 return size;
3532error:
3533 local_irq_enable();
7b0501dd 3534 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
2a777eac
JDB
3535 slab_post_alloc_hook(s, flags, i, p);
3536 __kmem_cache_free_bulk(s, i, p);
3537 return 0;
484748f0
CL
3538}
3539EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3540
0f24f128 3541#ifdef CONFIG_TRACING
85beb586 3542void *
4052147c 3543kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3544{
85beb586
SR
3545 void *ret;
3546
48356303 3547 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586 3548
0116523c 3549 ret = kasan_kmalloc(cachep, ret, size, flags);
85beb586 3550 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3551 size, cachep->size, flags);
85beb586 3552 return ret;
36555751 3553}
85beb586 3554EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3555#endif
3556
1da177e4 3557#ifdef CONFIG_NUMA
d0d04b78
ZL
3558/**
3559 * kmem_cache_alloc_node - Allocate an object on the specified node
3560 * @cachep: The cache to allocate from.
3561 * @flags: See kmalloc().
3562 * @nodeid: node number of the target node.
3563 *
3564 * Identical to kmem_cache_alloc but it will allocate memory on the given
3565 * node, which can improve the performance for cpu bound structures.
3566 *
3567 * Fallback to other node is possible if __GFP_THISNODE is not set.
a862f68a
MR
3568 *
3569 * Return: pointer to the new object or %NULL in case of error
d0d04b78 3570 */
8b98c169
CH
3571void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3572{
48356303 3573 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3574
ca2b84cb 3575 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3576 cachep->object_size, cachep->size,
ca2b84cb 3577 flags, nodeid);
36555751
EGM
3578
3579 return ret;
8b98c169 3580}
1da177e4
LT
3581EXPORT_SYMBOL(kmem_cache_alloc_node);
3582
0f24f128 3583#ifdef CONFIG_TRACING
4052147c 3584void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3585 gfp_t flags,
4052147c
EG
3586 int nodeid,
3587 size_t size)
36555751 3588{
85beb586
SR
3589 void *ret;
3590
592f4145 3591 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
505f5dcb 3592
0116523c 3593 ret = kasan_kmalloc(cachep, ret, size, flags);
85beb586 3594 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3595 size, cachep->size,
85beb586
SR
3596 flags, nodeid);
3597 return ret;
36555751 3598}
85beb586 3599EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3600#endif
3601
8b98c169 3602static __always_inline void *
7c0cb9c6 3603__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3604{
343e0d7a 3605 struct kmem_cache *cachep;
7ed2f9e6 3606 void *ret;
97e2bde4 3607
61448479
DV
3608 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3609 return NULL;
2c59dd65 3610 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3611 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3612 return cachep;
7ed2f9e6 3613 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
0116523c 3614 ret = kasan_kmalloc(cachep, ret, size, flags);
7ed2f9e6
AP
3615
3616 return ret;
97e2bde4 3617}
8b98c169 3618
8b98c169
CH
3619void *__kmalloc_node(size_t size, gfp_t flags, int node)
3620{
7c0cb9c6 3621 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3622}
dbe5e69d 3623EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3624
3625void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3626 int node, unsigned long caller)
8b98c169 3627{
7c0cb9c6 3628 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3629}
3630EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3631#endif /* CONFIG_NUMA */
1da177e4
LT
3632
3633/**
800590f5 3634 * __do_kmalloc - allocate memory
1da177e4 3635 * @size: how many bytes of memory are required.
800590f5 3636 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3637 * @caller: function caller for debug tracking of the caller
a862f68a
MR
3638 *
3639 * Return: pointer to the allocated memory or %NULL in case of error
1da177e4 3640 */
7fd6b141 3641static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3642 unsigned long caller)
1da177e4 3643{
343e0d7a 3644 struct kmem_cache *cachep;
36555751 3645 void *ret;
1da177e4 3646
61448479
DV
3647 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3648 return NULL;
2c59dd65 3649 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3650 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3651 return cachep;
48356303 3652 ret = slab_alloc(cachep, flags, caller);
36555751 3653
0116523c 3654 ret = kasan_kmalloc(cachep, ret, size, flags);
7c0cb9c6 3655 trace_kmalloc(caller, ret,
3b0efdfa 3656 size, cachep->size, flags);
36555751
EGM
3657
3658 return ret;
7fd6b141
PE
3659}
3660
7fd6b141
PE
3661void *__kmalloc(size_t size, gfp_t flags)
3662{
7c0cb9c6 3663 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3664}
3665EXPORT_SYMBOL(__kmalloc);
3666
ce71e27c 3667void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3668{
7c0cb9c6 3669 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3670}
3671EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3672
1da177e4
LT
3673/**
3674 * kmem_cache_free - Deallocate an object
3675 * @cachep: The cache the allocation was from.
3676 * @objp: The previously allocated object.
3677 *
3678 * Free an object which was previously allocated from this
3679 * cache.
3680 */
343e0d7a 3681void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3682{
3683 unsigned long flags;
b9ce5ef4
GC
3684 cachep = cache_from_obj(cachep, objp);
3685 if (!cachep)
3686 return;
1da177e4
LT
3687
3688 local_irq_save(flags);
d97d476b 3689 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3690 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3691 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3692 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3693 local_irq_restore(flags);
36555751 3694
ca2b84cb 3695 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3696}
3697EXPORT_SYMBOL(kmem_cache_free);
3698
e6cdb58d
JDB
3699void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3700{
3701 struct kmem_cache *s;
3702 size_t i;
3703
3704 local_irq_disable();
3705 for (i = 0; i < size; i++) {
3706 void *objp = p[i];
3707
ca257195
JDB
3708 if (!orig_s) /* called via kfree_bulk */
3709 s = virt_to_cache(objp);
3710 else
3711 s = cache_from_obj(orig_s, objp);
a64b5378
KC
3712 if (!s)
3713 continue;
e6cdb58d
JDB
3714
3715 debug_check_no_locks_freed(objp, s->object_size);
3716 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3717 debug_check_no_obj_freed(objp, s->object_size);
3718
3719 __cache_free(s, objp, _RET_IP_);
3720 }
3721 local_irq_enable();
3722
3723 /* FIXME: add tracing */
3724}
3725EXPORT_SYMBOL(kmem_cache_free_bulk);
3726
1da177e4
LT
3727/**
3728 * kfree - free previously allocated memory
3729 * @objp: pointer returned by kmalloc.
3730 *
80e93eff
PE
3731 * If @objp is NULL, no operation is performed.
3732 *
1da177e4
LT
3733 * Don't free memory not originally allocated by kmalloc()
3734 * or you will run into trouble.
3735 */
3736void kfree(const void *objp)
3737{
343e0d7a 3738 struct kmem_cache *c;
1da177e4
LT
3739 unsigned long flags;
3740
2121db74
PE
3741 trace_kfree(_RET_IP_, objp);
3742
6cb8f913 3743 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3744 return;
3745 local_irq_save(flags);
3746 kfree_debugcheck(objp);
6ed5eb22 3747 c = virt_to_cache(objp);
a64b5378
KC
3748 if (!c) {
3749 local_irq_restore(flags);
3750 return;
3751 }
8c138bc0
CL
3752 debug_check_no_locks_freed(objp, c->object_size);
3753
3754 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3755 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3756 local_irq_restore(flags);
3757}
3758EXPORT_SYMBOL(kfree);
3759
e498be7d 3760/*
ce8eb6c4 3761 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3762 */
c3d332b6 3763static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
e498be7d 3764{
c3d332b6 3765 int ret;
e498be7d 3766 int node;
ce8eb6c4 3767 struct kmem_cache_node *n;
e498be7d 3768
9c09a95c 3769 for_each_online_node(node) {
c3d332b6
JK
3770 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3771 if (ret)
e498be7d
CL
3772 goto fail;
3773
e498be7d 3774 }
c3d332b6 3775
cafeb02e 3776 return 0;
0718dc2a 3777
a737b3e2 3778fail:
3b0efdfa 3779 if (!cachep->list.next) {
0718dc2a
CL
3780 /* Cache is not active yet. Roll back what we did */
3781 node--;
3782 while (node >= 0) {
18bf8541
CL
3783 n = get_node(cachep, node);
3784 if (n) {
ce8eb6c4
CL
3785 kfree(n->shared);
3786 free_alien_cache(n->alien);
3787 kfree(n);
6a67368c 3788 cachep->node[node] = NULL;
0718dc2a
CL
3789 }
3790 node--;
3791 }
3792 }
cafeb02e 3793 return -ENOMEM;
e498be7d
CL
3794}
3795
18004c5d 3796/* Always called with the slab_mutex held */
943a451a 3797static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3798 int batchcount, int shared, gfp_t gfp)
1da177e4 3799{
bf0dea23
JK
3800 struct array_cache __percpu *cpu_cache, *prev;
3801 int cpu;
1da177e4 3802
bf0dea23
JK
3803 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3804 if (!cpu_cache)
d2e7b7d0
SS
3805 return -ENOMEM;
3806
bf0dea23
JK
3807 prev = cachep->cpu_cache;
3808 cachep->cpu_cache = cpu_cache;
a87c75fb
GT
3809 /*
3810 * Without a previous cpu_cache there's no need to synchronize remote
3811 * cpus, so skip the IPIs.
3812 */
3813 if (prev)
3814 kick_all_cpus_sync();
e498be7d 3815
1da177e4 3816 check_irq_on();
1da177e4
LT
3817 cachep->batchcount = batchcount;
3818 cachep->limit = limit;
e498be7d 3819 cachep->shared = shared;
1da177e4 3820
bf0dea23 3821 if (!prev)
c3d332b6 3822 goto setup_node;
bf0dea23
JK
3823
3824 for_each_online_cpu(cpu) {
97654dfa 3825 LIST_HEAD(list);
18bf8541
CL
3826 int node;
3827 struct kmem_cache_node *n;
bf0dea23 3828 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3829
bf0dea23 3830 node = cpu_to_mem(cpu);
18bf8541
CL
3831 n = get_node(cachep, node);
3832 spin_lock_irq(&n->list_lock);
bf0dea23 3833 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3834 spin_unlock_irq(&n->list_lock);
97654dfa 3835 slabs_destroy(cachep, &list);
1da177e4 3836 }
bf0dea23
JK
3837 free_percpu(prev);
3838
c3d332b6
JK
3839setup_node:
3840 return setup_kmem_cache_nodes(cachep, gfp);
1da177e4
LT
3841}
3842
943a451a
GC
3843static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3844 int batchcount, int shared, gfp_t gfp)
3845{
3846 int ret;
426589f5 3847 struct kmem_cache *c;
943a451a
GC
3848
3849 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3850
3851 if (slab_state < FULL)
3852 return ret;
3853
3854 if ((ret < 0) || !is_root_cache(cachep))
3855 return ret;
3856
426589f5
VD
3857 lockdep_assert_held(&slab_mutex);
3858 for_each_memcg_cache(c, cachep) {
3859 /* return value determined by the root cache only */
3860 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
943a451a
GC
3861 }
3862
3863 return ret;
3864}
3865
18004c5d 3866/* Called with slab_mutex held always */
83b519e8 3867static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3868{
3869 int err;
943a451a
GC
3870 int limit = 0;
3871 int shared = 0;
3872 int batchcount = 0;
3873
7c00fce9 3874 err = cache_random_seq_create(cachep, cachep->num, gfp);
c7ce4f60
TG
3875 if (err)
3876 goto end;
3877
943a451a
GC
3878 if (!is_root_cache(cachep)) {
3879 struct kmem_cache *root = memcg_root_cache(cachep);
3880 limit = root->limit;
3881 shared = root->shared;
3882 batchcount = root->batchcount;
3883 }
1da177e4 3884
943a451a
GC
3885 if (limit && shared && batchcount)
3886 goto skip_setup;
a737b3e2
AM
3887 /*
3888 * The head array serves three purposes:
1da177e4
LT
3889 * - create a LIFO ordering, i.e. return objects that are cache-warm
3890 * - reduce the number of spinlock operations.
a737b3e2 3891 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3892 * bufctl chains: array operations are cheaper.
3893 * The numbers are guessed, we should auto-tune as described by
3894 * Bonwick.
3895 */
3b0efdfa 3896 if (cachep->size > 131072)
1da177e4 3897 limit = 1;
3b0efdfa 3898 else if (cachep->size > PAGE_SIZE)
1da177e4 3899 limit = 8;
3b0efdfa 3900 else if (cachep->size > 1024)
1da177e4 3901 limit = 24;
3b0efdfa 3902 else if (cachep->size > 256)
1da177e4
LT
3903 limit = 54;
3904 else
3905 limit = 120;
3906
a737b3e2
AM
3907 /*
3908 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3909 * allocation behaviour: Most allocs on one cpu, most free operations
3910 * on another cpu. For these cases, an efficient object passing between
3911 * cpus is necessary. This is provided by a shared array. The array
3912 * replaces Bonwick's magazine layer.
3913 * On uniprocessor, it's functionally equivalent (but less efficient)
3914 * to a larger limit. Thus disabled by default.
3915 */
3916 shared = 0;
3b0efdfa 3917 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3918 shared = 8;
1da177e4
LT
3919
3920#if DEBUG
a737b3e2
AM
3921 /*
3922 * With debugging enabled, large batchcount lead to excessively long
3923 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3924 */
3925 if (limit > 32)
3926 limit = 32;
3927#endif
943a451a
GC
3928 batchcount = (limit + 1) / 2;
3929skip_setup:
3930 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
c7ce4f60 3931end:
1da177e4 3932 if (err)
1170532b 3933 pr_err("enable_cpucache failed for %s, error %d\n",
b28a02de 3934 cachep->name, -err);
2ed3a4ef 3935 return err;
1da177e4
LT
3936}
3937
1b55253a 3938/*
ce8eb6c4
CL
3939 * Drain an array if it contains any elements taking the node lock only if
3940 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3941 * if drain_array() is used on the shared array.
1b55253a 3942 */
ce8eb6c4 3943static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
18726ca8 3944 struct array_cache *ac, int node)
1da177e4 3945{
97654dfa 3946 LIST_HEAD(list);
18726ca8
JK
3947
3948 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3949 check_mutex_acquired();
1da177e4 3950
1b55253a
CL
3951 if (!ac || !ac->avail)
3952 return;
18726ca8
JK
3953
3954 if (ac->touched) {
1da177e4 3955 ac->touched = 0;
18726ca8 3956 return;
1da177e4 3957 }
18726ca8
JK
3958
3959 spin_lock_irq(&n->list_lock);
3960 drain_array_locked(cachep, ac, node, false, &list);
3961 spin_unlock_irq(&n->list_lock);
3962
3963 slabs_destroy(cachep, &list);
1da177e4
LT
3964}
3965
3966/**
3967 * cache_reap - Reclaim memory from caches.
05fb6bf0 3968 * @w: work descriptor
1da177e4
LT
3969 *
3970 * Called from workqueue/eventd every few seconds.
3971 * Purpose:
3972 * - clear the per-cpu caches for this CPU.
3973 * - return freeable pages to the main free memory pool.
3974 *
a737b3e2
AM
3975 * If we cannot acquire the cache chain mutex then just give up - we'll try
3976 * again on the next iteration.
1da177e4 3977 */
7c5cae36 3978static void cache_reap(struct work_struct *w)
1da177e4 3979{
7a7c381d 3980 struct kmem_cache *searchp;
ce8eb6c4 3981 struct kmem_cache_node *n;
7d6e6d09 3982 int node = numa_mem_id();
bf6aede7 3983 struct delayed_work *work = to_delayed_work(w);
1da177e4 3984
18004c5d 3985 if (!mutex_trylock(&slab_mutex))
1da177e4 3986 /* Give up. Setup the next iteration. */
7c5cae36 3987 goto out;
1da177e4 3988
18004c5d 3989 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
3990 check_irq_on();
3991
35386e3b 3992 /*
ce8eb6c4 3993 * We only take the node lock if absolutely necessary and we
35386e3b
CL
3994 * have established with reasonable certainty that
3995 * we can do some work if the lock was obtained.
3996 */
18bf8541 3997 n = get_node(searchp, node);
35386e3b 3998
ce8eb6c4 3999 reap_alien(searchp, n);
1da177e4 4000
18726ca8 4001 drain_array(searchp, n, cpu_cache_get(searchp), node);
1da177e4 4002
35386e3b
CL
4003 /*
4004 * These are racy checks but it does not matter
4005 * if we skip one check or scan twice.
4006 */
ce8eb6c4 4007 if (time_after(n->next_reap, jiffies))
35386e3b 4008 goto next;
1da177e4 4009
5f0985bb 4010 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 4011
18726ca8 4012 drain_array(searchp, n, n->shared, node);
1da177e4 4013
ce8eb6c4
CL
4014 if (n->free_touched)
4015 n->free_touched = 0;
ed11d9eb
CL
4016 else {
4017 int freed;
1da177e4 4018
ce8eb6c4 4019 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
4020 5 * searchp->num - 1) / (5 * searchp->num));
4021 STATS_ADD_REAPED(searchp, freed);
4022 }
35386e3b 4023next:
1da177e4
LT
4024 cond_resched();
4025 }
4026 check_irq_on();
18004c5d 4027 mutex_unlock(&slab_mutex);
8fce4d8e 4028 next_reap_node();
7c5cae36 4029out:
a737b3e2 4030 /* Set up the next iteration */
a9f2a846
VB
4031 schedule_delayed_work_on(smp_processor_id(), work,
4032 round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
4033}
4034
0d7561c6 4035void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4036{
f728b0a5 4037 unsigned long active_objs, num_objs, active_slabs;
bf00bd34
DR
4038 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4039 unsigned long free_slabs = 0;
e498be7d 4040 int node;
ce8eb6c4 4041 struct kmem_cache_node *n;
1da177e4 4042
18bf8541 4043 for_each_kmem_cache_node(cachep, node, n) {
ca3b9b91 4044 check_irq_on();
ce8eb6c4 4045 spin_lock_irq(&n->list_lock);
e498be7d 4046
bf00bd34
DR
4047 total_slabs += n->total_slabs;
4048 free_slabs += n->free_slabs;
f728b0a5 4049 free_objs += n->free_objects;
07a63c41 4050
ce8eb6c4
CL
4051 if (n->shared)
4052 shared_avail += n->shared->avail;
e498be7d 4053
ce8eb6c4 4054 spin_unlock_irq(&n->list_lock);
1da177e4 4055 }
bf00bd34
DR
4056 num_objs = total_slabs * cachep->num;
4057 active_slabs = total_slabs - free_slabs;
f728b0a5 4058 active_objs = num_objs - free_objs;
1da177e4 4059
0d7561c6
GC
4060 sinfo->active_objs = active_objs;
4061 sinfo->num_objs = num_objs;
4062 sinfo->active_slabs = active_slabs;
bf00bd34 4063 sinfo->num_slabs = total_slabs;
0d7561c6
GC
4064 sinfo->shared_avail = shared_avail;
4065 sinfo->limit = cachep->limit;
4066 sinfo->batchcount = cachep->batchcount;
4067 sinfo->shared = cachep->shared;
4068 sinfo->objects_per_slab = cachep->num;
4069 sinfo->cache_order = cachep->gfporder;
4070}
4071
4072void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4073{
1da177e4 4074#if STATS
ce8eb6c4 4075 { /* node stats */
1da177e4
LT
4076 unsigned long high = cachep->high_mark;
4077 unsigned long allocs = cachep->num_allocations;
4078 unsigned long grown = cachep->grown;
4079 unsigned long reaped = cachep->reaped;
4080 unsigned long errors = cachep->errors;
4081 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4082 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4083 unsigned long node_frees = cachep->node_frees;
fb7faf33 4084 unsigned long overflows = cachep->node_overflow;
1da177e4 4085
756a025f 4086 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
e92dd4fd
JP
4087 allocs, high, grown,
4088 reaped, errors, max_freeable, node_allocs,
4089 node_frees, overflows);
1da177e4
LT
4090 }
4091 /* cpu stats */
4092 {
4093 unsigned long allochit = atomic_read(&cachep->allochit);
4094 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4095 unsigned long freehit = atomic_read(&cachep->freehit);
4096 unsigned long freemiss = atomic_read(&cachep->freemiss);
4097
4098 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4099 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4100 }
4101#endif
1da177e4
LT
4102}
4103
1da177e4
LT
4104#define MAX_SLABINFO_WRITE 128
4105/**
4106 * slabinfo_write - Tuning for the slab allocator
4107 * @file: unused
4108 * @buffer: user buffer
4109 * @count: data length
4110 * @ppos: unused
a862f68a
MR
4111 *
4112 * Return: %0 on success, negative error code otherwise.
1da177e4 4113 */
b7454ad3 4114ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4115 size_t count, loff_t *ppos)
1da177e4 4116{
b28a02de 4117 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4118 int limit, batchcount, shared, res;
7a7c381d 4119 struct kmem_cache *cachep;
b28a02de 4120
1da177e4
LT
4121 if (count > MAX_SLABINFO_WRITE)
4122 return -EINVAL;
4123 if (copy_from_user(&kbuf, buffer, count))
4124 return -EFAULT;
b28a02de 4125 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4126
4127 tmp = strchr(kbuf, ' ');
4128 if (!tmp)
4129 return -EINVAL;
4130 *tmp = '\0';
4131 tmp++;
4132 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4133 return -EINVAL;
4134
4135 /* Find the cache in the chain of caches. */
18004c5d 4136 mutex_lock(&slab_mutex);
1da177e4 4137 res = -EINVAL;
18004c5d 4138 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4139 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4140 if (limit < 1 || batchcount < 1 ||
4141 batchcount > limit || shared < 0) {
e498be7d 4142 res = 0;
1da177e4 4143 } else {
e498be7d 4144 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4145 batchcount, shared,
4146 GFP_KERNEL);
1da177e4
LT
4147 }
4148 break;
4149 }
4150 }
18004c5d 4151 mutex_unlock(&slab_mutex);
1da177e4
LT
4152 if (res >= 0)
4153 res = count;
4154 return res;
4155}
871751e2 4156
04385fc5
KC
4157#ifdef CONFIG_HARDENED_USERCOPY
4158/*
afcc90f8
KC
4159 * Rejects incorrectly sized objects and objects that are to be copied
4160 * to/from userspace but do not fall entirely within the containing slab
4161 * cache's usercopy region.
04385fc5
KC
4162 *
4163 * Returns NULL if check passes, otherwise const char * to name of cache
4164 * to indicate an error.
4165 */
f4e6e289
KC
4166void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4167 bool to_user)
04385fc5
KC
4168{
4169 struct kmem_cache *cachep;
4170 unsigned int objnr;
4171 unsigned long offset;
4172
219667c2
AK
4173 ptr = kasan_reset_tag(ptr);
4174
04385fc5
KC
4175 /* Find and validate object. */
4176 cachep = page->slab_cache;
4177 objnr = obj_to_index(cachep, page, (void *)ptr);
4178 BUG_ON(objnr >= cachep->num);
4179
4180 /* Find offset within object. */
4181 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4182
afcc90f8
KC
4183 /* Allow address range falling entirely within usercopy region. */
4184 if (offset >= cachep->useroffset &&
4185 offset - cachep->useroffset <= cachep->usersize &&
4186 n <= cachep->useroffset - offset + cachep->usersize)
f4e6e289 4187 return;
04385fc5 4188
afcc90f8
KC
4189 /*
4190 * If the copy is still within the allocated object, produce
4191 * a warning instead of rejecting the copy. This is intended
4192 * to be a temporary method to find any missing usercopy
4193 * whitelists.
4194 */
2d891fbc
KC
4195 if (usercopy_fallback &&
4196 offset <= cachep->object_size &&
afcc90f8
KC
4197 n <= cachep->object_size - offset) {
4198 usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4199 return;
4200 }
04385fc5 4201
f4e6e289 4202 usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
04385fc5
KC
4203}
4204#endif /* CONFIG_HARDENED_USERCOPY */
4205
00e145b6
MS
4206/**
4207 * ksize - get the actual amount of memory allocated for a given object
4208 * @objp: Pointer to the object
4209 *
4210 * kmalloc may internally round up allocations and return more memory
4211 * than requested. ksize() can be used to determine the actual amount of
4212 * memory allocated. The caller may use this additional memory, even though
4213 * a smaller amount of memory was initially specified with the kmalloc call.
4214 * The caller must guarantee that objp points to a valid object previously
4215 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4216 * must not be freed during the duration of the call.
a862f68a
MR
4217 *
4218 * Return: size of the actual memory used by @objp in bytes
00e145b6 4219 */
fd76bab2 4220size_t ksize(const void *objp)
1da177e4 4221{
a64b5378 4222 struct kmem_cache *c;
7ed2f9e6
AP
4223 size_t size;
4224
ef8b4520
CL
4225 BUG_ON(!objp);
4226 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4227 return 0;
1da177e4 4228
a64b5378
KC
4229 c = virt_to_cache(objp);
4230 size = c ? c->object_size : 0;
7ed2f9e6
AP
4231 /* We assume that ksize callers could use the whole allocated area,
4232 * so we need to unpoison this area.
4233 */
4ebb31a4 4234 kasan_unpoison_shadow(objp, size);
7ed2f9e6
AP
4235
4236 return size;
1da177e4 4237}
b1aabecd 4238EXPORT_SYMBOL(ksize);