]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/slab.c
mm/slab: factor out kmem_cache_node initialization code
[mirror_ubuntu-artful-kernel.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
f315e3fa
JK
160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163#if FREELIST_BYTE_INDEX
164typedef unsigned char freelist_idx_t;
165#else
166typedef unsigned short freelist_idx_t;
167#endif
168
30321c7b 169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 170
1da177e4
LT
171/*
172 * struct array_cache
173 *
1da177e4
LT
174 * Purpose:
175 * - LIFO ordering, to hand out cache-warm objects from _alloc
176 * - reduce the number of linked list operations
177 * - reduce spinlock operations
178 *
179 * The limit is stored in the per-cpu structure to reduce the data cache
180 * footprint.
181 *
182 */
183struct array_cache {
184 unsigned int avail;
185 unsigned int limit;
186 unsigned int batchcount;
187 unsigned int touched;
bda5b655 188 void *entry[]; /*
a737b3e2
AM
189 * Must have this definition in here for the proper
190 * alignment of array_cache. Also simplifies accessing
191 * the entries.
a737b3e2 192 */
1da177e4
LT
193};
194
c8522a3a
JK
195struct alien_cache {
196 spinlock_t lock;
197 struct array_cache ac;
198};
199
e498be7d
CL
200/*
201 * Need this for bootstrapping a per node allocator.
202 */
bf0dea23 203#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 204static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 205#define CACHE_CACHE 0
bf0dea23 206#define SIZE_NODE (MAX_NUMNODES)
e498be7d 207
ed11d9eb 208static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 209 struct kmem_cache_node *n, int tofree);
ed11d9eb 210static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
211 int node, struct list_head *list);
212static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 213static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 214static void cache_reap(struct work_struct *unused);
ed11d9eb 215
e0a42726
IM
216static int slab_early_init = 1;
217
ce8eb6c4 218#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 219
ce8eb6c4 220static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
221{
222 INIT_LIST_HEAD(&parent->slabs_full);
223 INIT_LIST_HEAD(&parent->slabs_partial);
224 INIT_LIST_HEAD(&parent->slabs_free);
225 parent->shared = NULL;
226 parent->alien = NULL;
2e1217cf 227 parent->colour_next = 0;
e498be7d
CL
228 spin_lock_init(&parent->list_lock);
229 parent->free_objects = 0;
230 parent->free_touched = 0;
231}
232
a737b3e2
AM
233#define MAKE_LIST(cachep, listp, slab, nodeid) \
234 do { \
235 INIT_LIST_HEAD(listp); \
18bf8541 236 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
237 } while (0)
238
a737b3e2
AM
239#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
240 do { \
e498be7d
CL
241 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
242 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
243 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
244 } while (0)
1da177e4 245
b03a017b 246#define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
1da177e4 247#define CFLGS_OFF_SLAB (0x80000000UL)
b03a017b 248#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
1da177e4
LT
249#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
250
251#define BATCHREFILL_LIMIT 16
a737b3e2
AM
252/*
253 * Optimization question: fewer reaps means less probability for unnessary
254 * cpucache drain/refill cycles.
1da177e4 255 *
dc6f3f27 256 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
257 * which could lock up otherwise freeable slabs.
258 */
5f0985bb
JZ
259#define REAPTIMEOUT_AC (2*HZ)
260#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
261
262#if STATS
263#define STATS_INC_ACTIVE(x) ((x)->num_active++)
264#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
265#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
266#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 267#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
268#define STATS_SET_HIGH(x) \
269 do { \
270 if ((x)->num_active > (x)->high_mark) \
271 (x)->high_mark = (x)->num_active; \
272 } while (0)
1da177e4
LT
273#define STATS_INC_ERR(x) ((x)->errors++)
274#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 275#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 276#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
277#define STATS_SET_FREEABLE(x, i) \
278 do { \
279 if ((x)->max_freeable < i) \
280 (x)->max_freeable = i; \
281 } while (0)
1da177e4
LT
282#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
283#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
284#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
285#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
286#else
287#define STATS_INC_ACTIVE(x) do { } while (0)
288#define STATS_DEC_ACTIVE(x) do { } while (0)
289#define STATS_INC_ALLOCED(x) do { } while (0)
290#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 291#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
292#define STATS_SET_HIGH(x) do { } while (0)
293#define STATS_INC_ERR(x) do { } while (0)
294#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 295#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 296#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 297#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
298#define STATS_INC_ALLOCHIT(x) do { } while (0)
299#define STATS_INC_ALLOCMISS(x) do { } while (0)
300#define STATS_INC_FREEHIT(x) do { } while (0)
301#define STATS_INC_FREEMISS(x) do { } while (0)
302#endif
303
304#if DEBUG
1da177e4 305
a737b3e2
AM
306/*
307 * memory layout of objects:
1da177e4 308 * 0 : objp
3dafccf2 309 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
310 * the end of an object is aligned with the end of the real
311 * allocation. Catches writes behind the end of the allocation.
3dafccf2 312 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 313 * redzone word.
3dafccf2 314 * cachep->obj_offset: The real object.
3b0efdfa
CL
315 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
316 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 317 * [BYTES_PER_WORD long]
1da177e4 318 */
343e0d7a 319static int obj_offset(struct kmem_cache *cachep)
1da177e4 320{
3dafccf2 321 return cachep->obj_offset;
1da177e4
LT
322}
323
b46b8f19 324static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
325{
326 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
327 return (unsigned long long*) (objp + obj_offset(cachep) -
328 sizeof(unsigned long long));
1da177e4
LT
329}
330
b46b8f19 331static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
332{
333 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
334 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 335 return (unsigned long long *)(objp + cachep->size -
b46b8f19 336 sizeof(unsigned long long) -
87a927c7 337 REDZONE_ALIGN);
3b0efdfa 338 return (unsigned long long *) (objp + cachep->size -
b46b8f19 339 sizeof(unsigned long long));
1da177e4
LT
340}
341
343e0d7a 342static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
343{
344 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 345 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
346}
347
348#else
349
3dafccf2 350#define obj_offset(x) 0
b46b8f19
DW
351#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
352#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
353#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
354
355#endif
356
03787301
JK
357#ifdef CONFIG_DEBUG_SLAB_LEAK
358
d31676df 359static inline bool is_store_user_clean(struct kmem_cache *cachep)
03787301 360{
d31676df
JK
361 return atomic_read(&cachep->store_user_clean) == 1;
362}
03787301 363
d31676df
JK
364static inline void set_store_user_clean(struct kmem_cache *cachep)
365{
366 atomic_set(&cachep->store_user_clean, 1);
367}
03787301 368
d31676df
JK
369static inline void set_store_user_dirty(struct kmem_cache *cachep)
370{
371 if (is_store_user_clean(cachep))
372 atomic_set(&cachep->store_user_clean, 0);
03787301
JK
373}
374
375#else
d31676df 376static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
03787301
JK
377
378#endif
379
1da177e4 380/*
3df1cccd
DR
381 * Do not go above this order unless 0 objects fit into the slab or
382 * overridden on the command line.
1da177e4 383 */
543585cc
DR
384#define SLAB_MAX_ORDER_HI 1
385#define SLAB_MAX_ORDER_LO 0
386static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 387static bool slab_max_order_set __initdata;
1da177e4 388
6ed5eb22
PE
389static inline struct kmem_cache *virt_to_cache(const void *obj)
390{
b49af68f 391 struct page *page = virt_to_head_page(obj);
35026088 392 return page->slab_cache;
6ed5eb22
PE
393}
394
8456a648 395static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
396 unsigned int idx)
397{
8456a648 398 return page->s_mem + cache->size * idx;
8fea4e96
PE
399}
400
6a2d7a95 401/*
3b0efdfa
CL
402 * We want to avoid an expensive divide : (offset / cache->size)
403 * Using the fact that size is a constant for a particular cache,
404 * we can replace (offset / cache->size) by
6a2d7a95
ED
405 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
406 */
407static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 408 const struct page *page, void *obj)
8fea4e96 409{
8456a648 410 u32 offset = (obj - page->s_mem);
6a2d7a95 411 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
412}
413
6fb92430 414#define BOOT_CPUCACHE_ENTRIES 1
1da177e4 415/* internal cache of cache description objs */
9b030cb8 416static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
417 .batchcount = 1,
418 .limit = BOOT_CPUCACHE_ENTRIES,
419 .shared = 1,
3b0efdfa 420 .size = sizeof(struct kmem_cache),
b28a02de 421 .name = "kmem_cache",
1da177e4
LT
422};
423
1871e52c 424static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 425
343e0d7a 426static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 427{
bf0dea23 428 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
429}
430
a737b3e2
AM
431/*
432 * Calculate the number of objects and left-over bytes for a given buffer size.
433 */
70f75067
JK
434static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
435 unsigned long flags, size_t *left_over)
fbaccacf 436{
70f75067 437 unsigned int num;
fbaccacf 438 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 439
fbaccacf
SR
440 /*
441 * The slab management structure can be either off the slab or
442 * on it. For the latter case, the memory allocated for a
443 * slab is used for:
444 *
fbaccacf 445 * - @buffer_size bytes for each object
2e6b3602
JK
446 * - One freelist_idx_t for each object
447 *
448 * We don't need to consider alignment of freelist because
449 * freelist will be at the end of slab page. The objects will be
450 * at the correct alignment.
fbaccacf
SR
451 *
452 * If the slab management structure is off the slab, then the
453 * alignment will already be calculated into the size. Because
454 * the slabs are all pages aligned, the objects will be at the
455 * correct alignment when allocated.
456 */
b03a017b 457 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
70f75067 458 num = slab_size / buffer_size;
2e6b3602 459 *left_over = slab_size % buffer_size;
fbaccacf 460 } else {
70f75067 461 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
2e6b3602
JK
462 *left_over = slab_size %
463 (buffer_size + sizeof(freelist_idx_t));
fbaccacf 464 }
70f75067
JK
465
466 return num;
1da177e4
LT
467}
468
f28510d3 469#if DEBUG
d40cee24 470#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 471
a737b3e2
AM
472static void __slab_error(const char *function, struct kmem_cache *cachep,
473 char *msg)
1da177e4 474{
1170532b 475 pr_err("slab error in %s(): cache `%s': %s\n",
b28a02de 476 function, cachep->name, msg);
1da177e4 477 dump_stack();
373d4d09 478 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 479}
f28510d3 480#endif
1da177e4 481
3395ee05
PM
482/*
483 * By default on NUMA we use alien caches to stage the freeing of
484 * objects allocated from other nodes. This causes massive memory
485 * inefficiencies when using fake NUMA setup to split memory into a
486 * large number of small nodes, so it can be disabled on the command
487 * line
488 */
489
490static int use_alien_caches __read_mostly = 1;
491static int __init noaliencache_setup(char *s)
492{
493 use_alien_caches = 0;
494 return 1;
495}
496__setup("noaliencache", noaliencache_setup);
497
3df1cccd
DR
498static int __init slab_max_order_setup(char *str)
499{
500 get_option(&str, &slab_max_order);
501 slab_max_order = slab_max_order < 0 ? 0 :
502 min(slab_max_order, MAX_ORDER - 1);
503 slab_max_order_set = true;
504
505 return 1;
506}
507__setup("slab_max_order=", slab_max_order_setup);
508
8fce4d8e
CL
509#ifdef CONFIG_NUMA
510/*
511 * Special reaping functions for NUMA systems called from cache_reap().
512 * These take care of doing round robin flushing of alien caches (containing
513 * objects freed on different nodes from which they were allocated) and the
514 * flushing of remote pcps by calling drain_node_pages.
515 */
1871e52c 516static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
517
518static void init_reap_node(int cpu)
519{
520 int node;
521
7d6e6d09 522 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 523 if (node == MAX_NUMNODES)
442295c9 524 node = first_node(node_online_map);
8fce4d8e 525
1871e52c 526 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
527}
528
529static void next_reap_node(void)
530{
909ea964 531 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 532
8fce4d8e
CL
533 node = next_node(node, node_online_map);
534 if (unlikely(node >= MAX_NUMNODES))
535 node = first_node(node_online_map);
909ea964 536 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
537}
538
539#else
540#define init_reap_node(cpu) do { } while (0)
541#define next_reap_node(void) do { } while (0)
542#endif
543
1da177e4
LT
544/*
545 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
546 * via the workqueue/eventd.
547 * Add the CPU number into the expiration time to minimize the possibility of
548 * the CPUs getting into lockstep and contending for the global cache chain
549 * lock.
550 */
0db0628d 551static void start_cpu_timer(int cpu)
1da177e4 552{
1871e52c 553 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
554
555 /*
556 * When this gets called from do_initcalls via cpucache_init(),
557 * init_workqueues() has already run, so keventd will be setup
558 * at that time.
559 */
52bad64d 560 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 561 init_reap_node(cpu);
203b42f7 562 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
563 schedule_delayed_work_on(cpu, reap_work,
564 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
565 }
566}
567
1fe00d50 568static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 569{
d5cff635
CM
570 /*
571 * The array_cache structures contain pointers to free object.
25985edc 572 * However, when such objects are allocated or transferred to another
d5cff635
CM
573 * cache the pointers are not cleared and they could be counted as
574 * valid references during a kmemleak scan. Therefore, kmemleak must
575 * not scan such objects.
576 */
1fe00d50
JK
577 kmemleak_no_scan(ac);
578 if (ac) {
579 ac->avail = 0;
580 ac->limit = limit;
581 ac->batchcount = batch;
582 ac->touched = 0;
1da177e4 583 }
1fe00d50
JK
584}
585
586static struct array_cache *alloc_arraycache(int node, int entries,
587 int batchcount, gfp_t gfp)
588{
5e804789 589 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
590 struct array_cache *ac = NULL;
591
592 ac = kmalloc_node(memsize, gfp, node);
593 init_arraycache(ac, entries, batchcount);
594 return ac;
1da177e4
LT
595}
596
f68f8ddd
JK
597static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
598 struct page *page, void *objp)
072bb0aa 599{
f68f8ddd
JK
600 struct kmem_cache_node *n;
601 int page_node;
602 LIST_HEAD(list);
072bb0aa 603
f68f8ddd
JK
604 page_node = page_to_nid(page);
605 n = get_node(cachep, page_node);
381760ea 606
f68f8ddd
JK
607 spin_lock(&n->list_lock);
608 free_block(cachep, &objp, 1, page_node, &list);
609 spin_unlock(&n->list_lock);
381760ea 610
f68f8ddd 611 slabs_destroy(cachep, &list);
072bb0aa
MG
612}
613
3ded175a
CL
614/*
615 * Transfer objects in one arraycache to another.
616 * Locking must be handled by the caller.
617 *
618 * Return the number of entries transferred.
619 */
620static int transfer_objects(struct array_cache *to,
621 struct array_cache *from, unsigned int max)
622{
623 /* Figure out how many entries to transfer */
732eacc0 624 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
625
626 if (!nr)
627 return 0;
628
629 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
630 sizeof(void *) *nr);
631
632 from->avail -= nr;
633 to->avail += nr;
3ded175a
CL
634 return nr;
635}
636
765c4507
CL
637#ifndef CONFIG_NUMA
638
639#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 640#define reap_alien(cachep, n) do { } while (0)
765c4507 641
c8522a3a
JK
642static inline struct alien_cache **alloc_alien_cache(int node,
643 int limit, gfp_t gfp)
765c4507 644{
8888177e 645 return NULL;
765c4507
CL
646}
647
c8522a3a 648static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
649{
650}
651
652static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
653{
654 return 0;
655}
656
657static inline void *alternate_node_alloc(struct kmem_cache *cachep,
658 gfp_t flags)
659{
660 return NULL;
661}
662
8b98c169 663static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
664 gfp_t flags, int nodeid)
665{
666 return NULL;
667}
668
4167e9b2
DR
669static inline gfp_t gfp_exact_node(gfp_t flags)
670{
444eb2a4 671 return flags & ~__GFP_NOFAIL;
4167e9b2
DR
672}
673
765c4507
CL
674#else /* CONFIG_NUMA */
675
8b98c169 676static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 677static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 678
c8522a3a
JK
679static struct alien_cache *__alloc_alien_cache(int node, int entries,
680 int batch, gfp_t gfp)
681{
5e804789 682 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
683 struct alien_cache *alc = NULL;
684
685 alc = kmalloc_node(memsize, gfp, node);
686 init_arraycache(&alc->ac, entries, batch);
49dfc304 687 spin_lock_init(&alc->lock);
c8522a3a
JK
688 return alc;
689}
690
691static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 692{
c8522a3a 693 struct alien_cache **alc_ptr;
5e804789 694 size_t memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
695 int i;
696
697 if (limit > 1)
698 limit = 12;
c8522a3a
JK
699 alc_ptr = kzalloc_node(memsize, gfp, node);
700 if (!alc_ptr)
701 return NULL;
702
703 for_each_node(i) {
704 if (i == node || !node_online(i))
705 continue;
706 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
707 if (!alc_ptr[i]) {
708 for (i--; i >= 0; i--)
709 kfree(alc_ptr[i]);
710 kfree(alc_ptr);
711 return NULL;
e498be7d
CL
712 }
713 }
c8522a3a 714 return alc_ptr;
e498be7d
CL
715}
716
c8522a3a 717static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
718{
719 int i;
720
c8522a3a 721 if (!alc_ptr)
e498be7d 722 return;
e498be7d 723 for_each_node(i)
c8522a3a
JK
724 kfree(alc_ptr[i]);
725 kfree(alc_ptr);
e498be7d
CL
726}
727
343e0d7a 728static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
729 struct array_cache *ac, int node,
730 struct list_head *list)
e498be7d 731{
18bf8541 732 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
733
734 if (ac->avail) {
ce8eb6c4 735 spin_lock(&n->list_lock);
e00946fe
CL
736 /*
737 * Stuff objects into the remote nodes shared array first.
738 * That way we could avoid the overhead of putting the objects
739 * into the free lists and getting them back later.
740 */
ce8eb6c4
CL
741 if (n->shared)
742 transfer_objects(n->shared, ac, ac->limit);
e00946fe 743
833b706c 744 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 745 ac->avail = 0;
ce8eb6c4 746 spin_unlock(&n->list_lock);
e498be7d
CL
747 }
748}
749
8fce4d8e
CL
750/*
751 * Called from cache_reap() to regularly drain alien caches round robin.
752 */
ce8eb6c4 753static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 754{
909ea964 755 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 756
ce8eb6c4 757 if (n->alien) {
c8522a3a
JK
758 struct alien_cache *alc = n->alien[node];
759 struct array_cache *ac;
760
761 if (alc) {
762 ac = &alc->ac;
49dfc304 763 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
764 LIST_HEAD(list);
765
766 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 767 spin_unlock_irq(&alc->lock);
833b706c 768 slabs_destroy(cachep, &list);
c8522a3a 769 }
8fce4d8e
CL
770 }
771 }
772}
773
a737b3e2 774static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 775 struct alien_cache **alien)
e498be7d 776{
b28a02de 777 int i = 0;
c8522a3a 778 struct alien_cache *alc;
e498be7d
CL
779 struct array_cache *ac;
780 unsigned long flags;
781
782 for_each_online_node(i) {
c8522a3a
JK
783 alc = alien[i];
784 if (alc) {
833b706c
JK
785 LIST_HEAD(list);
786
c8522a3a 787 ac = &alc->ac;
49dfc304 788 spin_lock_irqsave(&alc->lock, flags);
833b706c 789 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 790 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 791 slabs_destroy(cachep, &list);
e498be7d
CL
792 }
793 }
794}
729bd0b7 795
25c4f304
JK
796static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
797 int node, int page_node)
729bd0b7 798{
ce8eb6c4 799 struct kmem_cache_node *n;
c8522a3a
JK
800 struct alien_cache *alien = NULL;
801 struct array_cache *ac;
97654dfa 802 LIST_HEAD(list);
1ca4cb24 803
18bf8541 804 n = get_node(cachep, node);
729bd0b7 805 STATS_INC_NODEFREES(cachep);
25c4f304
JK
806 if (n->alien && n->alien[page_node]) {
807 alien = n->alien[page_node];
c8522a3a 808 ac = &alien->ac;
49dfc304 809 spin_lock(&alien->lock);
c8522a3a 810 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 811 STATS_INC_ACOVERFLOW(cachep);
25c4f304 812 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 813 }
f68f8ddd 814 ac->entry[ac->avail++] = objp;
49dfc304 815 spin_unlock(&alien->lock);
833b706c 816 slabs_destroy(cachep, &list);
729bd0b7 817 } else {
25c4f304 818 n = get_node(cachep, page_node);
18bf8541 819 spin_lock(&n->list_lock);
25c4f304 820 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 821 spin_unlock(&n->list_lock);
97654dfa 822 slabs_destroy(cachep, &list);
729bd0b7
PE
823 }
824 return 1;
825}
25c4f304
JK
826
827static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
828{
829 int page_node = page_to_nid(virt_to_page(objp));
830 int node = numa_mem_id();
831 /*
832 * Make sure we are not freeing a object from another node to the array
833 * cache on this cpu.
834 */
835 if (likely(node == page_node))
836 return 0;
837
838 return __cache_free_alien(cachep, objp, node, page_node);
839}
4167e9b2
DR
840
841/*
444eb2a4
MG
842 * Construct gfp mask to allocate from a specific node but do not reclaim or
843 * warn about failures.
4167e9b2
DR
844 */
845static inline gfp_t gfp_exact_node(gfp_t flags)
846{
444eb2a4 847 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
4167e9b2 848}
e498be7d
CL
849#endif
850
ded0ecf6
JK
851static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
852{
853 struct kmem_cache_node *n;
854
855 /*
856 * Set up the kmem_cache_node for cpu before we can
857 * begin anything. Make sure some other cpu on this
858 * node has not already allocated this
859 */
860 n = get_node(cachep, node);
861 if (n) {
862 spin_lock_irq(&n->list_lock);
863 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
864 cachep->num;
865 spin_unlock_irq(&n->list_lock);
866
867 return 0;
868 }
869
870 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
871 if (!n)
872 return -ENOMEM;
873
874 kmem_cache_node_init(n);
875 n->next_reap = jiffies + REAPTIMEOUT_NODE +
876 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
877
878 n->free_limit =
879 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
880
881 /*
882 * The kmem_cache_nodes don't come and go as CPUs
883 * come and go. slab_mutex is sufficient
884 * protection here.
885 */
886 cachep->node[node] = n;
887
888 return 0;
889}
890
8f9f8d9e 891/*
6a67368c 892 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 893 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 894 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 895 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
896 * already in use.
897 *
18004c5d 898 * Must hold slab_mutex.
8f9f8d9e 899 */
6a67368c 900static int init_cache_node_node(int node)
8f9f8d9e 901{
ded0ecf6 902 int ret;
8f9f8d9e 903 struct kmem_cache *cachep;
8f9f8d9e 904
18004c5d 905 list_for_each_entry(cachep, &slab_caches, list) {
ded0ecf6
JK
906 ret = init_cache_node(cachep, node, GFP_KERNEL);
907 if (ret)
908 return ret;
8f9f8d9e 909 }
ded0ecf6 910
8f9f8d9e
DR
911 return 0;
912}
913
0db0628d 914static void cpuup_canceled(long cpu)
fbf1e473
AM
915{
916 struct kmem_cache *cachep;
ce8eb6c4 917 struct kmem_cache_node *n = NULL;
7d6e6d09 918 int node = cpu_to_mem(cpu);
a70f7302 919 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 920
18004c5d 921 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
922 struct array_cache *nc;
923 struct array_cache *shared;
c8522a3a 924 struct alien_cache **alien;
97654dfa 925 LIST_HEAD(list);
fbf1e473 926
18bf8541 927 n = get_node(cachep, node);
ce8eb6c4 928 if (!n)
bf0dea23 929 continue;
fbf1e473 930
ce8eb6c4 931 spin_lock_irq(&n->list_lock);
fbf1e473 932
ce8eb6c4
CL
933 /* Free limit for this kmem_cache_node */
934 n->free_limit -= cachep->batchcount;
bf0dea23
JK
935
936 /* cpu is dead; no one can alloc from it. */
937 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
938 if (nc) {
97654dfa 939 free_block(cachep, nc->entry, nc->avail, node, &list);
bf0dea23
JK
940 nc->avail = 0;
941 }
fbf1e473 942
58463c1f 943 if (!cpumask_empty(mask)) {
ce8eb6c4 944 spin_unlock_irq(&n->list_lock);
bf0dea23 945 goto free_slab;
fbf1e473
AM
946 }
947
ce8eb6c4 948 shared = n->shared;
fbf1e473
AM
949 if (shared) {
950 free_block(cachep, shared->entry,
97654dfa 951 shared->avail, node, &list);
ce8eb6c4 952 n->shared = NULL;
fbf1e473
AM
953 }
954
ce8eb6c4
CL
955 alien = n->alien;
956 n->alien = NULL;
fbf1e473 957
ce8eb6c4 958 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
959
960 kfree(shared);
961 if (alien) {
962 drain_alien_cache(cachep, alien);
963 free_alien_cache(alien);
964 }
bf0dea23
JK
965
966free_slab:
97654dfa 967 slabs_destroy(cachep, &list);
fbf1e473
AM
968 }
969 /*
970 * In the previous loop, all the objects were freed to
971 * the respective cache's slabs, now we can go ahead and
972 * shrink each nodelist to its limit.
973 */
18004c5d 974 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 975 n = get_node(cachep, node);
ce8eb6c4 976 if (!n)
fbf1e473 977 continue;
a5aa63a5 978 drain_freelist(cachep, n, INT_MAX);
fbf1e473
AM
979 }
980}
981
0db0628d 982static int cpuup_prepare(long cpu)
1da177e4 983{
343e0d7a 984 struct kmem_cache *cachep;
ce8eb6c4 985 struct kmem_cache_node *n = NULL;
7d6e6d09 986 int node = cpu_to_mem(cpu);
8f9f8d9e 987 int err;
1da177e4 988
fbf1e473
AM
989 /*
990 * We need to do this right in the beginning since
991 * alloc_arraycache's are going to use this list.
992 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 993 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 994 */
6a67368c 995 err = init_cache_node_node(node);
8f9f8d9e
DR
996 if (err < 0)
997 goto bad;
fbf1e473
AM
998
999 /*
1000 * Now we can go ahead with allocating the shared arrays and
1001 * array caches
1002 */
18004c5d 1003 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473 1004 struct array_cache *shared = NULL;
c8522a3a 1005 struct alien_cache **alien = NULL;
fbf1e473 1006
fbf1e473
AM
1007 if (cachep->shared) {
1008 shared = alloc_arraycache(node,
1009 cachep->shared * cachep->batchcount,
83b519e8 1010 0xbaadf00d, GFP_KERNEL);
bf0dea23 1011 if (!shared)
1da177e4 1012 goto bad;
fbf1e473
AM
1013 }
1014 if (use_alien_caches) {
83b519e8 1015 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1016 if (!alien) {
1017 kfree(shared);
fbf1e473 1018 goto bad;
12d00f6a 1019 }
fbf1e473 1020 }
18bf8541 1021 n = get_node(cachep, node);
ce8eb6c4 1022 BUG_ON(!n);
fbf1e473 1023
ce8eb6c4
CL
1024 spin_lock_irq(&n->list_lock);
1025 if (!n->shared) {
fbf1e473
AM
1026 /*
1027 * We are serialised from CPU_DEAD or
1028 * CPU_UP_CANCELLED by the cpucontrol lock
1029 */
ce8eb6c4 1030 n->shared = shared;
fbf1e473
AM
1031 shared = NULL;
1032 }
4484ebf1 1033#ifdef CONFIG_NUMA
ce8eb6c4
CL
1034 if (!n->alien) {
1035 n->alien = alien;
fbf1e473 1036 alien = NULL;
1da177e4 1037 }
fbf1e473 1038#endif
ce8eb6c4 1039 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1040 kfree(shared);
1041 free_alien_cache(alien);
1042 }
ce79ddc8 1043
fbf1e473
AM
1044 return 0;
1045bad:
12d00f6a 1046 cpuup_canceled(cpu);
fbf1e473
AM
1047 return -ENOMEM;
1048}
1049
0db0628d 1050static int cpuup_callback(struct notifier_block *nfb,
fbf1e473
AM
1051 unsigned long action, void *hcpu)
1052{
1053 long cpu = (long)hcpu;
1054 int err = 0;
1055
1056 switch (action) {
fbf1e473
AM
1057 case CPU_UP_PREPARE:
1058 case CPU_UP_PREPARE_FROZEN:
18004c5d 1059 mutex_lock(&slab_mutex);
fbf1e473 1060 err = cpuup_prepare(cpu);
18004c5d 1061 mutex_unlock(&slab_mutex);
1da177e4
LT
1062 break;
1063 case CPU_ONLINE:
8bb78442 1064 case CPU_ONLINE_FROZEN:
1da177e4
LT
1065 start_cpu_timer(cpu);
1066 break;
1067#ifdef CONFIG_HOTPLUG_CPU
5830c590 1068 case CPU_DOWN_PREPARE:
8bb78442 1069 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1070 /*
18004c5d 1071 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1072 * held so that if cache_reap() is invoked it cannot do
1073 * anything expensive but will only modify reap_work
1074 * and reschedule the timer.
1075 */
afe2c511 1076 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1077 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1078 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1079 break;
1080 case CPU_DOWN_FAILED:
8bb78442 1081 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1082 start_cpu_timer(cpu);
1083 break;
1da177e4 1084 case CPU_DEAD:
8bb78442 1085 case CPU_DEAD_FROZEN:
4484ebf1
RT
1086 /*
1087 * Even if all the cpus of a node are down, we don't free the
ce8eb6c4 1088 * kmem_cache_node of any cache. This to avoid a race between
4484ebf1 1089 * cpu_down, and a kmalloc allocation from another cpu for
ce8eb6c4 1090 * memory from the node of the cpu going down. The node
4484ebf1
RT
1091 * structure is usually allocated from kmem_cache_create() and
1092 * gets destroyed at kmem_cache_destroy().
1093 */
183ff22b 1094 /* fall through */
8f5be20b 1095#endif
1da177e4 1096 case CPU_UP_CANCELED:
8bb78442 1097 case CPU_UP_CANCELED_FROZEN:
18004c5d 1098 mutex_lock(&slab_mutex);
fbf1e473 1099 cpuup_canceled(cpu);
18004c5d 1100 mutex_unlock(&slab_mutex);
1da177e4 1101 break;
1da177e4 1102 }
eac40680 1103 return notifier_from_errno(err);
1da177e4
LT
1104}
1105
0db0628d 1106static struct notifier_block cpucache_notifier = {
74b85f37
CS
1107 &cpuup_callback, NULL, 0
1108};
1da177e4 1109
8f9f8d9e
DR
1110#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1111/*
1112 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1113 * Returns -EBUSY if all objects cannot be drained so that the node is not
1114 * removed.
1115 *
18004c5d 1116 * Must hold slab_mutex.
8f9f8d9e 1117 */
6a67368c 1118static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1119{
1120 struct kmem_cache *cachep;
1121 int ret = 0;
1122
18004c5d 1123 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1124 struct kmem_cache_node *n;
8f9f8d9e 1125
18bf8541 1126 n = get_node(cachep, node);
ce8eb6c4 1127 if (!n)
8f9f8d9e
DR
1128 continue;
1129
a5aa63a5 1130 drain_freelist(cachep, n, INT_MAX);
8f9f8d9e 1131
ce8eb6c4
CL
1132 if (!list_empty(&n->slabs_full) ||
1133 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1134 ret = -EBUSY;
1135 break;
1136 }
1137 }
1138 return ret;
1139}
1140
1141static int __meminit slab_memory_callback(struct notifier_block *self,
1142 unsigned long action, void *arg)
1143{
1144 struct memory_notify *mnb = arg;
1145 int ret = 0;
1146 int nid;
1147
1148 nid = mnb->status_change_nid;
1149 if (nid < 0)
1150 goto out;
1151
1152 switch (action) {
1153 case MEM_GOING_ONLINE:
18004c5d 1154 mutex_lock(&slab_mutex);
6a67368c 1155 ret = init_cache_node_node(nid);
18004c5d 1156 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1157 break;
1158 case MEM_GOING_OFFLINE:
18004c5d 1159 mutex_lock(&slab_mutex);
6a67368c 1160 ret = drain_cache_node_node(nid);
18004c5d 1161 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1162 break;
1163 case MEM_ONLINE:
1164 case MEM_OFFLINE:
1165 case MEM_CANCEL_ONLINE:
1166 case MEM_CANCEL_OFFLINE:
1167 break;
1168 }
1169out:
5fda1bd5 1170 return notifier_from_errno(ret);
8f9f8d9e
DR
1171}
1172#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1173
e498be7d 1174/*
ce8eb6c4 1175 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1176 */
6744f087 1177static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1178 int nodeid)
e498be7d 1179{
6744f087 1180 struct kmem_cache_node *ptr;
e498be7d 1181
6744f087 1182 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1183 BUG_ON(!ptr);
1184
6744f087 1185 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1186 /*
1187 * Do not assume that spinlocks can be initialized via memcpy:
1188 */
1189 spin_lock_init(&ptr->list_lock);
1190
e498be7d 1191 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1192 cachep->node[nodeid] = ptr;
e498be7d
CL
1193}
1194
556a169d 1195/*
ce8eb6c4
CL
1196 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1197 * size of kmem_cache_node.
556a169d 1198 */
ce8eb6c4 1199static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1200{
1201 int node;
1202
1203 for_each_online_node(node) {
ce8eb6c4 1204 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1205 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1206 REAPTIMEOUT_NODE +
1207 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1208 }
1209}
1210
a737b3e2
AM
1211/*
1212 * Initialisation. Called after the page allocator have been initialised and
1213 * before smp_init().
1da177e4
LT
1214 */
1215void __init kmem_cache_init(void)
1216{
e498be7d
CL
1217 int i;
1218
68126702
JK
1219 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1220 sizeof(struct rcu_head));
9b030cb8
CL
1221 kmem_cache = &kmem_cache_boot;
1222
8888177e 1223 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
62918a03
SS
1224 use_alien_caches = 0;
1225
3c583465 1226 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1227 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1228
1da177e4
LT
1229 /*
1230 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1231 * page orders on machines with more than 32MB of memory if
1232 * not overridden on the command line.
1da177e4 1233 */
3df1cccd 1234 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1235 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1236
1da177e4
LT
1237 /* Bootstrap is tricky, because several objects are allocated
1238 * from caches that do not exist yet:
9b030cb8
CL
1239 * 1) initialize the kmem_cache cache: it contains the struct
1240 * kmem_cache structures of all caches, except kmem_cache itself:
1241 * kmem_cache is statically allocated.
e498be7d 1242 * Initially an __init data area is used for the head array and the
ce8eb6c4 1243 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1244 * array at the end of the bootstrap.
1da177e4 1245 * 2) Create the first kmalloc cache.
343e0d7a 1246 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1247 * An __init data area is used for the head array.
1248 * 3) Create the remaining kmalloc caches, with minimally sized
1249 * head arrays.
9b030cb8 1250 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1251 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1252 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1253 * the other cache's with kmalloc allocated memory.
1254 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1255 */
1256
9b030cb8 1257 /* 1) create the kmem_cache */
1da177e4 1258
8da3430d 1259 /*
b56efcf0 1260 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1261 */
2f9baa9f 1262 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1263 offsetof(struct kmem_cache, node) +
6744f087 1264 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1265 SLAB_HWCACHE_ALIGN);
1266 list_add(&kmem_cache->list, &slab_caches);
bf0dea23 1267 slab_state = PARTIAL;
1da177e4 1268
a737b3e2 1269 /*
bf0dea23
JK
1270 * Initialize the caches that provide memory for the kmem_cache_node
1271 * structures first. Without this, further allocations will bug.
e498be7d 1272 */
bf0dea23 1273 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
ce8eb6c4 1274 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
bf0dea23 1275 slab_state = PARTIAL_NODE;
34cc6990 1276 setup_kmalloc_cache_index_table();
e498be7d 1277
e0a42726
IM
1278 slab_early_init = 0;
1279
ce8eb6c4 1280 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1281 {
1ca4cb24
PE
1282 int nid;
1283
9c09a95c 1284 for_each_online_node(nid) {
ce8eb6c4 1285 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1286
bf0dea23 1287 init_list(kmalloc_caches[INDEX_NODE],
ce8eb6c4 1288 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1289 }
1290 }
1da177e4 1291
f97d5f63 1292 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1293}
1294
1295void __init kmem_cache_init_late(void)
1296{
1297 struct kmem_cache *cachep;
1298
97d06609 1299 slab_state = UP;
52cef189 1300
8429db5c 1301 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1302 mutex_lock(&slab_mutex);
1303 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1304 if (enable_cpucache(cachep, GFP_NOWAIT))
1305 BUG();
18004c5d 1306 mutex_unlock(&slab_mutex);
056c6241 1307
97d06609
CL
1308 /* Done! */
1309 slab_state = FULL;
1310
a737b3e2
AM
1311 /*
1312 * Register a cpu startup notifier callback that initializes
1313 * cpu_cache_get for all new cpus
1da177e4
LT
1314 */
1315 register_cpu_notifier(&cpucache_notifier);
1da177e4 1316
8f9f8d9e
DR
1317#ifdef CONFIG_NUMA
1318 /*
1319 * Register a memory hotplug callback that initializes and frees
6a67368c 1320 * node.
8f9f8d9e
DR
1321 */
1322 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1323#endif
1324
a737b3e2
AM
1325 /*
1326 * The reap timers are started later, with a module init call: That part
1327 * of the kernel is not yet operational.
1da177e4
LT
1328 */
1329}
1330
1331static int __init cpucache_init(void)
1332{
1333 int cpu;
1334
a737b3e2
AM
1335 /*
1336 * Register the timers that return unneeded pages to the page allocator
1da177e4 1337 */
e498be7d 1338 for_each_online_cpu(cpu)
a737b3e2 1339 start_cpu_timer(cpu);
a164f896
GC
1340
1341 /* Done! */
97d06609 1342 slab_state = FULL;
1da177e4
LT
1343 return 0;
1344}
1da177e4
LT
1345__initcall(cpucache_init);
1346
8bdec192
RA
1347static noinline void
1348slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1349{
9a02d699 1350#if DEBUG
ce8eb6c4 1351 struct kmem_cache_node *n;
8456a648 1352 struct page *page;
8bdec192
RA
1353 unsigned long flags;
1354 int node;
9a02d699
DR
1355 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1356 DEFAULT_RATELIMIT_BURST);
1357
1358 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1359 return;
8bdec192 1360
5b3810e5
VB
1361 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1362 nodeid, gfpflags, &gfpflags);
1363 pr_warn(" cache: %s, object size: %d, order: %d\n",
3b0efdfa 1364 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1365
18bf8541 1366 for_each_kmem_cache_node(cachep, node, n) {
8bdec192
RA
1367 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1368 unsigned long active_slabs = 0, num_slabs = 0;
1369
ce8eb6c4 1370 spin_lock_irqsave(&n->list_lock, flags);
8456a648 1371 list_for_each_entry(page, &n->slabs_full, lru) {
8bdec192
RA
1372 active_objs += cachep->num;
1373 active_slabs++;
1374 }
8456a648
JK
1375 list_for_each_entry(page, &n->slabs_partial, lru) {
1376 active_objs += page->active;
8bdec192
RA
1377 active_slabs++;
1378 }
8456a648 1379 list_for_each_entry(page, &n->slabs_free, lru)
8bdec192
RA
1380 num_slabs++;
1381
ce8eb6c4
CL
1382 free_objects += n->free_objects;
1383 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192
RA
1384
1385 num_slabs += active_slabs;
1386 num_objs = num_slabs * cachep->num;
5b3810e5 1387 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
8bdec192
RA
1388 node, active_slabs, num_slabs, active_objs, num_objs,
1389 free_objects);
1390 }
9a02d699 1391#endif
8bdec192
RA
1392}
1393
1da177e4 1394/*
8a7d9b43
WSH
1395 * Interface to system's page allocator. No need to hold the
1396 * kmem_cache_node ->list_lock.
1da177e4
LT
1397 *
1398 * If we requested dmaable memory, we will get it. Even if we
1399 * did not request dmaable memory, we might get it, but that
1400 * would be relatively rare and ignorable.
1401 */
0c3aa83e
JK
1402static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1403 int nodeid)
1da177e4
LT
1404{
1405 struct page *page;
e1b6aa6f 1406 int nr_pages;
765c4507 1407
a618e89f 1408 flags |= cachep->allocflags;
e12ba74d
MG
1409 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1410 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1411
96db800f 1412 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192 1413 if (!page) {
9a02d699 1414 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1415 return NULL;
8bdec192 1416 }
1da177e4 1417
f3ccb2c4
VD
1418 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1419 __free_pages(page, cachep->gfporder);
1420 return NULL;
1421 }
1422
e1b6aa6f 1423 nr_pages = (1 << cachep->gfporder);
1da177e4 1424 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1425 add_zone_page_state(page_zone(page),
1426 NR_SLAB_RECLAIMABLE, nr_pages);
1427 else
1428 add_zone_page_state(page_zone(page),
1429 NR_SLAB_UNRECLAIMABLE, nr_pages);
f68f8ddd 1430
a57a4988 1431 __SetPageSlab(page);
f68f8ddd
JK
1432 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1433 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
a57a4988 1434 SetPageSlabPfmemalloc(page);
072bb0aa 1435
b1eeab67
VN
1436 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1437 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1438
1439 if (cachep->ctor)
1440 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1441 else
1442 kmemcheck_mark_unallocated_pages(page, nr_pages);
1443 }
c175eea4 1444
0c3aa83e 1445 return page;
1da177e4
LT
1446}
1447
1448/*
1449 * Interface to system's page release.
1450 */
0c3aa83e 1451static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1452{
27ee57c9
VD
1453 int order = cachep->gfporder;
1454 unsigned long nr_freed = (1 << order);
1da177e4 1455
27ee57c9 1456 kmemcheck_free_shadow(page, order);
c175eea4 1457
972d1a7b
CL
1458 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1459 sub_zone_page_state(page_zone(page),
1460 NR_SLAB_RECLAIMABLE, nr_freed);
1461 else
1462 sub_zone_page_state(page_zone(page),
1463 NR_SLAB_UNRECLAIMABLE, nr_freed);
73293c2f 1464
a57a4988 1465 BUG_ON(!PageSlab(page));
73293c2f 1466 __ClearPageSlabPfmemalloc(page);
a57a4988 1467 __ClearPageSlab(page);
8456a648
JK
1468 page_mapcount_reset(page);
1469 page->mapping = NULL;
1f458cbf 1470
1da177e4
LT
1471 if (current->reclaim_state)
1472 current->reclaim_state->reclaimed_slab += nr_freed;
27ee57c9
VD
1473 memcg_uncharge_slab(page, order, cachep);
1474 __free_pages(page, order);
1da177e4
LT
1475}
1476
1477static void kmem_rcu_free(struct rcu_head *head)
1478{
68126702
JK
1479 struct kmem_cache *cachep;
1480 struct page *page;
1da177e4 1481
68126702
JK
1482 page = container_of(head, struct page, rcu_head);
1483 cachep = page->slab_cache;
1484
1485 kmem_freepages(cachep, page);
1da177e4
LT
1486}
1487
1488#if DEBUG
40b44137
JK
1489static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1490{
1491 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1492 (cachep->size % PAGE_SIZE) == 0)
1493 return true;
1494
1495 return false;
1496}
1da177e4
LT
1497
1498#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1499static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1500 unsigned long caller)
1da177e4 1501{
8c138bc0 1502 int size = cachep->object_size;
1da177e4 1503
3dafccf2 1504 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1505
b28a02de 1506 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1507 return;
1508
b28a02de
PE
1509 *addr++ = 0x12345678;
1510 *addr++ = caller;
1511 *addr++ = smp_processor_id();
1512 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1513 {
1514 unsigned long *sptr = &caller;
1515 unsigned long svalue;
1516
1517 while (!kstack_end(sptr)) {
1518 svalue = *sptr++;
1519 if (kernel_text_address(svalue)) {
b28a02de 1520 *addr++ = svalue;
1da177e4
LT
1521 size -= sizeof(unsigned long);
1522 if (size <= sizeof(unsigned long))
1523 break;
1524 }
1525 }
1526
1527 }
b28a02de 1528 *addr++ = 0x87654321;
1da177e4 1529}
40b44137
JK
1530
1531static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1532 int map, unsigned long caller)
1533{
1534 if (!is_debug_pagealloc_cache(cachep))
1535 return;
1536
1537 if (caller)
1538 store_stackinfo(cachep, objp, caller);
1539
1540 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1541}
1542
1543#else
1544static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1545 int map, unsigned long caller) {}
1546
1da177e4
LT
1547#endif
1548
343e0d7a 1549static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1550{
8c138bc0 1551 int size = cachep->object_size;
3dafccf2 1552 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1553
1554 memset(addr, val, size);
b28a02de 1555 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1556}
1557
1558static void dump_line(char *data, int offset, int limit)
1559{
1560 int i;
aa83aa40
DJ
1561 unsigned char error = 0;
1562 int bad_count = 0;
1563
1170532b 1564 pr_err("%03x: ", offset);
aa83aa40
DJ
1565 for (i = 0; i < limit; i++) {
1566 if (data[offset + i] != POISON_FREE) {
1567 error = data[offset + i];
1568 bad_count++;
1569 }
aa83aa40 1570 }
fdde6abb
SAS
1571 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1572 &data[offset], limit, 1);
aa83aa40
DJ
1573
1574 if (bad_count == 1) {
1575 error ^= POISON_FREE;
1576 if (!(error & (error - 1))) {
1170532b 1577 pr_err("Single bit error detected. Probably bad RAM.\n");
aa83aa40 1578#ifdef CONFIG_X86
1170532b 1579 pr_err("Run memtest86+ or a similar memory test tool.\n");
aa83aa40 1580#else
1170532b 1581 pr_err("Run a memory test tool.\n");
aa83aa40
DJ
1582#endif
1583 }
1584 }
1da177e4
LT
1585}
1586#endif
1587
1588#if DEBUG
1589
343e0d7a 1590static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1591{
1592 int i, size;
1593 char *realobj;
1594
1595 if (cachep->flags & SLAB_RED_ZONE) {
1170532b
JP
1596 pr_err("Redzone: 0x%llx/0x%llx\n",
1597 *dbg_redzone1(cachep, objp),
1598 *dbg_redzone2(cachep, objp));
1da177e4
LT
1599 }
1600
1601 if (cachep->flags & SLAB_STORE_USER) {
1170532b 1602 pr_err("Last user: [<%p>](%pSR)\n",
071361d3
JP
1603 *dbg_userword(cachep, objp),
1604 *dbg_userword(cachep, objp));
1da177e4 1605 }
3dafccf2 1606 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1607 size = cachep->object_size;
b28a02de 1608 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1609 int limit;
1610 limit = 16;
b28a02de
PE
1611 if (i + limit > size)
1612 limit = size - i;
1da177e4
LT
1613 dump_line(realobj, i, limit);
1614 }
1615}
1616
343e0d7a 1617static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1618{
1619 char *realobj;
1620 int size, i;
1621 int lines = 0;
1622
40b44137
JK
1623 if (is_debug_pagealloc_cache(cachep))
1624 return;
1625
3dafccf2 1626 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1627 size = cachep->object_size;
1da177e4 1628
b28a02de 1629 for (i = 0; i < size; i++) {
1da177e4 1630 char exp = POISON_FREE;
b28a02de 1631 if (i == size - 1)
1da177e4
LT
1632 exp = POISON_END;
1633 if (realobj[i] != exp) {
1634 int limit;
1635 /* Mismatch ! */
1636 /* Print header */
1637 if (lines == 0) {
1170532b
JP
1638 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1639 print_tainted(), cachep->name,
1640 realobj, size);
1da177e4
LT
1641 print_objinfo(cachep, objp, 0);
1642 }
1643 /* Hexdump the affected line */
b28a02de 1644 i = (i / 16) * 16;
1da177e4 1645 limit = 16;
b28a02de
PE
1646 if (i + limit > size)
1647 limit = size - i;
1da177e4
LT
1648 dump_line(realobj, i, limit);
1649 i += 16;
1650 lines++;
1651 /* Limit to 5 lines */
1652 if (lines > 5)
1653 break;
1654 }
1655 }
1656 if (lines != 0) {
1657 /* Print some data about the neighboring objects, if they
1658 * exist:
1659 */
8456a648 1660 struct page *page = virt_to_head_page(objp);
8fea4e96 1661 unsigned int objnr;
1da177e4 1662
8456a648 1663 objnr = obj_to_index(cachep, page, objp);
1da177e4 1664 if (objnr) {
8456a648 1665 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1666 realobj = (char *)objp + obj_offset(cachep);
1170532b 1667 pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1da177e4
LT
1668 print_objinfo(cachep, objp, 2);
1669 }
b28a02de 1670 if (objnr + 1 < cachep->num) {
8456a648 1671 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1672 realobj = (char *)objp + obj_offset(cachep);
1170532b 1673 pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1da177e4
LT
1674 print_objinfo(cachep, objp, 2);
1675 }
1676 }
1677}
1678#endif
1679
12dd36fa 1680#if DEBUG
8456a648
JK
1681static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1682 struct page *page)
1da177e4 1683{
1da177e4 1684 int i;
b03a017b
JK
1685
1686 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1687 poison_obj(cachep, page->freelist - obj_offset(cachep),
1688 POISON_FREE);
1689 }
1690
1da177e4 1691 for (i = 0; i < cachep->num; i++) {
8456a648 1692 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1693
1694 if (cachep->flags & SLAB_POISON) {
1da177e4 1695 check_poison_obj(cachep, objp);
40b44137 1696 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
1697 }
1698 if (cachep->flags & SLAB_RED_ZONE) {
1699 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 1700 slab_error(cachep, "start of a freed object was overwritten");
1da177e4 1701 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 1702 slab_error(cachep, "end of a freed object was overwritten");
1da177e4 1703 }
1da177e4 1704 }
12dd36fa 1705}
1da177e4 1706#else
8456a648
JK
1707static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1708 struct page *page)
12dd36fa 1709{
12dd36fa 1710}
1da177e4
LT
1711#endif
1712
911851e6
RD
1713/**
1714 * slab_destroy - destroy and release all objects in a slab
1715 * @cachep: cache pointer being destroyed
cb8ee1a3 1716 * @page: page pointer being destroyed
911851e6 1717 *
8a7d9b43
WSH
1718 * Destroy all the objs in a slab page, and release the mem back to the system.
1719 * Before calling the slab page must have been unlinked from the cache. The
1720 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1721 */
8456a648 1722static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1723{
7e007355 1724 void *freelist;
12dd36fa 1725
8456a648
JK
1726 freelist = page->freelist;
1727 slab_destroy_debugcheck(cachep, page);
bc4f610d
KS
1728 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1729 call_rcu(&page->rcu_head, kmem_rcu_free);
1730 else
0c3aa83e 1731 kmem_freepages(cachep, page);
68126702
JK
1732
1733 /*
8456a648 1734 * From now on, we don't use freelist
68126702
JK
1735 * although actual page can be freed in rcu context
1736 */
1737 if (OFF_SLAB(cachep))
8456a648 1738 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1739}
1740
97654dfa
JK
1741static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1742{
1743 struct page *page, *n;
1744
1745 list_for_each_entry_safe(page, n, list, lru) {
1746 list_del(&page->lru);
1747 slab_destroy(cachep, page);
1748 }
1749}
1750
4d268eba 1751/**
a70773dd
RD
1752 * calculate_slab_order - calculate size (page order) of slabs
1753 * @cachep: pointer to the cache that is being created
1754 * @size: size of objects to be created in this cache.
a70773dd
RD
1755 * @flags: slab allocation flags
1756 *
1757 * Also calculates the number of objects per slab.
4d268eba
PE
1758 *
1759 * This could be made much more intelligent. For now, try to avoid using
1760 * high order pages for slabs. When the gfp() functions are more friendly
1761 * towards high-order requests, this should be changed.
1762 */
a737b3e2 1763static size_t calculate_slab_order(struct kmem_cache *cachep,
2e6b3602 1764 size_t size, unsigned long flags)
4d268eba
PE
1765{
1766 size_t left_over = 0;
9888e6fa 1767 int gfporder;
4d268eba 1768
0aa817f0 1769 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1770 unsigned int num;
1771 size_t remainder;
1772
70f75067 1773 num = cache_estimate(gfporder, size, flags, &remainder);
4d268eba
PE
1774 if (!num)
1775 continue;
9888e6fa 1776
f315e3fa
JK
1777 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1778 if (num > SLAB_OBJ_MAX_NUM)
1779 break;
1780
b1ab41c4 1781 if (flags & CFLGS_OFF_SLAB) {
3217fd9b
JK
1782 struct kmem_cache *freelist_cache;
1783 size_t freelist_size;
1784
1785 freelist_size = num * sizeof(freelist_idx_t);
1786 freelist_cache = kmalloc_slab(freelist_size, 0u);
1787 if (!freelist_cache)
1788 continue;
1789
b1ab41c4 1790 /*
3217fd9b
JK
1791 * Needed to avoid possible looping condition
1792 * in cache_grow()
b1ab41c4 1793 */
3217fd9b
JK
1794 if (OFF_SLAB(freelist_cache))
1795 continue;
b1ab41c4 1796
3217fd9b
JK
1797 /* check if off slab has enough benefit */
1798 if (freelist_cache->size > cachep->size / 2)
1799 continue;
b1ab41c4 1800 }
4d268eba 1801
9888e6fa 1802 /* Found something acceptable - save it away */
4d268eba 1803 cachep->num = num;
9888e6fa 1804 cachep->gfporder = gfporder;
4d268eba
PE
1805 left_over = remainder;
1806
f78bb8ad
LT
1807 /*
1808 * A VFS-reclaimable slab tends to have most allocations
1809 * as GFP_NOFS and we really don't want to have to be allocating
1810 * higher-order pages when we are unable to shrink dcache.
1811 */
1812 if (flags & SLAB_RECLAIM_ACCOUNT)
1813 break;
1814
4d268eba
PE
1815 /*
1816 * Large number of objects is good, but very large slabs are
1817 * currently bad for the gfp()s.
1818 */
543585cc 1819 if (gfporder >= slab_max_order)
4d268eba
PE
1820 break;
1821
9888e6fa
LT
1822 /*
1823 * Acceptable internal fragmentation?
1824 */
a737b3e2 1825 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1826 break;
1827 }
1828 return left_over;
1829}
1830
bf0dea23
JK
1831static struct array_cache __percpu *alloc_kmem_cache_cpus(
1832 struct kmem_cache *cachep, int entries, int batchcount)
1833{
1834 int cpu;
1835 size_t size;
1836 struct array_cache __percpu *cpu_cache;
1837
1838 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 1839 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
1840
1841 if (!cpu_cache)
1842 return NULL;
1843
1844 for_each_possible_cpu(cpu) {
1845 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1846 entries, batchcount);
1847 }
1848
1849 return cpu_cache;
1850}
1851
83b519e8 1852static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 1853{
97d06609 1854 if (slab_state >= FULL)
83b519e8 1855 return enable_cpucache(cachep, gfp);
2ed3a4ef 1856
bf0dea23
JK
1857 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1858 if (!cachep->cpu_cache)
1859 return 1;
1860
97d06609 1861 if (slab_state == DOWN) {
bf0dea23
JK
1862 /* Creation of first cache (kmem_cache). */
1863 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 1864 } else if (slab_state == PARTIAL) {
bf0dea23
JK
1865 /* For kmem_cache_node */
1866 set_up_node(cachep, SIZE_NODE);
f30cf7d1 1867 } else {
bf0dea23 1868 int node;
f30cf7d1 1869
bf0dea23
JK
1870 for_each_online_node(node) {
1871 cachep->node[node] = kmalloc_node(
1872 sizeof(struct kmem_cache_node), gfp, node);
1873 BUG_ON(!cachep->node[node]);
1874 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
1875 }
1876 }
bf0dea23 1877
6a67368c 1878 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
1879 jiffies + REAPTIMEOUT_NODE +
1880 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
1881
1882 cpu_cache_get(cachep)->avail = 0;
1883 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1884 cpu_cache_get(cachep)->batchcount = 1;
1885 cpu_cache_get(cachep)->touched = 0;
1886 cachep->batchcount = 1;
1887 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 1888 return 0;
f30cf7d1
PE
1889}
1890
12220dea
JK
1891unsigned long kmem_cache_flags(unsigned long object_size,
1892 unsigned long flags, const char *name,
1893 void (*ctor)(void *))
1894{
1895 return flags;
1896}
1897
1898struct kmem_cache *
1899__kmem_cache_alias(const char *name, size_t size, size_t align,
1900 unsigned long flags, void (*ctor)(void *))
1901{
1902 struct kmem_cache *cachep;
1903
1904 cachep = find_mergeable(size, align, flags, name, ctor);
1905 if (cachep) {
1906 cachep->refcount++;
1907
1908 /*
1909 * Adjust the object sizes so that we clear
1910 * the complete object on kzalloc.
1911 */
1912 cachep->object_size = max_t(int, cachep->object_size, size);
1913 }
1914 return cachep;
1915}
1916
b03a017b
JK
1917static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1918 size_t size, unsigned long flags)
1919{
1920 size_t left;
1921
1922 cachep->num = 0;
1923
1924 if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1925 return false;
1926
1927 left = calculate_slab_order(cachep, size,
1928 flags | CFLGS_OBJFREELIST_SLAB);
1929 if (!cachep->num)
1930 return false;
1931
1932 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1933 return false;
1934
1935 cachep->colour = left / cachep->colour_off;
1936
1937 return true;
1938}
1939
158e319b
JK
1940static bool set_off_slab_cache(struct kmem_cache *cachep,
1941 size_t size, unsigned long flags)
1942{
1943 size_t left;
1944
1945 cachep->num = 0;
1946
1947 /*
3217fd9b
JK
1948 * Always use on-slab management when SLAB_NOLEAKTRACE
1949 * to avoid recursive calls into kmemleak.
158e319b 1950 */
158e319b
JK
1951 if (flags & SLAB_NOLEAKTRACE)
1952 return false;
1953
1954 /*
1955 * Size is large, assume best to place the slab management obj
1956 * off-slab (should allow better packing of objs).
1957 */
1958 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1959 if (!cachep->num)
1960 return false;
1961
1962 /*
1963 * If the slab has been placed off-slab, and we have enough space then
1964 * move it on-slab. This is at the expense of any extra colouring.
1965 */
1966 if (left >= cachep->num * sizeof(freelist_idx_t))
1967 return false;
1968
1969 cachep->colour = left / cachep->colour_off;
1970
1971 return true;
1972}
1973
1974static bool set_on_slab_cache(struct kmem_cache *cachep,
1975 size_t size, unsigned long flags)
1976{
1977 size_t left;
1978
1979 cachep->num = 0;
1980
1981 left = calculate_slab_order(cachep, size, flags);
1982 if (!cachep->num)
1983 return false;
1984
1985 cachep->colour = left / cachep->colour_off;
1986
1987 return true;
1988}
1989
1da177e4 1990/**
039363f3 1991 * __kmem_cache_create - Create a cache.
a755b76a 1992 * @cachep: cache management descriptor
1da177e4 1993 * @flags: SLAB flags
1da177e4
LT
1994 *
1995 * Returns a ptr to the cache on success, NULL on failure.
1996 * Cannot be called within a int, but can be interrupted.
20c2df83 1997 * The @ctor is run when new pages are allocated by the cache.
1da177e4 1998 *
1da177e4
LT
1999 * The flags are
2000 *
2001 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2002 * to catch references to uninitialised memory.
2003 *
2004 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2005 * for buffer overruns.
2006 *
1da177e4
LT
2007 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2008 * cacheline. This can be beneficial if you're counting cycles as closely
2009 * as davem.
2010 */
278b1bb1 2011int
8a13a4cc 2012__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4 2013{
d4a5fca5 2014 size_t ralign = BYTES_PER_WORD;
83b519e8 2015 gfp_t gfp;
278b1bb1 2016 int err;
8a13a4cc 2017 size_t size = cachep->size;
1da177e4 2018
1da177e4 2019#if DEBUG
1da177e4
LT
2020#if FORCED_DEBUG
2021 /*
2022 * Enable redzoning and last user accounting, except for caches with
2023 * large objects, if the increased size would increase the object size
2024 * above the next power of two: caches with object sizes just above a
2025 * power of two have a significant amount of internal fragmentation.
2026 */
87a927c7
DW
2027 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2028 2 * sizeof(unsigned long long)))
b28a02de 2029 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2030 if (!(flags & SLAB_DESTROY_BY_RCU))
2031 flags |= SLAB_POISON;
2032#endif
1da177e4 2033#endif
1da177e4 2034
a737b3e2
AM
2035 /*
2036 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2037 * unaligned accesses for some archs when redzoning is used, and makes
2038 * sure any on-slab bufctl's are also correctly aligned.
2039 */
b28a02de
PE
2040 if (size & (BYTES_PER_WORD - 1)) {
2041 size += (BYTES_PER_WORD - 1);
2042 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2043 }
2044
87a927c7
DW
2045 if (flags & SLAB_RED_ZONE) {
2046 ralign = REDZONE_ALIGN;
2047 /* If redzoning, ensure that the second redzone is suitably
2048 * aligned, by adjusting the object size accordingly. */
2049 size += REDZONE_ALIGN - 1;
2050 size &= ~(REDZONE_ALIGN - 1);
2051 }
ca5f9703 2052
a44b56d3 2053 /* 3) caller mandated alignment */
8a13a4cc
CL
2054 if (ralign < cachep->align) {
2055 ralign = cachep->align;
1da177e4 2056 }
3ff84a7f
PE
2057 /* disable debug if necessary */
2058 if (ralign > __alignof__(unsigned long long))
a44b56d3 2059 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2060 /*
ca5f9703 2061 * 4) Store it.
1da177e4 2062 */
8a13a4cc 2063 cachep->align = ralign;
158e319b
JK
2064 cachep->colour_off = cache_line_size();
2065 /* Offset must be a multiple of the alignment. */
2066 if (cachep->colour_off < cachep->align)
2067 cachep->colour_off = cachep->align;
1da177e4 2068
83b519e8
PE
2069 if (slab_is_available())
2070 gfp = GFP_KERNEL;
2071 else
2072 gfp = GFP_NOWAIT;
2073
1da177e4 2074#if DEBUG
1da177e4 2075
ca5f9703
PE
2076 /*
2077 * Both debugging options require word-alignment which is calculated
2078 * into align above.
2079 */
1da177e4 2080 if (flags & SLAB_RED_ZONE) {
1da177e4 2081 /* add space for red zone words */
3ff84a7f
PE
2082 cachep->obj_offset += sizeof(unsigned long long);
2083 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2084 }
2085 if (flags & SLAB_STORE_USER) {
ca5f9703 2086 /* user store requires one word storage behind the end of
87a927c7
DW
2087 * the real object. But if the second red zone needs to be
2088 * aligned to 64 bits, we must allow that much space.
1da177e4 2089 */
87a927c7
DW
2090 if (flags & SLAB_RED_ZONE)
2091 size += REDZONE_ALIGN;
2092 else
2093 size += BYTES_PER_WORD;
1da177e4 2094 }
832a15d2
JK
2095#endif
2096
7ed2f9e6
AP
2097 kasan_cache_create(cachep, &size, &flags);
2098
832a15d2
JK
2099 size = ALIGN(size, cachep->align);
2100 /*
2101 * We should restrict the number of objects in a slab to implement
2102 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2103 */
2104 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2105 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2106
2107#if DEBUG
03a2d2a3
JK
2108 /*
2109 * To activate debug pagealloc, off-slab management is necessary
2110 * requirement. In early phase of initialization, small sized slab
2111 * doesn't get initialized so it would not be possible. So, we need
2112 * to check size >= 256. It guarantees that all necessary small
2113 * sized slab is initialized in current slab initialization sequence.
2114 */
40323278 2115 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
f3a3c320
JK
2116 size >= 256 && cachep->object_size > cache_line_size()) {
2117 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2118 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2119
2120 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2121 flags |= CFLGS_OFF_SLAB;
2122 cachep->obj_offset += tmp_size - size;
2123 size = tmp_size;
2124 goto done;
2125 }
2126 }
1da177e4 2127 }
1da177e4
LT
2128#endif
2129
b03a017b
JK
2130 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2131 flags |= CFLGS_OBJFREELIST_SLAB;
2132 goto done;
2133 }
2134
158e319b 2135 if (set_off_slab_cache(cachep, size, flags)) {
1da177e4 2136 flags |= CFLGS_OFF_SLAB;
158e319b 2137 goto done;
832a15d2 2138 }
1da177e4 2139
158e319b
JK
2140 if (set_on_slab_cache(cachep, size, flags))
2141 goto done;
1da177e4 2142
158e319b 2143 return -E2BIG;
1da177e4 2144
158e319b
JK
2145done:
2146 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
1da177e4 2147 cachep->flags = flags;
a57a4988 2148 cachep->allocflags = __GFP_COMP;
4b51d669 2149 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2150 cachep->allocflags |= GFP_DMA;
3b0efdfa 2151 cachep->size = size;
6a2d7a95 2152 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2153
40b44137
JK
2154#if DEBUG
2155 /*
2156 * If we're going to use the generic kernel_map_pages()
2157 * poisoning, then it's going to smash the contents of
2158 * the redzone and userword anyhow, so switch them off.
2159 */
2160 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2161 (cachep->flags & SLAB_POISON) &&
2162 is_debug_pagealloc_cache(cachep))
2163 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2164#endif
2165
2166 if (OFF_SLAB(cachep)) {
158e319b
JK
2167 cachep->freelist_cache =
2168 kmalloc_slab(cachep->freelist_size, 0u);
e5ac9c5a 2169 }
1da177e4 2170
278b1bb1
CL
2171 err = setup_cpu_cache(cachep, gfp);
2172 if (err) {
52b4b950 2173 __kmem_cache_release(cachep);
278b1bb1 2174 return err;
2ed3a4ef 2175 }
1da177e4 2176
278b1bb1 2177 return 0;
1da177e4 2178}
1da177e4
LT
2179
2180#if DEBUG
2181static void check_irq_off(void)
2182{
2183 BUG_ON(!irqs_disabled());
2184}
2185
2186static void check_irq_on(void)
2187{
2188 BUG_ON(irqs_disabled());
2189}
2190
18726ca8
JK
2191static void check_mutex_acquired(void)
2192{
2193 BUG_ON(!mutex_is_locked(&slab_mutex));
2194}
2195
343e0d7a 2196static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2197{
2198#ifdef CONFIG_SMP
2199 check_irq_off();
18bf8541 2200 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2201#endif
2202}
e498be7d 2203
343e0d7a 2204static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2205{
2206#ifdef CONFIG_SMP
2207 check_irq_off();
18bf8541 2208 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2209#endif
2210}
2211
1da177e4
LT
2212#else
2213#define check_irq_off() do { } while(0)
2214#define check_irq_on() do { } while(0)
18726ca8 2215#define check_mutex_acquired() do { } while(0)
1da177e4 2216#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2217#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2218#endif
2219
18726ca8
JK
2220static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2221 int node, bool free_all, struct list_head *list)
2222{
2223 int tofree;
2224
2225 if (!ac || !ac->avail)
2226 return;
2227
2228 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2229 if (tofree > ac->avail)
2230 tofree = (ac->avail + 1) / 2;
2231
2232 free_block(cachep, ac->entry, tofree, node, list);
2233 ac->avail -= tofree;
2234 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2235}
aab2207c 2236
1da177e4
LT
2237static void do_drain(void *arg)
2238{
a737b3e2 2239 struct kmem_cache *cachep = arg;
1da177e4 2240 struct array_cache *ac;
7d6e6d09 2241 int node = numa_mem_id();
18bf8541 2242 struct kmem_cache_node *n;
97654dfa 2243 LIST_HEAD(list);
1da177e4
LT
2244
2245 check_irq_off();
9a2dba4b 2246 ac = cpu_cache_get(cachep);
18bf8541
CL
2247 n = get_node(cachep, node);
2248 spin_lock(&n->list_lock);
97654dfa 2249 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2250 spin_unlock(&n->list_lock);
97654dfa 2251 slabs_destroy(cachep, &list);
1da177e4
LT
2252 ac->avail = 0;
2253}
2254
343e0d7a 2255static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2256{
ce8eb6c4 2257 struct kmem_cache_node *n;
e498be7d 2258 int node;
18726ca8 2259 LIST_HEAD(list);
e498be7d 2260
15c8b6c1 2261 on_each_cpu(do_drain, cachep, 1);
1da177e4 2262 check_irq_on();
18bf8541
CL
2263 for_each_kmem_cache_node(cachep, node, n)
2264 if (n->alien)
ce8eb6c4 2265 drain_alien_cache(cachep, n->alien);
a4523a8b 2266
18726ca8
JK
2267 for_each_kmem_cache_node(cachep, node, n) {
2268 spin_lock_irq(&n->list_lock);
2269 drain_array_locked(cachep, n->shared, node, true, &list);
2270 spin_unlock_irq(&n->list_lock);
2271
2272 slabs_destroy(cachep, &list);
2273 }
1da177e4
LT
2274}
2275
ed11d9eb
CL
2276/*
2277 * Remove slabs from the list of free slabs.
2278 * Specify the number of slabs to drain in tofree.
2279 *
2280 * Returns the actual number of slabs released.
2281 */
2282static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2283 struct kmem_cache_node *n, int tofree)
1da177e4 2284{
ed11d9eb
CL
2285 struct list_head *p;
2286 int nr_freed;
8456a648 2287 struct page *page;
1da177e4 2288
ed11d9eb 2289 nr_freed = 0;
ce8eb6c4 2290 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2291
ce8eb6c4
CL
2292 spin_lock_irq(&n->list_lock);
2293 p = n->slabs_free.prev;
2294 if (p == &n->slabs_free) {
2295 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2296 goto out;
2297 }
1da177e4 2298
8456a648 2299 page = list_entry(p, struct page, lru);
8456a648 2300 list_del(&page->lru);
ed11d9eb
CL
2301 /*
2302 * Safe to drop the lock. The slab is no longer linked
2303 * to the cache.
2304 */
ce8eb6c4
CL
2305 n->free_objects -= cache->num;
2306 spin_unlock_irq(&n->list_lock);
8456a648 2307 slab_destroy(cache, page);
ed11d9eb 2308 nr_freed++;
1da177e4 2309 }
ed11d9eb
CL
2310out:
2311 return nr_freed;
1da177e4
LT
2312}
2313
d6e0b7fa 2314int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
e498be7d 2315{
18bf8541
CL
2316 int ret = 0;
2317 int node;
ce8eb6c4 2318 struct kmem_cache_node *n;
e498be7d
CL
2319
2320 drain_cpu_caches(cachep);
2321
2322 check_irq_on();
18bf8541 2323 for_each_kmem_cache_node(cachep, node, n) {
a5aa63a5 2324 drain_freelist(cachep, n, INT_MAX);
ed11d9eb 2325
ce8eb6c4
CL
2326 ret += !list_empty(&n->slabs_full) ||
2327 !list_empty(&n->slabs_partial);
e498be7d
CL
2328 }
2329 return (ret ? 1 : 0);
2330}
2331
945cf2b6 2332int __kmem_cache_shutdown(struct kmem_cache *cachep)
52b4b950
DS
2333{
2334 return __kmem_cache_shrink(cachep, false);
2335}
2336
2337void __kmem_cache_release(struct kmem_cache *cachep)
1da177e4 2338{
12c3667f 2339 int i;
ce8eb6c4 2340 struct kmem_cache_node *n;
1da177e4 2341
bf0dea23 2342 free_percpu(cachep->cpu_cache);
1da177e4 2343
ce8eb6c4 2344 /* NUMA: free the node structures */
18bf8541
CL
2345 for_each_kmem_cache_node(cachep, i, n) {
2346 kfree(n->shared);
2347 free_alien_cache(n->alien);
2348 kfree(n);
2349 cachep->node[i] = NULL;
12c3667f 2350 }
1da177e4 2351}
1da177e4 2352
e5ac9c5a
RT
2353/*
2354 * Get the memory for a slab management obj.
5f0985bb
JZ
2355 *
2356 * For a slab cache when the slab descriptor is off-slab, the
2357 * slab descriptor can't come from the same cache which is being created,
2358 * Because if it is the case, that means we defer the creation of
2359 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2360 * And we eventually call down to __kmem_cache_create(), which
2361 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2362 * This is a "chicken-and-egg" problem.
2363 *
2364 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2365 * which are all initialized during kmem_cache_init().
e5ac9c5a 2366 */
7e007355 2367static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2368 struct page *page, int colour_off,
2369 gfp_t local_flags, int nodeid)
1da177e4 2370{
7e007355 2371 void *freelist;
0c3aa83e 2372 void *addr = page_address(page);
b28a02de 2373
2e6b3602
JK
2374 page->s_mem = addr + colour_off;
2375 page->active = 0;
2376
b03a017b
JK
2377 if (OBJFREELIST_SLAB(cachep))
2378 freelist = NULL;
2379 else if (OFF_SLAB(cachep)) {
1da177e4 2380 /* Slab management obj is off-slab. */
8456a648 2381 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2382 local_flags, nodeid);
8456a648 2383 if (!freelist)
1da177e4
LT
2384 return NULL;
2385 } else {
2e6b3602
JK
2386 /* We will use last bytes at the slab for freelist */
2387 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2388 cachep->freelist_size;
1da177e4 2389 }
2e6b3602 2390
8456a648 2391 return freelist;
1da177e4
LT
2392}
2393
7cc68973 2394static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2395{
a41adfaa 2396 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2397}
2398
2399static inline void set_free_obj(struct page *page,
7cc68973 2400 unsigned int idx, freelist_idx_t val)
e5c58dfd 2401{
a41adfaa 2402 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2403}
2404
10b2e9e8 2405static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
1da177e4 2406{
10b2e9e8 2407#if DEBUG
1da177e4
LT
2408 int i;
2409
2410 for (i = 0; i < cachep->num; i++) {
8456a648 2411 void *objp = index_to_obj(cachep, page, i);
10b2e9e8 2412
1da177e4
LT
2413 if (cachep->flags & SLAB_STORE_USER)
2414 *dbg_userword(cachep, objp) = NULL;
2415
2416 if (cachep->flags & SLAB_RED_ZONE) {
2417 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2418 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2419 }
2420 /*
a737b3e2
AM
2421 * Constructors are not allowed to allocate memory from the same
2422 * cache which they are a constructor for. Otherwise, deadlock.
2423 * They must also be threaded.
1da177e4 2424 */
7ed2f9e6
AP
2425 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2426 kasan_unpoison_object_data(cachep,
2427 objp + obj_offset(cachep));
51cc5068 2428 cachep->ctor(objp + obj_offset(cachep));
7ed2f9e6
AP
2429 kasan_poison_object_data(
2430 cachep, objp + obj_offset(cachep));
2431 }
1da177e4
LT
2432
2433 if (cachep->flags & SLAB_RED_ZONE) {
2434 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 2435 slab_error(cachep, "constructor overwrote the end of an object");
1da177e4 2436 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 2437 slab_error(cachep, "constructor overwrote the start of an object");
1da177e4 2438 }
40b44137
JK
2439 /* need to poison the objs? */
2440 if (cachep->flags & SLAB_POISON) {
2441 poison_obj(cachep, objp, POISON_FREE);
2442 slab_kernel_map(cachep, objp, 0, 0);
2443 }
10b2e9e8 2444 }
1da177e4 2445#endif
10b2e9e8
JK
2446}
2447
2448static void cache_init_objs(struct kmem_cache *cachep,
2449 struct page *page)
2450{
2451 int i;
7ed2f9e6 2452 void *objp;
10b2e9e8
JK
2453
2454 cache_init_objs_debug(cachep, page);
2455
b03a017b
JK
2456 if (OBJFREELIST_SLAB(cachep)) {
2457 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2458 obj_offset(cachep);
2459 }
2460
10b2e9e8
JK
2461 for (i = 0; i < cachep->num; i++) {
2462 /* constructor could break poison info */
7ed2f9e6
AP
2463 if (DEBUG == 0 && cachep->ctor) {
2464 objp = index_to_obj(cachep, page, i);
2465 kasan_unpoison_object_data(cachep, objp);
2466 cachep->ctor(objp);
2467 kasan_poison_object_data(cachep, objp);
2468 }
10b2e9e8 2469
e5c58dfd 2470 set_free_obj(page, i, i);
1da177e4 2471 }
1da177e4
LT
2472}
2473
343e0d7a 2474static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2475{
4b51d669
CL
2476 if (CONFIG_ZONE_DMA_FLAG) {
2477 if (flags & GFP_DMA)
a618e89f 2478 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2479 else
a618e89f 2480 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2481 }
1da177e4
LT
2482}
2483
260b61dd 2484static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
78d382d7 2485{
b1cb0982 2486 void *objp;
78d382d7 2487
e5c58dfd 2488 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2489 page->active++;
78d382d7 2490
d31676df
JK
2491#if DEBUG
2492 if (cachep->flags & SLAB_STORE_USER)
2493 set_store_user_dirty(cachep);
2494#endif
2495
78d382d7
MD
2496 return objp;
2497}
2498
260b61dd
JK
2499static void slab_put_obj(struct kmem_cache *cachep,
2500 struct page *page, void *objp)
78d382d7 2501{
8456a648 2502 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2503#if DEBUG
16025177 2504 unsigned int i;
b1cb0982 2505
b1cb0982 2506 /* Verify double free bug */
8456a648 2507 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2508 if (get_free_obj(page, i) == objnr) {
1170532b 2509 pr_err("slab: double free detected in cache '%s', objp %p\n",
756a025f 2510 cachep->name, objp);
b1cb0982
JK
2511 BUG();
2512 }
78d382d7
MD
2513 }
2514#endif
8456a648 2515 page->active--;
b03a017b
JK
2516 if (!page->freelist)
2517 page->freelist = objp + obj_offset(cachep);
2518
e5c58dfd 2519 set_free_obj(page, page->active, objnr);
78d382d7
MD
2520}
2521
4776874f
PE
2522/*
2523 * Map pages beginning at addr to the given cache and slab. This is required
2524 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2525 * virtual address for kfree, ksize, and slab debugging.
4776874f 2526 */
8456a648 2527static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2528 void *freelist)
1da177e4 2529{
a57a4988 2530 page->slab_cache = cache;
8456a648 2531 page->freelist = freelist;
1da177e4
LT
2532}
2533
2534/*
2535 * Grow (by 1) the number of slabs within a cache. This is called by
2536 * kmem_cache_alloc() when there are no active objs left in a cache.
2537 */
3c517a61 2538static int cache_grow(struct kmem_cache *cachep,
0c3aa83e 2539 gfp_t flags, int nodeid, struct page *page)
1da177e4 2540{
7e007355 2541 void *freelist;
b28a02de
PE
2542 size_t offset;
2543 gfp_t local_flags;
ce8eb6c4 2544 struct kmem_cache_node *n;
1da177e4 2545
a737b3e2
AM
2546 /*
2547 * Be lazy and only check for valid flags here, keeping it out of the
2548 * critical path in kmem_cache_alloc().
1da177e4 2549 */
c871ac4e
AM
2550 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2551 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2552 BUG();
2553 }
6cb06229 2554 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2555
ce8eb6c4 2556 /* Take the node list lock to change the colour_next on this node */
1da177e4 2557 check_irq_off();
18bf8541 2558 n = get_node(cachep, nodeid);
ce8eb6c4 2559 spin_lock(&n->list_lock);
1da177e4
LT
2560
2561 /* Get colour for the slab, and cal the next value. */
ce8eb6c4
CL
2562 offset = n->colour_next;
2563 n->colour_next++;
2564 if (n->colour_next >= cachep->colour)
2565 n->colour_next = 0;
2566 spin_unlock(&n->list_lock);
1da177e4 2567
2e1217cf 2568 offset *= cachep->colour_off;
1da177e4 2569
d0164adc 2570 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2571 local_irq_enable();
2572
2573 /*
2574 * The test for missing atomic flag is performed here, rather than
2575 * the more obvious place, simply to reduce the critical path length
2576 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2577 * will eventually be caught here (where it matters).
2578 */
2579 kmem_flagcheck(cachep, flags);
2580
a737b3e2
AM
2581 /*
2582 * Get mem for the objs. Attempt to allocate a physical page from
2583 * 'nodeid'.
e498be7d 2584 */
0c3aa83e
JK
2585 if (!page)
2586 page = kmem_getpages(cachep, local_flags, nodeid);
2587 if (!page)
1da177e4
LT
2588 goto failed;
2589
2590 /* Get slab management. */
8456a648 2591 freelist = alloc_slabmgmt(cachep, page, offset,
6cb06229 2592 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
b03a017b 2593 if (OFF_SLAB(cachep) && !freelist)
1da177e4
LT
2594 goto opps1;
2595
8456a648 2596 slab_map_pages(cachep, page, freelist);
1da177e4 2597
7ed2f9e6 2598 kasan_poison_slab(page);
8456a648 2599 cache_init_objs(cachep, page);
1da177e4 2600
d0164adc 2601 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2602 local_irq_disable();
2603 check_irq_off();
ce8eb6c4 2604 spin_lock(&n->list_lock);
1da177e4
LT
2605
2606 /* Make slab active. */
8456a648 2607 list_add_tail(&page->lru, &(n->slabs_free));
1da177e4 2608 STATS_INC_GROWN(cachep);
ce8eb6c4
CL
2609 n->free_objects += cachep->num;
2610 spin_unlock(&n->list_lock);
1da177e4 2611 return 1;
a737b3e2 2612opps1:
0c3aa83e 2613 kmem_freepages(cachep, page);
a737b3e2 2614failed:
d0164adc 2615 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2616 local_irq_disable();
2617 return 0;
2618}
2619
2620#if DEBUG
2621
2622/*
2623 * Perform extra freeing checks:
2624 * - detect bad pointers.
2625 * - POISON/RED_ZONE checking
1da177e4
LT
2626 */
2627static void kfree_debugcheck(const void *objp)
2628{
1da177e4 2629 if (!virt_addr_valid(objp)) {
1170532b 2630 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
b28a02de
PE
2631 (unsigned long)objp);
2632 BUG();
1da177e4 2633 }
1da177e4
LT
2634}
2635
58ce1fd5
PE
2636static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2637{
b46b8f19 2638 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2639
2640 redzone1 = *dbg_redzone1(cache, obj);
2641 redzone2 = *dbg_redzone2(cache, obj);
2642
2643 /*
2644 * Redzone is ok.
2645 */
2646 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2647 return;
2648
2649 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2650 slab_error(cache, "double free detected");
2651 else
2652 slab_error(cache, "memory outside object was overwritten");
2653
1170532b
JP
2654 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2655 obj, redzone1, redzone2);
58ce1fd5
PE
2656}
2657
343e0d7a 2658static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2659 unsigned long caller)
1da177e4 2660{
1da177e4 2661 unsigned int objnr;
8456a648 2662 struct page *page;
1da177e4 2663
80cbd911
MW
2664 BUG_ON(virt_to_cache(objp) != cachep);
2665
3dafccf2 2666 objp -= obj_offset(cachep);
1da177e4 2667 kfree_debugcheck(objp);
b49af68f 2668 page = virt_to_head_page(objp);
1da177e4 2669
1da177e4 2670 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2671 verify_redzone_free(cachep, objp);
1da177e4
LT
2672 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2673 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2674 }
d31676df
JK
2675 if (cachep->flags & SLAB_STORE_USER) {
2676 set_store_user_dirty(cachep);
7c0cb9c6 2677 *dbg_userword(cachep, objp) = (void *)caller;
d31676df 2678 }
1da177e4 2679
8456a648 2680 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2681
2682 BUG_ON(objnr >= cachep->num);
8456a648 2683 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2684
1da177e4 2685 if (cachep->flags & SLAB_POISON) {
1da177e4 2686 poison_obj(cachep, objp, POISON_FREE);
40b44137 2687 slab_kernel_map(cachep, objp, 0, caller);
1da177e4
LT
2688 }
2689 return objp;
2690}
2691
1da177e4
LT
2692#else
2693#define kfree_debugcheck(x) do { } while(0)
2694#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2695#endif
2696
b03a017b
JK
2697static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2698 void **list)
2699{
2700#if DEBUG
2701 void *next = *list;
2702 void *objp;
2703
2704 while (next) {
2705 objp = next - obj_offset(cachep);
2706 next = *(void **)next;
2707 poison_obj(cachep, objp, POISON_FREE);
2708 }
2709#endif
2710}
2711
d8410234 2712static inline void fixup_slab_list(struct kmem_cache *cachep,
b03a017b
JK
2713 struct kmem_cache_node *n, struct page *page,
2714 void **list)
d8410234
JK
2715{
2716 /* move slabp to correct slabp list: */
2717 list_del(&page->lru);
b03a017b 2718 if (page->active == cachep->num) {
d8410234 2719 list_add(&page->lru, &n->slabs_full);
b03a017b
JK
2720 if (OBJFREELIST_SLAB(cachep)) {
2721#if DEBUG
2722 /* Poisoning will be done without holding the lock */
2723 if (cachep->flags & SLAB_POISON) {
2724 void **objp = page->freelist;
2725
2726 *objp = *list;
2727 *list = objp;
2728 }
2729#endif
2730 page->freelist = NULL;
2731 }
2732 } else
d8410234
JK
2733 list_add(&page->lru, &n->slabs_partial);
2734}
2735
f68f8ddd
JK
2736/* Try to find non-pfmemalloc slab if needed */
2737static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2738 struct page *page, bool pfmemalloc)
2739{
2740 if (!page)
2741 return NULL;
2742
2743 if (pfmemalloc)
2744 return page;
2745
2746 if (!PageSlabPfmemalloc(page))
2747 return page;
2748
2749 /* No need to keep pfmemalloc slab if we have enough free objects */
2750 if (n->free_objects > n->free_limit) {
2751 ClearPageSlabPfmemalloc(page);
2752 return page;
2753 }
2754
2755 /* Move pfmemalloc slab to the end of list to speed up next search */
2756 list_del(&page->lru);
2757 if (!page->active)
2758 list_add_tail(&page->lru, &n->slabs_free);
2759 else
2760 list_add_tail(&page->lru, &n->slabs_partial);
2761
2762 list_for_each_entry(page, &n->slabs_partial, lru) {
2763 if (!PageSlabPfmemalloc(page))
2764 return page;
2765 }
2766
2767 list_for_each_entry(page, &n->slabs_free, lru) {
2768 if (!PageSlabPfmemalloc(page))
2769 return page;
2770 }
2771
2772 return NULL;
2773}
2774
2775static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
7aa0d227
GT
2776{
2777 struct page *page;
2778
2779 page = list_first_entry_or_null(&n->slabs_partial,
2780 struct page, lru);
2781 if (!page) {
2782 n->free_touched = 1;
2783 page = list_first_entry_or_null(&n->slabs_free,
2784 struct page, lru);
2785 }
2786
f68f8ddd
JK
2787 if (sk_memalloc_socks())
2788 return get_valid_first_slab(n, page, pfmemalloc);
2789
7aa0d227
GT
2790 return page;
2791}
2792
f68f8ddd
JK
2793static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2794 struct kmem_cache_node *n, gfp_t flags)
2795{
2796 struct page *page;
2797 void *obj;
2798 void *list = NULL;
2799
2800 if (!gfp_pfmemalloc_allowed(flags))
2801 return NULL;
2802
2803 spin_lock(&n->list_lock);
2804 page = get_first_slab(n, true);
2805 if (!page) {
2806 spin_unlock(&n->list_lock);
2807 return NULL;
2808 }
2809
2810 obj = slab_get_obj(cachep, page);
2811 n->free_objects--;
2812
2813 fixup_slab_list(cachep, n, page, &list);
2814
2815 spin_unlock(&n->list_lock);
2816 fixup_objfreelist_debug(cachep, &list);
2817
2818 return obj;
2819}
2820
2821static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2822{
2823 int batchcount;
ce8eb6c4 2824 struct kmem_cache_node *n;
1da177e4 2825 struct array_cache *ac;
1ca4cb24 2826 int node;
b03a017b 2827 void *list = NULL;
1ca4cb24 2828
1da177e4 2829 check_irq_off();
7d6e6d09 2830 node = numa_mem_id();
f68f8ddd 2831
072bb0aa 2832retry:
9a2dba4b 2833 ac = cpu_cache_get(cachep);
1da177e4
LT
2834 batchcount = ac->batchcount;
2835 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2836 /*
2837 * If there was little recent activity on this cache, then
2838 * perform only a partial refill. Otherwise we could generate
2839 * refill bouncing.
1da177e4
LT
2840 */
2841 batchcount = BATCHREFILL_LIMIT;
2842 }
18bf8541 2843 n = get_node(cachep, node);
e498be7d 2844
ce8eb6c4
CL
2845 BUG_ON(ac->avail > 0 || !n);
2846 spin_lock(&n->list_lock);
1da177e4 2847
3ded175a 2848 /* See if we can refill from the shared array */
ce8eb6c4
CL
2849 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2850 n->shared->touched = 1;
3ded175a 2851 goto alloc_done;
44b57f1c 2852 }
3ded175a 2853
1da177e4 2854 while (batchcount > 0) {
8456a648 2855 struct page *page;
1da177e4 2856 /* Get slab alloc is to come from. */
f68f8ddd 2857 page = get_first_slab(n, false);
7aa0d227
GT
2858 if (!page)
2859 goto must_grow;
1da177e4 2860
1da177e4 2861 check_spinlock_acquired(cachep);
714b8171
PE
2862
2863 /*
2864 * The slab was either on partial or free list so
2865 * there must be at least one object available for
2866 * allocation.
2867 */
8456a648 2868 BUG_ON(page->active >= cachep->num);
714b8171 2869
8456a648 2870 while (page->active < cachep->num && batchcount--) {
1da177e4
LT
2871 STATS_INC_ALLOCED(cachep);
2872 STATS_INC_ACTIVE(cachep);
2873 STATS_SET_HIGH(cachep);
2874
f68f8ddd 2875 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
1da177e4 2876 }
1da177e4 2877
b03a017b 2878 fixup_slab_list(cachep, n, page, &list);
1da177e4
LT
2879 }
2880
a737b3e2 2881must_grow:
ce8eb6c4 2882 n->free_objects -= ac->avail;
a737b3e2 2883alloc_done:
ce8eb6c4 2884 spin_unlock(&n->list_lock);
b03a017b 2885 fixup_objfreelist_debug(cachep, &list);
1da177e4
LT
2886
2887 if (unlikely(!ac->avail)) {
2888 int x;
f68f8ddd
JK
2889
2890 /* Check if we can use obj in pfmemalloc slab */
2891 if (sk_memalloc_socks()) {
2892 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2893
2894 if (obj)
2895 return obj;
2896 }
2897
4167e9b2 2898 x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
e498be7d 2899
a737b3e2 2900 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2901 ac = cpu_cache_get(cachep);
51cd8e6f 2902 node = numa_mem_id();
072bb0aa
MG
2903
2904 /* no objects in sight? abort */
f68f8ddd 2905 if (!x && ac->avail == 0)
1da177e4
LT
2906 return NULL;
2907
a737b3e2 2908 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2909 goto retry;
2910 }
2911 ac->touched = 1;
072bb0aa 2912
f68f8ddd 2913 return ac->entry[--ac->avail];
1da177e4
LT
2914}
2915
a737b3e2
AM
2916static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2917 gfp_t flags)
1da177e4 2918{
d0164adc 2919 might_sleep_if(gfpflags_allow_blocking(flags));
1da177e4
LT
2920#if DEBUG
2921 kmem_flagcheck(cachep, flags);
2922#endif
2923}
2924
2925#if DEBUG
a737b3e2 2926static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 2927 gfp_t flags, void *objp, unsigned long caller)
1da177e4 2928{
b28a02de 2929 if (!objp)
1da177e4 2930 return objp;
b28a02de 2931 if (cachep->flags & SLAB_POISON) {
1da177e4 2932 check_poison_obj(cachep, objp);
40b44137 2933 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
2934 poison_obj(cachep, objp, POISON_INUSE);
2935 }
2936 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2937 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
2938
2939 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2940 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2941 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
756a025f 2942 slab_error(cachep, "double free, or memory outside object was overwritten");
1170532b
JP
2943 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2944 objp, *dbg_redzone1(cachep, objp),
2945 *dbg_redzone2(cachep, objp));
1da177e4
LT
2946 }
2947 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2948 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2949 }
03787301 2950
3dafccf2 2951 objp += obj_offset(cachep);
4f104934 2952 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 2953 cachep->ctor(objp);
7ea466f2
TH
2954 if (ARCH_SLAB_MINALIGN &&
2955 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
1170532b 2956 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 2957 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 2958 }
1da177e4
LT
2959 return objp;
2960}
2961#else
2962#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2963#endif
2964
343e0d7a 2965static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2966{
b28a02de 2967 void *objp;
1da177e4
LT
2968 struct array_cache *ac;
2969
5c382300 2970 check_irq_off();
8a8b6502 2971
9a2dba4b 2972 ac = cpu_cache_get(cachep);
1da177e4 2973 if (likely(ac->avail)) {
1da177e4 2974 ac->touched = 1;
f68f8ddd 2975 objp = ac->entry[--ac->avail];
072bb0aa 2976
f68f8ddd
JK
2977 STATS_INC_ALLOCHIT(cachep);
2978 goto out;
1da177e4 2979 }
072bb0aa
MG
2980
2981 STATS_INC_ALLOCMISS(cachep);
f68f8ddd 2982 objp = cache_alloc_refill(cachep, flags);
072bb0aa
MG
2983 /*
2984 * the 'ac' may be updated by cache_alloc_refill(),
2985 * and kmemleak_erase() requires its correct value.
2986 */
2987 ac = cpu_cache_get(cachep);
2988
2989out:
d5cff635
CM
2990 /*
2991 * To avoid a false negative, if an object that is in one of the
2992 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2993 * treat the array pointers as a reference to the object.
2994 */
f3d8b53a
O
2995 if (objp)
2996 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
2997 return objp;
2998}
2999
e498be7d 3000#ifdef CONFIG_NUMA
c61afb18 3001/*
2ad654bc 3002 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
3003 *
3004 * If we are in_interrupt, then process context, including cpusets and
3005 * mempolicy, may not apply and should not be used for allocation policy.
3006 */
3007static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3008{
3009 int nid_alloc, nid_here;
3010
765c4507 3011 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3012 return NULL;
7d6e6d09 3013 nid_alloc = nid_here = numa_mem_id();
c61afb18 3014 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3015 nid_alloc = cpuset_slab_spread_node();
c61afb18 3016 else if (current->mempolicy)
2a389610 3017 nid_alloc = mempolicy_slab_node();
c61afb18 3018 if (nid_alloc != nid_here)
8b98c169 3019 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3020 return NULL;
3021}
3022
765c4507
CL
3023/*
3024 * Fallback function if there was no memory available and no objects on a
3c517a61 3025 * certain node and fall back is permitted. First we scan all the
6a67368c 3026 * available node for available objects. If that fails then we
3c517a61
CL
3027 * perform an allocation without specifying a node. This allows the page
3028 * allocator to do its reclaim / fallback magic. We then insert the
3029 * slab into the proper nodelist and then allocate from it.
765c4507 3030 */
8c8cc2c1 3031static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3032{
8c8cc2c1
PE
3033 struct zonelist *zonelist;
3034 gfp_t local_flags;
dd1a239f 3035 struct zoneref *z;
54a6eb5c
MG
3036 struct zone *zone;
3037 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3038 void *obj = NULL;
3c517a61 3039 int nid;
cc9a6c87 3040 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3041
3042 if (flags & __GFP_THISNODE)
3043 return NULL;
3044
6cb06229 3045 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3046
cc9a6c87 3047retry_cpuset:
d26914d1 3048 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3049 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3050
3c517a61
CL
3051retry:
3052 /*
3053 * Look through allowed nodes for objects available
3054 * from existing per node queues.
3055 */
54a6eb5c
MG
3056 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3057 nid = zone_to_nid(zone);
aedb0eb1 3058
061d7074 3059 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
3060 get_node(cache, nid) &&
3061 get_node(cache, nid)->free_objects) {
3c517a61 3062 obj = ____cache_alloc_node(cache,
4167e9b2 3063 gfp_exact_node(flags), nid);
481c5346
CL
3064 if (obj)
3065 break;
3066 }
3c517a61
CL
3067 }
3068
cfce6604 3069 if (!obj) {
3c517a61
CL
3070 /*
3071 * This allocation will be performed within the constraints
3072 * of the current cpuset / memory policy requirements.
3073 * We may trigger various forms of reclaim on the allowed
3074 * set and go into memory reserves if necessary.
3075 */
0c3aa83e
JK
3076 struct page *page;
3077
d0164adc 3078 if (gfpflags_allow_blocking(local_flags))
dd47ea75
CL
3079 local_irq_enable();
3080 kmem_flagcheck(cache, flags);
0c3aa83e 3081 page = kmem_getpages(cache, local_flags, numa_mem_id());
d0164adc 3082 if (gfpflags_allow_blocking(local_flags))
dd47ea75 3083 local_irq_disable();
0c3aa83e 3084 if (page) {
3c517a61
CL
3085 /*
3086 * Insert into the appropriate per node queues
3087 */
0c3aa83e
JK
3088 nid = page_to_nid(page);
3089 if (cache_grow(cache, flags, nid, page)) {
3c517a61 3090 obj = ____cache_alloc_node(cache,
4167e9b2 3091 gfp_exact_node(flags), nid);
3c517a61
CL
3092 if (!obj)
3093 /*
3094 * Another processor may allocate the
3095 * objects in the slab since we are
3096 * not holding any locks.
3097 */
3098 goto retry;
3099 } else {
b6a60451 3100 /* cache_grow already freed obj */
3c517a61
CL
3101 obj = NULL;
3102 }
3103 }
aedb0eb1 3104 }
cc9a6c87 3105
d26914d1 3106 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3107 goto retry_cpuset;
765c4507
CL
3108 return obj;
3109}
3110
e498be7d
CL
3111/*
3112 * A interface to enable slab creation on nodeid
1da177e4 3113 */
8b98c169 3114static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3115 int nodeid)
e498be7d 3116{
8456a648 3117 struct page *page;
ce8eb6c4 3118 struct kmem_cache_node *n;
b28a02de 3119 void *obj;
b03a017b 3120 void *list = NULL;
b28a02de
PE
3121 int x;
3122
7c3fbbdd 3123 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3124 n = get_node(cachep, nodeid);
ce8eb6c4 3125 BUG_ON(!n);
b28a02de 3126
a737b3e2 3127retry:
ca3b9b91 3128 check_irq_off();
ce8eb6c4 3129 spin_lock(&n->list_lock);
f68f8ddd 3130 page = get_first_slab(n, false);
7aa0d227
GT
3131 if (!page)
3132 goto must_grow;
b28a02de 3133
b28a02de 3134 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3135
3136 STATS_INC_NODEALLOCS(cachep);
3137 STATS_INC_ACTIVE(cachep);
3138 STATS_SET_HIGH(cachep);
3139
8456a648 3140 BUG_ON(page->active == cachep->num);
b28a02de 3141
260b61dd 3142 obj = slab_get_obj(cachep, page);
ce8eb6c4 3143 n->free_objects--;
b28a02de 3144
b03a017b 3145 fixup_slab_list(cachep, n, page, &list);
e498be7d 3146
ce8eb6c4 3147 spin_unlock(&n->list_lock);
b03a017b 3148 fixup_objfreelist_debug(cachep, &list);
b28a02de 3149 goto done;
e498be7d 3150
a737b3e2 3151must_grow:
ce8eb6c4 3152 spin_unlock(&n->list_lock);
4167e9b2 3153 x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
765c4507
CL
3154 if (x)
3155 goto retry;
1da177e4 3156
8c8cc2c1 3157 return fallback_alloc(cachep, flags);
e498be7d 3158
a737b3e2 3159done:
b28a02de 3160 return obj;
e498be7d 3161}
8c8cc2c1 3162
8c8cc2c1 3163static __always_inline void *
48356303 3164slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3165 unsigned long caller)
8c8cc2c1
PE
3166{
3167 unsigned long save_flags;
3168 void *ptr;
7d6e6d09 3169 int slab_node = numa_mem_id();
8c8cc2c1 3170
dcce284a 3171 flags &= gfp_allowed_mask;
011eceaf
JDB
3172 cachep = slab_pre_alloc_hook(cachep, flags);
3173 if (unlikely(!cachep))
824ebef1
AM
3174 return NULL;
3175
8c8cc2c1
PE
3176 cache_alloc_debugcheck_before(cachep, flags);
3177 local_irq_save(save_flags);
3178
eacbbae3 3179 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3180 nodeid = slab_node;
8c8cc2c1 3181
18bf8541 3182 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3183 /* Node not bootstrapped yet */
3184 ptr = fallback_alloc(cachep, flags);
3185 goto out;
3186 }
3187
7d6e6d09 3188 if (nodeid == slab_node) {
8c8cc2c1
PE
3189 /*
3190 * Use the locally cached objects if possible.
3191 * However ____cache_alloc does not allow fallback
3192 * to other nodes. It may fail while we still have
3193 * objects on other nodes available.
3194 */
3195 ptr = ____cache_alloc(cachep, flags);
3196 if (ptr)
3197 goto out;
3198 }
3199 /* ___cache_alloc_node can fall back to other nodes */
3200 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3201 out:
3202 local_irq_restore(save_flags);
3203 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3204
d5e3ed66
JDB
3205 if (unlikely(flags & __GFP_ZERO) && ptr)
3206 memset(ptr, 0, cachep->object_size);
d07dbea4 3207
d5e3ed66 3208 slab_post_alloc_hook(cachep, flags, 1, &ptr);
8c8cc2c1
PE
3209 return ptr;
3210}
3211
3212static __always_inline void *
3213__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3214{
3215 void *objp;
3216
2ad654bc 3217 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3218 objp = alternate_node_alloc(cache, flags);
3219 if (objp)
3220 goto out;
3221 }
3222 objp = ____cache_alloc(cache, flags);
3223
3224 /*
3225 * We may just have run out of memory on the local node.
3226 * ____cache_alloc_node() knows how to locate memory on other nodes
3227 */
7d6e6d09
LS
3228 if (!objp)
3229 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3230
3231 out:
3232 return objp;
3233}
3234#else
3235
3236static __always_inline void *
3237__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3238{
3239 return ____cache_alloc(cachep, flags);
3240}
3241
3242#endif /* CONFIG_NUMA */
3243
3244static __always_inline void *
48356303 3245slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3246{
3247 unsigned long save_flags;
3248 void *objp;
3249
dcce284a 3250 flags &= gfp_allowed_mask;
011eceaf
JDB
3251 cachep = slab_pre_alloc_hook(cachep, flags);
3252 if (unlikely(!cachep))
824ebef1
AM
3253 return NULL;
3254
8c8cc2c1
PE
3255 cache_alloc_debugcheck_before(cachep, flags);
3256 local_irq_save(save_flags);
3257 objp = __do_cache_alloc(cachep, flags);
3258 local_irq_restore(save_flags);
3259 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3260 prefetchw(objp);
3261
d5e3ed66
JDB
3262 if (unlikely(flags & __GFP_ZERO) && objp)
3263 memset(objp, 0, cachep->object_size);
d07dbea4 3264
d5e3ed66 3265 slab_post_alloc_hook(cachep, flags, 1, &objp);
8c8cc2c1
PE
3266 return objp;
3267}
e498be7d
CL
3268
3269/*
5f0985bb 3270 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3271 * @list: List of detached free slabs should be freed by caller
e498be7d 3272 */
97654dfa
JK
3273static void free_block(struct kmem_cache *cachep, void **objpp,
3274 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3275{
3276 int i;
25c063fb 3277 struct kmem_cache_node *n = get_node(cachep, node);
1da177e4
LT
3278
3279 for (i = 0; i < nr_objects; i++) {
072bb0aa 3280 void *objp;
8456a648 3281 struct page *page;
1da177e4 3282
072bb0aa
MG
3283 objp = objpp[i];
3284
8456a648 3285 page = virt_to_head_page(objp);
8456a648 3286 list_del(&page->lru);
ff69416e 3287 check_spinlock_acquired_node(cachep, node);
260b61dd 3288 slab_put_obj(cachep, page, objp);
1da177e4 3289 STATS_DEC_ACTIVE(cachep);
ce8eb6c4 3290 n->free_objects++;
1da177e4
LT
3291
3292 /* fixup slab chains */
8456a648 3293 if (page->active == 0) {
ce8eb6c4
CL
3294 if (n->free_objects > n->free_limit) {
3295 n->free_objects -= cachep->num;
97654dfa 3296 list_add_tail(&page->lru, list);
1da177e4 3297 } else {
8456a648 3298 list_add(&page->lru, &n->slabs_free);
1da177e4
LT
3299 }
3300 } else {
3301 /* Unconditionally move a slab to the end of the
3302 * partial list on free - maximum time for the
3303 * other objects to be freed, too.
3304 */
8456a648 3305 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3306 }
3307 }
3308}
3309
343e0d7a 3310static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3311{
3312 int batchcount;
ce8eb6c4 3313 struct kmem_cache_node *n;
7d6e6d09 3314 int node = numa_mem_id();
97654dfa 3315 LIST_HEAD(list);
1da177e4
LT
3316
3317 batchcount = ac->batchcount;
260b61dd 3318
1da177e4 3319 check_irq_off();
18bf8541 3320 n = get_node(cachep, node);
ce8eb6c4
CL
3321 spin_lock(&n->list_lock);
3322 if (n->shared) {
3323 struct array_cache *shared_array = n->shared;
b28a02de 3324 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3325 if (max) {
3326 if (batchcount > max)
3327 batchcount = max;
e498be7d 3328 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3329 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3330 shared_array->avail += batchcount;
3331 goto free_done;
3332 }
3333 }
3334
97654dfa 3335 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3336free_done:
1da177e4
LT
3337#if STATS
3338 {
3339 int i = 0;
73c0219d 3340 struct page *page;
1da177e4 3341
73c0219d 3342 list_for_each_entry(page, &n->slabs_free, lru) {
8456a648 3343 BUG_ON(page->active);
1da177e4
LT
3344
3345 i++;
1da177e4
LT
3346 }
3347 STATS_SET_FREEABLE(cachep, i);
3348 }
3349#endif
ce8eb6c4 3350 spin_unlock(&n->list_lock);
97654dfa 3351 slabs_destroy(cachep, &list);
1da177e4 3352 ac->avail -= batchcount;
a737b3e2 3353 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3354}
3355
3356/*
a737b3e2
AM
3357 * Release an obj back to its cache. If the obj has a constructed state, it must
3358 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3359 */
a947eb95 3360static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3361 unsigned long caller)
1da177e4 3362{
9a2dba4b 3363 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4 3364
7ed2f9e6
AP
3365 kasan_slab_free(cachep, objp);
3366
1da177e4 3367 check_irq_off();
d5cff635 3368 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3369 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3370
8c138bc0 3371 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3372
1807a1aa
SS
3373 /*
3374 * Skip calling cache_free_alien() when the platform is not numa.
3375 * This will avoid cache misses that happen while accessing slabp (which
3376 * is per page memory reference) to get nodeid. Instead use a global
3377 * variable to skip the call, which is mostly likely to be present in
3378 * the cache.
3379 */
b6e68bc1 3380 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3381 return;
3382
3d880194 3383 if (ac->avail < ac->limit) {
1da177e4 3384 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3385 } else {
3386 STATS_INC_FREEMISS(cachep);
3387 cache_flusharray(cachep, ac);
1da177e4 3388 }
42c8c99c 3389
f68f8ddd
JK
3390 if (sk_memalloc_socks()) {
3391 struct page *page = virt_to_head_page(objp);
3392
3393 if (unlikely(PageSlabPfmemalloc(page))) {
3394 cache_free_pfmemalloc(cachep, page, objp);
3395 return;
3396 }
3397 }
3398
3399 ac->entry[ac->avail++] = objp;
1da177e4
LT
3400}
3401
3402/**
3403 * kmem_cache_alloc - Allocate an object
3404 * @cachep: The cache to allocate from.
3405 * @flags: See kmalloc().
3406 *
3407 * Allocate an object from this cache. The flags are only relevant
3408 * if the cache has no available objects.
3409 */
343e0d7a 3410void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3411{
48356303 3412 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3413
505f5dcb 3414 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3415 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3416 cachep->object_size, cachep->size, flags);
36555751
EGM
3417
3418 return ret;
1da177e4
LT
3419}
3420EXPORT_SYMBOL(kmem_cache_alloc);
3421
7b0501dd
JDB
3422static __always_inline void
3423cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3424 size_t size, void **p, unsigned long caller)
3425{
3426 size_t i;
3427
3428 for (i = 0; i < size; i++)
3429 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3430}
3431
865762a8 3432int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2a777eac 3433 void **p)
484748f0 3434{
2a777eac
JDB
3435 size_t i;
3436
3437 s = slab_pre_alloc_hook(s, flags);
3438 if (!s)
3439 return 0;
3440
3441 cache_alloc_debugcheck_before(s, flags);
3442
3443 local_irq_disable();
3444 for (i = 0; i < size; i++) {
3445 void *objp = __do_cache_alloc(s, flags);
3446
2a777eac
JDB
3447 if (unlikely(!objp))
3448 goto error;
3449 p[i] = objp;
3450 }
3451 local_irq_enable();
3452
7b0501dd
JDB
3453 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3454
2a777eac
JDB
3455 /* Clear memory outside IRQ disabled section */
3456 if (unlikely(flags & __GFP_ZERO))
3457 for (i = 0; i < size; i++)
3458 memset(p[i], 0, s->object_size);
3459
3460 slab_post_alloc_hook(s, flags, size, p);
3461 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3462 return size;
3463error:
3464 local_irq_enable();
7b0501dd 3465 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
2a777eac
JDB
3466 slab_post_alloc_hook(s, flags, i, p);
3467 __kmem_cache_free_bulk(s, i, p);
3468 return 0;
484748f0
CL
3469}
3470EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3471
0f24f128 3472#ifdef CONFIG_TRACING
85beb586 3473void *
4052147c 3474kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3475{
85beb586
SR
3476 void *ret;
3477
48356303 3478 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586 3479
505f5dcb 3480 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3481 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3482 size, cachep->size, flags);
85beb586 3483 return ret;
36555751 3484}
85beb586 3485EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3486#endif
3487
1da177e4 3488#ifdef CONFIG_NUMA
d0d04b78
ZL
3489/**
3490 * kmem_cache_alloc_node - Allocate an object on the specified node
3491 * @cachep: The cache to allocate from.
3492 * @flags: See kmalloc().
3493 * @nodeid: node number of the target node.
3494 *
3495 * Identical to kmem_cache_alloc but it will allocate memory on the given
3496 * node, which can improve the performance for cpu bound structures.
3497 *
3498 * Fallback to other node is possible if __GFP_THISNODE is not set.
3499 */
8b98c169
CH
3500void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3501{
48356303 3502 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3503
505f5dcb 3504 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3505 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3506 cachep->object_size, cachep->size,
ca2b84cb 3507 flags, nodeid);
36555751
EGM
3508
3509 return ret;
8b98c169 3510}
1da177e4
LT
3511EXPORT_SYMBOL(kmem_cache_alloc_node);
3512
0f24f128 3513#ifdef CONFIG_TRACING
4052147c 3514void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3515 gfp_t flags,
4052147c
EG
3516 int nodeid,
3517 size_t size)
36555751 3518{
85beb586
SR
3519 void *ret;
3520
592f4145 3521 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
505f5dcb
AP
3522
3523 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3524 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3525 size, cachep->size,
85beb586
SR
3526 flags, nodeid);
3527 return ret;
36555751 3528}
85beb586 3529EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3530#endif
3531
8b98c169 3532static __always_inline void *
7c0cb9c6 3533__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3534{
343e0d7a 3535 struct kmem_cache *cachep;
7ed2f9e6 3536 void *ret;
97e2bde4 3537
2c59dd65 3538 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3539 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3540 return cachep;
7ed2f9e6 3541 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
505f5dcb 3542 kasan_kmalloc(cachep, ret, size, flags);
7ed2f9e6
AP
3543
3544 return ret;
97e2bde4 3545}
8b98c169 3546
8b98c169
CH
3547void *__kmalloc_node(size_t size, gfp_t flags, int node)
3548{
7c0cb9c6 3549 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3550}
dbe5e69d 3551EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3552
3553void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3554 int node, unsigned long caller)
8b98c169 3555{
7c0cb9c6 3556 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3557}
3558EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3559#endif /* CONFIG_NUMA */
1da177e4
LT
3560
3561/**
800590f5 3562 * __do_kmalloc - allocate memory
1da177e4 3563 * @size: how many bytes of memory are required.
800590f5 3564 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3565 * @caller: function caller for debug tracking of the caller
1da177e4 3566 */
7fd6b141 3567static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3568 unsigned long caller)
1da177e4 3569{
343e0d7a 3570 struct kmem_cache *cachep;
36555751 3571 void *ret;
1da177e4 3572
2c59dd65 3573 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3574 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3575 return cachep;
48356303 3576 ret = slab_alloc(cachep, flags, caller);
36555751 3577
505f5dcb 3578 kasan_kmalloc(cachep, ret, size, flags);
7c0cb9c6 3579 trace_kmalloc(caller, ret,
3b0efdfa 3580 size, cachep->size, flags);
36555751
EGM
3581
3582 return ret;
7fd6b141
PE
3583}
3584
7fd6b141
PE
3585void *__kmalloc(size_t size, gfp_t flags)
3586{
7c0cb9c6 3587 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3588}
3589EXPORT_SYMBOL(__kmalloc);
3590
ce71e27c 3591void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3592{
7c0cb9c6 3593 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3594}
3595EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3596
1da177e4
LT
3597/**
3598 * kmem_cache_free - Deallocate an object
3599 * @cachep: The cache the allocation was from.
3600 * @objp: The previously allocated object.
3601 *
3602 * Free an object which was previously allocated from this
3603 * cache.
3604 */
343e0d7a 3605void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3606{
3607 unsigned long flags;
b9ce5ef4
GC
3608 cachep = cache_from_obj(cachep, objp);
3609 if (!cachep)
3610 return;
1da177e4
LT
3611
3612 local_irq_save(flags);
d97d476b 3613 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3614 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3615 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3616 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3617 local_irq_restore(flags);
36555751 3618
ca2b84cb 3619 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3620}
3621EXPORT_SYMBOL(kmem_cache_free);
3622
e6cdb58d
JDB
3623void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3624{
3625 struct kmem_cache *s;
3626 size_t i;
3627
3628 local_irq_disable();
3629 for (i = 0; i < size; i++) {
3630 void *objp = p[i];
3631
ca257195
JDB
3632 if (!orig_s) /* called via kfree_bulk */
3633 s = virt_to_cache(objp);
3634 else
3635 s = cache_from_obj(orig_s, objp);
e6cdb58d
JDB
3636
3637 debug_check_no_locks_freed(objp, s->object_size);
3638 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3639 debug_check_no_obj_freed(objp, s->object_size);
3640
3641 __cache_free(s, objp, _RET_IP_);
3642 }
3643 local_irq_enable();
3644
3645 /* FIXME: add tracing */
3646}
3647EXPORT_SYMBOL(kmem_cache_free_bulk);
3648
1da177e4
LT
3649/**
3650 * kfree - free previously allocated memory
3651 * @objp: pointer returned by kmalloc.
3652 *
80e93eff
PE
3653 * If @objp is NULL, no operation is performed.
3654 *
1da177e4
LT
3655 * Don't free memory not originally allocated by kmalloc()
3656 * or you will run into trouble.
3657 */
3658void kfree(const void *objp)
3659{
343e0d7a 3660 struct kmem_cache *c;
1da177e4
LT
3661 unsigned long flags;
3662
2121db74
PE
3663 trace_kfree(_RET_IP_, objp);
3664
6cb8f913 3665 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3666 return;
3667 local_irq_save(flags);
3668 kfree_debugcheck(objp);
6ed5eb22 3669 c = virt_to_cache(objp);
8c138bc0
CL
3670 debug_check_no_locks_freed(objp, c->object_size);
3671
3672 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3673 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3674 local_irq_restore(flags);
3675}
3676EXPORT_SYMBOL(kfree);
3677
e498be7d 3678/*
ce8eb6c4 3679 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3680 */
5f0985bb 3681static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3682{
3683 int node;
ce8eb6c4 3684 struct kmem_cache_node *n;
cafeb02e 3685 struct array_cache *new_shared;
c8522a3a 3686 struct alien_cache **new_alien = NULL;
e498be7d 3687
9c09a95c 3688 for_each_online_node(node) {
cafeb02e 3689
b455def2
L
3690 if (use_alien_caches) {
3691 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3692 if (!new_alien)
3693 goto fail;
3694 }
cafeb02e 3695
63109846
ED
3696 new_shared = NULL;
3697 if (cachep->shared) {
3698 new_shared = alloc_arraycache(node,
0718dc2a 3699 cachep->shared*cachep->batchcount,
83b519e8 3700 0xbaadf00d, gfp);
63109846
ED
3701 if (!new_shared) {
3702 free_alien_cache(new_alien);
3703 goto fail;
3704 }
0718dc2a 3705 }
cafeb02e 3706
18bf8541 3707 n = get_node(cachep, node);
ce8eb6c4
CL
3708 if (n) {
3709 struct array_cache *shared = n->shared;
97654dfa 3710 LIST_HEAD(list);
cafeb02e 3711
ce8eb6c4 3712 spin_lock_irq(&n->list_lock);
e498be7d 3713
cafeb02e 3714 if (shared)
0718dc2a 3715 free_block(cachep, shared->entry,
97654dfa 3716 shared->avail, node, &list);
e498be7d 3717
ce8eb6c4
CL
3718 n->shared = new_shared;
3719 if (!n->alien) {
3720 n->alien = new_alien;
e498be7d
CL
3721 new_alien = NULL;
3722 }
ce8eb6c4 3723 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3724 cachep->batchcount + cachep->num;
ce8eb6c4 3725 spin_unlock_irq(&n->list_lock);
97654dfa 3726 slabs_destroy(cachep, &list);
cafeb02e 3727 kfree(shared);
e498be7d
CL
3728 free_alien_cache(new_alien);
3729 continue;
3730 }
ce8eb6c4
CL
3731 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3732 if (!n) {
0718dc2a
CL
3733 free_alien_cache(new_alien);
3734 kfree(new_shared);
e498be7d 3735 goto fail;
0718dc2a 3736 }
e498be7d 3737
ce8eb6c4 3738 kmem_cache_node_init(n);
5f0985bb
JZ
3739 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3740 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
ce8eb6c4
CL
3741 n->shared = new_shared;
3742 n->alien = new_alien;
3743 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3744 cachep->batchcount + cachep->num;
ce8eb6c4 3745 cachep->node[node] = n;
e498be7d 3746 }
cafeb02e 3747 return 0;
0718dc2a 3748
a737b3e2 3749fail:
3b0efdfa 3750 if (!cachep->list.next) {
0718dc2a
CL
3751 /* Cache is not active yet. Roll back what we did */
3752 node--;
3753 while (node >= 0) {
18bf8541
CL
3754 n = get_node(cachep, node);
3755 if (n) {
ce8eb6c4
CL
3756 kfree(n->shared);
3757 free_alien_cache(n->alien);
3758 kfree(n);
6a67368c 3759 cachep->node[node] = NULL;
0718dc2a
CL
3760 }
3761 node--;
3762 }
3763 }
cafeb02e 3764 return -ENOMEM;
e498be7d
CL
3765}
3766
18004c5d 3767/* Always called with the slab_mutex held */
943a451a 3768static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3769 int batchcount, int shared, gfp_t gfp)
1da177e4 3770{
bf0dea23
JK
3771 struct array_cache __percpu *cpu_cache, *prev;
3772 int cpu;
1da177e4 3773
bf0dea23
JK
3774 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3775 if (!cpu_cache)
d2e7b7d0
SS
3776 return -ENOMEM;
3777
bf0dea23
JK
3778 prev = cachep->cpu_cache;
3779 cachep->cpu_cache = cpu_cache;
3780 kick_all_cpus_sync();
e498be7d 3781
1da177e4 3782 check_irq_on();
1da177e4
LT
3783 cachep->batchcount = batchcount;
3784 cachep->limit = limit;
e498be7d 3785 cachep->shared = shared;
1da177e4 3786
bf0dea23
JK
3787 if (!prev)
3788 goto alloc_node;
3789
3790 for_each_online_cpu(cpu) {
97654dfa 3791 LIST_HEAD(list);
18bf8541
CL
3792 int node;
3793 struct kmem_cache_node *n;
bf0dea23 3794 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3795
bf0dea23 3796 node = cpu_to_mem(cpu);
18bf8541
CL
3797 n = get_node(cachep, node);
3798 spin_lock_irq(&n->list_lock);
bf0dea23 3799 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3800 spin_unlock_irq(&n->list_lock);
97654dfa 3801 slabs_destroy(cachep, &list);
1da177e4 3802 }
bf0dea23
JK
3803 free_percpu(prev);
3804
3805alloc_node:
5f0985bb 3806 return alloc_kmem_cache_node(cachep, gfp);
1da177e4
LT
3807}
3808
943a451a
GC
3809static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3810 int batchcount, int shared, gfp_t gfp)
3811{
3812 int ret;
426589f5 3813 struct kmem_cache *c;
943a451a
GC
3814
3815 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3816
3817 if (slab_state < FULL)
3818 return ret;
3819
3820 if ((ret < 0) || !is_root_cache(cachep))
3821 return ret;
3822
426589f5
VD
3823 lockdep_assert_held(&slab_mutex);
3824 for_each_memcg_cache(c, cachep) {
3825 /* return value determined by the root cache only */
3826 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
943a451a
GC
3827 }
3828
3829 return ret;
3830}
3831
18004c5d 3832/* Called with slab_mutex held always */
83b519e8 3833static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3834{
3835 int err;
943a451a
GC
3836 int limit = 0;
3837 int shared = 0;
3838 int batchcount = 0;
3839
3840 if (!is_root_cache(cachep)) {
3841 struct kmem_cache *root = memcg_root_cache(cachep);
3842 limit = root->limit;
3843 shared = root->shared;
3844 batchcount = root->batchcount;
3845 }
1da177e4 3846
943a451a
GC
3847 if (limit && shared && batchcount)
3848 goto skip_setup;
a737b3e2
AM
3849 /*
3850 * The head array serves three purposes:
1da177e4
LT
3851 * - create a LIFO ordering, i.e. return objects that are cache-warm
3852 * - reduce the number of spinlock operations.
a737b3e2 3853 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3854 * bufctl chains: array operations are cheaper.
3855 * The numbers are guessed, we should auto-tune as described by
3856 * Bonwick.
3857 */
3b0efdfa 3858 if (cachep->size > 131072)
1da177e4 3859 limit = 1;
3b0efdfa 3860 else if (cachep->size > PAGE_SIZE)
1da177e4 3861 limit = 8;
3b0efdfa 3862 else if (cachep->size > 1024)
1da177e4 3863 limit = 24;
3b0efdfa 3864 else if (cachep->size > 256)
1da177e4
LT
3865 limit = 54;
3866 else
3867 limit = 120;
3868
a737b3e2
AM
3869 /*
3870 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3871 * allocation behaviour: Most allocs on one cpu, most free operations
3872 * on another cpu. For these cases, an efficient object passing between
3873 * cpus is necessary. This is provided by a shared array. The array
3874 * replaces Bonwick's magazine layer.
3875 * On uniprocessor, it's functionally equivalent (but less efficient)
3876 * to a larger limit. Thus disabled by default.
3877 */
3878 shared = 0;
3b0efdfa 3879 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3880 shared = 8;
1da177e4
LT
3881
3882#if DEBUG
a737b3e2
AM
3883 /*
3884 * With debugging enabled, large batchcount lead to excessively long
3885 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3886 */
3887 if (limit > 32)
3888 limit = 32;
3889#endif
943a451a
GC
3890 batchcount = (limit + 1) / 2;
3891skip_setup:
3892 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
1da177e4 3893 if (err)
1170532b 3894 pr_err("enable_cpucache failed for %s, error %d\n",
b28a02de 3895 cachep->name, -err);
2ed3a4ef 3896 return err;
1da177e4
LT
3897}
3898
1b55253a 3899/*
ce8eb6c4
CL
3900 * Drain an array if it contains any elements taking the node lock only if
3901 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3902 * if drain_array() is used on the shared array.
1b55253a 3903 */
ce8eb6c4 3904static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
18726ca8 3905 struct array_cache *ac, int node)
1da177e4 3906{
97654dfa 3907 LIST_HEAD(list);
18726ca8
JK
3908
3909 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3910 check_mutex_acquired();
1da177e4 3911
1b55253a
CL
3912 if (!ac || !ac->avail)
3913 return;
18726ca8
JK
3914
3915 if (ac->touched) {
1da177e4 3916 ac->touched = 0;
18726ca8 3917 return;
1da177e4 3918 }
18726ca8
JK
3919
3920 spin_lock_irq(&n->list_lock);
3921 drain_array_locked(cachep, ac, node, false, &list);
3922 spin_unlock_irq(&n->list_lock);
3923
3924 slabs_destroy(cachep, &list);
1da177e4
LT
3925}
3926
3927/**
3928 * cache_reap - Reclaim memory from caches.
05fb6bf0 3929 * @w: work descriptor
1da177e4
LT
3930 *
3931 * Called from workqueue/eventd every few seconds.
3932 * Purpose:
3933 * - clear the per-cpu caches for this CPU.
3934 * - return freeable pages to the main free memory pool.
3935 *
a737b3e2
AM
3936 * If we cannot acquire the cache chain mutex then just give up - we'll try
3937 * again on the next iteration.
1da177e4 3938 */
7c5cae36 3939static void cache_reap(struct work_struct *w)
1da177e4 3940{
7a7c381d 3941 struct kmem_cache *searchp;
ce8eb6c4 3942 struct kmem_cache_node *n;
7d6e6d09 3943 int node = numa_mem_id();
bf6aede7 3944 struct delayed_work *work = to_delayed_work(w);
1da177e4 3945
18004c5d 3946 if (!mutex_trylock(&slab_mutex))
1da177e4 3947 /* Give up. Setup the next iteration. */
7c5cae36 3948 goto out;
1da177e4 3949
18004c5d 3950 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
3951 check_irq_on();
3952
35386e3b 3953 /*
ce8eb6c4 3954 * We only take the node lock if absolutely necessary and we
35386e3b
CL
3955 * have established with reasonable certainty that
3956 * we can do some work if the lock was obtained.
3957 */
18bf8541 3958 n = get_node(searchp, node);
35386e3b 3959
ce8eb6c4 3960 reap_alien(searchp, n);
1da177e4 3961
18726ca8 3962 drain_array(searchp, n, cpu_cache_get(searchp), node);
1da177e4 3963
35386e3b
CL
3964 /*
3965 * These are racy checks but it does not matter
3966 * if we skip one check or scan twice.
3967 */
ce8eb6c4 3968 if (time_after(n->next_reap, jiffies))
35386e3b 3969 goto next;
1da177e4 3970
5f0985bb 3971 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 3972
18726ca8 3973 drain_array(searchp, n, n->shared, node);
1da177e4 3974
ce8eb6c4
CL
3975 if (n->free_touched)
3976 n->free_touched = 0;
ed11d9eb
CL
3977 else {
3978 int freed;
1da177e4 3979
ce8eb6c4 3980 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
3981 5 * searchp->num - 1) / (5 * searchp->num));
3982 STATS_ADD_REAPED(searchp, freed);
3983 }
35386e3b 3984next:
1da177e4
LT
3985 cond_resched();
3986 }
3987 check_irq_on();
18004c5d 3988 mutex_unlock(&slab_mutex);
8fce4d8e 3989 next_reap_node();
7c5cae36 3990out:
a737b3e2 3991 /* Set up the next iteration */
5f0985bb 3992 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
3993}
3994
158a9624 3995#ifdef CONFIG_SLABINFO
0d7561c6 3996void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 3997{
8456a648 3998 struct page *page;
b28a02de
PE
3999 unsigned long active_objs;
4000 unsigned long num_objs;
4001 unsigned long active_slabs = 0;
4002 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4003 const char *name;
1da177e4 4004 char *error = NULL;
e498be7d 4005 int node;
ce8eb6c4 4006 struct kmem_cache_node *n;
1da177e4 4007
1da177e4
LT
4008 active_objs = 0;
4009 num_slabs = 0;
18bf8541 4010 for_each_kmem_cache_node(cachep, node, n) {
e498be7d 4011
ca3b9b91 4012 check_irq_on();
ce8eb6c4 4013 spin_lock_irq(&n->list_lock);
e498be7d 4014
8456a648
JK
4015 list_for_each_entry(page, &n->slabs_full, lru) {
4016 if (page->active != cachep->num && !error)
e498be7d
CL
4017 error = "slabs_full accounting error";
4018 active_objs += cachep->num;
4019 active_slabs++;
4020 }
8456a648
JK
4021 list_for_each_entry(page, &n->slabs_partial, lru) {
4022 if (page->active == cachep->num && !error)
106a74e1 4023 error = "slabs_partial accounting error";
8456a648 4024 if (!page->active && !error)
106a74e1 4025 error = "slabs_partial accounting error";
8456a648 4026 active_objs += page->active;
e498be7d
CL
4027 active_slabs++;
4028 }
8456a648
JK
4029 list_for_each_entry(page, &n->slabs_free, lru) {
4030 if (page->active && !error)
106a74e1 4031 error = "slabs_free accounting error";
e498be7d
CL
4032 num_slabs++;
4033 }
ce8eb6c4
CL
4034 free_objects += n->free_objects;
4035 if (n->shared)
4036 shared_avail += n->shared->avail;
e498be7d 4037
ce8eb6c4 4038 spin_unlock_irq(&n->list_lock);
1da177e4 4039 }
b28a02de
PE
4040 num_slabs += active_slabs;
4041 num_objs = num_slabs * cachep->num;
e498be7d 4042 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4043 error = "free_objects accounting error";
4044
b28a02de 4045 name = cachep->name;
1da177e4 4046 if (error)
1170532b 4047 pr_err("slab: cache %s error: %s\n", name, error);
1da177e4 4048
0d7561c6
GC
4049 sinfo->active_objs = active_objs;
4050 sinfo->num_objs = num_objs;
4051 sinfo->active_slabs = active_slabs;
4052 sinfo->num_slabs = num_slabs;
4053 sinfo->shared_avail = shared_avail;
4054 sinfo->limit = cachep->limit;
4055 sinfo->batchcount = cachep->batchcount;
4056 sinfo->shared = cachep->shared;
4057 sinfo->objects_per_slab = cachep->num;
4058 sinfo->cache_order = cachep->gfporder;
4059}
4060
4061void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4062{
1da177e4 4063#if STATS
ce8eb6c4 4064 { /* node stats */
1da177e4
LT
4065 unsigned long high = cachep->high_mark;
4066 unsigned long allocs = cachep->num_allocations;
4067 unsigned long grown = cachep->grown;
4068 unsigned long reaped = cachep->reaped;
4069 unsigned long errors = cachep->errors;
4070 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4071 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4072 unsigned long node_frees = cachep->node_frees;
fb7faf33 4073 unsigned long overflows = cachep->node_overflow;
1da177e4 4074
756a025f 4075 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
e92dd4fd
JP
4076 allocs, high, grown,
4077 reaped, errors, max_freeable, node_allocs,
4078 node_frees, overflows);
1da177e4
LT
4079 }
4080 /* cpu stats */
4081 {
4082 unsigned long allochit = atomic_read(&cachep->allochit);
4083 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4084 unsigned long freehit = atomic_read(&cachep->freehit);
4085 unsigned long freemiss = atomic_read(&cachep->freemiss);
4086
4087 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4088 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4089 }
4090#endif
1da177e4
LT
4091}
4092
1da177e4
LT
4093#define MAX_SLABINFO_WRITE 128
4094/**
4095 * slabinfo_write - Tuning for the slab allocator
4096 * @file: unused
4097 * @buffer: user buffer
4098 * @count: data length
4099 * @ppos: unused
4100 */
b7454ad3 4101ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4102 size_t count, loff_t *ppos)
1da177e4 4103{
b28a02de 4104 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4105 int limit, batchcount, shared, res;
7a7c381d 4106 struct kmem_cache *cachep;
b28a02de 4107
1da177e4
LT
4108 if (count > MAX_SLABINFO_WRITE)
4109 return -EINVAL;
4110 if (copy_from_user(&kbuf, buffer, count))
4111 return -EFAULT;
b28a02de 4112 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4113
4114 tmp = strchr(kbuf, ' ');
4115 if (!tmp)
4116 return -EINVAL;
4117 *tmp = '\0';
4118 tmp++;
4119 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4120 return -EINVAL;
4121
4122 /* Find the cache in the chain of caches. */
18004c5d 4123 mutex_lock(&slab_mutex);
1da177e4 4124 res = -EINVAL;
18004c5d 4125 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4126 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4127 if (limit < 1 || batchcount < 1 ||
4128 batchcount > limit || shared < 0) {
e498be7d 4129 res = 0;
1da177e4 4130 } else {
e498be7d 4131 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4132 batchcount, shared,
4133 GFP_KERNEL);
1da177e4
LT
4134 }
4135 break;
4136 }
4137 }
18004c5d 4138 mutex_unlock(&slab_mutex);
1da177e4
LT
4139 if (res >= 0)
4140 res = count;
4141 return res;
4142}
871751e2
AV
4143
4144#ifdef CONFIG_DEBUG_SLAB_LEAK
4145
871751e2
AV
4146static inline int add_caller(unsigned long *n, unsigned long v)
4147{
4148 unsigned long *p;
4149 int l;
4150 if (!v)
4151 return 1;
4152 l = n[1];
4153 p = n + 2;
4154 while (l) {
4155 int i = l/2;
4156 unsigned long *q = p + 2 * i;
4157 if (*q == v) {
4158 q[1]++;
4159 return 1;
4160 }
4161 if (*q > v) {
4162 l = i;
4163 } else {
4164 p = q + 2;
4165 l -= i + 1;
4166 }
4167 }
4168 if (++n[1] == n[0])
4169 return 0;
4170 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4171 p[0] = v;
4172 p[1] = 1;
4173 return 1;
4174}
4175
8456a648
JK
4176static void handle_slab(unsigned long *n, struct kmem_cache *c,
4177 struct page *page)
871751e2
AV
4178{
4179 void *p;
d31676df
JK
4180 int i, j;
4181 unsigned long v;
b1cb0982 4182
871751e2
AV
4183 if (n[0] == n[1])
4184 return;
8456a648 4185 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
d31676df
JK
4186 bool active = true;
4187
4188 for (j = page->active; j < c->num; j++) {
4189 if (get_free_obj(page, j) == i) {
4190 active = false;
4191 break;
4192 }
4193 }
4194
4195 if (!active)
871751e2 4196 continue;
b1cb0982 4197
d31676df
JK
4198 /*
4199 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4200 * mapping is established when actual object allocation and
4201 * we could mistakenly access the unmapped object in the cpu
4202 * cache.
4203 */
4204 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4205 continue;
4206
4207 if (!add_caller(n, v))
871751e2
AV
4208 return;
4209 }
4210}
4211
4212static void show_symbol(struct seq_file *m, unsigned long address)
4213{
4214#ifdef CONFIG_KALLSYMS
871751e2 4215 unsigned long offset, size;
9281acea 4216 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4217
a5c43dae 4218 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4219 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4220 if (modname[0])
871751e2
AV
4221 seq_printf(m, " [%s]", modname);
4222 return;
4223 }
4224#endif
4225 seq_printf(m, "%p", (void *)address);
4226}
4227
4228static int leaks_show(struct seq_file *m, void *p)
4229{
0672aa7c 4230 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4231 struct page *page;
ce8eb6c4 4232 struct kmem_cache_node *n;
871751e2 4233 const char *name;
db845067 4234 unsigned long *x = m->private;
871751e2
AV
4235 int node;
4236 int i;
4237
4238 if (!(cachep->flags & SLAB_STORE_USER))
4239 return 0;
4240 if (!(cachep->flags & SLAB_RED_ZONE))
4241 return 0;
4242
d31676df
JK
4243 /*
4244 * Set store_user_clean and start to grab stored user information
4245 * for all objects on this cache. If some alloc/free requests comes
4246 * during the processing, information would be wrong so restart
4247 * whole processing.
4248 */
4249 do {
4250 set_store_user_clean(cachep);
4251 drain_cpu_caches(cachep);
4252
4253 x[1] = 0;
871751e2 4254
d31676df 4255 for_each_kmem_cache_node(cachep, node, n) {
871751e2 4256
d31676df
JK
4257 check_irq_on();
4258 spin_lock_irq(&n->list_lock);
871751e2 4259
d31676df
JK
4260 list_for_each_entry(page, &n->slabs_full, lru)
4261 handle_slab(x, cachep, page);
4262 list_for_each_entry(page, &n->slabs_partial, lru)
4263 handle_slab(x, cachep, page);
4264 spin_unlock_irq(&n->list_lock);
4265 }
4266 } while (!is_store_user_clean(cachep));
871751e2 4267
871751e2 4268 name = cachep->name;
db845067 4269 if (x[0] == x[1]) {
871751e2 4270 /* Increase the buffer size */
18004c5d 4271 mutex_unlock(&slab_mutex);
db845067 4272 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4273 if (!m->private) {
4274 /* Too bad, we are really out */
db845067 4275 m->private = x;
18004c5d 4276 mutex_lock(&slab_mutex);
871751e2
AV
4277 return -ENOMEM;
4278 }
db845067
CL
4279 *(unsigned long *)m->private = x[0] * 2;
4280 kfree(x);
18004c5d 4281 mutex_lock(&slab_mutex);
871751e2
AV
4282 /* Now make sure this entry will be retried */
4283 m->count = m->size;
4284 return 0;
4285 }
db845067
CL
4286 for (i = 0; i < x[1]; i++) {
4287 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4288 show_symbol(m, x[2*i+2]);
871751e2
AV
4289 seq_putc(m, '\n');
4290 }
d2e7b7d0 4291
871751e2
AV
4292 return 0;
4293}
4294
a0ec95a8 4295static const struct seq_operations slabstats_op = {
1df3b26f 4296 .start = slab_start,
276a2439
WL
4297 .next = slab_next,
4298 .stop = slab_stop,
871751e2
AV
4299 .show = leaks_show,
4300};
a0ec95a8
AD
4301
4302static int slabstats_open(struct inode *inode, struct file *file)
4303{
b208ce32
RJ
4304 unsigned long *n;
4305
4306 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4307 if (!n)
4308 return -ENOMEM;
4309
4310 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4311
4312 return 0;
a0ec95a8
AD
4313}
4314
4315static const struct file_operations proc_slabstats_operations = {
4316 .open = slabstats_open,
4317 .read = seq_read,
4318 .llseek = seq_lseek,
4319 .release = seq_release_private,
4320};
4321#endif
4322
4323static int __init slab_proc_init(void)
4324{
4325#ifdef CONFIG_DEBUG_SLAB_LEAK
4326 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4327#endif
a0ec95a8
AD
4328 return 0;
4329}
4330module_init(slab_proc_init);
1da177e4
LT
4331#endif
4332
00e145b6
MS
4333/**
4334 * ksize - get the actual amount of memory allocated for a given object
4335 * @objp: Pointer to the object
4336 *
4337 * kmalloc may internally round up allocations and return more memory
4338 * than requested. ksize() can be used to determine the actual amount of
4339 * memory allocated. The caller may use this additional memory, even though
4340 * a smaller amount of memory was initially specified with the kmalloc call.
4341 * The caller must guarantee that objp points to a valid object previously
4342 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4343 * must not be freed during the duration of the call.
4344 */
fd76bab2 4345size_t ksize(const void *objp)
1da177e4 4346{
7ed2f9e6
AP
4347 size_t size;
4348
ef8b4520
CL
4349 BUG_ON(!objp);
4350 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4351 return 0;
1da177e4 4352
7ed2f9e6
AP
4353 size = virt_to_cache(objp)->object_size;
4354 /* We assume that ksize callers could use the whole allocated area,
4355 * so we need to unpoison this area.
4356 */
505f5dcb 4357 kasan_krealloc(objp, size, GFP_NOWAIT);
7ed2f9e6
AP
4358
4359 return size;
1da177e4 4360}
b1aabecd 4361EXPORT_SYMBOL(ksize);