]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/slab.c
[PATCH] Direct Migration V9: Avoid writeback / page_migrate() method
[mirror_ubuntu-jammy-kernel.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in kmem_cache_t and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
97#include <linux/seq_file.h>
98#include <linux/notifier.h>
99#include <linux/kallsyms.h>
100#include <linux/cpu.h>
101#include <linux/sysctl.h>
102#include <linux/module.h>
103#include <linux/rcupdate.h>
543537bd 104#include <linux/string.h>
e498be7d 105#include <linux/nodemask.h>
dc85da15 106#include <linux/mempolicy.h>
fc0abb14 107#include <linux/mutex.h>
1da177e4
LT
108
109#include <asm/uaccess.h>
110#include <asm/cacheflush.h>
111#include <asm/tlbflush.h>
112#include <asm/page.h>
113
114/*
115 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
116 * SLAB_RED_ZONE & SLAB_POISON.
117 * 0 for faster, smaller code (especially in the critical paths).
118 *
119 * STATS - 1 to collect stats for /proc/slabinfo.
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
123 */
124
125#ifdef CONFIG_DEBUG_SLAB
126#define DEBUG 1
127#define STATS 1
128#define FORCED_DEBUG 1
129#else
130#define DEBUG 0
131#define STATS 0
132#define FORCED_DEBUG 0
133#endif
134
1da177e4
LT
135/* Shouldn't this be in a header file somewhere? */
136#define BYTES_PER_WORD sizeof(void *)
137
138#ifndef cache_line_size
139#define cache_line_size() L1_CACHE_BYTES
140#endif
141
142#ifndef ARCH_KMALLOC_MINALIGN
143/*
144 * Enforce a minimum alignment for the kmalloc caches.
145 * Usually, the kmalloc caches are cache_line_size() aligned, except when
146 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
147 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
148 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
149 * Note that this flag disables some debug features.
150 */
151#define ARCH_KMALLOC_MINALIGN 0
152#endif
153
154#ifndef ARCH_SLAB_MINALIGN
155/*
156 * Enforce a minimum alignment for all caches.
157 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
158 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
159 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
160 * some debug features.
161 */
162#define ARCH_SLAB_MINALIGN 0
163#endif
164
165#ifndef ARCH_KMALLOC_FLAGS
166#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
167#endif
168
169/* Legal flag mask for kmem_cache_create(). */
170#if DEBUG
171# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
173 SLAB_NO_REAP | SLAB_CACHE_DMA | \
174 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
175 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
176 SLAB_DESTROY_BY_RCU)
177#else
178# define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
179 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181 SLAB_DESTROY_BY_RCU)
182#endif
183
184/*
185 * kmem_bufctl_t:
186 *
187 * Bufctl's are used for linking objs within a slab
188 * linked offsets.
189 *
190 * This implementation relies on "struct page" for locating the cache &
191 * slab an object belongs to.
192 * This allows the bufctl structure to be small (one int), but limits
193 * the number of objects a slab (not a cache) can contain when off-slab
194 * bufctls are used. The limit is the size of the largest general cache
195 * that does not use off-slab slabs.
196 * For 32bit archs with 4 kB pages, is this 56.
197 * This is not serious, as it is only for large objects, when it is unwise
198 * to have too many per slab.
199 * Note: This limit can be raised by introducing a general cache whose size
200 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
201 */
202
fa5b08d5 203typedef unsigned int kmem_bufctl_t;
1da177e4
LT
204#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
205#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
206#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
207
208/* Max number of objs-per-slab for caches which use off-slab slabs.
209 * Needed to avoid a possible looping condition in cache_grow().
210 */
211static unsigned long offslab_limit;
212
213/*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220struct slab {
b28a02de
PE
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
1da177e4
LT
227};
228
229/*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245struct slab_rcu {
b28a02de
PE
246 struct rcu_head head;
247 kmem_cache_t *cachep;
248 void *addr;
1da177e4
LT
249};
250
251/*
252 * struct array_cache
253 *
1da177e4
LT
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
e498be7d
CL
268 spinlock_t lock;
269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
1da177e4
LT
275};
276
277/* bootstrap: The caches do not work without cpuarrays anymore,
278 * but the cpuarrays are allocated from the generic caches...
279 */
280#define BOOT_CPUCACHE_ENTRIES 1
281struct arraycache_init {
282 struct array_cache cache;
b28a02de 283 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
284};
285
286/*
e498be7d 287 * The slab lists for all objects.
1da177e4
LT
288 */
289struct kmem_list3 {
b28a02de
PE
290 struct list_head slabs_partial; /* partial list first, better asm code */
291 struct list_head slabs_full;
292 struct list_head slabs_free;
293 unsigned long free_objects;
294 unsigned long next_reap;
295 int free_touched;
296 unsigned int free_limit;
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
1da177e4
LT
300};
301
e498be7d
CL
302/*
303 * Need this for bootstrapping a per node allocator.
304 */
305#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
306struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
307#define CACHE_CACHE 0
308#define SIZE_AC 1
309#define SIZE_L3 (1 + MAX_NUMNODES)
310
311/*
7243cc05 312 * This function must be completely optimized away if
e498be7d
CL
313 * a constant is passed to it. Mostly the same as
314 * what is in linux/slab.h except it returns an
315 * index.
316 */
7243cc05 317static __always_inline int index_of(const size_t size)
e498be7d
CL
318{
319 if (__builtin_constant_p(size)) {
320 int i = 0;
321
322#define CACHE(x) \
323 if (size <=x) \
324 return i; \
325 else \
326 i++;
327#include "linux/kmalloc_sizes.h"
328#undef CACHE
329 {
330 extern void __bad_size(void);
331 __bad_size();
332 }
7243cc05
IK
333 } else
334 BUG();
e498be7d
CL
335 return 0;
336}
337
338#define INDEX_AC index_of(sizeof(struct arraycache_init))
339#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 340
e498be7d
CL
341static inline void kmem_list3_init(struct kmem_list3 *parent)
342{
343 INIT_LIST_HEAD(&parent->slabs_full);
344 INIT_LIST_HEAD(&parent->slabs_partial);
345 INIT_LIST_HEAD(&parent->slabs_free);
346 parent->shared = NULL;
347 parent->alien = NULL;
348 spin_lock_init(&parent->list_lock);
349 parent->free_objects = 0;
350 parent->free_touched = 0;
351}
352
353#define MAKE_LIST(cachep, listp, slab, nodeid) \
354 do { \
355 INIT_LIST_HEAD(listp); \
356 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
357 } while (0)
358
359#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
360 do { \
361 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
362 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
363 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
364 } while (0)
1da177e4
LT
365
366/*
367 * kmem_cache_t
368 *
369 * manages a cache.
370 */
b28a02de 371
2109a2d1 372struct kmem_cache {
1da177e4 373/* 1) per-cpu data, touched during every alloc/free */
b28a02de
PE
374 struct array_cache *array[NR_CPUS];
375 unsigned int batchcount;
376 unsigned int limit;
377 unsigned int shared;
378 unsigned int objsize;
e498be7d 379/* 2) touched by every alloc & free from the backend */
b28a02de
PE
380 struct kmem_list3 *nodelists[MAX_NUMNODES];
381 unsigned int flags; /* constant flags */
382 unsigned int num; /* # of objs per slab */
383 spinlock_t spinlock;
1da177e4
LT
384
385/* 3) cache_grow/shrink */
386 /* order of pgs per slab (2^n) */
b28a02de 387 unsigned int gfporder;
1da177e4
LT
388
389 /* force GFP flags, e.g. GFP_DMA */
b28a02de 390 gfp_t gfpflags;
1da177e4 391
b28a02de
PE
392 size_t colour; /* cache colouring range */
393 unsigned int colour_off; /* colour offset */
394 unsigned int colour_next; /* cache colouring */
395 kmem_cache_t *slabp_cache;
396 unsigned int slab_size;
397 unsigned int dflags; /* dynamic flags */
1da177e4
LT
398
399 /* constructor func */
b28a02de 400 void (*ctor) (void *, kmem_cache_t *, unsigned long);
1da177e4
LT
401
402 /* de-constructor func */
b28a02de 403 void (*dtor) (void *, kmem_cache_t *, unsigned long);
1da177e4
LT
404
405/* 4) cache creation/removal */
b28a02de
PE
406 const char *name;
407 struct list_head next;
1da177e4
LT
408
409/* 5) statistics */
410#if STATS
b28a02de
PE
411 unsigned long num_active;
412 unsigned long num_allocations;
413 unsigned long high_mark;
414 unsigned long grown;
415 unsigned long reaped;
416 unsigned long errors;
417 unsigned long max_freeable;
418 unsigned long node_allocs;
419 unsigned long node_frees;
420 atomic_t allochit;
421 atomic_t allocmiss;
422 atomic_t freehit;
423 atomic_t freemiss;
1da177e4
LT
424#endif
425#if DEBUG
b28a02de
PE
426 int dbghead;
427 int reallen;
1da177e4
LT
428#endif
429};
430
431#define CFLGS_OFF_SLAB (0x80000000UL)
432#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
433
434#define BATCHREFILL_LIMIT 16
435/* Optimization question: fewer reaps means less
436 * probability for unnessary cpucache drain/refill cycles.
437 *
dc6f3f27 438 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
439 * which could lock up otherwise freeable slabs.
440 */
441#define REAPTIMEOUT_CPUC (2*HZ)
442#define REAPTIMEOUT_LIST3 (4*HZ)
443
444#if STATS
445#define STATS_INC_ACTIVE(x) ((x)->num_active++)
446#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
447#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
448#define STATS_INC_GROWN(x) ((x)->grown++)
449#define STATS_INC_REAPED(x) ((x)->reaped++)
450#define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
451 (x)->high_mark = (x)->num_active; \
452 } while (0)
453#define STATS_INC_ERR(x) ((x)->errors++)
454#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 455#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
1da177e4
LT
456#define STATS_SET_FREEABLE(x, i) \
457 do { if ((x)->max_freeable < i) \
458 (x)->max_freeable = i; \
459 } while (0)
460
461#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
462#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
463#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
464#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
465#else
466#define STATS_INC_ACTIVE(x) do { } while (0)
467#define STATS_DEC_ACTIVE(x) do { } while (0)
468#define STATS_INC_ALLOCED(x) do { } while (0)
469#define STATS_INC_GROWN(x) do { } while (0)
470#define STATS_INC_REAPED(x) do { } while (0)
471#define STATS_SET_HIGH(x) do { } while (0)
472#define STATS_INC_ERR(x) do { } while (0)
473#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 474#define STATS_INC_NODEFREES(x) do { } while (0)
1da177e4
LT
475#define STATS_SET_FREEABLE(x, i) \
476 do { } while (0)
477
478#define STATS_INC_ALLOCHIT(x) do { } while (0)
479#define STATS_INC_ALLOCMISS(x) do { } while (0)
480#define STATS_INC_FREEHIT(x) do { } while (0)
481#define STATS_INC_FREEMISS(x) do { } while (0)
482#endif
483
484#if DEBUG
485/* Magic nums for obj red zoning.
486 * Placed in the first word before and the first word after an obj.
487 */
488#define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
489#define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
490
491/* ...and for poisoning */
492#define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
493#define POISON_FREE 0x6b /* for use-after-free poisoning */
494#define POISON_END 0xa5 /* end-byte of poisoning */
495
496/* memory layout of objects:
497 * 0 : objp
498 * 0 .. cachep->dbghead - BYTES_PER_WORD - 1: padding. This ensures that
499 * the end of an object is aligned with the end of the real
500 * allocation. Catches writes behind the end of the allocation.
501 * cachep->dbghead - BYTES_PER_WORD .. cachep->dbghead - 1:
502 * redzone word.
503 * cachep->dbghead: The real object.
504 * cachep->objsize - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
505 * cachep->objsize - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
506 */
507static int obj_dbghead(kmem_cache_t *cachep)
508{
509 return cachep->dbghead;
510}
511
512static int obj_reallen(kmem_cache_t *cachep)
513{
514 return cachep->reallen;
515}
516
517static unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp)
518{
519 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
520 return (unsigned long*) (objp+obj_dbghead(cachep)-BYTES_PER_WORD);
521}
522
523static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp)
524{
525 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
526 if (cachep->flags & SLAB_STORE_USER)
b28a02de
PE
527 return (unsigned long *)(objp + cachep->objsize -
528 2 * BYTES_PER_WORD);
529 return (unsigned long *)(objp + cachep->objsize - BYTES_PER_WORD);
1da177e4
LT
530}
531
532static void **dbg_userword(kmem_cache_t *cachep, void *objp)
533{
534 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
b28a02de 535 return (void **)(objp + cachep->objsize - BYTES_PER_WORD);
1da177e4
LT
536}
537
538#else
539
540#define obj_dbghead(x) 0
541#define obj_reallen(cachep) (cachep->objsize)
542#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
543#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
544#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
545
546#endif
547
548/*
549 * Maximum size of an obj (in 2^order pages)
550 * and absolute limit for the gfp order.
551 */
552#if defined(CONFIG_LARGE_ALLOCS)
553#define MAX_OBJ_ORDER 13 /* up to 32Mb */
554#define MAX_GFP_ORDER 13 /* up to 32Mb */
555#elif defined(CONFIG_MMU)
556#define MAX_OBJ_ORDER 5 /* 32 pages */
557#define MAX_GFP_ORDER 5 /* 32 pages */
558#else
559#define MAX_OBJ_ORDER 8 /* up to 1Mb */
560#define MAX_GFP_ORDER 8 /* up to 1Mb */
561#endif
562
563/*
564 * Do not go above this order unless 0 objects fit into the slab.
565 */
566#define BREAK_GFP_ORDER_HI 1
567#define BREAK_GFP_ORDER_LO 0
568static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
569
065d41cb 570/* Functions for storing/retrieving the cachep and or slab from the
1da177e4
LT
571 * global 'mem_map'. These are used to find the slab an obj belongs to.
572 * With kfree(), these are used to find the cache which an obj belongs to.
573 */
065d41cb
PE
574static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
575{
576 page->lru.next = (struct list_head *)cache;
577}
578
579static inline struct kmem_cache *page_get_cache(struct page *page)
580{
581 return (struct kmem_cache *)page->lru.next;
582}
583
584static inline void page_set_slab(struct page *page, struct slab *slab)
585{
586 page->lru.prev = (struct list_head *)slab;
587}
588
589static inline struct slab *page_get_slab(struct page *page)
590{
591 return (struct slab *)page->lru.prev;
592}
1da177e4
LT
593
594/* These are the default caches for kmalloc. Custom caches can have other sizes. */
595struct cache_sizes malloc_sizes[] = {
596#define CACHE(x) { .cs_size = (x) },
597#include <linux/kmalloc_sizes.h>
598 CACHE(ULONG_MAX)
599#undef CACHE
600};
601EXPORT_SYMBOL(malloc_sizes);
602
603/* Must match cache_sizes above. Out of line to keep cache footprint low. */
604struct cache_names {
605 char *name;
606 char *name_dma;
607};
608
609static struct cache_names __initdata cache_names[] = {
610#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
611#include <linux/kmalloc_sizes.h>
b28a02de 612 {NULL,}
1da177e4
LT
613#undef CACHE
614};
615
616static struct arraycache_init initarray_cache __initdata =
b28a02de 617 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 618static struct arraycache_init initarray_generic =
b28a02de 619 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
620
621/* internal cache of cache description objs */
622static kmem_cache_t cache_cache = {
b28a02de
PE
623 .batchcount = 1,
624 .limit = BOOT_CPUCACHE_ENTRIES,
625 .shared = 1,
626 .objsize = sizeof(kmem_cache_t),
627 .flags = SLAB_NO_REAP,
628 .spinlock = SPIN_LOCK_UNLOCKED,
629 .name = "kmem_cache",
1da177e4 630#if DEBUG
b28a02de 631 .reallen = sizeof(kmem_cache_t),
1da177e4
LT
632#endif
633};
634
635/* Guard access to the cache-chain. */
fc0abb14 636static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
637static struct list_head cache_chain;
638
639/*
640 * vm_enough_memory() looks at this to determine how many
641 * slab-allocated pages are possibly freeable under pressure
642 *
643 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
644 */
645atomic_t slab_reclaim_pages;
1da177e4
LT
646
647/*
648 * chicken and egg problem: delay the per-cpu array allocation
649 * until the general caches are up.
650 */
651static enum {
652 NONE,
e498be7d
CL
653 PARTIAL_AC,
654 PARTIAL_L3,
1da177e4
LT
655 FULL
656} g_cpucache_up;
657
658static DEFINE_PER_CPU(struct work_struct, reap_work);
659
b28a02de
PE
660static void free_block(kmem_cache_t *cachep, void **objpp, int len, int node);
661static void enable_cpucache(kmem_cache_t *cachep);
662static void cache_reap(void *unused);
e498be7d 663static int __node_shrink(kmem_cache_t *cachep, int node);
1da177e4
LT
664
665static inline struct array_cache *ac_data(kmem_cache_t *cachep)
666{
667 return cachep->array[smp_processor_id()];
668}
669
dd0fc66f 670static inline kmem_cache_t *__find_general_cachep(size_t size, gfp_t gfpflags)
1da177e4
LT
671{
672 struct cache_sizes *csizep = malloc_sizes;
673
674#if DEBUG
675 /* This happens if someone tries to call
b28a02de
PE
676 * kmem_cache_create(), or __kmalloc(), before
677 * the generic caches are initialized.
678 */
c7e43c78 679 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4
LT
680#endif
681 while (size > csizep->cs_size)
682 csizep++;
683
684 /*
0abf40c1 685 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
686 * has cs_{dma,}cachep==NULL. Thus no special case
687 * for large kmalloc calls required.
688 */
689 if (unlikely(gfpflags & GFP_DMA))
690 return csizep->cs_dmacachep;
691 return csizep->cs_cachep;
692}
693
dd0fc66f 694kmem_cache_t *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
695{
696 return __find_general_cachep(size, gfpflags);
697}
698EXPORT_SYMBOL(kmem_find_general_cachep);
699
1da177e4
LT
700/* Cal the num objs, wastage, and bytes left over for a given slab size. */
701static void cache_estimate(unsigned long gfporder, size_t size, size_t align,
b28a02de 702 int flags, size_t *left_over, unsigned int *num)
1da177e4
LT
703{
704 int i;
b28a02de 705 size_t wastage = PAGE_SIZE << gfporder;
1da177e4
LT
706 size_t extra = 0;
707 size_t base = 0;
708
709 if (!(flags & CFLGS_OFF_SLAB)) {
710 base = sizeof(struct slab);
711 extra = sizeof(kmem_bufctl_t);
712 }
713 i = 0;
b28a02de 714 while (i * size + ALIGN(base + i * extra, align) <= wastage)
1da177e4
LT
715 i++;
716 if (i > 0)
717 i--;
718
719 if (i > SLAB_LIMIT)
720 i = SLAB_LIMIT;
721
722 *num = i;
b28a02de
PE
723 wastage -= i * size;
724 wastage -= ALIGN(base + i * extra, align);
1da177e4
LT
725 *left_over = wastage;
726}
727
728#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
729
730static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg)
731{
732 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 733 function, cachep->name, msg);
1da177e4
LT
734 dump_stack();
735}
736
737/*
738 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
739 * via the workqueue/eventd.
740 * Add the CPU number into the expiration time to minimize the possibility of
741 * the CPUs getting into lockstep and contending for the global cache chain
742 * lock.
743 */
744static void __devinit start_cpu_timer(int cpu)
745{
746 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
747
748 /*
749 * When this gets called from do_initcalls via cpucache_init(),
750 * init_workqueues() has already run, so keventd will be setup
751 * at that time.
752 */
753 if (keventd_up() && reap_work->func == NULL) {
754 INIT_WORK(reap_work, cache_reap, NULL);
755 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
756 }
757}
758
e498be7d 759static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 760 int batchcount)
1da177e4 761{
b28a02de 762 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
763 struct array_cache *nc = NULL;
764
e498be7d 765 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
766 if (nc) {
767 nc->avail = 0;
768 nc->limit = entries;
769 nc->batchcount = batchcount;
770 nc->touched = 0;
e498be7d 771 spin_lock_init(&nc->lock);
1da177e4
LT
772 }
773 return nc;
774}
775
e498be7d 776#ifdef CONFIG_NUMA
dc85da15
CL
777static void *__cache_alloc_node(kmem_cache_t *, gfp_t, int);
778
e498be7d
CL
779static inline struct array_cache **alloc_alien_cache(int node, int limit)
780{
781 struct array_cache **ac_ptr;
b28a02de 782 int memsize = sizeof(void *) * MAX_NUMNODES;
e498be7d
CL
783 int i;
784
785 if (limit > 1)
786 limit = 12;
787 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
788 if (ac_ptr) {
789 for_each_node(i) {
790 if (i == node || !node_online(i)) {
791 ac_ptr[i] = NULL;
792 continue;
793 }
794 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
795 if (!ac_ptr[i]) {
b28a02de 796 for (i--; i <= 0; i--)
e498be7d
CL
797 kfree(ac_ptr[i]);
798 kfree(ac_ptr);
799 return NULL;
800 }
801 }
802 }
803 return ac_ptr;
804}
805
806static inline void free_alien_cache(struct array_cache **ac_ptr)
807{
808 int i;
809
810 if (!ac_ptr)
811 return;
812
813 for_each_node(i)
b28a02de 814 kfree(ac_ptr[i]);
e498be7d
CL
815
816 kfree(ac_ptr);
817}
818
b28a02de
PE
819static inline void __drain_alien_cache(kmem_cache_t *cachep,
820 struct array_cache *ac, int node)
e498be7d
CL
821{
822 struct kmem_list3 *rl3 = cachep->nodelists[node];
823
824 if (ac->avail) {
825 spin_lock(&rl3->list_lock);
ff69416e 826 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
827 ac->avail = 0;
828 spin_unlock(&rl3->list_lock);
829 }
830}
831
832static void drain_alien_cache(kmem_cache_t *cachep, struct kmem_list3 *l3)
833{
b28a02de 834 int i = 0;
e498be7d
CL
835 struct array_cache *ac;
836 unsigned long flags;
837
838 for_each_online_node(i) {
839 ac = l3->alien[i];
840 if (ac) {
841 spin_lock_irqsave(&ac->lock, flags);
842 __drain_alien_cache(cachep, ac, i);
843 spin_unlock_irqrestore(&ac->lock, flags);
844 }
845 }
846}
847#else
848#define alloc_alien_cache(node, limit) do { } while (0)
849#define free_alien_cache(ac_ptr) do { } while (0)
850#define drain_alien_cache(cachep, l3) do { } while (0)
851#endif
852
1da177e4 853static int __devinit cpuup_callback(struct notifier_block *nfb,
b28a02de 854 unsigned long action, void *hcpu)
1da177e4
LT
855{
856 long cpu = (long)hcpu;
b28a02de 857 kmem_cache_t *cachep;
e498be7d
CL
858 struct kmem_list3 *l3 = NULL;
859 int node = cpu_to_node(cpu);
860 int memsize = sizeof(struct kmem_list3);
1da177e4
LT
861
862 switch (action) {
863 case CPU_UP_PREPARE:
fc0abb14 864 mutex_lock(&cache_chain_mutex);
e498be7d
CL
865 /* we need to do this right in the beginning since
866 * alloc_arraycache's are going to use this list.
867 * kmalloc_node allows us to add the slab to the right
868 * kmem_list3 and not this cpu's kmem_list3
869 */
870
1da177e4 871 list_for_each_entry(cachep, &cache_chain, next) {
e498be7d
CL
872 /* setup the size64 kmemlist for cpu before we can
873 * begin anything. Make sure some other cpu on this
874 * node has not already allocated this
875 */
876 if (!cachep->nodelists[node]) {
877 if (!(l3 = kmalloc_node(memsize,
b28a02de 878 GFP_KERNEL, node)))
e498be7d
CL
879 goto bad;
880 kmem_list3_init(l3);
881 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 882 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
883
884 cachep->nodelists[node] = l3;
885 }
1da177e4 886
e498be7d
CL
887 spin_lock_irq(&cachep->nodelists[node]->list_lock);
888 cachep->nodelists[node]->free_limit =
b28a02de
PE
889 (1 + nr_cpus_node(node)) *
890 cachep->batchcount + cachep->num;
e498be7d
CL
891 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
892 }
893
894 /* Now we can go ahead with allocating the shared array's
b28a02de 895 & array cache's */
e498be7d 896 list_for_each_entry(cachep, &cache_chain, next) {
cd105df4
TK
897 struct array_cache *nc;
898
e498be7d 899 nc = alloc_arraycache(node, cachep->limit,
b28a02de 900 cachep->batchcount);
1da177e4
LT
901 if (!nc)
902 goto bad;
1da177e4 903 cachep->array[cpu] = nc;
1da177e4 904
e498be7d
CL
905 l3 = cachep->nodelists[node];
906 BUG_ON(!l3);
907 if (!l3->shared) {
908 if (!(nc = alloc_arraycache(node,
b28a02de
PE
909 cachep->shared *
910 cachep->batchcount,
911 0xbaadf00d)))
912 goto bad;
e498be7d
CL
913
914 /* we are serialised from CPU_DEAD or
b28a02de 915 CPU_UP_CANCELLED by the cpucontrol lock */
e498be7d
CL
916 l3->shared = nc;
917 }
1da177e4 918 }
fc0abb14 919 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
920 break;
921 case CPU_ONLINE:
922 start_cpu_timer(cpu);
923 break;
924#ifdef CONFIG_HOTPLUG_CPU
925 case CPU_DEAD:
926 /* fall thru */
927 case CPU_UP_CANCELED:
fc0abb14 928 mutex_lock(&cache_chain_mutex);
1da177e4
LT
929
930 list_for_each_entry(cachep, &cache_chain, next) {
931 struct array_cache *nc;
e498be7d 932 cpumask_t mask;
1da177e4 933
e498be7d 934 mask = node_to_cpumask(node);
1da177e4
LT
935 spin_lock_irq(&cachep->spinlock);
936 /* cpu is dead; no one can alloc from it. */
937 nc = cachep->array[cpu];
938 cachep->array[cpu] = NULL;
e498be7d
CL
939 l3 = cachep->nodelists[node];
940
941 if (!l3)
942 goto unlock_cache;
943
944 spin_lock(&l3->list_lock);
945
946 /* Free limit for this kmem_list3 */
947 l3->free_limit -= cachep->batchcount;
948 if (nc)
ff69416e 949 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
950
951 if (!cpus_empty(mask)) {
b28a02de
PE
952 spin_unlock(&l3->list_lock);
953 goto unlock_cache;
954 }
e498be7d
CL
955
956 if (l3->shared) {
957 free_block(cachep, l3->shared->entry,
b28a02de 958 l3->shared->avail, node);
e498be7d
CL
959 kfree(l3->shared);
960 l3->shared = NULL;
961 }
962 if (l3->alien) {
963 drain_alien_cache(cachep, l3);
964 free_alien_cache(l3->alien);
965 l3->alien = NULL;
966 }
967
968 /* free slabs belonging to this node */
969 if (__node_shrink(cachep, node)) {
970 cachep->nodelists[node] = NULL;
971 spin_unlock(&l3->list_lock);
972 kfree(l3);
973 } else {
974 spin_unlock(&l3->list_lock);
975 }
b28a02de 976 unlock_cache:
1da177e4
LT
977 spin_unlock_irq(&cachep->spinlock);
978 kfree(nc);
979 }
fc0abb14 980 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
981 break;
982#endif
983 }
984 return NOTIFY_OK;
b28a02de 985 bad:
fc0abb14 986 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
987 return NOTIFY_BAD;
988}
989
990static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
991
e498be7d
CL
992/*
993 * swap the static kmem_list3 with kmalloced memory
994 */
b28a02de 995static void init_list(kmem_cache_t *cachep, struct kmem_list3 *list, int nodeid)
e498be7d
CL
996{
997 struct kmem_list3 *ptr;
998
999 BUG_ON(cachep->nodelists[nodeid] != list);
1000 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1001 BUG_ON(!ptr);
1002
1003 local_irq_disable();
1004 memcpy(ptr, list, sizeof(struct kmem_list3));
1005 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1006 cachep->nodelists[nodeid] = ptr;
1007 local_irq_enable();
1008}
1009
1da177e4
LT
1010/* Initialisation.
1011 * Called after the gfp() functions have been enabled, and before smp_init().
1012 */
1013void __init kmem_cache_init(void)
1014{
1015 size_t left_over;
1016 struct cache_sizes *sizes;
1017 struct cache_names *names;
e498be7d
CL
1018 int i;
1019
1020 for (i = 0; i < NUM_INIT_LISTS; i++) {
1021 kmem_list3_init(&initkmem_list3[i]);
1022 if (i < MAX_NUMNODES)
1023 cache_cache.nodelists[i] = NULL;
1024 }
1da177e4
LT
1025
1026 /*
1027 * Fragmentation resistance on low memory - only use bigger
1028 * page orders on machines with more than 32MB of memory.
1029 */
1030 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1031 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1032
1da177e4
LT
1033 /* Bootstrap is tricky, because several objects are allocated
1034 * from caches that do not exist yet:
1035 * 1) initialize the cache_cache cache: it contains the kmem_cache_t
1036 * structures of all caches, except cache_cache itself: cache_cache
1037 * is statically allocated.
e498be7d
CL
1038 * Initially an __init data area is used for the head array and the
1039 * kmem_list3 structures, it's replaced with a kmalloc allocated
1040 * array at the end of the bootstrap.
1da177e4 1041 * 2) Create the first kmalloc cache.
e498be7d
CL
1042 * The kmem_cache_t for the new cache is allocated normally.
1043 * An __init data area is used for the head array.
1044 * 3) Create the remaining kmalloc caches, with minimally sized
1045 * head arrays.
1da177e4
LT
1046 * 4) Replace the __init data head arrays for cache_cache and the first
1047 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1048 * 5) Replace the __init data for kmem_list3 for cache_cache and
1049 * the other cache's with kmalloc allocated memory.
1050 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1051 */
1052
1053 /* 1) create the cache_cache */
1da177e4
LT
1054 INIT_LIST_HEAD(&cache_chain);
1055 list_add(&cache_cache.next, &cache_chain);
1056 cache_cache.colour_off = cache_line_size();
1057 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
e498be7d 1058 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1da177e4
LT
1059
1060 cache_cache.objsize = ALIGN(cache_cache.objsize, cache_line_size());
1061
1062 cache_estimate(0, cache_cache.objsize, cache_line_size(), 0,
b28a02de 1063 &left_over, &cache_cache.num);
1da177e4
LT
1064 if (!cache_cache.num)
1065 BUG();
1066
b28a02de 1067 cache_cache.colour = left_over / cache_cache.colour_off;
1da177e4 1068 cache_cache.colour_next = 0;
b28a02de
PE
1069 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1070 sizeof(struct slab), cache_line_size());
1da177e4
LT
1071
1072 /* 2+3) create the kmalloc caches */
1073 sizes = malloc_sizes;
1074 names = cache_names;
1075
e498be7d
CL
1076 /* Initialize the caches that provide memory for the array cache
1077 * and the kmem_list3 structures first.
1078 * Without this, further allocations will bug
1079 */
1080
1081 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
b28a02de
PE
1082 sizes[INDEX_AC].cs_size,
1083 ARCH_KMALLOC_MINALIGN,
1084 (ARCH_KMALLOC_FLAGS |
1085 SLAB_PANIC), NULL, NULL);
e498be7d
CL
1086
1087 if (INDEX_AC != INDEX_L3)
1088 sizes[INDEX_L3].cs_cachep =
b28a02de
PE
1089 kmem_cache_create(names[INDEX_L3].name,
1090 sizes[INDEX_L3].cs_size,
1091 ARCH_KMALLOC_MINALIGN,
1092 (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL,
1093 NULL);
e498be7d 1094
1da177e4 1095 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1096 /*
1097 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1098 * This should be particularly beneficial on SMP boxes, as it
1099 * eliminates "false sharing".
1100 * Note for systems short on memory removing the alignment will
e498be7d
CL
1101 * allow tighter packing of the smaller caches.
1102 */
b28a02de 1103 if (!sizes->cs_cachep)
e498be7d 1104 sizes->cs_cachep = kmem_cache_create(names->name,
b28a02de
PE
1105 sizes->cs_size,
1106 ARCH_KMALLOC_MINALIGN,
1107 (ARCH_KMALLOC_FLAGS
1108 | SLAB_PANIC),
1109 NULL, NULL);
1da177e4
LT
1110
1111 /* Inc off-slab bufctl limit until the ceiling is hit. */
1112 if (!(OFF_SLAB(sizes->cs_cachep))) {
b28a02de 1113 offslab_limit = sizes->cs_size - sizeof(struct slab);
1da177e4
LT
1114 offslab_limit /= sizeof(kmem_bufctl_t);
1115 }
1116
1117 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
b28a02de
PE
1118 sizes->cs_size,
1119 ARCH_KMALLOC_MINALIGN,
1120 (ARCH_KMALLOC_FLAGS |
1121 SLAB_CACHE_DMA |
1122 SLAB_PANIC), NULL,
1123 NULL);
1da177e4
LT
1124
1125 sizes++;
1126 names++;
1127 }
1128 /* 4) Replace the bootstrap head arrays */
1129 {
b28a02de 1130 void *ptr;
e498be7d 1131
1da177e4 1132 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1133
1da177e4
LT
1134 local_irq_disable();
1135 BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache);
e498be7d 1136 memcpy(ptr, ac_data(&cache_cache),
b28a02de 1137 sizeof(struct arraycache_init));
1da177e4
LT
1138 cache_cache.array[smp_processor_id()] = ptr;
1139 local_irq_enable();
e498be7d 1140
1da177e4 1141 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1142
1da177e4 1143 local_irq_disable();
e498be7d 1144 BUG_ON(ac_data(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1145 != &initarray_generic.cache);
e498be7d 1146 memcpy(ptr, ac_data(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1147 sizeof(struct arraycache_init));
e498be7d 1148 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1149 ptr;
1da177e4
LT
1150 local_irq_enable();
1151 }
e498be7d
CL
1152 /* 5) Replace the bootstrap kmem_list3's */
1153 {
1154 int node;
1155 /* Replace the static kmem_list3 structures for the boot cpu */
1156 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
b28a02de 1157 numa_node_id());
e498be7d
CL
1158
1159 for_each_online_node(node) {
1160 init_list(malloc_sizes[INDEX_AC].cs_cachep,
b28a02de 1161 &initkmem_list3[SIZE_AC + node], node);
e498be7d
CL
1162
1163 if (INDEX_AC != INDEX_L3) {
1164 init_list(malloc_sizes[INDEX_L3].cs_cachep,
b28a02de
PE
1165 &initkmem_list3[SIZE_L3 + node],
1166 node);
e498be7d
CL
1167 }
1168 }
1169 }
1da177e4 1170
e498be7d 1171 /* 6) resize the head arrays to their final sizes */
1da177e4
LT
1172 {
1173 kmem_cache_t *cachep;
fc0abb14 1174 mutex_lock(&cache_chain_mutex);
1da177e4 1175 list_for_each_entry(cachep, &cache_chain, next)
b28a02de 1176 enable_cpucache(cachep);
fc0abb14 1177 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1178 }
1179
1180 /* Done! */
1181 g_cpucache_up = FULL;
1182
1183 /* Register a cpu startup notifier callback
1184 * that initializes ac_data for all new cpus
1185 */
1186 register_cpu_notifier(&cpucache_notifier);
1da177e4
LT
1187
1188 /* The reap timers are started later, with a module init call:
1189 * That part of the kernel is not yet operational.
1190 */
1191}
1192
1193static int __init cpucache_init(void)
1194{
1195 int cpu;
1196
1197 /*
1198 * Register the timers that return unneeded
1199 * pages to gfp.
1200 */
e498be7d 1201 for_each_online_cpu(cpu)
b28a02de 1202 start_cpu_timer(cpu);
1da177e4
LT
1203
1204 return 0;
1205}
1206
1207__initcall(cpucache_init);
1208
1209/*
1210 * Interface to system's page allocator. No need to hold the cache-lock.
1211 *
1212 * If we requested dmaable memory, we will get it. Even if we
1213 * did not request dmaable memory, we might get it, but that
1214 * would be relatively rare and ignorable.
1215 */
dd0fc66f 1216static void *kmem_getpages(kmem_cache_t *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1217{
1218 struct page *page;
1219 void *addr;
1220 int i;
1221
1222 flags |= cachep->gfpflags;
50c85a19 1223 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1224 if (!page)
1225 return NULL;
1226 addr = page_address(page);
1227
1228 i = (1 << cachep->gfporder);
1229 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1230 atomic_add(i, &slab_reclaim_pages);
1231 add_page_state(nr_slab, i);
1232 while (i--) {
1233 SetPageSlab(page);
1234 page++;
1235 }
1236 return addr;
1237}
1238
1239/*
1240 * Interface to system's page release.
1241 */
1242static void kmem_freepages(kmem_cache_t *cachep, void *addr)
1243{
b28a02de 1244 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1245 struct page *page = virt_to_page(addr);
1246 const unsigned long nr_freed = i;
1247
1248 while (i--) {
1249 if (!TestClearPageSlab(page))
1250 BUG();
1251 page++;
1252 }
1253 sub_page_state(nr_slab, nr_freed);
1254 if (current->reclaim_state)
1255 current->reclaim_state->reclaimed_slab += nr_freed;
1256 free_pages((unsigned long)addr, cachep->gfporder);
b28a02de
PE
1257 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1258 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1da177e4
LT
1259}
1260
1261static void kmem_rcu_free(struct rcu_head *head)
1262{
b28a02de 1263 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1da177e4
LT
1264 kmem_cache_t *cachep = slab_rcu->cachep;
1265
1266 kmem_freepages(cachep, slab_rcu->addr);
1267 if (OFF_SLAB(cachep))
1268 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1269}
1270
1271#if DEBUG
1272
1273#ifdef CONFIG_DEBUG_PAGEALLOC
1274static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr,
b28a02de 1275 unsigned long caller)
1da177e4
LT
1276{
1277 int size = obj_reallen(cachep);
1278
b28a02de 1279 addr = (unsigned long *)&((char *)addr)[obj_dbghead(cachep)];
1da177e4 1280
b28a02de 1281 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1282 return;
1283
b28a02de
PE
1284 *addr++ = 0x12345678;
1285 *addr++ = caller;
1286 *addr++ = smp_processor_id();
1287 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1288 {
1289 unsigned long *sptr = &caller;
1290 unsigned long svalue;
1291
1292 while (!kstack_end(sptr)) {
1293 svalue = *sptr++;
1294 if (kernel_text_address(svalue)) {
b28a02de 1295 *addr++ = svalue;
1da177e4
LT
1296 size -= sizeof(unsigned long);
1297 if (size <= sizeof(unsigned long))
1298 break;
1299 }
1300 }
1301
1302 }
b28a02de 1303 *addr++ = 0x87654321;
1da177e4
LT
1304}
1305#endif
1306
1307static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val)
1308{
1309 int size = obj_reallen(cachep);
b28a02de 1310 addr = &((char *)addr)[obj_dbghead(cachep)];
1da177e4
LT
1311
1312 memset(addr, val, size);
b28a02de 1313 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1314}
1315
1316static void dump_line(char *data, int offset, int limit)
1317{
1318 int i;
1319 printk(KERN_ERR "%03x:", offset);
b28a02de
PE
1320 for (i = 0; i < limit; i++) {
1321 printk(" %02x", (unsigned char)data[offset + i]);
1da177e4
LT
1322 }
1323 printk("\n");
1324}
1325#endif
1326
1327#if DEBUG
1328
1329static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines)
1330{
1331 int i, size;
1332 char *realobj;
1333
1334 if (cachep->flags & SLAB_RED_ZONE) {
1335 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
b28a02de
PE
1336 *dbg_redzone1(cachep, objp),
1337 *dbg_redzone2(cachep, objp));
1da177e4
LT
1338 }
1339
1340 if (cachep->flags & SLAB_STORE_USER) {
1341 printk(KERN_ERR "Last user: [<%p>]",
b28a02de 1342 *dbg_userword(cachep, objp));
1da177e4 1343 print_symbol("(%s)",
b28a02de 1344 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1345 printk("\n");
1346 }
b28a02de 1347 realobj = (char *)objp + obj_dbghead(cachep);
1da177e4 1348 size = obj_reallen(cachep);
b28a02de 1349 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1350 int limit;
1351 limit = 16;
b28a02de
PE
1352 if (i + limit > size)
1353 limit = size - i;
1da177e4
LT
1354 dump_line(realobj, i, limit);
1355 }
1356}
1357
1358static void check_poison_obj(kmem_cache_t *cachep, void *objp)
1359{
1360 char *realobj;
1361 int size, i;
1362 int lines = 0;
1363
b28a02de 1364 realobj = (char *)objp + obj_dbghead(cachep);
1da177e4
LT
1365 size = obj_reallen(cachep);
1366
b28a02de 1367 for (i = 0; i < size; i++) {
1da177e4 1368 char exp = POISON_FREE;
b28a02de 1369 if (i == size - 1)
1da177e4
LT
1370 exp = POISON_END;
1371 if (realobj[i] != exp) {
1372 int limit;
1373 /* Mismatch ! */
1374 /* Print header */
1375 if (lines == 0) {
b28a02de
PE
1376 printk(KERN_ERR
1377 "Slab corruption: start=%p, len=%d\n",
1378 realobj, size);
1da177e4
LT
1379 print_objinfo(cachep, objp, 0);
1380 }
1381 /* Hexdump the affected line */
b28a02de 1382 i = (i / 16) * 16;
1da177e4 1383 limit = 16;
b28a02de
PE
1384 if (i + limit > size)
1385 limit = size - i;
1da177e4
LT
1386 dump_line(realobj, i, limit);
1387 i += 16;
1388 lines++;
1389 /* Limit to 5 lines */
1390 if (lines > 5)
1391 break;
1392 }
1393 }
1394 if (lines != 0) {
1395 /* Print some data about the neighboring objects, if they
1396 * exist:
1397 */
065d41cb 1398 struct slab *slabp = page_get_slab(virt_to_page(objp));
1da177e4
LT
1399 int objnr;
1400
9884fd8d 1401 objnr = (unsigned)(objp - slabp->s_mem) / cachep->objsize;
1da177e4 1402 if (objnr) {
b28a02de
PE
1403 objp = slabp->s_mem + (objnr - 1) * cachep->objsize;
1404 realobj = (char *)objp + obj_dbghead(cachep);
1da177e4 1405 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1406 realobj, size);
1da177e4
LT
1407 print_objinfo(cachep, objp, 2);
1408 }
b28a02de
PE
1409 if (objnr + 1 < cachep->num) {
1410 objp = slabp->s_mem + (objnr + 1) * cachep->objsize;
1411 realobj = (char *)objp + obj_dbghead(cachep);
1da177e4 1412 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1413 realobj, size);
1da177e4
LT
1414 print_objinfo(cachep, objp, 2);
1415 }
1416 }
1417}
1418#endif
1419
1420/* Destroy all the objs in a slab, and release the mem back to the system.
1421 * Before calling the slab must have been unlinked from the cache.
1422 * The cache-lock is not held/needed.
1423 */
b28a02de 1424static void slab_destroy(kmem_cache_t *cachep, struct slab *slabp)
1da177e4
LT
1425{
1426 void *addr = slabp->s_mem - slabp->colouroff;
1427
1428#if DEBUG
1429 int i;
1430 for (i = 0; i < cachep->num; i++) {
1431 void *objp = slabp->s_mem + cachep->objsize * i;
1432
1433 if (cachep->flags & SLAB_POISON) {
1434#ifdef CONFIG_DEBUG_PAGEALLOC
b28a02de
PE
1435 if ((cachep->objsize % PAGE_SIZE) == 0
1436 && OFF_SLAB(cachep))
1437 kernel_map_pages(virt_to_page(objp),
1438 cachep->objsize / PAGE_SIZE,
1439 1);
1da177e4
LT
1440 else
1441 check_poison_obj(cachep, objp);
1442#else
1443 check_poison_obj(cachep, objp);
1444#endif
1445 }
1446 if (cachep->flags & SLAB_RED_ZONE) {
1447 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1448 slab_error(cachep, "start of a freed object "
b28a02de 1449 "was overwritten");
1da177e4
LT
1450 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1451 slab_error(cachep, "end of a freed object "
b28a02de 1452 "was overwritten");
1da177e4
LT
1453 }
1454 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
b28a02de 1455 (cachep->dtor) (objp + obj_dbghead(cachep), cachep, 0);
1da177e4
LT
1456 }
1457#else
1458 if (cachep->dtor) {
1459 int i;
1460 for (i = 0; i < cachep->num; i++) {
b28a02de
PE
1461 void *objp = slabp->s_mem + cachep->objsize * i;
1462 (cachep->dtor) (objp, cachep, 0);
1da177e4
LT
1463 }
1464 }
1465#endif
1466
1467 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1468 struct slab_rcu *slab_rcu;
1469
b28a02de 1470 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1471 slab_rcu->cachep = cachep;
1472 slab_rcu->addr = addr;
1473 call_rcu(&slab_rcu->head, kmem_rcu_free);
1474 } else {
1475 kmem_freepages(cachep, addr);
1476 if (OFF_SLAB(cachep))
1477 kmem_cache_free(cachep->slabp_cache, slabp);
1478 }
1479}
1480
e498be7d
CL
1481/* For setting up all the kmem_list3s for cache whose objsize is same
1482 as size of kmem_list3. */
1483static inline void set_up_list3s(kmem_cache_t *cachep, int index)
1484{
1485 int node;
1486
1487 for_each_online_node(node) {
b28a02de 1488 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1489 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1490 REAPTIMEOUT_LIST3 +
1491 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1492 }
1493}
1494
4d268eba
PE
1495/**
1496 * calculate_slab_order - calculate size (page order) of slabs and the number
1497 * of objects per slab.
1498 *
1499 * This could be made much more intelligent. For now, try to avoid using
1500 * high order pages for slabs. When the gfp() functions are more friendly
1501 * towards high-order requests, this should be changed.
1502 */
1503static inline size_t calculate_slab_order(kmem_cache_t *cachep, size_t size,
1504 size_t align, gfp_t flags)
1505{
1506 size_t left_over = 0;
1507
b28a02de 1508 for (;; cachep->gfporder++) {
4d268eba
PE
1509 unsigned int num;
1510 size_t remainder;
1511
1512 if (cachep->gfporder > MAX_GFP_ORDER) {
1513 cachep->num = 0;
1514 break;
1515 }
1516
1517 cache_estimate(cachep->gfporder, size, align, flags,
1518 &remainder, &num);
1519 if (!num)
1520 continue;
1521 /* More than offslab_limit objects will cause problems */
1522 if (flags & CFLGS_OFF_SLAB && cachep->num > offslab_limit)
1523 break;
1524
1525 cachep->num = num;
1526 left_over = remainder;
1527
1528 /*
1529 * Large number of objects is good, but very large slabs are
1530 * currently bad for the gfp()s.
1531 */
1532 if (cachep->gfporder >= slab_break_gfp_order)
1533 break;
1534
1535 if ((left_over * 8) <= (PAGE_SIZE << cachep->gfporder))
1536 /* Acceptable internal fragmentation */
1537 break;
1538 }
1539 return left_over;
1540}
1541
1da177e4
LT
1542/**
1543 * kmem_cache_create - Create a cache.
1544 * @name: A string which is used in /proc/slabinfo to identify this cache.
1545 * @size: The size of objects to be created in this cache.
1546 * @align: The required alignment for the objects.
1547 * @flags: SLAB flags
1548 * @ctor: A constructor for the objects.
1549 * @dtor: A destructor for the objects.
1550 *
1551 * Returns a ptr to the cache on success, NULL on failure.
1552 * Cannot be called within a int, but can be interrupted.
1553 * The @ctor is run when new pages are allocated by the cache
1554 * and the @dtor is run before the pages are handed back.
1555 *
1556 * @name must be valid until the cache is destroyed. This implies that
1557 * the module calling this has to destroy the cache before getting
1558 * unloaded.
1559 *
1560 * The flags are
1561 *
1562 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1563 * to catch references to uninitialised memory.
1564 *
1565 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1566 * for buffer overruns.
1567 *
1568 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
1569 * memory pressure.
1570 *
1571 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1572 * cacheline. This can be beneficial if you're counting cycles as closely
1573 * as davem.
1574 */
1575kmem_cache_t *
1576kmem_cache_create (const char *name, size_t size, size_t align,
1577 unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
1578 void (*dtor)(void*, kmem_cache_t *, unsigned long))
1579{
1580 size_t left_over, slab_size, ralign;
1581 kmem_cache_t *cachep = NULL;
4f12bb4f 1582 struct list_head *p;
1da177e4
LT
1583
1584 /*
1585 * Sanity checks... these are all serious usage bugs.
1586 */
1587 if ((!name) ||
b28a02de
PE
1588 in_interrupt() ||
1589 (size < BYTES_PER_WORD) ||
1590 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
1591 printk(KERN_ERR "%s: Early error in slab %s\n",
1592 __FUNCTION__, name);
1593 BUG();
1594 }
1da177e4 1595
fc0abb14 1596 mutex_lock(&cache_chain_mutex);
4f12bb4f
AM
1597
1598 list_for_each(p, &cache_chain) {
1599 kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);
1600 mm_segment_t old_fs = get_fs();
1601 char tmp;
1602 int res;
1603
1604 /*
1605 * This happens when the module gets unloaded and doesn't
1606 * destroy its slab cache and no-one else reuses the vmalloc
1607 * area of the module. Print a warning.
1608 */
1609 set_fs(KERNEL_DS);
1610 res = __get_user(tmp, pc->name);
1611 set_fs(old_fs);
1612 if (res) {
1613 printk("SLAB: cache with size %d has lost its name\n",
b28a02de 1614 pc->objsize);
4f12bb4f
AM
1615 continue;
1616 }
1617
b28a02de 1618 if (!strcmp(pc->name, name)) {
4f12bb4f
AM
1619 printk("kmem_cache_create: duplicate cache %s\n", name);
1620 dump_stack();
1621 goto oops;
1622 }
1623 }
1624
1da177e4
LT
1625#if DEBUG
1626 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1627 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1628 /* No constructor, but inital state check requested */
1629 printk(KERN_ERR "%s: No con, but init state check "
b28a02de 1630 "requested - %s\n", __FUNCTION__, name);
1da177e4
LT
1631 flags &= ~SLAB_DEBUG_INITIAL;
1632 }
1da177e4
LT
1633#if FORCED_DEBUG
1634 /*
1635 * Enable redzoning and last user accounting, except for caches with
1636 * large objects, if the increased size would increase the object size
1637 * above the next power of two: caches with object sizes just above a
1638 * power of two have a significant amount of internal fragmentation.
1639 */
b28a02de
PE
1640 if ((size < 4096
1641 || fls(size - 1) == fls(size - 1 + 3 * BYTES_PER_WORD)))
1642 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
1643 if (!(flags & SLAB_DESTROY_BY_RCU))
1644 flags |= SLAB_POISON;
1645#endif
1646 if (flags & SLAB_DESTROY_BY_RCU)
1647 BUG_ON(flags & SLAB_POISON);
1648#endif
1649 if (flags & SLAB_DESTROY_BY_RCU)
1650 BUG_ON(dtor);
1651
1652 /*
1653 * Always checks flags, a caller might be expecting debug
1654 * support which isn't available.
1655 */
1656 if (flags & ~CREATE_MASK)
1657 BUG();
1658
1659 /* Check that size is in terms of words. This is needed to avoid
1660 * unaligned accesses for some archs when redzoning is used, and makes
1661 * sure any on-slab bufctl's are also correctly aligned.
1662 */
b28a02de
PE
1663 if (size & (BYTES_PER_WORD - 1)) {
1664 size += (BYTES_PER_WORD - 1);
1665 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
1666 }
1667
1668 /* calculate out the final buffer alignment: */
1669 /* 1) arch recommendation: can be overridden for debug */
1670 if (flags & SLAB_HWCACHE_ALIGN) {
1671 /* Default alignment: as specified by the arch code.
1672 * Except if an object is really small, then squeeze multiple
1673 * objects into one cacheline.
1674 */
1675 ralign = cache_line_size();
b28a02de 1676 while (size <= ralign / 2)
1da177e4
LT
1677 ralign /= 2;
1678 } else {
1679 ralign = BYTES_PER_WORD;
1680 }
1681 /* 2) arch mandated alignment: disables debug if necessary */
1682 if (ralign < ARCH_SLAB_MINALIGN) {
1683 ralign = ARCH_SLAB_MINALIGN;
1684 if (ralign > BYTES_PER_WORD)
b28a02de 1685 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4
LT
1686 }
1687 /* 3) caller mandated alignment: disables debug if necessary */
1688 if (ralign < align) {
1689 ralign = align;
1690 if (ralign > BYTES_PER_WORD)
b28a02de 1691 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4
LT
1692 }
1693 /* 4) Store it. Note that the debug code below can reduce
1694 * the alignment to BYTES_PER_WORD.
1695 */
1696 align = ralign;
1697
1698 /* Get cache's description obj. */
1699 cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
1700 if (!cachep)
4f12bb4f 1701 goto oops;
1da177e4
LT
1702 memset(cachep, 0, sizeof(kmem_cache_t));
1703
1704#if DEBUG
1705 cachep->reallen = size;
1706
1707 if (flags & SLAB_RED_ZONE) {
1708 /* redzoning only works with word aligned caches */
1709 align = BYTES_PER_WORD;
1710
1711 /* add space for red zone words */
1712 cachep->dbghead += BYTES_PER_WORD;
b28a02de 1713 size += 2 * BYTES_PER_WORD;
1da177e4
LT
1714 }
1715 if (flags & SLAB_STORE_USER) {
1716 /* user store requires word alignment and
1717 * one word storage behind the end of the real
1718 * object.
1719 */
1720 align = BYTES_PER_WORD;
1721 size += BYTES_PER_WORD;
1722 }
1723#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de
PE
1724 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
1725 && cachep->reallen > cache_line_size() && size < PAGE_SIZE) {
1da177e4
LT
1726 cachep->dbghead += PAGE_SIZE - size;
1727 size = PAGE_SIZE;
1728 }
1729#endif
1730#endif
1731
1732 /* Determine if the slab management is 'on' or 'off' slab. */
b28a02de 1733 if (size >= (PAGE_SIZE >> 3))
1da177e4
LT
1734 /*
1735 * Size is large, assume best to place the slab management obj
1736 * off-slab (should allow better packing of objs).
1737 */
1738 flags |= CFLGS_OFF_SLAB;
1739
1740 size = ALIGN(size, align);
1741
1742 if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) {
1743 /*
1744 * A VFS-reclaimable slab tends to have most allocations
1745 * as GFP_NOFS and we really don't want to have to be allocating
1746 * higher-order pages when we are unable to shrink dcache.
1747 */
1748 cachep->gfporder = 0;
1749 cache_estimate(cachep->gfporder, size, align, flags,
b28a02de 1750 &left_over, &cachep->num);
4d268eba
PE
1751 } else
1752 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
1753
1754 if (!cachep->num) {
1755 printk("kmem_cache_create: couldn't create cache %s.\n", name);
1756 kmem_cache_free(&cache_cache, cachep);
1757 cachep = NULL;
4f12bb4f 1758 goto oops;
1da177e4 1759 }
b28a02de
PE
1760 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
1761 + sizeof(struct slab), align);
1da177e4
LT
1762
1763 /*
1764 * If the slab has been placed off-slab, and we have enough space then
1765 * move it on-slab. This is at the expense of any extra colouring.
1766 */
1767 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
1768 flags &= ~CFLGS_OFF_SLAB;
1769 left_over -= slab_size;
1770 }
1771
1772 if (flags & CFLGS_OFF_SLAB) {
1773 /* really off slab. No need for manual alignment */
b28a02de
PE
1774 slab_size =
1775 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
1776 }
1777
1778 cachep->colour_off = cache_line_size();
1779 /* Offset must be a multiple of the alignment. */
1780 if (cachep->colour_off < align)
1781 cachep->colour_off = align;
b28a02de 1782 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
1783 cachep->slab_size = slab_size;
1784 cachep->flags = flags;
1785 cachep->gfpflags = 0;
1786 if (flags & SLAB_CACHE_DMA)
1787 cachep->gfpflags |= GFP_DMA;
1788 spin_lock_init(&cachep->spinlock);
1789 cachep->objsize = size;
1da177e4
LT
1790
1791 if (flags & CFLGS_OFF_SLAB)
b2d55073 1792 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
1da177e4
LT
1793 cachep->ctor = ctor;
1794 cachep->dtor = dtor;
1795 cachep->name = name;
1796
1797 /* Don't let CPUs to come and go */
1798 lock_cpu_hotplug();
1799
1800 if (g_cpucache_up == FULL) {
1801 enable_cpucache(cachep);
1802 } else {
1803 if (g_cpucache_up == NONE) {
1804 /* Note: the first kmem_cache_create must create
1805 * the cache that's used by kmalloc(24), otherwise
1806 * the creation of further caches will BUG().
1807 */
e498be7d 1808 cachep->array[smp_processor_id()] =
b28a02de 1809 &initarray_generic.cache;
e498be7d
CL
1810
1811 /* If the cache that's used by
1812 * kmalloc(sizeof(kmem_list3)) is the first cache,
1813 * then we need to set up all its list3s, otherwise
1814 * the creation of further caches will BUG().
1815 */
1816 set_up_list3s(cachep, SIZE_AC);
1817 if (INDEX_AC == INDEX_L3)
1818 g_cpucache_up = PARTIAL_L3;
1819 else
1820 g_cpucache_up = PARTIAL_AC;
1da177e4 1821 } else {
e498be7d 1822 cachep->array[smp_processor_id()] =
b28a02de 1823 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d
CL
1824
1825 if (g_cpucache_up == PARTIAL_AC) {
1826 set_up_list3s(cachep, SIZE_L3);
1827 g_cpucache_up = PARTIAL_L3;
1828 } else {
1829 int node;
1830 for_each_online_node(node) {
1831
1832 cachep->nodelists[node] =
b28a02de
PE
1833 kmalloc_node(sizeof
1834 (struct kmem_list3),
1835 GFP_KERNEL, node);
e498be7d 1836 BUG_ON(!cachep->nodelists[node]);
b28a02de
PE
1837 kmem_list3_init(cachep->
1838 nodelists[node]);
e498be7d
CL
1839 }
1840 }
1da177e4 1841 }
e498be7d 1842 cachep->nodelists[numa_node_id()]->next_reap =
b28a02de
PE
1843 jiffies + REAPTIMEOUT_LIST3 +
1844 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1845
1da177e4
LT
1846 BUG_ON(!ac_data(cachep));
1847 ac_data(cachep)->avail = 0;
1848 ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1849 ac_data(cachep)->batchcount = 1;
1850 ac_data(cachep)->touched = 0;
1851 cachep->batchcount = 1;
1852 cachep->limit = BOOT_CPUCACHE_ENTRIES;
b28a02de 1853 }
1da177e4 1854
1da177e4
LT
1855 /* cache setup completed, link it into the list */
1856 list_add(&cachep->next, &cache_chain);
1da177e4 1857 unlock_cpu_hotplug();
b28a02de 1858 oops:
1da177e4
LT
1859 if (!cachep && (flags & SLAB_PANIC))
1860 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 1861 name);
fc0abb14 1862 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1863 return cachep;
1864}
1865EXPORT_SYMBOL(kmem_cache_create);
1866
1867#if DEBUG
1868static void check_irq_off(void)
1869{
1870 BUG_ON(!irqs_disabled());
1871}
1872
1873static void check_irq_on(void)
1874{
1875 BUG_ON(irqs_disabled());
1876}
1877
1878static void check_spinlock_acquired(kmem_cache_t *cachep)
1879{
1880#ifdef CONFIG_SMP
1881 check_irq_off();
e498be7d 1882 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
1883#endif
1884}
e498be7d
CL
1885
1886static inline void check_spinlock_acquired_node(kmem_cache_t *cachep, int node)
1887{
1888#ifdef CONFIG_SMP
1889 check_irq_off();
1890 assert_spin_locked(&cachep->nodelists[node]->list_lock);
1891#endif
1892}
1893
1da177e4
LT
1894#else
1895#define check_irq_off() do { } while(0)
1896#define check_irq_on() do { } while(0)
1897#define check_spinlock_acquired(x) do { } while(0)
e498be7d 1898#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
1899#endif
1900
1901/*
1902 * Waits for all CPUs to execute func().
1903 */
b28a02de 1904static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
1da177e4
LT
1905{
1906 check_irq_on();
1907 preempt_disable();
1908
1909 local_irq_disable();
1910 func(arg);
1911 local_irq_enable();
1912
1913 if (smp_call_function(func, arg, 1, 1))
1914 BUG();
1915
1916 preempt_enable();
1917}
1918
b28a02de
PE
1919static void drain_array_locked(kmem_cache_t *cachep, struct array_cache *ac,
1920 int force, int node);
1da177e4
LT
1921
1922static void do_drain(void *arg)
1923{
b28a02de 1924 kmem_cache_t *cachep = (kmem_cache_t *) arg;
1da177e4 1925 struct array_cache *ac;
ff69416e 1926 int node = numa_node_id();
1da177e4
LT
1927
1928 check_irq_off();
1929 ac = ac_data(cachep);
ff69416e
CL
1930 spin_lock(&cachep->nodelists[node]->list_lock);
1931 free_block(cachep, ac->entry, ac->avail, node);
1932 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
1933 ac->avail = 0;
1934}
1935
1936static void drain_cpu_caches(kmem_cache_t *cachep)
1937{
e498be7d
CL
1938 struct kmem_list3 *l3;
1939 int node;
1940
1da177e4
LT
1941 smp_call_function_all_cpus(do_drain, cachep);
1942 check_irq_on();
1943 spin_lock_irq(&cachep->spinlock);
b28a02de 1944 for_each_online_node(node) {
e498be7d
CL
1945 l3 = cachep->nodelists[node];
1946 if (l3) {
1947 spin_lock(&l3->list_lock);
1948 drain_array_locked(cachep, l3->shared, 1, node);
1949 spin_unlock(&l3->list_lock);
1950 if (l3->alien)
1951 drain_alien_cache(cachep, l3);
1952 }
1953 }
1da177e4
LT
1954 spin_unlock_irq(&cachep->spinlock);
1955}
1956
e498be7d 1957static int __node_shrink(kmem_cache_t *cachep, int node)
1da177e4
LT
1958{
1959 struct slab *slabp;
e498be7d 1960 struct kmem_list3 *l3 = cachep->nodelists[node];
1da177e4
LT
1961 int ret;
1962
e498be7d 1963 for (;;) {
1da177e4
LT
1964 struct list_head *p;
1965
e498be7d
CL
1966 p = l3->slabs_free.prev;
1967 if (p == &l3->slabs_free)
1da177e4
LT
1968 break;
1969
e498be7d 1970 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
1da177e4
LT
1971#if DEBUG
1972 if (slabp->inuse)
1973 BUG();
1974#endif
1975 list_del(&slabp->list);
1976
e498be7d
CL
1977 l3->free_objects -= cachep->num;
1978 spin_unlock_irq(&l3->list_lock);
1da177e4 1979 slab_destroy(cachep, slabp);
e498be7d 1980 spin_lock_irq(&l3->list_lock);
1da177e4 1981 }
b28a02de 1982 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
1da177e4
LT
1983 return ret;
1984}
1985
e498be7d
CL
1986static int __cache_shrink(kmem_cache_t *cachep)
1987{
1988 int ret = 0, i = 0;
1989 struct kmem_list3 *l3;
1990
1991 drain_cpu_caches(cachep);
1992
1993 check_irq_on();
1994 for_each_online_node(i) {
1995 l3 = cachep->nodelists[i];
1996 if (l3) {
1997 spin_lock_irq(&l3->list_lock);
1998 ret += __node_shrink(cachep, i);
1999 spin_unlock_irq(&l3->list_lock);
2000 }
2001 }
2002 return (ret ? 1 : 0);
2003}
2004
1da177e4
LT
2005/**
2006 * kmem_cache_shrink - Shrink a cache.
2007 * @cachep: The cache to shrink.
2008 *
2009 * Releases as many slabs as possible for a cache.
2010 * To help debugging, a zero exit status indicates all slabs were released.
2011 */
2012int kmem_cache_shrink(kmem_cache_t *cachep)
2013{
2014 if (!cachep || in_interrupt())
2015 BUG();
2016
2017 return __cache_shrink(cachep);
2018}
2019EXPORT_SYMBOL(kmem_cache_shrink);
2020
2021/**
2022 * kmem_cache_destroy - delete a cache
2023 * @cachep: the cache to destroy
2024 *
2025 * Remove a kmem_cache_t object from the slab cache.
2026 * Returns 0 on success.
2027 *
2028 * It is expected this function will be called by a module when it is
2029 * unloaded. This will remove the cache completely, and avoid a duplicate
2030 * cache being allocated each time a module is loaded and unloaded, if the
2031 * module doesn't have persistent in-kernel storage across loads and unloads.
2032 *
2033 * The cache must be empty before calling this function.
2034 *
2035 * The caller must guarantee that noone will allocate memory from the cache
2036 * during the kmem_cache_destroy().
2037 */
b28a02de 2038int kmem_cache_destroy(kmem_cache_t *cachep)
1da177e4
LT
2039{
2040 int i;
e498be7d 2041 struct kmem_list3 *l3;
1da177e4
LT
2042
2043 if (!cachep || in_interrupt())
2044 BUG();
2045
2046 /* Don't let CPUs to come and go */
2047 lock_cpu_hotplug();
2048
2049 /* Find the cache in the chain of caches. */
fc0abb14 2050 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2051 /*
2052 * the chain is never empty, cache_cache is never destroyed
2053 */
2054 list_del(&cachep->next);
fc0abb14 2055 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2056
2057 if (__cache_shrink(cachep)) {
2058 slab_error(cachep, "Can't free all objects");
fc0abb14 2059 mutex_lock(&cache_chain_mutex);
b28a02de 2060 list_add(&cachep->next, &cache_chain);
fc0abb14 2061 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2062 unlock_cpu_hotplug();
2063 return 1;
2064 }
2065
2066 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2067 synchronize_rcu();
1da177e4 2068
e498be7d 2069 for_each_online_cpu(i)
b28a02de 2070 kfree(cachep->array[i]);
1da177e4
LT
2071
2072 /* NUMA: free the list3 structures */
e498be7d
CL
2073 for_each_online_node(i) {
2074 if ((l3 = cachep->nodelists[i])) {
2075 kfree(l3->shared);
2076 free_alien_cache(l3->alien);
2077 kfree(l3);
2078 }
2079 }
1da177e4
LT
2080 kmem_cache_free(&cache_cache, cachep);
2081
2082 unlock_cpu_hotplug();
2083
2084 return 0;
2085}
2086EXPORT_SYMBOL(kmem_cache_destroy);
2087
2088/* Get the memory for a slab management obj. */
b28a02de
PE
2089static struct slab *alloc_slabmgmt(kmem_cache_t *cachep, void *objp,
2090 int colour_off, gfp_t local_flags)
1da177e4
LT
2091{
2092 struct slab *slabp;
b28a02de 2093
1da177e4
LT
2094 if (OFF_SLAB(cachep)) {
2095 /* Slab management obj is off-slab. */
2096 slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2097 if (!slabp)
2098 return NULL;
2099 } else {
b28a02de 2100 slabp = objp + colour_off;
1da177e4
LT
2101 colour_off += cachep->slab_size;
2102 }
2103 slabp->inuse = 0;
2104 slabp->colouroff = colour_off;
b28a02de 2105 slabp->s_mem = objp + colour_off;
1da177e4
LT
2106
2107 return slabp;
2108}
2109
2110static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2111{
b28a02de 2112 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2113}
2114
2115static void cache_init_objs(kmem_cache_t *cachep,
b28a02de 2116 struct slab *slabp, unsigned long ctor_flags)
1da177e4
LT
2117{
2118 int i;
2119
2120 for (i = 0; i < cachep->num; i++) {
b28a02de 2121 void *objp = slabp->s_mem + cachep->objsize * i;
1da177e4
LT
2122#if DEBUG
2123 /* need to poison the objs? */
2124 if (cachep->flags & SLAB_POISON)
2125 poison_obj(cachep, objp, POISON_FREE);
2126 if (cachep->flags & SLAB_STORE_USER)
2127 *dbg_userword(cachep, objp) = NULL;
2128
2129 if (cachep->flags & SLAB_RED_ZONE) {
2130 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2131 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2132 }
2133 /*
2134 * Constructors are not allowed to allocate memory from
2135 * the same cache which they are a constructor for.
2136 * Otherwise, deadlock. They must also be threaded.
2137 */
2138 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
b28a02de
PE
2139 cachep->ctor(objp + obj_dbghead(cachep), cachep,
2140 ctor_flags);
1da177e4
LT
2141
2142 if (cachep->flags & SLAB_RED_ZONE) {
2143 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2144 slab_error(cachep, "constructor overwrote the"
b28a02de 2145 " end of an object");
1da177e4
LT
2146 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2147 slab_error(cachep, "constructor overwrote the"
b28a02de 2148 " start of an object");
1da177e4 2149 }
b28a02de
PE
2150 if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)
2151 && cachep->flags & SLAB_POISON)
2152 kernel_map_pages(virt_to_page(objp),
2153 cachep->objsize / PAGE_SIZE, 0);
1da177e4
LT
2154#else
2155 if (cachep->ctor)
2156 cachep->ctor(objp, cachep, ctor_flags);
2157#endif
b28a02de 2158 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2159 }
b28a02de 2160 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2161 slabp->free = 0;
2162}
2163
6daa0e28 2164static void kmem_flagcheck(kmem_cache_t *cachep, gfp_t flags)
1da177e4
LT
2165{
2166 if (flags & SLAB_DMA) {
2167 if (!(cachep->gfpflags & GFP_DMA))
2168 BUG();
2169 } else {
2170 if (cachep->gfpflags & GFP_DMA)
2171 BUG();
2172 }
2173}
2174
2175static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp)
2176{
2177 int i;
2178 struct page *page;
2179
2180 /* Nasty!!!!!! I hope this is OK. */
2181 i = 1 << cachep->gfporder;
2182 page = virt_to_page(objp);
2183 do {
065d41cb
PE
2184 page_set_cache(page, cachep);
2185 page_set_slab(page, slabp);
1da177e4
LT
2186 page++;
2187 } while (--i);
2188}
2189
2190/*
2191 * Grow (by 1) the number of slabs within a cache. This is called by
2192 * kmem_cache_alloc() when there are no active objs left in a cache.
2193 */
dd0fc66f 2194static int cache_grow(kmem_cache_t *cachep, gfp_t flags, int nodeid)
1da177e4 2195{
b28a02de
PE
2196 struct slab *slabp;
2197 void *objp;
2198 size_t offset;
2199 gfp_t local_flags;
2200 unsigned long ctor_flags;
e498be7d 2201 struct kmem_list3 *l3;
1da177e4
LT
2202
2203 /* Be lazy and only check for valid flags here,
b28a02de 2204 * keeping it out of the critical path in kmem_cache_alloc().
1da177e4 2205 */
b28a02de 2206 if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
1da177e4
LT
2207 BUG();
2208 if (flags & SLAB_NO_GROW)
2209 return 0;
2210
2211 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2212 local_flags = (flags & SLAB_LEVEL_MASK);
2213 if (!(local_flags & __GFP_WAIT))
2214 /*
2215 * Not allowed to sleep. Need to tell a constructor about
2216 * this - it might need to know...
2217 */
2218 ctor_flags |= SLAB_CTOR_ATOMIC;
2219
2220 /* About to mess with non-constant members - lock. */
2221 check_irq_off();
2222 spin_lock(&cachep->spinlock);
2223
2224 /* Get colour for the slab, and cal the next value. */
2225 offset = cachep->colour_next;
2226 cachep->colour_next++;
2227 if (cachep->colour_next >= cachep->colour)
2228 cachep->colour_next = 0;
2229 offset *= cachep->colour_off;
2230
2231 spin_unlock(&cachep->spinlock);
2232
e498be7d 2233 check_irq_off();
1da177e4
LT
2234 if (local_flags & __GFP_WAIT)
2235 local_irq_enable();
2236
2237 /*
2238 * The test for missing atomic flag is performed here, rather than
2239 * the more obvious place, simply to reduce the critical path length
2240 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2241 * will eventually be caught here (where it matters).
2242 */
2243 kmem_flagcheck(cachep, flags);
2244
e498be7d
CL
2245 /* Get mem for the objs.
2246 * Attempt to allocate a physical page from 'nodeid',
2247 */
1da177e4
LT
2248 if (!(objp = kmem_getpages(cachep, flags, nodeid)))
2249 goto failed;
2250
2251 /* Get slab management. */
2252 if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
2253 goto opps1;
2254
e498be7d 2255 slabp->nodeid = nodeid;
1da177e4
LT
2256 set_slab_attr(cachep, slabp, objp);
2257
2258 cache_init_objs(cachep, slabp, ctor_flags);
2259
2260 if (local_flags & __GFP_WAIT)
2261 local_irq_disable();
2262 check_irq_off();
e498be7d
CL
2263 l3 = cachep->nodelists[nodeid];
2264 spin_lock(&l3->list_lock);
1da177e4
LT
2265
2266 /* Make slab active. */
e498be7d 2267 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2268 STATS_INC_GROWN(cachep);
e498be7d
CL
2269 l3->free_objects += cachep->num;
2270 spin_unlock(&l3->list_lock);
1da177e4 2271 return 1;
b28a02de 2272 opps1:
1da177e4 2273 kmem_freepages(cachep, objp);
b28a02de 2274 failed:
1da177e4
LT
2275 if (local_flags & __GFP_WAIT)
2276 local_irq_disable();
2277 return 0;
2278}
2279
2280#if DEBUG
2281
2282/*
2283 * Perform extra freeing checks:
2284 * - detect bad pointers.
2285 * - POISON/RED_ZONE checking
2286 * - destructor calls, for caches with POISON+dtor
2287 */
2288static void kfree_debugcheck(const void *objp)
2289{
2290 struct page *page;
2291
2292 if (!virt_addr_valid(objp)) {
2293 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2294 (unsigned long)objp);
2295 BUG();
1da177e4
LT
2296 }
2297 page = virt_to_page(objp);
2298 if (!PageSlab(page)) {
b28a02de
PE
2299 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2300 (unsigned long)objp);
1da177e4
LT
2301 BUG();
2302 }
2303}
2304
2305static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp,
b28a02de 2306 void *caller)
1da177e4
LT
2307{
2308 struct page *page;
2309 unsigned int objnr;
2310 struct slab *slabp;
2311
2312 objp -= obj_dbghead(cachep);
2313 kfree_debugcheck(objp);
2314 page = virt_to_page(objp);
2315
065d41cb 2316 if (page_get_cache(page) != cachep) {
b28a02de
PE
2317 printk(KERN_ERR
2318 "mismatch in kmem_cache_free: expected cache %p, got %p\n",
2319 page_get_cache(page), cachep);
1da177e4 2320 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
b28a02de
PE
2321 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2322 page_get_cache(page)->name);
1da177e4
LT
2323 WARN_ON(1);
2324 }
065d41cb 2325 slabp = page_get_slab(page);
1da177e4
LT
2326
2327 if (cachep->flags & SLAB_RED_ZONE) {
b28a02de
PE
2328 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE
2329 || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2330 slab_error(cachep,
2331 "double free, or memory outside"
2332 " object was overwritten");
2333 printk(KERN_ERR
2334 "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2335 objp, *dbg_redzone1(cachep, objp),
2336 *dbg_redzone2(cachep, objp));
1da177e4
LT
2337 }
2338 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2339 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2340 }
2341 if (cachep->flags & SLAB_STORE_USER)
2342 *dbg_userword(cachep, objp) = caller;
2343
9884fd8d 2344 objnr = (unsigned)(objp - slabp->s_mem) / cachep->objsize;
1da177e4
LT
2345
2346 BUG_ON(objnr >= cachep->num);
b28a02de 2347 BUG_ON(objp != slabp->s_mem + objnr * cachep->objsize);
1da177e4
LT
2348
2349 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2350 /* Need to call the slab's constructor so the
2351 * caller can perform a verify of its state (debugging).
2352 * Called without the cache-lock held.
2353 */
b28a02de
PE
2354 cachep->ctor(objp + obj_dbghead(cachep),
2355 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
1da177e4
LT
2356 }
2357 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2358 /* we want to cache poison the object,
2359 * call the destruction callback
2360 */
b28a02de 2361 cachep->dtor(objp + obj_dbghead(cachep), cachep, 0);
1da177e4
LT
2362 }
2363 if (cachep->flags & SLAB_POISON) {
2364#ifdef CONFIG_DEBUG_PAGEALLOC
2365 if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
2366 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de
PE
2367 kernel_map_pages(virt_to_page(objp),
2368 cachep->objsize / PAGE_SIZE, 0);
1da177e4
LT
2369 } else {
2370 poison_obj(cachep, objp, POISON_FREE);
2371 }
2372#else
2373 poison_obj(cachep, objp, POISON_FREE);
2374#endif
2375 }
2376 return objp;
2377}
2378
2379static void check_slabp(kmem_cache_t *cachep, struct slab *slabp)
2380{
2381 kmem_bufctl_t i;
2382 int entries = 0;
b28a02de 2383
1da177e4
LT
2384 /* Check slab's freelist to see if this obj is there. */
2385 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2386 entries++;
2387 if (entries > cachep->num || i >= cachep->num)
2388 goto bad;
2389 }
2390 if (entries != cachep->num - slabp->inuse) {
b28a02de
PE
2391 bad:
2392 printk(KERN_ERR
2393 "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2394 cachep->name, cachep->num, slabp, slabp->inuse);
2395 for (i = 0;
2396 i < sizeof(slabp) + cachep->num * sizeof(kmem_bufctl_t);
2397 i++) {
2398 if ((i % 16) == 0)
1da177e4 2399 printk("\n%03x:", i);
b28a02de 2400 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2401 }
2402 printk("\n");
2403 BUG();
2404 }
2405}
2406#else
2407#define kfree_debugcheck(x) do { } while(0)
2408#define cache_free_debugcheck(x,objp,z) (objp)
2409#define check_slabp(x,y) do { } while(0)
2410#endif
2411
dd0fc66f 2412static void *cache_alloc_refill(kmem_cache_t *cachep, gfp_t flags)
1da177e4
LT
2413{
2414 int batchcount;
2415 struct kmem_list3 *l3;
2416 struct array_cache *ac;
2417
2418 check_irq_off();
2419 ac = ac_data(cachep);
b28a02de 2420 retry:
1da177e4
LT
2421 batchcount = ac->batchcount;
2422 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2423 /* if there was little recent activity on this
2424 * cache, then perform only a partial refill.
2425 * Otherwise we could generate refill bouncing.
2426 */
2427 batchcount = BATCHREFILL_LIMIT;
2428 }
e498be7d
CL
2429 l3 = cachep->nodelists[numa_node_id()];
2430
2431 BUG_ON(ac->avail > 0 || !l3);
2432 spin_lock(&l3->list_lock);
1da177e4 2433
1da177e4
LT
2434 if (l3->shared) {
2435 struct array_cache *shared_array = l3->shared;
2436 if (shared_array->avail) {
2437 if (batchcount > shared_array->avail)
2438 batchcount = shared_array->avail;
2439 shared_array->avail -= batchcount;
2440 ac->avail = batchcount;
e498be7d 2441 memcpy(ac->entry,
b28a02de
PE
2442 &(shared_array->entry[shared_array->avail]),
2443 sizeof(void *) * batchcount);
1da177e4
LT
2444 shared_array->touched = 1;
2445 goto alloc_done;
2446 }
2447 }
2448 while (batchcount > 0) {
2449 struct list_head *entry;
2450 struct slab *slabp;
2451 /* Get slab alloc is to come from. */
2452 entry = l3->slabs_partial.next;
2453 if (entry == &l3->slabs_partial) {
2454 l3->free_touched = 1;
2455 entry = l3->slabs_free.next;
2456 if (entry == &l3->slabs_free)
2457 goto must_grow;
2458 }
2459
2460 slabp = list_entry(entry, struct slab, list);
2461 check_slabp(cachep, slabp);
2462 check_spinlock_acquired(cachep);
2463 while (slabp->inuse < cachep->num && batchcount--) {
2464 kmem_bufctl_t next;
2465 STATS_INC_ALLOCED(cachep);
2466 STATS_INC_ACTIVE(cachep);
2467 STATS_SET_HIGH(cachep);
2468
2469 /* get obj pointer */
e498be7d 2470 ac->entry[ac->avail++] = slabp->s_mem +
b28a02de 2471 slabp->free * cachep->objsize;
1da177e4
LT
2472
2473 slabp->inuse++;
2474 next = slab_bufctl(slabp)[slabp->free];
2475#if DEBUG
2476 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
09ad4bbc 2477 WARN_ON(numa_node_id() != slabp->nodeid);
1da177e4 2478#endif
b28a02de 2479 slabp->free = next;
1da177e4
LT
2480 }
2481 check_slabp(cachep, slabp);
2482
2483 /* move slabp to correct slabp list: */
2484 list_del(&slabp->list);
2485 if (slabp->free == BUFCTL_END)
2486 list_add(&slabp->list, &l3->slabs_full);
2487 else
2488 list_add(&slabp->list, &l3->slabs_partial);
2489 }
2490
b28a02de 2491 must_grow:
1da177e4 2492 l3->free_objects -= ac->avail;
b28a02de 2493 alloc_done:
e498be7d 2494 spin_unlock(&l3->list_lock);
1da177e4
LT
2495
2496 if (unlikely(!ac->avail)) {
2497 int x;
e498be7d
CL
2498 x = cache_grow(cachep, flags, numa_node_id());
2499
1da177e4
LT
2500 // cache_grow can reenable interrupts, then ac could change.
2501 ac = ac_data(cachep);
2502 if (!x && ac->avail == 0) // no objects in sight? abort
2503 return NULL;
2504
b28a02de 2505 if (!ac->avail) // objects refilled by interrupt?
1da177e4
LT
2506 goto retry;
2507 }
2508 ac->touched = 1;
e498be7d 2509 return ac->entry[--ac->avail];
1da177e4
LT
2510}
2511
2512static inline void
dd0fc66f 2513cache_alloc_debugcheck_before(kmem_cache_t *cachep, gfp_t flags)
1da177e4
LT
2514{
2515 might_sleep_if(flags & __GFP_WAIT);
2516#if DEBUG
2517 kmem_flagcheck(cachep, flags);
2518#endif
2519}
2520
2521#if DEBUG
b28a02de
PE
2522static void *cache_alloc_debugcheck_after(kmem_cache_t *cachep, gfp_t flags,
2523 void *objp, void *caller)
1da177e4 2524{
b28a02de 2525 if (!objp)
1da177e4 2526 return objp;
b28a02de 2527 if (cachep->flags & SLAB_POISON) {
1da177e4
LT
2528#ifdef CONFIG_DEBUG_PAGEALLOC
2529 if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de
PE
2530 kernel_map_pages(virt_to_page(objp),
2531 cachep->objsize / PAGE_SIZE, 1);
1da177e4
LT
2532 else
2533 check_poison_obj(cachep, objp);
2534#else
2535 check_poison_obj(cachep, objp);
2536#endif
2537 poison_obj(cachep, objp, POISON_INUSE);
2538 }
2539 if (cachep->flags & SLAB_STORE_USER)
2540 *dbg_userword(cachep, objp) = caller;
2541
2542 if (cachep->flags & SLAB_RED_ZONE) {
b28a02de
PE
2543 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE
2544 || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2545 slab_error(cachep,
2546 "double free, or memory outside"
2547 " object was overwritten");
2548 printk(KERN_ERR
2549 "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2550 objp, *dbg_redzone1(cachep, objp),
2551 *dbg_redzone2(cachep, objp));
1da177e4
LT
2552 }
2553 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2554 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2555 }
2556 objp += obj_dbghead(cachep);
2557 if (cachep->ctor && cachep->flags & SLAB_POISON) {
b28a02de 2558 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
1da177e4
LT
2559
2560 if (!(flags & __GFP_WAIT))
2561 ctor_flags |= SLAB_CTOR_ATOMIC;
2562
2563 cachep->ctor(objp, cachep, ctor_flags);
b28a02de 2564 }
1da177e4
LT
2565 return objp;
2566}
2567#else
2568#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2569#endif
2570
dd0fc66f 2571static inline void *____cache_alloc(kmem_cache_t *cachep, gfp_t flags)
1da177e4 2572{
b28a02de 2573 void *objp;
1da177e4
LT
2574 struct array_cache *ac;
2575
dc85da15 2576#ifdef CONFIG_NUMA
86c562a9 2577 if (unlikely(current->mempolicy && !in_interrupt())) {
dc85da15
CL
2578 int nid = slab_node(current->mempolicy);
2579
2580 if (nid != numa_node_id())
2581 return __cache_alloc_node(cachep, flags, nid);
2582 }
2583#endif
2584
5c382300 2585 check_irq_off();
1da177e4
LT
2586 ac = ac_data(cachep);
2587 if (likely(ac->avail)) {
2588 STATS_INC_ALLOCHIT(cachep);
2589 ac->touched = 1;
e498be7d 2590 objp = ac->entry[--ac->avail];
1da177e4
LT
2591 } else {
2592 STATS_INC_ALLOCMISS(cachep);
2593 objp = cache_alloc_refill(cachep, flags);
2594 }
5c382300
AK
2595 return objp;
2596}
2597
dd0fc66f 2598static inline void *__cache_alloc(kmem_cache_t *cachep, gfp_t flags)
5c382300
AK
2599{
2600 unsigned long save_flags;
b28a02de 2601 void *objp;
5c382300
AK
2602
2603 cache_alloc_debugcheck_before(cachep, flags);
2604
2605 local_irq_save(save_flags);
2606 objp = ____cache_alloc(cachep, flags);
1da177e4 2607 local_irq_restore(save_flags);
34342e86 2608 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
b28a02de 2609 __builtin_return_address(0));
34342e86 2610 prefetchw(objp);
1da177e4
LT
2611 return objp;
2612}
2613
e498be7d
CL
2614#ifdef CONFIG_NUMA
2615/*
2616 * A interface to enable slab creation on nodeid
1da177e4 2617 */
6daa0e28 2618static void *__cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
e498be7d
CL
2619{
2620 struct list_head *entry;
b28a02de
PE
2621 struct slab *slabp;
2622 struct kmem_list3 *l3;
2623 void *obj;
2624 kmem_bufctl_t next;
2625 int x;
2626
2627 l3 = cachep->nodelists[nodeid];
2628 BUG_ON(!l3);
2629
2630 retry:
2631 spin_lock(&l3->list_lock);
2632 entry = l3->slabs_partial.next;
2633 if (entry == &l3->slabs_partial) {
2634 l3->free_touched = 1;
2635 entry = l3->slabs_free.next;
2636 if (entry == &l3->slabs_free)
2637 goto must_grow;
2638 }
2639
2640 slabp = list_entry(entry, struct slab, list);
2641 check_spinlock_acquired_node(cachep, nodeid);
2642 check_slabp(cachep, slabp);
2643
2644 STATS_INC_NODEALLOCS(cachep);
2645 STATS_INC_ACTIVE(cachep);
2646 STATS_SET_HIGH(cachep);
2647
2648 BUG_ON(slabp->inuse == cachep->num);
2649
2650 /* get obj pointer */
2651 obj = slabp->s_mem + slabp->free * cachep->objsize;
2652 slabp->inuse++;
2653 next = slab_bufctl(slabp)[slabp->free];
e498be7d 2654#if DEBUG
b28a02de 2655 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
e498be7d 2656#endif
b28a02de
PE
2657 slabp->free = next;
2658 check_slabp(cachep, slabp);
2659 l3->free_objects--;
2660 /* move slabp to correct slabp list: */
2661 list_del(&slabp->list);
2662
2663 if (slabp->free == BUFCTL_END) {
2664 list_add(&slabp->list, &l3->slabs_full);
2665 } else {
2666 list_add(&slabp->list, &l3->slabs_partial);
2667 }
e498be7d 2668
b28a02de
PE
2669 spin_unlock(&l3->list_lock);
2670 goto done;
e498be7d 2671
b28a02de
PE
2672 must_grow:
2673 spin_unlock(&l3->list_lock);
2674 x = cache_grow(cachep, flags, nodeid);
1da177e4 2675
b28a02de
PE
2676 if (!x)
2677 return NULL;
e498be7d 2678
b28a02de
PE
2679 goto retry;
2680 done:
2681 return obj;
e498be7d
CL
2682}
2683#endif
2684
2685/*
2686 * Caller needs to acquire correct kmem_list's list_lock
2687 */
b28a02de
PE
2688static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects,
2689 int node)
1da177e4
LT
2690{
2691 int i;
e498be7d 2692 struct kmem_list3 *l3;
1da177e4
LT
2693
2694 for (i = 0; i < nr_objects; i++) {
2695 void *objp = objpp[i];
2696 struct slab *slabp;
2697 unsigned int objnr;
2698
065d41cb 2699 slabp = page_get_slab(virt_to_page(objp));
ff69416e 2700 l3 = cachep->nodelists[node];
1da177e4 2701 list_del(&slabp->list);
9884fd8d 2702 objnr = (unsigned)(objp - slabp->s_mem) / cachep->objsize;
ff69416e 2703 check_spinlock_acquired_node(cachep, node);
1da177e4 2704 check_slabp(cachep, slabp);
e498be7d 2705
1da177e4 2706#if DEBUG
09ad4bbc
CL
2707 /* Verify that the slab belongs to the intended node */
2708 WARN_ON(slabp->nodeid != node);
2709
1da177e4 2710 if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
e498be7d 2711 printk(KERN_ERR "slab: double free detected in cache "
b28a02de 2712 "'%s', objp %p\n", cachep->name, objp);
1da177e4
LT
2713 BUG();
2714 }
2715#endif
2716 slab_bufctl(slabp)[objnr] = slabp->free;
2717 slabp->free = objnr;
2718 STATS_DEC_ACTIVE(cachep);
2719 slabp->inuse--;
e498be7d 2720 l3->free_objects++;
1da177e4
LT
2721 check_slabp(cachep, slabp);
2722
2723 /* fixup slab chains */
2724 if (slabp->inuse == 0) {
e498be7d
CL
2725 if (l3->free_objects > l3->free_limit) {
2726 l3->free_objects -= cachep->num;
1da177e4
LT
2727 slab_destroy(cachep, slabp);
2728 } else {
e498be7d 2729 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
2730 }
2731 } else {
2732 /* Unconditionally move a slab to the end of the
2733 * partial list on free - maximum time for the
2734 * other objects to be freed, too.
2735 */
e498be7d 2736 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
2737 }
2738 }
2739}
2740
2741static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac)
2742{
2743 int batchcount;
e498be7d 2744 struct kmem_list3 *l3;
ff69416e 2745 int node = numa_node_id();
1da177e4
LT
2746
2747 batchcount = ac->batchcount;
2748#if DEBUG
2749 BUG_ON(!batchcount || batchcount > ac->avail);
2750#endif
2751 check_irq_off();
ff69416e 2752 l3 = cachep->nodelists[node];
e498be7d
CL
2753 spin_lock(&l3->list_lock);
2754 if (l3->shared) {
2755 struct array_cache *shared_array = l3->shared;
b28a02de 2756 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
2757 if (max) {
2758 if (batchcount > max)
2759 batchcount = max;
e498be7d 2760 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 2761 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
2762 shared_array->avail += batchcount;
2763 goto free_done;
2764 }
2765 }
2766
ff69416e 2767 free_block(cachep, ac->entry, batchcount, node);
b28a02de 2768 free_done:
1da177e4
LT
2769#if STATS
2770 {
2771 int i = 0;
2772 struct list_head *p;
2773
e498be7d
CL
2774 p = l3->slabs_free.next;
2775 while (p != &(l3->slabs_free)) {
1da177e4
LT
2776 struct slab *slabp;
2777
2778 slabp = list_entry(p, struct slab, list);
2779 BUG_ON(slabp->inuse);
2780
2781 i++;
2782 p = p->next;
2783 }
2784 STATS_SET_FREEABLE(cachep, i);
2785 }
2786#endif
e498be7d 2787 spin_unlock(&l3->list_lock);
1da177e4 2788 ac->avail -= batchcount;
e498be7d 2789 memmove(ac->entry, &(ac->entry[batchcount]),
b28a02de 2790 sizeof(void *) * ac->avail);
1da177e4
LT
2791}
2792
2793/*
2794 * __cache_free
2795 * Release an obj back to its cache. If the obj has a constructed
2796 * state, it must be in this state _before_ it is released.
2797 *
2798 * Called with disabled ints.
2799 */
2800static inline void __cache_free(kmem_cache_t *cachep, void *objp)
2801{
2802 struct array_cache *ac = ac_data(cachep);
2803
2804 check_irq_off();
2805 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
2806
e498be7d
CL
2807 /* Make sure we are not freeing a object from another
2808 * node to the array cache on this cpu.
2809 */
2810#ifdef CONFIG_NUMA
2811 {
2812 struct slab *slabp;
065d41cb 2813 slabp = page_get_slab(virt_to_page(objp));
e498be7d
CL
2814 if (unlikely(slabp->nodeid != numa_node_id())) {
2815 struct array_cache *alien = NULL;
2816 int nodeid = slabp->nodeid;
b28a02de
PE
2817 struct kmem_list3 *l3 =
2818 cachep->nodelists[numa_node_id()];
e498be7d
CL
2819
2820 STATS_INC_NODEFREES(cachep);
2821 if (l3->alien && l3->alien[nodeid]) {
2822 alien = l3->alien[nodeid];
2823 spin_lock(&alien->lock);
2824 if (unlikely(alien->avail == alien->limit))
2825 __drain_alien_cache(cachep,
b28a02de 2826 alien, nodeid);
e498be7d
CL
2827 alien->entry[alien->avail++] = objp;
2828 spin_unlock(&alien->lock);
2829 } else {
2830 spin_lock(&(cachep->nodelists[nodeid])->
b28a02de 2831 list_lock);
ff69416e 2832 free_block(cachep, &objp, 1, nodeid);
e498be7d 2833 spin_unlock(&(cachep->nodelists[nodeid])->
b28a02de 2834 list_lock);
e498be7d
CL
2835 }
2836 return;
2837 }
2838 }
2839#endif
1da177e4
LT
2840 if (likely(ac->avail < ac->limit)) {
2841 STATS_INC_FREEHIT(cachep);
e498be7d 2842 ac->entry[ac->avail++] = objp;
1da177e4
LT
2843 return;
2844 } else {
2845 STATS_INC_FREEMISS(cachep);
2846 cache_flusharray(cachep, ac);
e498be7d 2847 ac->entry[ac->avail++] = objp;
1da177e4
LT
2848 }
2849}
2850
2851/**
2852 * kmem_cache_alloc - Allocate an object
2853 * @cachep: The cache to allocate from.
2854 * @flags: See kmalloc().
2855 *
2856 * Allocate an object from this cache. The flags are only relevant
2857 * if the cache has no available objects.
2858 */
dd0fc66f 2859void *kmem_cache_alloc(kmem_cache_t *cachep, gfp_t flags)
1da177e4
LT
2860{
2861 return __cache_alloc(cachep, flags);
2862}
2863EXPORT_SYMBOL(kmem_cache_alloc);
2864
2865/**
2866 * kmem_ptr_validate - check if an untrusted pointer might
2867 * be a slab entry.
2868 * @cachep: the cache we're checking against
2869 * @ptr: pointer to validate
2870 *
2871 * This verifies that the untrusted pointer looks sane:
2872 * it is _not_ a guarantee that the pointer is actually
2873 * part of the slab cache in question, but it at least
2874 * validates that the pointer can be dereferenced and
2875 * looks half-way sane.
2876 *
2877 * Currently only used for dentry validation.
2878 */
2879int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr)
2880{
b28a02de 2881 unsigned long addr = (unsigned long)ptr;
1da177e4 2882 unsigned long min_addr = PAGE_OFFSET;
b28a02de 2883 unsigned long align_mask = BYTES_PER_WORD - 1;
1da177e4
LT
2884 unsigned long size = cachep->objsize;
2885 struct page *page;
2886
2887 if (unlikely(addr < min_addr))
2888 goto out;
2889 if (unlikely(addr > (unsigned long)high_memory - size))
2890 goto out;
2891 if (unlikely(addr & align_mask))
2892 goto out;
2893 if (unlikely(!kern_addr_valid(addr)))
2894 goto out;
2895 if (unlikely(!kern_addr_valid(addr + size - 1)))
2896 goto out;
2897 page = virt_to_page(ptr);
2898 if (unlikely(!PageSlab(page)))
2899 goto out;
065d41cb 2900 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
2901 goto out;
2902 return 1;
b28a02de 2903 out:
1da177e4
LT
2904 return 0;
2905}
2906
2907#ifdef CONFIG_NUMA
2908/**
2909 * kmem_cache_alloc_node - Allocate an object on the specified node
2910 * @cachep: The cache to allocate from.
2911 * @flags: See kmalloc().
2912 * @nodeid: node number of the target node.
2913 *
2914 * Identical to kmem_cache_alloc, except that this function is slow
2915 * and can sleep. And it will allocate memory on the given node, which
2916 * can improve the performance for cpu bound structures.
e498be7d
CL
2917 * New and improved: it will now make sure that the object gets
2918 * put on the correct node list so that there is no false sharing.
1da177e4 2919 */
dd0fc66f 2920void *kmem_cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
1da177e4 2921{
e498be7d
CL
2922 unsigned long save_flags;
2923 void *ptr;
1da177e4 2924
ff69416e 2925 if (nodeid == -1)
e498be7d 2926 return __cache_alloc(cachep, flags);
1da177e4 2927
e498be7d
CL
2928 if (unlikely(!cachep->nodelists[nodeid])) {
2929 /* Fall back to __cache_alloc if we run into trouble */
b28a02de
PE
2930 printk(KERN_WARNING
2931 "slab: not allocating in inactive node %d for cache %s\n",
2932 nodeid, cachep->name);
2933 return __cache_alloc(cachep, flags);
1da177e4 2934 }
1da177e4 2935
e498be7d
CL
2936 cache_alloc_debugcheck_before(cachep, flags);
2937 local_irq_save(save_flags);
5c382300
AK
2938 if (nodeid == numa_node_id())
2939 ptr = ____cache_alloc(cachep, flags);
2940 else
2941 ptr = __cache_alloc_node(cachep, flags, nodeid);
e498be7d 2942 local_irq_restore(save_flags);
b28a02de
PE
2943 ptr =
2944 cache_alloc_debugcheck_after(cachep, flags, ptr,
2945 __builtin_return_address(0));
1da177e4 2946
e498be7d 2947 return ptr;
1da177e4
LT
2948}
2949EXPORT_SYMBOL(kmem_cache_alloc_node);
2950
dd0fc66f 2951void *kmalloc_node(size_t size, gfp_t flags, int node)
97e2bde4
MS
2952{
2953 kmem_cache_t *cachep;
2954
2955 cachep = kmem_find_general_cachep(size, flags);
2956 if (unlikely(cachep == NULL))
2957 return NULL;
2958 return kmem_cache_alloc_node(cachep, flags, node);
2959}
2960EXPORT_SYMBOL(kmalloc_node);
1da177e4
LT
2961#endif
2962
2963/**
2964 * kmalloc - allocate memory
2965 * @size: how many bytes of memory are required.
2966 * @flags: the type of memory to allocate.
2967 *
2968 * kmalloc is the normal method of allocating memory
2969 * in the kernel.
2970 *
2971 * The @flags argument may be one of:
2972 *
2973 * %GFP_USER - Allocate memory on behalf of user. May sleep.
2974 *
2975 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
2976 *
2977 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
2978 *
2979 * Additionally, the %GFP_DMA flag may be set to indicate the memory
2980 * must be suitable for DMA. This can mean different things on different
2981 * platforms. For example, on i386, it means that the memory must come
2982 * from the first 16MB.
2983 */
dd0fc66f 2984void *__kmalloc(size_t size, gfp_t flags)
1da177e4
LT
2985{
2986 kmem_cache_t *cachep;
2987
97e2bde4
MS
2988 /* If you want to save a few bytes .text space: replace
2989 * __ with kmem_.
2990 * Then kmalloc uses the uninlined functions instead of the inline
2991 * functions.
2992 */
2993 cachep = __find_general_cachep(size, flags);
dbdb9045
AM
2994 if (unlikely(cachep == NULL))
2995 return NULL;
1da177e4
LT
2996 return __cache_alloc(cachep, flags);
2997}
2998EXPORT_SYMBOL(__kmalloc);
2999
3000#ifdef CONFIG_SMP
3001/**
3002 * __alloc_percpu - allocate one copy of the object for every present
3003 * cpu in the system, zeroing them.
3004 * Objects should be dereferenced using the per_cpu_ptr macro only.
3005 *
3006 * @size: how many bytes of memory are required.
1da177e4 3007 */
f9f75005 3008void *__alloc_percpu(size_t size)
1da177e4
LT
3009{
3010 int i;
b28a02de 3011 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
1da177e4
LT
3012
3013 if (!pdata)
3014 return NULL;
3015
e498be7d
CL
3016 /*
3017 * Cannot use for_each_online_cpu since a cpu may come online
3018 * and we have no way of figuring out how to fix the array
3019 * that we have allocated then....
3020 */
3021 for_each_cpu(i) {
3022 int node = cpu_to_node(i);
3023
3024 if (node_online(node))
3025 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3026 else
3027 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
1da177e4
LT
3028
3029 if (!pdata->ptrs[i])
3030 goto unwind_oom;
3031 memset(pdata->ptrs[i], 0, size);
3032 }
3033
3034 /* Catch derefs w/o wrappers */
b28a02de 3035 return (void *)(~(unsigned long)pdata);
1da177e4 3036
b28a02de 3037 unwind_oom:
1da177e4
LT
3038 while (--i >= 0) {
3039 if (!cpu_possible(i))
3040 continue;
3041 kfree(pdata->ptrs[i]);
3042 }
3043 kfree(pdata);
3044 return NULL;
3045}
3046EXPORT_SYMBOL(__alloc_percpu);
3047#endif
3048
3049/**
3050 * kmem_cache_free - Deallocate an object
3051 * @cachep: The cache the allocation was from.
3052 * @objp: The previously allocated object.
3053 *
3054 * Free an object which was previously allocated from this
3055 * cache.
3056 */
3057void kmem_cache_free(kmem_cache_t *cachep, void *objp)
3058{
3059 unsigned long flags;
3060
3061 local_irq_save(flags);
3062 __cache_free(cachep, objp);
3063 local_irq_restore(flags);
3064}
3065EXPORT_SYMBOL(kmem_cache_free);
3066
1da177e4
LT
3067/**
3068 * kfree - free previously allocated memory
3069 * @objp: pointer returned by kmalloc.
3070 *
80e93eff
PE
3071 * If @objp is NULL, no operation is performed.
3072 *
1da177e4
LT
3073 * Don't free memory not originally allocated by kmalloc()
3074 * or you will run into trouble.
3075 */
3076void kfree(const void *objp)
3077{
3078 kmem_cache_t *c;
3079 unsigned long flags;
3080
3081 if (unlikely(!objp))
3082 return;
3083 local_irq_save(flags);
3084 kfree_debugcheck(objp);
065d41cb 3085 c = page_get_cache(virt_to_page(objp));
a4fc7ab1 3086 mutex_debug_check_no_locks_freed(objp, obj_reallen(c));
b28a02de 3087 __cache_free(c, (void *)objp);
1da177e4
LT
3088 local_irq_restore(flags);
3089}
3090EXPORT_SYMBOL(kfree);
3091
3092#ifdef CONFIG_SMP
3093/**
3094 * free_percpu - free previously allocated percpu memory
3095 * @objp: pointer returned by alloc_percpu.
3096 *
3097 * Don't free memory not originally allocated by alloc_percpu()
3098 * The complemented objp is to check for that.
3099 */
b28a02de 3100void free_percpu(const void *objp)
1da177e4
LT
3101{
3102 int i;
b28a02de 3103 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
1da177e4 3104
e498be7d
CL
3105 /*
3106 * We allocate for all cpus so we cannot use for online cpu here.
3107 */
3108 for_each_cpu(i)
b28a02de 3109 kfree(p->ptrs[i]);
1da177e4
LT
3110 kfree(p);
3111}
3112EXPORT_SYMBOL(free_percpu);
3113#endif
3114
3115unsigned int kmem_cache_size(kmem_cache_t *cachep)
3116{
3117 return obj_reallen(cachep);
3118}
3119EXPORT_SYMBOL(kmem_cache_size);
3120
1944972d
ACM
3121const char *kmem_cache_name(kmem_cache_t *cachep)
3122{
3123 return cachep->name;
3124}
3125EXPORT_SYMBOL_GPL(kmem_cache_name);
3126
e498be7d
CL
3127/*
3128 * This initializes kmem_list3 for all nodes.
3129 */
3130static int alloc_kmemlist(kmem_cache_t *cachep)
3131{
3132 int node;
3133 struct kmem_list3 *l3;
3134 int err = 0;
3135
3136 for_each_online_node(node) {
3137 struct array_cache *nc = NULL, *new;
3138 struct array_cache **new_alien = NULL;
3139#ifdef CONFIG_NUMA
3140 if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
3141 goto fail;
3142#endif
b28a02de
PE
3143 if (!(new = alloc_arraycache(node, (cachep->shared *
3144 cachep->batchcount),
3145 0xbaadf00d)))
e498be7d
CL
3146 goto fail;
3147 if ((l3 = cachep->nodelists[node])) {
3148
3149 spin_lock_irq(&l3->list_lock);
3150
3151 if ((nc = cachep->nodelists[node]->shared))
b28a02de 3152 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
3153
3154 l3->shared = new;
3155 if (!cachep->nodelists[node]->alien) {
3156 l3->alien = new_alien;
3157 new_alien = NULL;
3158 }
b28a02de
PE
3159 l3->free_limit = (1 + nr_cpus_node(node)) *
3160 cachep->batchcount + cachep->num;
e498be7d
CL
3161 spin_unlock_irq(&l3->list_lock);
3162 kfree(nc);
3163 free_alien_cache(new_alien);
3164 continue;
3165 }
3166 if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
b28a02de 3167 GFP_KERNEL, node)))
e498be7d
CL
3168 goto fail;
3169
3170 kmem_list3_init(l3);
3171 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 3172 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
3173 l3->shared = new;
3174 l3->alien = new_alien;
b28a02de
PE
3175 l3->free_limit = (1 + nr_cpus_node(node)) *
3176 cachep->batchcount + cachep->num;
e498be7d
CL
3177 cachep->nodelists[node] = l3;
3178 }
3179 return err;
b28a02de 3180 fail:
e498be7d
CL
3181 err = -ENOMEM;
3182 return err;
3183}
3184
1da177e4
LT
3185struct ccupdate_struct {
3186 kmem_cache_t *cachep;
3187 struct array_cache *new[NR_CPUS];
3188};
3189
3190static void do_ccupdate_local(void *info)
3191{
3192 struct ccupdate_struct *new = (struct ccupdate_struct *)info;
3193 struct array_cache *old;
3194
3195 check_irq_off();
3196 old = ac_data(new->cachep);
e498be7d 3197
1da177e4
LT
3198 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3199 new->new[smp_processor_id()] = old;
3200}
3201
1da177e4 3202static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount,
b28a02de 3203 int shared)
1da177e4
LT
3204{
3205 struct ccupdate_struct new;
e498be7d 3206 int i, err;
1da177e4 3207
b28a02de 3208 memset(&new.new, 0, sizeof(new.new));
e498be7d 3209 for_each_online_cpu(i) {
b28a02de
PE
3210 new.new[i] =
3211 alloc_arraycache(cpu_to_node(i), limit, batchcount);
e498be7d 3212 if (!new.new[i]) {
b28a02de
PE
3213 for (i--; i >= 0; i--)
3214 kfree(new.new[i]);
e498be7d 3215 return -ENOMEM;
1da177e4
LT
3216 }
3217 }
3218 new.cachep = cachep;
3219
3220 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
e498be7d 3221
1da177e4
LT
3222 check_irq_on();
3223 spin_lock_irq(&cachep->spinlock);
3224 cachep->batchcount = batchcount;
3225 cachep->limit = limit;
e498be7d 3226 cachep->shared = shared;
1da177e4
LT
3227 spin_unlock_irq(&cachep->spinlock);
3228
e498be7d 3229 for_each_online_cpu(i) {
1da177e4
LT
3230 struct array_cache *ccold = new.new[i];
3231 if (!ccold)
3232 continue;
e498be7d 3233 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3234 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3235 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3236 kfree(ccold);
3237 }
1da177e4 3238
e498be7d
CL
3239 err = alloc_kmemlist(cachep);
3240 if (err) {
3241 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
b28a02de 3242 cachep->name, -err);
e498be7d 3243 BUG();
1da177e4 3244 }
1da177e4
LT
3245 return 0;
3246}
3247
1da177e4
LT
3248static void enable_cpucache(kmem_cache_t *cachep)
3249{
3250 int err;
3251 int limit, shared;
3252
3253 /* The head array serves three purposes:
3254 * - create a LIFO ordering, i.e. return objects that are cache-warm
3255 * - reduce the number of spinlock operations.
3256 * - reduce the number of linked list operations on the slab and
3257 * bufctl chains: array operations are cheaper.
3258 * The numbers are guessed, we should auto-tune as described by
3259 * Bonwick.
3260 */
3261 if (cachep->objsize > 131072)
3262 limit = 1;
3263 else if (cachep->objsize > PAGE_SIZE)
3264 limit = 8;
3265 else if (cachep->objsize > 1024)
3266 limit = 24;
3267 else if (cachep->objsize > 256)
3268 limit = 54;
3269 else
3270 limit = 120;
3271
3272 /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
3273 * allocation behaviour: Most allocs on one cpu, most free operations
3274 * on another cpu. For these cases, an efficient object passing between
3275 * cpus is necessary. This is provided by a shared array. The array
3276 * replaces Bonwick's magazine layer.
3277 * On uniprocessor, it's functionally equivalent (but less efficient)
3278 * to a larger limit. Thus disabled by default.
3279 */
3280 shared = 0;
3281#ifdef CONFIG_SMP
3282 if (cachep->objsize <= PAGE_SIZE)
3283 shared = 8;
3284#endif
3285
3286#if DEBUG
3287 /* With debugging enabled, large batchcount lead to excessively
3288 * long periods with disabled local interrupts. Limit the
3289 * batchcount
3290 */
3291 if (limit > 32)
3292 limit = 32;
3293#endif
b28a02de 3294 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
3295 if (err)
3296 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3297 cachep->name, -err);
1da177e4
LT
3298}
3299
b28a02de
PE
3300static void drain_array_locked(kmem_cache_t *cachep, struct array_cache *ac,
3301 int force, int node)
1da177e4
LT
3302{
3303 int tofree;
3304
e498be7d 3305 check_spinlock_acquired_node(cachep, node);
1da177e4
LT
3306 if (ac->touched && !force) {
3307 ac->touched = 0;
3308 } else if (ac->avail) {
b28a02de 3309 tofree = force ? ac->avail : (ac->limit + 4) / 5;
1da177e4 3310 if (tofree > ac->avail) {
b28a02de 3311 tofree = (ac->avail + 1) / 2;
1da177e4 3312 }
ff69416e 3313 free_block(cachep, ac->entry, tofree, node);
1da177e4 3314 ac->avail -= tofree;
e498be7d 3315 memmove(ac->entry, &(ac->entry[tofree]),
b28a02de 3316 sizeof(void *) * ac->avail);
1da177e4
LT
3317 }
3318}
3319
3320/**
3321 * cache_reap - Reclaim memory from caches.
1e5d5331 3322 * @unused: unused parameter
1da177e4
LT
3323 *
3324 * Called from workqueue/eventd every few seconds.
3325 * Purpose:
3326 * - clear the per-cpu caches for this CPU.
3327 * - return freeable pages to the main free memory pool.
3328 *
fc0abb14 3329 * If we cannot acquire the cache chain mutex then just give up - we'll
1da177e4
LT
3330 * try again on the next iteration.
3331 */
3332static void cache_reap(void *unused)
3333{
3334 struct list_head *walk;
e498be7d 3335 struct kmem_list3 *l3;
1da177e4 3336
fc0abb14 3337 if (!mutex_trylock(&cache_chain_mutex)) {
1da177e4 3338 /* Give up. Setup the next iteration. */
b28a02de
PE
3339 schedule_delayed_work(&__get_cpu_var(reap_work),
3340 REAPTIMEOUT_CPUC);
1da177e4
LT
3341 return;
3342 }
3343
3344 list_for_each(walk, &cache_chain) {
3345 kmem_cache_t *searchp;
b28a02de 3346 struct list_head *p;
1da177e4
LT
3347 int tofree;
3348 struct slab *slabp;
3349
3350 searchp = list_entry(walk, kmem_cache_t, next);
3351
3352 if (searchp->flags & SLAB_NO_REAP)
3353 goto next;
3354
3355 check_irq_on();
3356
e498be7d
CL
3357 l3 = searchp->nodelists[numa_node_id()];
3358 if (l3->alien)
3359 drain_alien_cache(searchp, l3);
3360 spin_lock_irq(&l3->list_lock);
1da177e4 3361
e498be7d 3362 drain_array_locked(searchp, ac_data(searchp), 0,
b28a02de 3363 numa_node_id());
1da177e4 3364
e498be7d 3365 if (time_after(l3->next_reap, jiffies))
1da177e4
LT
3366 goto next_unlock;
3367
e498be7d 3368 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 3369
e498be7d
CL
3370 if (l3->shared)
3371 drain_array_locked(searchp, l3->shared, 0,
b28a02de 3372 numa_node_id());
1da177e4 3373
e498be7d
CL
3374 if (l3->free_touched) {
3375 l3->free_touched = 0;
1da177e4
LT
3376 goto next_unlock;
3377 }
3378
b28a02de
PE
3379 tofree =
3380 (l3->free_limit + 5 * searchp->num -
3381 1) / (5 * searchp->num);
1da177e4 3382 do {
e498be7d
CL
3383 p = l3->slabs_free.next;
3384 if (p == &(l3->slabs_free))
1da177e4
LT
3385 break;
3386
3387 slabp = list_entry(p, struct slab, list);
3388 BUG_ON(slabp->inuse);
3389 list_del(&slabp->list);
3390 STATS_INC_REAPED(searchp);
3391
3392 /* Safe to drop the lock. The slab is no longer
3393 * linked to the cache.
3394 * searchp cannot disappear, we hold
3395 * cache_chain_lock
3396 */
e498be7d
CL
3397 l3->free_objects -= searchp->num;
3398 spin_unlock_irq(&l3->list_lock);
1da177e4 3399 slab_destroy(searchp, slabp);
e498be7d 3400 spin_lock_irq(&l3->list_lock);
b28a02de
PE
3401 } while (--tofree > 0);
3402 next_unlock:
e498be7d 3403 spin_unlock_irq(&l3->list_lock);
b28a02de 3404 next:
1da177e4
LT
3405 cond_resched();
3406 }
3407 check_irq_on();
fc0abb14 3408 mutex_unlock(&cache_chain_mutex);
4ae7c039 3409 drain_remote_pages();
1da177e4 3410 /* Setup the next iteration */
cd61ef62 3411 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
1da177e4
LT
3412}
3413
3414#ifdef CONFIG_PROC_FS
3415
85289f98 3416static void print_slabinfo_header(struct seq_file *m)
1da177e4 3417{
85289f98
PE
3418 /*
3419 * Output format version, so at least we can change it
3420 * without _too_ many complaints.
3421 */
1da177e4 3422#if STATS
85289f98 3423 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 3424#else
85289f98 3425 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 3426#endif
85289f98
PE
3427 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3428 "<objperslab> <pagesperslab>");
3429 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3430 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 3431#if STATS
85289f98
PE
3432 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3433 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
3434 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 3435#endif
85289f98
PE
3436 seq_putc(m, '\n');
3437}
3438
3439static void *s_start(struct seq_file *m, loff_t *pos)
3440{
3441 loff_t n = *pos;
3442 struct list_head *p;
3443
fc0abb14 3444 mutex_lock(&cache_chain_mutex);
85289f98
PE
3445 if (!n)
3446 print_slabinfo_header(m);
1da177e4
LT
3447 p = cache_chain.next;
3448 while (n--) {
3449 p = p->next;
3450 if (p == &cache_chain)
3451 return NULL;
3452 }
3453 return list_entry(p, kmem_cache_t, next);
3454}
3455
3456static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3457{
3458 kmem_cache_t *cachep = p;
3459 ++*pos;
3460 return cachep->next.next == &cache_chain ? NULL
b28a02de 3461 : list_entry(cachep->next.next, kmem_cache_t, next);
1da177e4
LT
3462}
3463
3464static void s_stop(struct seq_file *m, void *p)
3465{
fc0abb14 3466 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
3467}
3468
3469static int s_show(struct seq_file *m, void *p)
3470{
3471 kmem_cache_t *cachep = p;
3472 struct list_head *q;
b28a02de
PE
3473 struct slab *slabp;
3474 unsigned long active_objs;
3475 unsigned long num_objs;
3476 unsigned long active_slabs = 0;
3477 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3478 const char *name;
1da177e4 3479 char *error = NULL;
e498be7d
CL
3480 int node;
3481 struct kmem_list3 *l3;
1da177e4
LT
3482
3483 check_irq_on();
3484 spin_lock_irq(&cachep->spinlock);
3485 active_objs = 0;
3486 num_slabs = 0;
e498be7d
CL
3487 for_each_online_node(node) {
3488 l3 = cachep->nodelists[node];
3489 if (!l3)
3490 continue;
3491
3492 spin_lock(&l3->list_lock);
3493
b28a02de 3494 list_for_each(q, &l3->slabs_full) {
e498be7d
CL
3495 slabp = list_entry(q, struct slab, list);
3496 if (slabp->inuse != cachep->num && !error)
3497 error = "slabs_full accounting error";
3498 active_objs += cachep->num;
3499 active_slabs++;
3500 }
b28a02de 3501 list_for_each(q, &l3->slabs_partial) {
e498be7d
CL
3502 slabp = list_entry(q, struct slab, list);
3503 if (slabp->inuse == cachep->num && !error)
3504 error = "slabs_partial inuse accounting error";
3505 if (!slabp->inuse && !error)
3506 error = "slabs_partial/inuse accounting error";
3507 active_objs += slabp->inuse;
3508 active_slabs++;
3509 }
b28a02de 3510 list_for_each(q, &l3->slabs_free) {
e498be7d
CL
3511 slabp = list_entry(q, struct slab, list);
3512 if (slabp->inuse && !error)
3513 error = "slabs_free/inuse accounting error";
3514 num_slabs++;
3515 }
3516 free_objects += l3->free_objects;
3517 shared_avail += l3->shared->avail;
3518
3519 spin_unlock(&l3->list_lock);
1da177e4 3520 }
b28a02de
PE
3521 num_slabs += active_slabs;
3522 num_objs = num_slabs * cachep->num;
e498be7d 3523 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
3524 error = "free_objects accounting error";
3525
b28a02de 3526 name = cachep->name;
1da177e4
LT
3527 if (error)
3528 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3529
3530 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
b28a02de
PE
3531 name, active_objs, num_objs, cachep->objsize,
3532 cachep->num, (1 << cachep->gfporder));
1da177e4 3533 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 3534 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 3535 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 3536 active_slabs, num_slabs, shared_avail);
1da177e4 3537#if STATS
b28a02de 3538 { /* list3 stats */
1da177e4
LT
3539 unsigned long high = cachep->high_mark;
3540 unsigned long allocs = cachep->num_allocations;
3541 unsigned long grown = cachep->grown;
3542 unsigned long reaped = cachep->reaped;
3543 unsigned long errors = cachep->errors;
3544 unsigned long max_freeable = cachep->max_freeable;
1da177e4 3545 unsigned long node_allocs = cachep->node_allocs;
e498be7d 3546 unsigned long node_frees = cachep->node_frees;
1da177e4 3547
e498be7d 3548 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
b28a02de 3549 %4lu %4lu %4lu %4lu", allocs, high, grown, reaped, errors, max_freeable, node_allocs, node_frees);
1da177e4
LT
3550 }
3551 /* cpu stats */
3552 {
3553 unsigned long allochit = atomic_read(&cachep->allochit);
3554 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3555 unsigned long freehit = atomic_read(&cachep->freehit);
3556 unsigned long freemiss = atomic_read(&cachep->freemiss);
3557
3558 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 3559 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
3560 }
3561#endif
3562 seq_putc(m, '\n');
3563 spin_unlock_irq(&cachep->spinlock);
3564 return 0;
3565}
3566
3567/*
3568 * slabinfo_op - iterator that generates /proc/slabinfo
3569 *
3570 * Output layout:
3571 * cache-name
3572 * num-active-objs
3573 * total-objs
3574 * object size
3575 * num-active-slabs
3576 * total-slabs
3577 * num-pages-per-slab
3578 * + further values on SMP and with statistics enabled
3579 */
3580
3581struct seq_operations slabinfo_op = {
b28a02de
PE
3582 .start = s_start,
3583 .next = s_next,
3584 .stop = s_stop,
3585 .show = s_show,
1da177e4
LT
3586};
3587
3588#define MAX_SLABINFO_WRITE 128
3589/**
3590 * slabinfo_write - Tuning for the slab allocator
3591 * @file: unused
3592 * @buffer: user buffer
3593 * @count: data length
3594 * @ppos: unused
3595 */
b28a02de
PE
3596ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3597 size_t count, loff_t *ppos)
1da177e4 3598{
b28a02de 3599 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4
LT
3600 int limit, batchcount, shared, res;
3601 struct list_head *p;
b28a02de 3602
1da177e4
LT
3603 if (count > MAX_SLABINFO_WRITE)
3604 return -EINVAL;
3605 if (copy_from_user(&kbuf, buffer, count))
3606 return -EFAULT;
b28a02de 3607 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
3608
3609 tmp = strchr(kbuf, ' ');
3610 if (!tmp)
3611 return -EINVAL;
3612 *tmp = '\0';
3613 tmp++;
3614 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3615 return -EINVAL;
3616
3617 /* Find the cache in the chain of caches. */
fc0abb14 3618 mutex_lock(&cache_chain_mutex);
1da177e4 3619 res = -EINVAL;
b28a02de 3620 list_for_each(p, &cache_chain) {
1da177e4
LT
3621 kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next);
3622
3623 if (!strcmp(cachep->name, kbuf)) {
3624 if (limit < 1 ||
3625 batchcount < 1 ||
b28a02de 3626 batchcount > limit || shared < 0) {
e498be7d 3627 res = 0;
1da177e4 3628 } else {
e498be7d 3629 res = do_tune_cpucache(cachep, limit,
b28a02de 3630 batchcount, shared);
1da177e4
LT
3631 }
3632 break;
3633 }
3634 }
fc0abb14 3635 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
3636 if (res >= 0)
3637 res = count;
3638 return res;
3639}
3640#endif
3641
00e145b6
MS
3642/**
3643 * ksize - get the actual amount of memory allocated for a given object
3644 * @objp: Pointer to the object
3645 *
3646 * kmalloc may internally round up allocations and return more memory
3647 * than requested. ksize() can be used to determine the actual amount of
3648 * memory allocated. The caller may use this additional memory, even though
3649 * a smaller amount of memory was initially specified with the kmalloc call.
3650 * The caller must guarantee that objp points to a valid object previously
3651 * allocated with either kmalloc() or kmem_cache_alloc(). The object
3652 * must not be freed during the duration of the call.
3653 */
1da177e4
LT
3654unsigned int ksize(const void *objp)
3655{
00e145b6
MS
3656 if (unlikely(objp == NULL))
3657 return 0;
1da177e4 3658
065d41cb 3659 return obj_reallen(page_get_cache(virt_to_page(objp)));
1da177e4 3660}