]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/slab.c
[PATCH] slab: extract setup_cpu_cache
[mirror_ubuntu-jammy-kernel.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
97#include <linux/seq_file.h>
98#include <linux/notifier.h>
99#include <linux/kallsyms.h>
100#include <linux/cpu.h>
101#include <linux/sysctl.h>
102#include <linux/module.h>
103#include <linux/rcupdate.h>
543537bd 104#include <linux/string.h>
e498be7d 105#include <linux/nodemask.h>
dc85da15 106#include <linux/mempolicy.h>
fc0abb14 107#include <linux/mutex.h>
1da177e4
LT
108
109#include <asm/uaccess.h>
110#include <asm/cacheflush.h>
111#include <asm/tlbflush.h>
112#include <asm/page.h>
113
114/*
115 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
116 * SLAB_RED_ZONE & SLAB_POISON.
117 * 0 for faster, smaller code (especially in the critical paths).
118 *
119 * STATS - 1 to collect stats for /proc/slabinfo.
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
123 */
124
125#ifdef CONFIG_DEBUG_SLAB
126#define DEBUG 1
127#define STATS 1
128#define FORCED_DEBUG 1
129#else
130#define DEBUG 0
131#define STATS 0
132#define FORCED_DEBUG 0
133#endif
134
1da177e4
LT
135/* Shouldn't this be in a header file somewhere? */
136#define BYTES_PER_WORD sizeof(void *)
137
138#ifndef cache_line_size
139#define cache_line_size() L1_CACHE_BYTES
140#endif
141
142#ifndef ARCH_KMALLOC_MINALIGN
143/*
144 * Enforce a minimum alignment for the kmalloc caches.
145 * Usually, the kmalloc caches are cache_line_size() aligned, except when
146 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
147 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
148 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
149 * Note that this flag disables some debug features.
150 */
151#define ARCH_KMALLOC_MINALIGN 0
152#endif
153
154#ifndef ARCH_SLAB_MINALIGN
155/*
156 * Enforce a minimum alignment for all caches.
157 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
158 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
159 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
160 * some debug features.
161 */
162#define ARCH_SLAB_MINALIGN 0
163#endif
164
165#ifndef ARCH_KMALLOC_FLAGS
166#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
167#endif
168
169/* Legal flag mask for kmem_cache_create(). */
170#if DEBUG
171# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
173 SLAB_NO_REAP | SLAB_CACHE_DMA | \
174 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
175 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
176 SLAB_DESTROY_BY_RCU)
177#else
178# define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
179 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181 SLAB_DESTROY_BY_RCU)
182#endif
183
184/*
185 * kmem_bufctl_t:
186 *
187 * Bufctl's are used for linking objs within a slab
188 * linked offsets.
189 *
190 * This implementation relies on "struct page" for locating the cache &
191 * slab an object belongs to.
192 * This allows the bufctl structure to be small (one int), but limits
193 * the number of objects a slab (not a cache) can contain when off-slab
194 * bufctls are used. The limit is the size of the largest general cache
195 * that does not use off-slab slabs.
196 * For 32bit archs with 4 kB pages, is this 56.
197 * This is not serious, as it is only for large objects, when it is unwise
198 * to have too many per slab.
199 * Note: This limit can be raised by introducing a general cache whose size
200 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
201 */
202
fa5b08d5 203typedef unsigned int kmem_bufctl_t;
1da177e4
LT
204#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
205#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
206#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
207
208/* Max number of objs-per-slab for caches which use off-slab slabs.
209 * Needed to avoid a possible looping condition in cache_grow().
210 */
211static unsigned long offslab_limit;
212
213/*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220struct slab {
b28a02de
PE
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
1da177e4
LT
227};
228
229/*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245struct slab_rcu {
b28a02de 246 struct rcu_head head;
343e0d7a 247 struct kmem_cache *cachep;
b28a02de 248 void *addr;
1da177e4
LT
249};
250
251/*
252 * struct array_cache
253 *
1da177e4
LT
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
e498be7d
CL
268 spinlock_t lock;
269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
1da177e4
LT
275};
276
277/* bootstrap: The caches do not work without cpuarrays anymore,
278 * but the cpuarrays are allocated from the generic caches...
279 */
280#define BOOT_CPUCACHE_ENTRIES 1
281struct arraycache_init {
282 struct array_cache cache;
b28a02de 283 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
284};
285
286/*
e498be7d 287 * The slab lists for all objects.
1da177e4
LT
288 */
289struct kmem_list3 {
b28a02de
PE
290 struct list_head slabs_partial; /* partial list first, better asm code */
291 struct list_head slabs_full;
292 struct list_head slabs_free;
293 unsigned long free_objects;
294 unsigned long next_reap;
295 int free_touched;
296 unsigned int free_limit;
2e1217cf 297 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
298 spinlock_t list_lock;
299 struct array_cache *shared; /* shared per node */
300 struct array_cache **alien; /* on other nodes */
1da177e4
LT
301};
302
e498be7d
CL
303/*
304 * Need this for bootstrapping a per node allocator.
305 */
306#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
307struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
308#define CACHE_CACHE 0
309#define SIZE_AC 1
310#define SIZE_L3 (1 + MAX_NUMNODES)
311
312/*
7243cc05 313 * This function must be completely optimized away if
e498be7d
CL
314 * a constant is passed to it. Mostly the same as
315 * what is in linux/slab.h except it returns an
316 * index.
317 */
7243cc05 318static __always_inline int index_of(const size_t size)
e498be7d 319{
5ec8a847
SR
320 extern void __bad_size(void);
321
e498be7d
CL
322 if (__builtin_constant_p(size)) {
323 int i = 0;
324
325#define CACHE(x) \
326 if (size <=x) \
327 return i; \
328 else \
329 i++;
330#include "linux/kmalloc_sizes.h"
331#undef CACHE
5ec8a847 332 __bad_size();
7243cc05 333 } else
5ec8a847 334 __bad_size();
e498be7d
CL
335 return 0;
336}
337
338#define INDEX_AC index_of(sizeof(struct arraycache_init))
339#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 340
5295a74c 341static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
342{
343 INIT_LIST_HEAD(&parent->slabs_full);
344 INIT_LIST_HEAD(&parent->slabs_partial);
345 INIT_LIST_HEAD(&parent->slabs_free);
346 parent->shared = NULL;
347 parent->alien = NULL;
2e1217cf 348 parent->colour_next = 0;
e498be7d
CL
349 spin_lock_init(&parent->list_lock);
350 parent->free_objects = 0;
351 parent->free_touched = 0;
352}
353
354#define MAKE_LIST(cachep, listp, slab, nodeid) \
355 do { \
356 INIT_LIST_HEAD(listp); \
357 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
358 } while (0)
359
360#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
361 do { \
362 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
363 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
364 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
365 } while (0)
1da177e4
LT
366
367/*
343e0d7a 368 * struct kmem_cache
1da177e4
LT
369 *
370 * manages a cache.
371 */
b28a02de 372
2109a2d1 373struct kmem_cache {
1da177e4 374/* 1) per-cpu data, touched during every alloc/free */
b28a02de
PE
375 struct array_cache *array[NR_CPUS];
376 unsigned int batchcount;
377 unsigned int limit;
378 unsigned int shared;
3dafccf2 379 unsigned int buffer_size;
e498be7d 380/* 2) touched by every alloc & free from the backend */
b28a02de
PE
381 struct kmem_list3 *nodelists[MAX_NUMNODES];
382 unsigned int flags; /* constant flags */
383 unsigned int num; /* # of objs per slab */
384 spinlock_t spinlock;
1da177e4
LT
385
386/* 3) cache_grow/shrink */
387 /* order of pgs per slab (2^n) */
b28a02de 388 unsigned int gfporder;
1da177e4
LT
389
390 /* force GFP flags, e.g. GFP_DMA */
b28a02de 391 gfp_t gfpflags;
1da177e4 392
b28a02de
PE
393 size_t colour; /* cache colouring range */
394 unsigned int colour_off; /* colour offset */
343e0d7a 395 struct kmem_cache *slabp_cache;
b28a02de
PE
396 unsigned int slab_size;
397 unsigned int dflags; /* dynamic flags */
1da177e4
LT
398
399 /* constructor func */
343e0d7a 400 void (*ctor) (void *, struct kmem_cache *, unsigned long);
1da177e4
LT
401
402 /* de-constructor func */
343e0d7a 403 void (*dtor) (void *, struct kmem_cache *, unsigned long);
1da177e4
LT
404
405/* 4) cache creation/removal */
b28a02de
PE
406 const char *name;
407 struct list_head next;
1da177e4
LT
408
409/* 5) statistics */
410#if STATS
b28a02de
PE
411 unsigned long num_active;
412 unsigned long num_allocations;
413 unsigned long high_mark;
414 unsigned long grown;
415 unsigned long reaped;
416 unsigned long errors;
417 unsigned long max_freeable;
418 unsigned long node_allocs;
419 unsigned long node_frees;
420 atomic_t allochit;
421 atomic_t allocmiss;
422 atomic_t freehit;
423 atomic_t freemiss;
1da177e4
LT
424#endif
425#if DEBUG
3dafccf2
MS
426 /*
427 * If debugging is enabled, then the allocator can add additional
428 * fields and/or padding to every object. buffer_size contains the total
429 * object size including these internal fields, the following two
430 * variables contain the offset to the user object and its size.
431 */
432 int obj_offset;
433 int obj_size;
1da177e4
LT
434#endif
435};
436
437#define CFLGS_OFF_SLAB (0x80000000UL)
438#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
439
440#define BATCHREFILL_LIMIT 16
441/* Optimization question: fewer reaps means less
442 * probability for unnessary cpucache drain/refill cycles.
443 *
dc6f3f27 444 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
445 * which could lock up otherwise freeable slabs.
446 */
447#define REAPTIMEOUT_CPUC (2*HZ)
448#define REAPTIMEOUT_LIST3 (4*HZ)
449
450#if STATS
451#define STATS_INC_ACTIVE(x) ((x)->num_active++)
452#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
453#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
454#define STATS_INC_GROWN(x) ((x)->grown++)
455#define STATS_INC_REAPED(x) ((x)->reaped++)
456#define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
457 (x)->high_mark = (x)->num_active; \
458 } while (0)
459#define STATS_INC_ERR(x) ((x)->errors++)
460#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 461#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
1da177e4
LT
462#define STATS_SET_FREEABLE(x, i) \
463 do { if ((x)->max_freeable < i) \
464 (x)->max_freeable = i; \
465 } while (0)
466
467#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
468#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
469#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
470#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
471#else
472#define STATS_INC_ACTIVE(x) do { } while (0)
473#define STATS_DEC_ACTIVE(x) do { } while (0)
474#define STATS_INC_ALLOCED(x) do { } while (0)
475#define STATS_INC_GROWN(x) do { } while (0)
476#define STATS_INC_REAPED(x) do { } while (0)
477#define STATS_SET_HIGH(x) do { } while (0)
478#define STATS_INC_ERR(x) do { } while (0)
479#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 480#define STATS_INC_NODEFREES(x) do { } while (0)
1da177e4
LT
481#define STATS_SET_FREEABLE(x, i) \
482 do { } while (0)
483
484#define STATS_INC_ALLOCHIT(x) do { } while (0)
485#define STATS_INC_ALLOCMISS(x) do { } while (0)
486#define STATS_INC_FREEHIT(x) do { } while (0)
487#define STATS_INC_FREEMISS(x) do { } while (0)
488#endif
489
490#if DEBUG
491/* Magic nums for obj red zoning.
492 * Placed in the first word before and the first word after an obj.
493 */
494#define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
495#define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
496
497/* ...and for poisoning */
498#define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
499#define POISON_FREE 0x6b /* for use-after-free poisoning */
500#define POISON_END 0xa5 /* end-byte of poisoning */
501
502/* memory layout of objects:
503 * 0 : objp
3dafccf2 504 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
505 * the end of an object is aligned with the end of the real
506 * allocation. Catches writes behind the end of the allocation.
3dafccf2 507 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 508 * redzone word.
3dafccf2
MS
509 * cachep->obj_offset: The real object.
510 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
511 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
1da177e4 512 */
343e0d7a 513static int obj_offset(struct kmem_cache *cachep)
1da177e4 514{
3dafccf2 515 return cachep->obj_offset;
1da177e4
LT
516}
517
343e0d7a 518static int obj_size(struct kmem_cache *cachep)
1da177e4 519{
3dafccf2 520 return cachep->obj_size;
1da177e4
LT
521}
522
343e0d7a 523static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
524{
525 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
3dafccf2 526 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
1da177e4
LT
527}
528
343e0d7a 529static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
530{
531 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
532 if (cachep->flags & SLAB_STORE_USER)
3dafccf2 533 return (unsigned long *)(objp + cachep->buffer_size -
b28a02de 534 2 * BYTES_PER_WORD);
3dafccf2 535 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
536}
537
343e0d7a 538static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
539{
540 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 541 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
542}
543
544#else
545
3dafccf2
MS
546#define obj_offset(x) 0
547#define obj_size(cachep) (cachep->buffer_size)
1da177e4
LT
548#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
549#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
550#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
551
552#endif
553
554/*
555 * Maximum size of an obj (in 2^order pages)
556 * and absolute limit for the gfp order.
557 */
558#if defined(CONFIG_LARGE_ALLOCS)
559#define MAX_OBJ_ORDER 13 /* up to 32Mb */
560#define MAX_GFP_ORDER 13 /* up to 32Mb */
561#elif defined(CONFIG_MMU)
562#define MAX_OBJ_ORDER 5 /* 32 pages */
563#define MAX_GFP_ORDER 5 /* 32 pages */
564#else
565#define MAX_OBJ_ORDER 8 /* up to 1Mb */
566#define MAX_GFP_ORDER 8 /* up to 1Mb */
567#endif
568
569/*
570 * Do not go above this order unless 0 objects fit into the slab.
571 */
572#define BREAK_GFP_ORDER_HI 1
573#define BREAK_GFP_ORDER_LO 0
574static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
575
065d41cb 576/* Functions for storing/retrieving the cachep and or slab from the
1da177e4
LT
577 * global 'mem_map'. These are used to find the slab an obj belongs to.
578 * With kfree(), these are used to find the cache which an obj belongs to.
579 */
065d41cb
PE
580static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
581{
582 page->lru.next = (struct list_head *)cache;
583}
584
585static inline struct kmem_cache *page_get_cache(struct page *page)
586{
587 return (struct kmem_cache *)page->lru.next;
588}
589
590static inline void page_set_slab(struct page *page, struct slab *slab)
591{
592 page->lru.prev = (struct list_head *)slab;
593}
594
595static inline struct slab *page_get_slab(struct page *page)
596{
597 return (struct slab *)page->lru.prev;
598}
1da177e4 599
6ed5eb22
PE
600static inline struct kmem_cache *virt_to_cache(const void *obj)
601{
602 struct page *page = virt_to_page(obj);
603 return page_get_cache(page);
604}
605
606static inline struct slab *virt_to_slab(const void *obj)
607{
608 struct page *page = virt_to_page(obj);
609 return page_get_slab(page);
610}
611
8fea4e96
PE
612static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
613 unsigned int idx)
614{
615 return slab->s_mem + cache->buffer_size * idx;
616}
617
618static inline unsigned int obj_to_index(struct kmem_cache *cache,
619 struct slab *slab, void *obj)
620{
621 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
622}
623
1da177e4
LT
624/* These are the default caches for kmalloc. Custom caches can have other sizes. */
625struct cache_sizes malloc_sizes[] = {
626#define CACHE(x) { .cs_size = (x) },
627#include <linux/kmalloc_sizes.h>
628 CACHE(ULONG_MAX)
629#undef CACHE
630};
631EXPORT_SYMBOL(malloc_sizes);
632
633/* Must match cache_sizes above. Out of line to keep cache footprint low. */
634struct cache_names {
635 char *name;
636 char *name_dma;
637};
638
639static struct cache_names __initdata cache_names[] = {
640#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
641#include <linux/kmalloc_sizes.h>
b28a02de 642 {NULL,}
1da177e4
LT
643#undef CACHE
644};
645
646static struct arraycache_init initarray_cache __initdata =
b28a02de 647 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 648static struct arraycache_init initarray_generic =
b28a02de 649 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
650
651/* internal cache of cache description objs */
343e0d7a 652static struct kmem_cache cache_cache = {
b28a02de
PE
653 .batchcount = 1,
654 .limit = BOOT_CPUCACHE_ENTRIES,
655 .shared = 1,
343e0d7a 656 .buffer_size = sizeof(struct kmem_cache),
b28a02de
PE
657 .flags = SLAB_NO_REAP,
658 .spinlock = SPIN_LOCK_UNLOCKED,
659 .name = "kmem_cache",
1da177e4 660#if DEBUG
343e0d7a 661 .obj_size = sizeof(struct kmem_cache),
1da177e4
LT
662#endif
663};
664
665/* Guard access to the cache-chain. */
fc0abb14 666static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
667static struct list_head cache_chain;
668
669/*
670 * vm_enough_memory() looks at this to determine how many
671 * slab-allocated pages are possibly freeable under pressure
672 *
673 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
674 */
675atomic_t slab_reclaim_pages;
1da177e4
LT
676
677/*
678 * chicken and egg problem: delay the per-cpu array allocation
679 * until the general caches are up.
680 */
681static enum {
682 NONE,
e498be7d
CL
683 PARTIAL_AC,
684 PARTIAL_L3,
1da177e4
LT
685 FULL
686} g_cpucache_up;
687
688static DEFINE_PER_CPU(struct work_struct, reap_work);
689
343e0d7a
PE
690static void free_block(struct kmem_cache *cachep, void **objpp, int len, int node);
691static void enable_cpucache(struct kmem_cache *cachep);
b28a02de 692static void cache_reap(void *unused);
343e0d7a 693static int __node_shrink(struct kmem_cache *cachep, int node);
1da177e4 694
343e0d7a 695static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
696{
697 return cachep->array[smp_processor_id()];
698}
699
343e0d7a 700static inline struct kmem_cache *__find_general_cachep(size_t size, gfp_t gfpflags)
1da177e4
LT
701{
702 struct cache_sizes *csizep = malloc_sizes;
703
704#if DEBUG
705 /* This happens if someone tries to call
b28a02de
PE
706 * kmem_cache_create(), or __kmalloc(), before
707 * the generic caches are initialized.
708 */
c7e43c78 709 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4
LT
710#endif
711 while (size > csizep->cs_size)
712 csizep++;
713
714 /*
0abf40c1 715 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
716 * has cs_{dma,}cachep==NULL. Thus no special case
717 * for large kmalloc calls required.
718 */
719 if (unlikely(gfpflags & GFP_DMA))
720 return csizep->cs_dmacachep;
721 return csizep->cs_cachep;
722}
723
343e0d7a 724struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
725{
726 return __find_general_cachep(size, gfpflags);
727}
728EXPORT_SYMBOL(kmem_find_general_cachep);
729
fbaccacf 730static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 731{
fbaccacf
SR
732 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
733}
1da177e4 734
fbaccacf
SR
735/* Calculate the number of objects and left-over bytes for a given
736 buffer size. */
737static void cache_estimate(unsigned long gfporder, size_t buffer_size,
738 size_t align, int flags, size_t *left_over,
739 unsigned int *num)
740{
741 int nr_objs;
742 size_t mgmt_size;
743 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 744
fbaccacf
SR
745 /*
746 * The slab management structure can be either off the slab or
747 * on it. For the latter case, the memory allocated for a
748 * slab is used for:
749 *
750 * - The struct slab
751 * - One kmem_bufctl_t for each object
752 * - Padding to respect alignment of @align
753 * - @buffer_size bytes for each object
754 *
755 * If the slab management structure is off the slab, then the
756 * alignment will already be calculated into the size. Because
757 * the slabs are all pages aligned, the objects will be at the
758 * correct alignment when allocated.
759 */
760 if (flags & CFLGS_OFF_SLAB) {
761 mgmt_size = 0;
762 nr_objs = slab_size / buffer_size;
763
764 if (nr_objs > SLAB_LIMIT)
765 nr_objs = SLAB_LIMIT;
766 } else {
767 /*
768 * Ignore padding for the initial guess. The padding
769 * is at most @align-1 bytes, and @buffer_size is at
770 * least @align. In the worst case, this result will
771 * be one greater than the number of objects that fit
772 * into the memory allocation when taking the padding
773 * into account.
774 */
775 nr_objs = (slab_size - sizeof(struct slab)) /
776 (buffer_size + sizeof(kmem_bufctl_t));
777
778 /*
779 * This calculated number will be either the right
780 * amount, or one greater than what we want.
781 */
782 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
783 > slab_size)
784 nr_objs--;
785
786 if (nr_objs > SLAB_LIMIT)
787 nr_objs = SLAB_LIMIT;
788
789 mgmt_size = slab_mgmt_size(nr_objs, align);
790 }
791 *num = nr_objs;
792 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
793}
794
795#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
796
343e0d7a 797static void __slab_error(const char *function, struct kmem_cache *cachep, char *msg)
1da177e4
LT
798{
799 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 800 function, cachep->name, msg);
1da177e4
LT
801 dump_stack();
802}
803
8fce4d8e
CL
804#ifdef CONFIG_NUMA
805/*
806 * Special reaping functions for NUMA systems called from cache_reap().
807 * These take care of doing round robin flushing of alien caches (containing
808 * objects freed on different nodes from which they were allocated) and the
809 * flushing of remote pcps by calling drain_node_pages.
810 */
811static DEFINE_PER_CPU(unsigned long, reap_node);
812
813static void init_reap_node(int cpu)
814{
815 int node;
816
817 node = next_node(cpu_to_node(cpu), node_online_map);
818 if (node == MAX_NUMNODES)
819 node = 0;
820
821 __get_cpu_var(reap_node) = node;
822}
823
824static void next_reap_node(void)
825{
826 int node = __get_cpu_var(reap_node);
827
828 /*
829 * Also drain per cpu pages on remote zones
830 */
831 if (node != numa_node_id())
832 drain_node_pages(node);
833
834 node = next_node(node, node_online_map);
835 if (unlikely(node >= MAX_NUMNODES))
836 node = first_node(node_online_map);
837 __get_cpu_var(reap_node) = node;
838}
839
840#else
841#define init_reap_node(cpu) do { } while (0)
842#define next_reap_node(void) do { } while (0)
843#endif
844
1da177e4
LT
845/*
846 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
847 * via the workqueue/eventd.
848 * Add the CPU number into the expiration time to minimize the possibility of
849 * the CPUs getting into lockstep and contending for the global cache chain
850 * lock.
851 */
852static void __devinit start_cpu_timer(int cpu)
853{
854 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
855
856 /*
857 * When this gets called from do_initcalls via cpucache_init(),
858 * init_workqueues() has already run, so keventd will be setup
859 * at that time.
860 */
861 if (keventd_up() && reap_work->func == NULL) {
8fce4d8e 862 init_reap_node(cpu);
1da177e4
LT
863 INIT_WORK(reap_work, cache_reap, NULL);
864 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
865 }
866}
867
e498be7d 868static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 869 int batchcount)
1da177e4 870{
b28a02de 871 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
872 struct array_cache *nc = NULL;
873
e498be7d 874 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
875 if (nc) {
876 nc->avail = 0;
877 nc->limit = entries;
878 nc->batchcount = batchcount;
879 nc->touched = 0;
e498be7d 880 spin_lock_init(&nc->lock);
1da177e4
LT
881 }
882 return nc;
883}
884
e498be7d 885#ifdef CONFIG_NUMA
343e0d7a 886static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
dc85da15 887
5295a74c 888static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
889{
890 struct array_cache **ac_ptr;
b28a02de 891 int memsize = sizeof(void *) * MAX_NUMNODES;
e498be7d
CL
892 int i;
893
894 if (limit > 1)
895 limit = 12;
896 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
897 if (ac_ptr) {
898 for_each_node(i) {
899 if (i == node || !node_online(i)) {
900 ac_ptr[i] = NULL;
901 continue;
902 }
903 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
904 if (!ac_ptr[i]) {
b28a02de 905 for (i--; i <= 0; i--)
e498be7d
CL
906 kfree(ac_ptr[i]);
907 kfree(ac_ptr);
908 return NULL;
909 }
910 }
911 }
912 return ac_ptr;
913}
914
5295a74c 915static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
916{
917 int i;
918
919 if (!ac_ptr)
920 return;
921
922 for_each_node(i)
b28a02de 923 kfree(ac_ptr[i]);
e498be7d
CL
924
925 kfree(ac_ptr);
926}
927
343e0d7a 928static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 929 struct array_cache *ac, int node)
e498be7d
CL
930{
931 struct kmem_list3 *rl3 = cachep->nodelists[node];
932
933 if (ac->avail) {
934 spin_lock(&rl3->list_lock);
ff69416e 935 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
936 ac->avail = 0;
937 spin_unlock(&rl3->list_lock);
938 }
939}
940
8fce4d8e
CL
941/*
942 * Called from cache_reap() to regularly drain alien caches round robin.
943 */
944static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
945{
946 int node = __get_cpu_var(reap_node);
947
948 if (l3->alien) {
949 struct array_cache *ac = l3->alien[node];
950 if (ac && ac->avail) {
951 spin_lock_irq(&ac->lock);
952 __drain_alien_cache(cachep, ac, node);
953 spin_unlock_irq(&ac->lock);
954 }
955 }
956}
957
4484ebf1 958static void drain_alien_cache(struct kmem_cache *cachep, struct array_cache **alien)
e498be7d 959{
b28a02de 960 int i = 0;
e498be7d
CL
961 struct array_cache *ac;
962 unsigned long flags;
963
964 for_each_online_node(i) {
4484ebf1 965 ac = alien[i];
e498be7d
CL
966 if (ac) {
967 spin_lock_irqsave(&ac->lock, flags);
968 __drain_alien_cache(cachep, ac, i);
969 spin_unlock_irqrestore(&ac->lock, flags);
970 }
971 }
972}
973#else
7a21ef6f 974
4484ebf1 975#define drain_alien_cache(cachep, alien) do { } while (0)
8fce4d8e 976#define reap_alien(cachep, l3) do { } while (0)
4484ebf1 977
7a21ef6f
LT
978static inline struct array_cache **alloc_alien_cache(int node, int limit)
979{
980 return (struct array_cache **) 0x01020304ul;
981}
982
4484ebf1
RT
983static inline void free_alien_cache(struct array_cache **ac_ptr)
984{
985}
7a21ef6f 986
e498be7d
CL
987#endif
988
1da177e4 989static int __devinit cpuup_callback(struct notifier_block *nfb,
b28a02de 990 unsigned long action, void *hcpu)
1da177e4
LT
991{
992 long cpu = (long)hcpu;
343e0d7a 993 struct kmem_cache *cachep;
e498be7d
CL
994 struct kmem_list3 *l3 = NULL;
995 int node = cpu_to_node(cpu);
996 int memsize = sizeof(struct kmem_list3);
1da177e4
LT
997
998 switch (action) {
999 case CPU_UP_PREPARE:
fc0abb14 1000 mutex_lock(&cache_chain_mutex);
e498be7d
CL
1001 /* we need to do this right in the beginning since
1002 * alloc_arraycache's are going to use this list.
1003 * kmalloc_node allows us to add the slab to the right
1004 * kmem_list3 and not this cpu's kmem_list3
1005 */
1006
1da177e4 1007 list_for_each_entry(cachep, &cache_chain, next) {
e498be7d
CL
1008 /* setup the size64 kmemlist for cpu before we can
1009 * begin anything. Make sure some other cpu on this
1010 * node has not already allocated this
1011 */
1012 if (!cachep->nodelists[node]) {
1013 if (!(l3 = kmalloc_node(memsize,
b28a02de 1014 GFP_KERNEL, node)))
e498be7d
CL
1015 goto bad;
1016 kmem_list3_init(l3);
1017 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 1018 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1019
4484ebf1
RT
1020 /*
1021 * The l3s don't come and go as CPUs come and
1022 * go. cache_chain_mutex is sufficient
1023 * protection here.
1024 */
e498be7d
CL
1025 cachep->nodelists[node] = l3;
1026 }
1da177e4 1027
e498be7d
CL
1028 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1029 cachep->nodelists[node]->free_limit =
b28a02de
PE
1030 (1 + nr_cpus_node(node)) *
1031 cachep->batchcount + cachep->num;
e498be7d
CL
1032 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1033 }
1034
1035 /* Now we can go ahead with allocating the shared array's
b28a02de 1036 & array cache's */
e498be7d 1037 list_for_each_entry(cachep, &cache_chain, next) {
cd105df4 1038 struct array_cache *nc;
4484ebf1
RT
1039 struct array_cache *shared;
1040 struct array_cache **alien;
cd105df4 1041
e498be7d 1042 nc = alloc_arraycache(node, cachep->limit,
4484ebf1 1043 cachep->batchcount);
1da177e4
LT
1044 if (!nc)
1045 goto bad;
4484ebf1
RT
1046 shared = alloc_arraycache(node,
1047 cachep->shared * cachep->batchcount,
1048 0xbaadf00d);
1049 if (!shared)
1050 goto bad;
7a21ef6f 1051
4484ebf1
RT
1052 alien = alloc_alien_cache(node, cachep->limit);
1053 if (!alien)
1054 goto bad;
1da177e4 1055 cachep->array[cpu] = nc;
1da177e4 1056
e498be7d
CL
1057 l3 = cachep->nodelists[node];
1058 BUG_ON(!l3);
e498be7d 1059
4484ebf1
RT
1060 spin_lock_irq(&l3->list_lock);
1061 if (!l3->shared) {
1062 /*
1063 * We are serialised from CPU_DEAD or
1064 * CPU_UP_CANCELLED by the cpucontrol lock
1065 */
1066 l3->shared = shared;
1067 shared = NULL;
e498be7d 1068 }
4484ebf1
RT
1069#ifdef CONFIG_NUMA
1070 if (!l3->alien) {
1071 l3->alien = alien;
1072 alien = NULL;
1073 }
1074#endif
1075 spin_unlock_irq(&l3->list_lock);
1076
1077 kfree(shared);
1078 free_alien_cache(alien);
1da177e4 1079 }
fc0abb14 1080 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1081 break;
1082 case CPU_ONLINE:
1083 start_cpu_timer(cpu);
1084 break;
1085#ifdef CONFIG_HOTPLUG_CPU
1086 case CPU_DEAD:
4484ebf1
RT
1087 /*
1088 * Even if all the cpus of a node are down, we don't free the
1089 * kmem_list3 of any cache. This to avoid a race between
1090 * cpu_down, and a kmalloc allocation from another cpu for
1091 * memory from the node of the cpu going down. The list3
1092 * structure is usually allocated from kmem_cache_create() and
1093 * gets destroyed at kmem_cache_destroy().
1094 */
1da177e4
LT
1095 /* fall thru */
1096 case CPU_UP_CANCELED:
fc0abb14 1097 mutex_lock(&cache_chain_mutex);
1da177e4
LT
1098
1099 list_for_each_entry(cachep, &cache_chain, next) {
1100 struct array_cache *nc;
4484ebf1
RT
1101 struct array_cache *shared;
1102 struct array_cache **alien;
e498be7d 1103 cpumask_t mask;
1da177e4 1104
e498be7d 1105 mask = node_to_cpumask(node);
1da177e4
LT
1106 /* cpu is dead; no one can alloc from it. */
1107 nc = cachep->array[cpu];
1108 cachep->array[cpu] = NULL;
e498be7d
CL
1109 l3 = cachep->nodelists[node];
1110
1111 if (!l3)
4484ebf1 1112 goto free_array_cache;
e498be7d 1113
ca3b9b91 1114 spin_lock_irq(&l3->list_lock);
e498be7d
CL
1115
1116 /* Free limit for this kmem_list3 */
1117 l3->free_limit -= cachep->batchcount;
1118 if (nc)
ff69416e 1119 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
1120
1121 if (!cpus_empty(mask)) {
ca3b9b91 1122 spin_unlock_irq(&l3->list_lock);
4484ebf1 1123 goto free_array_cache;
b28a02de 1124 }
e498be7d 1125
4484ebf1
RT
1126 shared = l3->shared;
1127 if (shared) {
e498be7d 1128 free_block(cachep, l3->shared->entry,
b28a02de 1129 l3->shared->avail, node);
e498be7d
CL
1130 l3->shared = NULL;
1131 }
e498be7d 1132
4484ebf1
RT
1133 alien = l3->alien;
1134 l3->alien = NULL;
1135
1136 spin_unlock_irq(&l3->list_lock);
1137
1138 kfree(shared);
1139 if (alien) {
1140 drain_alien_cache(cachep, alien);
1141 free_alien_cache(alien);
e498be7d 1142 }
4484ebf1 1143free_array_cache:
1da177e4
LT
1144 kfree(nc);
1145 }
4484ebf1
RT
1146 /*
1147 * In the previous loop, all the objects were freed to
1148 * the respective cache's slabs, now we can go ahead and
1149 * shrink each nodelist to its limit.
1150 */
1151 list_for_each_entry(cachep, &cache_chain, next) {
1152 l3 = cachep->nodelists[node];
1153 if (!l3)
1154 continue;
1155 spin_lock_irq(&l3->list_lock);
1156 /* free slabs belonging to this node */
1157 __node_shrink(cachep, node);
1158 spin_unlock_irq(&l3->list_lock);
1159 }
fc0abb14 1160 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1161 break;
1162#endif
1163 }
1164 return NOTIFY_OK;
b28a02de 1165 bad:
fc0abb14 1166 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1167 return NOTIFY_BAD;
1168}
1169
1170static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1171
e498be7d
CL
1172/*
1173 * swap the static kmem_list3 with kmalloced memory
1174 */
343e0d7a 1175static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, int nodeid)
e498be7d
CL
1176{
1177 struct kmem_list3 *ptr;
1178
1179 BUG_ON(cachep->nodelists[nodeid] != list);
1180 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1181 BUG_ON(!ptr);
1182
1183 local_irq_disable();
1184 memcpy(ptr, list, sizeof(struct kmem_list3));
1185 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1186 cachep->nodelists[nodeid] = ptr;
1187 local_irq_enable();
1188}
1189
1da177e4
LT
1190/* Initialisation.
1191 * Called after the gfp() functions have been enabled, and before smp_init().
1192 */
1193void __init kmem_cache_init(void)
1194{
1195 size_t left_over;
1196 struct cache_sizes *sizes;
1197 struct cache_names *names;
e498be7d 1198 int i;
07ed76b2 1199 int order;
e498be7d
CL
1200
1201 for (i = 0; i < NUM_INIT_LISTS; i++) {
1202 kmem_list3_init(&initkmem_list3[i]);
1203 if (i < MAX_NUMNODES)
1204 cache_cache.nodelists[i] = NULL;
1205 }
1da177e4
LT
1206
1207 /*
1208 * Fragmentation resistance on low memory - only use bigger
1209 * page orders on machines with more than 32MB of memory.
1210 */
1211 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1212 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1213
1da177e4
LT
1214 /* Bootstrap is tricky, because several objects are allocated
1215 * from caches that do not exist yet:
343e0d7a 1216 * 1) initialize the cache_cache cache: it contains the struct kmem_cache
1da177e4
LT
1217 * structures of all caches, except cache_cache itself: cache_cache
1218 * is statically allocated.
e498be7d
CL
1219 * Initially an __init data area is used for the head array and the
1220 * kmem_list3 structures, it's replaced with a kmalloc allocated
1221 * array at the end of the bootstrap.
1da177e4 1222 * 2) Create the first kmalloc cache.
343e0d7a 1223 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1224 * An __init data area is used for the head array.
1225 * 3) Create the remaining kmalloc caches, with minimally sized
1226 * head arrays.
1da177e4
LT
1227 * 4) Replace the __init data head arrays for cache_cache and the first
1228 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1229 * 5) Replace the __init data for kmem_list3 for cache_cache and
1230 * the other cache's with kmalloc allocated memory.
1231 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1232 */
1233
1234 /* 1) create the cache_cache */
1da177e4
LT
1235 INIT_LIST_HEAD(&cache_chain);
1236 list_add(&cache_cache.next, &cache_chain);
1237 cache_cache.colour_off = cache_line_size();
1238 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
e498be7d 1239 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1da177e4 1240
3dafccf2 1241 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, cache_line_size());
1da177e4 1242
07ed76b2
JS
1243 for (order = 0; order < MAX_ORDER; order++) {
1244 cache_estimate(order, cache_cache.buffer_size,
1245 cache_line_size(), 0, &left_over, &cache_cache.num);
1246 if (cache_cache.num)
1247 break;
1248 }
1da177e4
LT
1249 if (!cache_cache.num)
1250 BUG();
07ed76b2 1251 cache_cache.gfporder = order;
b28a02de 1252 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1253 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1254 sizeof(struct slab), cache_line_size());
1da177e4
LT
1255
1256 /* 2+3) create the kmalloc caches */
1257 sizes = malloc_sizes;
1258 names = cache_names;
1259
e498be7d
CL
1260 /* Initialize the caches that provide memory for the array cache
1261 * and the kmem_list3 structures first.
1262 * Without this, further allocations will bug
1263 */
1264
1265 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
b28a02de
PE
1266 sizes[INDEX_AC].cs_size,
1267 ARCH_KMALLOC_MINALIGN,
1268 (ARCH_KMALLOC_FLAGS |
1269 SLAB_PANIC), NULL, NULL);
e498be7d
CL
1270
1271 if (INDEX_AC != INDEX_L3)
1272 sizes[INDEX_L3].cs_cachep =
b28a02de
PE
1273 kmem_cache_create(names[INDEX_L3].name,
1274 sizes[INDEX_L3].cs_size,
1275 ARCH_KMALLOC_MINALIGN,
1276 (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL,
1277 NULL);
e498be7d 1278
1da177e4 1279 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1280 /*
1281 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1282 * This should be particularly beneficial on SMP boxes, as it
1283 * eliminates "false sharing".
1284 * Note for systems short on memory removing the alignment will
e498be7d
CL
1285 * allow tighter packing of the smaller caches.
1286 */
b28a02de 1287 if (!sizes->cs_cachep)
e498be7d 1288 sizes->cs_cachep = kmem_cache_create(names->name,
b28a02de
PE
1289 sizes->cs_size,
1290 ARCH_KMALLOC_MINALIGN,
1291 (ARCH_KMALLOC_FLAGS
1292 | SLAB_PANIC),
1293 NULL, NULL);
1da177e4
LT
1294
1295 /* Inc off-slab bufctl limit until the ceiling is hit. */
1296 if (!(OFF_SLAB(sizes->cs_cachep))) {
b28a02de 1297 offslab_limit = sizes->cs_size - sizeof(struct slab);
1da177e4
LT
1298 offslab_limit /= sizeof(kmem_bufctl_t);
1299 }
1300
1301 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
b28a02de
PE
1302 sizes->cs_size,
1303 ARCH_KMALLOC_MINALIGN,
1304 (ARCH_KMALLOC_FLAGS |
1305 SLAB_CACHE_DMA |
1306 SLAB_PANIC), NULL,
1307 NULL);
1da177e4
LT
1308
1309 sizes++;
1310 names++;
1311 }
1312 /* 4) Replace the bootstrap head arrays */
1313 {
b28a02de 1314 void *ptr;
e498be7d 1315
1da177e4 1316 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1317
1da177e4 1318 local_irq_disable();
9a2dba4b
PE
1319 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1320 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1321 sizeof(struct arraycache_init));
1da177e4
LT
1322 cache_cache.array[smp_processor_id()] = ptr;
1323 local_irq_enable();
e498be7d 1324
1da177e4 1325 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1326
1da177e4 1327 local_irq_disable();
9a2dba4b 1328 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1329 != &initarray_generic.cache);
9a2dba4b 1330 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1331 sizeof(struct arraycache_init));
e498be7d 1332 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1333 ptr;
1da177e4
LT
1334 local_irq_enable();
1335 }
e498be7d
CL
1336 /* 5) Replace the bootstrap kmem_list3's */
1337 {
1338 int node;
1339 /* Replace the static kmem_list3 structures for the boot cpu */
1340 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
b28a02de 1341 numa_node_id());
e498be7d
CL
1342
1343 for_each_online_node(node) {
1344 init_list(malloc_sizes[INDEX_AC].cs_cachep,
b28a02de 1345 &initkmem_list3[SIZE_AC + node], node);
e498be7d
CL
1346
1347 if (INDEX_AC != INDEX_L3) {
1348 init_list(malloc_sizes[INDEX_L3].cs_cachep,
b28a02de
PE
1349 &initkmem_list3[SIZE_L3 + node],
1350 node);
e498be7d
CL
1351 }
1352 }
1353 }
1da177e4 1354
e498be7d 1355 /* 6) resize the head arrays to their final sizes */
1da177e4 1356 {
343e0d7a 1357 struct kmem_cache *cachep;
fc0abb14 1358 mutex_lock(&cache_chain_mutex);
1da177e4 1359 list_for_each_entry(cachep, &cache_chain, next)
b28a02de 1360 enable_cpucache(cachep);
fc0abb14 1361 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1362 }
1363
1364 /* Done! */
1365 g_cpucache_up = FULL;
1366
1367 /* Register a cpu startup notifier callback
9a2dba4b 1368 * that initializes cpu_cache_get for all new cpus
1da177e4
LT
1369 */
1370 register_cpu_notifier(&cpucache_notifier);
1da177e4
LT
1371
1372 /* The reap timers are started later, with a module init call:
1373 * That part of the kernel is not yet operational.
1374 */
1375}
1376
1377static int __init cpucache_init(void)
1378{
1379 int cpu;
1380
1381 /*
1382 * Register the timers that return unneeded
1383 * pages to gfp.
1384 */
e498be7d 1385 for_each_online_cpu(cpu)
b28a02de 1386 start_cpu_timer(cpu);
1da177e4
LT
1387
1388 return 0;
1389}
1390
1391__initcall(cpucache_init);
1392
1393/*
1394 * Interface to system's page allocator. No need to hold the cache-lock.
1395 *
1396 * If we requested dmaable memory, we will get it. Even if we
1397 * did not request dmaable memory, we might get it, but that
1398 * would be relatively rare and ignorable.
1399 */
343e0d7a 1400static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1401{
1402 struct page *page;
1403 void *addr;
1404 int i;
1405
1406 flags |= cachep->gfpflags;
50c85a19 1407 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1408 if (!page)
1409 return NULL;
1410 addr = page_address(page);
1411
1412 i = (1 << cachep->gfporder);
1413 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1414 atomic_add(i, &slab_reclaim_pages);
1415 add_page_state(nr_slab, i);
1416 while (i--) {
f205b2fe 1417 __SetPageSlab(page);
1da177e4
LT
1418 page++;
1419 }
1420 return addr;
1421}
1422
1423/*
1424 * Interface to system's page release.
1425 */
343e0d7a 1426static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1427{
b28a02de 1428 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1429 struct page *page = virt_to_page(addr);
1430 const unsigned long nr_freed = i;
1431
1432 while (i--) {
f205b2fe
NP
1433 BUG_ON(!PageSlab(page));
1434 __ClearPageSlab(page);
1da177e4
LT
1435 page++;
1436 }
1437 sub_page_state(nr_slab, nr_freed);
1438 if (current->reclaim_state)
1439 current->reclaim_state->reclaimed_slab += nr_freed;
1440 free_pages((unsigned long)addr, cachep->gfporder);
b28a02de
PE
1441 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1442 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1da177e4
LT
1443}
1444
1445static void kmem_rcu_free(struct rcu_head *head)
1446{
b28a02de 1447 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1448 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1449
1450 kmem_freepages(cachep, slab_rcu->addr);
1451 if (OFF_SLAB(cachep))
1452 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1453}
1454
1455#if DEBUG
1456
1457#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1458static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1459 unsigned long caller)
1da177e4 1460{
3dafccf2 1461 int size = obj_size(cachep);
1da177e4 1462
3dafccf2 1463 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1464
b28a02de 1465 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1466 return;
1467
b28a02de
PE
1468 *addr++ = 0x12345678;
1469 *addr++ = caller;
1470 *addr++ = smp_processor_id();
1471 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1472 {
1473 unsigned long *sptr = &caller;
1474 unsigned long svalue;
1475
1476 while (!kstack_end(sptr)) {
1477 svalue = *sptr++;
1478 if (kernel_text_address(svalue)) {
b28a02de 1479 *addr++ = svalue;
1da177e4
LT
1480 size -= sizeof(unsigned long);
1481 if (size <= sizeof(unsigned long))
1482 break;
1483 }
1484 }
1485
1486 }
b28a02de 1487 *addr++ = 0x87654321;
1da177e4
LT
1488}
1489#endif
1490
343e0d7a 1491static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1492{
3dafccf2
MS
1493 int size = obj_size(cachep);
1494 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1495
1496 memset(addr, val, size);
b28a02de 1497 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1498}
1499
1500static void dump_line(char *data, int offset, int limit)
1501{
1502 int i;
1503 printk(KERN_ERR "%03x:", offset);
b28a02de
PE
1504 for (i = 0; i < limit; i++) {
1505 printk(" %02x", (unsigned char)data[offset + i]);
1da177e4
LT
1506 }
1507 printk("\n");
1508}
1509#endif
1510
1511#if DEBUG
1512
343e0d7a 1513static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1514{
1515 int i, size;
1516 char *realobj;
1517
1518 if (cachep->flags & SLAB_RED_ZONE) {
1519 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
b28a02de
PE
1520 *dbg_redzone1(cachep, objp),
1521 *dbg_redzone2(cachep, objp));
1da177e4
LT
1522 }
1523
1524 if (cachep->flags & SLAB_STORE_USER) {
1525 printk(KERN_ERR "Last user: [<%p>]",
b28a02de 1526 *dbg_userword(cachep, objp));
1da177e4 1527 print_symbol("(%s)",
b28a02de 1528 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1529 printk("\n");
1530 }
3dafccf2
MS
1531 realobj = (char *)objp + obj_offset(cachep);
1532 size = obj_size(cachep);
b28a02de 1533 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1534 int limit;
1535 limit = 16;
b28a02de
PE
1536 if (i + limit > size)
1537 limit = size - i;
1da177e4
LT
1538 dump_line(realobj, i, limit);
1539 }
1540}
1541
343e0d7a 1542static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1543{
1544 char *realobj;
1545 int size, i;
1546 int lines = 0;
1547
3dafccf2
MS
1548 realobj = (char *)objp + obj_offset(cachep);
1549 size = obj_size(cachep);
1da177e4 1550
b28a02de 1551 for (i = 0; i < size; i++) {
1da177e4 1552 char exp = POISON_FREE;
b28a02de 1553 if (i == size - 1)
1da177e4
LT
1554 exp = POISON_END;
1555 if (realobj[i] != exp) {
1556 int limit;
1557 /* Mismatch ! */
1558 /* Print header */
1559 if (lines == 0) {
b28a02de
PE
1560 printk(KERN_ERR
1561 "Slab corruption: start=%p, len=%d\n",
1562 realobj, size);
1da177e4
LT
1563 print_objinfo(cachep, objp, 0);
1564 }
1565 /* Hexdump the affected line */
b28a02de 1566 i = (i / 16) * 16;
1da177e4 1567 limit = 16;
b28a02de
PE
1568 if (i + limit > size)
1569 limit = size - i;
1da177e4
LT
1570 dump_line(realobj, i, limit);
1571 i += 16;
1572 lines++;
1573 /* Limit to 5 lines */
1574 if (lines > 5)
1575 break;
1576 }
1577 }
1578 if (lines != 0) {
1579 /* Print some data about the neighboring objects, if they
1580 * exist:
1581 */
6ed5eb22 1582 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1583 unsigned int objnr;
1da177e4 1584
8fea4e96 1585 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1586 if (objnr) {
8fea4e96 1587 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1588 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1589 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1590 realobj, size);
1da177e4
LT
1591 print_objinfo(cachep, objp, 2);
1592 }
b28a02de 1593 if (objnr + 1 < cachep->num) {
8fea4e96 1594 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1595 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1596 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1597 realobj, size);
1da177e4
LT
1598 print_objinfo(cachep, objp, 2);
1599 }
1600 }
1601}
1602#endif
1603
12dd36fa
MD
1604#if DEBUG
1605/**
1606 * slab_destroy_objs - call the registered destructor for each object in
1607 * a slab that is to be destroyed.
1da177e4 1608 */
343e0d7a 1609static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1610{
1da177e4
LT
1611 int i;
1612 for (i = 0; i < cachep->num; i++) {
8fea4e96 1613 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1614
1615 if (cachep->flags & SLAB_POISON) {
1616#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 1617 if ((cachep->buffer_size % PAGE_SIZE) == 0
b28a02de
PE
1618 && OFF_SLAB(cachep))
1619 kernel_map_pages(virt_to_page(objp),
3dafccf2 1620 cachep->buffer_size / PAGE_SIZE,
b28a02de 1621 1);
1da177e4
LT
1622 else
1623 check_poison_obj(cachep, objp);
1624#else
1625 check_poison_obj(cachep, objp);
1626#endif
1627 }
1628 if (cachep->flags & SLAB_RED_ZONE) {
1629 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1630 slab_error(cachep, "start of a freed object "
b28a02de 1631 "was overwritten");
1da177e4
LT
1632 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1633 slab_error(cachep, "end of a freed object "
b28a02de 1634 "was overwritten");
1da177e4
LT
1635 }
1636 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
3dafccf2 1637 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1da177e4 1638 }
12dd36fa 1639}
1da177e4 1640#else
343e0d7a 1641static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1642{
1da177e4
LT
1643 if (cachep->dtor) {
1644 int i;
1645 for (i = 0; i < cachep->num; i++) {
8fea4e96 1646 void *objp = index_to_obj(cachep, slabp, i);
b28a02de 1647 (cachep->dtor) (objp, cachep, 0);
1da177e4
LT
1648 }
1649 }
12dd36fa 1650}
1da177e4
LT
1651#endif
1652
12dd36fa
MD
1653/**
1654 * Destroy all the objs in a slab, and release the mem back to the system.
1655 * Before calling the slab must have been unlinked from the cache.
1656 * The cache-lock is not held/needed.
1657 */
343e0d7a 1658static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1659{
1660 void *addr = slabp->s_mem - slabp->colouroff;
1661
1662 slab_destroy_objs(cachep, slabp);
1da177e4
LT
1663 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1664 struct slab_rcu *slab_rcu;
1665
b28a02de 1666 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1667 slab_rcu->cachep = cachep;
1668 slab_rcu->addr = addr;
1669 call_rcu(&slab_rcu->head, kmem_rcu_free);
1670 } else {
1671 kmem_freepages(cachep, addr);
1672 if (OFF_SLAB(cachep))
1673 kmem_cache_free(cachep->slabp_cache, slabp);
1674 }
1675}
1676
3dafccf2 1677/* For setting up all the kmem_list3s for cache whose buffer_size is same
e498be7d 1678 as size of kmem_list3. */
343e0d7a 1679static void set_up_list3s(struct kmem_cache *cachep, int index)
e498be7d
CL
1680{
1681 int node;
1682
1683 for_each_online_node(node) {
b28a02de 1684 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1685 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1686 REAPTIMEOUT_LIST3 +
1687 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1688 }
1689}
1690
4d268eba 1691/**
a70773dd
RD
1692 * calculate_slab_order - calculate size (page order) of slabs
1693 * @cachep: pointer to the cache that is being created
1694 * @size: size of objects to be created in this cache.
1695 * @align: required alignment for the objects.
1696 * @flags: slab allocation flags
1697 *
1698 * Also calculates the number of objects per slab.
4d268eba
PE
1699 *
1700 * This could be made much more intelligent. For now, try to avoid using
1701 * high order pages for slabs. When the gfp() functions are more friendly
1702 * towards high-order requests, this should be changed.
1703 */
ee13d785
RD
1704static inline size_t calculate_slab_order(struct kmem_cache *cachep,
1705 size_t size, size_t align, unsigned long flags)
4d268eba
PE
1706{
1707 size_t left_over = 0;
9888e6fa 1708 int gfporder;
4d268eba 1709
9888e6fa 1710 for (gfporder = 0 ; gfporder <= MAX_GFP_ORDER; gfporder++) {
4d268eba
PE
1711 unsigned int num;
1712 size_t remainder;
1713
9888e6fa 1714 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
1715 if (!num)
1716 continue;
9888e6fa 1717
4d268eba 1718 /* More than offslab_limit objects will cause problems */
9888e6fa 1719 if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
4d268eba
PE
1720 break;
1721
9888e6fa 1722 /* Found something acceptable - save it away */
4d268eba 1723 cachep->num = num;
9888e6fa 1724 cachep->gfporder = gfporder;
4d268eba
PE
1725 left_over = remainder;
1726
f78bb8ad
LT
1727 /*
1728 * A VFS-reclaimable slab tends to have most allocations
1729 * as GFP_NOFS and we really don't want to have to be allocating
1730 * higher-order pages when we are unable to shrink dcache.
1731 */
1732 if (flags & SLAB_RECLAIM_ACCOUNT)
1733 break;
1734
4d268eba
PE
1735 /*
1736 * Large number of objects is good, but very large slabs are
1737 * currently bad for the gfp()s.
1738 */
9888e6fa 1739 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
1740 break;
1741
9888e6fa
LT
1742 /*
1743 * Acceptable internal fragmentation?
1744 */
1745 if ((left_over * 8) <= (PAGE_SIZE << gfporder))
4d268eba
PE
1746 break;
1747 }
1748 return left_over;
1749}
1750
f30cf7d1
PE
1751static void setup_cpu_cache(struct kmem_cache *cachep)
1752{
1753 if (g_cpucache_up == FULL) {
1754 enable_cpucache(cachep);
1755 return;
1756 }
1757 if (g_cpucache_up == NONE) {
1758 /*
1759 * Note: the first kmem_cache_create must create the cache
1760 * that's used by kmalloc(24), otherwise the creation of
1761 * further caches will BUG().
1762 */
1763 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1764
1765 /*
1766 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1767 * the first cache, then we need to set up all its list3s,
1768 * otherwise the creation of further caches will BUG().
1769 */
1770 set_up_list3s(cachep, SIZE_AC);
1771 if (INDEX_AC == INDEX_L3)
1772 g_cpucache_up = PARTIAL_L3;
1773 else
1774 g_cpucache_up = PARTIAL_AC;
1775 } else {
1776 cachep->array[smp_processor_id()] =
1777 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1778
1779 if (g_cpucache_up == PARTIAL_AC) {
1780 set_up_list3s(cachep, SIZE_L3);
1781 g_cpucache_up = PARTIAL_L3;
1782 } else {
1783 int node;
1784 for_each_online_node(node) {
1785 cachep->nodelists[node] =
1786 kmalloc_node(sizeof(struct kmem_list3),
1787 GFP_KERNEL, node);
1788 BUG_ON(!cachep->nodelists[node]);
1789 kmem_list3_init(cachep->nodelists[node]);
1790 }
1791 }
1792 }
1793 cachep->nodelists[numa_node_id()]->next_reap =
1794 jiffies + REAPTIMEOUT_LIST3 +
1795 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1796
1797 cpu_cache_get(cachep)->avail = 0;
1798 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1799 cpu_cache_get(cachep)->batchcount = 1;
1800 cpu_cache_get(cachep)->touched = 0;
1801 cachep->batchcount = 1;
1802 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1803}
1804
1da177e4
LT
1805/**
1806 * kmem_cache_create - Create a cache.
1807 * @name: A string which is used in /proc/slabinfo to identify this cache.
1808 * @size: The size of objects to be created in this cache.
1809 * @align: The required alignment for the objects.
1810 * @flags: SLAB flags
1811 * @ctor: A constructor for the objects.
1812 * @dtor: A destructor for the objects.
1813 *
1814 * Returns a ptr to the cache on success, NULL on failure.
1815 * Cannot be called within a int, but can be interrupted.
1816 * The @ctor is run when new pages are allocated by the cache
1817 * and the @dtor is run before the pages are handed back.
1818 *
1819 * @name must be valid until the cache is destroyed. This implies that
1820 * the module calling this has to destroy the cache before getting
1821 * unloaded.
1822 *
1823 * The flags are
1824 *
1825 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1826 * to catch references to uninitialised memory.
1827 *
1828 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1829 * for buffer overruns.
1830 *
1831 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
1832 * memory pressure.
1833 *
1834 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1835 * cacheline. This can be beneficial if you're counting cycles as closely
1836 * as davem.
1837 */
343e0d7a 1838struct kmem_cache *
1da177e4 1839kmem_cache_create (const char *name, size_t size, size_t align,
343e0d7a
PE
1840 unsigned long flags, void (*ctor)(void*, struct kmem_cache *, unsigned long),
1841 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1da177e4
LT
1842{
1843 size_t left_over, slab_size, ralign;
343e0d7a 1844 struct kmem_cache *cachep = NULL;
4f12bb4f 1845 struct list_head *p;
1da177e4
LT
1846
1847 /*
1848 * Sanity checks... these are all serious usage bugs.
1849 */
1850 if ((!name) ||
b28a02de
PE
1851 in_interrupt() ||
1852 (size < BYTES_PER_WORD) ||
1853 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
1854 printk(KERN_ERR "%s: Early error in slab %s\n",
1855 __FUNCTION__, name);
1856 BUG();
1857 }
1da177e4 1858
f0188f47
RT
1859 /*
1860 * Prevent CPUs from coming and going.
1861 * lock_cpu_hotplug() nests outside cache_chain_mutex
1862 */
1863 lock_cpu_hotplug();
1864
fc0abb14 1865 mutex_lock(&cache_chain_mutex);
4f12bb4f
AM
1866
1867 list_for_each(p, &cache_chain) {
343e0d7a 1868 struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
4f12bb4f
AM
1869 mm_segment_t old_fs = get_fs();
1870 char tmp;
1871 int res;
1872
1873 /*
1874 * This happens when the module gets unloaded and doesn't
1875 * destroy its slab cache and no-one else reuses the vmalloc
1876 * area of the module. Print a warning.
1877 */
1878 set_fs(KERNEL_DS);
1879 res = __get_user(tmp, pc->name);
1880 set_fs(old_fs);
1881 if (res) {
1882 printk("SLAB: cache with size %d has lost its name\n",
3dafccf2 1883 pc->buffer_size);
4f12bb4f
AM
1884 continue;
1885 }
1886
b28a02de 1887 if (!strcmp(pc->name, name)) {
4f12bb4f
AM
1888 printk("kmem_cache_create: duplicate cache %s\n", name);
1889 dump_stack();
1890 goto oops;
1891 }
1892 }
1893
1da177e4
LT
1894#if DEBUG
1895 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1896 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1897 /* No constructor, but inital state check requested */
1898 printk(KERN_ERR "%s: No con, but init state check "
b28a02de 1899 "requested - %s\n", __FUNCTION__, name);
1da177e4
LT
1900 flags &= ~SLAB_DEBUG_INITIAL;
1901 }
1da177e4
LT
1902#if FORCED_DEBUG
1903 /*
1904 * Enable redzoning and last user accounting, except for caches with
1905 * large objects, if the increased size would increase the object size
1906 * above the next power of two: caches with object sizes just above a
1907 * power of two have a significant amount of internal fragmentation.
1908 */
b28a02de
PE
1909 if ((size < 4096
1910 || fls(size - 1) == fls(size - 1 + 3 * BYTES_PER_WORD)))
1911 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
1912 if (!(flags & SLAB_DESTROY_BY_RCU))
1913 flags |= SLAB_POISON;
1914#endif
1915 if (flags & SLAB_DESTROY_BY_RCU)
1916 BUG_ON(flags & SLAB_POISON);
1917#endif
1918 if (flags & SLAB_DESTROY_BY_RCU)
1919 BUG_ON(dtor);
1920
1921 /*
1922 * Always checks flags, a caller might be expecting debug
1923 * support which isn't available.
1924 */
1925 if (flags & ~CREATE_MASK)
1926 BUG();
1927
1928 /* Check that size is in terms of words. This is needed to avoid
1929 * unaligned accesses for some archs when redzoning is used, and makes
1930 * sure any on-slab bufctl's are also correctly aligned.
1931 */
b28a02de
PE
1932 if (size & (BYTES_PER_WORD - 1)) {
1933 size += (BYTES_PER_WORD - 1);
1934 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
1935 }
1936
1937 /* calculate out the final buffer alignment: */
1938 /* 1) arch recommendation: can be overridden for debug */
1939 if (flags & SLAB_HWCACHE_ALIGN) {
1940 /* Default alignment: as specified by the arch code.
1941 * Except if an object is really small, then squeeze multiple
1942 * objects into one cacheline.
1943 */
1944 ralign = cache_line_size();
b28a02de 1945 while (size <= ralign / 2)
1da177e4
LT
1946 ralign /= 2;
1947 } else {
1948 ralign = BYTES_PER_WORD;
1949 }
1950 /* 2) arch mandated alignment: disables debug if necessary */
1951 if (ralign < ARCH_SLAB_MINALIGN) {
1952 ralign = ARCH_SLAB_MINALIGN;
1953 if (ralign > BYTES_PER_WORD)
b28a02de 1954 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4
LT
1955 }
1956 /* 3) caller mandated alignment: disables debug if necessary */
1957 if (ralign < align) {
1958 ralign = align;
1959 if (ralign > BYTES_PER_WORD)
b28a02de 1960 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4
LT
1961 }
1962 /* 4) Store it. Note that the debug code below can reduce
1963 * the alignment to BYTES_PER_WORD.
1964 */
1965 align = ralign;
1966
1967 /* Get cache's description obj. */
343e0d7a 1968 cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
1da177e4 1969 if (!cachep)
4f12bb4f 1970 goto oops;
343e0d7a 1971 memset(cachep, 0, sizeof(struct kmem_cache));
1da177e4
LT
1972
1973#if DEBUG
3dafccf2 1974 cachep->obj_size = size;
1da177e4
LT
1975
1976 if (flags & SLAB_RED_ZONE) {
1977 /* redzoning only works with word aligned caches */
1978 align = BYTES_PER_WORD;
1979
1980 /* add space for red zone words */
3dafccf2 1981 cachep->obj_offset += BYTES_PER_WORD;
b28a02de 1982 size += 2 * BYTES_PER_WORD;
1da177e4
LT
1983 }
1984 if (flags & SLAB_STORE_USER) {
1985 /* user store requires word alignment and
1986 * one word storage behind the end of the real
1987 * object.
1988 */
1989 align = BYTES_PER_WORD;
1990 size += BYTES_PER_WORD;
1991 }
1992#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 1993 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
1994 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
1995 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
1996 size = PAGE_SIZE;
1997 }
1998#endif
1999#endif
2000
2001 /* Determine if the slab management is 'on' or 'off' slab. */
b28a02de 2002 if (size >= (PAGE_SIZE >> 3))
1da177e4
LT
2003 /*
2004 * Size is large, assume best to place the slab management obj
2005 * off-slab (should allow better packing of objs).
2006 */
2007 flags |= CFLGS_OFF_SLAB;
2008
2009 size = ALIGN(size, align);
2010
f78bb8ad 2011 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2012
2013 if (!cachep->num) {
2014 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2015 kmem_cache_free(&cache_cache, cachep);
2016 cachep = NULL;
4f12bb4f 2017 goto oops;
1da177e4 2018 }
b28a02de
PE
2019 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2020 + sizeof(struct slab), align);
1da177e4
LT
2021
2022 /*
2023 * If the slab has been placed off-slab, and we have enough space then
2024 * move it on-slab. This is at the expense of any extra colouring.
2025 */
2026 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2027 flags &= ~CFLGS_OFF_SLAB;
2028 left_over -= slab_size;
2029 }
2030
2031 if (flags & CFLGS_OFF_SLAB) {
2032 /* really off slab. No need for manual alignment */
b28a02de
PE
2033 slab_size =
2034 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2035 }
2036
2037 cachep->colour_off = cache_line_size();
2038 /* Offset must be a multiple of the alignment. */
2039 if (cachep->colour_off < align)
2040 cachep->colour_off = align;
b28a02de 2041 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2042 cachep->slab_size = slab_size;
2043 cachep->flags = flags;
2044 cachep->gfpflags = 0;
2045 if (flags & SLAB_CACHE_DMA)
2046 cachep->gfpflags |= GFP_DMA;
2047 spin_lock_init(&cachep->spinlock);
3dafccf2 2048 cachep->buffer_size = size;
1da177e4
LT
2049
2050 if (flags & CFLGS_OFF_SLAB)
b2d55073 2051 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
1da177e4
LT
2052 cachep->ctor = ctor;
2053 cachep->dtor = dtor;
2054 cachep->name = name;
2055
1da177e4 2056
f30cf7d1 2057 setup_cpu_cache(cachep);
1da177e4 2058
1da177e4
LT
2059 /* cache setup completed, link it into the list */
2060 list_add(&cachep->next, &cache_chain);
b28a02de 2061 oops:
1da177e4
LT
2062 if (!cachep && (flags & SLAB_PANIC))
2063 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2064 name);
fc0abb14 2065 mutex_unlock(&cache_chain_mutex);
f0188f47 2066 unlock_cpu_hotplug();
1da177e4
LT
2067 return cachep;
2068}
2069EXPORT_SYMBOL(kmem_cache_create);
2070
2071#if DEBUG
2072static void check_irq_off(void)
2073{
2074 BUG_ON(!irqs_disabled());
2075}
2076
2077static void check_irq_on(void)
2078{
2079 BUG_ON(irqs_disabled());
2080}
2081
343e0d7a 2082static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2083{
2084#ifdef CONFIG_SMP
2085 check_irq_off();
e498be7d 2086 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2087#endif
2088}
e498be7d 2089
343e0d7a 2090static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2091{
2092#ifdef CONFIG_SMP
2093 check_irq_off();
2094 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2095#endif
2096}
2097
1da177e4
LT
2098#else
2099#define check_irq_off() do { } while(0)
2100#define check_irq_on() do { } while(0)
2101#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2102#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2103#endif
2104
2105/*
2106 * Waits for all CPUs to execute func().
2107 */
b28a02de 2108static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
1da177e4
LT
2109{
2110 check_irq_on();
2111 preempt_disable();
2112
2113 local_irq_disable();
2114 func(arg);
2115 local_irq_enable();
2116
2117 if (smp_call_function(func, arg, 1, 1))
2118 BUG();
2119
2120 preempt_enable();
2121}
2122
343e0d7a 2123static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
b28a02de 2124 int force, int node);
1da177e4
LT
2125
2126static void do_drain(void *arg)
2127{
343e0d7a 2128 struct kmem_cache *cachep = (struct kmem_cache *) arg;
1da177e4 2129 struct array_cache *ac;
ff69416e 2130 int node = numa_node_id();
1da177e4
LT
2131
2132 check_irq_off();
9a2dba4b 2133 ac = cpu_cache_get(cachep);
ff69416e
CL
2134 spin_lock(&cachep->nodelists[node]->list_lock);
2135 free_block(cachep, ac->entry, ac->avail, node);
2136 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2137 ac->avail = 0;
2138}
2139
343e0d7a 2140static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2141{
e498be7d
CL
2142 struct kmem_list3 *l3;
2143 int node;
2144
1da177e4
LT
2145 smp_call_function_all_cpus(do_drain, cachep);
2146 check_irq_on();
b28a02de 2147 for_each_online_node(node) {
e498be7d
CL
2148 l3 = cachep->nodelists[node];
2149 if (l3) {
ca3b9b91 2150 spin_lock_irq(&l3->list_lock);
e498be7d 2151 drain_array_locked(cachep, l3->shared, 1, node);
ca3b9b91 2152 spin_unlock_irq(&l3->list_lock);
e498be7d 2153 if (l3->alien)
4484ebf1 2154 drain_alien_cache(cachep, l3->alien);
e498be7d
CL
2155 }
2156 }
1da177e4
LT
2157}
2158
343e0d7a 2159static int __node_shrink(struct kmem_cache *cachep, int node)
1da177e4
LT
2160{
2161 struct slab *slabp;
e498be7d 2162 struct kmem_list3 *l3 = cachep->nodelists[node];
1da177e4
LT
2163 int ret;
2164
e498be7d 2165 for (;;) {
1da177e4
LT
2166 struct list_head *p;
2167
e498be7d
CL
2168 p = l3->slabs_free.prev;
2169 if (p == &l3->slabs_free)
1da177e4
LT
2170 break;
2171
e498be7d 2172 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
1da177e4
LT
2173#if DEBUG
2174 if (slabp->inuse)
2175 BUG();
2176#endif
2177 list_del(&slabp->list);
2178
e498be7d
CL
2179 l3->free_objects -= cachep->num;
2180 spin_unlock_irq(&l3->list_lock);
1da177e4 2181 slab_destroy(cachep, slabp);
e498be7d 2182 spin_lock_irq(&l3->list_lock);
1da177e4 2183 }
b28a02de 2184 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
1da177e4
LT
2185 return ret;
2186}
2187
343e0d7a 2188static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2189{
2190 int ret = 0, i = 0;
2191 struct kmem_list3 *l3;
2192
2193 drain_cpu_caches(cachep);
2194
2195 check_irq_on();
2196 for_each_online_node(i) {
2197 l3 = cachep->nodelists[i];
2198 if (l3) {
2199 spin_lock_irq(&l3->list_lock);
2200 ret += __node_shrink(cachep, i);
2201 spin_unlock_irq(&l3->list_lock);
2202 }
2203 }
2204 return (ret ? 1 : 0);
2205}
2206
1da177e4
LT
2207/**
2208 * kmem_cache_shrink - Shrink a cache.
2209 * @cachep: The cache to shrink.
2210 *
2211 * Releases as many slabs as possible for a cache.
2212 * To help debugging, a zero exit status indicates all slabs were released.
2213 */
343e0d7a 2214int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4
LT
2215{
2216 if (!cachep || in_interrupt())
2217 BUG();
2218
2219 return __cache_shrink(cachep);
2220}
2221EXPORT_SYMBOL(kmem_cache_shrink);
2222
2223/**
2224 * kmem_cache_destroy - delete a cache
2225 * @cachep: the cache to destroy
2226 *
343e0d7a 2227 * Remove a struct kmem_cache object from the slab cache.
1da177e4
LT
2228 * Returns 0 on success.
2229 *
2230 * It is expected this function will be called by a module when it is
2231 * unloaded. This will remove the cache completely, and avoid a duplicate
2232 * cache being allocated each time a module is loaded and unloaded, if the
2233 * module doesn't have persistent in-kernel storage across loads and unloads.
2234 *
2235 * The cache must be empty before calling this function.
2236 *
2237 * The caller must guarantee that noone will allocate memory from the cache
2238 * during the kmem_cache_destroy().
2239 */
343e0d7a 2240int kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4
LT
2241{
2242 int i;
e498be7d 2243 struct kmem_list3 *l3;
1da177e4
LT
2244
2245 if (!cachep || in_interrupt())
2246 BUG();
2247
2248 /* Don't let CPUs to come and go */
2249 lock_cpu_hotplug();
2250
2251 /* Find the cache in the chain of caches. */
fc0abb14 2252 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2253 /*
2254 * the chain is never empty, cache_cache is never destroyed
2255 */
2256 list_del(&cachep->next);
fc0abb14 2257 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2258
2259 if (__cache_shrink(cachep)) {
2260 slab_error(cachep, "Can't free all objects");
fc0abb14 2261 mutex_lock(&cache_chain_mutex);
b28a02de 2262 list_add(&cachep->next, &cache_chain);
fc0abb14 2263 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2264 unlock_cpu_hotplug();
2265 return 1;
2266 }
2267
2268 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2269 synchronize_rcu();
1da177e4 2270
e498be7d 2271 for_each_online_cpu(i)
b28a02de 2272 kfree(cachep->array[i]);
1da177e4
LT
2273
2274 /* NUMA: free the list3 structures */
e498be7d
CL
2275 for_each_online_node(i) {
2276 if ((l3 = cachep->nodelists[i])) {
2277 kfree(l3->shared);
2278 free_alien_cache(l3->alien);
2279 kfree(l3);
2280 }
2281 }
1da177e4
LT
2282 kmem_cache_free(&cache_cache, cachep);
2283
2284 unlock_cpu_hotplug();
2285
2286 return 0;
2287}
2288EXPORT_SYMBOL(kmem_cache_destroy);
2289
2290/* Get the memory for a slab management obj. */
343e0d7a 2291static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
b28a02de 2292 int colour_off, gfp_t local_flags)
1da177e4
LT
2293{
2294 struct slab *slabp;
b28a02de 2295
1da177e4
LT
2296 if (OFF_SLAB(cachep)) {
2297 /* Slab management obj is off-slab. */
2298 slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2299 if (!slabp)
2300 return NULL;
2301 } else {
b28a02de 2302 slabp = objp + colour_off;
1da177e4
LT
2303 colour_off += cachep->slab_size;
2304 }
2305 slabp->inuse = 0;
2306 slabp->colouroff = colour_off;
b28a02de 2307 slabp->s_mem = objp + colour_off;
1da177e4
LT
2308
2309 return slabp;
2310}
2311
2312static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2313{
b28a02de 2314 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2315}
2316
343e0d7a 2317static void cache_init_objs(struct kmem_cache *cachep,
b28a02de 2318 struct slab *slabp, unsigned long ctor_flags)
1da177e4
LT
2319{
2320 int i;
2321
2322 for (i = 0; i < cachep->num; i++) {
8fea4e96 2323 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2324#if DEBUG
2325 /* need to poison the objs? */
2326 if (cachep->flags & SLAB_POISON)
2327 poison_obj(cachep, objp, POISON_FREE);
2328 if (cachep->flags & SLAB_STORE_USER)
2329 *dbg_userword(cachep, objp) = NULL;
2330
2331 if (cachep->flags & SLAB_RED_ZONE) {
2332 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2333 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2334 }
2335 /*
2336 * Constructors are not allowed to allocate memory from
2337 * the same cache which they are a constructor for.
2338 * Otherwise, deadlock. They must also be threaded.
2339 */
2340 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
3dafccf2 2341 cachep->ctor(objp + obj_offset(cachep), cachep,
b28a02de 2342 ctor_flags);
1da177e4
LT
2343
2344 if (cachep->flags & SLAB_RED_ZONE) {
2345 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2346 slab_error(cachep, "constructor overwrote the"
b28a02de 2347 " end of an object");
1da177e4
LT
2348 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2349 slab_error(cachep, "constructor overwrote the"
b28a02de 2350 " start of an object");
1da177e4 2351 }
3dafccf2 2352 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)
b28a02de
PE
2353 && cachep->flags & SLAB_POISON)
2354 kernel_map_pages(virt_to_page(objp),
3dafccf2 2355 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2356#else
2357 if (cachep->ctor)
2358 cachep->ctor(objp, cachep, ctor_flags);
2359#endif
b28a02de 2360 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2361 }
b28a02de 2362 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2363 slabp->free = 0;
2364}
2365
343e0d7a 2366static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2367{
2368 if (flags & SLAB_DMA) {
2369 if (!(cachep->gfpflags & GFP_DMA))
2370 BUG();
2371 } else {
2372 if (cachep->gfpflags & GFP_DMA)
2373 BUG();
2374 }
2375}
2376
343e0d7a 2377static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, int nodeid)
78d382d7 2378{
8fea4e96 2379 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2380 kmem_bufctl_t next;
2381
2382 slabp->inuse++;
2383 next = slab_bufctl(slabp)[slabp->free];
2384#if DEBUG
2385 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2386 WARN_ON(slabp->nodeid != nodeid);
2387#endif
2388 slabp->free = next;
2389
2390 return objp;
2391}
2392
343e0d7a 2393static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, void *objp,
78d382d7
MD
2394 int nodeid)
2395{
8fea4e96 2396 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2397
2398#if DEBUG
2399 /* Verify that the slab belongs to the intended node */
2400 WARN_ON(slabp->nodeid != nodeid);
2401
2402 if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
2403 printk(KERN_ERR "slab: double free detected in cache "
2404 "'%s', objp %p\n", cachep->name, objp);
2405 BUG();
2406 }
2407#endif
2408 slab_bufctl(slabp)[objnr] = slabp->free;
2409 slabp->free = objnr;
2410 slabp->inuse--;
2411}
2412
343e0d7a 2413static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp, void *objp)
1da177e4
LT
2414{
2415 int i;
2416 struct page *page;
2417
2418 /* Nasty!!!!!! I hope this is OK. */
2419 i = 1 << cachep->gfporder;
2420 page = virt_to_page(objp);
2421 do {
065d41cb
PE
2422 page_set_cache(page, cachep);
2423 page_set_slab(page, slabp);
1da177e4
LT
2424 page++;
2425 } while (--i);
2426}
2427
2428/*
2429 * Grow (by 1) the number of slabs within a cache. This is called by
2430 * kmem_cache_alloc() when there are no active objs left in a cache.
2431 */
343e0d7a 2432static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 2433{
b28a02de
PE
2434 struct slab *slabp;
2435 void *objp;
2436 size_t offset;
2437 gfp_t local_flags;
2438 unsigned long ctor_flags;
e498be7d 2439 struct kmem_list3 *l3;
1da177e4
LT
2440
2441 /* Be lazy and only check for valid flags here,
b28a02de 2442 * keeping it out of the critical path in kmem_cache_alloc().
1da177e4 2443 */
b28a02de 2444 if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
1da177e4
LT
2445 BUG();
2446 if (flags & SLAB_NO_GROW)
2447 return 0;
2448
2449 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2450 local_flags = (flags & SLAB_LEVEL_MASK);
2451 if (!(local_flags & __GFP_WAIT))
2452 /*
2453 * Not allowed to sleep. Need to tell a constructor about
2454 * this - it might need to know...
2455 */
2456 ctor_flags |= SLAB_CTOR_ATOMIC;
2457
2e1217cf 2458 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2459 check_irq_off();
2e1217cf
RT
2460 l3 = cachep->nodelists[nodeid];
2461 spin_lock(&l3->list_lock);
1da177e4
LT
2462
2463 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2464 offset = l3->colour_next;
2465 l3->colour_next++;
2466 if (l3->colour_next >= cachep->colour)
2467 l3->colour_next = 0;
2468 spin_unlock(&l3->list_lock);
1da177e4 2469
2e1217cf 2470 offset *= cachep->colour_off;
1da177e4
LT
2471
2472 if (local_flags & __GFP_WAIT)
2473 local_irq_enable();
2474
2475 /*
2476 * The test for missing atomic flag is performed here, rather than
2477 * the more obvious place, simply to reduce the critical path length
2478 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2479 * will eventually be caught here (where it matters).
2480 */
2481 kmem_flagcheck(cachep, flags);
2482
e498be7d
CL
2483 /* Get mem for the objs.
2484 * Attempt to allocate a physical page from 'nodeid',
2485 */
1da177e4
LT
2486 if (!(objp = kmem_getpages(cachep, flags, nodeid)))
2487 goto failed;
2488
2489 /* Get slab management. */
2490 if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
2491 goto opps1;
2492
e498be7d 2493 slabp->nodeid = nodeid;
1da177e4
LT
2494 set_slab_attr(cachep, slabp, objp);
2495
2496 cache_init_objs(cachep, slabp, ctor_flags);
2497
2498 if (local_flags & __GFP_WAIT)
2499 local_irq_disable();
2500 check_irq_off();
e498be7d 2501 spin_lock(&l3->list_lock);
1da177e4
LT
2502
2503 /* Make slab active. */
e498be7d 2504 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2505 STATS_INC_GROWN(cachep);
e498be7d
CL
2506 l3->free_objects += cachep->num;
2507 spin_unlock(&l3->list_lock);
1da177e4 2508 return 1;
b28a02de 2509 opps1:
1da177e4 2510 kmem_freepages(cachep, objp);
b28a02de 2511 failed:
1da177e4
LT
2512 if (local_flags & __GFP_WAIT)
2513 local_irq_disable();
2514 return 0;
2515}
2516
2517#if DEBUG
2518
2519/*
2520 * Perform extra freeing checks:
2521 * - detect bad pointers.
2522 * - POISON/RED_ZONE checking
2523 * - destructor calls, for caches with POISON+dtor
2524 */
2525static void kfree_debugcheck(const void *objp)
2526{
2527 struct page *page;
2528
2529 if (!virt_addr_valid(objp)) {
2530 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2531 (unsigned long)objp);
2532 BUG();
1da177e4
LT
2533 }
2534 page = virt_to_page(objp);
2535 if (!PageSlab(page)) {
b28a02de
PE
2536 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2537 (unsigned long)objp);
1da177e4
LT
2538 BUG();
2539 }
2540}
2541
343e0d7a 2542static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2543 void *caller)
1da177e4
LT
2544{
2545 struct page *page;
2546 unsigned int objnr;
2547 struct slab *slabp;
2548
3dafccf2 2549 objp -= obj_offset(cachep);
1da177e4
LT
2550 kfree_debugcheck(objp);
2551 page = virt_to_page(objp);
2552
065d41cb 2553 if (page_get_cache(page) != cachep) {
b28a02de
PE
2554 printk(KERN_ERR
2555 "mismatch in kmem_cache_free: expected cache %p, got %p\n",
2556 page_get_cache(page), cachep);
1da177e4 2557 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
b28a02de
PE
2558 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2559 page_get_cache(page)->name);
1da177e4
LT
2560 WARN_ON(1);
2561 }
065d41cb 2562 slabp = page_get_slab(page);
1da177e4
LT
2563
2564 if (cachep->flags & SLAB_RED_ZONE) {
b28a02de
PE
2565 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE
2566 || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2567 slab_error(cachep,
2568 "double free, or memory outside"
2569 " object was overwritten");
2570 printk(KERN_ERR
2571 "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2572 objp, *dbg_redzone1(cachep, objp),
2573 *dbg_redzone2(cachep, objp));
1da177e4
LT
2574 }
2575 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2576 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2577 }
2578 if (cachep->flags & SLAB_STORE_USER)
2579 *dbg_userword(cachep, objp) = caller;
2580
8fea4e96 2581 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2582
2583 BUG_ON(objnr >= cachep->num);
8fea4e96 2584 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4
LT
2585
2586 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2587 /* Need to call the slab's constructor so the
2588 * caller can perform a verify of its state (debugging).
2589 * Called without the cache-lock held.
2590 */
3dafccf2 2591 cachep->ctor(objp + obj_offset(cachep),
b28a02de 2592 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
1da177e4
LT
2593 }
2594 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2595 /* we want to cache poison the object,
2596 * call the destruction callback
2597 */
3dafccf2 2598 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
1da177e4
LT
2599 }
2600 if (cachep->flags & SLAB_POISON) {
2601#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 2602 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
1da177e4 2603 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2604 kernel_map_pages(virt_to_page(objp),
3dafccf2 2605 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2606 } else {
2607 poison_obj(cachep, objp, POISON_FREE);
2608 }
2609#else
2610 poison_obj(cachep, objp, POISON_FREE);
2611#endif
2612 }
2613 return objp;
2614}
2615
343e0d7a 2616static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2617{
2618 kmem_bufctl_t i;
2619 int entries = 0;
b28a02de 2620
1da177e4
LT
2621 /* Check slab's freelist to see if this obj is there. */
2622 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2623 entries++;
2624 if (entries > cachep->num || i >= cachep->num)
2625 goto bad;
2626 }
2627 if (entries != cachep->num - slabp->inuse) {
b28a02de
PE
2628 bad:
2629 printk(KERN_ERR
2630 "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2631 cachep->name, cachep->num, slabp, slabp->inuse);
2632 for (i = 0;
264132bc 2633 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de
PE
2634 i++) {
2635 if ((i % 16) == 0)
1da177e4 2636 printk("\n%03x:", i);
b28a02de 2637 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2638 }
2639 printk("\n");
2640 BUG();
2641 }
2642}
2643#else
2644#define kfree_debugcheck(x) do { } while(0)
2645#define cache_free_debugcheck(x,objp,z) (objp)
2646#define check_slabp(x,y) do { } while(0)
2647#endif
2648
343e0d7a 2649static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2650{
2651 int batchcount;
2652 struct kmem_list3 *l3;
2653 struct array_cache *ac;
2654
2655 check_irq_off();
9a2dba4b 2656 ac = cpu_cache_get(cachep);
b28a02de 2657 retry:
1da177e4
LT
2658 batchcount = ac->batchcount;
2659 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2660 /* if there was little recent activity on this
2661 * cache, then perform only a partial refill.
2662 * Otherwise we could generate refill bouncing.
2663 */
2664 batchcount = BATCHREFILL_LIMIT;
2665 }
e498be7d
CL
2666 l3 = cachep->nodelists[numa_node_id()];
2667
2668 BUG_ON(ac->avail > 0 || !l3);
2669 spin_lock(&l3->list_lock);
1da177e4 2670
1da177e4
LT
2671 if (l3->shared) {
2672 struct array_cache *shared_array = l3->shared;
2673 if (shared_array->avail) {
2674 if (batchcount > shared_array->avail)
2675 batchcount = shared_array->avail;
2676 shared_array->avail -= batchcount;
2677 ac->avail = batchcount;
e498be7d 2678 memcpy(ac->entry,
b28a02de
PE
2679 &(shared_array->entry[shared_array->avail]),
2680 sizeof(void *) * batchcount);
1da177e4
LT
2681 shared_array->touched = 1;
2682 goto alloc_done;
2683 }
2684 }
2685 while (batchcount > 0) {
2686 struct list_head *entry;
2687 struct slab *slabp;
2688 /* Get slab alloc is to come from. */
2689 entry = l3->slabs_partial.next;
2690 if (entry == &l3->slabs_partial) {
2691 l3->free_touched = 1;
2692 entry = l3->slabs_free.next;
2693 if (entry == &l3->slabs_free)
2694 goto must_grow;
2695 }
2696
2697 slabp = list_entry(entry, struct slab, list);
2698 check_slabp(cachep, slabp);
2699 check_spinlock_acquired(cachep);
2700 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
2701 STATS_INC_ALLOCED(cachep);
2702 STATS_INC_ACTIVE(cachep);
2703 STATS_SET_HIGH(cachep);
2704
78d382d7
MD
2705 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2706 numa_node_id());
1da177e4
LT
2707 }
2708 check_slabp(cachep, slabp);
2709
2710 /* move slabp to correct slabp list: */
2711 list_del(&slabp->list);
2712 if (slabp->free == BUFCTL_END)
2713 list_add(&slabp->list, &l3->slabs_full);
2714 else
2715 list_add(&slabp->list, &l3->slabs_partial);
2716 }
2717
b28a02de 2718 must_grow:
1da177e4 2719 l3->free_objects -= ac->avail;
b28a02de 2720 alloc_done:
e498be7d 2721 spin_unlock(&l3->list_lock);
1da177e4
LT
2722
2723 if (unlikely(!ac->avail)) {
2724 int x;
e498be7d
CL
2725 x = cache_grow(cachep, flags, numa_node_id());
2726
1da177e4 2727 // cache_grow can reenable interrupts, then ac could change.
9a2dba4b 2728 ac = cpu_cache_get(cachep);
1da177e4
LT
2729 if (!x && ac->avail == 0) // no objects in sight? abort
2730 return NULL;
2731
b28a02de 2732 if (!ac->avail) // objects refilled by interrupt?
1da177e4
LT
2733 goto retry;
2734 }
2735 ac->touched = 1;
e498be7d 2736 return ac->entry[--ac->avail];
1da177e4
LT
2737}
2738
2739static inline void
343e0d7a 2740cache_alloc_debugcheck_before(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2741{
2742 might_sleep_if(flags & __GFP_WAIT);
2743#if DEBUG
2744 kmem_flagcheck(cachep, flags);
2745#endif
2746}
2747
2748#if DEBUG
343e0d7a 2749static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, gfp_t flags,
b28a02de 2750 void *objp, void *caller)
1da177e4 2751{
b28a02de 2752 if (!objp)
1da177e4 2753 return objp;
b28a02de 2754 if (cachep->flags & SLAB_POISON) {
1da177e4 2755#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 2756 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 2757 kernel_map_pages(virt_to_page(objp),
3dafccf2 2758 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
2759 else
2760 check_poison_obj(cachep, objp);
2761#else
2762 check_poison_obj(cachep, objp);
2763#endif
2764 poison_obj(cachep, objp, POISON_INUSE);
2765 }
2766 if (cachep->flags & SLAB_STORE_USER)
2767 *dbg_userword(cachep, objp) = caller;
2768
2769 if (cachep->flags & SLAB_RED_ZONE) {
b28a02de
PE
2770 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE
2771 || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2772 slab_error(cachep,
2773 "double free, or memory outside"
2774 " object was overwritten");
2775 printk(KERN_ERR
2776 "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2777 objp, *dbg_redzone1(cachep, objp),
2778 *dbg_redzone2(cachep, objp));
1da177e4
LT
2779 }
2780 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2781 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2782 }
3dafccf2 2783 objp += obj_offset(cachep);
1da177e4 2784 if (cachep->ctor && cachep->flags & SLAB_POISON) {
b28a02de 2785 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
1da177e4
LT
2786
2787 if (!(flags & __GFP_WAIT))
2788 ctor_flags |= SLAB_CTOR_ATOMIC;
2789
2790 cachep->ctor(objp, cachep, ctor_flags);
b28a02de 2791 }
1da177e4
LT
2792 return objp;
2793}
2794#else
2795#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2796#endif
2797
343e0d7a 2798static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2799{
b28a02de 2800 void *objp;
1da177e4
LT
2801 struct array_cache *ac;
2802
dc85da15 2803#ifdef CONFIG_NUMA
86c562a9 2804 if (unlikely(current->mempolicy && !in_interrupt())) {
dc85da15
CL
2805 int nid = slab_node(current->mempolicy);
2806
2807 if (nid != numa_node_id())
2808 return __cache_alloc_node(cachep, flags, nid);
2809 }
2810#endif
2811
5c382300 2812 check_irq_off();
9a2dba4b 2813 ac = cpu_cache_get(cachep);
1da177e4
LT
2814 if (likely(ac->avail)) {
2815 STATS_INC_ALLOCHIT(cachep);
2816 ac->touched = 1;
e498be7d 2817 objp = ac->entry[--ac->avail];
1da177e4
LT
2818 } else {
2819 STATS_INC_ALLOCMISS(cachep);
2820 objp = cache_alloc_refill(cachep, flags);
2821 }
5c382300
AK
2822 return objp;
2823}
2824
7fd6b141
PE
2825static __always_inline void *
2826__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
5c382300
AK
2827{
2828 unsigned long save_flags;
b28a02de 2829 void *objp;
5c382300
AK
2830
2831 cache_alloc_debugcheck_before(cachep, flags);
2832
2833 local_irq_save(save_flags);
2834 objp = ____cache_alloc(cachep, flags);
1da177e4 2835 local_irq_restore(save_flags);
34342e86 2836 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
7fd6b141 2837 caller);
34342e86 2838 prefetchw(objp);
1da177e4
LT
2839 return objp;
2840}
2841
e498be7d
CL
2842#ifdef CONFIG_NUMA
2843/*
2844 * A interface to enable slab creation on nodeid
1da177e4 2845 */
343e0d7a 2846static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
e498be7d
CL
2847{
2848 struct list_head *entry;
b28a02de
PE
2849 struct slab *slabp;
2850 struct kmem_list3 *l3;
2851 void *obj;
b28a02de
PE
2852 int x;
2853
2854 l3 = cachep->nodelists[nodeid];
2855 BUG_ON(!l3);
2856
2857 retry:
ca3b9b91 2858 check_irq_off();
b28a02de
PE
2859 spin_lock(&l3->list_lock);
2860 entry = l3->slabs_partial.next;
2861 if (entry == &l3->slabs_partial) {
2862 l3->free_touched = 1;
2863 entry = l3->slabs_free.next;
2864 if (entry == &l3->slabs_free)
2865 goto must_grow;
2866 }
2867
2868 slabp = list_entry(entry, struct slab, list);
2869 check_spinlock_acquired_node(cachep, nodeid);
2870 check_slabp(cachep, slabp);
2871
2872 STATS_INC_NODEALLOCS(cachep);
2873 STATS_INC_ACTIVE(cachep);
2874 STATS_SET_HIGH(cachep);
2875
2876 BUG_ON(slabp->inuse == cachep->num);
2877
78d382d7 2878 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
2879 check_slabp(cachep, slabp);
2880 l3->free_objects--;
2881 /* move slabp to correct slabp list: */
2882 list_del(&slabp->list);
2883
2884 if (slabp->free == BUFCTL_END) {
2885 list_add(&slabp->list, &l3->slabs_full);
2886 } else {
2887 list_add(&slabp->list, &l3->slabs_partial);
2888 }
e498be7d 2889
b28a02de
PE
2890 spin_unlock(&l3->list_lock);
2891 goto done;
e498be7d 2892
b28a02de
PE
2893 must_grow:
2894 spin_unlock(&l3->list_lock);
2895 x = cache_grow(cachep, flags, nodeid);
1da177e4 2896
b28a02de
PE
2897 if (!x)
2898 return NULL;
e498be7d 2899
b28a02de
PE
2900 goto retry;
2901 done:
2902 return obj;
e498be7d
CL
2903}
2904#endif
2905
2906/*
2907 * Caller needs to acquire correct kmem_list's list_lock
2908 */
343e0d7a 2909static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 2910 int node)
1da177e4
LT
2911{
2912 int i;
e498be7d 2913 struct kmem_list3 *l3;
1da177e4
LT
2914
2915 for (i = 0; i < nr_objects; i++) {
2916 void *objp = objpp[i];
2917 struct slab *slabp;
1da177e4 2918
6ed5eb22 2919 slabp = virt_to_slab(objp);
ff69416e 2920 l3 = cachep->nodelists[node];
1da177e4 2921 list_del(&slabp->list);
ff69416e 2922 check_spinlock_acquired_node(cachep, node);
1da177e4 2923 check_slabp(cachep, slabp);
78d382d7 2924 slab_put_obj(cachep, slabp, objp, node);
1da177e4 2925 STATS_DEC_ACTIVE(cachep);
e498be7d 2926 l3->free_objects++;
1da177e4
LT
2927 check_slabp(cachep, slabp);
2928
2929 /* fixup slab chains */
2930 if (slabp->inuse == 0) {
e498be7d
CL
2931 if (l3->free_objects > l3->free_limit) {
2932 l3->free_objects -= cachep->num;
1da177e4
LT
2933 slab_destroy(cachep, slabp);
2934 } else {
e498be7d 2935 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
2936 }
2937 } else {
2938 /* Unconditionally move a slab to the end of the
2939 * partial list on free - maximum time for the
2940 * other objects to be freed, too.
2941 */
e498be7d 2942 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
2943 }
2944 }
2945}
2946
343e0d7a 2947static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
2948{
2949 int batchcount;
e498be7d 2950 struct kmem_list3 *l3;
ff69416e 2951 int node = numa_node_id();
1da177e4
LT
2952
2953 batchcount = ac->batchcount;
2954#if DEBUG
2955 BUG_ON(!batchcount || batchcount > ac->avail);
2956#endif
2957 check_irq_off();
ff69416e 2958 l3 = cachep->nodelists[node];
e498be7d
CL
2959 spin_lock(&l3->list_lock);
2960 if (l3->shared) {
2961 struct array_cache *shared_array = l3->shared;
b28a02de 2962 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
2963 if (max) {
2964 if (batchcount > max)
2965 batchcount = max;
e498be7d 2966 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 2967 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
2968 shared_array->avail += batchcount;
2969 goto free_done;
2970 }
2971 }
2972
ff69416e 2973 free_block(cachep, ac->entry, batchcount, node);
b28a02de 2974 free_done:
1da177e4
LT
2975#if STATS
2976 {
2977 int i = 0;
2978 struct list_head *p;
2979
e498be7d
CL
2980 p = l3->slabs_free.next;
2981 while (p != &(l3->slabs_free)) {
1da177e4
LT
2982 struct slab *slabp;
2983
2984 slabp = list_entry(p, struct slab, list);
2985 BUG_ON(slabp->inuse);
2986
2987 i++;
2988 p = p->next;
2989 }
2990 STATS_SET_FREEABLE(cachep, i);
2991 }
2992#endif
e498be7d 2993 spin_unlock(&l3->list_lock);
1da177e4 2994 ac->avail -= batchcount;
e498be7d 2995 memmove(ac->entry, &(ac->entry[batchcount]),
b28a02de 2996 sizeof(void *) * ac->avail);
1da177e4
LT
2997}
2998
2999/*
3000 * __cache_free
3001 * Release an obj back to its cache. If the obj has a constructed
3002 * state, it must be in this state _before_ it is released.
3003 *
3004 * Called with disabled ints.
3005 */
343e0d7a 3006static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3007{
9a2dba4b 3008 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3009
3010 check_irq_off();
3011 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3012
e498be7d
CL
3013 /* Make sure we are not freeing a object from another
3014 * node to the array cache on this cpu.
3015 */
3016#ifdef CONFIG_NUMA
3017 {
3018 struct slab *slabp;
6ed5eb22 3019 slabp = virt_to_slab(objp);
e498be7d
CL
3020 if (unlikely(slabp->nodeid != numa_node_id())) {
3021 struct array_cache *alien = NULL;
3022 int nodeid = slabp->nodeid;
b28a02de
PE
3023 struct kmem_list3 *l3 =
3024 cachep->nodelists[numa_node_id()];
e498be7d
CL
3025
3026 STATS_INC_NODEFREES(cachep);
3027 if (l3->alien && l3->alien[nodeid]) {
3028 alien = l3->alien[nodeid];
3029 spin_lock(&alien->lock);
3030 if (unlikely(alien->avail == alien->limit))
3031 __drain_alien_cache(cachep,
b28a02de 3032 alien, nodeid);
e498be7d
CL
3033 alien->entry[alien->avail++] = objp;
3034 spin_unlock(&alien->lock);
3035 } else {
3036 spin_lock(&(cachep->nodelists[nodeid])->
b28a02de 3037 list_lock);
ff69416e 3038 free_block(cachep, &objp, 1, nodeid);
e498be7d 3039 spin_unlock(&(cachep->nodelists[nodeid])->
b28a02de 3040 list_lock);
e498be7d
CL
3041 }
3042 return;
3043 }
3044 }
3045#endif
1da177e4
LT
3046 if (likely(ac->avail < ac->limit)) {
3047 STATS_INC_FREEHIT(cachep);
e498be7d 3048 ac->entry[ac->avail++] = objp;
1da177e4
LT
3049 return;
3050 } else {
3051 STATS_INC_FREEMISS(cachep);
3052 cache_flusharray(cachep, ac);
e498be7d 3053 ac->entry[ac->avail++] = objp;
1da177e4
LT
3054 }
3055}
3056
3057/**
3058 * kmem_cache_alloc - Allocate an object
3059 * @cachep: The cache to allocate from.
3060 * @flags: See kmalloc().
3061 *
3062 * Allocate an object from this cache. The flags are only relevant
3063 * if the cache has no available objects.
3064 */
343e0d7a 3065void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3066{
7fd6b141 3067 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3068}
3069EXPORT_SYMBOL(kmem_cache_alloc);
3070
3071/**
3072 * kmem_ptr_validate - check if an untrusted pointer might
3073 * be a slab entry.
3074 * @cachep: the cache we're checking against
3075 * @ptr: pointer to validate
3076 *
3077 * This verifies that the untrusted pointer looks sane:
3078 * it is _not_ a guarantee that the pointer is actually
3079 * part of the slab cache in question, but it at least
3080 * validates that the pointer can be dereferenced and
3081 * looks half-way sane.
3082 *
3083 * Currently only used for dentry validation.
3084 */
343e0d7a 3085int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
1da177e4 3086{
b28a02de 3087 unsigned long addr = (unsigned long)ptr;
1da177e4 3088 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3089 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3090 unsigned long size = cachep->buffer_size;
1da177e4
LT
3091 struct page *page;
3092
3093 if (unlikely(addr < min_addr))
3094 goto out;
3095 if (unlikely(addr > (unsigned long)high_memory - size))
3096 goto out;
3097 if (unlikely(addr & align_mask))
3098 goto out;
3099 if (unlikely(!kern_addr_valid(addr)))
3100 goto out;
3101 if (unlikely(!kern_addr_valid(addr + size - 1)))
3102 goto out;
3103 page = virt_to_page(ptr);
3104 if (unlikely(!PageSlab(page)))
3105 goto out;
065d41cb 3106 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3107 goto out;
3108 return 1;
b28a02de 3109 out:
1da177e4
LT
3110 return 0;
3111}
3112
3113#ifdef CONFIG_NUMA
3114/**
3115 * kmem_cache_alloc_node - Allocate an object on the specified node
3116 * @cachep: The cache to allocate from.
3117 * @flags: See kmalloc().
3118 * @nodeid: node number of the target node.
3119 *
3120 * Identical to kmem_cache_alloc, except that this function is slow
3121 * and can sleep. And it will allocate memory on the given node, which
3122 * can improve the performance for cpu bound structures.
e498be7d
CL
3123 * New and improved: it will now make sure that the object gets
3124 * put on the correct node list so that there is no false sharing.
1da177e4 3125 */
343e0d7a 3126void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 3127{
e498be7d
CL
3128 unsigned long save_flags;
3129 void *ptr;
1da177e4 3130
e498be7d
CL
3131 cache_alloc_debugcheck_before(cachep, flags);
3132 local_irq_save(save_flags);
18f820f6
CL
3133
3134 if (nodeid == -1 || nodeid == numa_node_id() ||
3135 !cachep->nodelists[nodeid])
5c382300
AK
3136 ptr = ____cache_alloc(cachep, flags);
3137 else
3138 ptr = __cache_alloc_node(cachep, flags, nodeid);
e498be7d 3139 local_irq_restore(save_flags);
18f820f6
CL
3140
3141 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3142 __builtin_return_address(0));
1da177e4 3143
e498be7d 3144 return ptr;
1da177e4
LT
3145}
3146EXPORT_SYMBOL(kmem_cache_alloc_node);
3147
dd0fc66f 3148void *kmalloc_node(size_t size, gfp_t flags, int node)
97e2bde4 3149{
343e0d7a 3150 struct kmem_cache *cachep;
97e2bde4
MS
3151
3152 cachep = kmem_find_general_cachep(size, flags);
3153 if (unlikely(cachep == NULL))
3154 return NULL;
3155 return kmem_cache_alloc_node(cachep, flags, node);
3156}
3157EXPORT_SYMBOL(kmalloc_node);
1da177e4
LT
3158#endif
3159
3160/**
3161 * kmalloc - allocate memory
3162 * @size: how many bytes of memory are required.
3163 * @flags: the type of memory to allocate.
3164 *
3165 * kmalloc is the normal method of allocating memory
3166 * in the kernel.
3167 *
3168 * The @flags argument may be one of:
3169 *
3170 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3171 *
3172 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3173 *
3174 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3175 *
3176 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3177 * must be suitable for DMA. This can mean different things on different
3178 * platforms. For example, on i386, it means that the memory must come
3179 * from the first 16MB.
3180 */
7fd6b141
PE
3181static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3182 void *caller)
1da177e4 3183{
343e0d7a 3184 struct kmem_cache *cachep;
1da177e4 3185
97e2bde4
MS
3186 /* If you want to save a few bytes .text space: replace
3187 * __ with kmem_.
3188 * Then kmalloc uses the uninlined functions instead of the inline
3189 * functions.
3190 */
3191 cachep = __find_general_cachep(size, flags);
dbdb9045
AM
3192 if (unlikely(cachep == NULL))
3193 return NULL;
7fd6b141
PE
3194 return __cache_alloc(cachep, flags, caller);
3195}
3196
3197#ifndef CONFIG_DEBUG_SLAB
3198
3199void *__kmalloc(size_t size, gfp_t flags)
3200{
3201 return __do_kmalloc(size, flags, NULL);
1da177e4
LT
3202}
3203EXPORT_SYMBOL(__kmalloc);
3204
7fd6b141
PE
3205#else
3206
3207void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3208{
3209 return __do_kmalloc(size, flags, caller);
3210}
3211EXPORT_SYMBOL(__kmalloc_track_caller);
3212
3213#endif
3214
1da177e4
LT
3215#ifdef CONFIG_SMP
3216/**
3217 * __alloc_percpu - allocate one copy of the object for every present
3218 * cpu in the system, zeroing them.
3219 * Objects should be dereferenced using the per_cpu_ptr macro only.
3220 *
3221 * @size: how many bytes of memory are required.
1da177e4 3222 */
f9f75005 3223void *__alloc_percpu(size_t size)
1da177e4
LT
3224{
3225 int i;
b28a02de 3226 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
1da177e4
LT
3227
3228 if (!pdata)
3229 return NULL;
3230
e498be7d
CL
3231 /*
3232 * Cannot use for_each_online_cpu since a cpu may come online
3233 * and we have no way of figuring out how to fix the array
3234 * that we have allocated then....
3235 */
3236 for_each_cpu(i) {
3237 int node = cpu_to_node(i);
3238
3239 if (node_online(node))
3240 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3241 else
3242 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
1da177e4
LT
3243
3244 if (!pdata->ptrs[i])
3245 goto unwind_oom;
3246 memset(pdata->ptrs[i], 0, size);
3247 }
3248
3249 /* Catch derefs w/o wrappers */
b28a02de 3250 return (void *)(~(unsigned long)pdata);
1da177e4 3251
b28a02de 3252 unwind_oom:
1da177e4
LT
3253 while (--i >= 0) {
3254 if (!cpu_possible(i))
3255 continue;
3256 kfree(pdata->ptrs[i]);
3257 }
3258 kfree(pdata);
3259 return NULL;
3260}
3261EXPORT_SYMBOL(__alloc_percpu);
3262#endif
3263
3264/**
3265 * kmem_cache_free - Deallocate an object
3266 * @cachep: The cache the allocation was from.
3267 * @objp: The previously allocated object.
3268 *
3269 * Free an object which was previously allocated from this
3270 * cache.
3271 */
343e0d7a 3272void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3273{
3274 unsigned long flags;
3275
3276 local_irq_save(flags);
3277 __cache_free(cachep, objp);
3278 local_irq_restore(flags);
3279}
3280EXPORT_SYMBOL(kmem_cache_free);
3281
1da177e4
LT
3282/**
3283 * kfree - free previously allocated memory
3284 * @objp: pointer returned by kmalloc.
3285 *
80e93eff
PE
3286 * If @objp is NULL, no operation is performed.
3287 *
1da177e4
LT
3288 * Don't free memory not originally allocated by kmalloc()
3289 * or you will run into trouble.
3290 */
3291void kfree(const void *objp)
3292{
343e0d7a 3293 struct kmem_cache *c;
1da177e4
LT
3294 unsigned long flags;
3295
3296 if (unlikely(!objp))
3297 return;
3298 local_irq_save(flags);
3299 kfree_debugcheck(objp);
6ed5eb22 3300 c = virt_to_cache(objp);
3dafccf2 3301 mutex_debug_check_no_locks_freed(objp, obj_size(c));
b28a02de 3302 __cache_free(c, (void *)objp);
1da177e4
LT
3303 local_irq_restore(flags);
3304}
3305EXPORT_SYMBOL(kfree);
3306
3307#ifdef CONFIG_SMP
3308/**
3309 * free_percpu - free previously allocated percpu memory
3310 * @objp: pointer returned by alloc_percpu.
3311 *
3312 * Don't free memory not originally allocated by alloc_percpu()
3313 * The complemented objp is to check for that.
3314 */
b28a02de 3315void free_percpu(const void *objp)
1da177e4
LT
3316{
3317 int i;
b28a02de 3318 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
1da177e4 3319
e498be7d
CL
3320 /*
3321 * We allocate for all cpus so we cannot use for online cpu here.
3322 */
3323 for_each_cpu(i)
b28a02de 3324 kfree(p->ptrs[i]);
1da177e4
LT
3325 kfree(p);
3326}
3327EXPORT_SYMBOL(free_percpu);
3328#endif
3329
343e0d7a 3330unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3331{
3dafccf2 3332 return obj_size(cachep);
1da177e4
LT
3333}
3334EXPORT_SYMBOL(kmem_cache_size);
3335
343e0d7a 3336const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3337{
3338 return cachep->name;
3339}
3340EXPORT_SYMBOL_GPL(kmem_cache_name);
3341
e498be7d
CL
3342/*
3343 * This initializes kmem_list3 for all nodes.
3344 */
343e0d7a 3345static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3346{
3347 int node;
3348 struct kmem_list3 *l3;
3349 int err = 0;
3350
3351 for_each_online_node(node) {
3352 struct array_cache *nc = NULL, *new;
3353 struct array_cache **new_alien = NULL;
3354#ifdef CONFIG_NUMA
3355 if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
3356 goto fail;
3357#endif
b28a02de
PE
3358 if (!(new = alloc_arraycache(node, (cachep->shared *
3359 cachep->batchcount),
3360 0xbaadf00d)))
e498be7d
CL
3361 goto fail;
3362 if ((l3 = cachep->nodelists[node])) {
3363
3364 spin_lock_irq(&l3->list_lock);
3365
3366 if ((nc = cachep->nodelists[node]->shared))
b28a02de 3367 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
3368
3369 l3->shared = new;
3370 if (!cachep->nodelists[node]->alien) {
3371 l3->alien = new_alien;
3372 new_alien = NULL;
3373 }
b28a02de
PE
3374 l3->free_limit = (1 + nr_cpus_node(node)) *
3375 cachep->batchcount + cachep->num;
e498be7d
CL
3376 spin_unlock_irq(&l3->list_lock);
3377 kfree(nc);
3378 free_alien_cache(new_alien);
3379 continue;
3380 }
3381 if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
b28a02de 3382 GFP_KERNEL, node)))
e498be7d
CL
3383 goto fail;
3384
3385 kmem_list3_init(l3);
3386 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 3387 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
3388 l3->shared = new;
3389 l3->alien = new_alien;
b28a02de
PE
3390 l3->free_limit = (1 + nr_cpus_node(node)) *
3391 cachep->batchcount + cachep->num;
e498be7d
CL
3392 cachep->nodelists[node] = l3;
3393 }
3394 return err;
b28a02de 3395 fail:
e498be7d
CL
3396 err = -ENOMEM;
3397 return err;
3398}
3399
1da177e4 3400struct ccupdate_struct {
343e0d7a 3401 struct kmem_cache *cachep;
1da177e4
LT
3402 struct array_cache *new[NR_CPUS];
3403};
3404
3405static void do_ccupdate_local(void *info)
3406{
3407 struct ccupdate_struct *new = (struct ccupdate_struct *)info;
3408 struct array_cache *old;
3409
3410 check_irq_off();
9a2dba4b 3411 old = cpu_cache_get(new->cachep);
e498be7d 3412
1da177e4
LT
3413 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3414 new->new[smp_processor_id()] = old;
3415}
3416
343e0d7a 3417static int do_tune_cpucache(struct kmem_cache *cachep, int limit, int batchcount,
b28a02de 3418 int shared)
1da177e4
LT
3419{
3420 struct ccupdate_struct new;
e498be7d 3421 int i, err;
1da177e4 3422
b28a02de 3423 memset(&new.new, 0, sizeof(new.new));
e498be7d 3424 for_each_online_cpu(i) {
b28a02de
PE
3425 new.new[i] =
3426 alloc_arraycache(cpu_to_node(i), limit, batchcount);
e498be7d 3427 if (!new.new[i]) {
b28a02de
PE
3428 for (i--; i >= 0; i--)
3429 kfree(new.new[i]);
e498be7d 3430 return -ENOMEM;
1da177e4
LT
3431 }
3432 }
3433 new.cachep = cachep;
3434
3435 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
e498be7d 3436
1da177e4 3437 check_irq_on();
ca3b9b91 3438 spin_lock(&cachep->spinlock);
1da177e4
LT
3439 cachep->batchcount = batchcount;
3440 cachep->limit = limit;
e498be7d 3441 cachep->shared = shared;
ca3b9b91 3442 spin_unlock(&cachep->spinlock);
1da177e4 3443
e498be7d 3444 for_each_online_cpu(i) {
1da177e4
LT
3445 struct array_cache *ccold = new.new[i];
3446 if (!ccold)
3447 continue;
e498be7d 3448 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3449 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3450 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3451 kfree(ccold);
3452 }
1da177e4 3453
e498be7d
CL
3454 err = alloc_kmemlist(cachep);
3455 if (err) {
3456 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
b28a02de 3457 cachep->name, -err);
e498be7d 3458 BUG();
1da177e4 3459 }
1da177e4
LT
3460 return 0;
3461}
3462
343e0d7a 3463static void enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
3464{
3465 int err;
3466 int limit, shared;
3467
3468 /* The head array serves three purposes:
3469 * - create a LIFO ordering, i.e. return objects that are cache-warm
3470 * - reduce the number of spinlock operations.
3471 * - reduce the number of linked list operations on the slab and
3472 * bufctl chains: array operations are cheaper.
3473 * The numbers are guessed, we should auto-tune as described by
3474 * Bonwick.
3475 */
3dafccf2 3476 if (cachep->buffer_size > 131072)
1da177e4 3477 limit = 1;
3dafccf2 3478 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3479 limit = 8;
3dafccf2 3480 else if (cachep->buffer_size > 1024)
1da177e4 3481 limit = 24;
3dafccf2 3482 else if (cachep->buffer_size > 256)
1da177e4
LT
3483 limit = 54;
3484 else
3485 limit = 120;
3486
3487 /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
3488 * allocation behaviour: Most allocs on one cpu, most free operations
3489 * on another cpu. For these cases, an efficient object passing between
3490 * cpus is necessary. This is provided by a shared array. The array
3491 * replaces Bonwick's magazine layer.
3492 * On uniprocessor, it's functionally equivalent (but less efficient)
3493 * to a larger limit. Thus disabled by default.
3494 */
3495 shared = 0;
3496#ifdef CONFIG_SMP
3dafccf2 3497 if (cachep->buffer_size <= PAGE_SIZE)
1da177e4
LT
3498 shared = 8;
3499#endif
3500
3501#if DEBUG
3502 /* With debugging enabled, large batchcount lead to excessively
3503 * long periods with disabled local interrupts. Limit the
3504 * batchcount
3505 */
3506 if (limit > 32)
3507 limit = 32;
3508#endif
b28a02de 3509 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
3510 if (err)
3511 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3512 cachep->name, -err);
1da177e4
LT
3513}
3514
343e0d7a 3515static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
b28a02de 3516 int force, int node)
1da177e4
LT
3517{
3518 int tofree;
3519
e498be7d 3520 check_spinlock_acquired_node(cachep, node);
1da177e4
LT
3521 if (ac->touched && !force) {
3522 ac->touched = 0;
3523 } else if (ac->avail) {
b28a02de 3524 tofree = force ? ac->avail : (ac->limit + 4) / 5;
1da177e4 3525 if (tofree > ac->avail) {
b28a02de 3526 tofree = (ac->avail + 1) / 2;
1da177e4 3527 }
ff69416e 3528 free_block(cachep, ac->entry, tofree, node);
1da177e4 3529 ac->avail -= tofree;
e498be7d 3530 memmove(ac->entry, &(ac->entry[tofree]),
b28a02de 3531 sizeof(void *) * ac->avail);
1da177e4
LT
3532 }
3533}
3534
3535/**
3536 * cache_reap - Reclaim memory from caches.
1e5d5331 3537 * @unused: unused parameter
1da177e4
LT
3538 *
3539 * Called from workqueue/eventd every few seconds.
3540 * Purpose:
3541 * - clear the per-cpu caches for this CPU.
3542 * - return freeable pages to the main free memory pool.
3543 *
fc0abb14 3544 * If we cannot acquire the cache chain mutex then just give up - we'll
1da177e4
LT
3545 * try again on the next iteration.
3546 */
3547static void cache_reap(void *unused)
3548{
3549 struct list_head *walk;
e498be7d 3550 struct kmem_list3 *l3;
1da177e4 3551
fc0abb14 3552 if (!mutex_trylock(&cache_chain_mutex)) {
1da177e4 3553 /* Give up. Setup the next iteration. */
b28a02de
PE
3554 schedule_delayed_work(&__get_cpu_var(reap_work),
3555 REAPTIMEOUT_CPUC);
1da177e4
LT
3556 return;
3557 }
3558
3559 list_for_each(walk, &cache_chain) {
343e0d7a 3560 struct kmem_cache *searchp;
b28a02de 3561 struct list_head *p;
1da177e4
LT
3562 int tofree;
3563 struct slab *slabp;
3564
343e0d7a 3565 searchp = list_entry(walk, struct kmem_cache, next);
1da177e4
LT
3566
3567 if (searchp->flags & SLAB_NO_REAP)
3568 goto next;
3569
3570 check_irq_on();
3571
e498be7d 3572 l3 = searchp->nodelists[numa_node_id()];
8fce4d8e 3573 reap_alien(searchp, l3);
e498be7d 3574 spin_lock_irq(&l3->list_lock);
1da177e4 3575
9a2dba4b 3576 drain_array_locked(searchp, cpu_cache_get(searchp), 0,
b28a02de 3577 numa_node_id());
1da177e4 3578
e498be7d 3579 if (time_after(l3->next_reap, jiffies))
1da177e4
LT
3580 goto next_unlock;
3581
e498be7d 3582 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 3583
e498be7d
CL
3584 if (l3->shared)
3585 drain_array_locked(searchp, l3->shared, 0,
b28a02de 3586 numa_node_id());
1da177e4 3587
e498be7d
CL
3588 if (l3->free_touched) {
3589 l3->free_touched = 0;
1da177e4
LT
3590 goto next_unlock;
3591 }
3592
b28a02de
PE
3593 tofree =
3594 (l3->free_limit + 5 * searchp->num -
3595 1) / (5 * searchp->num);
1da177e4 3596 do {
e498be7d
CL
3597 p = l3->slabs_free.next;
3598 if (p == &(l3->slabs_free))
1da177e4
LT
3599 break;
3600
3601 slabp = list_entry(p, struct slab, list);
3602 BUG_ON(slabp->inuse);
3603 list_del(&slabp->list);
3604 STATS_INC_REAPED(searchp);
3605
3606 /* Safe to drop the lock. The slab is no longer
3607 * linked to the cache.
3608 * searchp cannot disappear, we hold
3609 * cache_chain_lock
3610 */
e498be7d
CL
3611 l3->free_objects -= searchp->num;
3612 spin_unlock_irq(&l3->list_lock);
1da177e4 3613 slab_destroy(searchp, slabp);
e498be7d 3614 spin_lock_irq(&l3->list_lock);
b28a02de
PE
3615 } while (--tofree > 0);
3616 next_unlock:
e498be7d 3617 spin_unlock_irq(&l3->list_lock);
b28a02de 3618 next:
1da177e4
LT
3619 cond_resched();
3620 }
3621 check_irq_on();
fc0abb14 3622 mutex_unlock(&cache_chain_mutex);
8fce4d8e 3623 next_reap_node();
1da177e4 3624 /* Setup the next iteration */
cd61ef62 3625 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
1da177e4
LT
3626}
3627
3628#ifdef CONFIG_PROC_FS
3629
85289f98 3630static void print_slabinfo_header(struct seq_file *m)
1da177e4 3631{
85289f98
PE
3632 /*
3633 * Output format version, so at least we can change it
3634 * without _too_ many complaints.
3635 */
1da177e4 3636#if STATS
85289f98 3637 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 3638#else
85289f98 3639 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 3640#endif
85289f98
PE
3641 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3642 "<objperslab> <pagesperslab>");
3643 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3644 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 3645#if STATS
85289f98
PE
3646 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3647 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
3648 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 3649#endif
85289f98
PE
3650 seq_putc(m, '\n');
3651}
3652
3653static void *s_start(struct seq_file *m, loff_t *pos)
3654{
3655 loff_t n = *pos;
3656 struct list_head *p;
3657
fc0abb14 3658 mutex_lock(&cache_chain_mutex);
85289f98
PE
3659 if (!n)
3660 print_slabinfo_header(m);
1da177e4
LT
3661 p = cache_chain.next;
3662 while (n--) {
3663 p = p->next;
3664 if (p == &cache_chain)
3665 return NULL;
3666 }
343e0d7a 3667 return list_entry(p, struct kmem_cache, next);
1da177e4
LT
3668}
3669
3670static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3671{
343e0d7a 3672 struct kmem_cache *cachep = p;
1da177e4
LT
3673 ++*pos;
3674 return cachep->next.next == &cache_chain ? NULL
343e0d7a 3675 : list_entry(cachep->next.next, struct kmem_cache, next);
1da177e4
LT
3676}
3677
3678static void s_stop(struct seq_file *m, void *p)
3679{
fc0abb14 3680 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
3681}
3682
3683static int s_show(struct seq_file *m, void *p)
3684{
343e0d7a 3685 struct kmem_cache *cachep = p;
1da177e4 3686 struct list_head *q;
b28a02de
PE
3687 struct slab *slabp;
3688 unsigned long active_objs;
3689 unsigned long num_objs;
3690 unsigned long active_slabs = 0;
3691 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3692 const char *name;
1da177e4 3693 char *error = NULL;
e498be7d
CL
3694 int node;
3695 struct kmem_list3 *l3;
1da177e4 3696
ca3b9b91 3697 spin_lock(&cachep->spinlock);
1da177e4
LT
3698 active_objs = 0;
3699 num_slabs = 0;
e498be7d
CL
3700 for_each_online_node(node) {
3701 l3 = cachep->nodelists[node];
3702 if (!l3)
3703 continue;
3704
ca3b9b91
RT
3705 check_irq_on();
3706 spin_lock_irq(&l3->list_lock);
e498be7d 3707
b28a02de 3708 list_for_each(q, &l3->slabs_full) {
e498be7d
CL
3709 slabp = list_entry(q, struct slab, list);
3710 if (slabp->inuse != cachep->num && !error)
3711 error = "slabs_full accounting error";
3712 active_objs += cachep->num;
3713 active_slabs++;
3714 }
b28a02de 3715 list_for_each(q, &l3->slabs_partial) {
e498be7d
CL
3716 slabp = list_entry(q, struct slab, list);
3717 if (slabp->inuse == cachep->num && !error)
3718 error = "slabs_partial inuse accounting error";
3719 if (!slabp->inuse && !error)
3720 error = "slabs_partial/inuse accounting error";
3721 active_objs += slabp->inuse;
3722 active_slabs++;
3723 }
b28a02de 3724 list_for_each(q, &l3->slabs_free) {
e498be7d
CL
3725 slabp = list_entry(q, struct slab, list);
3726 if (slabp->inuse && !error)
3727 error = "slabs_free/inuse accounting error";
3728 num_slabs++;
3729 }
3730 free_objects += l3->free_objects;
4484ebf1
RT
3731 if (l3->shared)
3732 shared_avail += l3->shared->avail;
e498be7d 3733
ca3b9b91 3734 spin_unlock_irq(&l3->list_lock);
1da177e4 3735 }
b28a02de
PE
3736 num_slabs += active_slabs;
3737 num_objs = num_slabs * cachep->num;
e498be7d 3738 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
3739 error = "free_objects accounting error";
3740
b28a02de 3741 name = cachep->name;
1da177e4
LT
3742 if (error)
3743 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3744
3745 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 3746 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 3747 cachep->num, (1 << cachep->gfporder));
1da177e4 3748 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 3749 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 3750 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 3751 active_slabs, num_slabs, shared_avail);
1da177e4 3752#if STATS
b28a02de 3753 { /* list3 stats */
1da177e4
LT
3754 unsigned long high = cachep->high_mark;
3755 unsigned long allocs = cachep->num_allocations;
3756 unsigned long grown = cachep->grown;
3757 unsigned long reaped = cachep->reaped;
3758 unsigned long errors = cachep->errors;
3759 unsigned long max_freeable = cachep->max_freeable;
1da177e4 3760 unsigned long node_allocs = cachep->node_allocs;
e498be7d 3761 unsigned long node_frees = cachep->node_frees;
1da177e4 3762
e498be7d 3763 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
b28a02de 3764 %4lu %4lu %4lu %4lu", allocs, high, grown, reaped, errors, max_freeable, node_allocs, node_frees);
1da177e4
LT
3765 }
3766 /* cpu stats */
3767 {
3768 unsigned long allochit = atomic_read(&cachep->allochit);
3769 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3770 unsigned long freehit = atomic_read(&cachep->freehit);
3771 unsigned long freemiss = atomic_read(&cachep->freemiss);
3772
3773 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 3774 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
3775 }
3776#endif
3777 seq_putc(m, '\n');
ca3b9b91 3778 spin_unlock(&cachep->spinlock);
1da177e4
LT
3779 return 0;
3780}
3781
3782/*
3783 * slabinfo_op - iterator that generates /proc/slabinfo
3784 *
3785 * Output layout:
3786 * cache-name
3787 * num-active-objs
3788 * total-objs
3789 * object size
3790 * num-active-slabs
3791 * total-slabs
3792 * num-pages-per-slab
3793 * + further values on SMP and with statistics enabled
3794 */
3795
3796struct seq_operations slabinfo_op = {
b28a02de
PE
3797 .start = s_start,
3798 .next = s_next,
3799 .stop = s_stop,
3800 .show = s_show,
1da177e4
LT
3801};
3802
3803#define MAX_SLABINFO_WRITE 128
3804/**
3805 * slabinfo_write - Tuning for the slab allocator
3806 * @file: unused
3807 * @buffer: user buffer
3808 * @count: data length
3809 * @ppos: unused
3810 */
b28a02de
PE
3811ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3812 size_t count, loff_t *ppos)
1da177e4 3813{
b28a02de 3814 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4
LT
3815 int limit, batchcount, shared, res;
3816 struct list_head *p;
b28a02de 3817
1da177e4
LT
3818 if (count > MAX_SLABINFO_WRITE)
3819 return -EINVAL;
3820 if (copy_from_user(&kbuf, buffer, count))
3821 return -EFAULT;
b28a02de 3822 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
3823
3824 tmp = strchr(kbuf, ' ');
3825 if (!tmp)
3826 return -EINVAL;
3827 *tmp = '\0';
3828 tmp++;
3829 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3830 return -EINVAL;
3831
3832 /* Find the cache in the chain of caches. */
fc0abb14 3833 mutex_lock(&cache_chain_mutex);
1da177e4 3834 res = -EINVAL;
b28a02de 3835 list_for_each(p, &cache_chain) {
343e0d7a
PE
3836 struct kmem_cache *cachep = list_entry(p, struct kmem_cache,
3837 next);
1da177e4
LT
3838
3839 if (!strcmp(cachep->name, kbuf)) {
3840 if (limit < 1 ||
3841 batchcount < 1 ||
b28a02de 3842 batchcount > limit || shared < 0) {
e498be7d 3843 res = 0;
1da177e4 3844 } else {
e498be7d 3845 res = do_tune_cpucache(cachep, limit,
b28a02de 3846 batchcount, shared);
1da177e4
LT
3847 }
3848 break;
3849 }
3850 }
fc0abb14 3851 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
3852 if (res >= 0)
3853 res = count;
3854 return res;
3855}
3856#endif
3857
00e145b6
MS
3858/**
3859 * ksize - get the actual amount of memory allocated for a given object
3860 * @objp: Pointer to the object
3861 *
3862 * kmalloc may internally round up allocations and return more memory
3863 * than requested. ksize() can be used to determine the actual amount of
3864 * memory allocated. The caller may use this additional memory, even though
3865 * a smaller amount of memory was initially specified with the kmalloc call.
3866 * The caller must guarantee that objp points to a valid object previously
3867 * allocated with either kmalloc() or kmem_cache_alloc(). The object
3868 * must not be freed during the duration of the call.
3869 */
1da177e4
LT
3870unsigned int ksize(const void *objp)
3871{
00e145b6
MS
3872 if (unlikely(objp == NULL))
3873 return 0;
1da177e4 3874
6ed5eb22 3875 return obj_size(virt_to_cache(objp));
1da177e4 3876}