]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/slab.c
slub: use new node functions
[mirror_ubuntu-artful-kernel.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
f315e3fa
JK
160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163#if FREELIST_BYTE_INDEX
164typedef unsigned char freelist_idx_t;
165#else
166typedef unsigned short freelist_idx_t;
167#endif
168
30321c7b 169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 170
072bb0aa
MG
171/*
172 * true if a page was allocated from pfmemalloc reserves for network-based
173 * swap
174 */
175static bool pfmemalloc_active __read_mostly;
176
1da177e4
LT
177/*
178 * struct array_cache
179 *
1da177e4
LT
180 * Purpose:
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
184 *
185 * The limit is stored in the per-cpu structure to reduce the data cache
186 * footprint.
187 *
188 */
189struct array_cache {
190 unsigned int avail;
191 unsigned int limit;
192 unsigned int batchcount;
193 unsigned int touched;
e498be7d 194 spinlock_t lock;
bda5b655 195 void *entry[]; /*
a737b3e2
AM
196 * Must have this definition in here for the proper
197 * alignment of array_cache. Also simplifies accessing
198 * the entries.
072bb0aa
MG
199 *
200 * Entries should not be directly dereferenced as
201 * entries belonging to slabs marked pfmemalloc will
202 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 203 */
1da177e4
LT
204};
205
072bb0aa
MG
206#define SLAB_OBJ_PFMEMALLOC 1
207static inline bool is_obj_pfmemalloc(void *objp)
208{
209 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
210}
211
212static inline void set_obj_pfmemalloc(void **objp)
213{
214 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
215 return;
216}
217
218static inline void clear_obj_pfmemalloc(void **objp)
219{
220 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
221}
222
a737b3e2
AM
223/*
224 * bootstrap: The caches do not work without cpuarrays anymore, but the
225 * cpuarrays are allocated from the generic caches...
1da177e4
LT
226 */
227#define BOOT_CPUCACHE_ENTRIES 1
228struct arraycache_init {
229 struct array_cache cache;
b28a02de 230 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
231};
232
e498be7d
CL
233/*
234 * Need this for bootstrapping a per node allocator.
235 */
556a169d 236#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
ce8eb6c4 237static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 238#define CACHE_CACHE 0
556a169d 239#define SIZE_AC MAX_NUMNODES
ce8eb6c4 240#define SIZE_NODE (2 * MAX_NUMNODES)
e498be7d 241
ed11d9eb 242static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 243 struct kmem_cache_node *n, int tofree);
ed11d9eb
CL
244static void free_block(struct kmem_cache *cachep, void **objpp, int len,
245 int node);
83b519e8 246static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 247static void cache_reap(struct work_struct *unused);
ed11d9eb 248
e0a42726
IM
249static int slab_early_init = 1;
250
e3366016 251#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
ce8eb6c4 252#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 253
ce8eb6c4 254static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
255{
256 INIT_LIST_HEAD(&parent->slabs_full);
257 INIT_LIST_HEAD(&parent->slabs_partial);
258 INIT_LIST_HEAD(&parent->slabs_free);
259 parent->shared = NULL;
260 parent->alien = NULL;
2e1217cf 261 parent->colour_next = 0;
e498be7d
CL
262 spin_lock_init(&parent->list_lock);
263 parent->free_objects = 0;
264 parent->free_touched = 0;
265}
266
a737b3e2
AM
267#define MAKE_LIST(cachep, listp, slab, nodeid) \
268 do { \
269 INIT_LIST_HEAD(listp); \
6a67368c 270 list_splice(&(cachep->node[nodeid]->slab), listp); \
e498be7d
CL
271 } while (0)
272
a737b3e2
AM
273#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
274 do { \
e498be7d
CL
275 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
276 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
277 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
278 } while (0)
1da177e4 279
1da177e4
LT
280#define CFLGS_OFF_SLAB (0x80000000UL)
281#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
282
283#define BATCHREFILL_LIMIT 16
a737b3e2
AM
284/*
285 * Optimization question: fewer reaps means less probability for unnessary
286 * cpucache drain/refill cycles.
1da177e4 287 *
dc6f3f27 288 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
289 * which could lock up otherwise freeable slabs.
290 */
5f0985bb
JZ
291#define REAPTIMEOUT_AC (2*HZ)
292#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
293
294#if STATS
295#define STATS_INC_ACTIVE(x) ((x)->num_active++)
296#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
297#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
298#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 299#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
300#define STATS_SET_HIGH(x) \
301 do { \
302 if ((x)->num_active > (x)->high_mark) \
303 (x)->high_mark = (x)->num_active; \
304 } while (0)
1da177e4
LT
305#define STATS_INC_ERR(x) ((x)->errors++)
306#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 307#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 308#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
309#define STATS_SET_FREEABLE(x, i) \
310 do { \
311 if ((x)->max_freeable < i) \
312 (x)->max_freeable = i; \
313 } while (0)
1da177e4
LT
314#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
315#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
316#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
317#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
318#else
319#define STATS_INC_ACTIVE(x) do { } while (0)
320#define STATS_DEC_ACTIVE(x) do { } while (0)
321#define STATS_INC_ALLOCED(x) do { } while (0)
322#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 323#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
324#define STATS_SET_HIGH(x) do { } while (0)
325#define STATS_INC_ERR(x) do { } while (0)
326#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 327#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 328#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 329#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
330#define STATS_INC_ALLOCHIT(x) do { } while (0)
331#define STATS_INC_ALLOCMISS(x) do { } while (0)
332#define STATS_INC_FREEHIT(x) do { } while (0)
333#define STATS_INC_FREEMISS(x) do { } while (0)
334#endif
335
336#if DEBUG
1da177e4 337
a737b3e2
AM
338/*
339 * memory layout of objects:
1da177e4 340 * 0 : objp
3dafccf2 341 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
342 * the end of an object is aligned with the end of the real
343 * allocation. Catches writes behind the end of the allocation.
3dafccf2 344 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 345 * redzone word.
3dafccf2 346 * cachep->obj_offset: The real object.
3b0efdfa
CL
347 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
348 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 349 * [BYTES_PER_WORD long]
1da177e4 350 */
343e0d7a 351static int obj_offset(struct kmem_cache *cachep)
1da177e4 352{
3dafccf2 353 return cachep->obj_offset;
1da177e4
LT
354}
355
b46b8f19 356static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
357{
358 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
359 return (unsigned long long*) (objp + obj_offset(cachep) -
360 sizeof(unsigned long long));
1da177e4
LT
361}
362
b46b8f19 363static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
364{
365 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
366 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 367 return (unsigned long long *)(objp + cachep->size -
b46b8f19 368 sizeof(unsigned long long) -
87a927c7 369 REDZONE_ALIGN);
3b0efdfa 370 return (unsigned long long *) (objp + cachep->size -
b46b8f19 371 sizeof(unsigned long long));
1da177e4
LT
372}
373
343e0d7a 374static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
375{
376 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 377 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
378}
379
380#else
381
3dafccf2 382#define obj_offset(x) 0
b46b8f19
DW
383#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
384#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
385#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
386
387#endif
388
03787301
JK
389#define OBJECT_FREE (0)
390#define OBJECT_ACTIVE (1)
391
392#ifdef CONFIG_DEBUG_SLAB_LEAK
393
394static void set_obj_status(struct page *page, int idx, int val)
395{
396 int freelist_size;
397 char *status;
398 struct kmem_cache *cachep = page->slab_cache;
399
400 freelist_size = cachep->num * sizeof(freelist_idx_t);
401 status = (char *)page->freelist + freelist_size;
402 status[idx] = val;
403}
404
405static inline unsigned int get_obj_status(struct page *page, int idx)
406{
407 int freelist_size;
408 char *status;
409 struct kmem_cache *cachep = page->slab_cache;
410
411 freelist_size = cachep->num * sizeof(freelist_idx_t);
412 status = (char *)page->freelist + freelist_size;
413
414 return status[idx];
415}
416
417#else
418static inline void set_obj_status(struct page *page, int idx, int val) {}
419
420#endif
421
1da177e4 422/*
3df1cccd
DR
423 * Do not go above this order unless 0 objects fit into the slab or
424 * overridden on the command line.
1da177e4 425 */
543585cc
DR
426#define SLAB_MAX_ORDER_HI 1
427#define SLAB_MAX_ORDER_LO 0
428static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 429static bool slab_max_order_set __initdata;
1da177e4 430
6ed5eb22
PE
431static inline struct kmem_cache *virt_to_cache(const void *obj)
432{
b49af68f 433 struct page *page = virt_to_head_page(obj);
35026088 434 return page->slab_cache;
6ed5eb22
PE
435}
436
8456a648 437static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
438 unsigned int idx)
439{
8456a648 440 return page->s_mem + cache->size * idx;
8fea4e96
PE
441}
442
6a2d7a95 443/*
3b0efdfa
CL
444 * We want to avoid an expensive divide : (offset / cache->size)
445 * Using the fact that size is a constant for a particular cache,
446 * we can replace (offset / cache->size) by
6a2d7a95
ED
447 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
448 */
449static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 450 const struct page *page, void *obj)
8fea4e96 451{
8456a648 452 u32 offset = (obj - page->s_mem);
6a2d7a95 453 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
454}
455
1da177e4 456static struct arraycache_init initarray_generic =
b28a02de 457 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
458
459/* internal cache of cache description objs */
9b030cb8 460static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
461 .batchcount = 1,
462 .limit = BOOT_CPUCACHE_ENTRIES,
463 .shared = 1,
3b0efdfa 464 .size = sizeof(struct kmem_cache),
b28a02de 465 .name = "kmem_cache",
1da177e4
LT
466};
467
056c6241
RT
468#define BAD_ALIEN_MAGIC 0x01020304ul
469
f1aaee53
AV
470#ifdef CONFIG_LOCKDEP
471
472/*
473 * Slab sometimes uses the kmalloc slabs to store the slab headers
474 * for other slabs "off slab".
475 * The locking for this is tricky in that it nests within the locks
476 * of all other slabs in a few places; to deal with this special
477 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
478 *
479 * We set lock class for alien array caches which are up during init.
480 * The lock annotation will be lost if all cpus of a node goes down and
481 * then comes back up during hotplug
f1aaee53 482 */
056c6241
RT
483static struct lock_class_key on_slab_l3_key;
484static struct lock_class_key on_slab_alc_key;
485
83835b3d
PZ
486static struct lock_class_key debugobj_l3_key;
487static struct lock_class_key debugobj_alc_key;
488
489static void slab_set_lock_classes(struct kmem_cache *cachep,
490 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
491 int q)
492{
493 struct array_cache **alc;
ce8eb6c4 494 struct kmem_cache_node *n;
83835b3d
PZ
495 int r;
496
ce8eb6c4
CL
497 n = cachep->node[q];
498 if (!n)
83835b3d
PZ
499 return;
500
ce8eb6c4
CL
501 lockdep_set_class(&n->list_lock, l3_key);
502 alc = n->alien;
83835b3d
PZ
503 /*
504 * FIXME: This check for BAD_ALIEN_MAGIC
505 * should go away when common slab code is taught to
506 * work even without alien caches.
507 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
508 * for alloc_alien_cache,
509 */
510 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
511 return;
512 for_each_node(r) {
513 if (alc[r])
514 lockdep_set_class(&alc[r]->lock, alc_key);
515 }
516}
517
518static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
519{
520 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
521}
522
523static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
524{
525 int node;
526
527 for_each_online_node(node)
528 slab_set_debugobj_lock_classes_node(cachep, node);
529}
530
ce79ddc8 531static void init_node_lock_keys(int q)
f1aaee53 532{
e3366016 533 int i;
056c6241 534
97d06609 535 if (slab_state < UP)
ce79ddc8
PE
536 return;
537
0f8f8094 538 for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
ce8eb6c4 539 struct kmem_cache_node *n;
e3366016
CL
540 struct kmem_cache *cache = kmalloc_caches[i];
541
542 if (!cache)
543 continue;
ce79ddc8 544
ce8eb6c4
CL
545 n = cache->node[q];
546 if (!n || OFF_SLAB(cache))
00afa758 547 continue;
83835b3d 548
e3366016 549 slab_set_lock_classes(cache, &on_slab_l3_key,
83835b3d 550 &on_slab_alc_key, q);
f1aaee53
AV
551 }
552}
ce79ddc8 553
6ccfb5bc
GC
554static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
555{
6a67368c 556 if (!cachep->node[q])
6ccfb5bc
GC
557 return;
558
559 slab_set_lock_classes(cachep, &on_slab_l3_key,
560 &on_slab_alc_key, q);
561}
562
563static inline void on_slab_lock_classes(struct kmem_cache *cachep)
564{
565 int node;
566
567 VM_BUG_ON(OFF_SLAB(cachep));
568 for_each_node(node)
569 on_slab_lock_classes_node(cachep, node);
570}
571
1536cb39 572static inline void __init init_lock_keys(void)
ce79ddc8
PE
573{
574 int node;
575
576 for_each_node(node)
577 init_node_lock_keys(node);
578}
f1aaee53 579#else
1536cb39 580static void __init init_node_lock_keys(int q)
ce79ddc8
PE
581{
582}
583
056c6241 584static inline void init_lock_keys(void)
f1aaee53
AV
585{
586}
83835b3d 587
6ccfb5bc
GC
588static inline void on_slab_lock_classes(struct kmem_cache *cachep)
589{
590}
591
592static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
593{
594}
595
83835b3d
PZ
596static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
597{
598}
599
600static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
601{
602}
f1aaee53
AV
603#endif
604
1871e52c 605static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 606
343e0d7a 607static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
608{
609 return cachep->array[smp_processor_id()];
610}
611
03787301
JK
612static size_t calculate_freelist_size(int nr_objs, size_t align)
613{
614 size_t freelist_size;
615
616 freelist_size = nr_objs * sizeof(freelist_idx_t);
617 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
618 freelist_size += nr_objs * sizeof(char);
619
620 if (align)
621 freelist_size = ALIGN(freelist_size, align);
622
623 return freelist_size;
624}
625
9cef2e2b
JK
626static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
627 size_t idx_size, size_t align)
1da177e4 628{
9cef2e2b 629 int nr_objs;
03787301 630 size_t remained_size;
9cef2e2b 631 size_t freelist_size;
03787301 632 int extra_space = 0;
9cef2e2b 633
03787301
JK
634 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
635 extra_space = sizeof(char);
9cef2e2b
JK
636 /*
637 * Ignore padding for the initial guess. The padding
638 * is at most @align-1 bytes, and @buffer_size is at
639 * least @align. In the worst case, this result will
640 * be one greater than the number of objects that fit
641 * into the memory allocation when taking the padding
642 * into account.
643 */
03787301 644 nr_objs = slab_size / (buffer_size + idx_size + extra_space);
9cef2e2b
JK
645
646 /*
647 * This calculated number will be either the right
648 * amount, or one greater than what we want.
649 */
03787301
JK
650 remained_size = slab_size - nr_objs * buffer_size;
651 freelist_size = calculate_freelist_size(nr_objs, align);
652 if (remained_size < freelist_size)
9cef2e2b
JK
653 nr_objs--;
654
655 return nr_objs;
fbaccacf 656}
1da177e4 657
a737b3e2
AM
658/*
659 * Calculate the number of objects and left-over bytes for a given buffer size.
660 */
fbaccacf
SR
661static void cache_estimate(unsigned long gfporder, size_t buffer_size,
662 size_t align, int flags, size_t *left_over,
663 unsigned int *num)
664{
665 int nr_objs;
666 size_t mgmt_size;
667 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 668
fbaccacf
SR
669 /*
670 * The slab management structure can be either off the slab or
671 * on it. For the latter case, the memory allocated for a
672 * slab is used for:
673 *
16025177 674 * - One unsigned int for each object
fbaccacf
SR
675 * - Padding to respect alignment of @align
676 * - @buffer_size bytes for each object
677 *
678 * If the slab management structure is off the slab, then the
679 * alignment will already be calculated into the size. Because
680 * the slabs are all pages aligned, the objects will be at the
681 * correct alignment when allocated.
682 */
683 if (flags & CFLGS_OFF_SLAB) {
684 mgmt_size = 0;
685 nr_objs = slab_size / buffer_size;
686
fbaccacf 687 } else {
9cef2e2b 688 nr_objs = calculate_nr_objs(slab_size, buffer_size,
a41adfaa 689 sizeof(freelist_idx_t), align);
03787301 690 mgmt_size = calculate_freelist_size(nr_objs, align);
fbaccacf
SR
691 }
692 *num = nr_objs;
693 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
694}
695
f28510d3 696#if DEBUG
d40cee24 697#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 698
a737b3e2
AM
699static void __slab_error(const char *function, struct kmem_cache *cachep,
700 char *msg)
1da177e4
LT
701{
702 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 703 function, cachep->name, msg);
1da177e4 704 dump_stack();
373d4d09 705 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 706}
f28510d3 707#endif
1da177e4 708
3395ee05
PM
709/*
710 * By default on NUMA we use alien caches to stage the freeing of
711 * objects allocated from other nodes. This causes massive memory
712 * inefficiencies when using fake NUMA setup to split memory into a
713 * large number of small nodes, so it can be disabled on the command
714 * line
715 */
716
717static int use_alien_caches __read_mostly = 1;
718static int __init noaliencache_setup(char *s)
719{
720 use_alien_caches = 0;
721 return 1;
722}
723__setup("noaliencache", noaliencache_setup);
724
3df1cccd
DR
725static int __init slab_max_order_setup(char *str)
726{
727 get_option(&str, &slab_max_order);
728 slab_max_order = slab_max_order < 0 ? 0 :
729 min(slab_max_order, MAX_ORDER - 1);
730 slab_max_order_set = true;
731
732 return 1;
733}
734__setup("slab_max_order=", slab_max_order_setup);
735
8fce4d8e
CL
736#ifdef CONFIG_NUMA
737/*
738 * Special reaping functions for NUMA systems called from cache_reap().
739 * These take care of doing round robin flushing of alien caches (containing
740 * objects freed on different nodes from which they were allocated) and the
741 * flushing of remote pcps by calling drain_node_pages.
742 */
1871e52c 743static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
744
745static void init_reap_node(int cpu)
746{
747 int node;
748
7d6e6d09 749 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 750 if (node == MAX_NUMNODES)
442295c9 751 node = first_node(node_online_map);
8fce4d8e 752
1871e52c 753 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
754}
755
756static void next_reap_node(void)
757{
909ea964 758 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 759
8fce4d8e
CL
760 node = next_node(node, node_online_map);
761 if (unlikely(node >= MAX_NUMNODES))
762 node = first_node(node_online_map);
909ea964 763 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
764}
765
766#else
767#define init_reap_node(cpu) do { } while (0)
768#define next_reap_node(void) do { } while (0)
769#endif
770
1da177e4
LT
771/*
772 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
773 * via the workqueue/eventd.
774 * Add the CPU number into the expiration time to minimize the possibility of
775 * the CPUs getting into lockstep and contending for the global cache chain
776 * lock.
777 */
0db0628d 778static void start_cpu_timer(int cpu)
1da177e4 779{
1871e52c 780 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
781
782 /*
783 * When this gets called from do_initcalls via cpucache_init(),
784 * init_workqueues() has already run, so keventd will be setup
785 * at that time.
786 */
52bad64d 787 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 788 init_reap_node(cpu);
203b42f7 789 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
790 schedule_delayed_work_on(cpu, reap_work,
791 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
792 }
793}
794
e498be7d 795static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 796 int batchcount, gfp_t gfp)
1da177e4 797{
b28a02de 798 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
799 struct array_cache *nc = NULL;
800
83b519e8 801 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
802 /*
803 * The array_cache structures contain pointers to free object.
25985edc 804 * However, when such objects are allocated or transferred to another
d5cff635
CM
805 * cache the pointers are not cleared and they could be counted as
806 * valid references during a kmemleak scan. Therefore, kmemleak must
807 * not scan such objects.
808 */
809 kmemleak_no_scan(nc);
1da177e4
LT
810 if (nc) {
811 nc->avail = 0;
812 nc->limit = entries;
813 nc->batchcount = batchcount;
814 nc->touched = 0;
e498be7d 815 spin_lock_init(&nc->lock);
1da177e4
LT
816 }
817 return nc;
818}
819
8456a648 820static inline bool is_slab_pfmemalloc(struct page *page)
072bb0aa 821{
072bb0aa
MG
822 return PageSlabPfmemalloc(page);
823}
824
825/* Clears pfmemalloc_active if no slabs have pfmalloc set */
826static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
827 struct array_cache *ac)
828{
ce8eb6c4 829 struct kmem_cache_node *n = cachep->node[numa_mem_id()];
8456a648 830 struct page *page;
072bb0aa
MG
831 unsigned long flags;
832
833 if (!pfmemalloc_active)
834 return;
835
ce8eb6c4 836 spin_lock_irqsave(&n->list_lock, flags);
8456a648
JK
837 list_for_each_entry(page, &n->slabs_full, lru)
838 if (is_slab_pfmemalloc(page))
072bb0aa
MG
839 goto out;
840
8456a648
JK
841 list_for_each_entry(page, &n->slabs_partial, lru)
842 if (is_slab_pfmemalloc(page))
072bb0aa
MG
843 goto out;
844
8456a648
JK
845 list_for_each_entry(page, &n->slabs_free, lru)
846 if (is_slab_pfmemalloc(page))
072bb0aa
MG
847 goto out;
848
849 pfmemalloc_active = false;
850out:
ce8eb6c4 851 spin_unlock_irqrestore(&n->list_lock, flags);
072bb0aa
MG
852}
853
381760ea 854static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
855 gfp_t flags, bool force_refill)
856{
857 int i;
858 void *objp = ac->entry[--ac->avail];
859
860 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
861 if (unlikely(is_obj_pfmemalloc(objp))) {
ce8eb6c4 862 struct kmem_cache_node *n;
072bb0aa
MG
863
864 if (gfp_pfmemalloc_allowed(flags)) {
865 clear_obj_pfmemalloc(&objp);
866 return objp;
867 }
868
869 /* The caller cannot use PFMEMALLOC objects, find another one */
d014dc2e 870 for (i = 0; i < ac->avail; i++) {
072bb0aa
MG
871 /* If a !PFMEMALLOC object is found, swap them */
872 if (!is_obj_pfmemalloc(ac->entry[i])) {
873 objp = ac->entry[i];
874 ac->entry[i] = ac->entry[ac->avail];
875 ac->entry[ac->avail] = objp;
876 return objp;
877 }
878 }
879
880 /*
881 * If there are empty slabs on the slabs_free list and we are
882 * being forced to refill the cache, mark this one !pfmemalloc.
883 */
ce8eb6c4
CL
884 n = cachep->node[numa_mem_id()];
885 if (!list_empty(&n->slabs_free) && force_refill) {
8456a648 886 struct page *page = virt_to_head_page(objp);
7ecccf9d 887 ClearPageSlabPfmemalloc(page);
072bb0aa
MG
888 clear_obj_pfmemalloc(&objp);
889 recheck_pfmemalloc_active(cachep, ac);
890 return objp;
891 }
892
893 /* No !PFMEMALLOC objects available */
894 ac->avail++;
895 objp = NULL;
896 }
897
898 return objp;
899}
900
381760ea
MG
901static inline void *ac_get_obj(struct kmem_cache *cachep,
902 struct array_cache *ac, gfp_t flags, bool force_refill)
903{
904 void *objp;
905
906 if (unlikely(sk_memalloc_socks()))
907 objp = __ac_get_obj(cachep, ac, flags, force_refill);
908 else
909 objp = ac->entry[--ac->avail];
910
911 return objp;
912}
913
914static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
915 void *objp)
916{
917 if (unlikely(pfmemalloc_active)) {
918 /* Some pfmemalloc slabs exist, check if this is one */
30c29bea 919 struct page *page = virt_to_head_page(objp);
072bb0aa
MG
920 if (PageSlabPfmemalloc(page))
921 set_obj_pfmemalloc(&objp);
922 }
923
381760ea
MG
924 return objp;
925}
926
927static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
928 void *objp)
929{
930 if (unlikely(sk_memalloc_socks()))
931 objp = __ac_put_obj(cachep, ac, objp);
932
072bb0aa
MG
933 ac->entry[ac->avail++] = objp;
934}
935
3ded175a
CL
936/*
937 * Transfer objects in one arraycache to another.
938 * Locking must be handled by the caller.
939 *
940 * Return the number of entries transferred.
941 */
942static int transfer_objects(struct array_cache *to,
943 struct array_cache *from, unsigned int max)
944{
945 /* Figure out how many entries to transfer */
732eacc0 946 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
947
948 if (!nr)
949 return 0;
950
951 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
952 sizeof(void *) *nr);
953
954 from->avail -= nr;
955 to->avail += nr;
3ded175a
CL
956 return nr;
957}
958
765c4507
CL
959#ifndef CONFIG_NUMA
960
961#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 962#define reap_alien(cachep, n) do { } while (0)
765c4507 963
83b519e8 964static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
965{
966 return (struct array_cache **)BAD_ALIEN_MAGIC;
967}
968
969static inline void free_alien_cache(struct array_cache **ac_ptr)
970{
971}
972
973static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
974{
975 return 0;
976}
977
978static inline void *alternate_node_alloc(struct kmem_cache *cachep,
979 gfp_t flags)
980{
981 return NULL;
982}
983
8b98c169 984static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
985 gfp_t flags, int nodeid)
986{
987 return NULL;
988}
989
990#else /* CONFIG_NUMA */
991
8b98c169 992static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 993static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 994
83b519e8 995static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
996{
997 struct array_cache **ac_ptr;
8ef82866 998 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
999 int i;
1000
1001 if (limit > 1)
1002 limit = 12;
f3186a9c 1003 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
1004 if (ac_ptr) {
1005 for_each_node(i) {
f3186a9c 1006 if (i == node || !node_online(i))
e498be7d 1007 continue;
83b519e8 1008 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 1009 if (!ac_ptr[i]) {
cc550def 1010 for (i--; i >= 0; i--)
e498be7d
CL
1011 kfree(ac_ptr[i]);
1012 kfree(ac_ptr);
1013 return NULL;
1014 }
1015 }
1016 }
1017 return ac_ptr;
1018}
1019
5295a74c 1020static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1021{
1022 int i;
1023
1024 if (!ac_ptr)
1025 return;
e498be7d 1026 for_each_node(i)
b28a02de 1027 kfree(ac_ptr[i]);
e498be7d
CL
1028 kfree(ac_ptr);
1029}
1030
343e0d7a 1031static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1032 struct array_cache *ac, int node)
e498be7d 1033{
ce8eb6c4 1034 struct kmem_cache_node *n = cachep->node[node];
e498be7d
CL
1035
1036 if (ac->avail) {
ce8eb6c4 1037 spin_lock(&n->list_lock);
e00946fe
CL
1038 /*
1039 * Stuff objects into the remote nodes shared array first.
1040 * That way we could avoid the overhead of putting the objects
1041 * into the free lists and getting them back later.
1042 */
ce8eb6c4
CL
1043 if (n->shared)
1044 transfer_objects(n->shared, ac, ac->limit);
e00946fe 1045
ff69416e 1046 free_block(cachep, ac->entry, ac->avail, node);
e498be7d 1047 ac->avail = 0;
ce8eb6c4 1048 spin_unlock(&n->list_lock);
e498be7d
CL
1049 }
1050}
1051
8fce4d8e
CL
1052/*
1053 * Called from cache_reap() to regularly drain alien caches round robin.
1054 */
ce8eb6c4 1055static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 1056{
909ea964 1057 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 1058
ce8eb6c4
CL
1059 if (n->alien) {
1060 struct array_cache *ac = n->alien[node];
e00946fe
CL
1061
1062 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1063 __drain_alien_cache(cachep, ac, node);
1064 spin_unlock_irq(&ac->lock);
1065 }
1066 }
1067}
1068
a737b3e2
AM
1069static void drain_alien_cache(struct kmem_cache *cachep,
1070 struct array_cache **alien)
e498be7d 1071{
b28a02de 1072 int i = 0;
e498be7d
CL
1073 struct array_cache *ac;
1074 unsigned long flags;
1075
1076 for_each_online_node(i) {
4484ebf1 1077 ac = alien[i];
e498be7d
CL
1078 if (ac) {
1079 spin_lock_irqsave(&ac->lock, flags);
1080 __drain_alien_cache(cachep, ac, i);
1081 spin_unlock_irqrestore(&ac->lock, flags);
1082 }
1083 }
1084}
729bd0b7 1085
873623df 1086static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7 1087{
1ea991b0 1088 int nodeid = page_to_nid(virt_to_page(objp));
ce8eb6c4 1089 struct kmem_cache_node *n;
729bd0b7 1090 struct array_cache *alien = NULL;
1ca4cb24
PE
1091 int node;
1092
7d6e6d09 1093 node = numa_mem_id();
729bd0b7
PE
1094
1095 /*
1096 * Make sure we are not freeing a object from another node to the array
1097 * cache on this cpu.
1098 */
1ea991b0 1099 if (likely(nodeid == node))
729bd0b7
PE
1100 return 0;
1101
ce8eb6c4 1102 n = cachep->node[node];
729bd0b7 1103 STATS_INC_NODEFREES(cachep);
ce8eb6c4
CL
1104 if (n->alien && n->alien[nodeid]) {
1105 alien = n->alien[nodeid];
873623df 1106 spin_lock(&alien->lock);
729bd0b7
PE
1107 if (unlikely(alien->avail == alien->limit)) {
1108 STATS_INC_ACOVERFLOW(cachep);
1109 __drain_alien_cache(cachep, alien, nodeid);
1110 }
072bb0aa 1111 ac_put_obj(cachep, alien, objp);
729bd0b7
PE
1112 spin_unlock(&alien->lock);
1113 } else {
6a67368c 1114 spin_lock(&(cachep->node[nodeid])->list_lock);
729bd0b7 1115 free_block(cachep, &objp, 1, nodeid);
6a67368c 1116 spin_unlock(&(cachep->node[nodeid])->list_lock);
729bd0b7
PE
1117 }
1118 return 1;
1119}
e498be7d
CL
1120#endif
1121
8f9f8d9e 1122/*
6a67368c 1123 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 1124 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 1125 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 1126 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
1127 * already in use.
1128 *
18004c5d 1129 * Must hold slab_mutex.
8f9f8d9e 1130 */
6a67368c 1131static int init_cache_node_node(int node)
8f9f8d9e
DR
1132{
1133 struct kmem_cache *cachep;
ce8eb6c4 1134 struct kmem_cache_node *n;
6744f087 1135 const int memsize = sizeof(struct kmem_cache_node);
8f9f8d9e 1136
18004c5d 1137 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e 1138 /*
5f0985bb 1139 * Set up the kmem_cache_node for cpu before we can
8f9f8d9e
DR
1140 * begin anything. Make sure some other cpu on this
1141 * node has not already allocated this
1142 */
6a67368c 1143 if (!cachep->node[node]) {
ce8eb6c4
CL
1144 n = kmalloc_node(memsize, GFP_KERNEL, node);
1145 if (!n)
8f9f8d9e 1146 return -ENOMEM;
ce8eb6c4 1147 kmem_cache_node_init(n);
5f0985bb
JZ
1148 n->next_reap = jiffies + REAPTIMEOUT_NODE +
1149 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
8f9f8d9e
DR
1150
1151 /*
5f0985bb
JZ
1152 * The kmem_cache_nodes don't come and go as CPUs
1153 * come and go. slab_mutex is sufficient
8f9f8d9e
DR
1154 * protection here.
1155 */
ce8eb6c4 1156 cachep->node[node] = n;
8f9f8d9e
DR
1157 }
1158
6a67368c
CL
1159 spin_lock_irq(&cachep->node[node]->list_lock);
1160 cachep->node[node]->free_limit =
8f9f8d9e
DR
1161 (1 + nr_cpus_node(node)) *
1162 cachep->batchcount + cachep->num;
6a67368c 1163 spin_unlock_irq(&cachep->node[node]->list_lock);
8f9f8d9e
DR
1164 }
1165 return 0;
1166}
1167
0fa8103b
WL
1168static inline int slabs_tofree(struct kmem_cache *cachep,
1169 struct kmem_cache_node *n)
1170{
1171 return (n->free_objects + cachep->num - 1) / cachep->num;
1172}
1173
0db0628d 1174static void cpuup_canceled(long cpu)
fbf1e473
AM
1175{
1176 struct kmem_cache *cachep;
ce8eb6c4 1177 struct kmem_cache_node *n = NULL;
7d6e6d09 1178 int node = cpu_to_mem(cpu);
a70f7302 1179 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1180
18004c5d 1181 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1182 struct array_cache *nc;
1183 struct array_cache *shared;
1184 struct array_cache **alien;
fbf1e473 1185
fbf1e473
AM
1186 /* cpu is dead; no one can alloc from it. */
1187 nc = cachep->array[cpu];
1188 cachep->array[cpu] = NULL;
ce8eb6c4 1189 n = cachep->node[node];
fbf1e473 1190
ce8eb6c4 1191 if (!n)
fbf1e473
AM
1192 goto free_array_cache;
1193
ce8eb6c4 1194 spin_lock_irq(&n->list_lock);
fbf1e473 1195
ce8eb6c4
CL
1196 /* Free limit for this kmem_cache_node */
1197 n->free_limit -= cachep->batchcount;
fbf1e473
AM
1198 if (nc)
1199 free_block(cachep, nc->entry, nc->avail, node);
1200
58463c1f 1201 if (!cpumask_empty(mask)) {
ce8eb6c4 1202 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1203 goto free_array_cache;
1204 }
1205
ce8eb6c4 1206 shared = n->shared;
fbf1e473
AM
1207 if (shared) {
1208 free_block(cachep, shared->entry,
1209 shared->avail, node);
ce8eb6c4 1210 n->shared = NULL;
fbf1e473
AM
1211 }
1212
ce8eb6c4
CL
1213 alien = n->alien;
1214 n->alien = NULL;
fbf1e473 1215
ce8eb6c4 1216 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1217
1218 kfree(shared);
1219 if (alien) {
1220 drain_alien_cache(cachep, alien);
1221 free_alien_cache(alien);
1222 }
1223free_array_cache:
1224 kfree(nc);
1225 }
1226 /*
1227 * In the previous loop, all the objects were freed to
1228 * the respective cache's slabs, now we can go ahead and
1229 * shrink each nodelist to its limit.
1230 */
18004c5d 1231 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4
CL
1232 n = cachep->node[node];
1233 if (!n)
fbf1e473 1234 continue;
0fa8103b 1235 drain_freelist(cachep, n, slabs_tofree(cachep, n));
fbf1e473
AM
1236 }
1237}
1238
0db0628d 1239static int cpuup_prepare(long cpu)
1da177e4 1240{
343e0d7a 1241 struct kmem_cache *cachep;
ce8eb6c4 1242 struct kmem_cache_node *n = NULL;
7d6e6d09 1243 int node = cpu_to_mem(cpu);
8f9f8d9e 1244 int err;
1da177e4 1245
fbf1e473
AM
1246 /*
1247 * We need to do this right in the beginning since
1248 * alloc_arraycache's are going to use this list.
1249 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1250 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1251 */
6a67368c 1252 err = init_cache_node_node(node);
8f9f8d9e
DR
1253 if (err < 0)
1254 goto bad;
fbf1e473
AM
1255
1256 /*
1257 * Now we can go ahead with allocating the shared arrays and
1258 * array caches
1259 */
18004c5d 1260 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1261 struct array_cache *nc;
1262 struct array_cache *shared = NULL;
1263 struct array_cache **alien = NULL;
1264
1265 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1266 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1267 if (!nc)
1268 goto bad;
1269 if (cachep->shared) {
1270 shared = alloc_arraycache(node,
1271 cachep->shared * cachep->batchcount,
83b519e8 1272 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1273 if (!shared) {
1274 kfree(nc);
1da177e4 1275 goto bad;
12d00f6a 1276 }
fbf1e473
AM
1277 }
1278 if (use_alien_caches) {
83b519e8 1279 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1280 if (!alien) {
1281 kfree(shared);
1282 kfree(nc);
fbf1e473 1283 goto bad;
12d00f6a 1284 }
fbf1e473
AM
1285 }
1286 cachep->array[cpu] = nc;
ce8eb6c4
CL
1287 n = cachep->node[node];
1288 BUG_ON(!n);
fbf1e473 1289
ce8eb6c4
CL
1290 spin_lock_irq(&n->list_lock);
1291 if (!n->shared) {
fbf1e473
AM
1292 /*
1293 * We are serialised from CPU_DEAD or
1294 * CPU_UP_CANCELLED by the cpucontrol lock
1295 */
ce8eb6c4 1296 n->shared = shared;
fbf1e473
AM
1297 shared = NULL;
1298 }
4484ebf1 1299#ifdef CONFIG_NUMA
ce8eb6c4
CL
1300 if (!n->alien) {
1301 n->alien = alien;
fbf1e473 1302 alien = NULL;
1da177e4 1303 }
fbf1e473 1304#endif
ce8eb6c4 1305 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1306 kfree(shared);
1307 free_alien_cache(alien);
83835b3d
PZ
1308 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1309 slab_set_debugobj_lock_classes_node(cachep, node);
6ccfb5bc
GC
1310 else if (!OFF_SLAB(cachep) &&
1311 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1312 on_slab_lock_classes_node(cachep, node);
fbf1e473 1313 }
ce79ddc8
PE
1314 init_node_lock_keys(node);
1315
fbf1e473
AM
1316 return 0;
1317bad:
12d00f6a 1318 cpuup_canceled(cpu);
fbf1e473
AM
1319 return -ENOMEM;
1320}
1321
0db0628d 1322static int cpuup_callback(struct notifier_block *nfb,
fbf1e473
AM
1323 unsigned long action, void *hcpu)
1324{
1325 long cpu = (long)hcpu;
1326 int err = 0;
1327
1328 switch (action) {
fbf1e473
AM
1329 case CPU_UP_PREPARE:
1330 case CPU_UP_PREPARE_FROZEN:
18004c5d 1331 mutex_lock(&slab_mutex);
fbf1e473 1332 err = cpuup_prepare(cpu);
18004c5d 1333 mutex_unlock(&slab_mutex);
1da177e4
LT
1334 break;
1335 case CPU_ONLINE:
8bb78442 1336 case CPU_ONLINE_FROZEN:
1da177e4
LT
1337 start_cpu_timer(cpu);
1338 break;
1339#ifdef CONFIG_HOTPLUG_CPU
5830c590 1340 case CPU_DOWN_PREPARE:
8bb78442 1341 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1342 /*
18004c5d 1343 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1344 * held so that if cache_reap() is invoked it cannot do
1345 * anything expensive but will only modify reap_work
1346 * and reschedule the timer.
1347 */
afe2c511 1348 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1349 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1350 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1351 break;
1352 case CPU_DOWN_FAILED:
8bb78442 1353 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1354 start_cpu_timer(cpu);
1355 break;
1da177e4 1356 case CPU_DEAD:
8bb78442 1357 case CPU_DEAD_FROZEN:
4484ebf1
RT
1358 /*
1359 * Even if all the cpus of a node are down, we don't free the
ce8eb6c4 1360 * kmem_cache_node of any cache. This to avoid a race between
4484ebf1 1361 * cpu_down, and a kmalloc allocation from another cpu for
ce8eb6c4 1362 * memory from the node of the cpu going down. The node
4484ebf1
RT
1363 * structure is usually allocated from kmem_cache_create() and
1364 * gets destroyed at kmem_cache_destroy().
1365 */
183ff22b 1366 /* fall through */
8f5be20b 1367#endif
1da177e4 1368 case CPU_UP_CANCELED:
8bb78442 1369 case CPU_UP_CANCELED_FROZEN:
18004c5d 1370 mutex_lock(&slab_mutex);
fbf1e473 1371 cpuup_canceled(cpu);
18004c5d 1372 mutex_unlock(&slab_mutex);
1da177e4 1373 break;
1da177e4 1374 }
eac40680 1375 return notifier_from_errno(err);
1da177e4
LT
1376}
1377
0db0628d 1378static struct notifier_block cpucache_notifier = {
74b85f37
CS
1379 &cpuup_callback, NULL, 0
1380};
1da177e4 1381
8f9f8d9e
DR
1382#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1383/*
1384 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1385 * Returns -EBUSY if all objects cannot be drained so that the node is not
1386 * removed.
1387 *
18004c5d 1388 * Must hold slab_mutex.
8f9f8d9e 1389 */
6a67368c 1390static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1391{
1392 struct kmem_cache *cachep;
1393 int ret = 0;
1394
18004c5d 1395 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1396 struct kmem_cache_node *n;
8f9f8d9e 1397
ce8eb6c4
CL
1398 n = cachep->node[node];
1399 if (!n)
8f9f8d9e
DR
1400 continue;
1401
0fa8103b 1402 drain_freelist(cachep, n, slabs_tofree(cachep, n));
8f9f8d9e 1403
ce8eb6c4
CL
1404 if (!list_empty(&n->slabs_full) ||
1405 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1406 ret = -EBUSY;
1407 break;
1408 }
1409 }
1410 return ret;
1411}
1412
1413static int __meminit slab_memory_callback(struct notifier_block *self,
1414 unsigned long action, void *arg)
1415{
1416 struct memory_notify *mnb = arg;
1417 int ret = 0;
1418 int nid;
1419
1420 nid = mnb->status_change_nid;
1421 if (nid < 0)
1422 goto out;
1423
1424 switch (action) {
1425 case MEM_GOING_ONLINE:
18004c5d 1426 mutex_lock(&slab_mutex);
6a67368c 1427 ret = init_cache_node_node(nid);
18004c5d 1428 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1429 break;
1430 case MEM_GOING_OFFLINE:
18004c5d 1431 mutex_lock(&slab_mutex);
6a67368c 1432 ret = drain_cache_node_node(nid);
18004c5d 1433 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1434 break;
1435 case MEM_ONLINE:
1436 case MEM_OFFLINE:
1437 case MEM_CANCEL_ONLINE:
1438 case MEM_CANCEL_OFFLINE:
1439 break;
1440 }
1441out:
5fda1bd5 1442 return notifier_from_errno(ret);
8f9f8d9e
DR
1443}
1444#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1445
e498be7d 1446/*
ce8eb6c4 1447 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1448 */
6744f087 1449static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1450 int nodeid)
e498be7d 1451{
6744f087 1452 struct kmem_cache_node *ptr;
e498be7d 1453
6744f087 1454 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1455 BUG_ON(!ptr);
1456
6744f087 1457 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1458 /*
1459 * Do not assume that spinlocks can be initialized via memcpy:
1460 */
1461 spin_lock_init(&ptr->list_lock);
1462
e498be7d 1463 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1464 cachep->node[nodeid] = ptr;
e498be7d
CL
1465}
1466
556a169d 1467/*
ce8eb6c4
CL
1468 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1469 * size of kmem_cache_node.
556a169d 1470 */
ce8eb6c4 1471static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1472{
1473 int node;
1474
1475 for_each_online_node(node) {
ce8eb6c4 1476 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1477 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1478 REAPTIMEOUT_NODE +
1479 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1480 }
1481}
1482
3c583465
CL
1483/*
1484 * The memory after the last cpu cache pointer is used for the
6a67368c 1485 * the node pointer.
3c583465 1486 */
6a67368c 1487static void setup_node_pointer(struct kmem_cache *cachep)
3c583465 1488{
6a67368c 1489 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
3c583465
CL
1490}
1491
a737b3e2
AM
1492/*
1493 * Initialisation. Called after the page allocator have been initialised and
1494 * before smp_init().
1da177e4
LT
1495 */
1496void __init kmem_cache_init(void)
1497{
e498be7d
CL
1498 int i;
1499
68126702
JK
1500 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1501 sizeof(struct rcu_head));
9b030cb8 1502 kmem_cache = &kmem_cache_boot;
6a67368c 1503 setup_node_pointer(kmem_cache);
9b030cb8 1504
b6e68bc1 1505 if (num_possible_nodes() == 1)
62918a03
SS
1506 use_alien_caches = 0;
1507
3c583465 1508 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1509 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1510
ce8eb6c4 1511 set_up_node(kmem_cache, CACHE_CACHE);
1da177e4
LT
1512
1513 /*
1514 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1515 * page orders on machines with more than 32MB of memory if
1516 * not overridden on the command line.
1da177e4 1517 */
3df1cccd 1518 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1519 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1520
1da177e4
LT
1521 /* Bootstrap is tricky, because several objects are allocated
1522 * from caches that do not exist yet:
9b030cb8
CL
1523 * 1) initialize the kmem_cache cache: it contains the struct
1524 * kmem_cache structures of all caches, except kmem_cache itself:
1525 * kmem_cache is statically allocated.
e498be7d 1526 * Initially an __init data area is used for the head array and the
ce8eb6c4 1527 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1528 * array at the end of the bootstrap.
1da177e4 1529 * 2) Create the first kmalloc cache.
343e0d7a 1530 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1531 * An __init data area is used for the head array.
1532 * 3) Create the remaining kmalloc caches, with minimally sized
1533 * head arrays.
9b030cb8 1534 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1535 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1536 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1537 * the other cache's with kmalloc allocated memory.
1538 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1539 */
1540
9b030cb8 1541 /* 1) create the kmem_cache */
1da177e4 1542
8da3430d 1543 /*
b56efcf0 1544 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1545 */
2f9baa9f
CL
1546 create_boot_cache(kmem_cache, "kmem_cache",
1547 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
6744f087 1548 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1549 SLAB_HWCACHE_ALIGN);
1550 list_add(&kmem_cache->list, &slab_caches);
1da177e4
LT
1551
1552 /* 2+3) create the kmalloc caches */
1da177e4 1553
a737b3e2
AM
1554 /*
1555 * Initialize the caches that provide memory for the array cache and the
ce8eb6c4 1556 * kmem_cache_node structures first. Without this, further allocations will
a737b3e2 1557 * bug.
e498be7d
CL
1558 */
1559
e3366016
CL
1560 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1561 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
45530c44 1562
ce8eb6c4
CL
1563 if (INDEX_AC != INDEX_NODE)
1564 kmalloc_caches[INDEX_NODE] =
1565 create_kmalloc_cache("kmalloc-node",
1566 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
e498be7d 1567
e0a42726
IM
1568 slab_early_init = 0;
1569
1da177e4
LT
1570 /* 4) Replace the bootstrap head arrays */
1571 {
2b2d5493 1572 struct array_cache *ptr;
e498be7d 1573
83b519e8 1574 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1575
9b030cb8 1576 memcpy(ptr, cpu_cache_get(kmem_cache),
b28a02de 1577 sizeof(struct arraycache_init));
2b2d5493
IM
1578 /*
1579 * Do not assume that spinlocks can be initialized via memcpy:
1580 */
1581 spin_lock_init(&ptr->lock);
1582
9b030cb8 1583 kmem_cache->array[smp_processor_id()] = ptr;
e498be7d 1584
83b519e8 1585 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1586
e3366016 1587 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
b28a02de 1588 != &initarray_generic.cache);
e3366016 1589 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
b28a02de 1590 sizeof(struct arraycache_init));
2b2d5493
IM
1591 /*
1592 * Do not assume that spinlocks can be initialized via memcpy:
1593 */
1594 spin_lock_init(&ptr->lock);
1595
e3366016 1596 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1da177e4 1597 }
ce8eb6c4 1598 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1599 {
1ca4cb24
PE
1600 int nid;
1601
9c09a95c 1602 for_each_online_node(nid) {
ce8eb6c4 1603 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1604
e3366016 1605 init_list(kmalloc_caches[INDEX_AC],
ce8eb6c4 1606 &init_kmem_cache_node[SIZE_AC + nid], nid);
e498be7d 1607
ce8eb6c4
CL
1608 if (INDEX_AC != INDEX_NODE) {
1609 init_list(kmalloc_caches[INDEX_NODE],
1610 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1611 }
1612 }
1613 }
1da177e4 1614
f97d5f63 1615 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1616}
1617
1618void __init kmem_cache_init_late(void)
1619{
1620 struct kmem_cache *cachep;
1621
97d06609 1622 slab_state = UP;
52cef189 1623
8429db5c 1624 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1625 mutex_lock(&slab_mutex);
1626 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1627 if (enable_cpucache(cachep, GFP_NOWAIT))
1628 BUG();
18004c5d 1629 mutex_unlock(&slab_mutex);
056c6241 1630
947ca185
MW
1631 /* Annotate slab for lockdep -- annotate the malloc caches */
1632 init_lock_keys();
1633
97d06609
CL
1634 /* Done! */
1635 slab_state = FULL;
1636
a737b3e2
AM
1637 /*
1638 * Register a cpu startup notifier callback that initializes
1639 * cpu_cache_get for all new cpus
1da177e4
LT
1640 */
1641 register_cpu_notifier(&cpucache_notifier);
1da177e4 1642
8f9f8d9e
DR
1643#ifdef CONFIG_NUMA
1644 /*
1645 * Register a memory hotplug callback that initializes and frees
6a67368c 1646 * node.
8f9f8d9e
DR
1647 */
1648 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1649#endif
1650
a737b3e2
AM
1651 /*
1652 * The reap timers are started later, with a module init call: That part
1653 * of the kernel is not yet operational.
1da177e4
LT
1654 */
1655}
1656
1657static int __init cpucache_init(void)
1658{
1659 int cpu;
1660
a737b3e2
AM
1661 /*
1662 * Register the timers that return unneeded pages to the page allocator
1da177e4 1663 */
e498be7d 1664 for_each_online_cpu(cpu)
a737b3e2 1665 start_cpu_timer(cpu);
a164f896
GC
1666
1667 /* Done! */
97d06609 1668 slab_state = FULL;
1da177e4
LT
1669 return 0;
1670}
1da177e4
LT
1671__initcall(cpucache_init);
1672
8bdec192
RA
1673static noinline void
1674slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1675{
9a02d699 1676#if DEBUG
ce8eb6c4 1677 struct kmem_cache_node *n;
8456a648 1678 struct page *page;
8bdec192
RA
1679 unsigned long flags;
1680 int node;
9a02d699
DR
1681 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1682 DEFAULT_RATELIMIT_BURST);
1683
1684 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1685 return;
8bdec192
RA
1686
1687 printk(KERN_WARNING
1688 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1689 nodeid, gfpflags);
1690 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1691 cachep->name, cachep->size, cachep->gfporder);
8bdec192
RA
1692
1693 for_each_online_node(node) {
1694 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1695 unsigned long active_slabs = 0, num_slabs = 0;
1696
ce8eb6c4
CL
1697 n = cachep->node[node];
1698 if (!n)
8bdec192
RA
1699 continue;
1700
ce8eb6c4 1701 spin_lock_irqsave(&n->list_lock, flags);
8456a648 1702 list_for_each_entry(page, &n->slabs_full, lru) {
8bdec192
RA
1703 active_objs += cachep->num;
1704 active_slabs++;
1705 }
8456a648
JK
1706 list_for_each_entry(page, &n->slabs_partial, lru) {
1707 active_objs += page->active;
8bdec192
RA
1708 active_slabs++;
1709 }
8456a648 1710 list_for_each_entry(page, &n->slabs_free, lru)
8bdec192
RA
1711 num_slabs++;
1712
ce8eb6c4
CL
1713 free_objects += n->free_objects;
1714 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192
RA
1715
1716 num_slabs += active_slabs;
1717 num_objs = num_slabs * cachep->num;
1718 printk(KERN_WARNING
1719 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1720 node, active_slabs, num_slabs, active_objs, num_objs,
1721 free_objects);
1722 }
9a02d699 1723#endif
8bdec192
RA
1724}
1725
1da177e4
LT
1726/*
1727 * Interface to system's page allocator. No need to hold the cache-lock.
1728 *
1729 * If we requested dmaable memory, we will get it. Even if we
1730 * did not request dmaable memory, we might get it, but that
1731 * would be relatively rare and ignorable.
1732 */
0c3aa83e
JK
1733static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1734 int nodeid)
1da177e4
LT
1735{
1736 struct page *page;
e1b6aa6f 1737 int nr_pages;
765c4507 1738
a618e89f 1739 flags |= cachep->allocflags;
e12ba74d
MG
1740 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1741 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1742
5dfb4175
VD
1743 if (memcg_charge_slab(cachep, flags, cachep->gfporder))
1744 return NULL;
1745
517d0869 1746 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192 1747 if (!page) {
5dfb4175 1748 memcg_uncharge_slab(cachep, cachep->gfporder);
9a02d699 1749 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1750 return NULL;
8bdec192 1751 }
1da177e4 1752
b37f1dd0 1753 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
072bb0aa
MG
1754 if (unlikely(page->pfmemalloc))
1755 pfmemalloc_active = true;
1756
e1b6aa6f 1757 nr_pages = (1 << cachep->gfporder);
1da177e4 1758 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1759 add_zone_page_state(page_zone(page),
1760 NR_SLAB_RECLAIMABLE, nr_pages);
1761 else
1762 add_zone_page_state(page_zone(page),
1763 NR_SLAB_UNRECLAIMABLE, nr_pages);
a57a4988
JK
1764 __SetPageSlab(page);
1765 if (page->pfmemalloc)
1766 SetPageSlabPfmemalloc(page);
072bb0aa 1767
b1eeab67
VN
1768 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1769 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1770
1771 if (cachep->ctor)
1772 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1773 else
1774 kmemcheck_mark_unallocated_pages(page, nr_pages);
1775 }
c175eea4 1776
0c3aa83e 1777 return page;
1da177e4
LT
1778}
1779
1780/*
1781 * Interface to system's page release.
1782 */
0c3aa83e 1783static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1784{
a57a4988 1785 const unsigned long nr_freed = (1 << cachep->gfporder);
1da177e4 1786
b1eeab67 1787 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1788
972d1a7b
CL
1789 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1790 sub_zone_page_state(page_zone(page),
1791 NR_SLAB_RECLAIMABLE, nr_freed);
1792 else
1793 sub_zone_page_state(page_zone(page),
1794 NR_SLAB_UNRECLAIMABLE, nr_freed);
73293c2f 1795
a57a4988 1796 BUG_ON(!PageSlab(page));
73293c2f 1797 __ClearPageSlabPfmemalloc(page);
a57a4988 1798 __ClearPageSlab(page);
8456a648
JK
1799 page_mapcount_reset(page);
1800 page->mapping = NULL;
1f458cbf 1801
1da177e4
LT
1802 if (current->reclaim_state)
1803 current->reclaim_state->reclaimed_slab += nr_freed;
5dfb4175
VD
1804 __free_pages(page, cachep->gfporder);
1805 memcg_uncharge_slab(cachep, cachep->gfporder);
1da177e4
LT
1806}
1807
1808static void kmem_rcu_free(struct rcu_head *head)
1809{
68126702
JK
1810 struct kmem_cache *cachep;
1811 struct page *page;
1da177e4 1812
68126702
JK
1813 page = container_of(head, struct page, rcu_head);
1814 cachep = page->slab_cache;
1815
1816 kmem_freepages(cachep, page);
1da177e4
LT
1817}
1818
1819#if DEBUG
1820
1821#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1822static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1823 unsigned long caller)
1da177e4 1824{
8c138bc0 1825 int size = cachep->object_size;
1da177e4 1826
3dafccf2 1827 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1828
b28a02de 1829 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1830 return;
1831
b28a02de
PE
1832 *addr++ = 0x12345678;
1833 *addr++ = caller;
1834 *addr++ = smp_processor_id();
1835 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1836 {
1837 unsigned long *sptr = &caller;
1838 unsigned long svalue;
1839
1840 while (!kstack_end(sptr)) {
1841 svalue = *sptr++;
1842 if (kernel_text_address(svalue)) {
b28a02de 1843 *addr++ = svalue;
1da177e4
LT
1844 size -= sizeof(unsigned long);
1845 if (size <= sizeof(unsigned long))
1846 break;
1847 }
1848 }
1849
1850 }
b28a02de 1851 *addr++ = 0x87654321;
1da177e4
LT
1852}
1853#endif
1854
343e0d7a 1855static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1856{
8c138bc0 1857 int size = cachep->object_size;
3dafccf2 1858 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1859
1860 memset(addr, val, size);
b28a02de 1861 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1862}
1863
1864static void dump_line(char *data, int offset, int limit)
1865{
1866 int i;
aa83aa40
DJ
1867 unsigned char error = 0;
1868 int bad_count = 0;
1869
fdde6abb 1870 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
1871 for (i = 0; i < limit; i++) {
1872 if (data[offset + i] != POISON_FREE) {
1873 error = data[offset + i];
1874 bad_count++;
1875 }
aa83aa40 1876 }
fdde6abb
SAS
1877 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1878 &data[offset], limit, 1);
aa83aa40
DJ
1879
1880 if (bad_count == 1) {
1881 error ^= POISON_FREE;
1882 if (!(error & (error - 1))) {
1883 printk(KERN_ERR "Single bit error detected. Probably "
1884 "bad RAM.\n");
1885#ifdef CONFIG_X86
1886 printk(KERN_ERR "Run memtest86+ or a similar memory "
1887 "test tool.\n");
1888#else
1889 printk(KERN_ERR "Run a memory test tool.\n");
1890#endif
1891 }
1892 }
1da177e4
LT
1893}
1894#endif
1895
1896#if DEBUG
1897
343e0d7a 1898static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1899{
1900 int i, size;
1901 char *realobj;
1902
1903 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1904 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1905 *dbg_redzone1(cachep, objp),
1906 *dbg_redzone2(cachep, objp));
1da177e4
LT
1907 }
1908
1909 if (cachep->flags & SLAB_STORE_USER) {
071361d3
JP
1910 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1911 *dbg_userword(cachep, objp),
1912 *dbg_userword(cachep, objp));
1da177e4 1913 }
3dafccf2 1914 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1915 size = cachep->object_size;
b28a02de 1916 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1917 int limit;
1918 limit = 16;
b28a02de
PE
1919 if (i + limit > size)
1920 limit = size - i;
1da177e4
LT
1921 dump_line(realobj, i, limit);
1922 }
1923}
1924
343e0d7a 1925static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1926{
1927 char *realobj;
1928 int size, i;
1929 int lines = 0;
1930
3dafccf2 1931 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1932 size = cachep->object_size;
1da177e4 1933
b28a02de 1934 for (i = 0; i < size; i++) {
1da177e4 1935 char exp = POISON_FREE;
b28a02de 1936 if (i == size - 1)
1da177e4
LT
1937 exp = POISON_END;
1938 if (realobj[i] != exp) {
1939 int limit;
1940 /* Mismatch ! */
1941 /* Print header */
1942 if (lines == 0) {
b28a02de 1943 printk(KERN_ERR
face37f5
DJ
1944 "Slab corruption (%s): %s start=%p, len=%d\n",
1945 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
1946 print_objinfo(cachep, objp, 0);
1947 }
1948 /* Hexdump the affected line */
b28a02de 1949 i = (i / 16) * 16;
1da177e4 1950 limit = 16;
b28a02de
PE
1951 if (i + limit > size)
1952 limit = size - i;
1da177e4
LT
1953 dump_line(realobj, i, limit);
1954 i += 16;
1955 lines++;
1956 /* Limit to 5 lines */
1957 if (lines > 5)
1958 break;
1959 }
1960 }
1961 if (lines != 0) {
1962 /* Print some data about the neighboring objects, if they
1963 * exist:
1964 */
8456a648 1965 struct page *page = virt_to_head_page(objp);
8fea4e96 1966 unsigned int objnr;
1da177e4 1967
8456a648 1968 objnr = obj_to_index(cachep, page, objp);
1da177e4 1969 if (objnr) {
8456a648 1970 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1971 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1972 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1973 realobj, size);
1da177e4
LT
1974 print_objinfo(cachep, objp, 2);
1975 }
b28a02de 1976 if (objnr + 1 < cachep->num) {
8456a648 1977 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1978 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1979 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1980 realobj, size);
1da177e4
LT
1981 print_objinfo(cachep, objp, 2);
1982 }
1983 }
1984}
1985#endif
1986
12dd36fa 1987#if DEBUG
8456a648
JK
1988static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1989 struct page *page)
1da177e4 1990{
1da177e4
LT
1991 int i;
1992 for (i = 0; i < cachep->num; i++) {
8456a648 1993 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1994
1995 if (cachep->flags & SLAB_POISON) {
1996#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 1997 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 1998 OFF_SLAB(cachep))
b28a02de 1999 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2000 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2001 else
2002 check_poison_obj(cachep, objp);
2003#else
2004 check_poison_obj(cachep, objp);
2005#endif
2006 }
2007 if (cachep->flags & SLAB_RED_ZONE) {
2008 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2009 slab_error(cachep, "start of a freed object "
b28a02de 2010 "was overwritten");
1da177e4
LT
2011 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2012 slab_error(cachep, "end of a freed object "
b28a02de 2013 "was overwritten");
1da177e4 2014 }
1da177e4 2015 }
12dd36fa 2016}
1da177e4 2017#else
8456a648
JK
2018static void slab_destroy_debugcheck(struct kmem_cache *cachep,
2019 struct page *page)
12dd36fa 2020{
12dd36fa 2021}
1da177e4
LT
2022#endif
2023
911851e6
RD
2024/**
2025 * slab_destroy - destroy and release all objects in a slab
2026 * @cachep: cache pointer being destroyed
cb8ee1a3 2027 * @page: page pointer being destroyed
911851e6 2028 *
12dd36fa 2029 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
2030 * Before calling the slab must have been unlinked from the cache. The
2031 * cache-lock is not held/needed.
12dd36fa 2032 */
8456a648 2033static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 2034{
7e007355 2035 void *freelist;
12dd36fa 2036
8456a648
JK
2037 freelist = page->freelist;
2038 slab_destroy_debugcheck(cachep, page);
1da177e4 2039 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
68126702
JK
2040 struct rcu_head *head;
2041
2042 /*
2043 * RCU free overloads the RCU head over the LRU.
2044 * slab_page has been overloeaded over the LRU,
2045 * however it is not used from now on so that
2046 * we can use it safely.
2047 */
2048 head = (void *)&page->rcu_head;
2049 call_rcu(head, kmem_rcu_free);
1da177e4 2050
1da177e4 2051 } else {
0c3aa83e 2052 kmem_freepages(cachep, page);
1da177e4 2053 }
68126702
JK
2054
2055 /*
8456a648 2056 * From now on, we don't use freelist
68126702
JK
2057 * although actual page can be freed in rcu context
2058 */
2059 if (OFF_SLAB(cachep))
8456a648 2060 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
2061}
2062
4d268eba 2063/**
a70773dd
RD
2064 * calculate_slab_order - calculate size (page order) of slabs
2065 * @cachep: pointer to the cache that is being created
2066 * @size: size of objects to be created in this cache.
2067 * @align: required alignment for the objects.
2068 * @flags: slab allocation flags
2069 *
2070 * Also calculates the number of objects per slab.
4d268eba
PE
2071 *
2072 * This could be made much more intelligent. For now, try to avoid using
2073 * high order pages for slabs. When the gfp() functions are more friendly
2074 * towards high-order requests, this should be changed.
2075 */
a737b3e2 2076static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2077 size_t size, size_t align, unsigned long flags)
4d268eba 2078{
b1ab41c4 2079 unsigned long offslab_limit;
4d268eba 2080 size_t left_over = 0;
9888e6fa 2081 int gfporder;
4d268eba 2082
0aa817f0 2083 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2084 unsigned int num;
2085 size_t remainder;
2086
9888e6fa 2087 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2088 if (!num)
2089 continue;
9888e6fa 2090
f315e3fa
JK
2091 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
2092 if (num > SLAB_OBJ_MAX_NUM)
2093 break;
2094
b1ab41c4 2095 if (flags & CFLGS_OFF_SLAB) {
03787301 2096 size_t freelist_size_per_obj = sizeof(freelist_idx_t);
b1ab41c4
IM
2097 /*
2098 * Max number of objs-per-slab for caches which
2099 * use off-slab slabs. Needed to avoid a possible
2100 * looping condition in cache_grow().
2101 */
03787301
JK
2102 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
2103 freelist_size_per_obj += sizeof(char);
8456a648 2104 offslab_limit = size;
03787301 2105 offslab_limit /= freelist_size_per_obj;
b1ab41c4
IM
2106
2107 if (num > offslab_limit)
2108 break;
2109 }
4d268eba 2110
9888e6fa 2111 /* Found something acceptable - save it away */
4d268eba 2112 cachep->num = num;
9888e6fa 2113 cachep->gfporder = gfporder;
4d268eba
PE
2114 left_over = remainder;
2115
f78bb8ad
LT
2116 /*
2117 * A VFS-reclaimable slab tends to have most allocations
2118 * as GFP_NOFS and we really don't want to have to be allocating
2119 * higher-order pages when we are unable to shrink dcache.
2120 */
2121 if (flags & SLAB_RECLAIM_ACCOUNT)
2122 break;
2123
4d268eba
PE
2124 /*
2125 * Large number of objects is good, but very large slabs are
2126 * currently bad for the gfp()s.
2127 */
543585cc 2128 if (gfporder >= slab_max_order)
4d268eba
PE
2129 break;
2130
9888e6fa
LT
2131 /*
2132 * Acceptable internal fragmentation?
2133 */
a737b3e2 2134 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2135 break;
2136 }
2137 return left_over;
2138}
2139
83b519e8 2140static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2141{
97d06609 2142 if (slab_state >= FULL)
83b519e8 2143 return enable_cpucache(cachep, gfp);
2ed3a4ef 2144
97d06609 2145 if (slab_state == DOWN) {
f30cf7d1 2146 /*
2f9baa9f 2147 * Note: Creation of first cache (kmem_cache).
ce8eb6c4 2148 * The setup_node is taken care
2f9baa9f
CL
2149 * of by the caller of __kmem_cache_create
2150 */
2151 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2152 slab_state = PARTIAL;
2153 } else if (slab_state == PARTIAL) {
2154 /*
2155 * Note: the second kmem_cache_create must create the cache
f30cf7d1
PE
2156 * that's used by kmalloc(24), otherwise the creation of
2157 * further caches will BUG().
2158 */
2159 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2160
2161 /*
ce8eb6c4
CL
2162 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2163 * the second cache, then we need to set up all its node/,
f30cf7d1
PE
2164 * otherwise the creation of further caches will BUG().
2165 */
ce8eb6c4
CL
2166 set_up_node(cachep, SIZE_AC);
2167 if (INDEX_AC == INDEX_NODE)
2168 slab_state = PARTIAL_NODE;
f30cf7d1 2169 else
97d06609 2170 slab_state = PARTIAL_ARRAYCACHE;
f30cf7d1 2171 } else {
2f9baa9f 2172 /* Remaining boot caches */
f30cf7d1 2173 cachep->array[smp_processor_id()] =
83b519e8 2174 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1 2175
97d06609 2176 if (slab_state == PARTIAL_ARRAYCACHE) {
ce8eb6c4
CL
2177 set_up_node(cachep, SIZE_NODE);
2178 slab_state = PARTIAL_NODE;
f30cf7d1
PE
2179 } else {
2180 int node;
556a169d 2181 for_each_online_node(node) {
6a67368c 2182 cachep->node[node] =
6744f087 2183 kmalloc_node(sizeof(struct kmem_cache_node),
eb91f1d0 2184 gfp, node);
6a67368c 2185 BUG_ON(!cachep->node[node]);
ce8eb6c4 2186 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
2187 }
2188 }
2189 }
6a67368c 2190 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
2191 jiffies + REAPTIMEOUT_NODE +
2192 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
2193
2194 cpu_cache_get(cachep)->avail = 0;
2195 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2196 cpu_cache_get(cachep)->batchcount = 1;
2197 cpu_cache_get(cachep)->touched = 0;
2198 cachep->batchcount = 1;
2199 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2200 return 0;
f30cf7d1
PE
2201}
2202
1da177e4 2203/**
039363f3 2204 * __kmem_cache_create - Create a cache.
a755b76a 2205 * @cachep: cache management descriptor
1da177e4 2206 * @flags: SLAB flags
1da177e4
LT
2207 *
2208 * Returns a ptr to the cache on success, NULL on failure.
2209 * Cannot be called within a int, but can be interrupted.
20c2df83 2210 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2211 *
1da177e4
LT
2212 * The flags are
2213 *
2214 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2215 * to catch references to uninitialised memory.
2216 *
2217 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2218 * for buffer overruns.
2219 *
1da177e4
LT
2220 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2221 * cacheline. This can be beneficial if you're counting cycles as closely
2222 * as davem.
2223 */
278b1bb1 2224int
8a13a4cc 2225__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4 2226{
8456a648 2227 size_t left_over, freelist_size, ralign;
83b519e8 2228 gfp_t gfp;
278b1bb1 2229 int err;
8a13a4cc 2230 size_t size = cachep->size;
1da177e4 2231
1da177e4 2232#if DEBUG
1da177e4
LT
2233#if FORCED_DEBUG
2234 /*
2235 * Enable redzoning and last user accounting, except for caches with
2236 * large objects, if the increased size would increase the object size
2237 * above the next power of two: caches with object sizes just above a
2238 * power of two have a significant amount of internal fragmentation.
2239 */
87a927c7
DW
2240 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2241 2 * sizeof(unsigned long long)))
b28a02de 2242 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2243 if (!(flags & SLAB_DESTROY_BY_RCU))
2244 flags |= SLAB_POISON;
2245#endif
2246 if (flags & SLAB_DESTROY_BY_RCU)
2247 BUG_ON(flags & SLAB_POISON);
2248#endif
1da177e4 2249
a737b3e2
AM
2250 /*
2251 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2252 * unaligned accesses for some archs when redzoning is used, and makes
2253 * sure any on-slab bufctl's are also correctly aligned.
2254 */
b28a02de
PE
2255 if (size & (BYTES_PER_WORD - 1)) {
2256 size += (BYTES_PER_WORD - 1);
2257 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2258 }
2259
ca5f9703 2260 /*
87a927c7
DW
2261 * Redzoning and user store require word alignment or possibly larger.
2262 * Note this will be overridden by architecture or caller mandated
2263 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2264 */
87a927c7
DW
2265 if (flags & SLAB_STORE_USER)
2266 ralign = BYTES_PER_WORD;
2267
2268 if (flags & SLAB_RED_ZONE) {
2269 ralign = REDZONE_ALIGN;
2270 /* If redzoning, ensure that the second redzone is suitably
2271 * aligned, by adjusting the object size accordingly. */
2272 size += REDZONE_ALIGN - 1;
2273 size &= ~(REDZONE_ALIGN - 1);
2274 }
ca5f9703 2275
a44b56d3 2276 /* 3) caller mandated alignment */
8a13a4cc
CL
2277 if (ralign < cachep->align) {
2278 ralign = cachep->align;
1da177e4 2279 }
3ff84a7f
PE
2280 /* disable debug if necessary */
2281 if (ralign > __alignof__(unsigned long long))
a44b56d3 2282 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2283 /*
ca5f9703 2284 * 4) Store it.
1da177e4 2285 */
8a13a4cc 2286 cachep->align = ralign;
1da177e4 2287
83b519e8
PE
2288 if (slab_is_available())
2289 gfp = GFP_KERNEL;
2290 else
2291 gfp = GFP_NOWAIT;
2292
6a67368c 2293 setup_node_pointer(cachep);
1da177e4 2294#if DEBUG
1da177e4 2295
ca5f9703
PE
2296 /*
2297 * Both debugging options require word-alignment which is calculated
2298 * into align above.
2299 */
1da177e4 2300 if (flags & SLAB_RED_ZONE) {
1da177e4 2301 /* add space for red zone words */
3ff84a7f
PE
2302 cachep->obj_offset += sizeof(unsigned long long);
2303 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2304 }
2305 if (flags & SLAB_STORE_USER) {
ca5f9703 2306 /* user store requires one word storage behind the end of
87a927c7
DW
2307 * the real object. But if the second red zone needs to be
2308 * aligned to 64 bits, we must allow that much space.
1da177e4 2309 */
87a927c7
DW
2310 if (flags & SLAB_RED_ZONE)
2311 size += REDZONE_ALIGN;
2312 else
2313 size += BYTES_PER_WORD;
1da177e4
LT
2314 }
2315#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
ce8eb6c4 2316 if (size >= kmalloc_size(INDEX_NODE + 1)
608da7e3
TH
2317 && cachep->object_size > cache_line_size()
2318 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2319 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
1da177e4
LT
2320 size = PAGE_SIZE;
2321 }
2322#endif
2323#endif
2324
e0a42726
IM
2325 /*
2326 * Determine if the slab management is 'on' or 'off' slab.
2327 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2328 * it too early on. Always use on-slab management when
2329 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2330 */
8fc9cf42 2331 if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
e7cb55b9 2332 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2333 /*
2334 * Size is large, assume best to place the slab management obj
2335 * off-slab (should allow better packing of objs).
2336 */
2337 flags |= CFLGS_OFF_SLAB;
2338
8a13a4cc 2339 size = ALIGN(size, cachep->align);
f315e3fa
JK
2340 /*
2341 * We should restrict the number of objects in a slab to implement
2342 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2343 */
2344 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2345 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
1da177e4 2346
8a13a4cc 2347 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
1da177e4 2348
8a13a4cc 2349 if (!cachep->num)
278b1bb1 2350 return -E2BIG;
1da177e4 2351
03787301 2352 freelist_size = calculate_freelist_size(cachep->num, cachep->align);
1da177e4
LT
2353
2354 /*
2355 * If the slab has been placed off-slab, and we have enough space then
2356 * move it on-slab. This is at the expense of any extra colouring.
2357 */
8456a648 2358 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
1da177e4 2359 flags &= ~CFLGS_OFF_SLAB;
8456a648 2360 left_over -= freelist_size;
1da177e4
LT
2361 }
2362
2363 if (flags & CFLGS_OFF_SLAB) {
2364 /* really off slab. No need for manual alignment */
03787301 2365 freelist_size = calculate_freelist_size(cachep->num, 0);
67461365
RL
2366
2367#ifdef CONFIG_PAGE_POISONING
2368 /* If we're going to use the generic kernel_map_pages()
2369 * poisoning, then it's going to smash the contents of
2370 * the redzone and userword anyhow, so switch them off.
2371 */
2372 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2373 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2374#endif
1da177e4
LT
2375 }
2376
2377 cachep->colour_off = cache_line_size();
2378 /* Offset must be a multiple of the alignment. */
8a13a4cc
CL
2379 if (cachep->colour_off < cachep->align)
2380 cachep->colour_off = cachep->align;
b28a02de 2381 cachep->colour = left_over / cachep->colour_off;
8456a648 2382 cachep->freelist_size = freelist_size;
1da177e4 2383 cachep->flags = flags;
a57a4988 2384 cachep->allocflags = __GFP_COMP;
4b51d669 2385 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2386 cachep->allocflags |= GFP_DMA;
3b0efdfa 2387 cachep->size = size;
6a2d7a95 2388 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2389
e5ac9c5a 2390 if (flags & CFLGS_OFF_SLAB) {
8456a648 2391 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
e5ac9c5a 2392 /*
5f0985bb 2393 * This is a possibility for one of the kmalloc_{dma,}_caches.
e5ac9c5a 2394 * But since we go off slab only for object size greater than
5f0985bb
JZ
2395 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
2396 * in ascending order,this should not happen at all.
e5ac9c5a
RT
2397 * But leave a BUG_ON for some lucky dude.
2398 */
8456a648 2399 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
e5ac9c5a 2400 }
1da177e4 2401
278b1bb1
CL
2402 err = setup_cpu_cache(cachep, gfp);
2403 if (err) {
12c3667f 2404 __kmem_cache_shutdown(cachep);
278b1bb1 2405 return err;
2ed3a4ef 2406 }
1da177e4 2407
83835b3d
PZ
2408 if (flags & SLAB_DEBUG_OBJECTS) {
2409 /*
2410 * Would deadlock through slab_destroy()->call_rcu()->
2411 * debug_object_activate()->kmem_cache_alloc().
2412 */
2413 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2414
2415 slab_set_debugobj_lock_classes(cachep);
6ccfb5bc
GC
2416 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2417 on_slab_lock_classes(cachep);
83835b3d 2418
278b1bb1 2419 return 0;
1da177e4 2420}
1da177e4
LT
2421
2422#if DEBUG
2423static void check_irq_off(void)
2424{
2425 BUG_ON(!irqs_disabled());
2426}
2427
2428static void check_irq_on(void)
2429{
2430 BUG_ON(irqs_disabled());
2431}
2432
343e0d7a 2433static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2434{
2435#ifdef CONFIG_SMP
2436 check_irq_off();
6a67368c 2437 assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
1da177e4
LT
2438#endif
2439}
e498be7d 2440
343e0d7a 2441static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2442{
2443#ifdef CONFIG_SMP
2444 check_irq_off();
6a67368c 2445 assert_spin_locked(&cachep->node[node]->list_lock);
e498be7d
CL
2446#endif
2447}
2448
1da177e4
LT
2449#else
2450#define check_irq_off() do { } while(0)
2451#define check_irq_on() do { } while(0)
2452#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2453#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2454#endif
2455
ce8eb6c4 2456static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
aab2207c
CL
2457 struct array_cache *ac,
2458 int force, int node);
2459
1da177e4
LT
2460static void do_drain(void *arg)
2461{
a737b3e2 2462 struct kmem_cache *cachep = arg;
1da177e4 2463 struct array_cache *ac;
7d6e6d09 2464 int node = numa_mem_id();
1da177e4
LT
2465
2466 check_irq_off();
9a2dba4b 2467 ac = cpu_cache_get(cachep);
6a67368c 2468 spin_lock(&cachep->node[node]->list_lock);
ff69416e 2469 free_block(cachep, ac->entry, ac->avail, node);
6a67368c 2470 spin_unlock(&cachep->node[node]->list_lock);
1da177e4
LT
2471 ac->avail = 0;
2472}
2473
343e0d7a 2474static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2475{
ce8eb6c4 2476 struct kmem_cache_node *n;
e498be7d
CL
2477 int node;
2478
15c8b6c1 2479 on_each_cpu(do_drain, cachep, 1);
1da177e4 2480 check_irq_on();
b28a02de 2481 for_each_online_node(node) {
ce8eb6c4
CL
2482 n = cachep->node[node];
2483 if (n && n->alien)
2484 drain_alien_cache(cachep, n->alien);
a4523a8b
RD
2485 }
2486
2487 for_each_online_node(node) {
ce8eb6c4
CL
2488 n = cachep->node[node];
2489 if (n)
2490 drain_array(cachep, n, n->shared, 1, node);
e498be7d 2491 }
1da177e4
LT
2492}
2493
ed11d9eb
CL
2494/*
2495 * Remove slabs from the list of free slabs.
2496 * Specify the number of slabs to drain in tofree.
2497 *
2498 * Returns the actual number of slabs released.
2499 */
2500static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2501 struct kmem_cache_node *n, int tofree)
1da177e4 2502{
ed11d9eb
CL
2503 struct list_head *p;
2504 int nr_freed;
8456a648 2505 struct page *page;
1da177e4 2506
ed11d9eb 2507 nr_freed = 0;
ce8eb6c4 2508 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2509
ce8eb6c4
CL
2510 spin_lock_irq(&n->list_lock);
2511 p = n->slabs_free.prev;
2512 if (p == &n->slabs_free) {
2513 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2514 goto out;
2515 }
1da177e4 2516
8456a648 2517 page = list_entry(p, struct page, lru);
1da177e4 2518#if DEBUG
8456a648 2519 BUG_ON(page->active);
1da177e4 2520#endif
8456a648 2521 list_del(&page->lru);
ed11d9eb
CL
2522 /*
2523 * Safe to drop the lock. The slab is no longer linked
2524 * to the cache.
2525 */
ce8eb6c4
CL
2526 n->free_objects -= cache->num;
2527 spin_unlock_irq(&n->list_lock);
8456a648 2528 slab_destroy(cache, page);
ed11d9eb 2529 nr_freed++;
1da177e4 2530 }
ed11d9eb
CL
2531out:
2532 return nr_freed;
1da177e4
LT
2533}
2534
03afc0e2 2535int __kmem_cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2536{
2537 int ret = 0, i = 0;
ce8eb6c4 2538 struct kmem_cache_node *n;
e498be7d
CL
2539
2540 drain_cpu_caches(cachep);
2541
2542 check_irq_on();
2543 for_each_online_node(i) {
ce8eb6c4
CL
2544 n = cachep->node[i];
2545 if (!n)
ed11d9eb
CL
2546 continue;
2547
0fa8103b 2548 drain_freelist(cachep, n, slabs_tofree(cachep, n));
ed11d9eb 2549
ce8eb6c4
CL
2550 ret += !list_empty(&n->slabs_full) ||
2551 !list_empty(&n->slabs_partial);
e498be7d
CL
2552 }
2553 return (ret ? 1 : 0);
2554}
2555
945cf2b6 2556int __kmem_cache_shutdown(struct kmem_cache *cachep)
1da177e4 2557{
12c3667f 2558 int i;
ce8eb6c4 2559 struct kmem_cache_node *n;
03afc0e2 2560 int rc = __kmem_cache_shrink(cachep);
1da177e4 2561
12c3667f
CL
2562 if (rc)
2563 return rc;
1da177e4 2564
12c3667f
CL
2565 for_each_online_cpu(i)
2566 kfree(cachep->array[i]);
1da177e4 2567
ce8eb6c4 2568 /* NUMA: free the node structures */
12c3667f 2569 for_each_online_node(i) {
ce8eb6c4
CL
2570 n = cachep->node[i];
2571 if (n) {
2572 kfree(n->shared);
2573 free_alien_cache(n->alien);
2574 kfree(n);
12c3667f
CL
2575 }
2576 }
2577 return 0;
1da177e4 2578}
1da177e4 2579
e5ac9c5a
RT
2580/*
2581 * Get the memory for a slab management obj.
5f0985bb
JZ
2582 *
2583 * For a slab cache when the slab descriptor is off-slab, the
2584 * slab descriptor can't come from the same cache which is being created,
2585 * Because if it is the case, that means we defer the creation of
2586 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2587 * And we eventually call down to __kmem_cache_create(), which
2588 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2589 * This is a "chicken-and-egg" problem.
2590 *
2591 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2592 * which are all initialized during kmem_cache_init().
e5ac9c5a 2593 */
7e007355 2594static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2595 struct page *page, int colour_off,
2596 gfp_t local_flags, int nodeid)
1da177e4 2597{
7e007355 2598 void *freelist;
0c3aa83e 2599 void *addr = page_address(page);
b28a02de 2600
1da177e4
LT
2601 if (OFF_SLAB(cachep)) {
2602 /* Slab management obj is off-slab. */
8456a648 2603 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2604 local_flags, nodeid);
8456a648 2605 if (!freelist)
1da177e4
LT
2606 return NULL;
2607 } else {
8456a648
JK
2608 freelist = addr + colour_off;
2609 colour_off += cachep->freelist_size;
1da177e4 2610 }
8456a648
JK
2611 page->active = 0;
2612 page->s_mem = addr + colour_off;
2613 return freelist;
1da177e4
LT
2614}
2615
7cc68973 2616static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2617{
a41adfaa 2618 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2619}
2620
2621static inline void set_free_obj(struct page *page,
7cc68973 2622 unsigned int idx, freelist_idx_t val)
e5c58dfd 2623{
a41adfaa 2624 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2625}
2626
343e0d7a 2627static void cache_init_objs(struct kmem_cache *cachep,
8456a648 2628 struct page *page)
1da177e4
LT
2629{
2630 int i;
2631
2632 for (i = 0; i < cachep->num; i++) {
8456a648 2633 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
2634#if DEBUG
2635 /* need to poison the objs? */
2636 if (cachep->flags & SLAB_POISON)
2637 poison_obj(cachep, objp, POISON_FREE);
2638 if (cachep->flags & SLAB_STORE_USER)
2639 *dbg_userword(cachep, objp) = NULL;
2640
2641 if (cachep->flags & SLAB_RED_ZONE) {
2642 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2643 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2644 }
2645 /*
a737b3e2
AM
2646 * Constructors are not allowed to allocate memory from the same
2647 * cache which they are a constructor for. Otherwise, deadlock.
2648 * They must also be threaded.
1da177e4
LT
2649 */
2650 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2651 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2652
2653 if (cachep->flags & SLAB_RED_ZONE) {
2654 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2655 slab_error(cachep, "constructor overwrote the"
b28a02de 2656 " end of an object");
1da177e4
LT
2657 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2658 slab_error(cachep, "constructor overwrote the"
b28a02de 2659 " start of an object");
1da177e4 2660 }
3b0efdfa 2661 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2662 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2663 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2664 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2665#else
2666 if (cachep->ctor)
51cc5068 2667 cachep->ctor(objp);
1da177e4 2668#endif
03787301 2669 set_obj_status(page, i, OBJECT_FREE);
e5c58dfd 2670 set_free_obj(page, i, i);
1da177e4 2671 }
1da177e4
LT
2672}
2673
343e0d7a 2674static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2675{
4b51d669
CL
2676 if (CONFIG_ZONE_DMA_FLAG) {
2677 if (flags & GFP_DMA)
a618e89f 2678 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2679 else
a618e89f 2680 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2681 }
1da177e4
LT
2682}
2683
8456a648 2684static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
a737b3e2 2685 int nodeid)
78d382d7 2686{
b1cb0982 2687 void *objp;
78d382d7 2688
e5c58dfd 2689 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2690 page->active++;
78d382d7 2691#if DEBUG
1ea991b0 2692 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
78d382d7 2693#endif
78d382d7
MD
2694
2695 return objp;
2696}
2697
8456a648 2698static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
a737b3e2 2699 void *objp, int nodeid)
78d382d7 2700{
8456a648 2701 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2702#if DEBUG
16025177 2703 unsigned int i;
b1cb0982 2704
78d382d7 2705 /* Verify that the slab belongs to the intended node */
1ea991b0 2706 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
78d382d7 2707
b1cb0982 2708 /* Verify double free bug */
8456a648 2709 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2710 if (get_free_obj(page, i) == objnr) {
b1cb0982
JK
2711 printk(KERN_ERR "slab: double free detected in cache "
2712 "'%s', objp %p\n", cachep->name, objp);
2713 BUG();
2714 }
78d382d7
MD
2715 }
2716#endif
8456a648 2717 page->active--;
e5c58dfd 2718 set_free_obj(page, page->active, objnr);
78d382d7
MD
2719}
2720
4776874f
PE
2721/*
2722 * Map pages beginning at addr to the given cache and slab. This is required
2723 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2724 * virtual address for kfree, ksize, and slab debugging.
4776874f 2725 */
8456a648 2726static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2727 void *freelist)
1da177e4 2728{
a57a4988 2729 page->slab_cache = cache;
8456a648 2730 page->freelist = freelist;
1da177e4
LT
2731}
2732
2733/*
2734 * Grow (by 1) the number of slabs within a cache. This is called by
2735 * kmem_cache_alloc() when there are no active objs left in a cache.
2736 */
3c517a61 2737static int cache_grow(struct kmem_cache *cachep,
0c3aa83e 2738 gfp_t flags, int nodeid, struct page *page)
1da177e4 2739{
7e007355 2740 void *freelist;
b28a02de
PE
2741 size_t offset;
2742 gfp_t local_flags;
ce8eb6c4 2743 struct kmem_cache_node *n;
1da177e4 2744
a737b3e2
AM
2745 /*
2746 * Be lazy and only check for valid flags here, keeping it out of the
2747 * critical path in kmem_cache_alloc().
1da177e4 2748 */
6cb06229
CL
2749 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2750 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2751
ce8eb6c4 2752 /* Take the node list lock to change the colour_next on this node */
1da177e4 2753 check_irq_off();
ce8eb6c4
CL
2754 n = cachep->node[nodeid];
2755 spin_lock(&n->list_lock);
1da177e4
LT
2756
2757 /* Get colour for the slab, and cal the next value. */
ce8eb6c4
CL
2758 offset = n->colour_next;
2759 n->colour_next++;
2760 if (n->colour_next >= cachep->colour)
2761 n->colour_next = 0;
2762 spin_unlock(&n->list_lock);
1da177e4 2763
2e1217cf 2764 offset *= cachep->colour_off;
1da177e4
LT
2765
2766 if (local_flags & __GFP_WAIT)
2767 local_irq_enable();
2768
2769 /*
2770 * The test for missing atomic flag is performed here, rather than
2771 * the more obvious place, simply to reduce the critical path length
2772 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2773 * will eventually be caught here (where it matters).
2774 */
2775 kmem_flagcheck(cachep, flags);
2776
a737b3e2
AM
2777 /*
2778 * Get mem for the objs. Attempt to allocate a physical page from
2779 * 'nodeid'.
e498be7d 2780 */
0c3aa83e
JK
2781 if (!page)
2782 page = kmem_getpages(cachep, local_flags, nodeid);
2783 if (!page)
1da177e4
LT
2784 goto failed;
2785
2786 /* Get slab management. */
8456a648 2787 freelist = alloc_slabmgmt(cachep, page, offset,
6cb06229 2788 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
8456a648 2789 if (!freelist)
1da177e4
LT
2790 goto opps1;
2791
8456a648 2792 slab_map_pages(cachep, page, freelist);
1da177e4 2793
8456a648 2794 cache_init_objs(cachep, page);
1da177e4
LT
2795
2796 if (local_flags & __GFP_WAIT)
2797 local_irq_disable();
2798 check_irq_off();
ce8eb6c4 2799 spin_lock(&n->list_lock);
1da177e4
LT
2800
2801 /* Make slab active. */
8456a648 2802 list_add_tail(&page->lru, &(n->slabs_free));
1da177e4 2803 STATS_INC_GROWN(cachep);
ce8eb6c4
CL
2804 n->free_objects += cachep->num;
2805 spin_unlock(&n->list_lock);
1da177e4 2806 return 1;
a737b3e2 2807opps1:
0c3aa83e 2808 kmem_freepages(cachep, page);
a737b3e2 2809failed:
1da177e4
LT
2810 if (local_flags & __GFP_WAIT)
2811 local_irq_disable();
2812 return 0;
2813}
2814
2815#if DEBUG
2816
2817/*
2818 * Perform extra freeing checks:
2819 * - detect bad pointers.
2820 * - POISON/RED_ZONE checking
1da177e4
LT
2821 */
2822static void kfree_debugcheck(const void *objp)
2823{
1da177e4
LT
2824 if (!virt_addr_valid(objp)) {
2825 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2826 (unsigned long)objp);
2827 BUG();
1da177e4 2828 }
1da177e4
LT
2829}
2830
58ce1fd5
PE
2831static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2832{
b46b8f19 2833 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2834
2835 redzone1 = *dbg_redzone1(cache, obj);
2836 redzone2 = *dbg_redzone2(cache, obj);
2837
2838 /*
2839 * Redzone is ok.
2840 */
2841 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2842 return;
2843
2844 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2845 slab_error(cache, "double free detected");
2846 else
2847 slab_error(cache, "memory outside object was overwritten");
2848
b46b8f19 2849 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2850 obj, redzone1, redzone2);
2851}
2852
343e0d7a 2853static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2854 unsigned long caller)
1da177e4 2855{
1da177e4 2856 unsigned int objnr;
8456a648 2857 struct page *page;
1da177e4 2858
80cbd911
MW
2859 BUG_ON(virt_to_cache(objp) != cachep);
2860
3dafccf2 2861 objp -= obj_offset(cachep);
1da177e4 2862 kfree_debugcheck(objp);
b49af68f 2863 page = virt_to_head_page(objp);
1da177e4 2864
1da177e4 2865 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2866 verify_redzone_free(cachep, objp);
1da177e4
LT
2867 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2868 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2869 }
2870 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2871 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4 2872
8456a648 2873 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2874
2875 BUG_ON(objnr >= cachep->num);
8456a648 2876 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2877
03787301 2878 set_obj_status(page, objnr, OBJECT_FREE);
1da177e4
LT
2879 if (cachep->flags & SLAB_POISON) {
2880#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2881 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
7c0cb9c6 2882 store_stackinfo(cachep, objp, caller);
b28a02de 2883 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2884 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2885 } else {
2886 poison_obj(cachep, objp, POISON_FREE);
2887 }
2888#else
2889 poison_obj(cachep, objp, POISON_FREE);
2890#endif
2891 }
2892 return objp;
2893}
2894
1da177e4
LT
2895#else
2896#define kfree_debugcheck(x) do { } while(0)
2897#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2898#endif
2899
072bb0aa
MG
2900static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2901 bool force_refill)
1da177e4
LT
2902{
2903 int batchcount;
ce8eb6c4 2904 struct kmem_cache_node *n;
1da177e4 2905 struct array_cache *ac;
1ca4cb24
PE
2906 int node;
2907
1da177e4 2908 check_irq_off();
7d6e6d09 2909 node = numa_mem_id();
072bb0aa
MG
2910 if (unlikely(force_refill))
2911 goto force_grow;
2912retry:
9a2dba4b 2913 ac = cpu_cache_get(cachep);
1da177e4
LT
2914 batchcount = ac->batchcount;
2915 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2916 /*
2917 * If there was little recent activity on this cache, then
2918 * perform only a partial refill. Otherwise we could generate
2919 * refill bouncing.
1da177e4
LT
2920 */
2921 batchcount = BATCHREFILL_LIMIT;
2922 }
ce8eb6c4 2923 n = cachep->node[node];
e498be7d 2924
ce8eb6c4
CL
2925 BUG_ON(ac->avail > 0 || !n);
2926 spin_lock(&n->list_lock);
1da177e4 2927
3ded175a 2928 /* See if we can refill from the shared array */
ce8eb6c4
CL
2929 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2930 n->shared->touched = 1;
3ded175a 2931 goto alloc_done;
44b57f1c 2932 }
3ded175a 2933
1da177e4
LT
2934 while (batchcount > 0) {
2935 struct list_head *entry;
8456a648 2936 struct page *page;
1da177e4 2937 /* Get slab alloc is to come from. */
ce8eb6c4
CL
2938 entry = n->slabs_partial.next;
2939 if (entry == &n->slabs_partial) {
2940 n->free_touched = 1;
2941 entry = n->slabs_free.next;
2942 if (entry == &n->slabs_free)
1da177e4
LT
2943 goto must_grow;
2944 }
2945
8456a648 2946 page = list_entry(entry, struct page, lru);
1da177e4 2947 check_spinlock_acquired(cachep);
714b8171
PE
2948
2949 /*
2950 * The slab was either on partial or free list so
2951 * there must be at least one object available for
2952 * allocation.
2953 */
8456a648 2954 BUG_ON(page->active >= cachep->num);
714b8171 2955
8456a648 2956 while (page->active < cachep->num && batchcount--) {
1da177e4
LT
2957 STATS_INC_ALLOCED(cachep);
2958 STATS_INC_ACTIVE(cachep);
2959 STATS_SET_HIGH(cachep);
2960
8456a648 2961 ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
072bb0aa 2962 node));
1da177e4 2963 }
1da177e4
LT
2964
2965 /* move slabp to correct slabp list: */
8456a648
JK
2966 list_del(&page->lru);
2967 if (page->active == cachep->num)
34bf6ef9 2968 list_add(&page->lru, &n->slabs_full);
1da177e4 2969 else
34bf6ef9 2970 list_add(&page->lru, &n->slabs_partial);
1da177e4
LT
2971 }
2972
a737b3e2 2973must_grow:
ce8eb6c4 2974 n->free_objects -= ac->avail;
a737b3e2 2975alloc_done:
ce8eb6c4 2976 spin_unlock(&n->list_lock);
1da177e4
LT
2977
2978 if (unlikely(!ac->avail)) {
2979 int x;
072bb0aa 2980force_grow:
3c517a61 2981 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 2982
a737b3e2 2983 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2984 ac = cpu_cache_get(cachep);
51cd8e6f 2985 node = numa_mem_id();
072bb0aa
MG
2986
2987 /* no objects in sight? abort */
2988 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
2989 return NULL;
2990
a737b3e2 2991 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2992 goto retry;
2993 }
2994 ac->touched = 1;
072bb0aa
MG
2995
2996 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
2997}
2998
a737b3e2
AM
2999static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3000 gfp_t flags)
1da177e4
LT
3001{
3002 might_sleep_if(flags & __GFP_WAIT);
3003#if DEBUG
3004 kmem_flagcheck(cachep, flags);
3005#endif
3006}
3007
3008#if DEBUG
a737b3e2 3009static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 3010 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3011{
03787301
JK
3012 struct page *page;
3013
b28a02de 3014 if (!objp)
1da177e4 3015 return objp;
b28a02de 3016 if (cachep->flags & SLAB_POISON) {
1da177e4 3017#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3018 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3019 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3020 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
3021 else
3022 check_poison_obj(cachep, objp);
3023#else
3024 check_poison_obj(cachep, objp);
3025#endif
3026 poison_obj(cachep, objp, POISON_INUSE);
3027 }
3028 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3029 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3030
3031 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3032 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3033 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3034 slab_error(cachep, "double free, or memory outside"
3035 " object was overwritten");
b28a02de 3036 printk(KERN_ERR
b46b8f19 3037 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3038 objp, *dbg_redzone1(cachep, objp),
3039 *dbg_redzone2(cachep, objp));
1da177e4
LT
3040 }
3041 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3042 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3043 }
03787301
JK
3044
3045 page = virt_to_head_page(objp);
3046 set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
3dafccf2 3047 objp += obj_offset(cachep);
4f104934 3048 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3049 cachep->ctor(objp);
7ea466f2
TH
3050 if (ARCH_SLAB_MINALIGN &&
3051 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 3052 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3053 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3054 }
1da177e4
LT
3055 return objp;
3056}
3057#else
3058#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3059#endif
3060
773ff60e 3061static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502 3062{
9b030cb8 3063 if (cachep == kmem_cache)
773ff60e 3064 return false;
8a8b6502 3065
8c138bc0 3066 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
3067}
3068
343e0d7a 3069static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3070{
b28a02de 3071 void *objp;
1da177e4 3072 struct array_cache *ac;
072bb0aa 3073 bool force_refill = false;
1da177e4 3074
5c382300 3075 check_irq_off();
8a8b6502 3076
9a2dba4b 3077 ac = cpu_cache_get(cachep);
1da177e4 3078 if (likely(ac->avail)) {
1da177e4 3079 ac->touched = 1;
072bb0aa
MG
3080 objp = ac_get_obj(cachep, ac, flags, false);
3081
ddbf2e83 3082 /*
072bb0aa
MG
3083 * Allow for the possibility all avail objects are not allowed
3084 * by the current flags
ddbf2e83 3085 */
072bb0aa
MG
3086 if (objp) {
3087 STATS_INC_ALLOCHIT(cachep);
3088 goto out;
3089 }
3090 force_refill = true;
1da177e4 3091 }
072bb0aa
MG
3092
3093 STATS_INC_ALLOCMISS(cachep);
3094 objp = cache_alloc_refill(cachep, flags, force_refill);
3095 /*
3096 * the 'ac' may be updated by cache_alloc_refill(),
3097 * and kmemleak_erase() requires its correct value.
3098 */
3099 ac = cpu_cache_get(cachep);
3100
3101out:
d5cff635
CM
3102 /*
3103 * To avoid a false negative, if an object that is in one of the
3104 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3105 * treat the array pointers as a reference to the object.
3106 */
f3d8b53a
O
3107 if (objp)
3108 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3109 return objp;
3110}
3111
e498be7d 3112#ifdef CONFIG_NUMA
c61afb18 3113/*
f0432d15 3114 * Try allocating on another node if PF_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
3115 *
3116 * If we are in_interrupt, then process context, including cpusets and
3117 * mempolicy, may not apply and should not be used for allocation policy.
3118 */
3119static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3120{
3121 int nid_alloc, nid_here;
3122
765c4507 3123 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3124 return NULL;
7d6e6d09 3125 nid_alloc = nid_here = numa_mem_id();
c61afb18 3126 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3127 nid_alloc = cpuset_slab_spread_node();
c61afb18 3128 else if (current->mempolicy)
2a389610 3129 nid_alloc = mempolicy_slab_node();
c61afb18 3130 if (nid_alloc != nid_here)
8b98c169 3131 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3132 return NULL;
3133}
3134
765c4507
CL
3135/*
3136 * Fallback function if there was no memory available and no objects on a
3c517a61 3137 * certain node and fall back is permitted. First we scan all the
6a67368c 3138 * available node for available objects. If that fails then we
3c517a61
CL
3139 * perform an allocation without specifying a node. This allows the page
3140 * allocator to do its reclaim / fallback magic. We then insert the
3141 * slab into the proper nodelist and then allocate from it.
765c4507 3142 */
8c8cc2c1 3143static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3144{
8c8cc2c1
PE
3145 struct zonelist *zonelist;
3146 gfp_t local_flags;
dd1a239f 3147 struct zoneref *z;
54a6eb5c
MG
3148 struct zone *zone;
3149 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3150 void *obj = NULL;
3c517a61 3151 int nid;
cc9a6c87 3152 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3153
3154 if (flags & __GFP_THISNODE)
3155 return NULL;
3156
6cb06229 3157 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3158
cc9a6c87 3159retry_cpuset:
d26914d1 3160 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3161 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3162
3c517a61
CL
3163retry:
3164 /*
3165 * Look through allowed nodes for objects available
3166 * from existing per node queues.
3167 */
54a6eb5c
MG
3168 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3169 nid = zone_to_nid(zone);
aedb0eb1 3170
54a6eb5c 3171 if (cpuset_zone_allowed_hardwall(zone, flags) &&
6a67368c
CL
3172 cache->node[nid] &&
3173 cache->node[nid]->free_objects) {
3c517a61
CL
3174 obj = ____cache_alloc_node(cache,
3175 flags | GFP_THISNODE, nid);
481c5346
CL
3176 if (obj)
3177 break;
3178 }
3c517a61
CL
3179 }
3180
cfce6604 3181 if (!obj) {
3c517a61
CL
3182 /*
3183 * This allocation will be performed within the constraints
3184 * of the current cpuset / memory policy requirements.
3185 * We may trigger various forms of reclaim on the allowed
3186 * set and go into memory reserves if necessary.
3187 */
0c3aa83e
JK
3188 struct page *page;
3189
dd47ea75
CL
3190 if (local_flags & __GFP_WAIT)
3191 local_irq_enable();
3192 kmem_flagcheck(cache, flags);
0c3aa83e 3193 page = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3194 if (local_flags & __GFP_WAIT)
3195 local_irq_disable();
0c3aa83e 3196 if (page) {
3c517a61
CL
3197 /*
3198 * Insert into the appropriate per node queues
3199 */
0c3aa83e
JK
3200 nid = page_to_nid(page);
3201 if (cache_grow(cache, flags, nid, page)) {
3c517a61
CL
3202 obj = ____cache_alloc_node(cache,
3203 flags | GFP_THISNODE, nid);
3204 if (!obj)
3205 /*
3206 * Another processor may allocate the
3207 * objects in the slab since we are
3208 * not holding any locks.
3209 */
3210 goto retry;
3211 } else {
b6a60451 3212 /* cache_grow already freed obj */
3c517a61
CL
3213 obj = NULL;
3214 }
3215 }
aedb0eb1 3216 }
cc9a6c87 3217
d26914d1 3218 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3219 goto retry_cpuset;
765c4507
CL
3220 return obj;
3221}
3222
e498be7d
CL
3223/*
3224 * A interface to enable slab creation on nodeid
1da177e4 3225 */
8b98c169 3226static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3227 int nodeid)
e498be7d
CL
3228{
3229 struct list_head *entry;
8456a648 3230 struct page *page;
ce8eb6c4 3231 struct kmem_cache_node *n;
b28a02de 3232 void *obj;
b28a02de
PE
3233 int x;
3234
14e50c6a 3235 VM_BUG_ON(nodeid > num_online_nodes());
ce8eb6c4
CL
3236 n = cachep->node[nodeid];
3237 BUG_ON(!n);
b28a02de 3238
a737b3e2 3239retry:
ca3b9b91 3240 check_irq_off();
ce8eb6c4
CL
3241 spin_lock(&n->list_lock);
3242 entry = n->slabs_partial.next;
3243 if (entry == &n->slabs_partial) {
3244 n->free_touched = 1;
3245 entry = n->slabs_free.next;
3246 if (entry == &n->slabs_free)
b28a02de
PE
3247 goto must_grow;
3248 }
3249
8456a648 3250 page = list_entry(entry, struct page, lru);
b28a02de 3251 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3252
3253 STATS_INC_NODEALLOCS(cachep);
3254 STATS_INC_ACTIVE(cachep);
3255 STATS_SET_HIGH(cachep);
3256
8456a648 3257 BUG_ON(page->active == cachep->num);
b28a02de 3258
8456a648 3259 obj = slab_get_obj(cachep, page, nodeid);
ce8eb6c4 3260 n->free_objects--;
b28a02de 3261 /* move slabp to correct slabp list: */
8456a648 3262 list_del(&page->lru);
b28a02de 3263
8456a648
JK
3264 if (page->active == cachep->num)
3265 list_add(&page->lru, &n->slabs_full);
a737b3e2 3266 else
8456a648 3267 list_add(&page->lru, &n->slabs_partial);
e498be7d 3268
ce8eb6c4 3269 spin_unlock(&n->list_lock);
b28a02de 3270 goto done;
e498be7d 3271
a737b3e2 3272must_grow:
ce8eb6c4 3273 spin_unlock(&n->list_lock);
3c517a61 3274 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3275 if (x)
3276 goto retry;
1da177e4 3277
8c8cc2c1 3278 return fallback_alloc(cachep, flags);
e498be7d 3279
a737b3e2 3280done:
b28a02de 3281 return obj;
e498be7d 3282}
8c8cc2c1 3283
8c8cc2c1 3284static __always_inline void *
48356303 3285slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3286 unsigned long caller)
8c8cc2c1
PE
3287{
3288 unsigned long save_flags;
3289 void *ptr;
7d6e6d09 3290 int slab_node = numa_mem_id();
8c8cc2c1 3291
dcce284a 3292 flags &= gfp_allowed_mask;
7e85ee0c 3293
cf40bd16
NP
3294 lockdep_trace_alloc(flags);
3295
773ff60e 3296 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3297 return NULL;
3298
d79923fa
GC
3299 cachep = memcg_kmem_get_cache(cachep, flags);
3300
8c8cc2c1
PE
3301 cache_alloc_debugcheck_before(cachep, flags);
3302 local_irq_save(save_flags);
3303
eacbbae3 3304 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3305 nodeid = slab_node;
8c8cc2c1 3306
6a67368c 3307 if (unlikely(!cachep->node[nodeid])) {
8c8cc2c1
PE
3308 /* Node not bootstrapped yet */
3309 ptr = fallback_alloc(cachep, flags);
3310 goto out;
3311 }
3312
7d6e6d09 3313 if (nodeid == slab_node) {
8c8cc2c1
PE
3314 /*
3315 * Use the locally cached objects if possible.
3316 * However ____cache_alloc does not allow fallback
3317 * to other nodes. It may fail while we still have
3318 * objects on other nodes available.
3319 */
3320 ptr = ____cache_alloc(cachep, flags);
3321 if (ptr)
3322 goto out;
3323 }
3324 /* ___cache_alloc_node can fall back to other nodes */
3325 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3326 out:
3327 local_irq_restore(save_flags);
3328 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3329 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3330 flags);
8c8cc2c1 3331
5087c822 3332 if (likely(ptr)) {
8c138bc0 3333 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
5087c822
JP
3334 if (unlikely(flags & __GFP_ZERO))
3335 memset(ptr, 0, cachep->object_size);
3336 }
d07dbea4 3337
8c8cc2c1
PE
3338 return ptr;
3339}
3340
3341static __always_inline void *
3342__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3343{
3344 void *objp;
3345
f0432d15 3346 if (current->mempolicy || unlikely(current->flags & PF_SPREAD_SLAB)) {
8c8cc2c1
PE
3347 objp = alternate_node_alloc(cache, flags);
3348 if (objp)
3349 goto out;
3350 }
3351 objp = ____cache_alloc(cache, flags);
3352
3353 /*
3354 * We may just have run out of memory on the local node.
3355 * ____cache_alloc_node() knows how to locate memory on other nodes
3356 */
7d6e6d09
LS
3357 if (!objp)
3358 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3359
3360 out:
3361 return objp;
3362}
3363#else
3364
3365static __always_inline void *
3366__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3367{
3368 return ____cache_alloc(cachep, flags);
3369}
3370
3371#endif /* CONFIG_NUMA */
3372
3373static __always_inline void *
48356303 3374slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3375{
3376 unsigned long save_flags;
3377 void *objp;
3378
dcce284a 3379 flags &= gfp_allowed_mask;
7e85ee0c 3380
cf40bd16
NP
3381 lockdep_trace_alloc(flags);
3382
773ff60e 3383 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3384 return NULL;
3385
d79923fa
GC
3386 cachep = memcg_kmem_get_cache(cachep, flags);
3387
8c8cc2c1
PE
3388 cache_alloc_debugcheck_before(cachep, flags);
3389 local_irq_save(save_flags);
3390 objp = __do_cache_alloc(cachep, flags);
3391 local_irq_restore(save_flags);
3392 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3393 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3394 flags);
8c8cc2c1
PE
3395 prefetchw(objp);
3396
5087c822 3397 if (likely(objp)) {
8c138bc0 3398 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
5087c822
JP
3399 if (unlikely(flags & __GFP_ZERO))
3400 memset(objp, 0, cachep->object_size);
3401 }
d07dbea4 3402
8c8cc2c1
PE
3403 return objp;
3404}
e498be7d
CL
3405
3406/*
5f0985bb 3407 * Caller needs to acquire correct kmem_cache_node's list_lock
e498be7d 3408 */
343e0d7a 3409static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3410 int node)
1da177e4
LT
3411{
3412 int i;
ce8eb6c4 3413 struct kmem_cache_node *n;
1da177e4
LT
3414
3415 for (i = 0; i < nr_objects; i++) {
072bb0aa 3416 void *objp;
8456a648 3417 struct page *page;
1da177e4 3418
072bb0aa
MG
3419 clear_obj_pfmemalloc(&objpp[i]);
3420 objp = objpp[i];
3421
8456a648 3422 page = virt_to_head_page(objp);
ce8eb6c4 3423 n = cachep->node[node];
8456a648 3424 list_del(&page->lru);
ff69416e 3425 check_spinlock_acquired_node(cachep, node);
8456a648 3426 slab_put_obj(cachep, page, objp, node);
1da177e4 3427 STATS_DEC_ACTIVE(cachep);
ce8eb6c4 3428 n->free_objects++;
1da177e4
LT
3429
3430 /* fixup slab chains */
8456a648 3431 if (page->active == 0) {
ce8eb6c4
CL
3432 if (n->free_objects > n->free_limit) {
3433 n->free_objects -= cachep->num;
e5ac9c5a
RT
3434 /* No need to drop any previously held
3435 * lock here, even if we have a off-slab slab
3436 * descriptor it is guaranteed to come from
3437 * a different cache, refer to comments before
3438 * alloc_slabmgmt.
3439 */
8456a648 3440 slab_destroy(cachep, page);
1da177e4 3441 } else {
8456a648 3442 list_add(&page->lru, &n->slabs_free);
1da177e4
LT
3443 }
3444 } else {
3445 /* Unconditionally move a slab to the end of the
3446 * partial list on free - maximum time for the
3447 * other objects to be freed, too.
3448 */
8456a648 3449 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3450 }
3451 }
3452}
3453
343e0d7a 3454static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3455{
3456 int batchcount;
ce8eb6c4 3457 struct kmem_cache_node *n;
7d6e6d09 3458 int node = numa_mem_id();
1da177e4
LT
3459
3460 batchcount = ac->batchcount;
3461#if DEBUG
3462 BUG_ON(!batchcount || batchcount > ac->avail);
3463#endif
3464 check_irq_off();
ce8eb6c4
CL
3465 n = cachep->node[node];
3466 spin_lock(&n->list_lock);
3467 if (n->shared) {
3468 struct array_cache *shared_array = n->shared;
b28a02de 3469 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3470 if (max) {
3471 if (batchcount > max)
3472 batchcount = max;
e498be7d 3473 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3474 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3475 shared_array->avail += batchcount;
3476 goto free_done;
3477 }
3478 }
3479
ff69416e 3480 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3481free_done:
1da177e4
LT
3482#if STATS
3483 {
3484 int i = 0;
3485 struct list_head *p;
3486
ce8eb6c4
CL
3487 p = n->slabs_free.next;
3488 while (p != &(n->slabs_free)) {
8456a648 3489 struct page *page;
1da177e4 3490
8456a648
JK
3491 page = list_entry(p, struct page, lru);
3492 BUG_ON(page->active);
1da177e4
LT
3493
3494 i++;
3495 p = p->next;
3496 }
3497 STATS_SET_FREEABLE(cachep, i);
3498 }
3499#endif
ce8eb6c4 3500 spin_unlock(&n->list_lock);
1da177e4 3501 ac->avail -= batchcount;
a737b3e2 3502 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3503}
3504
3505/*
a737b3e2
AM
3506 * Release an obj back to its cache. If the obj has a constructed state, it must
3507 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3508 */
a947eb95 3509static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3510 unsigned long caller)
1da177e4 3511{
9a2dba4b 3512 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3513
3514 check_irq_off();
d5cff635 3515 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3516 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3517
8c138bc0 3518 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3519
1807a1aa
SS
3520 /*
3521 * Skip calling cache_free_alien() when the platform is not numa.
3522 * This will avoid cache misses that happen while accessing slabp (which
3523 * is per page memory reference) to get nodeid. Instead use a global
3524 * variable to skip the call, which is mostly likely to be present in
3525 * the cache.
3526 */
b6e68bc1 3527 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3528 return;
3529
1da177e4
LT
3530 if (likely(ac->avail < ac->limit)) {
3531 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3532 } else {
3533 STATS_INC_FREEMISS(cachep);
3534 cache_flusharray(cachep, ac);
1da177e4 3535 }
42c8c99c 3536
072bb0aa 3537 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3538}
3539
3540/**
3541 * kmem_cache_alloc - Allocate an object
3542 * @cachep: The cache to allocate from.
3543 * @flags: See kmalloc().
3544 *
3545 * Allocate an object from this cache. The flags are only relevant
3546 * if the cache has no available objects.
3547 */
343e0d7a 3548void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3549{
48356303 3550 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3551
ca2b84cb 3552 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3553 cachep->object_size, cachep->size, flags);
36555751
EGM
3554
3555 return ret;
1da177e4
LT
3556}
3557EXPORT_SYMBOL(kmem_cache_alloc);
3558
0f24f128 3559#ifdef CONFIG_TRACING
85beb586 3560void *
4052147c 3561kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3562{
85beb586
SR
3563 void *ret;
3564
48356303 3565 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586
SR
3566
3567 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3568 size, cachep->size, flags);
85beb586 3569 return ret;
36555751 3570}
85beb586 3571EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3572#endif
3573
1da177e4 3574#ifdef CONFIG_NUMA
d0d04b78
ZL
3575/**
3576 * kmem_cache_alloc_node - Allocate an object on the specified node
3577 * @cachep: The cache to allocate from.
3578 * @flags: See kmalloc().
3579 * @nodeid: node number of the target node.
3580 *
3581 * Identical to kmem_cache_alloc but it will allocate memory on the given
3582 * node, which can improve the performance for cpu bound structures.
3583 *
3584 * Fallback to other node is possible if __GFP_THISNODE is not set.
3585 */
8b98c169
CH
3586void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3587{
48356303 3588 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3589
ca2b84cb 3590 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3591 cachep->object_size, cachep->size,
ca2b84cb 3592 flags, nodeid);
36555751
EGM
3593
3594 return ret;
8b98c169 3595}
1da177e4
LT
3596EXPORT_SYMBOL(kmem_cache_alloc_node);
3597
0f24f128 3598#ifdef CONFIG_TRACING
4052147c 3599void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3600 gfp_t flags,
4052147c
EG
3601 int nodeid,
3602 size_t size)
36555751 3603{
85beb586
SR
3604 void *ret;
3605
592f4145 3606 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
7c0cb9c6 3607
85beb586 3608 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3609 size, cachep->size,
85beb586
SR
3610 flags, nodeid);
3611 return ret;
36555751 3612}
85beb586 3613EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3614#endif
3615
8b98c169 3616static __always_inline void *
7c0cb9c6 3617__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3618{
343e0d7a 3619 struct kmem_cache *cachep;
97e2bde4 3620
2c59dd65 3621 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3622 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3623 return cachep;
4052147c 3624 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
97e2bde4 3625}
8b98c169 3626
0bb38a5c 3627#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3628void *__kmalloc_node(size_t size, gfp_t flags, int node)
3629{
7c0cb9c6 3630 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3631}
dbe5e69d 3632EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3633
3634void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3635 int node, unsigned long caller)
8b98c169 3636{
7c0cb9c6 3637 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3638}
3639EXPORT_SYMBOL(__kmalloc_node_track_caller);
3640#else
3641void *__kmalloc_node(size_t size, gfp_t flags, int node)
3642{
7c0cb9c6 3643 return __do_kmalloc_node(size, flags, node, 0);
8b98c169
CH
3644}
3645EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3646#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3647#endif /* CONFIG_NUMA */
1da177e4
LT
3648
3649/**
800590f5 3650 * __do_kmalloc - allocate memory
1da177e4 3651 * @size: how many bytes of memory are required.
800590f5 3652 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3653 * @caller: function caller for debug tracking of the caller
1da177e4 3654 */
7fd6b141 3655static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3656 unsigned long caller)
1da177e4 3657{
343e0d7a 3658 struct kmem_cache *cachep;
36555751 3659 void *ret;
1da177e4 3660
2c59dd65 3661 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3662 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3663 return cachep;
48356303 3664 ret = slab_alloc(cachep, flags, caller);
36555751 3665
7c0cb9c6 3666 trace_kmalloc(caller, ret,
3b0efdfa 3667 size, cachep->size, flags);
36555751
EGM
3668
3669 return ret;
7fd6b141
PE
3670}
3671
7fd6b141 3672
0bb38a5c 3673#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3674void *__kmalloc(size_t size, gfp_t flags)
3675{
7c0cb9c6 3676 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3677}
3678EXPORT_SYMBOL(__kmalloc);
3679
ce71e27c 3680void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3681{
7c0cb9c6 3682 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3683}
3684EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3685
3686#else
3687void *__kmalloc(size_t size, gfp_t flags)
3688{
7c0cb9c6 3689 return __do_kmalloc(size, flags, 0);
1d2c8eea
CH
3690}
3691EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3692#endif
3693
1da177e4
LT
3694/**
3695 * kmem_cache_free - Deallocate an object
3696 * @cachep: The cache the allocation was from.
3697 * @objp: The previously allocated object.
3698 *
3699 * Free an object which was previously allocated from this
3700 * cache.
3701 */
343e0d7a 3702void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3703{
3704 unsigned long flags;
b9ce5ef4
GC
3705 cachep = cache_from_obj(cachep, objp);
3706 if (!cachep)
3707 return;
1da177e4
LT
3708
3709 local_irq_save(flags);
d97d476b 3710 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3711 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3712 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3713 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3714 local_irq_restore(flags);
36555751 3715
ca2b84cb 3716 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3717}
3718EXPORT_SYMBOL(kmem_cache_free);
3719
1da177e4
LT
3720/**
3721 * kfree - free previously allocated memory
3722 * @objp: pointer returned by kmalloc.
3723 *
80e93eff
PE
3724 * If @objp is NULL, no operation is performed.
3725 *
1da177e4
LT
3726 * Don't free memory not originally allocated by kmalloc()
3727 * or you will run into trouble.
3728 */
3729void kfree(const void *objp)
3730{
343e0d7a 3731 struct kmem_cache *c;
1da177e4
LT
3732 unsigned long flags;
3733
2121db74
PE
3734 trace_kfree(_RET_IP_, objp);
3735
6cb8f913 3736 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3737 return;
3738 local_irq_save(flags);
3739 kfree_debugcheck(objp);
6ed5eb22 3740 c = virt_to_cache(objp);
8c138bc0
CL
3741 debug_check_no_locks_freed(objp, c->object_size);
3742
3743 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3744 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3745 local_irq_restore(flags);
3746}
3747EXPORT_SYMBOL(kfree);
3748
e498be7d 3749/*
ce8eb6c4 3750 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3751 */
5f0985bb 3752static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3753{
3754 int node;
ce8eb6c4 3755 struct kmem_cache_node *n;
cafeb02e 3756 struct array_cache *new_shared;
3395ee05 3757 struct array_cache **new_alien = NULL;
e498be7d 3758
9c09a95c 3759 for_each_online_node(node) {
cafeb02e 3760
3395ee05 3761 if (use_alien_caches) {
83b519e8 3762 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3763 if (!new_alien)
3764 goto fail;
3765 }
cafeb02e 3766
63109846
ED
3767 new_shared = NULL;
3768 if (cachep->shared) {
3769 new_shared = alloc_arraycache(node,
0718dc2a 3770 cachep->shared*cachep->batchcount,
83b519e8 3771 0xbaadf00d, gfp);
63109846
ED
3772 if (!new_shared) {
3773 free_alien_cache(new_alien);
3774 goto fail;
3775 }
0718dc2a 3776 }
cafeb02e 3777
ce8eb6c4
CL
3778 n = cachep->node[node];
3779 if (n) {
3780 struct array_cache *shared = n->shared;
cafeb02e 3781
ce8eb6c4 3782 spin_lock_irq(&n->list_lock);
e498be7d 3783
cafeb02e 3784 if (shared)
0718dc2a
CL
3785 free_block(cachep, shared->entry,
3786 shared->avail, node);
e498be7d 3787
ce8eb6c4
CL
3788 n->shared = new_shared;
3789 if (!n->alien) {
3790 n->alien = new_alien;
e498be7d
CL
3791 new_alien = NULL;
3792 }
ce8eb6c4 3793 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3794 cachep->batchcount + cachep->num;
ce8eb6c4 3795 spin_unlock_irq(&n->list_lock);
cafeb02e 3796 kfree(shared);
e498be7d
CL
3797 free_alien_cache(new_alien);
3798 continue;
3799 }
ce8eb6c4
CL
3800 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3801 if (!n) {
0718dc2a
CL
3802 free_alien_cache(new_alien);
3803 kfree(new_shared);
e498be7d 3804 goto fail;
0718dc2a 3805 }
e498be7d 3806
ce8eb6c4 3807 kmem_cache_node_init(n);
5f0985bb
JZ
3808 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3809 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
ce8eb6c4
CL
3810 n->shared = new_shared;
3811 n->alien = new_alien;
3812 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3813 cachep->batchcount + cachep->num;
ce8eb6c4 3814 cachep->node[node] = n;
e498be7d 3815 }
cafeb02e 3816 return 0;
0718dc2a 3817
a737b3e2 3818fail:
3b0efdfa 3819 if (!cachep->list.next) {
0718dc2a
CL
3820 /* Cache is not active yet. Roll back what we did */
3821 node--;
3822 while (node >= 0) {
6a67368c 3823 if (cachep->node[node]) {
ce8eb6c4 3824 n = cachep->node[node];
0718dc2a 3825
ce8eb6c4
CL
3826 kfree(n->shared);
3827 free_alien_cache(n->alien);
3828 kfree(n);
6a67368c 3829 cachep->node[node] = NULL;
0718dc2a
CL
3830 }
3831 node--;
3832 }
3833 }
cafeb02e 3834 return -ENOMEM;
e498be7d
CL
3835}
3836
1da177e4 3837struct ccupdate_struct {
343e0d7a 3838 struct kmem_cache *cachep;
acfe7d74 3839 struct array_cache *new[0];
1da177e4
LT
3840};
3841
3842static void do_ccupdate_local(void *info)
3843{
a737b3e2 3844 struct ccupdate_struct *new = info;
1da177e4
LT
3845 struct array_cache *old;
3846
3847 check_irq_off();
9a2dba4b 3848 old = cpu_cache_get(new->cachep);
e498be7d 3849
1da177e4
LT
3850 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3851 new->new[smp_processor_id()] = old;
3852}
3853
18004c5d 3854/* Always called with the slab_mutex held */
943a451a 3855static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3856 int batchcount, int shared, gfp_t gfp)
1da177e4 3857{
d2e7b7d0 3858 struct ccupdate_struct *new;
2ed3a4ef 3859 int i;
1da177e4 3860
acfe7d74
ED
3861 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3862 gfp);
d2e7b7d0
SS
3863 if (!new)
3864 return -ENOMEM;
3865
e498be7d 3866 for_each_online_cpu(i) {
7d6e6d09 3867 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 3868 batchcount, gfp);
d2e7b7d0 3869 if (!new->new[i]) {
b28a02de 3870 for (i--; i >= 0; i--)
d2e7b7d0
SS
3871 kfree(new->new[i]);
3872 kfree(new);
e498be7d 3873 return -ENOMEM;
1da177e4
LT
3874 }
3875 }
d2e7b7d0 3876 new->cachep = cachep;
1da177e4 3877
15c8b6c1 3878 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 3879
1da177e4 3880 check_irq_on();
1da177e4
LT
3881 cachep->batchcount = batchcount;
3882 cachep->limit = limit;
e498be7d 3883 cachep->shared = shared;
1da177e4 3884
e498be7d 3885 for_each_online_cpu(i) {
d2e7b7d0 3886 struct array_cache *ccold = new->new[i];
1da177e4
LT
3887 if (!ccold)
3888 continue;
6a67368c 3889 spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
7d6e6d09 3890 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
6a67368c 3891 spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
1da177e4
LT
3892 kfree(ccold);
3893 }
d2e7b7d0 3894 kfree(new);
5f0985bb 3895 return alloc_kmem_cache_node(cachep, gfp);
1da177e4
LT
3896}
3897
943a451a
GC
3898static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3899 int batchcount, int shared, gfp_t gfp)
3900{
3901 int ret;
3902 struct kmem_cache *c = NULL;
3903 int i = 0;
3904
3905 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3906
3907 if (slab_state < FULL)
3908 return ret;
3909
3910 if ((ret < 0) || !is_root_cache(cachep))
3911 return ret;
3912
ebe945c2 3913 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
943a451a 3914 for_each_memcg_cache_index(i) {
2ade4de8 3915 c = cache_from_memcg_idx(cachep, i);
943a451a
GC
3916 if (c)
3917 /* return value determined by the parent cache only */
3918 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3919 }
3920
3921 return ret;
3922}
3923
18004c5d 3924/* Called with slab_mutex held always */
83b519e8 3925static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3926{
3927 int err;
943a451a
GC
3928 int limit = 0;
3929 int shared = 0;
3930 int batchcount = 0;
3931
3932 if (!is_root_cache(cachep)) {
3933 struct kmem_cache *root = memcg_root_cache(cachep);
3934 limit = root->limit;
3935 shared = root->shared;
3936 batchcount = root->batchcount;
3937 }
1da177e4 3938
943a451a
GC
3939 if (limit && shared && batchcount)
3940 goto skip_setup;
a737b3e2
AM
3941 /*
3942 * The head array serves three purposes:
1da177e4
LT
3943 * - create a LIFO ordering, i.e. return objects that are cache-warm
3944 * - reduce the number of spinlock operations.
a737b3e2 3945 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3946 * bufctl chains: array operations are cheaper.
3947 * The numbers are guessed, we should auto-tune as described by
3948 * Bonwick.
3949 */
3b0efdfa 3950 if (cachep->size > 131072)
1da177e4 3951 limit = 1;
3b0efdfa 3952 else if (cachep->size > PAGE_SIZE)
1da177e4 3953 limit = 8;
3b0efdfa 3954 else if (cachep->size > 1024)
1da177e4 3955 limit = 24;
3b0efdfa 3956 else if (cachep->size > 256)
1da177e4
LT
3957 limit = 54;
3958 else
3959 limit = 120;
3960
a737b3e2
AM
3961 /*
3962 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3963 * allocation behaviour: Most allocs on one cpu, most free operations
3964 * on another cpu. For these cases, an efficient object passing between
3965 * cpus is necessary. This is provided by a shared array. The array
3966 * replaces Bonwick's magazine layer.
3967 * On uniprocessor, it's functionally equivalent (but less efficient)
3968 * to a larger limit. Thus disabled by default.
3969 */
3970 shared = 0;
3b0efdfa 3971 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3972 shared = 8;
1da177e4
LT
3973
3974#if DEBUG
a737b3e2
AM
3975 /*
3976 * With debugging enabled, large batchcount lead to excessively long
3977 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3978 */
3979 if (limit > 32)
3980 limit = 32;
3981#endif
943a451a
GC
3982 batchcount = (limit + 1) / 2;
3983skip_setup:
3984 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
1da177e4
LT
3985 if (err)
3986 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3987 cachep->name, -err);
2ed3a4ef 3988 return err;
1da177e4
LT
3989}
3990
1b55253a 3991/*
ce8eb6c4
CL
3992 * Drain an array if it contains any elements taking the node lock only if
3993 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3994 * if drain_array() is used on the shared array.
1b55253a 3995 */
ce8eb6c4 3996static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
1b55253a 3997 struct array_cache *ac, int force, int node)
1da177e4
LT
3998{
3999 int tofree;
4000
1b55253a
CL
4001 if (!ac || !ac->avail)
4002 return;
1da177e4
LT
4003 if (ac->touched && !force) {
4004 ac->touched = 0;
b18e7e65 4005 } else {
ce8eb6c4 4006 spin_lock_irq(&n->list_lock);
b18e7e65
CL
4007 if (ac->avail) {
4008 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4009 if (tofree > ac->avail)
4010 tofree = (ac->avail + 1) / 2;
4011 free_block(cachep, ac->entry, tofree, node);
4012 ac->avail -= tofree;
4013 memmove(ac->entry, &(ac->entry[tofree]),
4014 sizeof(void *) * ac->avail);
4015 }
ce8eb6c4 4016 spin_unlock_irq(&n->list_lock);
1da177e4
LT
4017 }
4018}
4019
4020/**
4021 * cache_reap - Reclaim memory from caches.
05fb6bf0 4022 * @w: work descriptor
1da177e4
LT
4023 *
4024 * Called from workqueue/eventd every few seconds.
4025 * Purpose:
4026 * - clear the per-cpu caches for this CPU.
4027 * - return freeable pages to the main free memory pool.
4028 *
a737b3e2
AM
4029 * If we cannot acquire the cache chain mutex then just give up - we'll try
4030 * again on the next iteration.
1da177e4 4031 */
7c5cae36 4032static void cache_reap(struct work_struct *w)
1da177e4 4033{
7a7c381d 4034 struct kmem_cache *searchp;
ce8eb6c4 4035 struct kmem_cache_node *n;
7d6e6d09 4036 int node = numa_mem_id();
bf6aede7 4037 struct delayed_work *work = to_delayed_work(w);
1da177e4 4038
18004c5d 4039 if (!mutex_trylock(&slab_mutex))
1da177e4 4040 /* Give up. Setup the next iteration. */
7c5cae36 4041 goto out;
1da177e4 4042
18004c5d 4043 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4044 check_irq_on();
4045
35386e3b 4046 /*
ce8eb6c4 4047 * We only take the node lock if absolutely necessary and we
35386e3b
CL
4048 * have established with reasonable certainty that
4049 * we can do some work if the lock was obtained.
4050 */
ce8eb6c4 4051 n = searchp->node[node];
35386e3b 4052
ce8eb6c4 4053 reap_alien(searchp, n);
1da177e4 4054
ce8eb6c4 4055 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
1da177e4 4056
35386e3b
CL
4057 /*
4058 * These are racy checks but it does not matter
4059 * if we skip one check or scan twice.
4060 */
ce8eb6c4 4061 if (time_after(n->next_reap, jiffies))
35386e3b 4062 goto next;
1da177e4 4063
5f0985bb 4064 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 4065
ce8eb6c4 4066 drain_array(searchp, n, n->shared, 0, node);
1da177e4 4067
ce8eb6c4
CL
4068 if (n->free_touched)
4069 n->free_touched = 0;
ed11d9eb
CL
4070 else {
4071 int freed;
1da177e4 4072
ce8eb6c4 4073 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
4074 5 * searchp->num - 1) / (5 * searchp->num));
4075 STATS_ADD_REAPED(searchp, freed);
4076 }
35386e3b 4077next:
1da177e4
LT
4078 cond_resched();
4079 }
4080 check_irq_on();
18004c5d 4081 mutex_unlock(&slab_mutex);
8fce4d8e 4082 next_reap_node();
7c5cae36 4083out:
a737b3e2 4084 /* Set up the next iteration */
5f0985bb 4085 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
4086}
4087
158a9624 4088#ifdef CONFIG_SLABINFO
0d7561c6 4089void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4090{
8456a648 4091 struct page *page;
b28a02de
PE
4092 unsigned long active_objs;
4093 unsigned long num_objs;
4094 unsigned long active_slabs = 0;
4095 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4096 const char *name;
1da177e4 4097 char *error = NULL;
e498be7d 4098 int node;
ce8eb6c4 4099 struct kmem_cache_node *n;
1da177e4 4100
1da177e4
LT
4101 active_objs = 0;
4102 num_slabs = 0;
e498be7d 4103 for_each_online_node(node) {
ce8eb6c4
CL
4104 n = cachep->node[node];
4105 if (!n)
e498be7d
CL
4106 continue;
4107
ca3b9b91 4108 check_irq_on();
ce8eb6c4 4109 spin_lock_irq(&n->list_lock);
e498be7d 4110
8456a648
JK
4111 list_for_each_entry(page, &n->slabs_full, lru) {
4112 if (page->active != cachep->num && !error)
e498be7d
CL
4113 error = "slabs_full accounting error";
4114 active_objs += cachep->num;
4115 active_slabs++;
4116 }
8456a648
JK
4117 list_for_each_entry(page, &n->slabs_partial, lru) {
4118 if (page->active == cachep->num && !error)
106a74e1 4119 error = "slabs_partial accounting error";
8456a648 4120 if (!page->active && !error)
106a74e1 4121 error = "slabs_partial accounting error";
8456a648 4122 active_objs += page->active;
e498be7d
CL
4123 active_slabs++;
4124 }
8456a648
JK
4125 list_for_each_entry(page, &n->slabs_free, lru) {
4126 if (page->active && !error)
106a74e1 4127 error = "slabs_free accounting error";
e498be7d
CL
4128 num_slabs++;
4129 }
ce8eb6c4
CL
4130 free_objects += n->free_objects;
4131 if (n->shared)
4132 shared_avail += n->shared->avail;
e498be7d 4133
ce8eb6c4 4134 spin_unlock_irq(&n->list_lock);
1da177e4 4135 }
b28a02de
PE
4136 num_slabs += active_slabs;
4137 num_objs = num_slabs * cachep->num;
e498be7d 4138 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4139 error = "free_objects accounting error";
4140
b28a02de 4141 name = cachep->name;
1da177e4
LT
4142 if (error)
4143 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4144
0d7561c6
GC
4145 sinfo->active_objs = active_objs;
4146 sinfo->num_objs = num_objs;
4147 sinfo->active_slabs = active_slabs;
4148 sinfo->num_slabs = num_slabs;
4149 sinfo->shared_avail = shared_avail;
4150 sinfo->limit = cachep->limit;
4151 sinfo->batchcount = cachep->batchcount;
4152 sinfo->shared = cachep->shared;
4153 sinfo->objects_per_slab = cachep->num;
4154 sinfo->cache_order = cachep->gfporder;
4155}
4156
4157void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4158{
1da177e4 4159#if STATS
ce8eb6c4 4160 { /* node stats */
1da177e4
LT
4161 unsigned long high = cachep->high_mark;
4162 unsigned long allocs = cachep->num_allocations;
4163 unsigned long grown = cachep->grown;
4164 unsigned long reaped = cachep->reaped;
4165 unsigned long errors = cachep->errors;
4166 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4167 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4168 unsigned long node_frees = cachep->node_frees;
fb7faf33 4169 unsigned long overflows = cachep->node_overflow;
1da177e4 4170
e92dd4fd
JP
4171 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4172 "%4lu %4lu %4lu %4lu %4lu",
4173 allocs, high, grown,
4174 reaped, errors, max_freeable, node_allocs,
4175 node_frees, overflows);
1da177e4
LT
4176 }
4177 /* cpu stats */
4178 {
4179 unsigned long allochit = atomic_read(&cachep->allochit);
4180 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4181 unsigned long freehit = atomic_read(&cachep->freehit);
4182 unsigned long freemiss = atomic_read(&cachep->freemiss);
4183
4184 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4185 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4186 }
4187#endif
1da177e4
LT
4188}
4189
1da177e4
LT
4190#define MAX_SLABINFO_WRITE 128
4191/**
4192 * slabinfo_write - Tuning for the slab allocator
4193 * @file: unused
4194 * @buffer: user buffer
4195 * @count: data length
4196 * @ppos: unused
4197 */
b7454ad3 4198ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4199 size_t count, loff_t *ppos)
1da177e4 4200{
b28a02de 4201 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4202 int limit, batchcount, shared, res;
7a7c381d 4203 struct kmem_cache *cachep;
b28a02de 4204
1da177e4
LT
4205 if (count > MAX_SLABINFO_WRITE)
4206 return -EINVAL;
4207 if (copy_from_user(&kbuf, buffer, count))
4208 return -EFAULT;
b28a02de 4209 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4210
4211 tmp = strchr(kbuf, ' ');
4212 if (!tmp)
4213 return -EINVAL;
4214 *tmp = '\0';
4215 tmp++;
4216 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4217 return -EINVAL;
4218
4219 /* Find the cache in the chain of caches. */
18004c5d 4220 mutex_lock(&slab_mutex);
1da177e4 4221 res = -EINVAL;
18004c5d 4222 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4223 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4224 if (limit < 1 || batchcount < 1 ||
4225 batchcount > limit || shared < 0) {
e498be7d 4226 res = 0;
1da177e4 4227 } else {
e498be7d 4228 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4229 batchcount, shared,
4230 GFP_KERNEL);
1da177e4
LT
4231 }
4232 break;
4233 }
4234 }
18004c5d 4235 mutex_unlock(&slab_mutex);
1da177e4
LT
4236 if (res >= 0)
4237 res = count;
4238 return res;
4239}
871751e2
AV
4240
4241#ifdef CONFIG_DEBUG_SLAB_LEAK
4242
4243static void *leaks_start(struct seq_file *m, loff_t *pos)
4244{
18004c5d
CL
4245 mutex_lock(&slab_mutex);
4246 return seq_list_start(&slab_caches, *pos);
871751e2
AV
4247}
4248
4249static inline int add_caller(unsigned long *n, unsigned long v)
4250{
4251 unsigned long *p;
4252 int l;
4253 if (!v)
4254 return 1;
4255 l = n[1];
4256 p = n + 2;
4257 while (l) {
4258 int i = l/2;
4259 unsigned long *q = p + 2 * i;
4260 if (*q == v) {
4261 q[1]++;
4262 return 1;
4263 }
4264 if (*q > v) {
4265 l = i;
4266 } else {
4267 p = q + 2;
4268 l -= i + 1;
4269 }
4270 }
4271 if (++n[1] == n[0])
4272 return 0;
4273 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4274 p[0] = v;
4275 p[1] = 1;
4276 return 1;
4277}
4278
8456a648
JK
4279static void handle_slab(unsigned long *n, struct kmem_cache *c,
4280 struct page *page)
871751e2
AV
4281{
4282 void *p;
03787301 4283 int i;
b1cb0982 4284
871751e2
AV
4285 if (n[0] == n[1])
4286 return;
8456a648 4287 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
03787301 4288 if (get_obj_status(page, i) != OBJECT_ACTIVE)
871751e2 4289 continue;
b1cb0982 4290
871751e2
AV
4291 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4292 return;
4293 }
4294}
4295
4296static void show_symbol(struct seq_file *m, unsigned long address)
4297{
4298#ifdef CONFIG_KALLSYMS
871751e2 4299 unsigned long offset, size;
9281acea 4300 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4301
a5c43dae 4302 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4303 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4304 if (modname[0])
871751e2
AV
4305 seq_printf(m, " [%s]", modname);
4306 return;
4307 }
4308#endif
4309 seq_printf(m, "%p", (void *)address);
4310}
4311
4312static int leaks_show(struct seq_file *m, void *p)
4313{
0672aa7c 4314 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4315 struct page *page;
ce8eb6c4 4316 struct kmem_cache_node *n;
871751e2 4317 const char *name;
db845067 4318 unsigned long *x = m->private;
871751e2
AV
4319 int node;
4320 int i;
4321
4322 if (!(cachep->flags & SLAB_STORE_USER))
4323 return 0;
4324 if (!(cachep->flags & SLAB_RED_ZONE))
4325 return 0;
4326
4327 /* OK, we can do it */
4328
db845067 4329 x[1] = 0;
871751e2
AV
4330
4331 for_each_online_node(node) {
ce8eb6c4
CL
4332 n = cachep->node[node];
4333 if (!n)
871751e2
AV
4334 continue;
4335
4336 check_irq_on();
ce8eb6c4 4337 spin_lock_irq(&n->list_lock);
871751e2 4338
8456a648
JK
4339 list_for_each_entry(page, &n->slabs_full, lru)
4340 handle_slab(x, cachep, page);
4341 list_for_each_entry(page, &n->slabs_partial, lru)
4342 handle_slab(x, cachep, page);
ce8eb6c4 4343 spin_unlock_irq(&n->list_lock);
871751e2
AV
4344 }
4345 name = cachep->name;
db845067 4346 if (x[0] == x[1]) {
871751e2 4347 /* Increase the buffer size */
18004c5d 4348 mutex_unlock(&slab_mutex);
db845067 4349 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4350 if (!m->private) {
4351 /* Too bad, we are really out */
db845067 4352 m->private = x;
18004c5d 4353 mutex_lock(&slab_mutex);
871751e2
AV
4354 return -ENOMEM;
4355 }
db845067
CL
4356 *(unsigned long *)m->private = x[0] * 2;
4357 kfree(x);
18004c5d 4358 mutex_lock(&slab_mutex);
871751e2
AV
4359 /* Now make sure this entry will be retried */
4360 m->count = m->size;
4361 return 0;
4362 }
db845067
CL
4363 for (i = 0; i < x[1]; i++) {
4364 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4365 show_symbol(m, x[2*i+2]);
871751e2
AV
4366 seq_putc(m, '\n');
4367 }
d2e7b7d0 4368
871751e2
AV
4369 return 0;
4370}
4371
a0ec95a8 4372static const struct seq_operations slabstats_op = {
871751e2 4373 .start = leaks_start,
276a2439
WL
4374 .next = slab_next,
4375 .stop = slab_stop,
871751e2
AV
4376 .show = leaks_show,
4377};
a0ec95a8
AD
4378
4379static int slabstats_open(struct inode *inode, struct file *file)
4380{
4381 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4382 int ret = -ENOMEM;
4383 if (n) {
4384 ret = seq_open(file, &slabstats_op);
4385 if (!ret) {
4386 struct seq_file *m = file->private_data;
4387 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4388 m->private = n;
4389 n = NULL;
4390 }
4391 kfree(n);
4392 }
4393 return ret;
4394}
4395
4396static const struct file_operations proc_slabstats_operations = {
4397 .open = slabstats_open,
4398 .read = seq_read,
4399 .llseek = seq_lseek,
4400 .release = seq_release_private,
4401};
4402#endif
4403
4404static int __init slab_proc_init(void)
4405{
4406#ifdef CONFIG_DEBUG_SLAB_LEAK
4407 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4408#endif
a0ec95a8
AD
4409 return 0;
4410}
4411module_init(slab_proc_init);
1da177e4
LT
4412#endif
4413
00e145b6
MS
4414/**
4415 * ksize - get the actual amount of memory allocated for a given object
4416 * @objp: Pointer to the object
4417 *
4418 * kmalloc may internally round up allocations and return more memory
4419 * than requested. ksize() can be used to determine the actual amount of
4420 * memory allocated. The caller may use this additional memory, even though
4421 * a smaller amount of memory was initially specified with the kmalloc call.
4422 * The caller must guarantee that objp points to a valid object previously
4423 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4424 * must not be freed during the duration of the call.
4425 */
fd76bab2 4426size_t ksize(const void *objp)
1da177e4 4427{
ef8b4520
CL
4428 BUG_ON(!objp);
4429 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4430 return 0;
1da177e4 4431
8c138bc0 4432 return virt_to_cache(objp)->object_size;
1da177e4 4433}
b1aabecd 4434EXPORT_SYMBOL(ksize);