]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/slab.c
[PATCH] slab: add statistics for alien cache overflows
[mirror_ubuntu-kernels.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
1da177e4
LT
98#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
543537bd 105#include <linux/string.h>
e498be7d 106#include <linux/nodemask.h>
dc85da15 107#include <linux/mempolicy.h>
fc0abb14 108#include <linux/mutex.h>
1da177e4
LT
109
110#include <asm/uaccess.h>
111#include <asm/cacheflush.h>
112#include <asm/tlbflush.h>
113#include <asm/page.h>
114
115/*
116 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
117 * SLAB_RED_ZONE & SLAB_POISON.
118 * 0 for faster, smaller code (especially in the critical paths).
119 *
120 * STATS - 1 to collect stats for /proc/slabinfo.
121 * 0 for faster, smaller code (especially in the critical paths).
122 *
123 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
124 */
125
126#ifdef CONFIG_DEBUG_SLAB
127#define DEBUG 1
128#define STATS 1
129#define FORCED_DEBUG 1
130#else
131#define DEBUG 0
132#define STATS 0
133#define FORCED_DEBUG 0
134#endif
135
1da177e4
LT
136/* Shouldn't this be in a header file somewhere? */
137#define BYTES_PER_WORD sizeof(void *)
138
139#ifndef cache_line_size
140#define cache_line_size() L1_CACHE_BYTES
141#endif
142
143#ifndef ARCH_KMALLOC_MINALIGN
144/*
145 * Enforce a minimum alignment for the kmalloc caches.
146 * Usually, the kmalloc caches are cache_line_size() aligned, except when
147 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
148 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
149 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
150 * Note that this flag disables some debug features.
151 */
152#define ARCH_KMALLOC_MINALIGN 0
153#endif
154
155#ifndef ARCH_SLAB_MINALIGN
156/*
157 * Enforce a minimum alignment for all caches.
158 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
159 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
160 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
161 * some debug features.
162 */
163#define ARCH_SLAB_MINALIGN 0
164#endif
165
166#ifndef ARCH_KMALLOC_FLAGS
167#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
168#endif
169
170/* Legal flag mask for kmem_cache_create(). */
171#if DEBUG
172# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 174 SLAB_CACHE_DMA | \
1da177e4
LT
175 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
176 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 177 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4 178#else
ac2b898c 179# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
1da177e4
LT
180 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
181 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 182 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4
LT
183#endif
184
185/*
186 * kmem_bufctl_t:
187 *
188 * Bufctl's are used for linking objs within a slab
189 * linked offsets.
190 *
191 * This implementation relies on "struct page" for locating the cache &
192 * slab an object belongs to.
193 * This allows the bufctl structure to be small (one int), but limits
194 * the number of objects a slab (not a cache) can contain when off-slab
195 * bufctls are used. The limit is the size of the largest general cache
196 * that does not use off-slab slabs.
197 * For 32bit archs with 4 kB pages, is this 56.
198 * This is not serious, as it is only for large objects, when it is unwise
199 * to have too many per slab.
200 * Note: This limit can be raised by introducing a general cache whose size
201 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
202 */
203
fa5b08d5 204typedef unsigned int kmem_bufctl_t;
1da177e4
LT
205#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
206#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
207#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
208#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4
LT
209
210/* Max number of objs-per-slab for caches which use off-slab slabs.
211 * Needed to avoid a possible looping condition in cache_grow().
212 */
213static unsigned long offslab_limit;
214
215/*
216 * struct slab
217 *
218 * Manages the objs in a slab. Placed either at the beginning of mem allocated
219 * for a slab, or allocated from an general cache.
220 * Slabs are chained into three list: fully used, partial, fully free slabs.
221 */
222struct slab {
b28a02de
PE
223 struct list_head list;
224 unsigned long colouroff;
225 void *s_mem; /* including colour offset */
226 unsigned int inuse; /* num of objs active in slab */
227 kmem_bufctl_t free;
228 unsigned short nodeid;
1da177e4
LT
229};
230
231/*
232 * struct slab_rcu
233 *
234 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
235 * arrange for kmem_freepages to be called via RCU. This is useful if
236 * we need to approach a kernel structure obliquely, from its address
237 * obtained without the usual locking. We can lock the structure to
238 * stabilize it and check it's still at the given address, only if we
239 * can be sure that the memory has not been meanwhile reused for some
240 * other kind of object (which our subsystem's lock might corrupt).
241 *
242 * rcu_read_lock before reading the address, then rcu_read_unlock after
243 * taking the spinlock within the structure expected at that address.
244 *
245 * We assume struct slab_rcu can overlay struct slab when destroying.
246 */
247struct slab_rcu {
b28a02de 248 struct rcu_head head;
343e0d7a 249 struct kmem_cache *cachep;
b28a02de 250 void *addr;
1da177e4
LT
251};
252
253/*
254 * struct array_cache
255 *
1da177e4
LT
256 * Purpose:
257 * - LIFO ordering, to hand out cache-warm objects from _alloc
258 * - reduce the number of linked list operations
259 * - reduce spinlock operations
260 *
261 * The limit is stored in the per-cpu structure to reduce the data cache
262 * footprint.
263 *
264 */
265struct array_cache {
266 unsigned int avail;
267 unsigned int limit;
268 unsigned int batchcount;
269 unsigned int touched;
e498be7d 270 spinlock_t lock;
a737b3e2
AM
271 void *entry[0]; /*
272 * Must have this definition in here for the proper
273 * alignment of array_cache. Also simplifies accessing
274 * the entries.
275 * [0] is for gcc 2.95. It should really be [].
276 */
1da177e4
LT
277};
278
a737b3e2
AM
279/*
280 * bootstrap: The caches do not work without cpuarrays anymore, but the
281 * cpuarrays are allocated from the generic caches...
1da177e4
LT
282 */
283#define BOOT_CPUCACHE_ENTRIES 1
284struct arraycache_init {
285 struct array_cache cache;
b28a02de 286 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
287};
288
289/*
e498be7d 290 * The slab lists for all objects.
1da177e4
LT
291 */
292struct kmem_list3 {
b28a02de
PE
293 struct list_head slabs_partial; /* partial list first, better asm code */
294 struct list_head slabs_full;
295 struct list_head slabs_free;
296 unsigned long free_objects;
b28a02de 297 unsigned int free_limit;
2e1217cf 298 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
299 spinlock_t list_lock;
300 struct array_cache *shared; /* shared per node */
301 struct array_cache **alien; /* on other nodes */
35386e3b
CL
302 unsigned long next_reap; /* updated without locking */
303 int free_touched; /* updated without locking */
1da177e4
LT
304};
305
e498be7d
CL
306/*
307 * Need this for bootstrapping a per node allocator.
308 */
309#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
310struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
311#define CACHE_CACHE 0
312#define SIZE_AC 1
313#define SIZE_L3 (1 + MAX_NUMNODES)
314
315/*
a737b3e2
AM
316 * This function must be completely optimized away if a constant is passed to
317 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 318 */
7243cc05 319static __always_inline int index_of(const size_t size)
e498be7d 320{
5ec8a847
SR
321 extern void __bad_size(void);
322
e498be7d
CL
323 if (__builtin_constant_p(size)) {
324 int i = 0;
325
326#define CACHE(x) \
327 if (size <=x) \
328 return i; \
329 else \
330 i++;
331#include "linux/kmalloc_sizes.h"
332#undef CACHE
5ec8a847 333 __bad_size();
7243cc05 334 } else
5ec8a847 335 __bad_size();
e498be7d
CL
336 return 0;
337}
338
339#define INDEX_AC index_of(sizeof(struct arraycache_init))
340#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 341
5295a74c 342static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
343{
344 INIT_LIST_HEAD(&parent->slabs_full);
345 INIT_LIST_HEAD(&parent->slabs_partial);
346 INIT_LIST_HEAD(&parent->slabs_free);
347 parent->shared = NULL;
348 parent->alien = NULL;
2e1217cf 349 parent->colour_next = 0;
e498be7d
CL
350 spin_lock_init(&parent->list_lock);
351 parent->free_objects = 0;
352 parent->free_touched = 0;
353}
354
a737b3e2
AM
355#define MAKE_LIST(cachep, listp, slab, nodeid) \
356 do { \
357 INIT_LIST_HEAD(listp); \
358 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
359 } while (0)
360
a737b3e2
AM
361#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
362 do { \
e498be7d
CL
363 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
364 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
365 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
366 } while (0)
1da177e4
LT
367
368/*
343e0d7a 369 * struct kmem_cache
1da177e4
LT
370 *
371 * manages a cache.
372 */
b28a02de 373
2109a2d1 374struct kmem_cache {
1da177e4 375/* 1) per-cpu data, touched during every alloc/free */
b28a02de 376 struct array_cache *array[NR_CPUS];
b5d8ca7c 377/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
378 unsigned int batchcount;
379 unsigned int limit;
380 unsigned int shared;
b5d8ca7c 381
3dafccf2 382 unsigned int buffer_size;
b5d8ca7c 383/* 3) touched by every alloc & free from the backend */
b28a02de 384 struct kmem_list3 *nodelists[MAX_NUMNODES];
b5d8ca7c 385
a737b3e2
AM
386 unsigned int flags; /* constant flags */
387 unsigned int num; /* # of objs per slab */
1da177e4 388
b5d8ca7c 389/* 4) cache_grow/shrink */
1da177e4 390 /* order of pgs per slab (2^n) */
b28a02de 391 unsigned int gfporder;
1da177e4
LT
392
393 /* force GFP flags, e.g. GFP_DMA */
b28a02de 394 gfp_t gfpflags;
1da177e4 395
a737b3e2 396 size_t colour; /* cache colouring range */
b28a02de 397 unsigned int colour_off; /* colour offset */
343e0d7a 398 struct kmem_cache *slabp_cache;
b28a02de 399 unsigned int slab_size;
a737b3e2 400 unsigned int dflags; /* dynamic flags */
1da177e4
LT
401
402 /* constructor func */
343e0d7a 403 void (*ctor) (void *, struct kmem_cache *, unsigned long);
1da177e4
LT
404
405 /* de-constructor func */
343e0d7a 406 void (*dtor) (void *, struct kmem_cache *, unsigned long);
1da177e4 407
b5d8ca7c 408/* 5) cache creation/removal */
b28a02de
PE
409 const char *name;
410 struct list_head next;
1da177e4 411
b5d8ca7c 412/* 6) statistics */
1da177e4 413#if STATS
b28a02de
PE
414 unsigned long num_active;
415 unsigned long num_allocations;
416 unsigned long high_mark;
417 unsigned long grown;
418 unsigned long reaped;
419 unsigned long errors;
420 unsigned long max_freeable;
421 unsigned long node_allocs;
422 unsigned long node_frees;
fb7faf33 423 unsigned long node_overflow;
b28a02de
PE
424 atomic_t allochit;
425 atomic_t allocmiss;
426 atomic_t freehit;
427 atomic_t freemiss;
1da177e4
LT
428#endif
429#if DEBUG
3dafccf2
MS
430 /*
431 * If debugging is enabled, then the allocator can add additional
432 * fields and/or padding to every object. buffer_size contains the total
433 * object size including these internal fields, the following two
434 * variables contain the offset to the user object and its size.
435 */
436 int obj_offset;
437 int obj_size;
1da177e4
LT
438#endif
439};
440
441#define CFLGS_OFF_SLAB (0x80000000UL)
442#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
443
444#define BATCHREFILL_LIMIT 16
a737b3e2
AM
445/*
446 * Optimization question: fewer reaps means less probability for unnessary
447 * cpucache drain/refill cycles.
1da177e4 448 *
dc6f3f27 449 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
450 * which could lock up otherwise freeable slabs.
451 */
452#define REAPTIMEOUT_CPUC (2*HZ)
453#define REAPTIMEOUT_LIST3 (4*HZ)
454
455#if STATS
456#define STATS_INC_ACTIVE(x) ((x)->num_active++)
457#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
458#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
459#define STATS_INC_GROWN(x) ((x)->grown++)
460#define STATS_INC_REAPED(x) ((x)->reaped++)
a737b3e2
AM
461#define STATS_SET_HIGH(x) \
462 do { \
463 if ((x)->num_active > (x)->high_mark) \
464 (x)->high_mark = (x)->num_active; \
465 } while (0)
1da177e4
LT
466#define STATS_INC_ERR(x) ((x)->errors++)
467#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 468#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 469#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
470#define STATS_SET_FREEABLE(x, i) \
471 do { \
472 if ((x)->max_freeable < i) \
473 (x)->max_freeable = i; \
474 } while (0)
1da177e4
LT
475#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
476#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
477#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
478#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
479#else
480#define STATS_INC_ACTIVE(x) do { } while (0)
481#define STATS_DEC_ACTIVE(x) do { } while (0)
482#define STATS_INC_ALLOCED(x) do { } while (0)
483#define STATS_INC_GROWN(x) do { } while (0)
484#define STATS_INC_REAPED(x) do { } while (0)
485#define STATS_SET_HIGH(x) do { } while (0)
486#define STATS_INC_ERR(x) do { } while (0)
487#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 488#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 489#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 490#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
491#define STATS_INC_ALLOCHIT(x) do { } while (0)
492#define STATS_INC_ALLOCMISS(x) do { } while (0)
493#define STATS_INC_FREEHIT(x) do { } while (0)
494#define STATS_INC_FREEMISS(x) do { } while (0)
495#endif
496
497#if DEBUG
a737b3e2
AM
498/*
499 * Magic nums for obj red zoning.
1da177e4
LT
500 * Placed in the first word before and the first word after an obj.
501 */
502#define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
503#define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
504
505/* ...and for poisoning */
506#define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
507#define POISON_FREE 0x6b /* for use-after-free poisoning */
508#define POISON_END 0xa5 /* end-byte of poisoning */
509
a737b3e2
AM
510/*
511 * memory layout of objects:
1da177e4 512 * 0 : objp
3dafccf2 513 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
514 * the end of an object is aligned with the end of the real
515 * allocation. Catches writes behind the end of the allocation.
3dafccf2 516 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 517 * redzone word.
3dafccf2
MS
518 * cachep->obj_offset: The real object.
519 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
520 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
521 * [BYTES_PER_WORD long]
1da177e4 522 */
343e0d7a 523static int obj_offset(struct kmem_cache *cachep)
1da177e4 524{
3dafccf2 525 return cachep->obj_offset;
1da177e4
LT
526}
527
343e0d7a 528static int obj_size(struct kmem_cache *cachep)
1da177e4 529{
3dafccf2 530 return cachep->obj_size;
1da177e4
LT
531}
532
343e0d7a 533static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
534{
535 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
3dafccf2 536 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
1da177e4
LT
537}
538
343e0d7a 539static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
540{
541 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
542 if (cachep->flags & SLAB_STORE_USER)
3dafccf2 543 return (unsigned long *)(objp + cachep->buffer_size -
b28a02de 544 2 * BYTES_PER_WORD);
3dafccf2 545 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
546}
547
343e0d7a 548static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
549{
550 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 551 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
552}
553
554#else
555
3dafccf2
MS
556#define obj_offset(x) 0
557#define obj_size(cachep) (cachep->buffer_size)
1da177e4
LT
558#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
559#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
560#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
561
562#endif
563
564/*
a737b3e2
AM
565 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
566 * order.
1da177e4
LT
567 */
568#if defined(CONFIG_LARGE_ALLOCS)
569#define MAX_OBJ_ORDER 13 /* up to 32Mb */
570#define MAX_GFP_ORDER 13 /* up to 32Mb */
571#elif defined(CONFIG_MMU)
572#define MAX_OBJ_ORDER 5 /* 32 pages */
573#define MAX_GFP_ORDER 5 /* 32 pages */
574#else
575#define MAX_OBJ_ORDER 8 /* up to 1Mb */
576#define MAX_GFP_ORDER 8 /* up to 1Mb */
577#endif
578
579/*
580 * Do not go above this order unless 0 objects fit into the slab.
581 */
582#define BREAK_GFP_ORDER_HI 1
583#define BREAK_GFP_ORDER_LO 0
584static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
585
a737b3e2
AM
586/*
587 * Functions for storing/retrieving the cachep and or slab from the page
588 * allocator. These are used to find the slab an obj belongs to. With kfree(),
589 * these are used to find the cache which an obj belongs to.
1da177e4 590 */
065d41cb
PE
591static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
592{
593 page->lru.next = (struct list_head *)cache;
594}
595
596static inline struct kmem_cache *page_get_cache(struct page *page)
597{
84097518
NP
598 if (unlikely(PageCompound(page)))
599 page = (struct page *)page_private(page);
065d41cb
PE
600 return (struct kmem_cache *)page->lru.next;
601}
602
603static inline void page_set_slab(struct page *page, struct slab *slab)
604{
605 page->lru.prev = (struct list_head *)slab;
606}
607
608static inline struct slab *page_get_slab(struct page *page)
609{
84097518
NP
610 if (unlikely(PageCompound(page)))
611 page = (struct page *)page_private(page);
065d41cb
PE
612 return (struct slab *)page->lru.prev;
613}
1da177e4 614
6ed5eb22
PE
615static inline struct kmem_cache *virt_to_cache(const void *obj)
616{
617 struct page *page = virt_to_page(obj);
618 return page_get_cache(page);
619}
620
621static inline struct slab *virt_to_slab(const void *obj)
622{
623 struct page *page = virt_to_page(obj);
624 return page_get_slab(page);
625}
626
8fea4e96
PE
627static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
628 unsigned int idx)
629{
630 return slab->s_mem + cache->buffer_size * idx;
631}
632
633static inline unsigned int obj_to_index(struct kmem_cache *cache,
634 struct slab *slab, void *obj)
635{
636 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
637}
638
a737b3e2
AM
639/*
640 * These are the default caches for kmalloc. Custom caches can have other sizes.
641 */
1da177e4
LT
642struct cache_sizes malloc_sizes[] = {
643#define CACHE(x) { .cs_size = (x) },
644#include <linux/kmalloc_sizes.h>
645 CACHE(ULONG_MAX)
646#undef CACHE
647};
648EXPORT_SYMBOL(malloc_sizes);
649
650/* Must match cache_sizes above. Out of line to keep cache footprint low. */
651struct cache_names {
652 char *name;
653 char *name_dma;
654};
655
656static struct cache_names __initdata cache_names[] = {
657#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
658#include <linux/kmalloc_sizes.h>
b28a02de 659 {NULL,}
1da177e4
LT
660#undef CACHE
661};
662
663static struct arraycache_init initarray_cache __initdata =
b28a02de 664 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 665static struct arraycache_init initarray_generic =
b28a02de 666 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
667
668/* internal cache of cache description objs */
343e0d7a 669static struct kmem_cache cache_cache = {
b28a02de
PE
670 .batchcount = 1,
671 .limit = BOOT_CPUCACHE_ENTRIES,
672 .shared = 1,
343e0d7a 673 .buffer_size = sizeof(struct kmem_cache),
b28a02de 674 .name = "kmem_cache",
1da177e4 675#if DEBUG
343e0d7a 676 .obj_size = sizeof(struct kmem_cache),
1da177e4
LT
677#endif
678};
679
680/* Guard access to the cache-chain. */
fc0abb14 681static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
682static struct list_head cache_chain;
683
684/*
a737b3e2
AM
685 * vm_enough_memory() looks at this to determine how many slab-allocated pages
686 * are possibly freeable under pressure
1da177e4
LT
687 *
688 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
689 */
690atomic_t slab_reclaim_pages;
1da177e4
LT
691
692/*
693 * chicken and egg problem: delay the per-cpu array allocation
694 * until the general caches are up.
695 */
696static enum {
697 NONE,
e498be7d
CL
698 PARTIAL_AC,
699 PARTIAL_L3,
1da177e4
LT
700 FULL
701} g_cpucache_up;
702
703static DEFINE_PER_CPU(struct work_struct, reap_work);
704
a737b3e2
AM
705static void free_block(struct kmem_cache *cachep, void **objpp, int len,
706 int node);
343e0d7a 707static void enable_cpucache(struct kmem_cache *cachep);
b28a02de 708static void cache_reap(void *unused);
343e0d7a 709static int __node_shrink(struct kmem_cache *cachep, int node);
1da177e4 710
343e0d7a 711static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
712{
713 return cachep->array[smp_processor_id()];
714}
715
a737b3e2
AM
716static inline struct kmem_cache *__find_general_cachep(size_t size,
717 gfp_t gfpflags)
1da177e4
LT
718{
719 struct cache_sizes *csizep = malloc_sizes;
720
721#if DEBUG
722 /* This happens if someone tries to call
b28a02de
PE
723 * kmem_cache_create(), or __kmalloc(), before
724 * the generic caches are initialized.
725 */
c7e43c78 726 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4
LT
727#endif
728 while (size > csizep->cs_size)
729 csizep++;
730
731 /*
0abf40c1 732 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
733 * has cs_{dma,}cachep==NULL. Thus no special case
734 * for large kmalloc calls required.
735 */
736 if (unlikely(gfpflags & GFP_DMA))
737 return csizep->cs_dmacachep;
738 return csizep->cs_cachep;
739}
740
343e0d7a 741struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
742{
743 return __find_general_cachep(size, gfpflags);
744}
745EXPORT_SYMBOL(kmem_find_general_cachep);
746
fbaccacf 747static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 748{
fbaccacf
SR
749 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
750}
1da177e4 751
a737b3e2
AM
752/*
753 * Calculate the number of objects and left-over bytes for a given buffer size.
754 */
fbaccacf
SR
755static void cache_estimate(unsigned long gfporder, size_t buffer_size,
756 size_t align, int flags, size_t *left_over,
757 unsigned int *num)
758{
759 int nr_objs;
760 size_t mgmt_size;
761 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 762
fbaccacf
SR
763 /*
764 * The slab management structure can be either off the slab or
765 * on it. For the latter case, the memory allocated for a
766 * slab is used for:
767 *
768 * - The struct slab
769 * - One kmem_bufctl_t for each object
770 * - Padding to respect alignment of @align
771 * - @buffer_size bytes for each object
772 *
773 * If the slab management structure is off the slab, then the
774 * alignment will already be calculated into the size. Because
775 * the slabs are all pages aligned, the objects will be at the
776 * correct alignment when allocated.
777 */
778 if (flags & CFLGS_OFF_SLAB) {
779 mgmt_size = 0;
780 nr_objs = slab_size / buffer_size;
781
782 if (nr_objs > SLAB_LIMIT)
783 nr_objs = SLAB_LIMIT;
784 } else {
785 /*
786 * Ignore padding for the initial guess. The padding
787 * is at most @align-1 bytes, and @buffer_size is at
788 * least @align. In the worst case, this result will
789 * be one greater than the number of objects that fit
790 * into the memory allocation when taking the padding
791 * into account.
792 */
793 nr_objs = (slab_size - sizeof(struct slab)) /
794 (buffer_size + sizeof(kmem_bufctl_t));
795
796 /*
797 * This calculated number will be either the right
798 * amount, or one greater than what we want.
799 */
800 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
801 > slab_size)
802 nr_objs--;
803
804 if (nr_objs > SLAB_LIMIT)
805 nr_objs = SLAB_LIMIT;
806
807 mgmt_size = slab_mgmt_size(nr_objs, align);
808 }
809 *num = nr_objs;
810 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
811}
812
813#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
814
a737b3e2
AM
815static void __slab_error(const char *function, struct kmem_cache *cachep,
816 char *msg)
1da177e4
LT
817{
818 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 819 function, cachep->name, msg);
1da177e4
LT
820 dump_stack();
821}
822
8fce4d8e
CL
823#ifdef CONFIG_NUMA
824/*
825 * Special reaping functions for NUMA systems called from cache_reap().
826 * These take care of doing round robin flushing of alien caches (containing
827 * objects freed on different nodes from which they were allocated) and the
828 * flushing of remote pcps by calling drain_node_pages.
829 */
830static DEFINE_PER_CPU(unsigned long, reap_node);
831
832static void init_reap_node(int cpu)
833{
834 int node;
835
836 node = next_node(cpu_to_node(cpu), node_online_map);
837 if (node == MAX_NUMNODES)
442295c9 838 node = first_node(node_online_map);
8fce4d8e
CL
839
840 __get_cpu_var(reap_node) = node;
841}
842
843static void next_reap_node(void)
844{
845 int node = __get_cpu_var(reap_node);
846
847 /*
848 * Also drain per cpu pages on remote zones
849 */
850 if (node != numa_node_id())
851 drain_node_pages(node);
852
853 node = next_node(node, node_online_map);
854 if (unlikely(node >= MAX_NUMNODES))
855 node = first_node(node_online_map);
856 __get_cpu_var(reap_node) = node;
857}
858
859#else
860#define init_reap_node(cpu) do { } while (0)
861#define next_reap_node(void) do { } while (0)
862#endif
863
1da177e4
LT
864/*
865 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
866 * via the workqueue/eventd.
867 * Add the CPU number into the expiration time to minimize the possibility of
868 * the CPUs getting into lockstep and contending for the global cache chain
869 * lock.
870 */
871static void __devinit start_cpu_timer(int cpu)
872{
873 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
874
875 /*
876 * When this gets called from do_initcalls via cpucache_init(),
877 * init_workqueues() has already run, so keventd will be setup
878 * at that time.
879 */
880 if (keventd_up() && reap_work->func == NULL) {
8fce4d8e 881 init_reap_node(cpu);
1da177e4
LT
882 INIT_WORK(reap_work, cache_reap, NULL);
883 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
884 }
885}
886
e498be7d 887static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 888 int batchcount)
1da177e4 889{
b28a02de 890 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
891 struct array_cache *nc = NULL;
892
e498be7d 893 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
894 if (nc) {
895 nc->avail = 0;
896 nc->limit = entries;
897 nc->batchcount = batchcount;
898 nc->touched = 0;
e498be7d 899 spin_lock_init(&nc->lock);
1da177e4
LT
900 }
901 return nc;
902}
903
3ded175a
CL
904/*
905 * Transfer objects in one arraycache to another.
906 * Locking must be handled by the caller.
907 *
908 * Return the number of entries transferred.
909 */
910static int transfer_objects(struct array_cache *to,
911 struct array_cache *from, unsigned int max)
912{
913 /* Figure out how many entries to transfer */
914 int nr = min(min(from->avail, max), to->limit - to->avail);
915
916 if (!nr)
917 return 0;
918
919 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
920 sizeof(void *) *nr);
921
922 from->avail -= nr;
923 to->avail += nr;
924 to->touched = 1;
925 return nr;
926}
927
e498be7d 928#ifdef CONFIG_NUMA
343e0d7a 929static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 930static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 931
5295a74c 932static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
933{
934 struct array_cache **ac_ptr;
b28a02de 935 int memsize = sizeof(void *) * MAX_NUMNODES;
e498be7d
CL
936 int i;
937
938 if (limit > 1)
939 limit = 12;
940 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
941 if (ac_ptr) {
942 for_each_node(i) {
943 if (i == node || !node_online(i)) {
944 ac_ptr[i] = NULL;
945 continue;
946 }
947 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
948 if (!ac_ptr[i]) {
b28a02de 949 for (i--; i <= 0; i--)
e498be7d
CL
950 kfree(ac_ptr[i]);
951 kfree(ac_ptr);
952 return NULL;
953 }
954 }
955 }
956 return ac_ptr;
957}
958
5295a74c 959static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
960{
961 int i;
962
963 if (!ac_ptr)
964 return;
e498be7d 965 for_each_node(i)
b28a02de 966 kfree(ac_ptr[i]);
e498be7d
CL
967 kfree(ac_ptr);
968}
969
343e0d7a 970static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 971 struct array_cache *ac, int node)
e498be7d
CL
972{
973 struct kmem_list3 *rl3 = cachep->nodelists[node];
974
975 if (ac->avail) {
976 spin_lock(&rl3->list_lock);
e00946fe
CL
977 /*
978 * Stuff objects into the remote nodes shared array first.
979 * That way we could avoid the overhead of putting the objects
980 * into the free lists and getting them back later.
981 */
982 transfer_objects(rl3->shared, ac, ac->limit);
983
ff69416e 984 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
985 ac->avail = 0;
986 spin_unlock(&rl3->list_lock);
987 }
988}
989
8fce4d8e
CL
990/*
991 * Called from cache_reap() to regularly drain alien caches round robin.
992 */
993static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
994{
995 int node = __get_cpu_var(reap_node);
996
997 if (l3->alien) {
998 struct array_cache *ac = l3->alien[node];
e00946fe
CL
999
1000 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1001 __drain_alien_cache(cachep, ac, node);
1002 spin_unlock_irq(&ac->lock);
1003 }
1004 }
1005}
1006
a737b3e2
AM
1007static void drain_alien_cache(struct kmem_cache *cachep,
1008 struct array_cache **alien)
e498be7d 1009{
b28a02de 1010 int i = 0;
e498be7d
CL
1011 struct array_cache *ac;
1012 unsigned long flags;
1013
1014 for_each_online_node(i) {
4484ebf1 1015 ac = alien[i];
e498be7d
CL
1016 if (ac) {
1017 spin_lock_irqsave(&ac->lock, flags);
1018 __drain_alien_cache(cachep, ac, i);
1019 spin_unlock_irqrestore(&ac->lock, flags);
1020 }
1021 }
1022}
1023#else
7a21ef6f 1024
4484ebf1 1025#define drain_alien_cache(cachep, alien) do { } while (0)
8fce4d8e 1026#define reap_alien(cachep, l3) do { } while (0)
4484ebf1 1027
7a21ef6f
LT
1028static inline struct array_cache **alloc_alien_cache(int node, int limit)
1029{
1030 return (struct array_cache **) 0x01020304ul;
1031}
1032
4484ebf1
RT
1033static inline void free_alien_cache(struct array_cache **ac_ptr)
1034{
1035}
7a21ef6f 1036
e498be7d
CL
1037#endif
1038
1da177e4 1039static int __devinit cpuup_callback(struct notifier_block *nfb,
b28a02de 1040 unsigned long action, void *hcpu)
1da177e4
LT
1041{
1042 long cpu = (long)hcpu;
343e0d7a 1043 struct kmem_cache *cachep;
e498be7d
CL
1044 struct kmem_list3 *l3 = NULL;
1045 int node = cpu_to_node(cpu);
1046 int memsize = sizeof(struct kmem_list3);
1da177e4
LT
1047
1048 switch (action) {
1049 case CPU_UP_PREPARE:
fc0abb14 1050 mutex_lock(&cache_chain_mutex);
a737b3e2
AM
1051 /*
1052 * We need to do this right in the beginning since
e498be7d
CL
1053 * alloc_arraycache's are going to use this list.
1054 * kmalloc_node allows us to add the slab to the right
1055 * kmem_list3 and not this cpu's kmem_list3
1056 */
1057
1da177e4 1058 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2
AM
1059 /*
1060 * Set up the size64 kmemlist for cpu before we can
e498be7d
CL
1061 * begin anything. Make sure some other cpu on this
1062 * node has not already allocated this
1063 */
1064 if (!cachep->nodelists[node]) {
a737b3e2
AM
1065 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1066 if (!l3)
e498be7d
CL
1067 goto bad;
1068 kmem_list3_init(l3);
1069 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 1070 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1071
4484ebf1
RT
1072 /*
1073 * The l3s don't come and go as CPUs come and
1074 * go. cache_chain_mutex is sufficient
1075 * protection here.
1076 */
e498be7d
CL
1077 cachep->nodelists[node] = l3;
1078 }
1da177e4 1079
e498be7d
CL
1080 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1081 cachep->nodelists[node]->free_limit =
a737b3e2
AM
1082 (1 + nr_cpus_node(node)) *
1083 cachep->batchcount + cachep->num;
e498be7d
CL
1084 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1085 }
1086
a737b3e2
AM
1087 /*
1088 * Now we can go ahead with allocating the shared arrays and
1089 * array caches
1090 */
e498be7d 1091 list_for_each_entry(cachep, &cache_chain, next) {
cd105df4 1092 struct array_cache *nc;
4484ebf1
RT
1093 struct array_cache *shared;
1094 struct array_cache **alien;
cd105df4 1095
e498be7d 1096 nc = alloc_arraycache(node, cachep->limit,
4484ebf1 1097 cachep->batchcount);
1da177e4
LT
1098 if (!nc)
1099 goto bad;
4484ebf1
RT
1100 shared = alloc_arraycache(node,
1101 cachep->shared * cachep->batchcount,
1102 0xbaadf00d);
1103 if (!shared)
1104 goto bad;
7a21ef6f 1105
4484ebf1
RT
1106 alien = alloc_alien_cache(node, cachep->limit);
1107 if (!alien)
1108 goto bad;
1da177e4 1109 cachep->array[cpu] = nc;
e498be7d
CL
1110 l3 = cachep->nodelists[node];
1111 BUG_ON(!l3);
e498be7d 1112
4484ebf1
RT
1113 spin_lock_irq(&l3->list_lock);
1114 if (!l3->shared) {
1115 /*
1116 * We are serialised from CPU_DEAD or
1117 * CPU_UP_CANCELLED by the cpucontrol lock
1118 */
1119 l3->shared = shared;
1120 shared = NULL;
e498be7d 1121 }
4484ebf1
RT
1122#ifdef CONFIG_NUMA
1123 if (!l3->alien) {
1124 l3->alien = alien;
1125 alien = NULL;
1126 }
1127#endif
1128 spin_unlock_irq(&l3->list_lock);
4484ebf1
RT
1129 kfree(shared);
1130 free_alien_cache(alien);
1da177e4 1131 }
fc0abb14 1132 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1133 break;
1134 case CPU_ONLINE:
1135 start_cpu_timer(cpu);
1136 break;
1137#ifdef CONFIG_HOTPLUG_CPU
1138 case CPU_DEAD:
4484ebf1
RT
1139 /*
1140 * Even if all the cpus of a node are down, we don't free the
1141 * kmem_list3 of any cache. This to avoid a race between
1142 * cpu_down, and a kmalloc allocation from another cpu for
1143 * memory from the node of the cpu going down. The list3
1144 * structure is usually allocated from kmem_cache_create() and
1145 * gets destroyed at kmem_cache_destroy().
1146 */
1da177e4
LT
1147 /* fall thru */
1148 case CPU_UP_CANCELED:
fc0abb14 1149 mutex_lock(&cache_chain_mutex);
1da177e4
LT
1150 list_for_each_entry(cachep, &cache_chain, next) {
1151 struct array_cache *nc;
4484ebf1
RT
1152 struct array_cache *shared;
1153 struct array_cache **alien;
e498be7d 1154 cpumask_t mask;
1da177e4 1155
e498be7d 1156 mask = node_to_cpumask(node);
1da177e4
LT
1157 /* cpu is dead; no one can alloc from it. */
1158 nc = cachep->array[cpu];
1159 cachep->array[cpu] = NULL;
e498be7d
CL
1160 l3 = cachep->nodelists[node];
1161
1162 if (!l3)
4484ebf1 1163 goto free_array_cache;
e498be7d 1164
ca3b9b91 1165 spin_lock_irq(&l3->list_lock);
e498be7d
CL
1166
1167 /* Free limit for this kmem_list3 */
1168 l3->free_limit -= cachep->batchcount;
1169 if (nc)
ff69416e 1170 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
1171
1172 if (!cpus_empty(mask)) {
ca3b9b91 1173 spin_unlock_irq(&l3->list_lock);
4484ebf1 1174 goto free_array_cache;
b28a02de 1175 }
e498be7d 1176
4484ebf1
RT
1177 shared = l3->shared;
1178 if (shared) {
e498be7d 1179 free_block(cachep, l3->shared->entry,
b28a02de 1180 l3->shared->avail, node);
e498be7d
CL
1181 l3->shared = NULL;
1182 }
e498be7d 1183
4484ebf1
RT
1184 alien = l3->alien;
1185 l3->alien = NULL;
1186
1187 spin_unlock_irq(&l3->list_lock);
1188
1189 kfree(shared);
1190 if (alien) {
1191 drain_alien_cache(cachep, alien);
1192 free_alien_cache(alien);
e498be7d 1193 }
4484ebf1 1194free_array_cache:
1da177e4
LT
1195 kfree(nc);
1196 }
4484ebf1
RT
1197 /*
1198 * In the previous loop, all the objects were freed to
1199 * the respective cache's slabs, now we can go ahead and
1200 * shrink each nodelist to its limit.
1201 */
1202 list_for_each_entry(cachep, &cache_chain, next) {
1203 l3 = cachep->nodelists[node];
1204 if (!l3)
1205 continue;
1206 spin_lock_irq(&l3->list_lock);
1207 /* free slabs belonging to this node */
1208 __node_shrink(cachep, node);
1209 spin_unlock_irq(&l3->list_lock);
1210 }
fc0abb14 1211 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1212 break;
1213#endif
1214 }
1215 return NOTIFY_OK;
a737b3e2 1216bad:
fc0abb14 1217 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1218 return NOTIFY_BAD;
1219}
1220
1221static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1222
e498be7d
CL
1223/*
1224 * swap the static kmem_list3 with kmalloced memory
1225 */
a737b3e2
AM
1226static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1227 int nodeid)
e498be7d
CL
1228{
1229 struct kmem_list3 *ptr;
1230
1231 BUG_ON(cachep->nodelists[nodeid] != list);
1232 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1233 BUG_ON(!ptr);
1234
1235 local_irq_disable();
1236 memcpy(ptr, list, sizeof(struct kmem_list3));
1237 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1238 cachep->nodelists[nodeid] = ptr;
1239 local_irq_enable();
1240}
1241
a737b3e2
AM
1242/*
1243 * Initialisation. Called after the page allocator have been initialised and
1244 * before smp_init().
1da177e4
LT
1245 */
1246void __init kmem_cache_init(void)
1247{
1248 size_t left_over;
1249 struct cache_sizes *sizes;
1250 struct cache_names *names;
e498be7d 1251 int i;
07ed76b2 1252 int order;
e498be7d
CL
1253
1254 for (i = 0; i < NUM_INIT_LISTS; i++) {
1255 kmem_list3_init(&initkmem_list3[i]);
1256 if (i < MAX_NUMNODES)
1257 cache_cache.nodelists[i] = NULL;
1258 }
1da177e4
LT
1259
1260 /*
1261 * Fragmentation resistance on low memory - only use bigger
1262 * page orders on machines with more than 32MB of memory.
1263 */
1264 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1265 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1266
1da177e4
LT
1267 /* Bootstrap is tricky, because several objects are allocated
1268 * from caches that do not exist yet:
a737b3e2
AM
1269 * 1) initialize the cache_cache cache: it contains the struct
1270 * kmem_cache structures of all caches, except cache_cache itself:
1271 * cache_cache is statically allocated.
e498be7d
CL
1272 * Initially an __init data area is used for the head array and the
1273 * kmem_list3 structures, it's replaced with a kmalloc allocated
1274 * array at the end of the bootstrap.
1da177e4 1275 * 2) Create the first kmalloc cache.
343e0d7a 1276 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1277 * An __init data area is used for the head array.
1278 * 3) Create the remaining kmalloc caches, with minimally sized
1279 * head arrays.
1da177e4
LT
1280 * 4) Replace the __init data head arrays for cache_cache and the first
1281 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1282 * 5) Replace the __init data for kmem_list3 for cache_cache and
1283 * the other cache's with kmalloc allocated memory.
1284 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1285 */
1286
1287 /* 1) create the cache_cache */
1da177e4
LT
1288 INIT_LIST_HEAD(&cache_chain);
1289 list_add(&cache_cache.next, &cache_chain);
1290 cache_cache.colour_off = cache_line_size();
1291 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
e498be7d 1292 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1da177e4 1293
a737b3e2
AM
1294 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1295 cache_line_size());
1da177e4 1296
07ed76b2
JS
1297 for (order = 0; order < MAX_ORDER; order++) {
1298 cache_estimate(order, cache_cache.buffer_size,
1299 cache_line_size(), 0, &left_over, &cache_cache.num);
1300 if (cache_cache.num)
1301 break;
1302 }
40094fa6 1303 BUG_ON(!cache_cache.num);
07ed76b2 1304 cache_cache.gfporder = order;
b28a02de 1305 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1306 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1307 sizeof(struct slab), cache_line_size());
1da177e4
LT
1308
1309 /* 2+3) create the kmalloc caches */
1310 sizes = malloc_sizes;
1311 names = cache_names;
1312
a737b3e2
AM
1313 /*
1314 * Initialize the caches that provide memory for the array cache and the
1315 * kmem_list3 structures first. Without this, further allocations will
1316 * bug.
e498be7d
CL
1317 */
1318
1319 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1320 sizes[INDEX_AC].cs_size,
1321 ARCH_KMALLOC_MINALIGN,
1322 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1323 NULL, NULL);
e498be7d 1324
a737b3e2 1325 if (INDEX_AC != INDEX_L3) {
e498be7d 1326 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1327 kmem_cache_create(names[INDEX_L3].name,
1328 sizes[INDEX_L3].cs_size,
1329 ARCH_KMALLOC_MINALIGN,
1330 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1331 NULL, NULL);
1332 }
e498be7d 1333
1da177e4 1334 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1335 /*
1336 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1337 * This should be particularly beneficial on SMP boxes, as it
1338 * eliminates "false sharing".
1339 * Note for systems short on memory removing the alignment will
e498be7d
CL
1340 * allow tighter packing of the smaller caches.
1341 */
a737b3e2 1342 if (!sizes->cs_cachep) {
e498be7d 1343 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1344 sizes->cs_size,
1345 ARCH_KMALLOC_MINALIGN,
1346 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1347 NULL, NULL);
1348 }
1da177e4
LT
1349
1350 /* Inc off-slab bufctl limit until the ceiling is hit. */
1351 if (!(OFF_SLAB(sizes->cs_cachep))) {
b28a02de 1352 offslab_limit = sizes->cs_size - sizeof(struct slab);
1da177e4
LT
1353 offslab_limit /= sizeof(kmem_bufctl_t);
1354 }
1355
1356 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
a737b3e2
AM
1357 sizes->cs_size,
1358 ARCH_KMALLOC_MINALIGN,
1359 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1360 SLAB_PANIC,
1361 NULL, NULL);
1da177e4
LT
1362 sizes++;
1363 names++;
1364 }
1365 /* 4) Replace the bootstrap head arrays */
1366 {
b28a02de 1367 void *ptr;
e498be7d 1368
1da177e4 1369 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1370
1da177e4 1371 local_irq_disable();
9a2dba4b
PE
1372 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1373 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1374 sizeof(struct arraycache_init));
1da177e4
LT
1375 cache_cache.array[smp_processor_id()] = ptr;
1376 local_irq_enable();
e498be7d 1377
1da177e4 1378 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1379
1da177e4 1380 local_irq_disable();
9a2dba4b 1381 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1382 != &initarray_generic.cache);
9a2dba4b 1383 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1384 sizeof(struct arraycache_init));
e498be7d 1385 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1386 ptr;
1da177e4
LT
1387 local_irq_enable();
1388 }
e498be7d
CL
1389 /* 5) Replace the bootstrap kmem_list3's */
1390 {
1391 int node;
1392 /* Replace the static kmem_list3 structures for the boot cpu */
1393 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
b28a02de 1394 numa_node_id());
e498be7d
CL
1395
1396 for_each_online_node(node) {
1397 init_list(malloc_sizes[INDEX_AC].cs_cachep,
b28a02de 1398 &initkmem_list3[SIZE_AC + node], node);
e498be7d
CL
1399
1400 if (INDEX_AC != INDEX_L3) {
1401 init_list(malloc_sizes[INDEX_L3].cs_cachep,
b28a02de
PE
1402 &initkmem_list3[SIZE_L3 + node],
1403 node);
e498be7d
CL
1404 }
1405 }
1406 }
1da177e4 1407
e498be7d 1408 /* 6) resize the head arrays to their final sizes */
1da177e4 1409 {
343e0d7a 1410 struct kmem_cache *cachep;
fc0abb14 1411 mutex_lock(&cache_chain_mutex);
1da177e4 1412 list_for_each_entry(cachep, &cache_chain, next)
a737b3e2 1413 enable_cpucache(cachep);
fc0abb14 1414 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1415 }
1416
1417 /* Done! */
1418 g_cpucache_up = FULL;
1419
a737b3e2
AM
1420 /*
1421 * Register a cpu startup notifier callback that initializes
1422 * cpu_cache_get for all new cpus
1da177e4
LT
1423 */
1424 register_cpu_notifier(&cpucache_notifier);
1da177e4 1425
a737b3e2
AM
1426 /*
1427 * The reap timers are started later, with a module init call: That part
1428 * of the kernel is not yet operational.
1da177e4
LT
1429 */
1430}
1431
1432static int __init cpucache_init(void)
1433{
1434 int cpu;
1435
a737b3e2
AM
1436 /*
1437 * Register the timers that return unneeded pages to the page allocator
1da177e4 1438 */
e498be7d 1439 for_each_online_cpu(cpu)
a737b3e2 1440 start_cpu_timer(cpu);
1da177e4
LT
1441 return 0;
1442}
1da177e4
LT
1443__initcall(cpucache_init);
1444
1445/*
1446 * Interface to system's page allocator. No need to hold the cache-lock.
1447 *
1448 * If we requested dmaable memory, we will get it. Even if we
1449 * did not request dmaable memory, we might get it, but that
1450 * would be relatively rare and ignorable.
1451 */
343e0d7a 1452static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1453{
1454 struct page *page;
1455 void *addr;
1456 int i;
1457
1458 flags |= cachep->gfpflags;
50c85a19 1459 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1460 if (!page)
1461 return NULL;
1462 addr = page_address(page);
1463
1464 i = (1 << cachep->gfporder);
1465 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1466 atomic_add(i, &slab_reclaim_pages);
1467 add_page_state(nr_slab, i);
1468 while (i--) {
f205b2fe 1469 __SetPageSlab(page);
1da177e4
LT
1470 page++;
1471 }
1472 return addr;
1473}
1474
1475/*
1476 * Interface to system's page release.
1477 */
343e0d7a 1478static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1479{
b28a02de 1480 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1481 struct page *page = virt_to_page(addr);
1482 const unsigned long nr_freed = i;
1483
1484 while (i--) {
f205b2fe
NP
1485 BUG_ON(!PageSlab(page));
1486 __ClearPageSlab(page);
1da177e4
LT
1487 page++;
1488 }
1489 sub_page_state(nr_slab, nr_freed);
1490 if (current->reclaim_state)
1491 current->reclaim_state->reclaimed_slab += nr_freed;
1492 free_pages((unsigned long)addr, cachep->gfporder);
b28a02de
PE
1493 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1494 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1da177e4
LT
1495}
1496
1497static void kmem_rcu_free(struct rcu_head *head)
1498{
b28a02de 1499 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1500 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1501
1502 kmem_freepages(cachep, slab_rcu->addr);
1503 if (OFF_SLAB(cachep))
1504 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1505}
1506
1507#if DEBUG
1508
1509#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1510static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1511 unsigned long caller)
1da177e4 1512{
3dafccf2 1513 int size = obj_size(cachep);
1da177e4 1514
3dafccf2 1515 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1516
b28a02de 1517 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1518 return;
1519
b28a02de
PE
1520 *addr++ = 0x12345678;
1521 *addr++ = caller;
1522 *addr++ = smp_processor_id();
1523 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1524 {
1525 unsigned long *sptr = &caller;
1526 unsigned long svalue;
1527
1528 while (!kstack_end(sptr)) {
1529 svalue = *sptr++;
1530 if (kernel_text_address(svalue)) {
b28a02de 1531 *addr++ = svalue;
1da177e4
LT
1532 size -= sizeof(unsigned long);
1533 if (size <= sizeof(unsigned long))
1534 break;
1535 }
1536 }
1537
1538 }
b28a02de 1539 *addr++ = 0x87654321;
1da177e4
LT
1540}
1541#endif
1542
343e0d7a 1543static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1544{
3dafccf2
MS
1545 int size = obj_size(cachep);
1546 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1547
1548 memset(addr, val, size);
b28a02de 1549 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1550}
1551
1552static void dump_line(char *data, int offset, int limit)
1553{
1554 int i;
1555 printk(KERN_ERR "%03x:", offset);
a737b3e2 1556 for (i = 0; i < limit; i++)
b28a02de 1557 printk(" %02x", (unsigned char)data[offset + i]);
1da177e4
LT
1558 printk("\n");
1559}
1560#endif
1561
1562#if DEBUG
1563
343e0d7a 1564static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1565{
1566 int i, size;
1567 char *realobj;
1568
1569 if (cachep->flags & SLAB_RED_ZONE) {
1570 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
a737b3e2
AM
1571 *dbg_redzone1(cachep, objp),
1572 *dbg_redzone2(cachep, objp));
1da177e4
LT
1573 }
1574
1575 if (cachep->flags & SLAB_STORE_USER) {
1576 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1577 *dbg_userword(cachep, objp));
1da177e4 1578 print_symbol("(%s)",
a737b3e2 1579 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1580 printk("\n");
1581 }
3dafccf2
MS
1582 realobj = (char *)objp + obj_offset(cachep);
1583 size = obj_size(cachep);
b28a02de 1584 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1585 int limit;
1586 limit = 16;
b28a02de
PE
1587 if (i + limit > size)
1588 limit = size - i;
1da177e4
LT
1589 dump_line(realobj, i, limit);
1590 }
1591}
1592
343e0d7a 1593static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1594{
1595 char *realobj;
1596 int size, i;
1597 int lines = 0;
1598
3dafccf2
MS
1599 realobj = (char *)objp + obj_offset(cachep);
1600 size = obj_size(cachep);
1da177e4 1601
b28a02de 1602 for (i = 0; i < size; i++) {
1da177e4 1603 char exp = POISON_FREE;
b28a02de 1604 if (i == size - 1)
1da177e4
LT
1605 exp = POISON_END;
1606 if (realobj[i] != exp) {
1607 int limit;
1608 /* Mismatch ! */
1609 /* Print header */
1610 if (lines == 0) {
b28a02de 1611 printk(KERN_ERR
a737b3e2
AM
1612 "Slab corruption: start=%p, len=%d\n",
1613 realobj, size);
1da177e4
LT
1614 print_objinfo(cachep, objp, 0);
1615 }
1616 /* Hexdump the affected line */
b28a02de 1617 i = (i / 16) * 16;
1da177e4 1618 limit = 16;
b28a02de
PE
1619 if (i + limit > size)
1620 limit = size - i;
1da177e4
LT
1621 dump_line(realobj, i, limit);
1622 i += 16;
1623 lines++;
1624 /* Limit to 5 lines */
1625 if (lines > 5)
1626 break;
1627 }
1628 }
1629 if (lines != 0) {
1630 /* Print some data about the neighboring objects, if they
1631 * exist:
1632 */
6ed5eb22 1633 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1634 unsigned int objnr;
1da177e4 1635
8fea4e96 1636 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1637 if (objnr) {
8fea4e96 1638 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1639 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1640 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1641 realobj, size);
1da177e4
LT
1642 print_objinfo(cachep, objp, 2);
1643 }
b28a02de 1644 if (objnr + 1 < cachep->num) {
8fea4e96 1645 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1646 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1647 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1648 realobj, size);
1da177e4
LT
1649 print_objinfo(cachep, objp, 2);
1650 }
1651 }
1652}
1653#endif
1654
12dd36fa
MD
1655#if DEBUG
1656/**
911851e6
RD
1657 * slab_destroy_objs - destroy a slab and its objects
1658 * @cachep: cache pointer being destroyed
1659 * @slabp: slab pointer being destroyed
1660 *
1661 * Call the registered destructor for each object in a slab that is being
1662 * destroyed.
1da177e4 1663 */
343e0d7a 1664static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1665{
1da177e4
LT
1666 int i;
1667 for (i = 0; i < cachep->num; i++) {
8fea4e96 1668 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1669
1670 if (cachep->flags & SLAB_POISON) {
1671#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1672 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1673 OFF_SLAB(cachep))
b28a02de 1674 kernel_map_pages(virt_to_page(objp),
a737b3e2 1675 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1676 else
1677 check_poison_obj(cachep, objp);
1678#else
1679 check_poison_obj(cachep, objp);
1680#endif
1681 }
1682 if (cachep->flags & SLAB_RED_ZONE) {
1683 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1684 slab_error(cachep, "start of a freed object "
b28a02de 1685 "was overwritten");
1da177e4
LT
1686 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1687 slab_error(cachep, "end of a freed object "
b28a02de 1688 "was overwritten");
1da177e4
LT
1689 }
1690 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
3dafccf2 1691 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1da177e4 1692 }
12dd36fa 1693}
1da177e4 1694#else
343e0d7a 1695static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1696{
1da177e4
LT
1697 if (cachep->dtor) {
1698 int i;
1699 for (i = 0; i < cachep->num; i++) {
8fea4e96 1700 void *objp = index_to_obj(cachep, slabp, i);
b28a02de 1701 (cachep->dtor) (objp, cachep, 0);
1da177e4
LT
1702 }
1703 }
12dd36fa 1704}
1da177e4
LT
1705#endif
1706
911851e6
RD
1707/**
1708 * slab_destroy - destroy and release all objects in a slab
1709 * @cachep: cache pointer being destroyed
1710 * @slabp: slab pointer being destroyed
1711 *
12dd36fa 1712 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1713 * Before calling the slab must have been unlinked from the cache. The
1714 * cache-lock is not held/needed.
12dd36fa 1715 */
343e0d7a 1716static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1717{
1718 void *addr = slabp->s_mem - slabp->colouroff;
1719
1720 slab_destroy_objs(cachep, slabp);
1da177e4
LT
1721 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1722 struct slab_rcu *slab_rcu;
1723
b28a02de 1724 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1725 slab_rcu->cachep = cachep;
1726 slab_rcu->addr = addr;
1727 call_rcu(&slab_rcu->head, kmem_rcu_free);
1728 } else {
1729 kmem_freepages(cachep, addr);
1730 if (OFF_SLAB(cachep))
1731 kmem_cache_free(cachep->slabp_cache, slabp);
1732 }
1733}
1734
a737b3e2
AM
1735/*
1736 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1737 * size of kmem_list3.
1738 */
343e0d7a 1739static void set_up_list3s(struct kmem_cache *cachep, int index)
e498be7d
CL
1740{
1741 int node;
1742
1743 for_each_online_node(node) {
b28a02de 1744 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1745 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1746 REAPTIMEOUT_LIST3 +
1747 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1748 }
1749}
1750
4d268eba 1751/**
a70773dd
RD
1752 * calculate_slab_order - calculate size (page order) of slabs
1753 * @cachep: pointer to the cache that is being created
1754 * @size: size of objects to be created in this cache.
1755 * @align: required alignment for the objects.
1756 * @flags: slab allocation flags
1757 *
1758 * Also calculates the number of objects per slab.
4d268eba
PE
1759 *
1760 * This could be made much more intelligent. For now, try to avoid using
1761 * high order pages for slabs. When the gfp() functions are more friendly
1762 * towards high-order requests, this should be changed.
1763 */
a737b3e2 1764static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1765 size_t size, size_t align, unsigned long flags)
4d268eba
PE
1766{
1767 size_t left_over = 0;
9888e6fa 1768 int gfporder;
4d268eba 1769
a737b3e2 1770 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
4d268eba
PE
1771 unsigned int num;
1772 size_t remainder;
1773
9888e6fa 1774 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
1775 if (!num)
1776 continue;
9888e6fa 1777
4d268eba 1778 /* More than offslab_limit objects will cause problems */
9888e6fa 1779 if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
4d268eba
PE
1780 break;
1781
9888e6fa 1782 /* Found something acceptable - save it away */
4d268eba 1783 cachep->num = num;
9888e6fa 1784 cachep->gfporder = gfporder;
4d268eba
PE
1785 left_over = remainder;
1786
f78bb8ad
LT
1787 /*
1788 * A VFS-reclaimable slab tends to have most allocations
1789 * as GFP_NOFS and we really don't want to have to be allocating
1790 * higher-order pages when we are unable to shrink dcache.
1791 */
1792 if (flags & SLAB_RECLAIM_ACCOUNT)
1793 break;
1794
4d268eba
PE
1795 /*
1796 * Large number of objects is good, but very large slabs are
1797 * currently bad for the gfp()s.
1798 */
9888e6fa 1799 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
1800 break;
1801
9888e6fa
LT
1802 /*
1803 * Acceptable internal fragmentation?
1804 */
a737b3e2 1805 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1806 break;
1807 }
1808 return left_over;
1809}
1810
f30cf7d1
PE
1811static void setup_cpu_cache(struct kmem_cache *cachep)
1812{
1813 if (g_cpucache_up == FULL) {
1814 enable_cpucache(cachep);
1815 return;
1816 }
1817 if (g_cpucache_up == NONE) {
1818 /*
1819 * Note: the first kmem_cache_create must create the cache
1820 * that's used by kmalloc(24), otherwise the creation of
1821 * further caches will BUG().
1822 */
1823 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1824
1825 /*
1826 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1827 * the first cache, then we need to set up all its list3s,
1828 * otherwise the creation of further caches will BUG().
1829 */
1830 set_up_list3s(cachep, SIZE_AC);
1831 if (INDEX_AC == INDEX_L3)
1832 g_cpucache_up = PARTIAL_L3;
1833 else
1834 g_cpucache_up = PARTIAL_AC;
1835 } else {
1836 cachep->array[smp_processor_id()] =
1837 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1838
1839 if (g_cpucache_up == PARTIAL_AC) {
1840 set_up_list3s(cachep, SIZE_L3);
1841 g_cpucache_up = PARTIAL_L3;
1842 } else {
1843 int node;
1844 for_each_online_node(node) {
1845 cachep->nodelists[node] =
1846 kmalloc_node(sizeof(struct kmem_list3),
1847 GFP_KERNEL, node);
1848 BUG_ON(!cachep->nodelists[node]);
1849 kmem_list3_init(cachep->nodelists[node]);
1850 }
1851 }
1852 }
1853 cachep->nodelists[numa_node_id()]->next_reap =
1854 jiffies + REAPTIMEOUT_LIST3 +
1855 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1856
1857 cpu_cache_get(cachep)->avail = 0;
1858 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1859 cpu_cache_get(cachep)->batchcount = 1;
1860 cpu_cache_get(cachep)->touched = 0;
1861 cachep->batchcount = 1;
1862 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1863}
1864
1da177e4
LT
1865/**
1866 * kmem_cache_create - Create a cache.
1867 * @name: A string which is used in /proc/slabinfo to identify this cache.
1868 * @size: The size of objects to be created in this cache.
1869 * @align: The required alignment for the objects.
1870 * @flags: SLAB flags
1871 * @ctor: A constructor for the objects.
1872 * @dtor: A destructor for the objects.
1873 *
1874 * Returns a ptr to the cache on success, NULL on failure.
1875 * Cannot be called within a int, but can be interrupted.
1876 * The @ctor is run when new pages are allocated by the cache
1877 * and the @dtor is run before the pages are handed back.
1878 *
1879 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
1880 * the module calling this has to destroy the cache before getting unloaded.
1881 *
1da177e4
LT
1882 * The flags are
1883 *
1884 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1885 * to catch references to uninitialised memory.
1886 *
1887 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1888 * for buffer overruns.
1889 *
1da177e4
LT
1890 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1891 * cacheline. This can be beneficial if you're counting cycles as closely
1892 * as davem.
1893 */
343e0d7a 1894struct kmem_cache *
1da177e4 1895kmem_cache_create (const char *name, size_t size, size_t align,
a737b3e2
AM
1896 unsigned long flags,
1897 void (*ctor)(void*, struct kmem_cache *, unsigned long),
343e0d7a 1898 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1da177e4
LT
1899{
1900 size_t left_over, slab_size, ralign;
343e0d7a 1901 struct kmem_cache *cachep = NULL;
4f12bb4f 1902 struct list_head *p;
1da177e4
LT
1903
1904 /*
1905 * Sanity checks... these are all serious usage bugs.
1906 */
a737b3e2 1907 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
b28a02de 1908 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
a737b3e2
AM
1909 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
1910 name);
b28a02de
PE
1911 BUG();
1912 }
1da177e4 1913
f0188f47
RT
1914 /*
1915 * Prevent CPUs from coming and going.
1916 * lock_cpu_hotplug() nests outside cache_chain_mutex
1917 */
1918 lock_cpu_hotplug();
1919
fc0abb14 1920 mutex_lock(&cache_chain_mutex);
4f12bb4f
AM
1921
1922 list_for_each(p, &cache_chain) {
343e0d7a 1923 struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
4f12bb4f
AM
1924 mm_segment_t old_fs = get_fs();
1925 char tmp;
1926 int res;
1927
1928 /*
1929 * This happens when the module gets unloaded and doesn't
1930 * destroy its slab cache and no-one else reuses the vmalloc
1931 * area of the module. Print a warning.
1932 */
1933 set_fs(KERNEL_DS);
1934 res = __get_user(tmp, pc->name);
1935 set_fs(old_fs);
1936 if (res) {
1937 printk("SLAB: cache with size %d has lost its name\n",
3dafccf2 1938 pc->buffer_size);
4f12bb4f
AM
1939 continue;
1940 }
1941
b28a02de 1942 if (!strcmp(pc->name, name)) {
4f12bb4f
AM
1943 printk("kmem_cache_create: duplicate cache %s\n", name);
1944 dump_stack();
1945 goto oops;
1946 }
1947 }
1948
1da177e4
LT
1949#if DEBUG
1950 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1951 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1952 /* No constructor, but inital state check requested */
1953 printk(KERN_ERR "%s: No con, but init state check "
b28a02de 1954 "requested - %s\n", __FUNCTION__, name);
1da177e4
LT
1955 flags &= ~SLAB_DEBUG_INITIAL;
1956 }
1da177e4
LT
1957#if FORCED_DEBUG
1958 /*
1959 * Enable redzoning and last user accounting, except for caches with
1960 * large objects, if the increased size would increase the object size
1961 * above the next power of two: caches with object sizes just above a
1962 * power of two have a significant amount of internal fragmentation.
1963 */
a737b3e2 1964 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
b28a02de 1965 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
1966 if (!(flags & SLAB_DESTROY_BY_RCU))
1967 flags |= SLAB_POISON;
1968#endif
1969 if (flags & SLAB_DESTROY_BY_RCU)
1970 BUG_ON(flags & SLAB_POISON);
1971#endif
1972 if (flags & SLAB_DESTROY_BY_RCU)
1973 BUG_ON(dtor);
1974
1975 /*
a737b3e2
AM
1976 * Always checks flags, a caller might be expecting debug support which
1977 * isn't available.
1da177e4 1978 */
40094fa6 1979 BUG_ON(flags & ~CREATE_MASK);
1da177e4 1980
a737b3e2
AM
1981 /*
1982 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
1983 * unaligned accesses for some archs when redzoning is used, and makes
1984 * sure any on-slab bufctl's are also correctly aligned.
1985 */
b28a02de
PE
1986 if (size & (BYTES_PER_WORD - 1)) {
1987 size += (BYTES_PER_WORD - 1);
1988 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
1989 }
1990
a737b3e2
AM
1991 /* calculate the final buffer alignment: */
1992
1da177e4
LT
1993 /* 1) arch recommendation: can be overridden for debug */
1994 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
1995 /*
1996 * Default alignment: as specified by the arch code. Except if
1997 * an object is really small, then squeeze multiple objects into
1998 * one cacheline.
1da177e4
LT
1999 */
2000 ralign = cache_line_size();
b28a02de 2001 while (size <= ralign / 2)
1da177e4
LT
2002 ralign /= 2;
2003 } else {
2004 ralign = BYTES_PER_WORD;
2005 }
2006 /* 2) arch mandated alignment: disables debug if necessary */
2007 if (ralign < ARCH_SLAB_MINALIGN) {
2008 ralign = ARCH_SLAB_MINALIGN;
2009 if (ralign > BYTES_PER_WORD)
b28a02de 2010 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4
LT
2011 }
2012 /* 3) caller mandated alignment: disables debug if necessary */
2013 if (ralign < align) {
2014 ralign = align;
2015 if (ralign > BYTES_PER_WORD)
b28a02de 2016 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4 2017 }
a737b3e2
AM
2018 /*
2019 * 4) Store it. Note that the debug code below can reduce
1da177e4
LT
2020 * the alignment to BYTES_PER_WORD.
2021 */
2022 align = ralign;
2023
2024 /* Get cache's description obj. */
c5e3b83e 2025 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
1da177e4 2026 if (!cachep)
4f12bb4f 2027 goto oops;
1da177e4
LT
2028
2029#if DEBUG
3dafccf2 2030 cachep->obj_size = size;
1da177e4
LT
2031
2032 if (flags & SLAB_RED_ZONE) {
2033 /* redzoning only works with word aligned caches */
2034 align = BYTES_PER_WORD;
2035
2036 /* add space for red zone words */
3dafccf2 2037 cachep->obj_offset += BYTES_PER_WORD;
b28a02de 2038 size += 2 * BYTES_PER_WORD;
1da177e4
LT
2039 }
2040 if (flags & SLAB_STORE_USER) {
2041 /* user store requires word alignment and
2042 * one word storage behind the end of the real
2043 * object.
2044 */
2045 align = BYTES_PER_WORD;
2046 size += BYTES_PER_WORD;
2047 }
2048#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2049 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2050 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2051 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2052 size = PAGE_SIZE;
2053 }
2054#endif
2055#endif
2056
2057 /* Determine if the slab management is 'on' or 'off' slab. */
b28a02de 2058 if (size >= (PAGE_SIZE >> 3))
1da177e4
LT
2059 /*
2060 * Size is large, assume best to place the slab management obj
2061 * off-slab (should allow better packing of objs).
2062 */
2063 flags |= CFLGS_OFF_SLAB;
2064
2065 size = ALIGN(size, align);
2066
f78bb8ad 2067 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2068
2069 if (!cachep->num) {
2070 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2071 kmem_cache_free(&cache_cache, cachep);
2072 cachep = NULL;
4f12bb4f 2073 goto oops;
1da177e4 2074 }
b28a02de
PE
2075 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2076 + sizeof(struct slab), align);
1da177e4
LT
2077
2078 /*
2079 * If the slab has been placed off-slab, and we have enough space then
2080 * move it on-slab. This is at the expense of any extra colouring.
2081 */
2082 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2083 flags &= ~CFLGS_OFF_SLAB;
2084 left_over -= slab_size;
2085 }
2086
2087 if (flags & CFLGS_OFF_SLAB) {
2088 /* really off slab. No need for manual alignment */
b28a02de
PE
2089 slab_size =
2090 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2091 }
2092
2093 cachep->colour_off = cache_line_size();
2094 /* Offset must be a multiple of the alignment. */
2095 if (cachep->colour_off < align)
2096 cachep->colour_off = align;
b28a02de 2097 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2098 cachep->slab_size = slab_size;
2099 cachep->flags = flags;
2100 cachep->gfpflags = 0;
2101 if (flags & SLAB_CACHE_DMA)
2102 cachep->gfpflags |= GFP_DMA;
3dafccf2 2103 cachep->buffer_size = size;
1da177e4
LT
2104
2105 if (flags & CFLGS_OFF_SLAB)
b2d55073 2106 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
1da177e4
LT
2107 cachep->ctor = ctor;
2108 cachep->dtor = dtor;
2109 cachep->name = name;
2110
1da177e4 2111
f30cf7d1 2112 setup_cpu_cache(cachep);
1da177e4 2113
1da177e4
LT
2114 /* cache setup completed, link it into the list */
2115 list_add(&cachep->next, &cache_chain);
a737b3e2 2116oops:
1da177e4
LT
2117 if (!cachep && (flags & SLAB_PANIC))
2118 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2119 name);
fc0abb14 2120 mutex_unlock(&cache_chain_mutex);
f0188f47 2121 unlock_cpu_hotplug();
1da177e4
LT
2122 return cachep;
2123}
2124EXPORT_SYMBOL(kmem_cache_create);
2125
2126#if DEBUG
2127static void check_irq_off(void)
2128{
2129 BUG_ON(!irqs_disabled());
2130}
2131
2132static void check_irq_on(void)
2133{
2134 BUG_ON(irqs_disabled());
2135}
2136
343e0d7a 2137static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2138{
2139#ifdef CONFIG_SMP
2140 check_irq_off();
e498be7d 2141 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2142#endif
2143}
e498be7d 2144
343e0d7a 2145static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2146{
2147#ifdef CONFIG_SMP
2148 check_irq_off();
2149 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2150#endif
2151}
2152
1da177e4
LT
2153#else
2154#define check_irq_off() do { } while(0)
2155#define check_irq_on() do { } while(0)
2156#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2157#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2158#endif
2159
aab2207c
CL
2160static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2161 struct array_cache *ac,
2162 int force, int node);
2163
1da177e4
LT
2164static void do_drain(void *arg)
2165{
a737b3e2 2166 struct kmem_cache *cachep = arg;
1da177e4 2167 struct array_cache *ac;
ff69416e 2168 int node = numa_node_id();
1da177e4
LT
2169
2170 check_irq_off();
9a2dba4b 2171 ac = cpu_cache_get(cachep);
ff69416e
CL
2172 spin_lock(&cachep->nodelists[node]->list_lock);
2173 free_block(cachep, ac->entry, ac->avail, node);
2174 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2175 ac->avail = 0;
2176}
2177
343e0d7a 2178static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2179{
e498be7d
CL
2180 struct kmem_list3 *l3;
2181 int node;
2182
a07fa394 2183 on_each_cpu(do_drain, cachep, 1, 1);
1da177e4 2184 check_irq_on();
b28a02de 2185 for_each_online_node(node) {
e498be7d
CL
2186 l3 = cachep->nodelists[node];
2187 if (l3) {
aab2207c 2188 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2189 if (l3->alien)
4484ebf1 2190 drain_alien_cache(cachep, l3->alien);
e498be7d
CL
2191 }
2192 }
1da177e4
LT
2193}
2194
343e0d7a 2195static int __node_shrink(struct kmem_cache *cachep, int node)
1da177e4
LT
2196{
2197 struct slab *slabp;
e498be7d 2198 struct kmem_list3 *l3 = cachep->nodelists[node];
1da177e4
LT
2199 int ret;
2200
e498be7d 2201 for (;;) {
1da177e4
LT
2202 struct list_head *p;
2203
e498be7d
CL
2204 p = l3->slabs_free.prev;
2205 if (p == &l3->slabs_free)
1da177e4
LT
2206 break;
2207
e498be7d 2208 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
1da177e4 2209#if DEBUG
40094fa6 2210 BUG_ON(slabp->inuse);
1da177e4
LT
2211#endif
2212 list_del(&slabp->list);
2213
e498be7d
CL
2214 l3->free_objects -= cachep->num;
2215 spin_unlock_irq(&l3->list_lock);
1da177e4 2216 slab_destroy(cachep, slabp);
e498be7d 2217 spin_lock_irq(&l3->list_lock);
1da177e4 2218 }
b28a02de 2219 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
1da177e4
LT
2220 return ret;
2221}
2222
343e0d7a 2223static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2224{
2225 int ret = 0, i = 0;
2226 struct kmem_list3 *l3;
2227
2228 drain_cpu_caches(cachep);
2229
2230 check_irq_on();
2231 for_each_online_node(i) {
2232 l3 = cachep->nodelists[i];
2233 if (l3) {
2234 spin_lock_irq(&l3->list_lock);
2235 ret += __node_shrink(cachep, i);
2236 spin_unlock_irq(&l3->list_lock);
2237 }
2238 }
2239 return (ret ? 1 : 0);
2240}
2241
1da177e4
LT
2242/**
2243 * kmem_cache_shrink - Shrink a cache.
2244 * @cachep: The cache to shrink.
2245 *
2246 * Releases as many slabs as possible for a cache.
2247 * To help debugging, a zero exit status indicates all slabs were released.
2248 */
343e0d7a 2249int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2250{
40094fa6 2251 BUG_ON(!cachep || in_interrupt());
1da177e4
LT
2252
2253 return __cache_shrink(cachep);
2254}
2255EXPORT_SYMBOL(kmem_cache_shrink);
2256
2257/**
2258 * kmem_cache_destroy - delete a cache
2259 * @cachep: the cache to destroy
2260 *
343e0d7a 2261 * Remove a struct kmem_cache object from the slab cache.
1da177e4
LT
2262 * Returns 0 on success.
2263 *
2264 * It is expected this function will be called by a module when it is
2265 * unloaded. This will remove the cache completely, and avoid a duplicate
2266 * cache being allocated each time a module is loaded and unloaded, if the
2267 * module doesn't have persistent in-kernel storage across loads and unloads.
2268 *
2269 * The cache must be empty before calling this function.
2270 *
2271 * The caller must guarantee that noone will allocate memory from the cache
2272 * during the kmem_cache_destroy().
2273 */
343e0d7a 2274int kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4
LT
2275{
2276 int i;
e498be7d 2277 struct kmem_list3 *l3;
1da177e4 2278
40094fa6 2279 BUG_ON(!cachep || in_interrupt());
1da177e4
LT
2280
2281 /* Don't let CPUs to come and go */
2282 lock_cpu_hotplug();
2283
2284 /* Find the cache in the chain of caches. */
fc0abb14 2285 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2286 /*
2287 * the chain is never empty, cache_cache is never destroyed
2288 */
2289 list_del(&cachep->next);
fc0abb14 2290 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2291
2292 if (__cache_shrink(cachep)) {
2293 slab_error(cachep, "Can't free all objects");
fc0abb14 2294 mutex_lock(&cache_chain_mutex);
b28a02de 2295 list_add(&cachep->next, &cache_chain);
fc0abb14 2296 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2297 unlock_cpu_hotplug();
2298 return 1;
2299 }
2300
2301 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2302 synchronize_rcu();
1da177e4 2303
e498be7d 2304 for_each_online_cpu(i)
b28a02de 2305 kfree(cachep->array[i]);
1da177e4
LT
2306
2307 /* NUMA: free the list3 structures */
e498be7d 2308 for_each_online_node(i) {
a737b3e2
AM
2309 l3 = cachep->nodelists[i];
2310 if (l3) {
e498be7d
CL
2311 kfree(l3->shared);
2312 free_alien_cache(l3->alien);
2313 kfree(l3);
2314 }
2315 }
1da177e4 2316 kmem_cache_free(&cache_cache, cachep);
1da177e4 2317 unlock_cpu_hotplug();
1da177e4
LT
2318 return 0;
2319}
2320EXPORT_SYMBOL(kmem_cache_destroy);
2321
2322/* Get the memory for a slab management obj. */
343e0d7a 2323static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2324 int colour_off, gfp_t local_flags,
2325 int nodeid)
1da177e4
LT
2326{
2327 struct slab *slabp;
b28a02de 2328
1da177e4
LT
2329 if (OFF_SLAB(cachep)) {
2330 /* Slab management obj is off-slab. */
5b74ada7
RT
2331 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2332 local_flags, nodeid);
1da177e4
LT
2333 if (!slabp)
2334 return NULL;
2335 } else {
b28a02de 2336 slabp = objp + colour_off;
1da177e4
LT
2337 colour_off += cachep->slab_size;
2338 }
2339 slabp->inuse = 0;
2340 slabp->colouroff = colour_off;
b28a02de 2341 slabp->s_mem = objp + colour_off;
5b74ada7 2342 slabp->nodeid = nodeid;
1da177e4
LT
2343 return slabp;
2344}
2345
2346static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2347{
b28a02de 2348 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2349}
2350
343e0d7a 2351static void cache_init_objs(struct kmem_cache *cachep,
b28a02de 2352 struct slab *slabp, unsigned long ctor_flags)
1da177e4
LT
2353{
2354 int i;
2355
2356 for (i = 0; i < cachep->num; i++) {
8fea4e96 2357 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2358#if DEBUG
2359 /* need to poison the objs? */
2360 if (cachep->flags & SLAB_POISON)
2361 poison_obj(cachep, objp, POISON_FREE);
2362 if (cachep->flags & SLAB_STORE_USER)
2363 *dbg_userword(cachep, objp) = NULL;
2364
2365 if (cachep->flags & SLAB_RED_ZONE) {
2366 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2367 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2368 }
2369 /*
a737b3e2
AM
2370 * Constructors are not allowed to allocate memory from the same
2371 * cache which they are a constructor for. Otherwise, deadlock.
2372 * They must also be threaded.
1da177e4
LT
2373 */
2374 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
3dafccf2 2375 cachep->ctor(objp + obj_offset(cachep), cachep,
b28a02de 2376 ctor_flags);
1da177e4
LT
2377
2378 if (cachep->flags & SLAB_RED_ZONE) {
2379 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2380 slab_error(cachep, "constructor overwrote the"
b28a02de 2381 " end of an object");
1da177e4
LT
2382 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2383 slab_error(cachep, "constructor overwrote the"
b28a02de 2384 " start of an object");
1da177e4 2385 }
a737b3e2
AM
2386 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2387 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2388 kernel_map_pages(virt_to_page(objp),
3dafccf2 2389 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2390#else
2391 if (cachep->ctor)
2392 cachep->ctor(objp, cachep, ctor_flags);
2393#endif
b28a02de 2394 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2395 }
b28a02de 2396 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2397 slabp->free = 0;
2398}
2399
343e0d7a 2400static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2401{
a737b3e2
AM
2402 if (flags & SLAB_DMA)
2403 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2404 else
2405 BUG_ON(cachep->gfpflags & GFP_DMA);
1da177e4
LT
2406}
2407
a737b3e2
AM
2408static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2409 int nodeid)
78d382d7 2410{
8fea4e96 2411 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2412 kmem_bufctl_t next;
2413
2414 slabp->inuse++;
2415 next = slab_bufctl(slabp)[slabp->free];
2416#if DEBUG
2417 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2418 WARN_ON(slabp->nodeid != nodeid);
2419#endif
2420 slabp->free = next;
2421
2422 return objp;
2423}
2424
a737b3e2
AM
2425static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2426 void *objp, int nodeid)
78d382d7 2427{
8fea4e96 2428 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2429
2430#if DEBUG
2431 /* Verify that the slab belongs to the intended node */
2432 WARN_ON(slabp->nodeid != nodeid);
2433
871751e2 2434 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2435 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2436 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2437 BUG();
2438 }
2439#endif
2440 slab_bufctl(slabp)[objnr] = slabp->free;
2441 slabp->free = objnr;
2442 slabp->inuse--;
2443}
2444
a737b3e2
AM
2445static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
2446 void *objp)
1da177e4
LT
2447{
2448 int i;
2449 struct page *page;
2450
2451 /* Nasty!!!!!! I hope this is OK. */
1da177e4 2452 page = virt_to_page(objp);
84097518
NP
2453
2454 i = 1;
2455 if (likely(!PageCompound(page)))
2456 i <<= cachep->gfporder;
1da177e4 2457 do {
065d41cb
PE
2458 page_set_cache(page, cachep);
2459 page_set_slab(page, slabp);
1da177e4
LT
2460 page++;
2461 } while (--i);
2462}
2463
2464/*
2465 * Grow (by 1) the number of slabs within a cache. This is called by
2466 * kmem_cache_alloc() when there are no active objs left in a cache.
2467 */
343e0d7a 2468static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 2469{
b28a02de
PE
2470 struct slab *slabp;
2471 void *objp;
2472 size_t offset;
2473 gfp_t local_flags;
2474 unsigned long ctor_flags;
e498be7d 2475 struct kmem_list3 *l3;
1da177e4 2476
a737b3e2
AM
2477 /*
2478 * Be lazy and only check for valid flags here, keeping it out of the
2479 * critical path in kmem_cache_alloc().
1da177e4 2480 */
40094fa6 2481 BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
1da177e4
LT
2482 if (flags & SLAB_NO_GROW)
2483 return 0;
2484
2485 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2486 local_flags = (flags & SLAB_LEVEL_MASK);
2487 if (!(local_flags & __GFP_WAIT))
2488 /*
2489 * Not allowed to sleep. Need to tell a constructor about
2490 * this - it might need to know...
2491 */
2492 ctor_flags |= SLAB_CTOR_ATOMIC;
2493
2e1217cf 2494 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2495 check_irq_off();
2e1217cf
RT
2496 l3 = cachep->nodelists[nodeid];
2497 spin_lock(&l3->list_lock);
1da177e4
LT
2498
2499 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2500 offset = l3->colour_next;
2501 l3->colour_next++;
2502 if (l3->colour_next >= cachep->colour)
2503 l3->colour_next = 0;
2504 spin_unlock(&l3->list_lock);
1da177e4 2505
2e1217cf 2506 offset *= cachep->colour_off;
1da177e4
LT
2507
2508 if (local_flags & __GFP_WAIT)
2509 local_irq_enable();
2510
2511 /*
2512 * The test for missing atomic flag is performed here, rather than
2513 * the more obvious place, simply to reduce the critical path length
2514 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2515 * will eventually be caught here (where it matters).
2516 */
2517 kmem_flagcheck(cachep, flags);
2518
a737b3e2
AM
2519 /*
2520 * Get mem for the objs. Attempt to allocate a physical page from
2521 * 'nodeid'.
e498be7d 2522 */
a737b3e2
AM
2523 objp = kmem_getpages(cachep, flags, nodeid);
2524 if (!objp)
1da177e4
LT
2525 goto failed;
2526
2527 /* Get slab management. */
5b74ada7 2528 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
a737b3e2 2529 if (!slabp)
1da177e4
LT
2530 goto opps1;
2531
e498be7d 2532 slabp->nodeid = nodeid;
1da177e4
LT
2533 set_slab_attr(cachep, slabp, objp);
2534
2535 cache_init_objs(cachep, slabp, ctor_flags);
2536
2537 if (local_flags & __GFP_WAIT)
2538 local_irq_disable();
2539 check_irq_off();
e498be7d 2540 spin_lock(&l3->list_lock);
1da177e4
LT
2541
2542 /* Make slab active. */
e498be7d 2543 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2544 STATS_INC_GROWN(cachep);
e498be7d
CL
2545 l3->free_objects += cachep->num;
2546 spin_unlock(&l3->list_lock);
1da177e4 2547 return 1;
a737b3e2 2548opps1:
1da177e4 2549 kmem_freepages(cachep, objp);
a737b3e2 2550failed:
1da177e4
LT
2551 if (local_flags & __GFP_WAIT)
2552 local_irq_disable();
2553 return 0;
2554}
2555
2556#if DEBUG
2557
2558/*
2559 * Perform extra freeing checks:
2560 * - detect bad pointers.
2561 * - POISON/RED_ZONE checking
2562 * - destructor calls, for caches with POISON+dtor
2563 */
2564static void kfree_debugcheck(const void *objp)
2565{
2566 struct page *page;
2567
2568 if (!virt_addr_valid(objp)) {
2569 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2570 (unsigned long)objp);
2571 BUG();
1da177e4
LT
2572 }
2573 page = virt_to_page(objp);
2574 if (!PageSlab(page)) {
b28a02de
PE
2575 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2576 (unsigned long)objp);
1da177e4
LT
2577 BUG();
2578 }
2579}
2580
343e0d7a 2581static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2582 void *caller)
1da177e4
LT
2583{
2584 struct page *page;
2585 unsigned int objnr;
2586 struct slab *slabp;
2587
3dafccf2 2588 objp -= obj_offset(cachep);
1da177e4
LT
2589 kfree_debugcheck(objp);
2590 page = virt_to_page(objp);
2591
065d41cb 2592 if (page_get_cache(page) != cachep) {
a737b3e2
AM
2593 printk(KERN_ERR "mismatch in kmem_cache_free: expected "
2594 "cache %p, got %p\n",
b28a02de 2595 page_get_cache(page), cachep);
1da177e4 2596 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
b28a02de
PE
2597 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2598 page_get_cache(page)->name);
1da177e4
LT
2599 WARN_ON(1);
2600 }
065d41cb 2601 slabp = page_get_slab(page);
1da177e4
LT
2602
2603 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2604 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
2605 *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2606 slab_error(cachep, "double free, or memory outside"
2607 " object was overwritten");
2608 printk(KERN_ERR "%p: redzone 1:0x%lx, "
2609 "redzone 2:0x%lx.\n",
b28a02de
PE
2610 objp, *dbg_redzone1(cachep, objp),
2611 *dbg_redzone2(cachep, objp));
1da177e4
LT
2612 }
2613 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2614 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2615 }
2616 if (cachep->flags & SLAB_STORE_USER)
2617 *dbg_userword(cachep, objp) = caller;
2618
8fea4e96 2619 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2620
2621 BUG_ON(objnr >= cachep->num);
8fea4e96 2622 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4
LT
2623
2624 if (cachep->flags & SLAB_DEBUG_INITIAL) {
a737b3e2
AM
2625 /*
2626 * Need to call the slab's constructor so the caller can
2627 * perform a verify of its state (debugging). Called without
2628 * the cache-lock held.
1da177e4 2629 */
3dafccf2 2630 cachep->ctor(objp + obj_offset(cachep),
b28a02de 2631 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
1da177e4
LT
2632 }
2633 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2634 /* we want to cache poison the object,
2635 * call the destruction callback
2636 */
3dafccf2 2637 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
1da177e4 2638 }
871751e2
AV
2639#ifdef CONFIG_DEBUG_SLAB_LEAK
2640 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2641#endif
1da177e4
LT
2642 if (cachep->flags & SLAB_POISON) {
2643#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2644 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2645 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2646 kernel_map_pages(virt_to_page(objp),
3dafccf2 2647 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2648 } else {
2649 poison_obj(cachep, objp, POISON_FREE);
2650 }
2651#else
2652 poison_obj(cachep, objp, POISON_FREE);
2653#endif
2654 }
2655 return objp;
2656}
2657
343e0d7a 2658static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2659{
2660 kmem_bufctl_t i;
2661 int entries = 0;
b28a02de 2662
1da177e4
LT
2663 /* Check slab's freelist to see if this obj is there. */
2664 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2665 entries++;
2666 if (entries > cachep->num || i >= cachep->num)
2667 goto bad;
2668 }
2669 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2670bad:
2671 printk(KERN_ERR "slab: Internal list corruption detected in "
2672 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2673 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2674 for (i = 0;
264132bc 2675 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2676 i++) {
a737b3e2 2677 if (i % 16 == 0)
1da177e4 2678 printk("\n%03x:", i);
b28a02de 2679 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2680 }
2681 printk("\n");
2682 BUG();
2683 }
2684}
2685#else
2686#define kfree_debugcheck(x) do { } while(0)
2687#define cache_free_debugcheck(x,objp,z) (objp)
2688#define check_slabp(x,y) do { } while(0)
2689#endif
2690
343e0d7a 2691static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2692{
2693 int batchcount;
2694 struct kmem_list3 *l3;
2695 struct array_cache *ac;
2696
2697 check_irq_off();
9a2dba4b 2698 ac = cpu_cache_get(cachep);
a737b3e2 2699retry:
1da177e4
LT
2700 batchcount = ac->batchcount;
2701 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2702 /*
2703 * If there was little recent activity on this cache, then
2704 * perform only a partial refill. Otherwise we could generate
2705 * refill bouncing.
1da177e4
LT
2706 */
2707 batchcount = BATCHREFILL_LIMIT;
2708 }
e498be7d
CL
2709 l3 = cachep->nodelists[numa_node_id()];
2710
2711 BUG_ON(ac->avail > 0 || !l3);
2712 spin_lock(&l3->list_lock);
1da177e4 2713
3ded175a
CL
2714 /* See if we can refill from the shared array */
2715 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2716 goto alloc_done;
2717
1da177e4
LT
2718 while (batchcount > 0) {
2719 struct list_head *entry;
2720 struct slab *slabp;
2721 /* Get slab alloc is to come from. */
2722 entry = l3->slabs_partial.next;
2723 if (entry == &l3->slabs_partial) {
2724 l3->free_touched = 1;
2725 entry = l3->slabs_free.next;
2726 if (entry == &l3->slabs_free)
2727 goto must_grow;
2728 }
2729
2730 slabp = list_entry(entry, struct slab, list);
2731 check_slabp(cachep, slabp);
2732 check_spinlock_acquired(cachep);
2733 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
2734 STATS_INC_ALLOCED(cachep);
2735 STATS_INC_ACTIVE(cachep);
2736 STATS_SET_HIGH(cachep);
2737
78d382d7
MD
2738 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2739 numa_node_id());
1da177e4
LT
2740 }
2741 check_slabp(cachep, slabp);
2742
2743 /* move slabp to correct slabp list: */
2744 list_del(&slabp->list);
2745 if (slabp->free == BUFCTL_END)
2746 list_add(&slabp->list, &l3->slabs_full);
2747 else
2748 list_add(&slabp->list, &l3->slabs_partial);
2749 }
2750
a737b3e2 2751must_grow:
1da177e4 2752 l3->free_objects -= ac->avail;
a737b3e2 2753alloc_done:
e498be7d 2754 spin_unlock(&l3->list_lock);
1da177e4
LT
2755
2756 if (unlikely(!ac->avail)) {
2757 int x;
e498be7d
CL
2758 x = cache_grow(cachep, flags, numa_node_id());
2759
a737b3e2 2760 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2761 ac = cpu_cache_get(cachep);
a737b3e2 2762 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
2763 return NULL;
2764
a737b3e2 2765 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2766 goto retry;
2767 }
2768 ac->touched = 1;
e498be7d 2769 return ac->entry[--ac->avail];
1da177e4
LT
2770}
2771
a737b3e2
AM
2772static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2773 gfp_t flags)
1da177e4
LT
2774{
2775 might_sleep_if(flags & __GFP_WAIT);
2776#if DEBUG
2777 kmem_flagcheck(cachep, flags);
2778#endif
2779}
2780
2781#if DEBUG
a737b3e2
AM
2782static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2783 gfp_t flags, void *objp, void *caller)
1da177e4 2784{
b28a02de 2785 if (!objp)
1da177e4 2786 return objp;
b28a02de 2787 if (cachep->flags & SLAB_POISON) {
1da177e4 2788#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 2789 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 2790 kernel_map_pages(virt_to_page(objp),
3dafccf2 2791 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
2792 else
2793 check_poison_obj(cachep, objp);
2794#else
2795 check_poison_obj(cachep, objp);
2796#endif
2797 poison_obj(cachep, objp, POISON_INUSE);
2798 }
2799 if (cachep->flags & SLAB_STORE_USER)
2800 *dbg_userword(cachep, objp) = caller;
2801
2802 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2803 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2804 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2805 slab_error(cachep, "double free, or memory outside"
2806 " object was overwritten");
b28a02de 2807 printk(KERN_ERR
a737b3e2
AM
2808 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2809 objp, *dbg_redzone1(cachep, objp),
2810 *dbg_redzone2(cachep, objp));
1da177e4
LT
2811 }
2812 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2813 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2814 }
871751e2
AV
2815#ifdef CONFIG_DEBUG_SLAB_LEAK
2816 {
2817 struct slab *slabp;
2818 unsigned objnr;
2819
2820 slabp = page_get_slab(virt_to_page(objp));
2821 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2822 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
2823 }
2824#endif
3dafccf2 2825 objp += obj_offset(cachep);
1da177e4 2826 if (cachep->ctor && cachep->flags & SLAB_POISON) {
b28a02de 2827 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
1da177e4
LT
2828
2829 if (!(flags & __GFP_WAIT))
2830 ctor_flags |= SLAB_CTOR_ATOMIC;
2831
2832 cachep->ctor(objp, cachep, ctor_flags);
b28a02de 2833 }
1da177e4
LT
2834 return objp;
2835}
2836#else
2837#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2838#endif
2839
343e0d7a 2840static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2841{
b28a02de 2842 void *objp;
1da177e4
LT
2843 struct array_cache *ac;
2844
dc85da15 2845#ifdef CONFIG_NUMA
b2455396 2846 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
c61afb18
PJ
2847 objp = alternate_node_alloc(cachep, flags);
2848 if (objp != NULL)
2849 return objp;
dc85da15
CL
2850 }
2851#endif
2852
5c382300 2853 check_irq_off();
9a2dba4b 2854 ac = cpu_cache_get(cachep);
1da177e4
LT
2855 if (likely(ac->avail)) {
2856 STATS_INC_ALLOCHIT(cachep);
2857 ac->touched = 1;
e498be7d 2858 objp = ac->entry[--ac->avail];
1da177e4
LT
2859 } else {
2860 STATS_INC_ALLOCMISS(cachep);
2861 objp = cache_alloc_refill(cachep, flags);
2862 }
5c382300
AK
2863 return objp;
2864}
2865
a737b3e2
AM
2866static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2867 gfp_t flags, void *caller)
5c382300
AK
2868{
2869 unsigned long save_flags;
b28a02de 2870 void *objp;
5c382300
AK
2871
2872 cache_alloc_debugcheck_before(cachep, flags);
2873
2874 local_irq_save(save_flags);
2875 objp = ____cache_alloc(cachep, flags);
1da177e4 2876 local_irq_restore(save_flags);
34342e86 2877 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
7fd6b141 2878 caller);
34342e86 2879 prefetchw(objp);
1da177e4
LT
2880 return objp;
2881}
2882
e498be7d 2883#ifdef CONFIG_NUMA
c61afb18 2884/*
b2455396 2885 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
2886 *
2887 * If we are in_interrupt, then process context, including cpusets and
2888 * mempolicy, may not apply and should not be used for allocation policy.
2889 */
2890static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2891{
2892 int nid_alloc, nid_here;
2893
2894 if (in_interrupt())
2895 return NULL;
2896 nid_alloc = nid_here = numa_node_id();
2897 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2898 nid_alloc = cpuset_mem_spread_node();
2899 else if (current->mempolicy)
2900 nid_alloc = slab_node(current->mempolicy);
2901 if (nid_alloc != nid_here)
2902 return __cache_alloc_node(cachep, flags, nid_alloc);
2903 return NULL;
2904}
2905
e498be7d
CL
2906/*
2907 * A interface to enable slab creation on nodeid
1da177e4 2908 */
a737b3e2
AM
2909static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
2910 int nodeid)
e498be7d
CL
2911{
2912 struct list_head *entry;
b28a02de
PE
2913 struct slab *slabp;
2914 struct kmem_list3 *l3;
2915 void *obj;
b28a02de
PE
2916 int x;
2917
2918 l3 = cachep->nodelists[nodeid];
2919 BUG_ON(!l3);
2920
a737b3e2 2921retry:
ca3b9b91 2922 check_irq_off();
b28a02de
PE
2923 spin_lock(&l3->list_lock);
2924 entry = l3->slabs_partial.next;
2925 if (entry == &l3->slabs_partial) {
2926 l3->free_touched = 1;
2927 entry = l3->slabs_free.next;
2928 if (entry == &l3->slabs_free)
2929 goto must_grow;
2930 }
2931
2932 slabp = list_entry(entry, struct slab, list);
2933 check_spinlock_acquired_node(cachep, nodeid);
2934 check_slabp(cachep, slabp);
2935
2936 STATS_INC_NODEALLOCS(cachep);
2937 STATS_INC_ACTIVE(cachep);
2938 STATS_SET_HIGH(cachep);
2939
2940 BUG_ON(slabp->inuse == cachep->num);
2941
78d382d7 2942 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
2943 check_slabp(cachep, slabp);
2944 l3->free_objects--;
2945 /* move slabp to correct slabp list: */
2946 list_del(&slabp->list);
2947
a737b3e2 2948 if (slabp->free == BUFCTL_END)
b28a02de 2949 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 2950 else
b28a02de 2951 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 2952
b28a02de
PE
2953 spin_unlock(&l3->list_lock);
2954 goto done;
e498be7d 2955
a737b3e2 2956must_grow:
b28a02de
PE
2957 spin_unlock(&l3->list_lock);
2958 x = cache_grow(cachep, flags, nodeid);
1da177e4 2959
b28a02de
PE
2960 if (!x)
2961 return NULL;
e498be7d 2962
b28a02de 2963 goto retry;
a737b3e2 2964done:
b28a02de 2965 return obj;
e498be7d
CL
2966}
2967#endif
2968
2969/*
2970 * Caller needs to acquire correct kmem_list's list_lock
2971 */
343e0d7a 2972static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 2973 int node)
1da177e4
LT
2974{
2975 int i;
e498be7d 2976 struct kmem_list3 *l3;
1da177e4
LT
2977
2978 for (i = 0; i < nr_objects; i++) {
2979 void *objp = objpp[i];
2980 struct slab *slabp;
1da177e4 2981
6ed5eb22 2982 slabp = virt_to_slab(objp);
ff69416e 2983 l3 = cachep->nodelists[node];
1da177e4 2984 list_del(&slabp->list);
ff69416e 2985 check_spinlock_acquired_node(cachep, node);
1da177e4 2986 check_slabp(cachep, slabp);
78d382d7 2987 slab_put_obj(cachep, slabp, objp, node);
1da177e4 2988 STATS_DEC_ACTIVE(cachep);
e498be7d 2989 l3->free_objects++;
1da177e4
LT
2990 check_slabp(cachep, slabp);
2991
2992 /* fixup slab chains */
2993 if (slabp->inuse == 0) {
e498be7d
CL
2994 if (l3->free_objects > l3->free_limit) {
2995 l3->free_objects -= cachep->num;
1da177e4
LT
2996 slab_destroy(cachep, slabp);
2997 } else {
e498be7d 2998 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
2999 }
3000 } else {
3001 /* Unconditionally move a slab to the end of the
3002 * partial list on free - maximum time for the
3003 * other objects to be freed, too.
3004 */
e498be7d 3005 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3006 }
3007 }
3008}
3009
343e0d7a 3010static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3011{
3012 int batchcount;
e498be7d 3013 struct kmem_list3 *l3;
ff69416e 3014 int node = numa_node_id();
1da177e4
LT
3015
3016 batchcount = ac->batchcount;
3017#if DEBUG
3018 BUG_ON(!batchcount || batchcount > ac->avail);
3019#endif
3020 check_irq_off();
ff69416e 3021 l3 = cachep->nodelists[node];
e498be7d
CL
3022 spin_lock(&l3->list_lock);
3023 if (l3->shared) {
3024 struct array_cache *shared_array = l3->shared;
b28a02de 3025 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3026 if (max) {
3027 if (batchcount > max)
3028 batchcount = max;
e498be7d 3029 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3030 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3031 shared_array->avail += batchcount;
3032 goto free_done;
3033 }
3034 }
3035
ff69416e 3036 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3037free_done:
1da177e4
LT
3038#if STATS
3039 {
3040 int i = 0;
3041 struct list_head *p;
3042
e498be7d
CL
3043 p = l3->slabs_free.next;
3044 while (p != &(l3->slabs_free)) {
1da177e4
LT
3045 struct slab *slabp;
3046
3047 slabp = list_entry(p, struct slab, list);
3048 BUG_ON(slabp->inuse);
3049
3050 i++;
3051 p = p->next;
3052 }
3053 STATS_SET_FREEABLE(cachep, i);
3054 }
3055#endif
e498be7d 3056 spin_unlock(&l3->list_lock);
1da177e4 3057 ac->avail -= batchcount;
a737b3e2 3058 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3059}
3060
3061/*
a737b3e2
AM
3062 * Release an obj back to its cache. If the obj has a constructed state, it must
3063 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3064 */
343e0d7a 3065static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3066{
9a2dba4b 3067 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3068
3069 check_irq_off();
3070 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3071
e498be7d
CL
3072 /* Make sure we are not freeing a object from another
3073 * node to the array cache on this cpu.
3074 */
3075#ifdef CONFIG_NUMA
3076 {
3077 struct slab *slabp;
6ed5eb22 3078 slabp = virt_to_slab(objp);
e498be7d
CL
3079 if (unlikely(slabp->nodeid != numa_node_id())) {
3080 struct array_cache *alien = NULL;
3081 int nodeid = slabp->nodeid;
a737b3e2 3082 struct kmem_list3 *l3;
e498be7d 3083
a737b3e2 3084 l3 = cachep->nodelists[numa_node_id()];
e498be7d
CL
3085 STATS_INC_NODEFREES(cachep);
3086 if (l3->alien && l3->alien[nodeid]) {
3087 alien = l3->alien[nodeid];
3088 spin_lock(&alien->lock);
fb7faf33
RT
3089 if (unlikely(alien->avail == alien->limit)) {
3090 STATS_INC_ACOVERFLOW(cachep);
e498be7d 3091 __drain_alien_cache(cachep,
b28a02de 3092 alien, nodeid);
fb7faf33 3093 }
e498be7d
CL
3094 alien->entry[alien->avail++] = objp;
3095 spin_unlock(&alien->lock);
3096 } else {
3097 spin_lock(&(cachep->nodelists[nodeid])->
b28a02de 3098 list_lock);
ff69416e 3099 free_block(cachep, &objp, 1, nodeid);
e498be7d 3100 spin_unlock(&(cachep->nodelists[nodeid])->
b28a02de 3101 list_lock);
e498be7d
CL
3102 }
3103 return;
3104 }
3105 }
3106#endif
1da177e4
LT
3107 if (likely(ac->avail < ac->limit)) {
3108 STATS_INC_FREEHIT(cachep);
e498be7d 3109 ac->entry[ac->avail++] = objp;
1da177e4
LT
3110 return;
3111 } else {
3112 STATS_INC_FREEMISS(cachep);
3113 cache_flusharray(cachep, ac);
e498be7d 3114 ac->entry[ac->avail++] = objp;
1da177e4
LT
3115 }
3116}
3117
3118/**
3119 * kmem_cache_alloc - Allocate an object
3120 * @cachep: The cache to allocate from.
3121 * @flags: See kmalloc().
3122 *
3123 * Allocate an object from this cache. The flags are only relevant
3124 * if the cache has no available objects.
3125 */
343e0d7a 3126void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3127{
7fd6b141 3128 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3129}
3130EXPORT_SYMBOL(kmem_cache_alloc);
3131
a8c0f9a4
PE
3132/**
3133 * kmem_cache_alloc - Allocate an object. The memory is set to zero.
3134 * @cache: The cache to allocate from.
3135 * @flags: See kmalloc().
3136 *
3137 * Allocate an object from this cache and set the allocated memory to zero.
3138 * The flags are only relevant if the cache has no available objects.
3139 */
3140void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3141{
3142 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3143 if (ret)
3144 memset(ret, 0, obj_size(cache));
3145 return ret;
3146}
3147EXPORT_SYMBOL(kmem_cache_zalloc);
3148
1da177e4
LT
3149/**
3150 * kmem_ptr_validate - check if an untrusted pointer might
3151 * be a slab entry.
3152 * @cachep: the cache we're checking against
3153 * @ptr: pointer to validate
3154 *
3155 * This verifies that the untrusted pointer looks sane:
3156 * it is _not_ a guarantee that the pointer is actually
3157 * part of the slab cache in question, but it at least
3158 * validates that the pointer can be dereferenced and
3159 * looks half-way sane.
3160 *
3161 * Currently only used for dentry validation.
3162 */
343e0d7a 3163int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
1da177e4 3164{
b28a02de 3165 unsigned long addr = (unsigned long)ptr;
1da177e4 3166 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3167 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3168 unsigned long size = cachep->buffer_size;
1da177e4
LT
3169 struct page *page;
3170
3171 if (unlikely(addr < min_addr))
3172 goto out;
3173 if (unlikely(addr > (unsigned long)high_memory - size))
3174 goto out;
3175 if (unlikely(addr & align_mask))
3176 goto out;
3177 if (unlikely(!kern_addr_valid(addr)))
3178 goto out;
3179 if (unlikely(!kern_addr_valid(addr + size - 1)))
3180 goto out;
3181 page = virt_to_page(ptr);
3182 if (unlikely(!PageSlab(page)))
3183 goto out;
065d41cb 3184 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3185 goto out;
3186 return 1;
a737b3e2 3187out:
1da177e4
LT
3188 return 0;
3189}
3190
3191#ifdef CONFIG_NUMA
3192/**
3193 * kmem_cache_alloc_node - Allocate an object on the specified node
3194 * @cachep: The cache to allocate from.
3195 * @flags: See kmalloc().
3196 * @nodeid: node number of the target node.
3197 *
3198 * Identical to kmem_cache_alloc, except that this function is slow
3199 * and can sleep. And it will allocate memory on the given node, which
3200 * can improve the performance for cpu bound structures.
e498be7d
CL
3201 * New and improved: it will now make sure that the object gets
3202 * put on the correct node list so that there is no false sharing.
1da177e4 3203 */
343e0d7a 3204void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 3205{
e498be7d
CL
3206 unsigned long save_flags;
3207 void *ptr;
1da177e4 3208
e498be7d
CL
3209 cache_alloc_debugcheck_before(cachep, flags);
3210 local_irq_save(save_flags);
18f820f6
CL
3211
3212 if (nodeid == -1 || nodeid == numa_node_id() ||
a737b3e2 3213 !cachep->nodelists[nodeid])
5c382300
AK
3214 ptr = ____cache_alloc(cachep, flags);
3215 else
3216 ptr = __cache_alloc_node(cachep, flags, nodeid);
e498be7d 3217 local_irq_restore(save_flags);
18f820f6
CL
3218
3219 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3220 __builtin_return_address(0));
1da177e4 3221
e498be7d 3222 return ptr;
1da177e4
LT
3223}
3224EXPORT_SYMBOL(kmem_cache_alloc_node);
3225
dd0fc66f 3226void *kmalloc_node(size_t size, gfp_t flags, int node)
97e2bde4 3227{
343e0d7a 3228 struct kmem_cache *cachep;
97e2bde4
MS
3229
3230 cachep = kmem_find_general_cachep(size, flags);
3231 if (unlikely(cachep == NULL))
3232 return NULL;
3233 return kmem_cache_alloc_node(cachep, flags, node);
3234}
3235EXPORT_SYMBOL(kmalloc_node);
1da177e4
LT
3236#endif
3237
3238/**
3239 * kmalloc - allocate memory
3240 * @size: how many bytes of memory are required.
3241 * @flags: the type of memory to allocate.
911851e6 3242 * @caller: function caller for debug tracking of the caller
1da177e4
LT
3243 *
3244 * kmalloc is the normal method of allocating memory
3245 * in the kernel.
3246 *
3247 * The @flags argument may be one of:
3248 *
3249 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3250 *
3251 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3252 *
3253 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3254 *
3255 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3256 * must be suitable for DMA. This can mean different things on different
3257 * platforms. For example, on i386, it means that the memory must come
3258 * from the first 16MB.
3259 */
7fd6b141
PE
3260static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3261 void *caller)
1da177e4 3262{
343e0d7a 3263 struct kmem_cache *cachep;
1da177e4 3264
97e2bde4
MS
3265 /* If you want to save a few bytes .text space: replace
3266 * __ with kmem_.
3267 * Then kmalloc uses the uninlined functions instead of the inline
3268 * functions.
3269 */
3270 cachep = __find_general_cachep(size, flags);
dbdb9045
AM
3271 if (unlikely(cachep == NULL))
3272 return NULL;
7fd6b141
PE
3273 return __cache_alloc(cachep, flags, caller);
3274}
3275
7fd6b141
PE
3276
3277void *__kmalloc(size_t size, gfp_t flags)
3278{
871751e2 3279#ifndef CONFIG_DEBUG_SLAB
7fd6b141 3280 return __do_kmalloc(size, flags, NULL);
871751e2
AV
3281#else
3282 return __do_kmalloc(size, flags, __builtin_return_address(0));
3283#endif
1da177e4
LT
3284}
3285EXPORT_SYMBOL(__kmalloc);
3286
871751e2 3287#ifdef CONFIG_DEBUG_SLAB
7fd6b141
PE
3288void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3289{
3290 return __do_kmalloc(size, flags, caller);
3291}
3292EXPORT_SYMBOL(__kmalloc_track_caller);
7fd6b141
PE
3293#endif
3294
1da177e4
LT
3295#ifdef CONFIG_SMP
3296/**
3297 * __alloc_percpu - allocate one copy of the object for every present
3298 * cpu in the system, zeroing them.
3299 * Objects should be dereferenced using the per_cpu_ptr macro only.
3300 *
3301 * @size: how many bytes of memory are required.
1da177e4 3302 */
f9f75005 3303void *__alloc_percpu(size_t size)
1da177e4
LT
3304{
3305 int i;
b28a02de 3306 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
1da177e4
LT
3307
3308 if (!pdata)
3309 return NULL;
3310
e498be7d
CL
3311 /*
3312 * Cannot use for_each_online_cpu since a cpu may come online
3313 * and we have no way of figuring out how to fix the array
3314 * that we have allocated then....
3315 */
0a945022 3316 for_each_possible_cpu(i) {
e498be7d
CL
3317 int node = cpu_to_node(i);
3318
3319 if (node_online(node))
3320 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3321 else
3322 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
1da177e4
LT
3323
3324 if (!pdata->ptrs[i])
3325 goto unwind_oom;
3326 memset(pdata->ptrs[i], 0, size);
3327 }
3328
3329 /* Catch derefs w/o wrappers */
b28a02de 3330 return (void *)(~(unsigned long)pdata);
1da177e4 3331
a737b3e2 3332unwind_oom:
1da177e4
LT
3333 while (--i >= 0) {
3334 if (!cpu_possible(i))
3335 continue;
3336 kfree(pdata->ptrs[i]);
3337 }
3338 kfree(pdata);
3339 return NULL;
3340}
3341EXPORT_SYMBOL(__alloc_percpu);
3342#endif
3343
3344/**
3345 * kmem_cache_free - Deallocate an object
3346 * @cachep: The cache the allocation was from.
3347 * @objp: The previously allocated object.
3348 *
3349 * Free an object which was previously allocated from this
3350 * cache.
3351 */
343e0d7a 3352void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3353{
3354 unsigned long flags;
3355
3356 local_irq_save(flags);
3357 __cache_free(cachep, objp);
3358 local_irq_restore(flags);
3359}
3360EXPORT_SYMBOL(kmem_cache_free);
3361
1da177e4
LT
3362/**
3363 * kfree - free previously allocated memory
3364 * @objp: pointer returned by kmalloc.
3365 *
80e93eff
PE
3366 * If @objp is NULL, no operation is performed.
3367 *
1da177e4
LT
3368 * Don't free memory not originally allocated by kmalloc()
3369 * or you will run into trouble.
3370 */
3371void kfree(const void *objp)
3372{
343e0d7a 3373 struct kmem_cache *c;
1da177e4
LT
3374 unsigned long flags;
3375
3376 if (unlikely(!objp))
3377 return;
3378 local_irq_save(flags);
3379 kfree_debugcheck(objp);
6ed5eb22 3380 c = virt_to_cache(objp);
3dafccf2 3381 mutex_debug_check_no_locks_freed(objp, obj_size(c));
b28a02de 3382 __cache_free(c, (void *)objp);
1da177e4
LT
3383 local_irq_restore(flags);
3384}
3385EXPORT_SYMBOL(kfree);
3386
3387#ifdef CONFIG_SMP
3388/**
3389 * free_percpu - free previously allocated percpu memory
3390 * @objp: pointer returned by alloc_percpu.
3391 *
3392 * Don't free memory not originally allocated by alloc_percpu()
3393 * The complemented objp is to check for that.
3394 */
b28a02de 3395void free_percpu(const void *objp)
1da177e4
LT
3396{
3397 int i;
b28a02de 3398 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
1da177e4 3399
e498be7d
CL
3400 /*
3401 * We allocate for all cpus so we cannot use for online cpu here.
3402 */
0a945022 3403 for_each_possible_cpu(i)
b28a02de 3404 kfree(p->ptrs[i]);
1da177e4
LT
3405 kfree(p);
3406}
3407EXPORT_SYMBOL(free_percpu);
3408#endif
3409
343e0d7a 3410unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3411{
3dafccf2 3412 return obj_size(cachep);
1da177e4
LT
3413}
3414EXPORT_SYMBOL(kmem_cache_size);
3415
343e0d7a 3416const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3417{
3418 return cachep->name;
3419}
3420EXPORT_SYMBOL_GPL(kmem_cache_name);
3421
e498be7d 3422/*
0718dc2a 3423 * This initializes kmem_list3 or resizes varioius caches for all nodes.
e498be7d 3424 */
343e0d7a 3425static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3426{
3427 int node;
3428 struct kmem_list3 *l3;
cafeb02e
CL
3429 struct array_cache *new_shared;
3430 struct array_cache **new_alien;
e498be7d
CL
3431
3432 for_each_online_node(node) {
cafeb02e 3433
a737b3e2
AM
3434 new_alien = alloc_alien_cache(node, cachep->limit);
3435 if (!new_alien)
e498be7d 3436 goto fail;
cafeb02e 3437
0718dc2a
CL
3438 new_shared = alloc_arraycache(node,
3439 cachep->shared*cachep->batchcount,
a737b3e2 3440 0xbaadf00d);
0718dc2a
CL
3441 if (!new_shared) {
3442 free_alien_cache(new_alien);
e498be7d 3443 goto fail;
0718dc2a 3444 }
cafeb02e 3445
a737b3e2
AM
3446 l3 = cachep->nodelists[node];
3447 if (l3) {
cafeb02e
CL
3448 struct array_cache *shared = l3->shared;
3449
e498be7d
CL
3450 spin_lock_irq(&l3->list_lock);
3451
cafeb02e 3452 if (shared)
0718dc2a
CL
3453 free_block(cachep, shared->entry,
3454 shared->avail, node);
e498be7d 3455
cafeb02e
CL
3456 l3->shared = new_shared;
3457 if (!l3->alien) {
e498be7d
CL
3458 l3->alien = new_alien;
3459 new_alien = NULL;
3460 }
b28a02de 3461 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3462 cachep->batchcount + cachep->num;
e498be7d 3463 spin_unlock_irq(&l3->list_lock);
cafeb02e 3464 kfree(shared);
e498be7d
CL
3465 free_alien_cache(new_alien);
3466 continue;
3467 }
a737b3e2 3468 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
0718dc2a
CL
3469 if (!l3) {
3470 free_alien_cache(new_alien);
3471 kfree(new_shared);
e498be7d 3472 goto fail;
0718dc2a 3473 }
e498be7d
CL
3474
3475 kmem_list3_init(l3);
3476 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3477 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3478 l3->shared = new_shared;
e498be7d 3479 l3->alien = new_alien;
b28a02de 3480 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3481 cachep->batchcount + cachep->num;
e498be7d
CL
3482 cachep->nodelists[node] = l3;
3483 }
cafeb02e 3484 return 0;
0718dc2a 3485
a737b3e2 3486fail:
0718dc2a
CL
3487 if (!cachep->next.next) {
3488 /* Cache is not active yet. Roll back what we did */
3489 node--;
3490 while (node >= 0) {
3491 if (cachep->nodelists[node]) {
3492 l3 = cachep->nodelists[node];
3493
3494 kfree(l3->shared);
3495 free_alien_cache(l3->alien);
3496 kfree(l3);
3497 cachep->nodelists[node] = NULL;
3498 }
3499 node--;
3500 }
3501 }
cafeb02e 3502 return -ENOMEM;
e498be7d
CL
3503}
3504
1da177e4 3505struct ccupdate_struct {
343e0d7a 3506 struct kmem_cache *cachep;
1da177e4
LT
3507 struct array_cache *new[NR_CPUS];
3508};
3509
3510static void do_ccupdate_local(void *info)
3511{
a737b3e2 3512 struct ccupdate_struct *new = info;
1da177e4
LT
3513 struct array_cache *old;
3514
3515 check_irq_off();
9a2dba4b 3516 old = cpu_cache_get(new->cachep);
e498be7d 3517
1da177e4
LT
3518 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3519 new->new[smp_processor_id()] = old;
3520}
3521
b5d8ca7c 3522/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3523static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3524 int batchcount, int shared)
1da177e4
LT
3525{
3526 struct ccupdate_struct new;
e498be7d 3527 int i, err;
1da177e4 3528
b28a02de 3529 memset(&new.new, 0, sizeof(new.new));
e498be7d 3530 for_each_online_cpu(i) {
a737b3e2
AM
3531 new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3532 batchcount);
e498be7d 3533 if (!new.new[i]) {
b28a02de
PE
3534 for (i--; i >= 0; i--)
3535 kfree(new.new[i]);
e498be7d 3536 return -ENOMEM;
1da177e4
LT
3537 }
3538 }
3539 new.cachep = cachep;
3540
a07fa394 3541 on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
e498be7d 3542
1da177e4 3543 check_irq_on();
1da177e4
LT
3544 cachep->batchcount = batchcount;
3545 cachep->limit = limit;
e498be7d 3546 cachep->shared = shared;
1da177e4 3547
e498be7d 3548 for_each_online_cpu(i) {
1da177e4
LT
3549 struct array_cache *ccold = new.new[i];
3550 if (!ccold)
3551 continue;
e498be7d 3552 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3553 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3554 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3555 kfree(ccold);
3556 }
1da177e4 3557
e498be7d
CL
3558 err = alloc_kmemlist(cachep);
3559 if (err) {
3560 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
b28a02de 3561 cachep->name, -err);
e498be7d 3562 BUG();
1da177e4 3563 }
1da177e4
LT
3564 return 0;
3565}
3566
b5d8ca7c 3567/* Called with cache_chain_mutex held always */
343e0d7a 3568static void enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
3569{
3570 int err;
3571 int limit, shared;
3572
a737b3e2
AM
3573 /*
3574 * The head array serves three purposes:
1da177e4
LT
3575 * - create a LIFO ordering, i.e. return objects that are cache-warm
3576 * - reduce the number of spinlock operations.
a737b3e2 3577 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3578 * bufctl chains: array operations are cheaper.
3579 * The numbers are guessed, we should auto-tune as described by
3580 * Bonwick.
3581 */
3dafccf2 3582 if (cachep->buffer_size > 131072)
1da177e4 3583 limit = 1;
3dafccf2 3584 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3585 limit = 8;
3dafccf2 3586 else if (cachep->buffer_size > 1024)
1da177e4 3587 limit = 24;
3dafccf2 3588 else if (cachep->buffer_size > 256)
1da177e4
LT
3589 limit = 54;
3590 else
3591 limit = 120;
3592
a737b3e2
AM
3593 /*
3594 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3595 * allocation behaviour: Most allocs on one cpu, most free operations
3596 * on another cpu. For these cases, an efficient object passing between
3597 * cpus is necessary. This is provided by a shared array. The array
3598 * replaces Bonwick's magazine layer.
3599 * On uniprocessor, it's functionally equivalent (but less efficient)
3600 * to a larger limit. Thus disabled by default.
3601 */
3602 shared = 0;
3603#ifdef CONFIG_SMP
3dafccf2 3604 if (cachep->buffer_size <= PAGE_SIZE)
1da177e4
LT
3605 shared = 8;
3606#endif
3607
3608#if DEBUG
a737b3e2
AM
3609 /*
3610 * With debugging enabled, large batchcount lead to excessively long
3611 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3612 */
3613 if (limit > 32)
3614 limit = 32;
3615#endif
b28a02de 3616 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
3617 if (err)
3618 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3619 cachep->name, -err);
1da177e4
LT
3620}
3621
1b55253a
CL
3622/*
3623 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
3624 * necessary. Note that the l3 listlock also protects the array_cache
3625 * if drain_array() is used on the shared array.
1b55253a
CL
3626 */
3627void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3628 struct array_cache *ac, int force, int node)
1da177e4
LT
3629{
3630 int tofree;
3631
1b55253a
CL
3632 if (!ac || !ac->avail)
3633 return;
1da177e4
LT
3634 if (ac->touched && !force) {
3635 ac->touched = 0;
b18e7e65 3636 } else {
1b55253a 3637 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
3638 if (ac->avail) {
3639 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3640 if (tofree > ac->avail)
3641 tofree = (ac->avail + 1) / 2;
3642 free_block(cachep, ac->entry, tofree, node);
3643 ac->avail -= tofree;
3644 memmove(ac->entry, &(ac->entry[tofree]),
3645 sizeof(void *) * ac->avail);
3646 }
1b55253a 3647 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
3648 }
3649}
3650
3651/**
3652 * cache_reap - Reclaim memory from caches.
1e5d5331 3653 * @unused: unused parameter
1da177e4
LT
3654 *
3655 * Called from workqueue/eventd every few seconds.
3656 * Purpose:
3657 * - clear the per-cpu caches for this CPU.
3658 * - return freeable pages to the main free memory pool.
3659 *
a737b3e2
AM
3660 * If we cannot acquire the cache chain mutex then just give up - we'll try
3661 * again on the next iteration.
1da177e4
LT
3662 */
3663static void cache_reap(void *unused)
3664{
3665 struct list_head *walk;
e498be7d 3666 struct kmem_list3 *l3;
aab2207c 3667 int node = numa_node_id();
1da177e4 3668
fc0abb14 3669 if (!mutex_trylock(&cache_chain_mutex)) {
1da177e4 3670 /* Give up. Setup the next iteration. */
b28a02de
PE
3671 schedule_delayed_work(&__get_cpu_var(reap_work),
3672 REAPTIMEOUT_CPUC);
1da177e4
LT
3673 return;
3674 }
3675
3676 list_for_each(walk, &cache_chain) {
343e0d7a 3677 struct kmem_cache *searchp;
b28a02de 3678 struct list_head *p;
1da177e4
LT
3679 int tofree;
3680 struct slab *slabp;
3681
343e0d7a 3682 searchp = list_entry(walk, struct kmem_cache, next);
1da177e4
LT
3683 check_irq_on();
3684
35386e3b
CL
3685 /*
3686 * We only take the l3 lock if absolutely necessary and we
3687 * have established with reasonable certainty that
3688 * we can do some work if the lock was obtained.
3689 */
aab2207c 3690 l3 = searchp->nodelists[node];
35386e3b 3691
8fce4d8e 3692 reap_alien(searchp, l3);
1da177e4 3693
aab2207c 3694 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 3695
35386e3b
CL
3696 /*
3697 * These are racy checks but it does not matter
3698 * if we skip one check or scan twice.
3699 */
e498be7d 3700 if (time_after(l3->next_reap, jiffies))
35386e3b 3701 goto next;
1da177e4 3702
e498be7d 3703 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 3704
aab2207c 3705 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 3706
e498be7d
CL
3707 if (l3->free_touched) {
3708 l3->free_touched = 0;
35386e3b 3709 goto next;
1da177e4
LT
3710 }
3711
a737b3e2
AM
3712 tofree = (l3->free_limit + 5 * searchp->num - 1) /
3713 (5 * searchp->num);
1da177e4 3714 do {
35386e3b
CL
3715 /*
3716 * Do not lock if there are no free blocks.
3717 */
3718 if (list_empty(&l3->slabs_free))
3719 break;
3720
3721 spin_lock_irq(&l3->list_lock);
e498be7d 3722 p = l3->slabs_free.next;
35386e3b
CL
3723 if (p == &(l3->slabs_free)) {
3724 spin_unlock_irq(&l3->list_lock);
1da177e4 3725 break;
35386e3b 3726 }
1da177e4
LT
3727
3728 slabp = list_entry(p, struct slab, list);
3729 BUG_ON(slabp->inuse);
3730 list_del(&slabp->list);
3731 STATS_INC_REAPED(searchp);
3732
a737b3e2
AM
3733 /*
3734 * Safe to drop the lock. The slab is no longer linked
3735 * to the cache. searchp cannot disappear, we hold
1da177e4
LT
3736 * cache_chain_lock
3737 */
e498be7d
CL
3738 l3->free_objects -= searchp->num;
3739 spin_unlock_irq(&l3->list_lock);
1da177e4 3740 slab_destroy(searchp, slabp);
b28a02de 3741 } while (--tofree > 0);
35386e3b 3742next:
1da177e4
LT
3743 cond_resched();
3744 }
3745 check_irq_on();
fc0abb14 3746 mutex_unlock(&cache_chain_mutex);
8fce4d8e 3747 next_reap_node();
a737b3e2 3748 /* Set up the next iteration */
cd61ef62 3749 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
1da177e4
LT
3750}
3751
3752#ifdef CONFIG_PROC_FS
3753
85289f98 3754static void print_slabinfo_header(struct seq_file *m)
1da177e4 3755{
85289f98
PE
3756 /*
3757 * Output format version, so at least we can change it
3758 * without _too_ many complaints.
3759 */
1da177e4 3760#if STATS
85289f98 3761 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 3762#else
85289f98 3763 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 3764#endif
85289f98
PE
3765 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3766 "<objperslab> <pagesperslab>");
3767 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3768 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 3769#if STATS
85289f98 3770 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 3771 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 3772 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 3773#endif
85289f98
PE
3774 seq_putc(m, '\n');
3775}
3776
3777static void *s_start(struct seq_file *m, loff_t *pos)
3778{
3779 loff_t n = *pos;
3780 struct list_head *p;
3781
fc0abb14 3782 mutex_lock(&cache_chain_mutex);
85289f98
PE
3783 if (!n)
3784 print_slabinfo_header(m);
1da177e4
LT
3785 p = cache_chain.next;
3786 while (n--) {
3787 p = p->next;
3788 if (p == &cache_chain)
3789 return NULL;
3790 }
343e0d7a 3791 return list_entry(p, struct kmem_cache, next);
1da177e4
LT
3792}
3793
3794static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3795{
343e0d7a 3796 struct kmem_cache *cachep = p;
1da177e4 3797 ++*pos;
a737b3e2
AM
3798 return cachep->next.next == &cache_chain ?
3799 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
1da177e4
LT
3800}
3801
3802static void s_stop(struct seq_file *m, void *p)
3803{
fc0abb14 3804 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
3805}
3806
3807static int s_show(struct seq_file *m, void *p)
3808{
343e0d7a 3809 struct kmem_cache *cachep = p;
1da177e4 3810 struct list_head *q;
b28a02de
PE
3811 struct slab *slabp;
3812 unsigned long active_objs;
3813 unsigned long num_objs;
3814 unsigned long active_slabs = 0;
3815 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3816 const char *name;
1da177e4 3817 char *error = NULL;
e498be7d
CL
3818 int node;
3819 struct kmem_list3 *l3;
1da177e4 3820
1da177e4
LT
3821 active_objs = 0;
3822 num_slabs = 0;
e498be7d
CL
3823 for_each_online_node(node) {
3824 l3 = cachep->nodelists[node];
3825 if (!l3)
3826 continue;
3827
ca3b9b91
RT
3828 check_irq_on();
3829 spin_lock_irq(&l3->list_lock);
e498be7d 3830
b28a02de 3831 list_for_each(q, &l3->slabs_full) {
e498be7d
CL
3832 slabp = list_entry(q, struct slab, list);
3833 if (slabp->inuse != cachep->num && !error)
3834 error = "slabs_full accounting error";
3835 active_objs += cachep->num;
3836 active_slabs++;
3837 }
b28a02de 3838 list_for_each(q, &l3->slabs_partial) {
e498be7d
CL
3839 slabp = list_entry(q, struct slab, list);
3840 if (slabp->inuse == cachep->num && !error)
3841 error = "slabs_partial inuse accounting error";
3842 if (!slabp->inuse && !error)
3843 error = "slabs_partial/inuse accounting error";
3844 active_objs += slabp->inuse;
3845 active_slabs++;
3846 }
b28a02de 3847 list_for_each(q, &l3->slabs_free) {
e498be7d
CL
3848 slabp = list_entry(q, struct slab, list);
3849 if (slabp->inuse && !error)
3850 error = "slabs_free/inuse accounting error";
3851 num_slabs++;
3852 }
3853 free_objects += l3->free_objects;
4484ebf1
RT
3854 if (l3->shared)
3855 shared_avail += l3->shared->avail;
e498be7d 3856
ca3b9b91 3857 spin_unlock_irq(&l3->list_lock);
1da177e4 3858 }
b28a02de
PE
3859 num_slabs += active_slabs;
3860 num_objs = num_slabs * cachep->num;
e498be7d 3861 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
3862 error = "free_objects accounting error";
3863
b28a02de 3864 name = cachep->name;
1da177e4
LT
3865 if (error)
3866 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3867
3868 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 3869 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 3870 cachep->num, (1 << cachep->gfporder));
1da177e4 3871 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 3872 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 3873 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 3874 active_slabs, num_slabs, shared_avail);
1da177e4 3875#if STATS
b28a02de 3876 { /* list3 stats */
1da177e4
LT
3877 unsigned long high = cachep->high_mark;
3878 unsigned long allocs = cachep->num_allocations;
3879 unsigned long grown = cachep->grown;
3880 unsigned long reaped = cachep->reaped;
3881 unsigned long errors = cachep->errors;
3882 unsigned long max_freeable = cachep->max_freeable;
1da177e4 3883 unsigned long node_allocs = cachep->node_allocs;
e498be7d 3884 unsigned long node_frees = cachep->node_frees;
fb7faf33 3885 unsigned long overflows = cachep->node_overflow;
1da177e4 3886
e498be7d 3887 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 3888 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 3889 reaped, errors, max_freeable, node_allocs,
fb7faf33 3890 node_frees, overflows);
1da177e4
LT
3891 }
3892 /* cpu stats */
3893 {
3894 unsigned long allochit = atomic_read(&cachep->allochit);
3895 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3896 unsigned long freehit = atomic_read(&cachep->freehit);
3897 unsigned long freemiss = atomic_read(&cachep->freemiss);
3898
3899 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 3900 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
3901 }
3902#endif
3903 seq_putc(m, '\n');
1da177e4
LT
3904 return 0;
3905}
3906
3907/*
3908 * slabinfo_op - iterator that generates /proc/slabinfo
3909 *
3910 * Output layout:
3911 * cache-name
3912 * num-active-objs
3913 * total-objs
3914 * object size
3915 * num-active-slabs
3916 * total-slabs
3917 * num-pages-per-slab
3918 * + further values on SMP and with statistics enabled
3919 */
3920
3921struct seq_operations slabinfo_op = {
b28a02de
PE
3922 .start = s_start,
3923 .next = s_next,
3924 .stop = s_stop,
3925 .show = s_show,
1da177e4
LT
3926};
3927
3928#define MAX_SLABINFO_WRITE 128
3929/**
3930 * slabinfo_write - Tuning for the slab allocator
3931 * @file: unused
3932 * @buffer: user buffer
3933 * @count: data length
3934 * @ppos: unused
3935 */
b28a02de
PE
3936ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3937 size_t count, loff_t *ppos)
1da177e4 3938{
b28a02de 3939 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4
LT
3940 int limit, batchcount, shared, res;
3941 struct list_head *p;
b28a02de 3942
1da177e4
LT
3943 if (count > MAX_SLABINFO_WRITE)
3944 return -EINVAL;
3945 if (copy_from_user(&kbuf, buffer, count))
3946 return -EFAULT;
b28a02de 3947 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
3948
3949 tmp = strchr(kbuf, ' ');
3950 if (!tmp)
3951 return -EINVAL;
3952 *tmp = '\0';
3953 tmp++;
3954 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3955 return -EINVAL;
3956
3957 /* Find the cache in the chain of caches. */
fc0abb14 3958 mutex_lock(&cache_chain_mutex);
1da177e4 3959 res = -EINVAL;
b28a02de 3960 list_for_each(p, &cache_chain) {
a737b3e2 3961 struct kmem_cache *cachep;
1da177e4 3962
a737b3e2 3963 cachep = list_entry(p, struct kmem_cache, next);
1da177e4 3964 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
3965 if (limit < 1 || batchcount < 1 ||
3966 batchcount > limit || shared < 0) {
e498be7d 3967 res = 0;
1da177e4 3968 } else {
e498be7d 3969 res = do_tune_cpucache(cachep, limit,
b28a02de 3970 batchcount, shared);
1da177e4
LT
3971 }
3972 break;
3973 }
3974 }
fc0abb14 3975 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
3976 if (res >= 0)
3977 res = count;
3978 return res;
3979}
871751e2
AV
3980
3981#ifdef CONFIG_DEBUG_SLAB_LEAK
3982
3983static void *leaks_start(struct seq_file *m, loff_t *pos)
3984{
3985 loff_t n = *pos;
3986 struct list_head *p;
3987
3988 mutex_lock(&cache_chain_mutex);
3989 p = cache_chain.next;
3990 while (n--) {
3991 p = p->next;
3992 if (p == &cache_chain)
3993 return NULL;
3994 }
3995 return list_entry(p, struct kmem_cache, next);
3996}
3997
3998static inline int add_caller(unsigned long *n, unsigned long v)
3999{
4000 unsigned long *p;
4001 int l;
4002 if (!v)
4003 return 1;
4004 l = n[1];
4005 p = n + 2;
4006 while (l) {
4007 int i = l/2;
4008 unsigned long *q = p + 2 * i;
4009 if (*q == v) {
4010 q[1]++;
4011 return 1;
4012 }
4013 if (*q > v) {
4014 l = i;
4015 } else {
4016 p = q + 2;
4017 l -= i + 1;
4018 }
4019 }
4020 if (++n[1] == n[0])
4021 return 0;
4022 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4023 p[0] = v;
4024 p[1] = 1;
4025 return 1;
4026}
4027
4028static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4029{
4030 void *p;
4031 int i;
4032 if (n[0] == n[1])
4033 return;
4034 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4035 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4036 continue;
4037 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4038 return;
4039 }
4040}
4041
4042static void show_symbol(struct seq_file *m, unsigned long address)
4043{
4044#ifdef CONFIG_KALLSYMS
4045 char *modname;
4046 const char *name;
4047 unsigned long offset, size;
4048 char namebuf[KSYM_NAME_LEN+1];
4049
4050 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4051
4052 if (name) {
4053 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4054 if (modname)
4055 seq_printf(m, " [%s]", modname);
4056 return;
4057 }
4058#endif
4059 seq_printf(m, "%p", (void *)address);
4060}
4061
4062static int leaks_show(struct seq_file *m, void *p)
4063{
4064 struct kmem_cache *cachep = p;
4065 struct list_head *q;
4066 struct slab *slabp;
4067 struct kmem_list3 *l3;
4068 const char *name;
4069 unsigned long *n = m->private;
4070 int node;
4071 int i;
4072
4073 if (!(cachep->flags & SLAB_STORE_USER))
4074 return 0;
4075 if (!(cachep->flags & SLAB_RED_ZONE))
4076 return 0;
4077
4078 /* OK, we can do it */
4079
4080 n[1] = 0;
4081
4082 for_each_online_node(node) {
4083 l3 = cachep->nodelists[node];
4084 if (!l3)
4085 continue;
4086
4087 check_irq_on();
4088 spin_lock_irq(&l3->list_lock);
4089
4090 list_for_each(q, &l3->slabs_full) {
4091 slabp = list_entry(q, struct slab, list);
4092 handle_slab(n, cachep, slabp);
4093 }
4094 list_for_each(q, &l3->slabs_partial) {
4095 slabp = list_entry(q, struct slab, list);
4096 handle_slab(n, cachep, slabp);
4097 }
4098 spin_unlock_irq(&l3->list_lock);
4099 }
4100 name = cachep->name;
4101 if (n[0] == n[1]) {
4102 /* Increase the buffer size */
4103 mutex_unlock(&cache_chain_mutex);
4104 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4105 if (!m->private) {
4106 /* Too bad, we are really out */
4107 m->private = n;
4108 mutex_lock(&cache_chain_mutex);
4109 return -ENOMEM;
4110 }
4111 *(unsigned long *)m->private = n[0] * 2;
4112 kfree(n);
4113 mutex_lock(&cache_chain_mutex);
4114 /* Now make sure this entry will be retried */
4115 m->count = m->size;
4116 return 0;
4117 }
4118 for (i = 0; i < n[1]; i++) {
4119 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4120 show_symbol(m, n[2*i+2]);
4121 seq_putc(m, '\n');
4122 }
4123 return 0;
4124}
4125
4126struct seq_operations slabstats_op = {
4127 .start = leaks_start,
4128 .next = s_next,
4129 .stop = s_stop,
4130 .show = leaks_show,
4131};
4132#endif
1da177e4
LT
4133#endif
4134
00e145b6
MS
4135/**
4136 * ksize - get the actual amount of memory allocated for a given object
4137 * @objp: Pointer to the object
4138 *
4139 * kmalloc may internally round up allocations and return more memory
4140 * than requested. ksize() can be used to determine the actual amount of
4141 * memory allocated. The caller may use this additional memory, even though
4142 * a smaller amount of memory was initially specified with the kmalloc call.
4143 * The caller must guarantee that objp points to a valid object previously
4144 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4145 * must not be freed during the duration of the call.
4146 */
1da177e4
LT
4147unsigned int ksize(const void *objp)
4148{
00e145b6
MS
4149 if (unlikely(objp == NULL))
4150 return 0;
1da177e4 4151
6ed5eb22 4152 return obj_size(virt_to_cache(objp));
1da177e4 4153}