]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/slab.h
KVM: x86/speculation: Disable Fill buffer clear within guests
[mirror_ubuntu-jammy-kernel.git] / mm / slab.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
97d06609
CL
2#ifndef MM_SLAB_H
3#define MM_SLAB_H
4/*
5 * Internal slab definitions
6 */
7
07f361b2
JK
8#ifdef CONFIG_SLOB
9/*
10 * Common fields provided in kmem_cache by all slab allocators
11 * This struct is either used directly by the allocator (SLOB)
12 * or the allocator must include definitions for all fields
13 * provided in kmem_cache_common in their definition of kmem_cache.
14 *
15 * Once we can do anonymous structs (C11 standard) we could put a
16 * anonymous struct definition in these allocators so that the
17 * separate allocations in the kmem_cache structure of SLAB and
18 * SLUB is no longer needed.
19 */
20struct kmem_cache {
21 unsigned int object_size;/* The original size of the object */
22 unsigned int size; /* The aligned/padded/added on size */
23 unsigned int align; /* Alignment as calculated */
d50112ed 24 slab_flags_t flags; /* Active flags on the slab */
7bbdb81e
AD
25 unsigned int useroffset;/* Usercopy region offset */
26 unsigned int usersize; /* Usercopy region size */
07f361b2
JK
27 const char *name; /* Slab name for sysfs */
28 int refcount; /* Use counter */
29 void (*ctor)(void *); /* Called on object slot creation */
30 struct list_head list; /* List of all slab caches on the system */
31};
32
33#endif /* CONFIG_SLOB */
34
35#ifdef CONFIG_SLAB
36#include <linux/slab_def.h>
37#endif
38
39#ifdef CONFIG_SLUB
40#include <linux/slub_def.h>
41#endif
42
43#include <linux/memcontrol.h>
11c7aec2 44#include <linux/fault-inject.h>
11c7aec2
JDB
45#include <linux/kasan.h>
46#include <linux/kmemleak.h>
7c00fce9 47#include <linux/random.h>
d92a8cfc 48#include <linux/sched/mm.h>
07f361b2 49
97d06609
CL
50/*
51 * State of the slab allocator.
52 *
53 * This is used to describe the states of the allocator during bootup.
54 * Allocators use this to gradually bootstrap themselves. Most allocators
55 * have the problem that the structures used for managing slab caches are
56 * allocated from slab caches themselves.
57 */
58enum slab_state {
59 DOWN, /* No slab functionality yet */
60 PARTIAL, /* SLUB: kmem_cache_node available */
ce8eb6c4 61 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
97d06609
CL
62 UP, /* Slab caches usable but not all extras yet */
63 FULL /* Everything is working */
64};
65
66extern enum slab_state slab_state;
67
18004c5d
CL
68/* The slab cache mutex protects the management structures during changes */
69extern struct mutex slab_mutex;
9b030cb8
CL
70
71/* The list of all slab caches on the system */
18004c5d
CL
72extern struct list_head slab_caches;
73
9b030cb8
CL
74/* The slab cache that manages slab cache information */
75extern struct kmem_cache *kmem_cache;
76
af3b5f87
VB
77/* A table of kmalloc cache names and sizes */
78extern const struct kmalloc_info_struct {
cb5d9fb3 79 const char *name[NR_KMALLOC_TYPES];
55de8b9c 80 unsigned int size;
af3b5f87
VB
81} kmalloc_info[];
82
f97d5f63
CL
83#ifndef CONFIG_SLOB
84/* Kmalloc array related functions */
34cc6990 85void setup_kmalloc_cache_index_table(void);
d50112ed 86void create_kmalloc_caches(slab_flags_t);
2c59dd65
CL
87
88/* Find the kmalloc slab corresponding for a certain size */
89struct kmem_cache *kmalloc_slab(size_t, gfp_t);
f97d5f63
CL
90#endif
91
44405099 92gfp_t kmalloc_fix_flags(gfp_t flags);
f97d5f63 93
9b030cb8 94/* Functions provided by the slab allocators */
d50112ed 95int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
97d06609 96
55de8b9c
AD
97struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
98 slab_flags_t flags, unsigned int useroffset,
99 unsigned int usersize);
45530c44 100extern void create_boot_cache(struct kmem_cache *, const char *name,
361d575e
AD
101 unsigned int size, slab_flags_t flags,
102 unsigned int useroffset, unsigned int usersize);
45530c44 103
423c929c 104int slab_unmergeable(struct kmem_cache *s);
f4957d5b 105struct kmem_cache *find_mergeable(unsigned size, unsigned align,
d50112ed 106 slab_flags_t flags, const char *name, void (*ctor)(void *));
12220dea 107#ifndef CONFIG_SLOB
2633d7a0 108struct kmem_cache *
f4957d5b 109__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 110 slab_flags_t flags, void (*ctor)(void *));
423c929c 111
0293d1fd 112slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 113 slab_flags_t flags, const char *name);
cbb79694 114#else
2633d7a0 115static inline struct kmem_cache *
f4957d5b 116__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 117 slab_flags_t flags, void (*ctor)(void *))
cbb79694 118{ return NULL; }
423c929c 119
0293d1fd 120static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 121 slab_flags_t flags, const char *name)
423c929c
JK
122{
123 return flags;
124}
cbb79694
CL
125#endif
126
127
d8843922 128/* Legal flag mask for kmem_cache_create(), for various configurations */
6d6ea1e9
NB
129#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
130 SLAB_CACHE_DMA32 | SLAB_PANIC | \
5f0d5a3a 131 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
d8843922
GC
132
133#if defined(CONFIG_DEBUG_SLAB)
134#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
135#elif defined(CONFIG_SLUB_DEBUG)
136#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
becfda68 137 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
d8843922
GC
138#else
139#define SLAB_DEBUG_FLAGS (0)
140#endif
141
142#if defined(CONFIG_SLAB)
143#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
230e9fc2 144 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
75f296d9 145 SLAB_ACCOUNT)
d8843922
GC
146#elif defined(CONFIG_SLUB)
147#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
75f296d9 148 SLAB_TEMPORARY | SLAB_ACCOUNT)
d8843922 149#else
1e237a8d 150#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE)
d8843922
GC
151#endif
152
e70954fd 153/* Common flags available with current configuration */
d8843922
GC
154#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
155
e70954fd
TG
156/* Common flags permitted for kmem_cache_create */
157#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
158 SLAB_RED_ZONE | \
159 SLAB_POISON | \
160 SLAB_STORE_USER | \
161 SLAB_TRACE | \
162 SLAB_CONSISTENCY_CHECKS | \
163 SLAB_MEM_SPREAD | \
164 SLAB_NOLEAKTRACE | \
165 SLAB_RECLAIM_ACCOUNT | \
166 SLAB_TEMPORARY | \
e70954fd
TG
167 SLAB_ACCOUNT)
168
f9e13c0a 169bool __kmem_cache_empty(struct kmem_cache *);
945cf2b6 170int __kmem_cache_shutdown(struct kmem_cache *);
52b4b950 171void __kmem_cache_release(struct kmem_cache *);
c9fc5864 172int __kmem_cache_shrink(struct kmem_cache *);
41a21285 173void slab_kmem_cache_release(struct kmem_cache *);
945cf2b6 174
b7454ad3
GC
175struct seq_file;
176struct file;
b7454ad3 177
0d7561c6
GC
178struct slabinfo {
179 unsigned long active_objs;
180 unsigned long num_objs;
181 unsigned long active_slabs;
182 unsigned long num_slabs;
183 unsigned long shared_avail;
184 unsigned int limit;
185 unsigned int batchcount;
186 unsigned int shared;
187 unsigned int objects_per_slab;
188 unsigned int cache_order;
189};
190
191void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
192void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
b7454ad3
GC
193ssize_t slabinfo_write(struct file *file, const char __user *buffer,
194 size_t count, loff_t *ppos);
ba6c496e 195
484748f0
CL
196/*
197 * Generic implementation of bulk operations
198 * These are useful for situations in which the allocator cannot
9f706d68 199 * perform optimizations. In that case segments of the object listed
484748f0
CL
200 * may be allocated or freed using these operations.
201 */
202void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
865762a8 203int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
484748f0 204
1a984c4e 205static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
6cea1d56
RG
206{
207 return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
d42f3245 208 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
6cea1d56
RG
209}
210
e42f174e
VB
211#ifdef CONFIG_SLUB_DEBUG
212#ifdef CONFIG_SLUB_DEBUG_ON
213DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
214#else
215DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
216#endif
217extern void print_tracking(struct kmem_cache *s, void *object);
1f9f78b1 218long validate_slab_cache(struct kmem_cache *s);
0d4a062a
ME
219static inline bool __slub_debug_enabled(void)
220{
221 return static_branch_unlikely(&slub_debug_enabled);
222}
e42f174e
VB
223#else
224static inline void print_tracking(struct kmem_cache *s, void *object)
225{
226}
0d4a062a
ME
227static inline bool __slub_debug_enabled(void)
228{
229 return false;
230}
e42f174e
VB
231#endif
232
233/*
234 * Returns true if any of the specified slub_debug flags is enabled for the
235 * cache. Use only for flags parsed by setup_slub_debug() as it also enables
236 * the static key.
237 */
238static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
239{
0d4a062a
ME
240 if (IS_ENABLED(CONFIG_SLUB_DEBUG))
241 VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
242 if (__slub_debug_enabled())
e42f174e 243 return s->flags & flags;
e42f174e
VB
244 return false;
245}
246
84c07d11 247#ifdef CONFIG_MEMCG_KMEM
10befea9 248int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2e9bd483 249 gfp_t gfp, bool new_page);
fdbcb2a6
WL
250void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
251 enum node_stat_item idx, int nr);
286e04b8
RG
252
253static inline void memcg_free_page_obj_cgroups(struct page *page)
254{
270c6a71 255 kfree(page_objcgs(page));
bcfe06bf 256 page->memcg_data = 0;
286e04b8
RG
257}
258
f2fe7b09
RG
259static inline size_t obj_full_size(struct kmem_cache *s)
260{
261 /*
262 * For each accounted object there is an extra space which is used
263 * to store obj_cgroup membership. Charge it too.
264 */
265 return s->size + sizeof(struct obj_cgroup *);
266}
267
becaba65
RG
268/*
269 * Returns false if the allocation should fail.
270 */
271static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
272 struct obj_cgroup **objcgp,
273 size_t objects, gfp_t flags)
f2fe7b09 274{
9855609b
RG
275 struct obj_cgroup *objcg;
276
becaba65
RG
277 if (!memcg_kmem_enabled())
278 return true;
279
280 if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
281 return true;
282
9855609b
RG
283 objcg = get_obj_cgroup_from_current();
284 if (!objcg)
becaba65 285 return true;
9855609b
RG
286
287 if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) {
288 obj_cgroup_put(objcg);
becaba65 289 return false;
f2fe7b09
RG
290 }
291
becaba65
RG
292 *objcgp = objcg;
293 return true;
f2fe7b09
RG
294}
295
964d4bd3
RG
296static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
297 struct obj_cgroup *objcg,
10befea9
RG
298 gfp_t flags, size_t size,
299 void **p)
964d4bd3
RG
300{
301 struct page *page;
302 unsigned long off;
303 size_t i;
304
becaba65 305 if (!memcg_kmem_enabled() || !objcg)
10befea9
RG
306 return;
307
964d4bd3
RG
308 for (i = 0; i < size; i++) {
309 if (likely(p[i])) {
310 page = virt_to_head_page(p[i]);
10befea9 311
270c6a71 312 if (!page_objcgs(page) &&
2e9bd483
RG
313 memcg_alloc_page_obj_cgroups(page, s, flags,
314 false)) {
10befea9
RG
315 obj_cgroup_uncharge(objcg, obj_full_size(s));
316 continue;
317 }
318
964d4bd3
RG
319 off = obj_to_index(s, page, p[i]);
320 obj_cgroup_get(objcg);
270c6a71 321 page_objcgs(page)[off] = objcg;
f2fe7b09
RG
322 mod_objcg_state(objcg, page_pgdat(page),
323 cache_vmstat_idx(s), obj_full_size(s));
324 } else {
325 obj_cgroup_uncharge(objcg, obj_full_size(s));
964d4bd3
RG
326 }
327 }
328 obj_cgroup_put(objcg);
964d4bd3
RG
329}
330
d1b2cf6c
BR
331static inline void memcg_slab_free_hook(struct kmem_cache *s_orig,
332 void **p, int objects)
964d4bd3 333{
d1b2cf6c 334 struct kmem_cache *s;
270c6a71 335 struct obj_cgroup **objcgs;
964d4bd3 336 struct obj_cgroup *objcg;
d1b2cf6c 337 struct page *page;
964d4bd3 338 unsigned int off;
d1b2cf6c 339 int i;
964d4bd3 340
10befea9
RG
341 if (!memcg_kmem_enabled())
342 return;
343
d1b2cf6c
BR
344 for (i = 0; i < objects; i++) {
345 if (unlikely(!p[i]))
346 continue;
964d4bd3 347
d1b2cf6c 348 page = virt_to_head_page(p[i]);
121dffe2 349 objcgs = page_objcgs_check(page);
270c6a71 350 if (!objcgs)
d1b2cf6c 351 continue;
f2fe7b09 352
d1b2cf6c
BR
353 if (!s_orig)
354 s = page->slab_cache;
355 else
356 s = s_orig;
10befea9 357
d1b2cf6c 358 off = obj_to_index(s, page, p[i]);
270c6a71 359 objcg = objcgs[off];
d1b2cf6c
BR
360 if (!objcg)
361 continue;
f2fe7b09 362
270c6a71 363 objcgs[off] = NULL;
d1b2cf6c
BR
364 obj_cgroup_uncharge(objcg, obj_full_size(s));
365 mod_objcg_state(objcg, page_pgdat(page), cache_vmstat_idx(s),
366 -obj_full_size(s));
367 obj_cgroup_put(objcg);
368 }
964d4bd3
RG
369}
370
84c07d11 371#else /* CONFIG_MEMCG_KMEM */
9855609b 372static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
4d96ba35
RG
373{
374 return NULL;
375}
376
286e04b8 377static inline int memcg_alloc_page_obj_cgroups(struct page *page,
2e9bd483
RG
378 struct kmem_cache *s, gfp_t gfp,
379 bool new_page)
286e04b8
RG
380{
381 return 0;
382}
383
384static inline void memcg_free_page_obj_cgroups(struct page *page)
385{
386}
387
becaba65
RG
388static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
389 struct obj_cgroup **objcgp,
390 size_t objects, gfp_t flags)
f2fe7b09 391{
becaba65 392 return true;
f2fe7b09
RG
393}
394
964d4bd3
RG
395static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
396 struct obj_cgroup *objcg,
10befea9
RG
397 gfp_t flags, size_t size,
398 void **p)
964d4bd3
RG
399{
400}
401
d1b2cf6c
BR
402static inline void memcg_slab_free_hook(struct kmem_cache *s,
403 void **p, int objects)
964d4bd3
RG
404{
405}
84c07d11 406#endif /* CONFIG_MEMCG_KMEM */
b9ce5ef4 407
a64b5378
KC
408static inline struct kmem_cache *virt_to_cache(const void *obj)
409{
410 struct page *page;
411
412 page = virt_to_head_page(obj);
413 if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n",
414 __func__))
415 return NULL;
416 return page->slab_cache;
417}
418
74d555be 419static __always_inline void account_slab_page(struct page *page, int order,
2e9bd483
RG
420 struct kmem_cache *s,
421 gfp_t gfp)
6cea1d56 422{
2e9bd483
RG
423 if (memcg_kmem_enabled() && (s->flags & SLAB_ACCOUNT))
424 memcg_alloc_page_obj_cgroups(page, s, gfp, true);
425
f2fe7b09
RG
426 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
427 PAGE_SIZE << order);
6cea1d56
RG
428}
429
74d555be
RG
430static __always_inline void unaccount_slab_page(struct page *page, int order,
431 struct kmem_cache *s)
6cea1d56 432{
10befea9 433 if (memcg_kmem_enabled())
f2fe7b09 434 memcg_free_page_obj_cgroups(page);
9855609b 435
f2fe7b09
RG
436 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
437 -(PAGE_SIZE << order));
6cea1d56
RG
438}
439
e42f174e
VB
440static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
441{
442 struct kmem_cache *cachep;
443
444 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
e42f174e
VB
445 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
446 return s;
447
448 cachep = virt_to_cache(x);
10befea9 449 if (WARN(cachep && cachep != s,
e42f174e
VB
450 "%s: Wrong slab cache. %s but object is from %s\n",
451 __func__, s->name, cachep->name))
452 print_tracking(cachep, x);
453 return cachep;
454}
455
11c7aec2
JDB
456static inline size_t slab_ksize(const struct kmem_cache *s)
457{
458#ifndef CONFIG_SLUB
459 return s->object_size;
460
461#else /* CONFIG_SLUB */
462# ifdef CONFIG_SLUB_DEBUG
463 /*
464 * Debugging requires use of the padding between object
465 * and whatever may come after it.
466 */
467 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
468 return s->object_size;
469# endif
80a9201a
AP
470 if (s->flags & SLAB_KASAN)
471 return s->object_size;
11c7aec2
JDB
472 /*
473 * If we have the need to store the freelist pointer
474 * back there or track user information then we can
475 * only use the space before that information.
476 */
5f0d5a3a 477 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
11c7aec2
JDB
478 return s->inuse;
479 /*
480 * Else we can use all the padding etc for the allocation
481 */
482 return s->size;
483#endif
484}
485
486static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
964d4bd3
RG
487 struct obj_cgroup **objcgp,
488 size_t size, gfp_t flags)
11c7aec2
JDB
489{
490 flags &= gfp_allowed_mask;
d92a8cfc 491
95d6c701 492 might_alloc(flags);
11c7aec2 493
fab9963a 494 if (should_failslab(s, flags))
11c7aec2
JDB
495 return NULL;
496
becaba65
RG
497 if (!memcg_slab_pre_alloc_hook(s, objcgp, size, flags))
498 return NULL;
45264778
VD
499
500 return s;
11c7aec2
JDB
501}
502
964d4bd3 503static inline void slab_post_alloc_hook(struct kmem_cache *s,
da844b78
AK
504 struct obj_cgroup *objcg, gfp_t flags,
505 size_t size, void **p, bool init)
11c7aec2
JDB
506{
507 size_t i;
508
509 flags &= gfp_allowed_mask;
da844b78
AK
510
511 /*
512 * As memory initialization might be integrated into KASAN,
513 * kasan_slab_alloc and initialization memset must be
514 * kept together to avoid discrepancies in behavior.
515 *
516 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
517 */
11c7aec2 518 for (i = 0; i < size; i++) {
da844b78
AK
519 p[i] = kasan_slab_alloc(s, p[i], flags, init);
520 if (p[i] && init && !kasan_has_integrated_init())
521 memset(p[i], 0, s->object_size);
53128245 522 kmemleak_alloc_recursive(p[i], s->object_size, 1,
11c7aec2 523 s->flags, flags);
11c7aec2 524 }
45264778 525
becaba65 526 memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
11c7aec2
JDB
527}
528
44c5356f 529#ifndef CONFIG_SLOB
ca34956b
CL
530/*
531 * The slab lists for all objects.
532 */
533struct kmem_cache_node {
534 spinlock_t list_lock;
535
536#ifdef CONFIG_SLAB
537 struct list_head slabs_partial; /* partial list first, better asm code */
538 struct list_head slabs_full;
539 struct list_head slabs_free;
bf00bd34
DR
540 unsigned long total_slabs; /* length of all slab lists */
541 unsigned long free_slabs; /* length of free slab list only */
ca34956b
CL
542 unsigned long free_objects;
543 unsigned int free_limit;
544 unsigned int colour_next; /* Per-node cache coloring */
545 struct array_cache *shared; /* shared per node */
c8522a3a 546 struct alien_cache **alien; /* on other nodes */
ca34956b
CL
547 unsigned long next_reap; /* updated without locking */
548 int free_touched; /* updated without locking */
549#endif
550
551#ifdef CONFIG_SLUB
552 unsigned long nr_partial;
553 struct list_head partial;
554#ifdef CONFIG_SLUB_DEBUG
555 atomic_long_t nr_slabs;
556 atomic_long_t total_objects;
557 struct list_head full;
558#endif
559#endif
560
561};
e25839f6 562
44c5356f
CL
563static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
564{
565 return s->node[node];
566}
567
568/*
569 * Iterator over all nodes. The body will be executed for each node that has
570 * a kmem_cache_node structure allocated (which is true for all online nodes)
571 */
572#define for_each_kmem_cache_node(__s, __node, __n) \
9163582c
MP
573 for (__node = 0; __node < nr_node_ids; __node++) \
574 if ((__n = get_node(__s, __node)))
44c5356f
CL
575
576#endif
577
1df3b26f 578void *slab_start(struct seq_file *m, loff_t *pos);
276a2439
WL
579void *slab_next(struct seq_file *m, void *p, loff_t *pos);
580void slab_stop(struct seq_file *m, void *p);
b047501c 581int memcg_slab_show(struct seq_file *m, void *p);
5240ab40 582
852d8be0
YS
583#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
584void dump_unreclaimable_slab(void);
585#else
586static inline void dump_unreclaimable_slab(void)
587{
588}
589#endif
590
55834c59
AP
591void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
592
7c00fce9
TG
593#ifdef CONFIG_SLAB_FREELIST_RANDOM
594int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
595 gfp_t gfp);
596void cache_random_seq_destroy(struct kmem_cache *cachep);
597#else
598static inline int cache_random_seq_create(struct kmem_cache *cachep,
599 unsigned int count, gfp_t gfp)
600{
601 return 0;
602}
603static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
604#endif /* CONFIG_SLAB_FREELIST_RANDOM */
605
6471384a
AP
606static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
607{
51cba1eb
KC
608 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
609 &init_on_alloc)) {
6471384a
AP
610 if (c->ctor)
611 return false;
612 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
613 return flags & __GFP_ZERO;
614 return true;
615 }
616 return flags & __GFP_ZERO;
617}
618
619static inline bool slab_want_init_on_free(struct kmem_cache *c)
620{
51cba1eb
KC
621 if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
622 &init_on_free))
6471384a
AP
623 return !(c->ctor ||
624 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
625 return false;
626}
627
64dd6849
FM
628#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
629void debugfs_slab_release(struct kmem_cache *);
630#else
631static inline void debugfs_slab_release(struct kmem_cache *s) { }
632#endif
633
5bb1bb35 634#ifdef CONFIG_PRINTK
8e7f37f2
PM
635#define KS_ADDRS_COUNT 16
636struct kmem_obj_info {
637 void *kp_ptr;
638 struct page *kp_page;
639 void *kp_objp;
640 unsigned long kp_data_offset;
641 struct kmem_cache *kp_slab_cache;
642 void *kp_ret;
643 void *kp_stack[KS_ADDRS_COUNT];
e548eaa1 644 void *kp_free_stack[KS_ADDRS_COUNT];
8e7f37f2
PM
645};
646void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page);
5bb1bb35 647#endif
8e7f37f2 648
5240ab40 649#endif /* MM_SLAB_H */