]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/slab.h
Merge tag 'irq-urgent-2020-11-08' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-hirsute-kernel.git] / mm / slab.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
97d06609
CL
2#ifndef MM_SLAB_H
3#define MM_SLAB_H
4/*
5 * Internal slab definitions
6 */
7
07f361b2
JK
8#ifdef CONFIG_SLOB
9/*
10 * Common fields provided in kmem_cache by all slab allocators
11 * This struct is either used directly by the allocator (SLOB)
12 * or the allocator must include definitions for all fields
13 * provided in kmem_cache_common in their definition of kmem_cache.
14 *
15 * Once we can do anonymous structs (C11 standard) we could put a
16 * anonymous struct definition in these allocators so that the
17 * separate allocations in the kmem_cache structure of SLAB and
18 * SLUB is no longer needed.
19 */
20struct kmem_cache {
21 unsigned int object_size;/* The original size of the object */
22 unsigned int size; /* The aligned/padded/added on size */
23 unsigned int align; /* Alignment as calculated */
d50112ed 24 slab_flags_t flags; /* Active flags on the slab */
7bbdb81e
AD
25 unsigned int useroffset;/* Usercopy region offset */
26 unsigned int usersize; /* Usercopy region size */
07f361b2
JK
27 const char *name; /* Slab name for sysfs */
28 int refcount; /* Use counter */
29 void (*ctor)(void *); /* Called on object slot creation */
30 struct list_head list; /* List of all slab caches on the system */
31};
32
33#endif /* CONFIG_SLOB */
34
35#ifdef CONFIG_SLAB
36#include <linux/slab_def.h>
37#endif
38
39#ifdef CONFIG_SLUB
40#include <linux/slub_def.h>
41#endif
42
43#include <linux/memcontrol.h>
11c7aec2 44#include <linux/fault-inject.h>
11c7aec2
JDB
45#include <linux/kasan.h>
46#include <linux/kmemleak.h>
7c00fce9 47#include <linux/random.h>
d92a8cfc 48#include <linux/sched/mm.h>
07f361b2 49
97d06609
CL
50/*
51 * State of the slab allocator.
52 *
53 * This is used to describe the states of the allocator during bootup.
54 * Allocators use this to gradually bootstrap themselves. Most allocators
55 * have the problem that the structures used for managing slab caches are
56 * allocated from slab caches themselves.
57 */
58enum slab_state {
59 DOWN, /* No slab functionality yet */
60 PARTIAL, /* SLUB: kmem_cache_node available */
ce8eb6c4 61 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
97d06609
CL
62 UP, /* Slab caches usable but not all extras yet */
63 FULL /* Everything is working */
64};
65
66extern enum slab_state slab_state;
67
18004c5d
CL
68/* The slab cache mutex protects the management structures during changes */
69extern struct mutex slab_mutex;
9b030cb8
CL
70
71/* The list of all slab caches on the system */
18004c5d
CL
72extern struct list_head slab_caches;
73
9b030cb8
CL
74/* The slab cache that manages slab cache information */
75extern struct kmem_cache *kmem_cache;
76
af3b5f87
VB
77/* A table of kmalloc cache names and sizes */
78extern const struct kmalloc_info_struct {
cb5d9fb3 79 const char *name[NR_KMALLOC_TYPES];
55de8b9c 80 unsigned int size;
af3b5f87
VB
81} kmalloc_info[];
82
f97d5f63
CL
83#ifndef CONFIG_SLOB
84/* Kmalloc array related functions */
34cc6990 85void setup_kmalloc_cache_index_table(void);
d50112ed 86void create_kmalloc_caches(slab_flags_t);
2c59dd65
CL
87
88/* Find the kmalloc slab corresponding for a certain size */
89struct kmem_cache *kmalloc_slab(size_t, gfp_t);
f97d5f63
CL
90#endif
91
44405099 92gfp_t kmalloc_fix_flags(gfp_t flags);
f97d5f63 93
9b030cb8 94/* Functions provided by the slab allocators */
d50112ed 95int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
97d06609 96
55de8b9c
AD
97struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
98 slab_flags_t flags, unsigned int useroffset,
99 unsigned int usersize);
45530c44 100extern void create_boot_cache(struct kmem_cache *, const char *name,
361d575e
AD
101 unsigned int size, slab_flags_t flags,
102 unsigned int useroffset, unsigned int usersize);
45530c44 103
423c929c 104int slab_unmergeable(struct kmem_cache *s);
f4957d5b 105struct kmem_cache *find_mergeable(unsigned size, unsigned align,
d50112ed 106 slab_flags_t flags, const char *name, void (*ctor)(void *));
12220dea 107#ifndef CONFIG_SLOB
2633d7a0 108struct kmem_cache *
f4957d5b 109__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 110 slab_flags_t flags, void (*ctor)(void *));
423c929c 111
0293d1fd 112slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 113 slab_flags_t flags, const char *name,
423c929c 114 void (*ctor)(void *));
cbb79694 115#else
2633d7a0 116static inline struct kmem_cache *
f4957d5b 117__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 118 slab_flags_t flags, void (*ctor)(void *))
cbb79694 119{ return NULL; }
423c929c 120
0293d1fd 121static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 122 slab_flags_t flags, const char *name,
423c929c
JK
123 void (*ctor)(void *))
124{
125 return flags;
126}
cbb79694
CL
127#endif
128
129
d8843922 130/* Legal flag mask for kmem_cache_create(), for various configurations */
6d6ea1e9
NB
131#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
132 SLAB_CACHE_DMA32 | SLAB_PANIC | \
5f0d5a3a 133 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
d8843922
GC
134
135#if defined(CONFIG_DEBUG_SLAB)
136#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
137#elif defined(CONFIG_SLUB_DEBUG)
138#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
becfda68 139 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
d8843922
GC
140#else
141#define SLAB_DEBUG_FLAGS (0)
142#endif
143
144#if defined(CONFIG_SLAB)
145#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
230e9fc2 146 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
75f296d9 147 SLAB_ACCOUNT)
d8843922
GC
148#elif defined(CONFIG_SLUB)
149#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
75f296d9 150 SLAB_TEMPORARY | SLAB_ACCOUNT)
d8843922
GC
151#else
152#define SLAB_CACHE_FLAGS (0)
153#endif
154
e70954fd 155/* Common flags available with current configuration */
d8843922
GC
156#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
157
e70954fd
TG
158/* Common flags permitted for kmem_cache_create */
159#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
160 SLAB_RED_ZONE | \
161 SLAB_POISON | \
162 SLAB_STORE_USER | \
163 SLAB_TRACE | \
164 SLAB_CONSISTENCY_CHECKS | \
165 SLAB_MEM_SPREAD | \
166 SLAB_NOLEAKTRACE | \
167 SLAB_RECLAIM_ACCOUNT | \
168 SLAB_TEMPORARY | \
e70954fd
TG
169 SLAB_ACCOUNT)
170
f9e13c0a 171bool __kmem_cache_empty(struct kmem_cache *);
945cf2b6 172int __kmem_cache_shutdown(struct kmem_cache *);
52b4b950 173void __kmem_cache_release(struct kmem_cache *);
c9fc5864 174int __kmem_cache_shrink(struct kmem_cache *);
41a21285 175void slab_kmem_cache_release(struct kmem_cache *);
945cf2b6 176
b7454ad3
GC
177struct seq_file;
178struct file;
b7454ad3 179
0d7561c6
GC
180struct slabinfo {
181 unsigned long active_objs;
182 unsigned long num_objs;
183 unsigned long active_slabs;
184 unsigned long num_slabs;
185 unsigned long shared_avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int shared;
189 unsigned int objects_per_slab;
190 unsigned int cache_order;
191};
192
193void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
194void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
b7454ad3
GC
195ssize_t slabinfo_write(struct file *file, const char __user *buffer,
196 size_t count, loff_t *ppos);
ba6c496e 197
484748f0
CL
198/*
199 * Generic implementation of bulk operations
200 * These are useful for situations in which the allocator cannot
9f706d68 201 * perform optimizations. In that case segments of the object listed
484748f0
CL
202 * may be allocated or freed using these operations.
203 */
204void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
865762a8 205int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
484748f0 206
6cea1d56
RG
207static inline int cache_vmstat_idx(struct kmem_cache *s)
208{
209 return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
d42f3245 210 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
6cea1d56
RG
211}
212
e42f174e
VB
213#ifdef CONFIG_SLUB_DEBUG
214#ifdef CONFIG_SLUB_DEBUG_ON
215DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
216#else
217DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
218#endif
219extern void print_tracking(struct kmem_cache *s, void *object);
220#else
221static inline void print_tracking(struct kmem_cache *s, void *object)
222{
223}
224#endif
225
226/*
227 * Returns true if any of the specified slub_debug flags is enabled for the
228 * cache. Use only for flags parsed by setup_slub_debug() as it also enables
229 * the static key.
230 */
231static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
232{
233#ifdef CONFIG_SLUB_DEBUG
234 VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
235 if (static_branch_unlikely(&slub_debug_enabled))
236 return s->flags & flags;
237#endif
238 return false;
239}
240
84c07d11 241#ifdef CONFIG_MEMCG_KMEM
286e04b8
RG
242static inline struct obj_cgroup **page_obj_cgroups(struct page *page)
243{
244 /*
245 * page->mem_cgroup and page->obj_cgroups are sharing the same
246 * space. To distinguish between them in case we don't know for sure
247 * that the page is a slab page (e.g. page_cgroup_ino()), let's
248 * always set the lowest bit of obj_cgroups.
249 */
250 return (struct obj_cgroup **)
251 ((unsigned long)page->obj_cgroups & ~0x1UL);
252}
253
9855609b 254static inline bool page_has_obj_cgroups(struct page *page)
4d96ba35 255{
9855609b 256 return ((unsigned long)page->obj_cgroups & 0x1UL);
4d96ba35
RG
257}
258
10befea9
RG
259int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
260 gfp_t gfp);
286e04b8
RG
261
262static inline void memcg_free_page_obj_cgroups(struct page *page)
263{
264 kfree(page_obj_cgroups(page));
265 page->obj_cgroups = NULL;
266}
267
f2fe7b09
RG
268static inline size_t obj_full_size(struct kmem_cache *s)
269{
270 /*
271 * For each accounted object there is an extra space which is used
272 * to store obj_cgroup membership. Charge it too.
273 */
274 return s->size + sizeof(struct obj_cgroup *);
275}
276
10befea9
RG
277static inline struct obj_cgroup *memcg_slab_pre_alloc_hook(struct kmem_cache *s,
278 size_t objects,
279 gfp_t flags)
f2fe7b09 280{
9855609b
RG
281 struct obj_cgroup *objcg;
282
9855609b
RG
283 objcg = get_obj_cgroup_from_current();
284 if (!objcg)
10befea9 285 return NULL;
9855609b
RG
286
287 if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) {
288 obj_cgroup_put(objcg);
10befea9 289 return NULL;
f2fe7b09
RG
290 }
291
10befea9 292 return objcg;
f2fe7b09
RG
293}
294
295static inline void mod_objcg_state(struct obj_cgroup *objcg,
296 struct pglist_data *pgdat,
297 int idx, int nr)
298{
299 struct mem_cgroup *memcg;
300 struct lruvec *lruvec;
301
302 rcu_read_lock();
303 memcg = obj_cgroup_memcg(objcg);
304 lruvec = mem_cgroup_lruvec(memcg, pgdat);
305 mod_memcg_lruvec_state(lruvec, idx, nr);
306 rcu_read_unlock();
307}
308
964d4bd3
RG
309static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
310 struct obj_cgroup *objcg,
10befea9
RG
311 gfp_t flags, size_t size,
312 void **p)
964d4bd3
RG
313{
314 struct page *page;
315 unsigned long off;
316 size_t i;
317
10befea9
RG
318 if (!objcg)
319 return;
320
321 flags &= ~__GFP_ACCOUNT;
964d4bd3
RG
322 for (i = 0; i < size; i++) {
323 if (likely(p[i])) {
324 page = virt_to_head_page(p[i]);
10befea9
RG
325
326 if (!page_has_obj_cgroups(page) &&
327 memcg_alloc_page_obj_cgroups(page, s, flags)) {
328 obj_cgroup_uncharge(objcg, obj_full_size(s));
329 continue;
330 }
331
964d4bd3
RG
332 off = obj_to_index(s, page, p[i]);
333 obj_cgroup_get(objcg);
334 page_obj_cgroups(page)[off] = objcg;
f2fe7b09
RG
335 mod_objcg_state(objcg, page_pgdat(page),
336 cache_vmstat_idx(s), obj_full_size(s));
337 } else {
338 obj_cgroup_uncharge(objcg, obj_full_size(s));
964d4bd3
RG
339 }
340 }
341 obj_cgroup_put(objcg);
964d4bd3
RG
342}
343
d1b2cf6c
BR
344static inline void memcg_slab_free_hook(struct kmem_cache *s_orig,
345 void **p, int objects)
964d4bd3 346{
d1b2cf6c 347 struct kmem_cache *s;
964d4bd3 348 struct obj_cgroup *objcg;
d1b2cf6c 349 struct page *page;
964d4bd3 350 unsigned int off;
d1b2cf6c 351 int i;
964d4bd3 352
10befea9
RG
353 if (!memcg_kmem_enabled())
354 return;
355
d1b2cf6c
BR
356 for (i = 0; i < objects; i++) {
357 if (unlikely(!p[i]))
358 continue;
964d4bd3 359
d1b2cf6c
BR
360 page = virt_to_head_page(p[i]);
361 if (!page_has_obj_cgroups(page))
362 continue;
f2fe7b09 363
d1b2cf6c
BR
364 if (!s_orig)
365 s = page->slab_cache;
366 else
367 s = s_orig;
10befea9 368
d1b2cf6c
BR
369 off = obj_to_index(s, page, p[i]);
370 objcg = page_obj_cgroups(page)[off];
371 if (!objcg)
372 continue;
f2fe7b09 373
d1b2cf6c
BR
374 page_obj_cgroups(page)[off] = NULL;
375 obj_cgroup_uncharge(objcg, obj_full_size(s));
376 mod_objcg_state(objcg, page_pgdat(page), cache_vmstat_idx(s),
377 -obj_full_size(s));
378 obj_cgroup_put(objcg);
379 }
964d4bd3
RG
380}
381
84c07d11 382#else /* CONFIG_MEMCG_KMEM */
9855609b
RG
383static inline bool page_has_obj_cgroups(struct page *page)
384{
385 return false;
386}
387
388static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
4d96ba35
RG
389{
390 return NULL;
391}
392
286e04b8
RG
393static inline int memcg_alloc_page_obj_cgroups(struct page *page,
394 struct kmem_cache *s, gfp_t gfp)
395{
396 return 0;
397}
398
399static inline void memcg_free_page_obj_cgroups(struct page *page)
400{
401}
402
10befea9
RG
403static inline struct obj_cgroup *memcg_slab_pre_alloc_hook(struct kmem_cache *s,
404 size_t objects,
405 gfp_t flags)
f2fe7b09
RG
406{
407 return NULL;
408}
409
964d4bd3
RG
410static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
411 struct obj_cgroup *objcg,
10befea9
RG
412 gfp_t flags, size_t size,
413 void **p)
964d4bd3
RG
414{
415}
416
d1b2cf6c
BR
417static inline void memcg_slab_free_hook(struct kmem_cache *s,
418 void **p, int objects)
964d4bd3
RG
419{
420}
84c07d11 421#endif /* CONFIG_MEMCG_KMEM */
b9ce5ef4 422
a64b5378
KC
423static inline struct kmem_cache *virt_to_cache(const void *obj)
424{
425 struct page *page;
426
427 page = virt_to_head_page(obj);
428 if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n",
429 __func__))
430 return NULL;
431 return page->slab_cache;
432}
433
74d555be
RG
434static __always_inline void account_slab_page(struct page *page, int order,
435 struct kmem_cache *s)
6cea1d56 436{
f2fe7b09
RG
437 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
438 PAGE_SIZE << order);
6cea1d56
RG
439}
440
74d555be
RG
441static __always_inline void unaccount_slab_page(struct page *page, int order,
442 struct kmem_cache *s)
6cea1d56 443{
10befea9 444 if (memcg_kmem_enabled())
f2fe7b09 445 memcg_free_page_obj_cgroups(page);
9855609b 446
f2fe7b09
RG
447 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
448 -(PAGE_SIZE << order));
6cea1d56
RG
449}
450
e42f174e
VB
451static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
452{
453 struct kmem_cache *cachep;
454
455 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
e42f174e
VB
456 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
457 return s;
458
459 cachep = virt_to_cache(x);
10befea9 460 if (WARN(cachep && cachep != s,
e42f174e
VB
461 "%s: Wrong slab cache. %s but object is from %s\n",
462 __func__, s->name, cachep->name))
463 print_tracking(cachep, x);
464 return cachep;
465}
466
11c7aec2
JDB
467static inline size_t slab_ksize(const struct kmem_cache *s)
468{
469#ifndef CONFIG_SLUB
470 return s->object_size;
471
472#else /* CONFIG_SLUB */
473# ifdef CONFIG_SLUB_DEBUG
474 /*
475 * Debugging requires use of the padding between object
476 * and whatever may come after it.
477 */
478 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
479 return s->object_size;
480# endif
80a9201a
AP
481 if (s->flags & SLAB_KASAN)
482 return s->object_size;
11c7aec2
JDB
483 /*
484 * If we have the need to store the freelist pointer
485 * back there or track user information then we can
486 * only use the space before that information.
487 */
5f0d5a3a 488 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
11c7aec2
JDB
489 return s->inuse;
490 /*
491 * Else we can use all the padding etc for the allocation
492 */
493 return s->size;
494#endif
495}
496
497static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
964d4bd3
RG
498 struct obj_cgroup **objcgp,
499 size_t size, gfp_t flags)
11c7aec2
JDB
500{
501 flags &= gfp_allowed_mask;
d92a8cfc
PZ
502
503 fs_reclaim_acquire(flags);
504 fs_reclaim_release(flags);
505
11c7aec2
JDB
506 might_sleep_if(gfpflags_allow_blocking(flags));
507
fab9963a 508 if (should_failslab(s, flags))
11c7aec2
JDB
509 return NULL;
510
45264778
VD
511 if (memcg_kmem_enabled() &&
512 ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
10befea9 513 *objcgp = memcg_slab_pre_alloc_hook(s, size, flags);
45264778
VD
514
515 return s;
11c7aec2
JDB
516}
517
964d4bd3
RG
518static inline void slab_post_alloc_hook(struct kmem_cache *s,
519 struct obj_cgroup *objcg,
520 gfp_t flags, size_t size, void **p)
11c7aec2
JDB
521{
522 size_t i;
523
524 flags &= gfp_allowed_mask;
525 for (i = 0; i < size; i++) {
53128245 526 p[i] = kasan_slab_alloc(s, p[i], flags);
a2f77575 527 /* As p[i] might get tagged, call kmemleak hook after KASAN. */
53128245 528 kmemleak_alloc_recursive(p[i], s->object_size, 1,
11c7aec2 529 s->flags, flags);
11c7aec2 530 }
45264778 531
10befea9
RG
532 if (memcg_kmem_enabled())
533 memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
11c7aec2
JDB
534}
535
44c5356f 536#ifndef CONFIG_SLOB
ca34956b
CL
537/*
538 * The slab lists for all objects.
539 */
540struct kmem_cache_node {
541 spinlock_t list_lock;
542
543#ifdef CONFIG_SLAB
544 struct list_head slabs_partial; /* partial list first, better asm code */
545 struct list_head slabs_full;
546 struct list_head slabs_free;
bf00bd34
DR
547 unsigned long total_slabs; /* length of all slab lists */
548 unsigned long free_slabs; /* length of free slab list only */
ca34956b
CL
549 unsigned long free_objects;
550 unsigned int free_limit;
551 unsigned int colour_next; /* Per-node cache coloring */
552 struct array_cache *shared; /* shared per node */
c8522a3a 553 struct alien_cache **alien; /* on other nodes */
ca34956b
CL
554 unsigned long next_reap; /* updated without locking */
555 int free_touched; /* updated without locking */
556#endif
557
558#ifdef CONFIG_SLUB
559 unsigned long nr_partial;
560 struct list_head partial;
561#ifdef CONFIG_SLUB_DEBUG
562 atomic_long_t nr_slabs;
563 atomic_long_t total_objects;
564 struct list_head full;
565#endif
566#endif
567
568};
e25839f6 569
44c5356f
CL
570static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
571{
572 return s->node[node];
573}
574
575/*
576 * Iterator over all nodes. The body will be executed for each node that has
577 * a kmem_cache_node structure allocated (which is true for all online nodes)
578 */
579#define for_each_kmem_cache_node(__s, __node, __n) \
9163582c
MP
580 for (__node = 0; __node < nr_node_ids; __node++) \
581 if ((__n = get_node(__s, __node)))
44c5356f
CL
582
583#endif
584
1df3b26f 585void *slab_start(struct seq_file *m, loff_t *pos);
276a2439
WL
586void *slab_next(struct seq_file *m, void *p, loff_t *pos);
587void slab_stop(struct seq_file *m, void *p);
b047501c 588int memcg_slab_show(struct seq_file *m, void *p);
5240ab40 589
852d8be0
YS
590#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
591void dump_unreclaimable_slab(void);
592#else
593static inline void dump_unreclaimable_slab(void)
594{
595}
596#endif
597
55834c59
AP
598void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
599
7c00fce9
TG
600#ifdef CONFIG_SLAB_FREELIST_RANDOM
601int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
602 gfp_t gfp);
603void cache_random_seq_destroy(struct kmem_cache *cachep);
604#else
605static inline int cache_random_seq_create(struct kmem_cache *cachep,
606 unsigned int count, gfp_t gfp)
607{
608 return 0;
609}
610static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
611#endif /* CONFIG_SLAB_FREELIST_RANDOM */
612
6471384a
AP
613static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
614{
615 if (static_branch_unlikely(&init_on_alloc)) {
616 if (c->ctor)
617 return false;
618 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
619 return flags & __GFP_ZERO;
620 return true;
621 }
622 return flags & __GFP_ZERO;
623}
624
625static inline bool slab_want_init_on_free(struct kmem_cache *c)
626{
627 if (static_branch_unlikely(&init_on_free))
628 return !(c->ctor ||
629 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
630 return false;
631}
632
5240ab40 633#endif /* MM_SLAB_H */