]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/slab.h
Merge tag 'riscv-for-linus-5.10-rc8' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / mm / slab.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
97d06609
CL
2#ifndef MM_SLAB_H
3#define MM_SLAB_H
4/*
5 * Internal slab definitions
6 */
7
07f361b2
JK
8#ifdef CONFIG_SLOB
9/*
10 * Common fields provided in kmem_cache by all slab allocators
11 * This struct is either used directly by the allocator (SLOB)
12 * or the allocator must include definitions for all fields
13 * provided in kmem_cache_common in their definition of kmem_cache.
14 *
15 * Once we can do anonymous structs (C11 standard) we could put a
16 * anonymous struct definition in these allocators so that the
17 * separate allocations in the kmem_cache structure of SLAB and
18 * SLUB is no longer needed.
19 */
20struct kmem_cache {
21 unsigned int object_size;/* The original size of the object */
22 unsigned int size; /* The aligned/padded/added on size */
23 unsigned int align; /* Alignment as calculated */
d50112ed 24 slab_flags_t flags; /* Active flags on the slab */
7bbdb81e
AD
25 unsigned int useroffset;/* Usercopy region offset */
26 unsigned int usersize; /* Usercopy region size */
07f361b2
JK
27 const char *name; /* Slab name for sysfs */
28 int refcount; /* Use counter */
29 void (*ctor)(void *); /* Called on object slot creation */
30 struct list_head list; /* List of all slab caches on the system */
31};
32
33#endif /* CONFIG_SLOB */
34
35#ifdef CONFIG_SLAB
36#include <linux/slab_def.h>
37#endif
38
39#ifdef CONFIG_SLUB
40#include <linux/slub_def.h>
41#endif
42
43#include <linux/memcontrol.h>
11c7aec2 44#include <linux/fault-inject.h>
11c7aec2
JDB
45#include <linux/kasan.h>
46#include <linux/kmemleak.h>
7c00fce9 47#include <linux/random.h>
d92a8cfc 48#include <linux/sched/mm.h>
07f361b2 49
97d06609
CL
50/*
51 * State of the slab allocator.
52 *
53 * This is used to describe the states of the allocator during bootup.
54 * Allocators use this to gradually bootstrap themselves. Most allocators
55 * have the problem that the structures used for managing slab caches are
56 * allocated from slab caches themselves.
57 */
58enum slab_state {
59 DOWN, /* No slab functionality yet */
60 PARTIAL, /* SLUB: kmem_cache_node available */
ce8eb6c4 61 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
97d06609
CL
62 UP, /* Slab caches usable but not all extras yet */
63 FULL /* Everything is working */
64};
65
66extern enum slab_state slab_state;
67
18004c5d
CL
68/* The slab cache mutex protects the management structures during changes */
69extern struct mutex slab_mutex;
9b030cb8
CL
70
71/* The list of all slab caches on the system */
18004c5d
CL
72extern struct list_head slab_caches;
73
9b030cb8
CL
74/* The slab cache that manages slab cache information */
75extern struct kmem_cache *kmem_cache;
76
af3b5f87
VB
77/* A table of kmalloc cache names and sizes */
78extern const struct kmalloc_info_struct {
cb5d9fb3 79 const char *name[NR_KMALLOC_TYPES];
55de8b9c 80 unsigned int size;
af3b5f87
VB
81} kmalloc_info[];
82
f97d5f63
CL
83#ifndef CONFIG_SLOB
84/* Kmalloc array related functions */
34cc6990 85void setup_kmalloc_cache_index_table(void);
d50112ed 86void create_kmalloc_caches(slab_flags_t);
2c59dd65
CL
87
88/* Find the kmalloc slab corresponding for a certain size */
89struct kmem_cache *kmalloc_slab(size_t, gfp_t);
f97d5f63
CL
90#endif
91
44405099 92gfp_t kmalloc_fix_flags(gfp_t flags);
f97d5f63 93
9b030cb8 94/* Functions provided by the slab allocators */
d50112ed 95int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
97d06609 96
55de8b9c
AD
97struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
98 slab_flags_t flags, unsigned int useroffset,
99 unsigned int usersize);
45530c44 100extern void create_boot_cache(struct kmem_cache *, const char *name,
361d575e
AD
101 unsigned int size, slab_flags_t flags,
102 unsigned int useroffset, unsigned int usersize);
45530c44 103
423c929c 104int slab_unmergeable(struct kmem_cache *s);
f4957d5b 105struct kmem_cache *find_mergeable(unsigned size, unsigned align,
d50112ed 106 slab_flags_t flags, const char *name, void (*ctor)(void *));
12220dea 107#ifndef CONFIG_SLOB
2633d7a0 108struct kmem_cache *
f4957d5b 109__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 110 slab_flags_t flags, void (*ctor)(void *));
423c929c 111
0293d1fd 112slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 113 slab_flags_t flags, const char *name,
423c929c 114 void (*ctor)(void *));
cbb79694 115#else
2633d7a0 116static inline struct kmem_cache *
f4957d5b 117__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 118 slab_flags_t flags, void (*ctor)(void *))
cbb79694 119{ return NULL; }
423c929c 120
0293d1fd 121static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 122 slab_flags_t flags, const char *name,
423c929c
JK
123 void (*ctor)(void *))
124{
125 return flags;
126}
cbb79694
CL
127#endif
128
129
d8843922 130/* Legal flag mask for kmem_cache_create(), for various configurations */
6d6ea1e9
NB
131#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
132 SLAB_CACHE_DMA32 | SLAB_PANIC | \
5f0d5a3a 133 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
d8843922
GC
134
135#if defined(CONFIG_DEBUG_SLAB)
136#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
137#elif defined(CONFIG_SLUB_DEBUG)
138#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
becfda68 139 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
d8843922
GC
140#else
141#define SLAB_DEBUG_FLAGS (0)
142#endif
143
144#if defined(CONFIG_SLAB)
145#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
230e9fc2 146 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
75f296d9 147 SLAB_ACCOUNT)
d8843922
GC
148#elif defined(CONFIG_SLUB)
149#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
75f296d9 150 SLAB_TEMPORARY | SLAB_ACCOUNT)
d8843922
GC
151#else
152#define SLAB_CACHE_FLAGS (0)
153#endif
154
e70954fd 155/* Common flags available with current configuration */
d8843922
GC
156#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
157
e70954fd
TG
158/* Common flags permitted for kmem_cache_create */
159#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
160 SLAB_RED_ZONE | \
161 SLAB_POISON | \
162 SLAB_STORE_USER | \
163 SLAB_TRACE | \
164 SLAB_CONSISTENCY_CHECKS | \
165 SLAB_MEM_SPREAD | \
166 SLAB_NOLEAKTRACE | \
167 SLAB_RECLAIM_ACCOUNT | \
168 SLAB_TEMPORARY | \
e70954fd
TG
169 SLAB_ACCOUNT)
170
f9e13c0a 171bool __kmem_cache_empty(struct kmem_cache *);
945cf2b6 172int __kmem_cache_shutdown(struct kmem_cache *);
52b4b950 173void __kmem_cache_release(struct kmem_cache *);
c9fc5864 174int __kmem_cache_shrink(struct kmem_cache *);
41a21285 175void slab_kmem_cache_release(struct kmem_cache *);
945cf2b6 176
b7454ad3
GC
177struct seq_file;
178struct file;
b7454ad3 179
0d7561c6
GC
180struct slabinfo {
181 unsigned long active_objs;
182 unsigned long num_objs;
183 unsigned long active_slabs;
184 unsigned long num_slabs;
185 unsigned long shared_avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int shared;
189 unsigned int objects_per_slab;
190 unsigned int cache_order;
191};
192
193void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
194void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
b7454ad3
GC
195ssize_t slabinfo_write(struct file *file, const char __user *buffer,
196 size_t count, loff_t *ppos);
ba6c496e 197
484748f0
CL
198/*
199 * Generic implementation of bulk operations
200 * These are useful for situations in which the allocator cannot
9f706d68 201 * perform optimizations. In that case segments of the object listed
484748f0
CL
202 * may be allocated or freed using these operations.
203 */
204void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
865762a8 205int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
484748f0 206
6cea1d56
RG
207static inline int cache_vmstat_idx(struct kmem_cache *s)
208{
209 return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
d42f3245 210 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
6cea1d56
RG
211}
212
e42f174e
VB
213#ifdef CONFIG_SLUB_DEBUG
214#ifdef CONFIG_SLUB_DEBUG_ON
215DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
216#else
217DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
218#endif
219extern void print_tracking(struct kmem_cache *s, void *object);
220#else
221static inline void print_tracking(struct kmem_cache *s, void *object)
222{
223}
224#endif
225
226/*
227 * Returns true if any of the specified slub_debug flags is enabled for the
228 * cache. Use only for flags parsed by setup_slub_debug() as it also enables
229 * the static key.
230 */
231static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
232{
233#ifdef CONFIG_SLUB_DEBUG
234 VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
235 if (static_branch_unlikely(&slub_debug_enabled))
236 return s->flags & flags;
237#endif
238 return false;
239}
240
84c07d11 241#ifdef CONFIG_MEMCG_KMEM
286e04b8
RG
242static inline struct obj_cgroup **page_obj_cgroups(struct page *page)
243{
244 /*
245 * page->mem_cgroup and page->obj_cgroups are sharing the same
246 * space. To distinguish between them in case we don't know for sure
247 * that the page is a slab page (e.g. page_cgroup_ino()), let's
248 * always set the lowest bit of obj_cgroups.
249 */
250 return (struct obj_cgroup **)
251 ((unsigned long)page->obj_cgroups & ~0x1UL);
252}
253
9855609b 254static inline bool page_has_obj_cgroups(struct page *page)
4d96ba35 255{
9855609b 256 return ((unsigned long)page->obj_cgroups & 0x1UL);
4d96ba35
RG
257}
258
10befea9
RG
259int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
260 gfp_t gfp);
286e04b8
RG
261
262static inline void memcg_free_page_obj_cgroups(struct page *page)
263{
264 kfree(page_obj_cgroups(page));
265 page->obj_cgroups = NULL;
266}
267
f2fe7b09
RG
268static inline size_t obj_full_size(struct kmem_cache *s)
269{
270 /*
271 * For each accounted object there is an extra space which is used
272 * to store obj_cgroup membership. Charge it too.
273 */
274 return s->size + sizeof(struct obj_cgroup *);
275}
276
becaba65
RG
277/*
278 * Returns false if the allocation should fail.
279 */
280static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
281 struct obj_cgroup **objcgp,
282 size_t objects, gfp_t flags)
f2fe7b09 283{
9855609b
RG
284 struct obj_cgroup *objcg;
285
becaba65
RG
286 if (!memcg_kmem_enabled())
287 return true;
288
289 if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
290 return true;
291
9855609b
RG
292 objcg = get_obj_cgroup_from_current();
293 if (!objcg)
becaba65 294 return true;
9855609b
RG
295
296 if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) {
297 obj_cgroup_put(objcg);
becaba65 298 return false;
f2fe7b09
RG
299 }
300
becaba65
RG
301 *objcgp = objcg;
302 return true;
f2fe7b09
RG
303}
304
305static inline void mod_objcg_state(struct obj_cgroup *objcg,
306 struct pglist_data *pgdat,
307 int idx, int nr)
308{
309 struct mem_cgroup *memcg;
310 struct lruvec *lruvec;
311
312 rcu_read_lock();
313 memcg = obj_cgroup_memcg(objcg);
314 lruvec = mem_cgroup_lruvec(memcg, pgdat);
315 mod_memcg_lruvec_state(lruvec, idx, nr);
316 rcu_read_unlock();
317}
318
964d4bd3
RG
319static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
320 struct obj_cgroup *objcg,
10befea9
RG
321 gfp_t flags, size_t size,
322 void **p)
964d4bd3
RG
323{
324 struct page *page;
325 unsigned long off;
326 size_t i;
327
becaba65 328 if (!memcg_kmem_enabled() || !objcg)
10befea9
RG
329 return;
330
331 flags &= ~__GFP_ACCOUNT;
964d4bd3
RG
332 for (i = 0; i < size; i++) {
333 if (likely(p[i])) {
334 page = virt_to_head_page(p[i]);
10befea9
RG
335
336 if (!page_has_obj_cgroups(page) &&
337 memcg_alloc_page_obj_cgroups(page, s, flags)) {
338 obj_cgroup_uncharge(objcg, obj_full_size(s));
339 continue;
340 }
341
964d4bd3
RG
342 off = obj_to_index(s, page, p[i]);
343 obj_cgroup_get(objcg);
344 page_obj_cgroups(page)[off] = objcg;
f2fe7b09
RG
345 mod_objcg_state(objcg, page_pgdat(page),
346 cache_vmstat_idx(s), obj_full_size(s));
347 } else {
348 obj_cgroup_uncharge(objcg, obj_full_size(s));
964d4bd3
RG
349 }
350 }
351 obj_cgroup_put(objcg);
964d4bd3
RG
352}
353
d1b2cf6c
BR
354static inline void memcg_slab_free_hook(struct kmem_cache *s_orig,
355 void **p, int objects)
964d4bd3 356{
d1b2cf6c 357 struct kmem_cache *s;
964d4bd3 358 struct obj_cgroup *objcg;
d1b2cf6c 359 struct page *page;
964d4bd3 360 unsigned int off;
d1b2cf6c 361 int i;
964d4bd3 362
10befea9
RG
363 if (!memcg_kmem_enabled())
364 return;
365
d1b2cf6c
BR
366 for (i = 0; i < objects; i++) {
367 if (unlikely(!p[i]))
368 continue;
964d4bd3 369
d1b2cf6c
BR
370 page = virt_to_head_page(p[i]);
371 if (!page_has_obj_cgroups(page))
372 continue;
f2fe7b09 373
d1b2cf6c
BR
374 if (!s_orig)
375 s = page->slab_cache;
376 else
377 s = s_orig;
10befea9 378
d1b2cf6c
BR
379 off = obj_to_index(s, page, p[i]);
380 objcg = page_obj_cgroups(page)[off];
381 if (!objcg)
382 continue;
f2fe7b09 383
d1b2cf6c
BR
384 page_obj_cgroups(page)[off] = NULL;
385 obj_cgroup_uncharge(objcg, obj_full_size(s));
386 mod_objcg_state(objcg, page_pgdat(page), cache_vmstat_idx(s),
387 -obj_full_size(s));
388 obj_cgroup_put(objcg);
389 }
964d4bd3
RG
390}
391
84c07d11 392#else /* CONFIG_MEMCG_KMEM */
9855609b
RG
393static inline bool page_has_obj_cgroups(struct page *page)
394{
395 return false;
396}
397
398static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
4d96ba35
RG
399{
400 return NULL;
401}
402
286e04b8
RG
403static inline int memcg_alloc_page_obj_cgroups(struct page *page,
404 struct kmem_cache *s, gfp_t gfp)
405{
406 return 0;
407}
408
409static inline void memcg_free_page_obj_cgroups(struct page *page)
410{
411}
412
becaba65
RG
413static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
414 struct obj_cgroup **objcgp,
415 size_t objects, gfp_t flags)
f2fe7b09 416{
becaba65 417 return true;
f2fe7b09
RG
418}
419
964d4bd3
RG
420static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
421 struct obj_cgroup *objcg,
10befea9
RG
422 gfp_t flags, size_t size,
423 void **p)
964d4bd3
RG
424{
425}
426
d1b2cf6c
BR
427static inline void memcg_slab_free_hook(struct kmem_cache *s,
428 void **p, int objects)
964d4bd3
RG
429{
430}
84c07d11 431#endif /* CONFIG_MEMCG_KMEM */
b9ce5ef4 432
a64b5378
KC
433static inline struct kmem_cache *virt_to_cache(const void *obj)
434{
435 struct page *page;
436
437 page = virt_to_head_page(obj);
438 if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n",
439 __func__))
440 return NULL;
441 return page->slab_cache;
442}
443
74d555be
RG
444static __always_inline void account_slab_page(struct page *page, int order,
445 struct kmem_cache *s)
6cea1d56 446{
f2fe7b09
RG
447 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
448 PAGE_SIZE << order);
6cea1d56
RG
449}
450
74d555be
RG
451static __always_inline void unaccount_slab_page(struct page *page, int order,
452 struct kmem_cache *s)
6cea1d56 453{
10befea9 454 if (memcg_kmem_enabled())
f2fe7b09 455 memcg_free_page_obj_cgroups(page);
9855609b 456
f2fe7b09
RG
457 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
458 -(PAGE_SIZE << order));
6cea1d56
RG
459}
460
e42f174e
VB
461static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
462{
463 struct kmem_cache *cachep;
464
465 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
e42f174e
VB
466 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
467 return s;
468
469 cachep = virt_to_cache(x);
10befea9 470 if (WARN(cachep && cachep != s,
e42f174e
VB
471 "%s: Wrong slab cache. %s but object is from %s\n",
472 __func__, s->name, cachep->name))
473 print_tracking(cachep, x);
474 return cachep;
475}
476
11c7aec2
JDB
477static inline size_t slab_ksize(const struct kmem_cache *s)
478{
479#ifndef CONFIG_SLUB
480 return s->object_size;
481
482#else /* CONFIG_SLUB */
483# ifdef CONFIG_SLUB_DEBUG
484 /*
485 * Debugging requires use of the padding between object
486 * and whatever may come after it.
487 */
488 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
489 return s->object_size;
490# endif
80a9201a
AP
491 if (s->flags & SLAB_KASAN)
492 return s->object_size;
11c7aec2
JDB
493 /*
494 * If we have the need to store the freelist pointer
495 * back there or track user information then we can
496 * only use the space before that information.
497 */
5f0d5a3a 498 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
11c7aec2
JDB
499 return s->inuse;
500 /*
501 * Else we can use all the padding etc for the allocation
502 */
503 return s->size;
504#endif
505}
506
507static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
964d4bd3
RG
508 struct obj_cgroup **objcgp,
509 size_t size, gfp_t flags)
11c7aec2
JDB
510{
511 flags &= gfp_allowed_mask;
d92a8cfc
PZ
512
513 fs_reclaim_acquire(flags);
514 fs_reclaim_release(flags);
515
11c7aec2
JDB
516 might_sleep_if(gfpflags_allow_blocking(flags));
517
fab9963a 518 if (should_failslab(s, flags))
11c7aec2
JDB
519 return NULL;
520
becaba65
RG
521 if (!memcg_slab_pre_alloc_hook(s, objcgp, size, flags))
522 return NULL;
45264778
VD
523
524 return s;
11c7aec2
JDB
525}
526
964d4bd3
RG
527static inline void slab_post_alloc_hook(struct kmem_cache *s,
528 struct obj_cgroup *objcg,
529 gfp_t flags, size_t size, void **p)
11c7aec2
JDB
530{
531 size_t i;
532
533 flags &= gfp_allowed_mask;
534 for (i = 0; i < size; i++) {
53128245 535 p[i] = kasan_slab_alloc(s, p[i], flags);
a2f77575 536 /* As p[i] might get tagged, call kmemleak hook after KASAN. */
53128245 537 kmemleak_alloc_recursive(p[i], s->object_size, 1,
11c7aec2 538 s->flags, flags);
11c7aec2 539 }
45264778 540
becaba65 541 memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
11c7aec2
JDB
542}
543
44c5356f 544#ifndef CONFIG_SLOB
ca34956b
CL
545/*
546 * The slab lists for all objects.
547 */
548struct kmem_cache_node {
549 spinlock_t list_lock;
550
551#ifdef CONFIG_SLAB
552 struct list_head slabs_partial; /* partial list first, better asm code */
553 struct list_head slabs_full;
554 struct list_head slabs_free;
bf00bd34
DR
555 unsigned long total_slabs; /* length of all slab lists */
556 unsigned long free_slabs; /* length of free slab list only */
ca34956b
CL
557 unsigned long free_objects;
558 unsigned int free_limit;
559 unsigned int colour_next; /* Per-node cache coloring */
560 struct array_cache *shared; /* shared per node */
c8522a3a 561 struct alien_cache **alien; /* on other nodes */
ca34956b
CL
562 unsigned long next_reap; /* updated without locking */
563 int free_touched; /* updated without locking */
564#endif
565
566#ifdef CONFIG_SLUB
567 unsigned long nr_partial;
568 struct list_head partial;
569#ifdef CONFIG_SLUB_DEBUG
570 atomic_long_t nr_slabs;
571 atomic_long_t total_objects;
572 struct list_head full;
573#endif
574#endif
575
576};
e25839f6 577
44c5356f
CL
578static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
579{
580 return s->node[node];
581}
582
583/*
584 * Iterator over all nodes. The body will be executed for each node that has
585 * a kmem_cache_node structure allocated (which is true for all online nodes)
586 */
587#define for_each_kmem_cache_node(__s, __node, __n) \
9163582c
MP
588 for (__node = 0; __node < nr_node_ids; __node++) \
589 if ((__n = get_node(__s, __node)))
44c5356f
CL
590
591#endif
592
1df3b26f 593void *slab_start(struct seq_file *m, loff_t *pos);
276a2439
WL
594void *slab_next(struct seq_file *m, void *p, loff_t *pos);
595void slab_stop(struct seq_file *m, void *p);
b047501c 596int memcg_slab_show(struct seq_file *m, void *p);
5240ab40 597
852d8be0
YS
598#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
599void dump_unreclaimable_slab(void);
600#else
601static inline void dump_unreclaimable_slab(void)
602{
603}
604#endif
605
55834c59
AP
606void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
607
7c00fce9
TG
608#ifdef CONFIG_SLAB_FREELIST_RANDOM
609int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
610 gfp_t gfp);
611void cache_random_seq_destroy(struct kmem_cache *cachep);
612#else
613static inline int cache_random_seq_create(struct kmem_cache *cachep,
614 unsigned int count, gfp_t gfp)
615{
616 return 0;
617}
618static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
619#endif /* CONFIG_SLAB_FREELIST_RANDOM */
620
6471384a
AP
621static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
622{
623 if (static_branch_unlikely(&init_on_alloc)) {
624 if (c->ctor)
625 return false;
626 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
627 return flags & __GFP_ZERO;
628 return true;
629 }
630 return flags & __GFP_ZERO;
631}
632
633static inline bool slab_want_init_on_free(struct kmem_cache *c)
634{
635 if (static_branch_unlikely(&init_on_free))
636 return !(c->ctor ||
637 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
638 return false;
639}
640
5240ab40 641#endif /* MM_SLAB_H */