]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/slab.h
mm: memcg/slab: obj_cgroup API
[mirror_ubuntu-hirsute-kernel.git] / mm / slab.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
97d06609
CL
2#ifndef MM_SLAB_H
3#define MM_SLAB_H
4/*
5 * Internal slab definitions
6 */
7
07f361b2
JK
8#ifdef CONFIG_SLOB
9/*
10 * Common fields provided in kmem_cache by all slab allocators
11 * This struct is either used directly by the allocator (SLOB)
12 * or the allocator must include definitions for all fields
13 * provided in kmem_cache_common in their definition of kmem_cache.
14 *
15 * Once we can do anonymous structs (C11 standard) we could put a
16 * anonymous struct definition in these allocators so that the
17 * separate allocations in the kmem_cache structure of SLAB and
18 * SLUB is no longer needed.
19 */
20struct kmem_cache {
21 unsigned int object_size;/* The original size of the object */
22 unsigned int size; /* The aligned/padded/added on size */
23 unsigned int align; /* Alignment as calculated */
d50112ed 24 slab_flags_t flags; /* Active flags on the slab */
7bbdb81e
AD
25 unsigned int useroffset;/* Usercopy region offset */
26 unsigned int usersize; /* Usercopy region size */
07f361b2
JK
27 const char *name; /* Slab name for sysfs */
28 int refcount; /* Use counter */
29 void (*ctor)(void *); /* Called on object slot creation */
30 struct list_head list; /* List of all slab caches on the system */
31};
32
9adeaa22
WL
33#else /* !CONFIG_SLOB */
34
35struct memcg_cache_array {
36 struct rcu_head rcu;
37 struct kmem_cache *entries[0];
38};
39
40/*
41 * This is the main placeholder for memcg-related information in kmem caches.
42 * Both the root cache and the child caches will have it. For the root cache,
43 * this will hold a dynamically allocated array large enough to hold
44 * information about the currently limited memcgs in the system. To allow the
45 * array to be accessed without taking any locks, on relocation we free the old
46 * version only after a grace period.
47 *
48 * Root and child caches hold different metadata.
49 *
50 * @root_cache: Common to root and child caches. NULL for root, pointer to
51 * the root cache for children.
52 *
53 * The following fields are specific to root caches.
54 *
55 * @memcg_caches: kmemcg ID indexed table of child caches. This table is
56 * used to index child cachces during allocation and cleared
57 * early during shutdown.
58 *
59 * @root_caches_node: List node for slab_root_caches list.
60 *
61 * @children: List of all child caches. While the child caches are also
62 * reachable through @memcg_caches, a child cache remains on
63 * this list until it is actually destroyed.
64 *
65 * The following fields are specific to child caches.
66 *
67 * @memcg: Pointer to the memcg this cache belongs to.
68 *
69 * @children_node: List node for @root_cache->children list.
70 *
71 * @kmem_caches_node: List node for @memcg->kmem_caches list.
72 */
73struct memcg_cache_params {
74 struct kmem_cache *root_cache;
75 union {
76 struct {
77 struct memcg_cache_array __rcu *memcg_caches;
78 struct list_head __root_caches_node;
79 struct list_head children;
80 bool dying;
81 };
82 struct {
83 struct mem_cgroup *memcg;
84 struct list_head children_node;
85 struct list_head kmem_caches_node;
86 struct percpu_ref refcnt;
87
88 void (*work_fn)(struct kmem_cache *);
89 union {
90 struct rcu_head rcu_head;
91 struct work_struct work;
92 };
93 };
94 };
95};
07f361b2
JK
96#endif /* CONFIG_SLOB */
97
98#ifdef CONFIG_SLAB
99#include <linux/slab_def.h>
100#endif
101
102#ifdef CONFIG_SLUB
103#include <linux/slub_def.h>
104#endif
105
106#include <linux/memcontrol.h>
11c7aec2 107#include <linux/fault-inject.h>
11c7aec2
JDB
108#include <linux/kasan.h>
109#include <linux/kmemleak.h>
7c00fce9 110#include <linux/random.h>
d92a8cfc 111#include <linux/sched/mm.h>
07f361b2 112
97d06609
CL
113/*
114 * State of the slab allocator.
115 *
116 * This is used to describe the states of the allocator during bootup.
117 * Allocators use this to gradually bootstrap themselves. Most allocators
118 * have the problem that the structures used for managing slab caches are
119 * allocated from slab caches themselves.
120 */
121enum slab_state {
122 DOWN, /* No slab functionality yet */
123 PARTIAL, /* SLUB: kmem_cache_node available */
ce8eb6c4 124 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
97d06609
CL
125 UP, /* Slab caches usable but not all extras yet */
126 FULL /* Everything is working */
127};
128
129extern enum slab_state slab_state;
130
18004c5d
CL
131/* The slab cache mutex protects the management structures during changes */
132extern struct mutex slab_mutex;
9b030cb8
CL
133
134/* The list of all slab caches on the system */
18004c5d
CL
135extern struct list_head slab_caches;
136
9b030cb8
CL
137/* The slab cache that manages slab cache information */
138extern struct kmem_cache *kmem_cache;
139
af3b5f87
VB
140/* A table of kmalloc cache names and sizes */
141extern const struct kmalloc_info_struct {
cb5d9fb3 142 const char *name[NR_KMALLOC_TYPES];
55de8b9c 143 unsigned int size;
af3b5f87
VB
144} kmalloc_info[];
145
f97d5f63
CL
146#ifndef CONFIG_SLOB
147/* Kmalloc array related functions */
34cc6990 148void setup_kmalloc_cache_index_table(void);
d50112ed 149void create_kmalloc_caches(slab_flags_t);
2c59dd65
CL
150
151/* Find the kmalloc slab corresponding for a certain size */
152struct kmem_cache *kmalloc_slab(size_t, gfp_t);
f97d5f63
CL
153#endif
154
44405099 155gfp_t kmalloc_fix_flags(gfp_t flags);
f97d5f63 156
9b030cb8 157/* Functions provided by the slab allocators */
d50112ed 158int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
97d06609 159
55de8b9c
AD
160struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
161 slab_flags_t flags, unsigned int useroffset,
162 unsigned int usersize);
45530c44 163extern void create_boot_cache(struct kmem_cache *, const char *name,
361d575e
AD
164 unsigned int size, slab_flags_t flags,
165 unsigned int useroffset, unsigned int usersize);
45530c44 166
423c929c 167int slab_unmergeable(struct kmem_cache *s);
f4957d5b 168struct kmem_cache *find_mergeable(unsigned size, unsigned align,
d50112ed 169 slab_flags_t flags, const char *name, void (*ctor)(void *));
12220dea 170#ifndef CONFIG_SLOB
2633d7a0 171struct kmem_cache *
f4957d5b 172__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 173 slab_flags_t flags, void (*ctor)(void *));
423c929c 174
0293d1fd 175slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 176 slab_flags_t flags, const char *name,
423c929c 177 void (*ctor)(void *));
cbb79694 178#else
2633d7a0 179static inline struct kmem_cache *
f4957d5b 180__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 181 slab_flags_t flags, void (*ctor)(void *))
cbb79694 182{ return NULL; }
423c929c 183
0293d1fd 184static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 185 slab_flags_t flags, const char *name,
423c929c
JK
186 void (*ctor)(void *))
187{
188 return flags;
189}
cbb79694
CL
190#endif
191
192
d8843922 193/* Legal flag mask for kmem_cache_create(), for various configurations */
6d6ea1e9
NB
194#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
195 SLAB_CACHE_DMA32 | SLAB_PANIC | \
5f0d5a3a 196 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
d8843922
GC
197
198#if defined(CONFIG_DEBUG_SLAB)
199#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
200#elif defined(CONFIG_SLUB_DEBUG)
201#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
becfda68 202 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
d8843922
GC
203#else
204#define SLAB_DEBUG_FLAGS (0)
205#endif
206
207#if defined(CONFIG_SLAB)
208#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
230e9fc2 209 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
75f296d9 210 SLAB_ACCOUNT)
d8843922
GC
211#elif defined(CONFIG_SLUB)
212#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
75f296d9 213 SLAB_TEMPORARY | SLAB_ACCOUNT)
d8843922
GC
214#else
215#define SLAB_CACHE_FLAGS (0)
216#endif
217
e70954fd 218/* Common flags available with current configuration */
d8843922
GC
219#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
220
e70954fd
TG
221/* Common flags permitted for kmem_cache_create */
222#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
223 SLAB_RED_ZONE | \
224 SLAB_POISON | \
225 SLAB_STORE_USER | \
226 SLAB_TRACE | \
227 SLAB_CONSISTENCY_CHECKS | \
228 SLAB_MEM_SPREAD | \
229 SLAB_NOLEAKTRACE | \
230 SLAB_RECLAIM_ACCOUNT | \
231 SLAB_TEMPORARY | \
e70954fd
TG
232 SLAB_ACCOUNT)
233
f9e13c0a 234bool __kmem_cache_empty(struct kmem_cache *);
945cf2b6 235int __kmem_cache_shutdown(struct kmem_cache *);
52b4b950 236void __kmem_cache_release(struct kmem_cache *);
c9fc5864
TH
237int __kmem_cache_shrink(struct kmem_cache *);
238void __kmemcg_cache_deactivate(struct kmem_cache *s);
43486694 239void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s);
41a21285 240void slab_kmem_cache_release(struct kmem_cache *);
04f768a3 241void kmem_cache_shrink_all(struct kmem_cache *s);
945cf2b6 242
b7454ad3
GC
243struct seq_file;
244struct file;
b7454ad3 245
0d7561c6
GC
246struct slabinfo {
247 unsigned long active_objs;
248 unsigned long num_objs;
249 unsigned long active_slabs;
250 unsigned long num_slabs;
251 unsigned long shared_avail;
252 unsigned int limit;
253 unsigned int batchcount;
254 unsigned int shared;
255 unsigned int objects_per_slab;
256 unsigned int cache_order;
257};
258
259void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
260void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
b7454ad3
GC
261ssize_t slabinfo_write(struct file *file, const char __user *buffer,
262 size_t count, loff_t *ppos);
ba6c496e 263
484748f0
CL
264/*
265 * Generic implementation of bulk operations
266 * These are useful for situations in which the allocator cannot
9f706d68 267 * perform optimizations. In that case segments of the object listed
484748f0
CL
268 * may be allocated or freed using these operations.
269 */
270void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
865762a8 271int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
484748f0 272
6cea1d56
RG
273static inline int cache_vmstat_idx(struct kmem_cache *s)
274{
275 return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
d42f3245 276 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
6cea1d56
RG
277}
278
e42f174e
VB
279#ifdef CONFIG_SLUB_DEBUG
280#ifdef CONFIG_SLUB_DEBUG_ON
281DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
282#else
283DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
284#endif
285extern void print_tracking(struct kmem_cache *s, void *object);
286#else
287static inline void print_tracking(struct kmem_cache *s, void *object)
288{
289}
290#endif
291
292/*
293 * Returns true if any of the specified slub_debug flags is enabled for the
294 * cache. Use only for flags parsed by setup_slub_debug() as it also enables
295 * the static key.
296 */
297static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
298{
299#ifdef CONFIG_SLUB_DEBUG
300 VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
301 if (static_branch_unlikely(&slub_debug_enabled))
302 return s->flags & flags;
303#endif
304 return false;
305}
306
84c07d11 307#ifdef CONFIG_MEMCG_KMEM
510ded33
TH
308
309/* List of all root caches. */
310extern struct list_head slab_root_caches;
311#define root_caches_node memcg_params.__root_caches_node
312
426589f5
VD
313/*
314 * Iterate over all memcg caches of the given root cache. The caller must hold
315 * slab_mutex.
316 */
317#define for_each_memcg_cache(iter, root) \
9eeadc8b
TH
318 list_for_each_entry(iter, &(root)->memcg_params.children, \
319 memcg_params.children_node)
426589f5 320
ba6c496e
GC
321static inline bool is_root_cache(struct kmem_cache *s)
322{
9eeadc8b 323 return !s->memcg_params.root_cache;
ba6c496e 324}
2633d7a0 325
b9ce5ef4 326static inline bool slab_equal_or_root(struct kmem_cache *s,
f7ce3190 327 struct kmem_cache *p)
b9ce5ef4 328{
f7ce3190 329 return p == s || p == s->memcg_params.root_cache;
b9ce5ef4 330}
749c5415
GC
331
332/*
333 * We use suffixes to the name in memcg because we can't have caches
334 * created in the system with the same name. But when we print them
335 * locally, better refer to them with the base name
336 */
337static inline const char *cache_name(struct kmem_cache *s)
338{
339 if (!is_root_cache(s))
f7ce3190 340 s = s->memcg_params.root_cache;
749c5415
GC
341 return s->name;
342}
343
943a451a
GC
344static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
345{
346 if (is_root_cache(s))
347 return s;
f7ce3190 348 return s->memcg_params.root_cache;
943a451a 349}
5dfb4175 350
4d96ba35
RG
351/*
352 * Expects a pointer to a slab page. Please note, that PageSlab() check
353 * isn't sufficient, as it returns true also for tail compound slab pages,
354 * which do not have slab_cache pointer set.
221ec5c0
RG
355 * So this function assumes that the page can pass PageSlab() && !PageTail()
356 * check.
fb2f2b0a
RG
357 *
358 * The kmem_cache can be reparented asynchronously. The caller must ensure
359 * the memcg lifetime, e.g. by taking rcu_read_lock() or cgroup_mutex.
4d96ba35
RG
360 */
361static inline struct mem_cgroup *memcg_from_slab_page(struct page *page)
362{
363 struct kmem_cache *s;
364
365 s = READ_ONCE(page->slab_cache);
366 if (s && !is_root_cache(s))
fb2f2b0a 367 return READ_ONCE(s->memcg_params.memcg);
4d96ba35
RG
368
369 return NULL;
370}
371
372/*
373 * Charge the slab page belonging to the non-root kmem_cache.
374 * Can be called for non-root kmem_caches only.
375 */
f3ccb2c4
VD
376static __always_inline int memcg_charge_slab(struct page *page,
377 gfp_t gfp, int order,
378 struct kmem_cache *s)
5dfb4175 379{
d7670879 380 int nr_pages = 1 << order;
4d96ba35
RG
381 struct mem_cgroup *memcg;
382 struct lruvec *lruvec;
f0a3a24b
RG
383 int ret;
384
fb2f2b0a
RG
385 rcu_read_lock();
386 memcg = READ_ONCE(s->memcg_params.memcg);
387 while (memcg && !css_tryget_online(&memcg->css))
388 memcg = parent_mem_cgroup(memcg);
389 rcu_read_unlock();
390
391 if (unlikely(!memcg || mem_cgroup_is_root(memcg))) {
392 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
d42f3245 393 nr_pages << PAGE_SHIFT);
9c315e4d 394 percpu_ref_get_many(&s->memcg_params.refcnt, nr_pages);
fb2f2b0a
RG
395 return 0;
396 }
397
4b13f64d 398 ret = memcg_kmem_charge(memcg, gfp, nr_pages);
f0a3a24b 399 if (ret)
fb2f2b0a 400 goto out;
f0a3a24b 401
867e5e1d 402 lruvec = mem_cgroup_lruvec(memcg, page_pgdat(page));
d42f3245 403 mod_lruvec_state(lruvec, cache_vmstat_idx(s), nr_pages << PAGE_SHIFT);
4d96ba35 404
9c315e4d 405 percpu_ref_get_many(&s->memcg_params.refcnt, nr_pages);
fb2f2b0a
RG
406out:
407 css_put(&memcg->css);
408 return ret;
27ee57c9
VD
409}
410
4d96ba35
RG
411/*
412 * Uncharge a slab page belonging to a non-root kmem_cache.
413 * Can be called for non-root kmem_caches only.
414 */
27ee57c9
VD
415static __always_inline void memcg_uncharge_slab(struct page *page, int order,
416 struct kmem_cache *s)
417{
d7670879 418 int nr_pages = 1 << order;
4d96ba35
RG
419 struct mem_cgroup *memcg;
420 struct lruvec *lruvec;
421
fb2f2b0a
RG
422 rcu_read_lock();
423 memcg = READ_ONCE(s->memcg_params.memcg);
424 if (likely(!mem_cgroup_is_root(memcg))) {
867e5e1d 425 lruvec = mem_cgroup_lruvec(memcg, page_pgdat(page));
d42f3245
RG
426 mod_lruvec_state(lruvec, cache_vmstat_idx(s),
427 -(nr_pages << PAGE_SHIFT));
4b13f64d 428 memcg_kmem_uncharge(memcg, nr_pages);
fb2f2b0a
RG
429 } else {
430 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
d42f3245 431 -(nr_pages << PAGE_SHIFT));
fb2f2b0a
RG
432 }
433 rcu_read_unlock();
4d96ba35 434
9c315e4d 435 percpu_ref_put_many(&s->memcg_params.refcnt, nr_pages);
5dfb4175 436}
f7ce3190
VD
437
438extern void slab_init_memcg_params(struct kmem_cache *);
c03914b7 439extern void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg);
f7ce3190 440
84c07d11 441#else /* CONFIG_MEMCG_KMEM */
f7ce3190 442
510ded33
TH
443/* If !memcg, all caches are root. */
444#define slab_root_caches slab_caches
445#define root_caches_node list
446
426589f5
VD
447#define for_each_memcg_cache(iter, root) \
448 for ((void)(iter), (void)(root); 0; )
426589f5 449
ba6c496e
GC
450static inline bool is_root_cache(struct kmem_cache *s)
451{
452 return true;
453}
454
b9ce5ef4
GC
455static inline bool slab_equal_or_root(struct kmem_cache *s,
456 struct kmem_cache *p)
457{
598a0717 458 return s == p;
b9ce5ef4 459}
749c5415
GC
460
461static inline const char *cache_name(struct kmem_cache *s)
462{
463 return s->name;
464}
465
943a451a
GC
466static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
467{
468 return s;
469}
5dfb4175 470
4d96ba35
RG
471static inline struct mem_cgroup *memcg_from_slab_page(struct page *page)
472{
473 return NULL;
474}
475
f3ccb2c4
VD
476static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
477 struct kmem_cache *s)
5dfb4175
VD
478{
479 return 0;
480}
481
27ee57c9
VD
482static inline void memcg_uncharge_slab(struct page *page, int order,
483 struct kmem_cache *s)
484{
485}
486
f7ce3190
VD
487static inline void slab_init_memcg_params(struct kmem_cache *s)
488{
489}
510ded33 490
c03914b7
RG
491static inline void memcg_link_cache(struct kmem_cache *s,
492 struct mem_cgroup *memcg)
510ded33
TH
493{
494}
495
84c07d11 496#endif /* CONFIG_MEMCG_KMEM */
b9ce5ef4 497
a64b5378
KC
498static inline struct kmem_cache *virt_to_cache(const void *obj)
499{
500 struct page *page;
501
502 page = virt_to_head_page(obj);
503 if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n",
504 __func__))
505 return NULL;
506 return page->slab_cache;
507}
508
6cea1d56
RG
509static __always_inline int charge_slab_page(struct page *page,
510 gfp_t gfp, int order,
511 struct kmem_cache *s)
512{
4d96ba35
RG
513 if (is_root_cache(s)) {
514 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
d42f3245 515 PAGE_SIZE << order);
4d96ba35
RG
516 return 0;
517 }
6cea1d56 518
4d96ba35 519 return memcg_charge_slab(page, gfp, order, s);
6cea1d56
RG
520}
521
522static __always_inline void uncharge_slab_page(struct page *page, int order,
523 struct kmem_cache *s)
524{
4d96ba35
RG
525 if (is_root_cache(s)) {
526 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
d42f3245 527 -(PAGE_SIZE << order));
4d96ba35
RG
528 return;
529 }
530
6cea1d56
RG
531 memcg_uncharge_slab(page, order, s);
532}
533
e42f174e
VB
534static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
535{
536 struct kmem_cache *cachep;
537
538 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
539 !memcg_kmem_enabled() &&
540 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
541 return s;
542
543 cachep = virt_to_cache(x);
544 if (WARN(cachep && !slab_equal_or_root(cachep, s),
545 "%s: Wrong slab cache. %s but object is from %s\n",
546 __func__, s->name, cachep->name))
547 print_tracking(cachep, x);
548 return cachep;
549}
550
11c7aec2
JDB
551static inline size_t slab_ksize(const struct kmem_cache *s)
552{
553#ifndef CONFIG_SLUB
554 return s->object_size;
555
556#else /* CONFIG_SLUB */
557# ifdef CONFIG_SLUB_DEBUG
558 /*
559 * Debugging requires use of the padding between object
560 * and whatever may come after it.
561 */
562 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
563 return s->object_size;
564# endif
80a9201a
AP
565 if (s->flags & SLAB_KASAN)
566 return s->object_size;
11c7aec2
JDB
567 /*
568 * If we have the need to store the freelist pointer
569 * back there or track user information then we can
570 * only use the space before that information.
571 */
5f0d5a3a 572 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
11c7aec2
JDB
573 return s->inuse;
574 /*
575 * Else we can use all the padding etc for the allocation
576 */
577 return s->size;
578#endif
579}
580
581static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
582 gfp_t flags)
583{
584 flags &= gfp_allowed_mask;
d92a8cfc
PZ
585
586 fs_reclaim_acquire(flags);
587 fs_reclaim_release(flags);
588
11c7aec2
JDB
589 might_sleep_if(gfpflags_allow_blocking(flags));
590
fab9963a 591 if (should_failslab(s, flags))
11c7aec2
JDB
592 return NULL;
593
45264778
VD
594 if (memcg_kmem_enabled() &&
595 ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
596 return memcg_kmem_get_cache(s);
597
598 return s;
11c7aec2
JDB
599}
600
601static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
602 size_t size, void **p)
603{
604 size_t i;
605
606 flags &= gfp_allowed_mask;
607 for (i = 0; i < size; i++) {
53128245 608 p[i] = kasan_slab_alloc(s, p[i], flags);
a2f77575 609 /* As p[i] might get tagged, call kmemleak hook after KASAN. */
53128245 610 kmemleak_alloc_recursive(p[i], s->object_size, 1,
11c7aec2 611 s->flags, flags);
11c7aec2 612 }
45264778
VD
613
614 if (memcg_kmem_enabled())
615 memcg_kmem_put_cache(s);
11c7aec2
JDB
616}
617
44c5356f 618#ifndef CONFIG_SLOB
ca34956b
CL
619/*
620 * The slab lists for all objects.
621 */
622struct kmem_cache_node {
623 spinlock_t list_lock;
624
625#ifdef CONFIG_SLAB
626 struct list_head slabs_partial; /* partial list first, better asm code */
627 struct list_head slabs_full;
628 struct list_head slabs_free;
bf00bd34
DR
629 unsigned long total_slabs; /* length of all slab lists */
630 unsigned long free_slabs; /* length of free slab list only */
ca34956b
CL
631 unsigned long free_objects;
632 unsigned int free_limit;
633 unsigned int colour_next; /* Per-node cache coloring */
634 struct array_cache *shared; /* shared per node */
c8522a3a 635 struct alien_cache **alien; /* on other nodes */
ca34956b
CL
636 unsigned long next_reap; /* updated without locking */
637 int free_touched; /* updated without locking */
638#endif
639
640#ifdef CONFIG_SLUB
641 unsigned long nr_partial;
642 struct list_head partial;
643#ifdef CONFIG_SLUB_DEBUG
644 atomic_long_t nr_slabs;
645 atomic_long_t total_objects;
646 struct list_head full;
647#endif
648#endif
649
650};
e25839f6 651
44c5356f
CL
652static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
653{
654 return s->node[node];
655}
656
657/*
658 * Iterator over all nodes. The body will be executed for each node that has
659 * a kmem_cache_node structure allocated (which is true for all online nodes)
660 */
661#define for_each_kmem_cache_node(__s, __node, __n) \
9163582c
MP
662 for (__node = 0; __node < nr_node_ids; __node++) \
663 if ((__n = get_node(__s, __node)))
44c5356f
CL
664
665#endif
666
1df3b26f 667void *slab_start(struct seq_file *m, loff_t *pos);
276a2439
WL
668void *slab_next(struct seq_file *m, void *p, loff_t *pos);
669void slab_stop(struct seq_file *m, void *p);
bc2791f8
TH
670void *memcg_slab_start(struct seq_file *m, loff_t *pos);
671void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos);
672void memcg_slab_stop(struct seq_file *m, void *p);
b047501c 673int memcg_slab_show(struct seq_file *m, void *p);
5240ab40 674
852d8be0
YS
675#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
676void dump_unreclaimable_slab(void);
677#else
678static inline void dump_unreclaimable_slab(void)
679{
680}
681#endif
682
55834c59
AP
683void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
684
7c00fce9
TG
685#ifdef CONFIG_SLAB_FREELIST_RANDOM
686int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
687 gfp_t gfp);
688void cache_random_seq_destroy(struct kmem_cache *cachep);
689#else
690static inline int cache_random_seq_create(struct kmem_cache *cachep,
691 unsigned int count, gfp_t gfp)
692{
693 return 0;
694}
695static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
696#endif /* CONFIG_SLAB_FREELIST_RANDOM */
697
6471384a
AP
698static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
699{
700 if (static_branch_unlikely(&init_on_alloc)) {
701 if (c->ctor)
702 return false;
703 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
704 return flags & __GFP_ZERO;
705 return true;
706 }
707 return flags & __GFP_ZERO;
708}
709
710static inline bool slab_want_init_on_free(struct kmem_cache *c)
711{
712 if (static_branch_unlikely(&init_on_free))
713 return !(c->ctor ||
714 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
715 return false;
716}
717
5240ab40 718#endif /* MM_SLAB_H */