]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/slab.h
mm: memcg/slab: rework non-root kmem_cache lifecycle management
[mirror_ubuntu-hirsute-kernel.git] / mm / slab.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
97d06609
CL
2#ifndef MM_SLAB_H
3#define MM_SLAB_H
4/*
5 * Internal slab definitions
6 */
7
07f361b2
JK
8#ifdef CONFIG_SLOB
9/*
10 * Common fields provided in kmem_cache by all slab allocators
11 * This struct is either used directly by the allocator (SLOB)
12 * or the allocator must include definitions for all fields
13 * provided in kmem_cache_common in their definition of kmem_cache.
14 *
15 * Once we can do anonymous structs (C11 standard) we could put a
16 * anonymous struct definition in these allocators so that the
17 * separate allocations in the kmem_cache structure of SLAB and
18 * SLUB is no longer needed.
19 */
20struct kmem_cache {
21 unsigned int object_size;/* The original size of the object */
22 unsigned int size; /* The aligned/padded/added on size */
23 unsigned int align; /* Alignment as calculated */
d50112ed 24 slab_flags_t flags; /* Active flags on the slab */
7bbdb81e
AD
25 unsigned int useroffset;/* Usercopy region offset */
26 unsigned int usersize; /* Usercopy region size */
07f361b2
JK
27 const char *name; /* Slab name for sysfs */
28 int refcount; /* Use counter */
29 void (*ctor)(void *); /* Called on object slot creation */
30 struct list_head list; /* List of all slab caches on the system */
31};
32
33#endif /* CONFIG_SLOB */
34
35#ifdef CONFIG_SLAB
36#include <linux/slab_def.h>
37#endif
38
39#ifdef CONFIG_SLUB
40#include <linux/slub_def.h>
41#endif
42
43#include <linux/memcontrol.h>
11c7aec2 44#include <linux/fault-inject.h>
11c7aec2
JDB
45#include <linux/kasan.h>
46#include <linux/kmemleak.h>
7c00fce9 47#include <linux/random.h>
d92a8cfc 48#include <linux/sched/mm.h>
07f361b2 49
97d06609
CL
50/*
51 * State of the slab allocator.
52 *
53 * This is used to describe the states of the allocator during bootup.
54 * Allocators use this to gradually bootstrap themselves. Most allocators
55 * have the problem that the structures used for managing slab caches are
56 * allocated from slab caches themselves.
57 */
58enum slab_state {
59 DOWN, /* No slab functionality yet */
60 PARTIAL, /* SLUB: kmem_cache_node available */
ce8eb6c4 61 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
97d06609
CL
62 UP, /* Slab caches usable but not all extras yet */
63 FULL /* Everything is working */
64};
65
66extern enum slab_state slab_state;
67
18004c5d
CL
68/* The slab cache mutex protects the management structures during changes */
69extern struct mutex slab_mutex;
9b030cb8
CL
70
71/* The list of all slab caches on the system */
18004c5d
CL
72extern struct list_head slab_caches;
73
9b030cb8
CL
74/* The slab cache that manages slab cache information */
75extern struct kmem_cache *kmem_cache;
76
af3b5f87
VB
77/* A table of kmalloc cache names and sizes */
78extern const struct kmalloc_info_struct {
79 const char *name;
55de8b9c 80 unsigned int size;
af3b5f87
VB
81} kmalloc_info[];
82
f97d5f63
CL
83#ifndef CONFIG_SLOB
84/* Kmalloc array related functions */
34cc6990 85void setup_kmalloc_cache_index_table(void);
d50112ed 86void create_kmalloc_caches(slab_flags_t);
2c59dd65
CL
87
88/* Find the kmalloc slab corresponding for a certain size */
89struct kmem_cache *kmalloc_slab(size_t, gfp_t);
f97d5f63
CL
90#endif
91
92
9b030cb8 93/* Functions provided by the slab allocators */
d50112ed 94int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
97d06609 95
55de8b9c
AD
96struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
97 slab_flags_t flags, unsigned int useroffset,
98 unsigned int usersize);
45530c44 99extern void create_boot_cache(struct kmem_cache *, const char *name,
361d575e
AD
100 unsigned int size, slab_flags_t flags,
101 unsigned int useroffset, unsigned int usersize);
45530c44 102
423c929c 103int slab_unmergeable(struct kmem_cache *s);
f4957d5b 104struct kmem_cache *find_mergeable(unsigned size, unsigned align,
d50112ed 105 slab_flags_t flags, const char *name, void (*ctor)(void *));
12220dea 106#ifndef CONFIG_SLOB
2633d7a0 107struct kmem_cache *
f4957d5b 108__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 109 slab_flags_t flags, void (*ctor)(void *));
423c929c 110
0293d1fd 111slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 112 slab_flags_t flags, const char *name,
423c929c 113 void (*ctor)(void *));
cbb79694 114#else
2633d7a0 115static inline struct kmem_cache *
f4957d5b 116__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 117 slab_flags_t flags, void (*ctor)(void *))
cbb79694 118{ return NULL; }
423c929c 119
0293d1fd 120static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 121 slab_flags_t flags, const char *name,
423c929c
JK
122 void (*ctor)(void *))
123{
124 return flags;
125}
cbb79694
CL
126#endif
127
128
d8843922 129/* Legal flag mask for kmem_cache_create(), for various configurations */
6d6ea1e9
NB
130#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
131 SLAB_CACHE_DMA32 | SLAB_PANIC | \
5f0d5a3a 132 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
d8843922
GC
133
134#if defined(CONFIG_DEBUG_SLAB)
135#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
136#elif defined(CONFIG_SLUB_DEBUG)
137#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
becfda68 138 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
d8843922
GC
139#else
140#define SLAB_DEBUG_FLAGS (0)
141#endif
142
143#if defined(CONFIG_SLAB)
144#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
230e9fc2 145 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
75f296d9 146 SLAB_ACCOUNT)
d8843922
GC
147#elif defined(CONFIG_SLUB)
148#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
75f296d9 149 SLAB_TEMPORARY | SLAB_ACCOUNT)
d8843922
GC
150#else
151#define SLAB_CACHE_FLAGS (0)
152#endif
153
e70954fd 154/* Common flags available with current configuration */
d8843922
GC
155#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
156
e70954fd
TG
157/* Common flags permitted for kmem_cache_create */
158#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
159 SLAB_RED_ZONE | \
160 SLAB_POISON | \
161 SLAB_STORE_USER | \
162 SLAB_TRACE | \
163 SLAB_CONSISTENCY_CHECKS | \
164 SLAB_MEM_SPREAD | \
165 SLAB_NOLEAKTRACE | \
166 SLAB_RECLAIM_ACCOUNT | \
167 SLAB_TEMPORARY | \
e70954fd
TG
168 SLAB_ACCOUNT)
169
f9e13c0a 170bool __kmem_cache_empty(struct kmem_cache *);
945cf2b6 171int __kmem_cache_shutdown(struct kmem_cache *);
52b4b950 172void __kmem_cache_release(struct kmem_cache *);
c9fc5864
TH
173int __kmem_cache_shrink(struct kmem_cache *);
174void __kmemcg_cache_deactivate(struct kmem_cache *s);
43486694 175void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s);
41a21285 176void slab_kmem_cache_release(struct kmem_cache *);
945cf2b6 177
b7454ad3
GC
178struct seq_file;
179struct file;
b7454ad3 180
0d7561c6
GC
181struct slabinfo {
182 unsigned long active_objs;
183 unsigned long num_objs;
184 unsigned long active_slabs;
185 unsigned long num_slabs;
186 unsigned long shared_avail;
187 unsigned int limit;
188 unsigned int batchcount;
189 unsigned int shared;
190 unsigned int objects_per_slab;
191 unsigned int cache_order;
192};
193
194void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
195void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
b7454ad3
GC
196ssize_t slabinfo_write(struct file *file, const char __user *buffer,
197 size_t count, loff_t *ppos);
ba6c496e 198
484748f0
CL
199/*
200 * Generic implementation of bulk operations
201 * These are useful for situations in which the allocator cannot
9f706d68 202 * perform optimizations. In that case segments of the object listed
484748f0
CL
203 * may be allocated or freed using these operations.
204 */
205void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
865762a8 206int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
484748f0 207
6cea1d56
RG
208static inline int cache_vmstat_idx(struct kmem_cache *s)
209{
210 return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
211 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE;
212}
213
84c07d11 214#ifdef CONFIG_MEMCG_KMEM
510ded33
TH
215
216/* List of all root caches. */
217extern struct list_head slab_root_caches;
218#define root_caches_node memcg_params.__root_caches_node
219
426589f5
VD
220/*
221 * Iterate over all memcg caches of the given root cache. The caller must hold
222 * slab_mutex.
223 */
224#define for_each_memcg_cache(iter, root) \
9eeadc8b
TH
225 list_for_each_entry(iter, &(root)->memcg_params.children, \
226 memcg_params.children_node)
426589f5 227
ba6c496e
GC
228static inline bool is_root_cache(struct kmem_cache *s)
229{
9eeadc8b 230 return !s->memcg_params.root_cache;
ba6c496e 231}
2633d7a0 232
b9ce5ef4 233static inline bool slab_equal_or_root(struct kmem_cache *s,
f7ce3190 234 struct kmem_cache *p)
b9ce5ef4 235{
f7ce3190 236 return p == s || p == s->memcg_params.root_cache;
b9ce5ef4 237}
749c5415
GC
238
239/*
240 * We use suffixes to the name in memcg because we can't have caches
241 * created in the system with the same name. But when we print them
242 * locally, better refer to them with the base name
243 */
244static inline const char *cache_name(struct kmem_cache *s)
245{
246 if (!is_root_cache(s))
f7ce3190 247 s = s->memcg_params.root_cache;
749c5415
GC
248 return s->name;
249}
250
943a451a
GC
251static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
252{
253 if (is_root_cache(s))
254 return s;
f7ce3190 255 return s->memcg_params.root_cache;
943a451a 256}
5dfb4175 257
f3ccb2c4
VD
258static __always_inline int memcg_charge_slab(struct page *page,
259 gfp_t gfp, int order,
260 struct kmem_cache *s)
5dfb4175 261{
f0a3a24b
RG
262 int ret;
263
5dfb4175
VD
264 if (is_root_cache(s))
265 return 0;
f0a3a24b
RG
266
267 ret = memcg_kmem_charge_memcg(page, gfp, order, s->memcg_params.memcg);
268 if (ret)
269 return ret;
270
271 percpu_ref_get_many(&s->memcg_params.refcnt, 1 << order);
272
273 return 0;
27ee57c9
VD
274}
275
276static __always_inline void memcg_uncharge_slab(struct page *page, int order,
277 struct kmem_cache *s)
278{
f0a3a24b
RG
279 if (!is_root_cache(s))
280 percpu_ref_put_many(&s->memcg_params.refcnt, 1 << order);
27ee57c9 281 memcg_kmem_uncharge(page, order);
5dfb4175 282}
f7ce3190
VD
283
284extern void slab_init_memcg_params(struct kmem_cache *);
c03914b7 285extern void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg);
f7ce3190 286
84c07d11 287#else /* CONFIG_MEMCG_KMEM */
f7ce3190 288
510ded33
TH
289/* If !memcg, all caches are root. */
290#define slab_root_caches slab_caches
291#define root_caches_node list
292
426589f5
VD
293#define for_each_memcg_cache(iter, root) \
294 for ((void)(iter), (void)(root); 0; )
426589f5 295
ba6c496e
GC
296static inline bool is_root_cache(struct kmem_cache *s)
297{
298 return true;
299}
300
b9ce5ef4
GC
301static inline bool slab_equal_or_root(struct kmem_cache *s,
302 struct kmem_cache *p)
303{
598a0717 304 return s == p;
b9ce5ef4 305}
749c5415
GC
306
307static inline const char *cache_name(struct kmem_cache *s)
308{
309 return s->name;
310}
311
943a451a
GC
312static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
313{
314 return s;
315}
5dfb4175 316
f3ccb2c4
VD
317static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
318 struct kmem_cache *s)
5dfb4175
VD
319{
320 return 0;
321}
322
27ee57c9
VD
323static inline void memcg_uncharge_slab(struct page *page, int order,
324 struct kmem_cache *s)
325{
326}
327
f7ce3190
VD
328static inline void slab_init_memcg_params(struct kmem_cache *s)
329{
330}
510ded33 331
c03914b7
RG
332static inline void memcg_link_cache(struct kmem_cache *s,
333 struct mem_cgroup *memcg)
510ded33
TH
334{
335}
336
84c07d11 337#endif /* CONFIG_MEMCG_KMEM */
b9ce5ef4 338
a64b5378
KC
339static inline struct kmem_cache *virt_to_cache(const void *obj)
340{
341 struct page *page;
342
343 page = virt_to_head_page(obj);
344 if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n",
345 __func__))
346 return NULL;
347 return page->slab_cache;
348}
349
6cea1d56
RG
350static __always_inline int charge_slab_page(struct page *page,
351 gfp_t gfp, int order,
352 struct kmem_cache *s)
353{
354 int ret = memcg_charge_slab(page, gfp, order, s);
355
356 if (!ret)
357 mod_lruvec_page_state(page, cache_vmstat_idx(s), 1 << order);
358
359 return ret;
360}
361
362static __always_inline void uncharge_slab_page(struct page *page, int order,
363 struct kmem_cache *s)
364{
365 mod_lruvec_page_state(page, cache_vmstat_idx(s), -(1 << order));
366 memcg_uncharge_slab(page, order, s);
367}
368
b9ce5ef4
GC
369static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
370{
371 struct kmem_cache *cachep;
b9ce5ef4
GC
372
373 /*
374 * When kmemcg is not being used, both assignments should return the
375 * same value. but we don't want to pay the assignment price in that
376 * case. If it is not compiled in, the compiler should be smart enough
377 * to not do even the assignment. In that case, slab_equal_or_root
378 * will also be a constant.
379 */
becfda68 380 if (!memcg_kmem_enabled() &&
598a0717 381 !IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
becfda68 382 !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
b9ce5ef4
GC
383 return s;
384
a64b5378
KC
385 cachep = virt_to_cache(x);
386 WARN_ONCE(cachep && !slab_equal_or_root(cachep, s),
598a0717
KC
387 "%s: Wrong slab cache. %s but object is from %s\n",
388 __func__, s->name, cachep->name);
389 return cachep;
b9ce5ef4 390}
ca34956b 391
11c7aec2
JDB
392static inline size_t slab_ksize(const struct kmem_cache *s)
393{
394#ifndef CONFIG_SLUB
395 return s->object_size;
396
397#else /* CONFIG_SLUB */
398# ifdef CONFIG_SLUB_DEBUG
399 /*
400 * Debugging requires use of the padding between object
401 * and whatever may come after it.
402 */
403 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
404 return s->object_size;
405# endif
80a9201a
AP
406 if (s->flags & SLAB_KASAN)
407 return s->object_size;
11c7aec2
JDB
408 /*
409 * If we have the need to store the freelist pointer
410 * back there or track user information then we can
411 * only use the space before that information.
412 */
5f0d5a3a 413 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
11c7aec2
JDB
414 return s->inuse;
415 /*
416 * Else we can use all the padding etc for the allocation
417 */
418 return s->size;
419#endif
420}
421
422static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
423 gfp_t flags)
424{
425 flags &= gfp_allowed_mask;
d92a8cfc
PZ
426
427 fs_reclaim_acquire(flags);
428 fs_reclaim_release(flags);
429
11c7aec2
JDB
430 might_sleep_if(gfpflags_allow_blocking(flags));
431
fab9963a 432 if (should_failslab(s, flags))
11c7aec2
JDB
433 return NULL;
434
45264778
VD
435 if (memcg_kmem_enabled() &&
436 ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
437 return memcg_kmem_get_cache(s);
438
439 return s;
11c7aec2
JDB
440}
441
442static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
443 size_t size, void **p)
444{
445 size_t i;
446
447 flags &= gfp_allowed_mask;
448 for (i = 0; i < size; i++) {
53128245 449 p[i] = kasan_slab_alloc(s, p[i], flags);
a2f77575 450 /* As p[i] might get tagged, call kmemleak hook after KASAN. */
53128245 451 kmemleak_alloc_recursive(p[i], s->object_size, 1,
11c7aec2 452 s->flags, flags);
11c7aec2 453 }
45264778
VD
454
455 if (memcg_kmem_enabled())
456 memcg_kmem_put_cache(s);
11c7aec2
JDB
457}
458
44c5356f 459#ifndef CONFIG_SLOB
ca34956b
CL
460/*
461 * The slab lists for all objects.
462 */
463struct kmem_cache_node {
464 spinlock_t list_lock;
465
466#ifdef CONFIG_SLAB
467 struct list_head slabs_partial; /* partial list first, better asm code */
468 struct list_head slabs_full;
469 struct list_head slabs_free;
bf00bd34
DR
470 unsigned long total_slabs; /* length of all slab lists */
471 unsigned long free_slabs; /* length of free slab list only */
ca34956b
CL
472 unsigned long free_objects;
473 unsigned int free_limit;
474 unsigned int colour_next; /* Per-node cache coloring */
475 struct array_cache *shared; /* shared per node */
c8522a3a 476 struct alien_cache **alien; /* on other nodes */
ca34956b
CL
477 unsigned long next_reap; /* updated without locking */
478 int free_touched; /* updated without locking */
479#endif
480
481#ifdef CONFIG_SLUB
482 unsigned long nr_partial;
483 struct list_head partial;
484#ifdef CONFIG_SLUB_DEBUG
485 atomic_long_t nr_slabs;
486 atomic_long_t total_objects;
487 struct list_head full;
488#endif
489#endif
490
491};
e25839f6 492
44c5356f
CL
493static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
494{
495 return s->node[node];
496}
497
498/*
499 * Iterator over all nodes. The body will be executed for each node that has
500 * a kmem_cache_node structure allocated (which is true for all online nodes)
501 */
502#define for_each_kmem_cache_node(__s, __node, __n) \
9163582c
MP
503 for (__node = 0; __node < nr_node_ids; __node++) \
504 if ((__n = get_node(__s, __node)))
44c5356f
CL
505
506#endif
507
1df3b26f 508void *slab_start(struct seq_file *m, loff_t *pos);
276a2439
WL
509void *slab_next(struct seq_file *m, void *p, loff_t *pos);
510void slab_stop(struct seq_file *m, void *p);
bc2791f8
TH
511void *memcg_slab_start(struct seq_file *m, loff_t *pos);
512void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos);
513void memcg_slab_stop(struct seq_file *m, void *p);
b047501c 514int memcg_slab_show(struct seq_file *m, void *p);
5240ab40 515
852d8be0
YS
516#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
517void dump_unreclaimable_slab(void);
518#else
519static inline void dump_unreclaimable_slab(void)
520{
521}
522#endif
523
55834c59
AP
524void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
525
7c00fce9
TG
526#ifdef CONFIG_SLAB_FREELIST_RANDOM
527int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
528 gfp_t gfp);
529void cache_random_seq_destroy(struct kmem_cache *cachep);
530#else
531static inline int cache_random_seq_create(struct kmem_cache *cachep,
532 unsigned int count, gfp_t gfp)
533{
534 return 0;
535}
536static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
537#endif /* CONFIG_SLAB_FREELIST_RANDOM */
538
5240ab40 539#endif /* MM_SLAB_H */