]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/slab_common.c
bpf: Wrap aux data inside bpf_sanitize_info container
[mirror_ubuntu-hirsute-kernel.git] / mm / slab_common.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
039363f3
CL
2/*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7#include <linux/slab.h>
8
9#include <linux/mm.h>
10#include <linux/poison.h>
11#include <linux/interrupt.h>
12#include <linux/memory.h>
1c99ba29 13#include <linux/cache.h>
039363f3
CL
14#include <linux/compiler.h>
15#include <linux/module.h>
20cea968
CL
16#include <linux/cpu.h>
17#include <linux/uaccess.h>
b7454ad3
GC
18#include <linux/seq_file.h>
19#include <linux/proc_fs.h>
fcf8a1e4 20#include <linux/debugfs.h>
e86f8b09 21#include <linux/kasan.h>
039363f3
CL
22#include <asm/cacheflush.h>
23#include <asm/tlbflush.h>
24#include <asm/page.h>
2633d7a0 25#include <linux/memcontrol.h>
928cec9c
AR
26
27#define CREATE_TRACE_POINTS
f1b6eb6e 28#include <trace/events/kmem.h>
039363f3 29
44405099
LL
30#include "internal.h"
31
97d06609
CL
32#include "slab.h"
33
34enum slab_state slab_state;
18004c5d
CL
35LIST_HEAD(slab_caches);
36DEFINE_MUTEX(slab_mutex);
9b030cb8 37struct kmem_cache *kmem_cache;
97d06609 38
2d891fbc
KC
39#ifdef CONFIG_HARDENED_USERCOPY
40bool usercopy_fallback __ro_after_init =
41 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
42module_param(usercopy_fallback, bool, 0400);
43MODULE_PARM_DESC(usercopy_fallback,
44 "WARN instead of reject usercopy whitelist violations");
45#endif
46
657dc2f9
TH
47static LIST_HEAD(slab_caches_to_rcu_destroy);
48static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
49static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
50 slab_caches_to_rcu_destroy_workfn);
51
423c929c
JK
52/*
53 * Set of flags that will prevent slab merging
54 */
55#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
5f0d5a3a 56 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
e86f8b09 57 SLAB_FAILSLAB | kasan_never_merge())
423c929c 58
230e9fc2 59#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
6d6ea1e9 60 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
423c929c
JK
61
62/*
63 * Merge control. If this is set then no merging of slab caches will occur.
423c929c 64 */
7660a6fd 65static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
423c929c
JK
66
67static int __init setup_slab_nomerge(char *str)
68{
7660a6fd 69 slab_nomerge = true;
423c929c
JK
70 return 1;
71}
72
73#ifdef CONFIG_SLUB
74__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
75#endif
76
77__setup("slab_nomerge", setup_slab_nomerge);
78
07f361b2
JK
79/*
80 * Determine the size of a slab object
81 */
82unsigned int kmem_cache_size(struct kmem_cache *s)
83{
84 return s->object_size;
85}
86EXPORT_SYMBOL(kmem_cache_size);
87
77be4b13 88#ifdef CONFIG_DEBUG_VM
f4957d5b 89static int kmem_cache_sanity_check(const char *name, unsigned int size)
039363f3 90{
039363f3
CL
91 if (!name || in_interrupt() || size < sizeof(void *) ||
92 size > KMALLOC_MAX_SIZE) {
77be4b13
SK
93 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
94 return -EINVAL;
039363f3 95 }
b920536a 96
20cea968 97 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
98 return 0;
99}
100#else
f4957d5b 101static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
77be4b13
SK
102{
103 return 0;
104}
20cea968
CL
105#endif
106
484748f0
CL
107void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
108{
109 size_t i;
110
ca257195
JDB
111 for (i = 0; i < nr; i++) {
112 if (s)
113 kmem_cache_free(s, p[i]);
114 else
115 kfree(p[i]);
116 }
484748f0
CL
117}
118
865762a8 119int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
484748f0
CL
120 void **p)
121{
122 size_t i;
123
124 for (i = 0; i < nr; i++) {
125 void *x = p[i] = kmem_cache_alloc(s, flags);
126 if (!x) {
127 __kmem_cache_free_bulk(s, i, p);
865762a8 128 return 0;
484748f0
CL
129 }
130 }
865762a8 131 return i;
484748f0
CL
132}
133
692ae74a
BL
134/*
135 * Figure out what the alignment of the objects will be given a set of
136 * flags, a user specified alignment and the size of the objects.
137 */
f4957d5b
AD
138static unsigned int calculate_alignment(slab_flags_t flags,
139 unsigned int align, unsigned int size)
692ae74a
BL
140{
141 /*
142 * If the user wants hardware cache aligned objects then follow that
143 * suggestion if the object is sufficiently large.
144 *
145 * The hardware cache alignment cannot override the specified
146 * alignment though. If that is greater then use it.
147 */
148 if (flags & SLAB_HWCACHE_ALIGN) {
f4957d5b 149 unsigned int ralign;
692ae74a
BL
150
151 ralign = cache_line_size();
152 while (size <= ralign / 2)
153 ralign /= 2;
154 align = max(align, ralign);
155 }
156
157 if (align < ARCH_SLAB_MINALIGN)
158 align = ARCH_SLAB_MINALIGN;
159
160 return ALIGN(align, sizeof(void *));
161}
162
423c929c
JK
163/*
164 * Find a mergeable slab cache
165 */
166int slab_unmergeable(struct kmem_cache *s)
167{
168 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
169 return 1;
170
423c929c
JK
171 if (s->ctor)
172 return 1;
173
8eb8284b
DW
174 if (s->usersize)
175 return 1;
176
423c929c
JK
177 /*
178 * We may have set a slab to be unmergeable during bootstrap.
179 */
180 if (s->refcount < 0)
181 return 1;
182
183 return 0;
184}
185
f4957d5b 186struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
d50112ed 187 slab_flags_t flags, const char *name, void (*ctor)(void *))
423c929c
JK
188{
189 struct kmem_cache *s;
190
c6e28895 191 if (slab_nomerge)
423c929c
JK
192 return NULL;
193
194 if (ctor)
195 return NULL;
196
197 size = ALIGN(size, sizeof(void *));
198 align = calculate_alignment(flags, align, size);
199 size = ALIGN(size, align);
f505bc0c 200 flags = kmem_cache_flags(size, flags, name);
423c929c 201
c6e28895
GM
202 if (flags & SLAB_NEVER_MERGE)
203 return NULL;
204
c7094406 205 list_for_each_entry_reverse(s, &slab_caches, list) {
423c929c
JK
206 if (slab_unmergeable(s))
207 continue;
208
209 if (size > s->size)
210 continue;
211
212 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
213 continue;
214 /*
215 * Check if alignment is compatible.
216 * Courtesy of Adrian Drzewiecki
217 */
218 if ((s->size & ~(align - 1)) != s->size)
219 continue;
220
221 if (s->size - size >= sizeof(void *))
222 continue;
223
95069ac8
JK
224 if (IS_ENABLED(CONFIG_SLAB) && align &&
225 (align > s->align || s->align % align))
226 continue;
227
423c929c
JK
228 return s;
229 }
230 return NULL;
231}
232
c9a77a79 233static struct kmem_cache *create_cache(const char *name,
613a5eb5 234 unsigned int object_size, unsigned int align,
7bbdb81e
AD
235 slab_flags_t flags, unsigned int useroffset,
236 unsigned int usersize, void (*ctor)(void *),
9855609b 237 struct kmem_cache *root_cache)
794b1248
VD
238{
239 struct kmem_cache *s;
240 int err;
241
8eb8284b
DW
242 if (WARN_ON(useroffset + usersize > object_size))
243 useroffset = usersize = 0;
244
794b1248
VD
245 err = -ENOMEM;
246 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
247 if (!s)
248 goto out;
249
250 s->name = name;
613a5eb5 251 s->size = s->object_size = object_size;
794b1248
VD
252 s->align = align;
253 s->ctor = ctor;
8eb8284b
DW
254 s->useroffset = useroffset;
255 s->usersize = usersize;
794b1248 256
794b1248
VD
257 err = __kmem_cache_create(s, flags);
258 if (err)
259 goto out_free_cache;
260
261 s->refcount = 1;
262 list_add(&s->list, &slab_caches);
794b1248
VD
263out:
264 if (err)
265 return ERR_PTR(err);
266 return s;
267
268out_free_cache:
7c4da061 269 kmem_cache_free(kmem_cache, s);
794b1248
VD
270 goto out;
271}
45906855 272
f496990f
MR
273/**
274 * kmem_cache_create_usercopy - Create a cache with a region suitable
275 * for copying to userspace
77be4b13
SK
276 * @name: A string which is used in /proc/slabinfo to identify this cache.
277 * @size: The size of objects to be created in this cache.
278 * @align: The required alignment for the objects.
279 * @flags: SLAB flags
8eb8284b
DW
280 * @useroffset: Usercopy region offset
281 * @usersize: Usercopy region size
77be4b13
SK
282 * @ctor: A constructor for the objects.
283 *
77be4b13
SK
284 * Cannot be called within a interrupt, but can be interrupted.
285 * The @ctor is run when new pages are allocated by the cache.
286 *
287 * The flags are
288 *
289 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
290 * to catch references to uninitialised memory.
291 *
f496990f 292 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
77be4b13
SK
293 * for buffer overruns.
294 *
295 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
296 * cacheline. This can be beneficial if you're counting cycles as closely
297 * as davem.
f496990f
MR
298 *
299 * Return: a pointer to the cache on success, NULL on failure.
77be4b13 300 */
2633d7a0 301struct kmem_cache *
f4957d5b
AD
302kmem_cache_create_usercopy(const char *name,
303 unsigned int size, unsigned int align,
7bbdb81e
AD
304 slab_flags_t flags,
305 unsigned int useroffset, unsigned int usersize,
8eb8284b 306 void (*ctor)(void *))
77be4b13 307{
40911a79 308 struct kmem_cache *s = NULL;
3dec16ea 309 const char *cache_name;
3965fc36 310 int err;
039363f3 311
77be4b13 312 get_online_cpus();
03afc0e2
VD
313 get_online_mems();
314
77be4b13 315 mutex_lock(&slab_mutex);
686d550d 316
794b1248 317 err = kmem_cache_sanity_check(name, size);
3aa24f51 318 if (err) {
3965fc36 319 goto out_unlock;
3aa24f51 320 }
686d550d 321
e70954fd
TG
322 /* Refuse requests with allocator specific flags */
323 if (flags & ~SLAB_FLAGS_PERMITTED) {
324 err = -EINVAL;
325 goto out_unlock;
326 }
327
d8843922
GC
328 /*
329 * Some allocators will constraint the set of valid flags to a subset
330 * of all flags. We expect them to define CACHE_CREATE_MASK in this
331 * case, and we'll just provide them with a sanitized version of the
332 * passed flags.
333 */
334 flags &= CACHE_CREATE_MASK;
686d550d 335
8eb8284b
DW
336 /* Fail closed on bad usersize of useroffset values. */
337 if (WARN_ON(!usersize && useroffset) ||
338 WARN_ON(size < usersize || size - usersize < useroffset))
339 usersize = useroffset = 0;
340
341 if (!usersize)
342 s = __kmem_cache_alias(name, size, align, flags, ctor);
794b1248 343 if (s)
3965fc36 344 goto out_unlock;
2633d7a0 345
3dec16ea 346 cache_name = kstrdup_const(name, GFP_KERNEL);
794b1248
VD
347 if (!cache_name) {
348 err = -ENOMEM;
349 goto out_unlock;
350 }
7c9adf5a 351
613a5eb5 352 s = create_cache(cache_name, size,
c9a77a79 353 calculate_alignment(flags, align, size),
9855609b 354 flags, useroffset, usersize, ctor, NULL);
794b1248
VD
355 if (IS_ERR(s)) {
356 err = PTR_ERR(s);
3dec16ea 357 kfree_const(cache_name);
794b1248 358 }
3965fc36
VD
359
360out_unlock:
20cea968 361 mutex_unlock(&slab_mutex);
03afc0e2
VD
362
363 put_online_mems();
20cea968
CL
364 put_online_cpus();
365
ba3253c7 366 if (err) {
686d550d
CL
367 if (flags & SLAB_PANIC)
368 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
369 name, err);
370 else {
1170532b 371 pr_warn("kmem_cache_create(%s) failed with error %d\n",
686d550d
CL
372 name, err);
373 dump_stack();
374 }
686d550d
CL
375 return NULL;
376 }
039363f3
CL
377 return s;
378}
8eb8284b
DW
379EXPORT_SYMBOL(kmem_cache_create_usercopy);
380
f496990f
MR
381/**
382 * kmem_cache_create - Create a cache.
383 * @name: A string which is used in /proc/slabinfo to identify this cache.
384 * @size: The size of objects to be created in this cache.
385 * @align: The required alignment for the objects.
386 * @flags: SLAB flags
387 * @ctor: A constructor for the objects.
388 *
389 * Cannot be called within a interrupt, but can be interrupted.
390 * The @ctor is run when new pages are allocated by the cache.
391 *
392 * The flags are
393 *
394 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
395 * to catch references to uninitialised memory.
396 *
397 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
398 * for buffer overruns.
399 *
400 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
401 * cacheline. This can be beneficial if you're counting cycles as closely
402 * as davem.
403 *
404 * Return: a pointer to the cache on success, NULL on failure.
405 */
8eb8284b 406struct kmem_cache *
f4957d5b 407kmem_cache_create(const char *name, unsigned int size, unsigned int align,
8eb8284b
DW
408 slab_flags_t flags, void (*ctor)(void *))
409{
6d07d1cd 410 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
8eb8284b
DW
411 ctor);
412}
794b1248 413EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 414
657dc2f9 415static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
d5b3cf71 416{
657dc2f9
TH
417 LIST_HEAD(to_destroy);
418 struct kmem_cache *s, *s2;
d5b3cf71 419
657dc2f9 420 /*
5f0d5a3a 421 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
657dc2f9 422 * @slab_caches_to_rcu_destroy list. The slab pages are freed
081a06fa 423 * through RCU and the associated kmem_cache are dereferenced
657dc2f9
TH
424 * while freeing the pages, so the kmem_caches should be freed only
425 * after the pending RCU operations are finished. As rcu_barrier()
426 * is a pretty slow operation, we batch all pending destructions
427 * asynchronously.
428 */
429 mutex_lock(&slab_mutex);
430 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
431 mutex_unlock(&slab_mutex);
d5b3cf71 432
657dc2f9
TH
433 if (list_empty(&to_destroy))
434 return;
435
436 rcu_barrier();
437
438 list_for_each_entry_safe(s, s2, &to_destroy, list) {
439#ifdef SLAB_SUPPORTS_SYSFS
440 sysfs_slab_release(s);
441#else
442 slab_kmem_cache_release(s);
443#endif
444 }
d5b3cf71
VD
445}
446
657dc2f9 447static int shutdown_cache(struct kmem_cache *s)
d5b3cf71 448{
f9fa1d91
GT
449 /* free asan quarantined objects */
450 kasan_cache_shutdown(s);
451
657dc2f9
TH
452 if (__kmem_cache_shutdown(s) != 0)
453 return -EBUSY;
d5b3cf71 454
657dc2f9 455 list_del(&s->list);
d5b3cf71 456
5f0d5a3a 457 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
d50d82fa
MP
458#ifdef SLAB_SUPPORTS_SYSFS
459 sysfs_slab_unlink(s);
460#endif
657dc2f9
TH
461 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
462 schedule_work(&slab_caches_to_rcu_destroy_work);
463 } else {
d5b3cf71 464#ifdef SLAB_SUPPORTS_SYSFS
d50d82fa 465 sysfs_slab_unlink(s);
bf5eb3de 466 sysfs_slab_release(s);
d5b3cf71
VD
467#else
468 slab_kmem_cache_release(s);
469#endif
470 }
657dc2f9
TH
471
472 return 0;
d5b3cf71
VD
473}
474
41a21285
CL
475void slab_kmem_cache_release(struct kmem_cache *s)
476{
52b4b950 477 __kmem_cache_release(s);
3dec16ea 478 kfree_const(s->name);
41a21285
CL
479 kmem_cache_free(kmem_cache, s);
480}
481
945cf2b6
CL
482void kmem_cache_destroy(struct kmem_cache *s)
483{
d60fdcc9 484 int err;
d5b3cf71 485
3942d299
SS
486 if (unlikely(!s))
487 return;
488
945cf2b6 489 get_online_cpus();
03afc0e2
VD
490 get_online_mems();
491
945cf2b6 492 mutex_lock(&slab_mutex);
b8529907 493
945cf2b6 494 s->refcount--;
b8529907
VD
495 if (s->refcount)
496 goto out_unlock;
497
10befea9 498 err = shutdown_cache(s);
cd918c55 499 if (err) {
756a025f
JP
500 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
501 s->name);
cd918c55
VD
502 dump_stack();
503 }
b8529907
VD
504out_unlock:
505 mutex_unlock(&slab_mutex);
d5b3cf71 506
03afc0e2 507 put_online_mems();
945cf2b6
CL
508 put_online_cpus();
509}
510EXPORT_SYMBOL(kmem_cache_destroy);
511
03afc0e2
VD
512/**
513 * kmem_cache_shrink - Shrink a cache.
514 * @cachep: The cache to shrink.
515 *
516 * Releases as many slabs as possible for a cache.
517 * To help debugging, a zero exit status indicates all slabs were released.
a862f68a
MR
518 *
519 * Return: %0 if all slabs were released, non-zero otherwise
03afc0e2
VD
520 */
521int kmem_cache_shrink(struct kmem_cache *cachep)
522{
523 int ret;
524
525 get_online_cpus();
526 get_online_mems();
55834c59 527 kasan_cache_shrink(cachep);
c9fc5864 528 ret = __kmem_cache_shrink(cachep);
03afc0e2
VD
529 put_online_mems();
530 put_online_cpus();
531 return ret;
532}
533EXPORT_SYMBOL(kmem_cache_shrink);
534
fda90124 535bool slab_is_available(void)
97d06609
CL
536{
537 return slab_state >= UP;
538}
b7454ad3 539
45530c44
CL
540#ifndef CONFIG_SLOB
541/* Create a cache during boot when no slab services are available yet */
361d575e
AD
542void __init create_boot_cache(struct kmem_cache *s, const char *name,
543 unsigned int size, slab_flags_t flags,
544 unsigned int useroffset, unsigned int usersize)
45530c44
CL
545{
546 int err;
59bb4798 547 unsigned int align = ARCH_KMALLOC_MINALIGN;
45530c44
CL
548
549 s->name = name;
550 s->size = s->object_size = size;
59bb4798
VB
551
552 /*
553 * For power of two sizes, guarantee natural alignment for kmalloc
554 * caches, regardless of SL*B debugging options.
555 */
556 if (is_power_of_2(size))
557 align = max(align, size);
558 s->align = calculate_alignment(flags, align, size);
559
8eb8284b
DW
560 s->useroffset = useroffset;
561 s->usersize = usersize;
f7ce3190 562
45530c44
CL
563 err = __kmem_cache_create(s, flags);
564
565 if (err)
361d575e 566 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
45530c44
CL
567 name, size, err);
568
569 s->refcount = -1; /* Exempt from merging for now */
570}
571
55de8b9c
AD
572struct kmem_cache *__init create_kmalloc_cache(const char *name,
573 unsigned int size, slab_flags_t flags,
574 unsigned int useroffset, unsigned int usersize)
45530c44
CL
575{
576 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
577
578 if (!s)
579 panic("Out of memory when creating slab %s\n", name);
580
6c0c21ad 581 create_boot_cache(s, name, size, flags, useroffset, usersize);
45530c44
CL
582 list_add(&s->list, &slab_caches);
583 s->refcount = 1;
584 return s;
585}
586
cc252eae 587struct kmem_cache *
a07057dc
AB
588kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
589{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
9425c58e
CL
590EXPORT_SYMBOL(kmalloc_caches);
591
2c59dd65
CL
592/*
593 * Conversion table for small slabs sizes / 8 to the index in the
594 * kmalloc array. This is necessary for slabs < 192 since we have non power
595 * of two cache sizes there. The size of larger slabs can be determined using
596 * fls.
597 */
d5f86655 598static u8 size_index[24] __ro_after_init = {
2c59dd65
CL
599 3, /* 8 */
600 4, /* 16 */
601 5, /* 24 */
602 5, /* 32 */
603 6, /* 40 */
604 6, /* 48 */
605 6, /* 56 */
606 6, /* 64 */
607 1, /* 72 */
608 1, /* 80 */
609 1, /* 88 */
610 1, /* 96 */
611 7, /* 104 */
612 7, /* 112 */
613 7, /* 120 */
614 7, /* 128 */
615 2, /* 136 */
616 2, /* 144 */
617 2, /* 152 */
618 2, /* 160 */
619 2, /* 168 */
620 2, /* 176 */
621 2, /* 184 */
622 2 /* 192 */
623};
624
ac914d08 625static inline unsigned int size_index_elem(unsigned int bytes)
2c59dd65
CL
626{
627 return (bytes - 1) / 8;
628}
629
630/*
631 * Find the kmem_cache structure that serves a given size of
632 * allocation
633 */
634struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
635{
d5f86655 636 unsigned int index;
2c59dd65
CL
637
638 if (size <= 192) {
639 if (!size)
640 return ZERO_SIZE_PTR;
641
642 index = size_index[size_index_elem(size)];
61448479 643 } else {
221d7da6 644 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
61448479 645 return NULL;
2c59dd65 646 index = fls(size - 1);
61448479 647 }
2c59dd65 648
cc252eae 649 return kmalloc_caches[kmalloc_type(flags)][index];
2c59dd65
CL
650}
651
cb5d9fb3
PL
652#ifdef CONFIG_ZONE_DMA
653#define INIT_KMALLOC_INFO(__size, __short_size) \
654{ \
655 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
656 .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \
657 .name[KMALLOC_DMA] = "dma-kmalloc-" #__short_size, \
658 .size = __size, \
659}
660#else
661#define INIT_KMALLOC_INFO(__size, __short_size) \
662{ \
663 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
664 .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \
665 .size = __size, \
666}
667#endif
668
4066c33d
GG
669/*
670 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
671 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
672 * kmalloc-67108864.
673 */
af3b5f87 674const struct kmalloc_info_struct kmalloc_info[] __initconst = {
cb5d9fb3
PL
675 INIT_KMALLOC_INFO(0, 0),
676 INIT_KMALLOC_INFO(96, 96),
677 INIT_KMALLOC_INFO(192, 192),
678 INIT_KMALLOC_INFO(8, 8),
679 INIT_KMALLOC_INFO(16, 16),
680 INIT_KMALLOC_INFO(32, 32),
681 INIT_KMALLOC_INFO(64, 64),
682 INIT_KMALLOC_INFO(128, 128),
683 INIT_KMALLOC_INFO(256, 256),
684 INIT_KMALLOC_INFO(512, 512),
685 INIT_KMALLOC_INFO(1024, 1k),
686 INIT_KMALLOC_INFO(2048, 2k),
687 INIT_KMALLOC_INFO(4096, 4k),
688 INIT_KMALLOC_INFO(8192, 8k),
689 INIT_KMALLOC_INFO(16384, 16k),
690 INIT_KMALLOC_INFO(32768, 32k),
691 INIT_KMALLOC_INFO(65536, 64k),
692 INIT_KMALLOC_INFO(131072, 128k),
693 INIT_KMALLOC_INFO(262144, 256k),
694 INIT_KMALLOC_INFO(524288, 512k),
695 INIT_KMALLOC_INFO(1048576, 1M),
696 INIT_KMALLOC_INFO(2097152, 2M),
697 INIT_KMALLOC_INFO(4194304, 4M),
698 INIT_KMALLOC_INFO(8388608, 8M),
699 INIT_KMALLOC_INFO(16777216, 16M),
700 INIT_KMALLOC_INFO(33554432, 32M),
701 INIT_KMALLOC_INFO(67108864, 64M)
4066c33d
GG
702};
703
f97d5f63 704/*
34cc6990
DS
705 * Patch up the size_index table if we have strange large alignment
706 * requirements for the kmalloc array. This is only the case for
707 * MIPS it seems. The standard arches will not generate any code here.
708 *
709 * Largest permitted alignment is 256 bytes due to the way we
710 * handle the index determination for the smaller caches.
711 *
712 * Make sure that nothing crazy happens if someone starts tinkering
713 * around with ARCH_KMALLOC_MINALIGN
f97d5f63 714 */
34cc6990 715void __init setup_kmalloc_cache_index_table(void)
f97d5f63 716{
ac914d08 717 unsigned int i;
f97d5f63 718
2c59dd65
CL
719 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
720 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
721
722 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
ac914d08 723 unsigned int elem = size_index_elem(i);
2c59dd65
CL
724
725 if (elem >= ARRAY_SIZE(size_index))
726 break;
727 size_index[elem] = KMALLOC_SHIFT_LOW;
728 }
729
730 if (KMALLOC_MIN_SIZE >= 64) {
731 /*
732 * The 96 byte size cache is not used if the alignment
733 * is 64 byte.
734 */
735 for (i = 64 + 8; i <= 96; i += 8)
736 size_index[size_index_elem(i)] = 7;
737
738 }
739
740 if (KMALLOC_MIN_SIZE >= 128) {
741 /*
742 * The 192 byte sized cache is not used if the alignment
743 * is 128 byte. Redirect kmalloc to use the 256 byte cache
744 * instead.
745 */
746 for (i = 128 + 8; i <= 192; i += 8)
747 size_index[size_index_elem(i)] = 8;
748 }
34cc6990
DS
749}
750
1291523f 751static void __init
13657d0a 752new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
a9730fca 753{
cb5d9fb3 754 if (type == KMALLOC_RECLAIM)
1291523f 755 flags |= SLAB_RECLAIM_ACCOUNT;
1291523f 756
cb5d9fb3
PL
757 kmalloc_caches[type][idx] = create_kmalloc_cache(
758 kmalloc_info[idx].name[type],
6c0c21ad
DW
759 kmalloc_info[idx].size, flags, 0,
760 kmalloc_info[idx].size);
a9730fca
CL
761}
762
34cc6990
DS
763/*
764 * Create the kmalloc array. Some of the regular kmalloc arrays
765 * may already have been created because they were needed to
766 * enable allocations for slab creation.
767 */
d50112ed 768void __init create_kmalloc_caches(slab_flags_t flags)
34cc6990 769{
13657d0a
PL
770 int i;
771 enum kmalloc_cache_type type;
34cc6990 772
1291523f
VB
773 for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
774 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
775 if (!kmalloc_caches[type][i])
776 new_kmalloc_cache(i, type, flags);
f97d5f63 777
1291523f
VB
778 /*
779 * Caches that are not of the two-to-the-power-of size.
780 * These have to be created immediately after the
781 * earlier power of two caches
782 */
783 if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
784 !kmalloc_caches[type][1])
785 new_kmalloc_cache(1, type, flags);
786 if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
787 !kmalloc_caches[type][2])
788 new_kmalloc_cache(2, type, flags);
789 }
8a965b3b
CL
790 }
791
f97d5f63
CL
792 /* Kmalloc array is now usable */
793 slab_state = UP;
794
f97d5f63
CL
795#ifdef CONFIG_ZONE_DMA
796 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
cc252eae 797 struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
f97d5f63
CL
798
799 if (s) {
cc252eae 800 kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
cb5d9fb3 801 kmalloc_info[i].name[KMALLOC_DMA],
dc0a7f75 802 kmalloc_info[i].size,
49f2d241
VB
803 SLAB_CACHE_DMA | flags, 0,
804 kmalloc_info[i].size);
f97d5f63
CL
805 }
806 }
807#endif
808}
45530c44
CL
809#endif /* !CONFIG_SLOB */
810
44405099
LL
811gfp_t kmalloc_fix_flags(gfp_t flags)
812{
813 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
814
815 flags &= ~GFP_SLAB_BUG_MASK;
816 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
817 invalid_mask, &invalid_mask, flags, &flags);
818 dump_stack();
819
820 return flags;
821}
822
cea371f4
VD
823/*
824 * To avoid unnecessary overhead, we pass through large allocation requests
825 * directly to the page allocator. We use __GFP_COMP, because we will need to
826 * know the allocation order to free the pages properly in kfree.
827 */
52383431
VD
828void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
829{
6a486c0a 830 void *ret = NULL;
52383431
VD
831 struct page *page;
832
44405099
LL
833 if (unlikely(flags & GFP_SLAB_BUG_MASK))
834 flags = kmalloc_fix_flags(flags);
835
52383431 836 flags |= __GFP_COMP;
4949148a 837 page = alloc_pages(flags, order);
6a486c0a
VB
838 if (likely(page)) {
839 ret = page_address(page);
ca3c4f41
MS
840 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
841 PAGE_SIZE << order);
6a486c0a 842 }
0116523c 843 ret = kasan_kmalloc_large(ret, size, flags);
a2f77575 844 /* As ret might get tagged, call kmemleak hook after KASAN. */
53128245 845 kmemleak_alloc(ret, size, 1, flags);
52383431
VD
846 return ret;
847}
848EXPORT_SYMBOL(kmalloc_order);
849
f1b6eb6e
CL
850#ifdef CONFIG_TRACING
851void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
852{
853 void *ret = kmalloc_order(size, flags, order);
854 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
855 return ret;
856}
857EXPORT_SYMBOL(kmalloc_order_trace);
858#endif
45530c44 859
7c00fce9
TG
860#ifdef CONFIG_SLAB_FREELIST_RANDOM
861/* Randomize a generic freelist */
862static void freelist_randomize(struct rnd_state *state, unsigned int *list,
302d55d5 863 unsigned int count)
7c00fce9 864{
7c00fce9 865 unsigned int rand;
302d55d5 866 unsigned int i;
7c00fce9
TG
867
868 for (i = 0; i < count; i++)
869 list[i] = i;
870
871 /* Fisher-Yates shuffle */
872 for (i = count - 1; i > 0; i--) {
873 rand = prandom_u32_state(state);
874 rand %= (i + 1);
875 swap(list[i], list[rand]);
876 }
877}
878
879/* Create a random sequence per cache */
880int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
881 gfp_t gfp)
882{
883 struct rnd_state state;
884
885 if (count < 2 || cachep->random_seq)
886 return 0;
887
888 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
889 if (!cachep->random_seq)
890 return -ENOMEM;
891
892 /* Get best entropy at this stage of boot */
893 prandom_seed_state(&state, get_random_long());
894
895 freelist_randomize(&state, cachep->random_seq, count);
896 return 0;
897}
898
899/* Destroy the per-cache random freelist sequence */
900void cache_random_seq_destroy(struct kmem_cache *cachep)
901{
902 kfree(cachep->random_seq);
903 cachep->random_seq = NULL;
904}
905#endif /* CONFIG_SLAB_FREELIST_RANDOM */
906
5b365771 907#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
e9b4db2b 908#ifdef CONFIG_SLAB
0825a6f9 909#define SLABINFO_RIGHTS (0600)
e9b4db2b 910#else
0825a6f9 911#define SLABINFO_RIGHTS (0400)
e9b4db2b
WL
912#endif
913
b047501c 914static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
915{
916 /*
917 * Output format version, so at least we can change it
918 * without _too_ many complaints.
919 */
920#ifdef CONFIG_DEBUG_SLAB
921 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
922#else
923 seq_puts(m, "slabinfo - version: 2.1\n");
924#endif
756a025f 925 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
bcee6e2a
GC
926 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
927 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
928#ifdef CONFIG_DEBUG_SLAB
756a025f 929 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
bcee6e2a
GC
930 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
931#endif
932 seq_putc(m, '\n');
933}
934
1df3b26f 935void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 936{
b7454ad3 937 mutex_lock(&slab_mutex);
c7094406 938 return seq_list_start(&slab_caches, *pos);
b7454ad3
GC
939}
940
276a2439 941void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3 942{
c7094406 943 return seq_list_next(p, &slab_caches, pos);
b7454ad3
GC
944}
945
276a2439 946void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
947{
948 mutex_unlock(&slab_mutex);
949}
950
b047501c 951static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 952{
0d7561c6
GC
953 struct slabinfo sinfo;
954
955 memset(&sinfo, 0, sizeof(sinfo));
956 get_slabinfo(s, &sinfo);
957
958 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
10befea9 959 s->name, sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
960 sinfo.objects_per_slab, (1 << sinfo.cache_order));
961
962 seq_printf(m, " : tunables %4u %4u %4u",
963 sinfo.limit, sinfo.batchcount, sinfo.shared);
964 seq_printf(m, " : slabdata %6lu %6lu %6lu",
965 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
966 slabinfo_show_stats(m, s);
967 seq_putc(m, '\n');
b7454ad3
GC
968}
969
1df3b26f 970static int slab_show(struct seq_file *m, void *p)
749c5415 971{
c7094406 972 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
749c5415 973
c7094406 974 if (p == slab_caches.next)
1df3b26f 975 print_slabinfo_header(m);
10befea9 976 cache_show(s, m);
b047501c
VD
977 return 0;
978}
979
852d8be0
YS
980void dump_unreclaimable_slab(void)
981{
7714304f 982 struct kmem_cache *s;
852d8be0
YS
983 struct slabinfo sinfo;
984
985 /*
986 * Here acquiring slab_mutex is risky since we don't prefer to get
987 * sleep in oom path. But, without mutex hold, it may introduce a
988 * risk of crash.
989 * Use mutex_trylock to protect the list traverse, dump nothing
990 * without acquiring the mutex.
991 */
992 if (!mutex_trylock(&slab_mutex)) {
993 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
994 return;
995 }
996
997 pr_info("Unreclaimable slab info:\n");
998 pr_info("Name Used Total\n");
999
7714304f 1000 list_for_each_entry(s, &slab_caches, list) {
10befea9 1001 if (s->flags & SLAB_RECLAIM_ACCOUNT)
852d8be0
YS
1002 continue;
1003
1004 get_slabinfo(s, &sinfo);
1005
1006 if (sinfo.num_objs > 0)
10befea9 1007 pr_info("%-17s %10luKB %10luKB\n", s->name,
852d8be0
YS
1008 (sinfo.active_objs * s->size) / 1024,
1009 (sinfo.num_objs * s->size) / 1024);
1010 }
1011 mutex_unlock(&slab_mutex);
1012}
1013
a87425a3 1014#if defined(CONFIG_MEMCG_KMEM)
b047501c
VD
1015int memcg_slab_show(struct seq_file *m, void *p)
1016{
4330a26b
RG
1017 /*
1018 * Deprecated.
1019 * Please, take a look at tools/cgroup/slabinfo.py .
1020 */
b047501c 1021 return 0;
749c5415 1022}
b047501c 1023#endif
749c5415 1024
b7454ad3
GC
1025/*
1026 * slabinfo_op - iterator that generates /proc/slabinfo
1027 *
1028 * Output layout:
1029 * cache-name
1030 * num-active-objs
1031 * total-objs
1032 * object size
1033 * num-active-slabs
1034 * total-slabs
1035 * num-pages-per-slab
1036 * + further values on SMP and with statistics enabled
1037 */
1038static const struct seq_operations slabinfo_op = {
1df3b26f 1039 .start = slab_start,
276a2439
WL
1040 .next = slab_next,
1041 .stop = slab_stop,
1df3b26f 1042 .show = slab_show,
b7454ad3
GC
1043};
1044
1045static int slabinfo_open(struct inode *inode, struct file *file)
1046{
1047 return seq_open(file, &slabinfo_op);
1048}
1049
97a32539 1050static const struct proc_ops slabinfo_proc_ops = {
d919b33d 1051 .proc_flags = PROC_ENTRY_PERMANENT,
97a32539
AD
1052 .proc_open = slabinfo_open,
1053 .proc_read = seq_read,
1054 .proc_write = slabinfo_write,
1055 .proc_lseek = seq_lseek,
1056 .proc_release = seq_release,
b7454ad3
GC
1057};
1058
1059static int __init slab_proc_init(void)
1060{
97a32539 1061 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
b7454ad3
GC
1062 return 0;
1063}
1064module_init(slab_proc_init);
fcf8a1e4 1065
5b365771 1066#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
928cec9c
AR
1067
1068static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1069 gfp_t flags)
1070{
1071 void *ret;
fa9ba3aa 1072 size_t ks;
928cec9c 1073
fa9ba3aa 1074 ks = ksize(p);
928cec9c 1075
0316bec2 1076 if (ks >= new_size) {
0116523c 1077 p = kasan_krealloc((void *)p, new_size, flags);
928cec9c 1078 return (void *)p;
0316bec2 1079 }
928cec9c
AR
1080
1081 ret = kmalloc_track_caller(new_size, flags);
1082 if (ret && p)
1083 memcpy(ret, p, ks);
1084
1085 return ret;
1086}
1087
928cec9c
AR
1088/**
1089 * krealloc - reallocate memory. The contents will remain unchanged.
1090 * @p: object to reallocate memory for.
1091 * @new_size: how many bytes of memory are required.
1092 * @flags: the type of memory to allocate.
1093 *
1094 * The contents of the object pointed to are preserved up to the
15d5de49
BG
1095 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1096 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
1097 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
a862f68a
MR
1098 *
1099 * Return: pointer to the allocated memory or %NULL in case of error
928cec9c
AR
1100 */
1101void *krealloc(const void *p, size_t new_size, gfp_t flags)
1102{
1103 void *ret;
1104
1105 if (unlikely(!new_size)) {
1106 kfree(p);
1107 return ZERO_SIZE_PTR;
1108 }
1109
1110 ret = __do_krealloc(p, new_size, flags);
772a2fa5 1111 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
928cec9c
AR
1112 kfree(p);
1113
1114 return ret;
1115}
1116EXPORT_SYMBOL(krealloc);
1117
1118/**
453431a5 1119 * kfree_sensitive - Clear sensitive information in memory before freeing
928cec9c
AR
1120 * @p: object to free memory of
1121 *
1122 * The memory of the object @p points to is zeroed before freed.
453431a5 1123 * If @p is %NULL, kfree_sensitive() does nothing.
928cec9c
AR
1124 *
1125 * Note: this function zeroes the whole allocated buffer which can be a good
1126 * deal bigger than the requested buffer size passed to kmalloc(). So be
1127 * careful when using this function in performance sensitive code.
1128 */
453431a5 1129void kfree_sensitive(const void *p)
928cec9c
AR
1130{
1131 size_t ks;
1132 void *mem = (void *)p;
1133
928cec9c 1134 ks = ksize(mem);
fa9ba3aa
WK
1135 if (ks)
1136 memzero_explicit(mem, ks);
928cec9c
AR
1137 kfree(mem);
1138}
453431a5 1139EXPORT_SYMBOL(kfree_sensitive);
928cec9c 1140
10d1f8cb
ME
1141/**
1142 * ksize - get the actual amount of memory allocated for a given object
1143 * @objp: Pointer to the object
1144 *
1145 * kmalloc may internally round up allocations and return more memory
1146 * than requested. ksize() can be used to determine the actual amount of
1147 * memory allocated. The caller may use this additional memory, even though
1148 * a smaller amount of memory was initially specified with the kmalloc call.
1149 * The caller must guarantee that objp points to a valid object previously
1150 * allocated with either kmalloc() or kmem_cache_alloc(). The object
1151 * must not be freed during the duration of the call.
1152 *
1153 * Return: size of the actual memory used by @objp in bytes
1154 */
1155size_t ksize(const void *objp)
1156{
0d4ca4c9
ME
1157 size_t size;
1158
0d4ca4c9
ME
1159 /*
1160 * We need to check that the pointed to object is valid, and only then
1161 * unpoison the shadow memory below. We use __kasan_check_read(), to
1162 * generate a more useful report at the time ksize() is called (rather
1163 * than later where behaviour is undefined due to potential
1164 * use-after-free or double-free).
1165 *
1166 * If the pointed to memory is invalid we return 0, to avoid users of
1167 * ksize() writing to and potentially corrupting the memory region.
1168 *
1169 * We want to perform the check before __ksize(), to avoid potentially
1170 * crashing in __ksize() due to accessing invalid metadata.
1171 */
fa9ba3aa 1172 if (unlikely(ZERO_OR_NULL_PTR(objp)) || !__kasan_check_read(objp, 1))
0d4ca4c9
ME
1173 return 0;
1174
1175 size = __ksize(objp);
10d1f8cb
ME
1176 /*
1177 * We assume that ksize callers could use whole allocated area,
1178 * so we need to unpoison this area.
1179 */
cebd0eb2 1180 kasan_unpoison_range(objp, size);
10d1f8cb
ME
1181 return size;
1182}
1183EXPORT_SYMBOL(ksize);
1184
928cec9c
AR
1185/* Tracepoints definitions. */
1186EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1187EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1188EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1189EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1190EXPORT_TRACEPOINT_SYMBOL(kfree);
1191EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
4f6923fb
HM
1192
1193int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1194{
1195 if (__should_failslab(s, gfpflags))
1196 return -ENOMEM;
1197 return 0;
1198}
1199ALLOW_ERROR_INJECTION(should_failslab, ERRNO);