]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/slab_common.c
x86/mm, mm/hwpoison: Don't unconditionally unmap kernel 1:1 pages
[mirror_ubuntu-bionic-kernel.git] / mm / slab_common.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
039363f3
CL
2/*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7#include <linux/slab.h>
8
9#include <linux/mm.h>
10#include <linux/poison.h>
11#include <linux/interrupt.h>
12#include <linux/memory.h>
13#include <linux/compiler.h>
14#include <linux/module.h>
20cea968
CL
15#include <linux/cpu.h>
16#include <linux/uaccess.h>
b7454ad3
GC
17#include <linux/seq_file.h>
18#include <linux/proc_fs.h>
039363f3
CL
19#include <asm/cacheflush.h>
20#include <asm/tlbflush.h>
21#include <asm/page.h>
2633d7a0 22#include <linux/memcontrol.h>
928cec9c
AR
23
24#define CREATE_TRACE_POINTS
f1b6eb6e 25#include <trace/events/kmem.h>
039363f3 26
97d06609
CL
27#include "slab.h"
28
29enum slab_state slab_state;
18004c5d
CL
30LIST_HEAD(slab_caches);
31DEFINE_MUTEX(slab_mutex);
9b030cb8 32struct kmem_cache *kmem_cache;
97d06609 33
657dc2f9
TH
34static LIST_HEAD(slab_caches_to_rcu_destroy);
35static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
36static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
37 slab_caches_to_rcu_destroy_workfn);
38
423c929c
JK
39/*
40 * Set of flags that will prevent slab merging
41 */
42#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
5f0d5a3a 43 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
7ed2f9e6 44 SLAB_FAILSLAB | SLAB_KASAN)
423c929c 45
230e9fc2 46#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
75f296d9 47 SLAB_ACCOUNT)
423c929c
JK
48
49/*
50 * Merge control. If this is set then no merging of slab caches will occur.
423c929c 51 */
7660a6fd 52static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
423c929c
JK
53
54static int __init setup_slab_nomerge(char *str)
55{
7660a6fd 56 slab_nomerge = true;
423c929c
JK
57 return 1;
58}
59
60#ifdef CONFIG_SLUB
61__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
62#endif
63
64__setup("slab_nomerge", setup_slab_nomerge);
65
07f361b2
JK
66/*
67 * Determine the size of a slab object
68 */
69unsigned int kmem_cache_size(struct kmem_cache *s)
70{
71 return s->object_size;
72}
73EXPORT_SYMBOL(kmem_cache_size);
74
77be4b13 75#ifdef CONFIG_DEBUG_VM
794b1248 76static int kmem_cache_sanity_check(const char *name, size_t size)
039363f3
CL
77{
78 struct kmem_cache *s = NULL;
79
039363f3
CL
80 if (!name || in_interrupt() || size < sizeof(void *) ||
81 size > KMALLOC_MAX_SIZE) {
77be4b13
SK
82 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
83 return -EINVAL;
039363f3 84 }
b920536a 85
20cea968
CL
86 list_for_each_entry(s, &slab_caches, list) {
87 char tmp;
88 int res;
89
90 /*
91 * This happens when the module gets unloaded and doesn't
92 * destroy its slab cache and no-one else reuses the vmalloc
93 * area of the module. Print a warning.
94 */
95 res = probe_kernel_address(s->name, tmp);
96 if (res) {
77be4b13 97 pr_err("Slab cache with size %d has lost its name\n",
20cea968
CL
98 s->object_size);
99 continue;
100 }
20cea968
CL
101 }
102
103 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
104 return 0;
105}
106#else
794b1248 107static inline int kmem_cache_sanity_check(const char *name, size_t size)
77be4b13
SK
108{
109 return 0;
110}
20cea968
CL
111#endif
112
484748f0
CL
113void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
114{
115 size_t i;
116
ca257195
JDB
117 for (i = 0; i < nr; i++) {
118 if (s)
119 kmem_cache_free(s, p[i]);
120 else
121 kfree(p[i]);
122 }
484748f0
CL
123}
124
865762a8 125int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
484748f0
CL
126 void **p)
127{
128 size_t i;
129
130 for (i = 0; i < nr; i++) {
131 void *x = p[i] = kmem_cache_alloc(s, flags);
132 if (!x) {
133 __kmem_cache_free_bulk(s, i, p);
865762a8 134 return 0;
484748f0
CL
135 }
136 }
865762a8 137 return i;
484748f0
CL
138}
139
127424c8 140#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
510ded33
TH
141
142LIST_HEAD(slab_root_caches);
143
f7ce3190 144void slab_init_memcg_params(struct kmem_cache *s)
33a690c4 145{
9eeadc8b 146 s->memcg_params.root_cache = NULL;
f7ce3190 147 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
9eeadc8b 148 INIT_LIST_HEAD(&s->memcg_params.children);
f7ce3190
VD
149}
150
151static int init_memcg_params(struct kmem_cache *s,
152 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
153{
154 struct memcg_cache_array *arr;
33a690c4 155
9eeadc8b 156 if (root_cache) {
f7ce3190 157 s->memcg_params.root_cache = root_cache;
9eeadc8b
TH
158 s->memcg_params.memcg = memcg;
159 INIT_LIST_HEAD(&s->memcg_params.children_node);
bc2791f8 160 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
33a690c4 161 return 0;
f7ce3190 162 }
33a690c4 163
f7ce3190 164 slab_init_memcg_params(s);
33a690c4 165
f7ce3190
VD
166 if (!memcg_nr_cache_ids)
167 return 0;
33a690c4 168
f80c7dab
JW
169 arr = kvzalloc(sizeof(struct memcg_cache_array) +
170 memcg_nr_cache_ids * sizeof(void *),
171 GFP_KERNEL);
f7ce3190
VD
172 if (!arr)
173 return -ENOMEM;
33a690c4 174
f7ce3190 175 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
33a690c4
VD
176 return 0;
177}
178
f7ce3190 179static void destroy_memcg_params(struct kmem_cache *s)
33a690c4 180{
f7ce3190 181 if (is_root_cache(s))
f80c7dab
JW
182 kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
183}
184
185static void free_memcg_params(struct rcu_head *rcu)
186{
187 struct memcg_cache_array *old;
188
189 old = container_of(rcu, struct memcg_cache_array, rcu);
190 kvfree(old);
33a690c4
VD
191}
192
f7ce3190 193static int update_memcg_params(struct kmem_cache *s, int new_array_size)
6f817f4c 194{
f7ce3190 195 struct memcg_cache_array *old, *new;
6f817f4c 196
f80c7dab
JW
197 new = kvzalloc(sizeof(struct memcg_cache_array) +
198 new_array_size * sizeof(void *), GFP_KERNEL);
f7ce3190 199 if (!new)
6f817f4c
VD
200 return -ENOMEM;
201
f7ce3190
VD
202 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
203 lockdep_is_held(&slab_mutex));
204 if (old)
205 memcpy(new->entries, old->entries,
206 memcg_nr_cache_ids * sizeof(void *));
6f817f4c 207
f7ce3190
VD
208 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
209 if (old)
f80c7dab 210 call_rcu(&old->rcu, free_memcg_params);
6f817f4c
VD
211 return 0;
212}
213
55007d84
GC
214int memcg_update_all_caches(int num_memcgs)
215{
216 struct kmem_cache *s;
217 int ret = 0;
55007d84 218
05257a1a 219 mutex_lock(&slab_mutex);
510ded33 220 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
f7ce3190 221 ret = update_memcg_params(s, num_memcgs);
55007d84 222 /*
55007d84
GC
223 * Instead of freeing the memory, we'll just leave the caches
224 * up to this point in an updated state.
225 */
226 if (ret)
05257a1a 227 break;
55007d84 228 }
55007d84
GC
229 mutex_unlock(&slab_mutex);
230 return ret;
231}
657dc2f9 232
510ded33 233void memcg_link_cache(struct kmem_cache *s)
657dc2f9 234{
510ded33
TH
235 if (is_root_cache(s)) {
236 list_add(&s->root_caches_node, &slab_root_caches);
237 } else {
238 list_add(&s->memcg_params.children_node,
239 &s->memcg_params.root_cache->memcg_params.children);
240 list_add(&s->memcg_params.kmem_caches_node,
241 &s->memcg_params.memcg->kmem_caches);
242 }
243}
244
245static void memcg_unlink_cache(struct kmem_cache *s)
246{
247 if (is_root_cache(s)) {
248 list_del(&s->root_caches_node);
249 } else {
250 list_del(&s->memcg_params.children_node);
251 list_del(&s->memcg_params.kmem_caches_node);
252 }
657dc2f9 253}
33a690c4 254#else
f7ce3190
VD
255static inline int init_memcg_params(struct kmem_cache *s,
256 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
33a690c4
VD
257{
258 return 0;
259}
260
f7ce3190 261static inline void destroy_memcg_params(struct kmem_cache *s)
33a690c4
VD
262{
263}
657dc2f9 264
510ded33 265static inline void memcg_unlink_cache(struct kmem_cache *s)
657dc2f9
TH
266{
267}
127424c8 268#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
55007d84 269
423c929c
JK
270/*
271 * Find a mergeable slab cache
272 */
273int slab_unmergeable(struct kmem_cache *s)
274{
275 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
276 return 1;
277
278 if (!is_root_cache(s))
279 return 1;
280
281 if (s->ctor)
282 return 1;
283
284 /*
285 * We may have set a slab to be unmergeable during bootstrap.
286 */
287 if (s->refcount < 0)
288 return 1;
289
290 return 0;
291}
292
293struct kmem_cache *find_mergeable(size_t size, size_t align,
d50112ed 294 slab_flags_t flags, const char *name, void (*ctor)(void *))
423c929c
JK
295{
296 struct kmem_cache *s;
297
c6e28895 298 if (slab_nomerge)
423c929c
JK
299 return NULL;
300
301 if (ctor)
302 return NULL;
303
304 size = ALIGN(size, sizeof(void *));
305 align = calculate_alignment(flags, align, size);
306 size = ALIGN(size, align);
307 flags = kmem_cache_flags(size, flags, name, NULL);
308
c6e28895
GM
309 if (flags & SLAB_NEVER_MERGE)
310 return NULL;
311
510ded33 312 list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
423c929c
JK
313 if (slab_unmergeable(s))
314 continue;
315
316 if (size > s->size)
317 continue;
318
319 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
320 continue;
321 /*
322 * Check if alignment is compatible.
323 * Courtesy of Adrian Drzewiecki
324 */
325 if ((s->size & ~(align - 1)) != s->size)
326 continue;
327
328 if (s->size - size >= sizeof(void *))
329 continue;
330
95069ac8
JK
331 if (IS_ENABLED(CONFIG_SLAB) && align &&
332 (align > s->align || s->align % align))
333 continue;
334
423c929c
JK
335 return s;
336 }
337 return NULL;
338}
339
45906855
CL
340/*
341 * Figure out what the alignment of the objects will be given a set of
342 * flags, a user specified alignment and the size of the objects.
343 */
d50112ed 344unsigned long calculate_alignment(slab_flags_t flags,
45906855
CL
345 unsigned long align, unsigned long size)
346{
347 /*
348 * If the user wants hardware cache aligned objects then follow that
349 * suggestion if the object is sufficiently large.
350 *
351 * The hardware cache alignment cannot override the specified
352 * alignment though. If that is greater then use it.
353 */
354 if (flags & SLAB_HWCACHE_ALIGN) {
355 unsigned long ralign = cache_line_size();
356 while (size <= ralign / 2)
357 ralign /= 2;
358 align = max(align, ralign);
359 }
360
361 if (align < ARCH_SLAB_MINALIGN)
362 align = ARCH_SLAB_MINALIGN;
363
364 return ALIGN(align, sizeof(void *));
365}
366
c9a77a79
VD
367static struct kmem_cache *create_cache(const char *name,
368 size_t object_size, size_t size, size_t align,
d50112ed 369 slab_flags_t flags, void (*ctor)(void *),
c9a77a79 370 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
794b1248
VD
371{
372 struct kmem_cache *s;
373 int err;
374
375 err = -ENOMEM;
376 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
377 if (!s)
378 goto out;
379
380 s->name = name;
381 s->object_size = object_size;
382 s->size = size;
383 s->align = align;
384 s->ctor = ctor;
385
f7ce3190 386 err = init_memcg_params(s, memcg, root_cache);
794b1248
VD
387 if (err)
388 goto out_free_cache;
389
390 err = __kmem_cache_create(s, flags);
391 if (err)
392 goto out_free_cache;
393
394 s->refcount = 1;
395 list_add(&s->list, &slab_caches);
510ded33 396 memcg_link_cache(s);
794b1248
VD
397out:
398 if (err)
399 return ERR_PTR(err);
400 return s;
401
402out_free_cache:
f7ce3190 403 destroy_memcg_params(s);
7c4da061 404 kmem_cache_free(kmem_cache, s);
794b1248
VD
405 goto out;
406}
45906855 407
77be4b13
SK
408/*
409 * kmem_cache_create - Create a cache.
410 * @name: A string which is used in /proc/slabinfo to identify this cache.
411 * @size: The size of objects to be created in this cache.
412 * @align: The required alignment for the objects.
413 * @flags: SLAB flags
414 * @ctor: A constructor for the objects.
415 *
416 * Returns a ptr to the cache on success, NULL on failure.
417 * Cannot be called within a interrupt, but can be interrupted.
418 * The @ctor is run when new pages are allocated by the cache.
419 *
420 * The flags are
421 *
422 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
423 * to catch references to uninitialised memory.
424 *
425 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
426 * for buffer overruns.
427 *
428 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
429 * cacheline. This can be beneficial if you're counting cycles as closely
430 * as davem.
431 */
2633d7a0 432struct kmem_cache *
794b1248 433kmem_cache_create(const char *name, size_t size, size_t align,
d50112ed 434 slab_flags_t flags, void (*ctor)(void *))
77be4b13 435{
40911a79 436 struct kmem_cache *s = NULL;
3dec16ea 437 const char *cache_name;
3965fc36 438 int err;
039363f3 439
77be4b13 440 get_online_cpus();
03afc0e2 441 get_online_mems();
05257a1a 442 memcg_get_cache_ids();
03afc0e2 443
77be4b13 444 mutex_lock(&slab_mutex);
686d550d 445
794b1248 446 err = kmem_cache_sanity_check(name, size);
3aa24f51 447 if (err) {
3965fc36 448 goto out_unlock;
3aa24f51 449 }
686d550d 450
e70954fd
TG
451 /* Refuse requests with allocator specific flags */
452 if (flags & ~SLAB_FLAGS_PERMITTED) {
453 err = -EINVAL;
454 goto out_unlock;
455 }
456
d8843922
GC
457 /*
458 * Some allocators will constraint the set of valid flags to a subset
459 * of all flags. We expect them to define CACHE_CREATE_MASK in this
460 * case, and we'll just provide them with a sanitized version of the
461 * passed flags.
462 */
463 flags &= CACHE_CREATE_MASK;
686d550d 464
794b1248
VD
465 s = __kmem_cache_alias(name, size, align, flags, ctor);
466 if (s)
3965fc36 467 goto out_unlock;
2633d7a0 468
3dec16ea 469 cache_name = kstrdup_const(name, GFP_KERNEL);
794b1248
VD
470 if (!cache_name) {
471 err = -ENOMEM;
472 goto out_unlock;
473 }
7c9adf5a 474
c9a77a79
VD
475 s = create_cache(cache_name, size, size,
476 calculate_alignment(flags, align, size),
477 flags, ctor, NULL, NULL);
794b1248
VD
478 if (IS_ERR(s)) {
479 err = PTR_ERR(s);
3dec16ea 480 kfree_const(cache_name);
794b1248 481 }
3965fc36
VD
482
483out_unlock:
20cea968 484 mutex_unlock(&slab_mutex);
03afc0e2 485
05257a1a 486 memcg_put_cache_ids();
03afc0e2 487 put_online_mems();
20cea968
CL
488 put_online_cpus();
489
ba3253c7 490 if (err) {
686d550d
CL
491 if (flags & SLAB_PANIC)
492 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
493 name, err);
494 else {
1170532b 495 pr_warn("kmem_cache_create(%s) failed with error %d\n",
686d550d
CL
496 name, err);
497 dump_stack();
498 }
686d550d
CL
499 return NULL;
500 }
039363f3
CL
501 return s;
502}
794b1248 503EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 504
657dc2f9 505static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
d5b3cf71 506{
657dc2f9
TH
507 LIST_HEAD(to_destroy);
508 struct kmem_cache *s, *s2;
d5b3cf71 509
657dc2f9 510 /*
5f0d5a3a 511 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
657dc2f9
TH
512 * @slab_caches_to_rcu_destroy list. The slab pages are freed
513 * through RCU and and the associated kmem_cache are dereferenced
514 * while freeing the pages, so the kmem_caches should be freed only
515 * after the pending RCU operations are finished. As rcu_barrier()
516 * is a pretty slow operation, we batch all pending destructions
517 * asynchronously.
518 */
519 mutex_lock(&slab_mutex);
520 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
521 mutex_unlock(&slab_mutex);
d5b3cf71 522
657dc2f9
TH
523 if (list_empty(&to_destroy))
524 return;
525
526 rcu_barrier();
527
528 list_for_each_entry_safe(s, s2, &to_destroy, list) {
529#ifdef SLAB_SUPPORTS_SYSFS
530 sysfs_slab_release(s);
531#else
532 slab_kmem_cache_release(s);
533#endif
534 }
d5b3cf71
VD
535}
536
657dc2f9 537static int shutdown_cache(struct kmem_cache *s)
d5b3cf71 538{
f9fa1d91
GT
539 /* free asan quarantined objects */
540 kasan_cache_shutdown(s);
541
657dc2f9
TH
542 if (__kmem_cache_shutdown(s) != 0)
543 return -EBUSY;
d5b3cf71 544
510ded33 545 memcg_unlink_cache(s);
657dc2f9 546 list_del(&s->list);
d5b3cf71 547
5f0d5a3a 548 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
657dc2f9
TH
549 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
550 schedule_work(&slab_caches_to_rcu_destroy_work);
551 } else {
d5b3cf71 552#ifdef SLAB_SUPPORTS_SYSFS
bf5eb3de 553 sysfs_slab_release(s);
d5b3cf71
VD
554#else
555 slab_kmem_cache_release(s);
556#endif
557 }
657dc2f9
TH
558
559 return 0;
d5b3cf71
VD
560}
561
127424c8 562#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
794b1248 563/*
776ed0f0 564 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
794b1248
VD
565 * @memcg: The memory cgroup the new cache is for.
566 * @root_cache: The parent of the new cache.
567 *
568 * This function attempts to create a kmem cache that will serve allocation
569 * requests going from @memcg to @root_cache. The new cache inherits properties
570 * from its parent.
571 */
d5b3cf71
VD
572void memcg_create_kmem_cache(struct mem_cgroup *memcg,
573 struct kmem_cache *root_cache)
2633d7a0 574{
3e0350a3 575 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
33398cf2 576 struct cgroup_subsys_state *css = &memcg->css;
f7ce3190 577 struct memcg_cache_array *arr;
bd673145 578 struct kmem_cache *s = NULL;
794b1248 579 char *cache_name;
f7ce3190 580 int idx;
794b1248
VD
581
582 get_online_cpus();
03afc0e2
VD
583 get_online_mems();
584
794b1248
VD
585 mutex_lock(&slab_mutex);
586
2a4db7eb 587 /*
567e9ab2 588 * The memory cgroup could have been offlined while the cache
2a4db7eb
VD
589 * creation work was pending.
590 */
b6ecd2de 591 if (memcg->kmem_state != KMEM_ONLINE)
2a4db7eb
VD
592 goto out_unlock;
593
f7ce3190
VD
594 idx = memcg_cache_id(memcg);
595 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
596 lockdep_is_held(&slab_mutex));
597
d5b3cf71
VD
598 /*
599 * Since per-memcg caches are created asynchronously on first
600 * allocation (see memcg_kmem_get_cache()), several threads can try to
601 * create the same cache, but only one of them may succeed.
602 */
f7ce3190 603 if (arr->entries[idx])
d5b3cf71
VD
604 goto out_unlock;
605
f1008365 606 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
73f576c0
JW
607 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
608 css->serial_nr, memcg_name_buf);
794b1248
VD
609 if (!cache_name)
610 goto out_unlock;
611
c9a77a79
VD
612 s = create_cache(cache_name, root_cache->object_size,
613 root_cache->size, root_cache->align,
f773e36d
GT
614 root_cache->flags & CACHE_CREATE_MASK,
615 root_cache->ctor, memcg, root_cache);
d5b3cf71
VD
616 /*
617 * If we could not create a memcg cache, do not complain, because
618 * that's not critical at all as we can always proceed with the root
619 * cache.
620 */
bd673145 621 if (IS_ERR(s)) {
794b1248 622 kfree(cache_name);
d5b3cf71 623 goto out_unlock;
bd673145 624 }
794b1248 625
d5b3cf71
VD
626 /*
627 * Since readers won't lock (see cache_from_memcg_idx()), we need a
628 * barrier here to ensure nobody will see the kmem_cache partially
629 * initialized.
630 */
631 smp_wmb();
f7ce3190 632 arr->entries[idx] = s;
d5b3cf71 633
794b1248
VD
634out_unlock:
635 mutex_unlock(&slab_mutex);
03afc0e2
VD
636
637 put_online_mems();
794b1248 638 put_online_cpus();
2633d7a0 639}
b8529907 640
01fb58bc
TH
641static void kmemcg_deactivate_workfn(struct work_struct *work)
642{
643 struct kmem_cache *s = container_of(work, struct kmem_cache,
644 memcg_params.deact_work);
645
646 get_online_cpus();
647 get_online_mems();
648
649 mutex_lock(&slab_mutex);
650
651 s->memcg_params.deact_fn(s);
652
653 mutex_unlock(&slab_mutex);
654
655 put_online_mems();
656 put_online_cpus();
657
658 /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
659 css_put(&s->memcg_params.memcg->css);
660}
661
662static void kmemcg_deactivate_rcufn(struct rcu_head *head)
663{
664 struct kmem_cache *s = container_of(head, struct kmem_cache,
665 memcg_params.deact_rcu_head);
666
667 /*
668 * We need to grab blocking locks. Bounce to ->deact_work. The
669 * work item shares the space with the RCU head and can't be
670 * initialized eariler.
671 */
672 INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
17cc4dfe 673 queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
01fb58bc
TH
674}
675
676/**
677 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
678 * sched RCU grace period
679 * @s: target kmem_cache
680 * @deact_fn: deactivation function to call
681 *
682 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
683 * held after a sched RCU grace period. The slab is guaranteed to stay
684 * alive until @deact_fn is finished. This is to be used from
685 * __kmemcg_cache_deactivate().
686 */
687void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
688 void (*deact_fn)(struct kmem_cache *))
689{
690 if (WARN_ON_ONCE(is_root_cache(s)) ||
691 WARN_ON_ONCE(s->memcg_params.deact_fn))
692 return;
693
694 /* pin memcg so that @s doesn't get destroyed in the middle */
695 css_get(&s->memcg_params.memcg->css);
696
697 s->memcg_params.deact_fn = deact_fn;
698 call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
699}
700
2a4db7eb
VD
701void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
702{
703 int idx;
704 struct memcg_cache_array *arr;
d6e0b7fa 705 struct kmem_cache *s, *c;
2a4db7eb
VD
706
707 idx = memcg_cache_id(memcg);
708
d6e0b7fa
VD
709 get_online_cpus();
710 get_online_mems();
711
2a4db7eb 712 mutex_lock(&slab_mutex);
510ded33 713 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
2a4db7eb
VD
714 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
715 lockdep_is_held(&slab_mutex));
d6e0b7fa
VD
716 c = arr->entries[idx];
717 if (!c)
718 continue;
719
c9fc5864 720 __kmemcg_cache_deactivate(c);
2a4db7eb
VD
721 arr->entries[idx] = NULL;
722 }
723 mutex_unlock(&slab_mutex);
d6e0b7fa
VD
724
725 put_online_mems();
726 put_online_cpus();
2a4db7eb
VD
727}
728
d5b3cf71 729void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
b8529907 730{
d5b3cf71 731 struct kmem_cache *s, *s2;
b8529907 732
d5b3cf71
VD
733 get_online_cpus();
734 get_online_mems();
b8529907 735
b8529907 736 mutex_lock(&slab_mutex);
bc2791f8
TH
737 list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
738 memcg_params.kmem_caches_node) {
d5b3cf71
VD
739 /*
740 * The cgroup is about to be freed and therefore has no charges
741 * left. Hence, all its caches must be empty by now.
742 */
657dc2f9 743 BUG_ON(shutdown_cache(s));
d5b3cf71
VD
744 }
745 mutex_unlock(&slab_mutex);
b8529907 746
d5b3cf71
VD
747 put_online_mems();
748 put_online_cpus();
b8529907 749}
d60fdcc9 750
657dc2f9 751static int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
752{
753 struct memcg_cache_array *arr;
754 struct kmem_cache *c, *c2;
755 LIST_HEAD(busy);
756 int i;
757
758 BUG_ON(!is_root_cache(s));
759
760 /*
761 * First, shutdown active caches, i.e. caches that belong to online
762 * memory cgroups.
763 */
764 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
765 lockdep_is_held(&slab_mutex));
766 for_each_memcg_cache_index(i) {
767 c = arr->entries[i];
768 if (!c)
769 continue;
657dc2f9 770 if (shutdown_cache(c))
d60fdcc9
VD
771 /*
772 * The cache still has objects. Move it to a temporary
773 * list so as not to try to destroy it for a second
774 * time while iterating over inactive caches below.
775 */
9eeadc8b 776 list_move(&c->memcg_params.children_node, &busy);
d60fdcc9
VD
777 else
778 /*
779 * The cache is empty and will be destroyed soon. Clear
780 * the pointer to it in the memcg_caches array so that
781 * it will never be accessed even if the root cache
782 * stays alive.
783 */
784 arr->entries[i] = NULL;
785 }
786
787 /*
788 * Second, shutdown all caches left from memory cgroups that are now
789 * offline.
790 */
9eeadc8b
TH
791 list_for_each_entry_safe(c, c2, &s->memcg_params.children,
792 memcg_params.children_node)
657dc2f9 793 shutdown_cache(c);
d60fdcc9 794
9eeadc8b 795 list_splice(&busy, &s->memcg_params.children);
d60fdcc9
VD
796
797 /*
798 * A cache being destroyed must be empty. In particular, this means
799 * that all per memcg caches attached to it must be empty too.
800 */
9eeadc8b 801 if (!list_empty(&s->memcg_params.children))
d60fdcc9
VD
802 return -EBUSY;
803 return 0;
804}
805#else
657dc2f9 806static inline int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
807{
808 return 0;
809}
127424c8 810#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
97d06609 811
41a21285
CL
812void slab_kmem_cache_release(struct kmem_cache *s)
813{
52b4b950 814 __kmem_cache_release(s);
f7ce3190 815 destroy_memcg_params(s);
3dec16ea 816 kfree_const(s->name);
41a21285
CL
817 kmem_cache_free(kmem_cache, s);
818}
819
945cf2b6
CL
820void kmem_cache_destroy(struct kmem_cache *s)
821{
d60fdcc9 822 int err;
d5b3cf71 823
3942d299
SS
824 if (unlikely(!s))
825 return;
826
945cf2b6 827 get_online_cpus();
03afc0e2
VD
828 get_online_mems();
829
945cf2b6 830 mutex_lock(&slab_mutex);
b8529907 831
945cf2b6 832 s->refcount--;
b8529907
VD
833 if (s->refcount)
834 goto out_unlock;
835
657dc2f9 836 err = shutdown_memcg_caches(s);
d60fdcc9 837 if (!err)
657dc2f9 838 err = shutdown_cache(s);
b8529907 839
cd918c55 840 if (err) {
756a025f
JP
841 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
842 s->name);
cd918c55
VD
843 dump_stack();
844 }
b8529907
VD
845out_unlock:
846 mutex_unlock(&slab_mutex);
d5b3cf71 847
03afc0e2 848 put_online_mems();
945cf2b6
CL
849 put_online_cpus();
850}
851EXPORT_SYMBOL(kmem_cache_destroy);
852
03afc0e2
VD
853/**
854 * kmem_cache_shrink - Shrink a cache.
855 * @cachep: The cache to shrink.
856 *
857 * Releases as many slabs as possible for a cache.
858 * To help debugging, a zero exit status indicates all slabs were released.
859 */
860int kmem_cache_shrink(struct kmem_cache *cachep)
861{
862 int ret;
863
864 get_online_cpus();
865 get_online_mems();
55834c59 866 kasan_cache_shrink(cachep);
c9fc5864 867 ret = __kmem_cache_shrink(cachep);
03afc0e2
VD
868 put_online_mems();
869 put_online_cpus();
870 return ret;
871}
872EXPORT_SYMBOL(kmem_cache_shrink);
873
fda90124 874bool slab_is_available(void)
97d06609
CL
875{
876 return slab_state >= UP;
877}
b7454ad3 878
45530c44
CL
879#ifndef CONFIG_SLOB
880/* Create a cache during boot when no slab services are available yet */
881void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
d50112ed 882 slab_flags_t flags)
45530c44
CL
883{
884 int err;
885
886 s->name = name;
887 s->size = s->object_size = size;
45906855 888 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
f7ce3190
VD
889
890 slab_init_memcg_params(s);
891
45530c44
CL
892 err = __kmem_cache_create(s, flags);
893
894 if (err)
31ba7346 895 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
45530c44
CL
896 name, size, err);
897
898 s->refcount = -1; /* Exempt from merging for now */
899}
900
901struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
d50112ed 902 slab_flags_t flags)
45530c44
CL
903{
904 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
905
906 if (!s)
907 panic("Out of memory when creating slab %s\n", name);
908
909 create_boot_cache(s, name, size, flags);
910 list_add(&s->list, &slab_caches);
510ded33 911 memcg_link_cache(s);
45530c44
CL
912 s->refcount = 1;
913 return s;
914}
915
9425c58e
CL
916struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
917EXPORT_SYMBOL(kmalloc_caches);
918
919#ifdef CONFIG_ZONE_DMA
920struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
921EXPORT_SYMBOL(kmalloc_dma_caches);
922#endif
923
2c59dd65
CL
924/*
925 * Conversion table for small slabs sizes / 8 to the index in the
926 * kmalloc array. This is necessary for slabs < 192 since we have non power
927 * of two cache sizes there. The size of larger slabs can be determined using
928 * fls.
929 */
930static s8 size_index[24] = {
931 3, /* 8 */
932 4, /* 16 */
933 5, /* 24 */
934 5, /* 32 */
935 6, /* 40 */
936 6, /* 48 */
937 6, /* 56 */
938 6, /* 64 */
939 1, /* 72 */
940 1, /* 80 */
941 1, /* 88 */
942 1, /* 96 */
943 7, /* 104 */
944 7, /* 112 */
945 7, /* 120 */
946 7, /* 128 */
947 2, /* 136 */
948 2, /* 144 */
949 2, /* 152 */
950 2, /* 160 */
951 2, /* 168 */
952 2, /* 176 */
953 2, /* 184 */
954 2 /* 192 */
955};
956
957static inline int size_index_elem(size_t bytes)
958{
959 return (bytes - 1) / 8;
960}
961
962/*
963 * Find the kmem_cache structure that serves a given size of
964 * allocation
965 */
966struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
967{
968 int index;
969
9de1bc87 970 if (unlikely(size > KMALLOC_MAX_SIZE)) {
907985f4 971 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
6286ae97 972 return NULL;
907985f4 973 }
6286ae97 974
2c59dd65
CL
975 if (size <= 192) {
976 if (!size)
977 return ZERO_SIZE_PTR;
978
979 index = size_index[size_index_elem(size)];
980 } else
981 index = fls(size - 1);
982
983#ifdef CONFIG_ZONE_DMA
b1e05416 984 if (unlikely((flags & GFP_DMA)))
2c59dd65
CL
985 return kmalloc_dma_caches[index];
986
987#endif
988 return kmalloc_caches[index];
989}
990
4066c33d
GG
991/*
992 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
993 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
994 * kmalloc-67108864.
995 */
af3b5f87 996const struct kmalloc_info_struct kmalloc_info[] __initconst = {
4066c33d
GG
997 {NULL, 0}, {"kmalloc-96", 96},
998 {"kmalloc-192", 192}, {"kmalloc-8", 8},
999 {"kmalloc-16", 16}, {"kmalloc-32", 32},
1000 {"kmalloc-64", 64}, {"kmalloc-128", 128},
1001 {"kmalloc-256", 256}, {"kmalloc-512", 512},
1002 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
1003 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
1004 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
1005 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
1006 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
1007 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
1008 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
1009 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
1010 {"kmalloc-67108864", 67108864}
1011};
1012
f97d5f63 1013/*
34cc6990
DS
1014 * Patch up the size_index table if we have strange large alignment
1015 * requirements for the kmalloc array. This is only the case for
1016 * MIPS it seems. The standard arches will not generate any code here.
1017 *
1018 * Largest permitted alignment is 256 bytes due to the way we
1019 * handle the index determination for the smaller caches.
1020 *
1021 * Make sure that nothing crazy happens if someone starts tinkering
1022 * around with ARCH_KMALLOC_MINALIGN
f97d5f63 1023 */
34cc6990 1024void __init setup_kmalloc_cache_index_table(void)
f97d5f63
CL
1025{
1026 int i;
1027
2c59dd65
CL
1028 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1029 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1030
1031 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1032 int elem = size_index_elem(i);
1033
1034 if (elem >= ARRAY_SIZE(size_index))
1035 break;
1036 size_index[elem] = KMALLOC_SHIFT_LOW;
1037 }
1038
1039 if (KMALLOC_MIN_SIZE >= 64) {
1040 /*
1041 * The 96 byte size cache is not used if the alignment
1042 * is 64 byte.
1043 */
1044 for (i = 64 + 8; i <= 96; i += 8)
1045 size_index[size_index_elem(i)] = 7;
1046
1047 }
1048
1049 if (KMALLOC_MIN_SIZE >= 128) {
1050 /*
1051 * The 192 byte sized cache is not used if the alignment
1052 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1053 * instead.
1054 */
1055 for (i = 128 + 8; i <= 192; i += 8)
1056 size_index[size_index_elem(i)] = 8;
1057 }
34cc6990
DS
1058}
1059
d50112ed 1060static void __init new_kmalloc_cache(int idx, slab_flags_t flags)
a9730fca
CL
1061{
1062 kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
1063 kmalloc_info[idx].size, flags);
1064}
1065
34cc6990
DS
1066/*
1067 * Create the kmalloc array. Some of the regular kmalloc arrays
1068 * may already have been created because they were needed to
1069 * enable allocations for slab creation.
1070 */
d50112ed 1071void __init create_kmalloc_caches(slab_flags_t flags)
34cc6990
DS
1072{
1073 int i;
1074
a9730fca
CL
1075 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1076 if (!kmalloc_caches[i])
1077 new_kmalloc_cache(i, flags);
f97d5f63 1078
956e46ef 1079 /*
a9730fca
CL
1080 * Caches that are not of the two-to-the-power-of size.
1081 * These have to be created immediately after the
1082 * earlier power of two caches
956e46ef 1083 */
a9730fca
CL
1084 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
1085 new_kmalloc_cache(1, flags);
1086 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
1087 new_kmalloc_cache(2, flags);
8a965b3b
CL
1088 }
1089
f97d5f63
CL
1090 /* Kmalloc array is now usable */
1091 slab_state = UP;
1092
f97d5f63
CL
1093#ifdef CONFIG_ZONE_DMA
1094 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1095 struct kmem_cache *s = kmalloc_caches[i];
1096
1097 if (s) {
1098 int size = kmalloc_size(i);
1099 char *n = kasprintf(GFP_NOWAIT,
1100 "dma-kmalloc-%d", size);
1101
1102 BUG_ON(!n);
1103 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
1104 size, SLAB_CACHE_DMA | flags);
1105 }
1106 }
1107#endif
1108}
45530c44
CL
1109#endif /* !CONFIG_SLOB */
1110
cea371f4
VD
1111/*
1112 * To avoid unnecessary overhead, we pass through large allocation requests
1113 * directly to the page allocator. We use __GFP_COMP, because we will need to
1114 * know the allocation order to free the pages properly in kfree.
1115 */
52383431
VD
1116void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1117{
1118 void *ret;
1119 struct page *page;
1120
1121 flags |= __GFP_COMP;
4949148a 1122 page = alloc_pages(flags, order);
52383431
VD
1123 ret = page ? page_address(page) : NULL;
1124 kmemleak_alloc(ret, size, 1, flags);
505f5dcb 1125 kasan_kmalloc_large(ret, size, flags);
52383431
VD
1126 return ret;
1127}
1128EXPORT_SYMBOL(kmalloc_order);
1129
f1b6eb6e
CL
1130#ifdef CONFIG_TRACING
1131void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1132{
1133 void *ret = kmalloc_order(size, flags, order);
1134 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1135 return ret;
1136}
1137EXPORT_SYMBOL(kmalloc_order_trace);
1138#endif
45530c44 1139
7c00fce9
TG
1140#ifdef CONFIG_SLAB_FREELIST_RANDOM
1141/* Randomize a generic freelist */
1142static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1143 size_t count)
1144{
1145 size_t i;
1146 unsigned int rand;
1147
1148 for (i = 0; i < count; i++)
1149 list[i] = i;
1150
1151 /* Fisher-Yates shuffle */
1152 for (i = count - 1; i > 0; i--) {
1153 rand = prandom_u32_state(state);
1154 rand %= (i + 1);
1155 swap(list[i], list[rand]);
1156 }
1157}
1158
1159/* Create a random sequence per cache */
1160int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1161 gfp_t gfp)
1162{
1163 struct rnd_state state;
1164
1165 if (count < 2 || cachep->random_seq)
1166 return 0;
1167
1168 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1169 if (!cachep->random_seq)
1170 return -ENOMEM;
1171
1172 /* Get best entropy at this stage of boot */
1173 prandom_seed_state(&state, get_random_long());
1174
1175 freelist_randomize(&state, cachep->random_seq, count);
1176 return 0;
1177}
1178
1179/* Destroy the per-cache random freelist sequence */
1180void cache_random_seq_destroy(struct kmem_cache *cachep)
1181{
1182 kfree(cachep->random_seq);
1183 cachep->random_seq = NULL;
1184}
1185#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1186
5b365771 1187#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
e9b4db2b
WL
1188#ifdef CONFIG_SLAB
1189#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1190#else
1191#define SLABINFO_RIGHTS S_IRUSR
1192#endif
1193
b047501c 1194static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
1195{
1196 /*
1197 * Output format version, so at least we can change it
1198 * without _too_ many complaints.
1199 */
1200#ifdef CONFIG_DEBUG_SLAB
1201 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1202#else
1203 seq_puts(m, "slabinfo - version: 2.1\n");
1204#endif
756a025f 1205 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
bcee6e2a
GC
1206 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1207 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1208#ifdef CONFIG_DEBUG_SLAB
756a025f 1209 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
bcee6e2a
GC
1210 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1211#endif
1212 seq_putc(m, '\n');
1213}
1214
1df3b26f 1215void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 1216{
b7454ad3 1217 mutex_lock(&slab_mutex);
510ded33 1218 return seq_list_start(&slab_root_caches, *pos);
b7454ad3
GC
1219}
1220
276a2439 1221void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3 1222{
510ded33 1223 return seq_list_next(p, &slab_root_caches, pos);
b7454ad3
GC
1224}
1225
276a2439 1226void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
1227{
1228 mutex_unlock(&slab_mutex);
1229}
1230
749c5415
GC
1231static void
1232memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1233{
1234 struct kmem_cache *c;
1235 struct slabinfo sinfo;
749c5415
GC
1236
1237 if (!is_root_cache(s))
1238 return;
1239
426589f5 1240 for_each_memcg_cache(c, s) {
749c5415
GC
1241 memset(&sinfo, 0, sizeof(sinfo));
1242 get_slabinfo(c, &sinfo);
1243
1244 info->active_slabs += sinfo.active_slabs;
1245 info->num_slabs += sinfo.num_slabs;
1246 info->shared_avail += sinfo.shared_avail;
1247 info->active_objs += sinfo.active_objs;
1248 info->num_objs += sinfo.num_objs;
1249 }
1250}
1251
b047501c 1252static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 1253{
0d7561c6
GC
1254 struct slabinfo sinfo;
1255
1256 memset(&sinfo, 0, sizeof(sinfo));
1257 get_slabinfo(s, &sinfo);
1258
749c5415
GC
1259 memcg_accumulate_slabinfo(s, &sinfo);
1260
0d7561c6 1261 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
749c5415 1262 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
1263 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1264
1265 seq_printf(m, " : tunables %4u %4u %4u",
1266 sinfo.limit, sinfo.batchcount, sinfo.shared);
1267 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1268 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1269 slabinfo_show_stats(m, s);
1270 seq_putc(m, '\n');
b7454ad3
GC
1271}
1272
1df3b26f 1273static int slab_show(struct seq_file *m, void *p)
749c5415 1274{
510ded33 1275 struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
749c5415 1276
510ded33 1277 if (p == slab_root_caches.next)
1df3b26f 1278 print_slabinfo_header(m);
510ded33 1279 cache_show(s, m);
b047501c
VD
1280 return 0;
1281}
1282
852d8be0
YS
1283void dump_unreclaimable_slab(void)
1284{
1285 struct kmem_cache *s, *s2;
1286 struct slabinfo sinfo;
1287
1288 /*
1289 * Here acquiring slab_mutex is risky since we don't prefer to get
1290 * sleep in oom path. But, without mutex hold, it may introduce a
1291 * risk of crash.
1292 * Use mutex_trylock to protect the list traverse, dump nothing
1293 * without acquiring the mutex.
1294 */
1295 if (!mutex_trylock(&slab_mutex)) {
1296 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1297 return;
1298 }
1299
1300 pr_info("Unreclaimable slab info:\n");
1301 pr_info("Name Used Total\n");
1302
1303 list_for_each_entry_safe(s, s2, &slab_caches, list) {
1304 if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
1305 continue;
1306
1307 get_slabinfo(s, &sinfo);
1308
1309 if (sinfo.num_objs > 0)
1310 pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
1311 (sinfo.active_objs * s->size) / 1024,
1312 (sinfo.num_objs * s->size) / 1024);
1313 }
1314 mutex_unlock(&slab_mutex);
1315}
1316
5b365771 1317#if defined(CONFIG_MEMCG)
bc2791f8
TH
1318void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1319{
1320 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1321
1322 mutex_lock(&slab_mutex);
1323 return seq_list_start(&memcg->kmem_caches, *pos);
1324}
1325
1326void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1327{
1328 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1329
1330 return seq_list_next(p, &memcg->kmem_caches, pos);
1331}
1332
1333void memcg_slab_stop(struct seq_file *m, void *p)
1334{
1335 mutex_unlock(&slab_mutex);
1336}
1337
b047501c
VD
1338int memcg_slab_show(struct seq_file *m, void *p)
1339{
bc2791f8
TH
1340 struct kmem_cache *s = list_entry(p, struct kmem_cache,
1341 memcg_params.kmem_caches_node);
b047501c
VD
1342 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1343
bc2791f8 1344 if (p == memcg->kmem_caches.next)
b047501c 1345 print_slabinfo_header(m);
bc2791f8 1346 cache_show(s, m);
b047501c 1347 return 0;
749c5415 1348}
b047501c 1349#endif
749c5415 1350
b7454ad3
GC
1351/*
1352 * slabinfo_op - iterator that generates /proc/slabinfo
1353 *
1354 * Output layout:
1355 * cache-name
1356 * num-active-objs
1357 * total-objs
1358 * object size
1359 * num-active-slabs
1360 * total-slabs
1361 * num-pages-per-slab
1362 * + further values on SMP and with statistics enabled
1363 */
1364static const struct seq_operations slabinfo_op = {
1df3b26f 1365 .start = slab_start,
276a2439
WL
1366 .next = slab_next,
1367 .stop = slab_stop,
1df3b26f 1368 .show = slab_show,
b7454ad3
GC
1369};
1370
1371static int slabinfo_open(struct inode *inode, struct file *file)
1372{
1373 return seq_open(file, &slabinfo_op);
1374}
1375
1376static const struct file_operations proc_slabinfo_operations = {
1377 .open = slabinfo_open,
1378 .read = seq_read,
1379 .write = slabinfo_write,
1380 .llseek = seq_lseek,
1381 .release = seq_release,
1382};
1383
1384static int __init slab_proc_init(void)
1385{
e9b4db2b
WL
1386 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1387 &proc_slabinfo_operations);
b7454ad3
GC
1388 return 0;
1389}
1390module_init(slab_proc_init);
5b365771 1391#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
928cec9c
AR
1392
1393static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1394 gfp_t flags)
1395{
1396 void *ret;
1397 size_t ks = 0;
1398
1399 if (p)
1400 ks = ksize(p);
1401
0316bec2 1402 if (ks >= new_size) {
505f5dcb 1403 kasan_krealloc((void *)p, new_size, flags);
928cec9c 1404 return (void *)p;
0316bec2 1405 }
928cec9c
AR
1406
1407 ret = kmalloc_track_caller(new_size, flags);
1408 if (ret && p)
1409 memcpy(ret, p, ks);
1410
1411 return ret;
1412}
1413
1414/**
1415 * __krealloc - like krealloc() but don't free @p.
1416 * @p: object to reallocate memory for.
1417 * @new_size: how many bytes of memory are required.
1418 * @flags: the type of memory to allocate.
1419 *
1420 * This function is like krealloc() except it never frees the originally
1421 * allocated buffer. Use this if you don't want to free the buffer immediately
1422 * like, for example, with RCU.
1423 */
1424void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1425{
1426 if (unlikely(!new_size))
1427 return ZERO_SIZE_PTR;
1428
1429 return __do_krealloc(p, new_size, flags);
1430
1431}
1432EXPORT_SYMBOL(__krealloc);
1433
1434/**
1435 * krealloc - reallocate memory. The contents will remain unchanged.
1436 * @p: object to reallocate memory for.
1437 * @new_size: how many bytes of memory are required.
1438 * @flags: the type of memory to allocate.
1439 *
1440 * The contents of the object pointed to are preserved up to the
1441 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1442 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1443 * %NULL pointer, the object pointed to is freed.
1444 */
1445void *krealloc(const void *p, size_t new_size, gfp_t flags)
1446{
1447 void *ret;
1448
1449 if (unlikely(!new_size)) {
1450 kfree(p);
1451 return ZERO_SIZE_PTR;
1452 }
1453
1454 ret = __do_krealloc(p, new_size, flags);
1455 if (ret && p != ret)
1456 kfree(p);
1457
1458 return ret;
1459}
1460EXPORT_SYMBOL(krealloc);
1461
1462/**
1463 * kzfree - like kfree but zero memory
1464 * @p: object to free memory of
1465 *
1466 * The memory of the object @p points to is zeroed before freed.
1467 * If @p is %NULL, kzfree() does nothing.
1468 *
1469 * Note: this function zeroes the whole allocated buffer which can be a good
1470 * deal bigger than the requested buffer size passed to kmalloc(). So be
1471 * careful when using this function in performance sensitive code.
1472 */
1473void kzfree(const void *p)
1474{
1475 size_t ks;
1476 void *mem = (void *)p;
1477
1478 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1479 return;
1480 ks = ksize(mem);
1481 memset(mem, 0, ks);
1482 kfree(mem);
1483}
1484EXPORT_SYMBOL(kzfree);
1485
1486/* Tracepoints definitions. */
1487EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1488EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1489EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1490EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1491EXPORT_TRACEPOINT_SYMBOL(kfree);
1492EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);