]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/slab_common.c
mm/page_poison.c: make early_page_poison_param() __init
[mirror_ubuntu-hirsute-kernel.git] / mm / slab_common.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
039363f3
CL
2/*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7#include <linux/slab.h>
8
9#include <linux/mm.h>
10#include <linux/poison.h>
11#include <linux/interrupt.h>
12#include <linux/memory.h>
1c99ba29 13#include <linux/cache.h>
039363f3
CL
14#include <linux/compiler.h>
15#include <linux/module.h>
20cea968
CL
16#include <linux/cpu.h>
17#include <linux/uaccess.h>
b7454ad3
GC
18#include <linux/seq_file.h>
19#include <linux/proc_fs.h>
039363f3
CL
20#include <asm/cacheflush.h>
21#include <asm/tlbflush.h>
22#include <asm/page.h>
2633d7a0 23#include <linux/memcontrol.h>
928cec9c
AR
24
25#define CREATE_TRACE_POINTS
f1b6eb6e 26#include <trace/events/kmem.h>
039363f3 27
97d06609
CL
28#include "slab.h"
29
30enum slab_state slab_state;
18004c5d
CL
31LIST_HEAD(slab_caches);
32DEFINE_MUTEX(slab_mutex);
9b030cb8 33struct kmem_cache *kmem_cache;
97d06609 34
2d891fbc
KC
35#ifdef CONFIG_HARDENED_USERCOPY
36bool usercopy_fallback __ro_after_init =
37 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
38module_param(usercopy_fallback, bool, 0400);
39MODULE_PARM_DESC(usercopy_fallback,
40 "WARN instead of reject usercopy whitelist violations");
41#endif
42
657dc2f9
TH
43static LIST_HEAD(slab_caches_to_rcu_destroy);
44static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
45static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
46 slab_caches_to_rcu_destroy_workfn);
47
423c929c
JK
48/*
49 * Set of flags that will prevent slab merging
50 */
51#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
5f0d5a3a 52 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
7ed2f9e6 53 SLAB_FAILSLAB | SLAB_KASAN)
423c929c 54
230e9fc2 55#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
75f296d9 56 SLAB_ACCOUNT)
423c929c
JK
57
58/*
59 * Merge control. If this is set then no merging of slab caches will occur.
423c929c 60 */
7660a6fd 61static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
423c929c
JK
62
63static int __init setup_slab_nomerge(char *str)
64{
7660a6fd 65 slab_nomerge = true;
423c929c
JK
66 return 1;
67}
68
69#ifdef CONFIG_SLUB
70__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
71#endif
72
73__setup("slab_nomerge", setup_slab_nomerge);
74
07f361b2
JK
75/*
76 * Determine the size of a slab object
77 */
78unsigned int kmem_cache_size(struct kmem_cache *s)
79{
80 return s->object_size;
81}
82EXPORT_SYMBOL(kmem_cache_size);
83
77be4b13 84#ifdef CONFIG_DEBUG_VM
f4957d5b 85static int kmem_cache_sanity_check(const char *name, unsigned int size)
039363f3 86{
039363f3
CL
87 if (!name || in_interrupt() || size < sizeof(void *) ||
88 size > KMALLOC_MAX_SIZE) {
77be4b13
SK
89 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
90 return -EINVAL;
039363f3 91 }
b920536a 92
20cea968 93 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
94 return 0;
95}
96#else
f4957d5b 97static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
77be4b13
SK
98{
99 return 0;
100}
20cea968
CL
101#endif
102
484748f0
CL
103void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
104{
105 size_t i;
106
ca257195
JDB
107 for (i = 0; i < nr; i++) {
108 if (s)
109 kmem_cache_free(s, p[i]);
110 else
111 kfree(p[i]);
112 }
484748f0
CL
113}
114
865762a8 115int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
484748f0
CL
116 void **p)
117{
118 size_t i;
119
120 for (i = 0; i < nr; i++) {
121 void *x = p[i] = kmem_cache_alloc(s, flags);
122 if (!x) {
123 __kmem_cache_free_bulk(s, i, p);
865762a8 124 return 0;
484748f0
CL
125 }
126 }
865762a8 127 return i;
484748f0
CL
128}
129
127424c8 130#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
510ded33
TH
131
132LIST_HEAD(slab_root_caches);
133
f7ce3190 134void slab_init_memcg_params(struct kmem_cache *s)
33a690c4 135{
9eeadc8b 136 s->memcg_params.root_cache = NULL;
f7ce3190 137 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
9eeadc8b 138 INIT_LIST_HEAD(&s->memcg_params.children);
f7ce3190
VD
139}
140
141static int init_memcg_params(struct kmem_cache *s,
142 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
143{
144 struct memcg_cache_array *arr;
33a690c4 145
9eeadc8b 146 if (root_cache) {
f7ce3190 147 s->memcg_params.root_cache = root_cache;
9eeadc8b
TH
148 s->memcg_params.memcg = memcg;
149 INIT_LIST_HEAD(&s->memcg_params.children_node);
bc2791f8 150 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
33a690c4 151 return 0;
f7ce3190 152 }
33a690c4 153
f7ce3190 154 slab_init_memcg_params(s);
33a690c4 155
f7ce3190
VD
156 if (!memcg_nr_cache_ids)
157 return 0;
33a690c4 158
f80c7dab
JW
159 arr = kvzalloc(sizeof(struct memcg_cache_array) +
160 memcg_nr_cache_ids * sizeof(void *),
161 GFP_KERNEL);
f7ce3190
VD
162 if (!arr)
163 return -ENOMEM;
33a690c4 164
f7ce3190 165 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
33a690c4
VD
166 return 0;
167}
168
f7ce3190 169static void destroy_memcg_params(struct kmem_cache *s)
33a690c4 170{
f7ce3190 171 if (is_root_cache(s))
f80c7dab
JW
172 kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
173}
174
175static void free_memcg_params(struct rcu_head *rcu)
176{
177 struct memcg_cache_array *old;
178
179 old = container_of(rcu, struct memcg_cache_array, rcu);
180 kvfree(old);
33a690c4
VD
181}
182
f7ce3190 183static int update_memcg_params(struct kmem_cache *s, int new_array_size)
6f817f4c 184{
f7ce3190 185 struct memcg_cache_array *old, *new;
6f817f4c 186
f80c7dab
JW
187 new = kvzalloc(sizeof(struct memcg_cache_array) +
188 new_array_size * sizeof(void *), GFP_KERNEL);
f7ce3190 189 if (!new)
6f817f4c
VD
190 return -ENOMEM;
191
f7ce3190
VD
192 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
193 lockdep_is_held(&slab_mutex));
194 if (old)
195 memcpy(new->entries, old->entries,
196 memcg_nr_cache_ids * sizeof(void *));
6f817f4c 197
f7ce3190
VD
198 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
199 if (old)
f80c7dab 200 call_rcu(&old->rcu, free_memcg_params);
6f817f4c
VD
201 return 0;
202}
203
55007d84
GC
204int memcg_update_all_caches(int num_memcgs)
205{
206 struct kmem_cache *s;
207 int ret = 0;
55007d84 208
05257a1a 209 mutex_lock(&slab_mutex);
510ded33 210 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
f7ce3190 211 ret = update_memcg_params(s, num_memcgs);
55007d84 212 /*
55007d84
GC
213 * Instead of freeing the memory, we'll just leave the caches
214 * up to this point in an updated state.
215 */
216 if (ret)
05257a1a 217 break;
55007d84 218 }
55007d84
GC
219 mutex_unlock(&slab_mutex);
220 return ret;
221}
657dc2f9 222
510ded33 223void memcg_link_cache(struct kmem_cache *s)
657dc2f9 224{
510ded33
TH
225 if (is_root_cache(s)) {
226 list_add(&s->root_caches_node, &slab_root_caches);
227 } else {
228 list_add(&s->memcg_params.children_node,
229 &s->memcg_params.root_cache->memcg_params.children);
230 list_add(&s->memcg_params.kmem_caches_node,
231 &s->memcg_params.memcg->kmem_caches);
232 }
233}
234
235static void memcg_unlink_cache(struct kmem_cache *s)
236{
237 if (is_root_cache(s)) {
238 list_del(&s->root_caches_node);
239 } else {
240 list_del(&s->memcg_params.children_node);
241 list_del(&s->memcg_params.kmem_caches_node);
242 }
657dc2f9 243}
33a690c4 244#else
f7ce3190
VD
245static inline int init_memcg_params(struct kmem_cache *s,
246 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
33a690c4
VD
247{
248 return 0;
249}
250
f7ce3190 251static inline void destroy_memcg_params(struct kmem_cache *s)
33a690c4
VD
252{
253}
657dc2f9 254
510ded33 255static inline void memcg_unlink_cache(struct kmem_cache *s)
657dc2f9
TH
256{
257}
127424c8 258#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
55007d84 259
692ae74a
BL
260/*
261 * Figure out what the alignment of the objects will be given a set of
262 * flags, a user specified alignment and the size of the objects.
263 */
f4957d5b
AD
264static unsigned int calculate_alignment(slab_flags_t flags,
265 unsigned int align, unsigned int size)
692ae74a
BL
266{
267 /*
268 * If the user wants hardware cache aligned objects then follow that
269 * suggestion if the object is sufficiently large.
270 *
271 * The hardware cache alignment cannot override the specified
272 * alignment though. If that is greater then use it.
273 */
274 if (flags & SLAB_HWCACHE_ALIGN) {
f4957d5b 275 unsigned int ralign;
692ae74a
BL
276
277 ralign = cache_line_size();
278 while (size <= ralign / 2)
279 ralign /= 2;
280 align = max(align, ralign);
281 }
282
283 if (align < ARCH_SLAB_MINALIGN)
284 align = ARCH_SLAB_MINALIGN;
285
286 return ALIGN(align, sizeof(void *));
287}
288
423c929c
JK
289/*
290 * Find a mergeable slab cache
291 */
292int slab_unmergeable(struct kmem_cache *s)
293{
294 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
295 return 1;
296
297 if (!is_root_cache(s))
298 return 1;
299
300 if (s->ctor)
301 return 1;
302
8eb8284b
DW
303 if (s->usersize)
304 return 1;
305
423c929c
JK
306 /*
307 * We may have set a slab to be unmergeable during bootstrap.
308 */
309 if (s->refcount < 0)
310 return 1;
311
312 return 0;
313}
314
f4957d5b 315struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
d50112ed 316 slab_flags_t flags, const char *name, void (*ctor)(void *))
423c929c
JK
317{
318 struct kmem_cache *s;
319
c6e28895 320 if (slab_nomerge)
423c929c
JK
321 return NULL;
322
323 if (ctor)
324 return NULL;
325
326 size = ALIGN(size, sizeof(void *));
327 align = calculate_alignment(flags, align, size);
328 size = ALIGN(size, align);
329 flags = kmem_cache_flags(size, flags, name, NULL);
330
c6e28895
GM
331 if (flags & SLAB_NEVER_MERGE)
332 return NULL;
333
510ded33 334 list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
423c929c
JK
335 if (slab_unmergeable(s))
336 continue;
337
338 if (size > s->size)
339 continue;
340
341 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
342 continue;
343 /*
344 * Check if alignment is compatible.
345 * Courtesy of Adrian Drzewiecki
346 */
347 if ((s->size & ~(align - 1)) != s->size)
348 continue;
349
350 if (s->size - size >= sizeof(void *))
351 continue;
352
95069ac8
JK
353 if (IS_ENABLED(CONFIG_SLAB) && align &&
354 (align > s->align || s->align % align))
355 continue;
356
423c929c
JK
357 return s;
358 }
359 return NULL;
360}
361
c9a77a79 362static struct kmem_cache *create_cache(const char *name,
613a5eb5 363 unsigned int object_size, unsigned int align,
7bbdb81e
AD
364 slab_flags_t flags, unsigned int useroffset,
365 unsigned int usersize, void (*ctor)(void *),
c9a77a79 366 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
794b1248
VD
367{
368 struct kmem_cache *s;
369 int err;
370
8eb8284b
DW
371 if (WARN_ON(useroffset + usersize > object_size))
372 useroffset = usersize = 0;
373
794b1248
VD
374 err = -ENOMEM;
375 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
376 if (!s)
377 goto out;
378
379 s->name = name;
613a5eb5 380 s->size = s->object_size = object_size;
794b1248
VD
381 s->align = align;
382 s->ctor = ctor;
8eb8284b
DW
383 s->useroffset = useroffset;
384 s->usersize = usersize;
794b1248 385
f7ce3190 386 err = init_memcg_params(s, memcg, root_cache);
794b1248
VD
387 if (err)
388 goto out_free_cache;
389
390 err = __kmem_cache_create(s, flags);
391 if (err)
392 goto out_free_cache;
393
394 s->refcount = 1;
395 list_add(&s->list, &slab_caches);
510ded33 396 memcg_link_cache(s);
794b1248
VD
397out:
398 if (err)
399 return ERR_PTR(err);
400 return s;
401
402out_free_cache:
f7ce3190 403 destroy_memcg_params(s);
7c4da061 404 kmem_cache_free(kmem_cache, s);
794b1248
VD
405 goto out;
406}
45906855 407
77be4b13 408/*
8eb8284b 409 * kmem_cache_create_usercopy - Create a cache.
77be4b13
SK
410 * @name: A string which is used in /proc/slabinfo to identify this cache.
411 * @size: The size of objects to be created in this cache.
412 * @align: The required alignment for the objects.
413 * @flags: SLAB flags
8eb8284b
DW
414 * @useroffset: Usercopy region offset
415 * @usersize: Usercopy region size
77be4b13
SK
416 * @ctor: A constructor for the objects.
417 *
418 * Returns a ptr to the cache on success, NULL on failure.
419 * Cannot be called within a interrupt, but can be interrupted.
420 * The @ctor is run when new pages are allocated by the cache.
421 *
422 * The flags are
423 *
424 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
425 * to catch references to uninitialised memory.
426 *
427 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
428 * for buffer overruns.
429 *
430 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
431 * cacheline. This can be beneficial if you're counting cycles as closely
432 * as davem.
433 */
2633d7a0 434struct kmem_cache *
f4957d5b
AD
435kmem_cache_create_usercopy(const char *name,
436 unsigned int size, unsigned int align,
7bbdb81e
AD
437 slab_flags_t flags,
438 unsigned int useroffset, unsigned int usersize,
8eb8284b 439 void (*ctor)(void *))
77be4b13 440{
40911a79 441 struct kmem_cache *s = NULL;
3dec16ea 442 const char *cache_name;
3965fc36 443 int err;
039363f3 444
77be4b13 445 get_online_cpus();
03afc0e2 446 get_online_mems();
05257a1a 447 memcg_get_cache_ids();
03afc0e2 448
77be4b13 449 mutex_lock(&slab_mutex);
686d550d 450
794b1248 451 err = kmem_cache_sanity_check(name, size);
3aa24f51 452 if (err) {
3965fc36 453 goto out_unlock;
3aa24f51 454 }
686d550d 455
e70954fd
TG
456 /* Refuse requests with allocator specific flags */
457 if (flags & ~SLAB_FLAGS_PERMITTED) {
458 err = -EINVAL;
459 goto out_unlock;
460 }
461
d8843922
GC
462 /*
463 * Some allocators will constraint the set of valid flags to a subset
464 * of all flags. We expect them to define CACHE_CREATE_MASK in this
465 * case, and we'll just provide them with a sanitized version of the
466 * passed flags.
467 */
468 flags &= CACHE_CREATE_MASK;
686d550d 469
8eb8284b
DW
470 /* Fail closed on bad usersize of useroffset values. */
471 if (WARN_ON(!usersize && useroffset) ||
472 WARN_ON(size < usersize || size - usersize < useroffset))
473 usersize = useroffset = 0;
474
475 if (!usersize)
476 s = __kmem_cache_alias(name, size, align, flags, ctor);
794b1248 477 if (s)
3965fc36 478 goto out_unlock;
2633d7a0 479
3dec16ea 480 cache_name = kstrdup_const(name, GFP_KERNEL);
794b1248
VD
481 if (!cache_name) {
482 err = -ENOMEM;
483 goto out_unlock;
484 }
7c9adf5a 485
613a5eb5 486 s = create_cache(cache_name, size,
c9a77a79 487 calculate_alignment(flags, align, size),
8eb8284b 488 flags, useroffset, usersize, ctor, NULL, NULL);
794b1248
VD
489 if (IS_ERR(s)) {
490 err = PTR_ERR(s);
3dec16ea 491 kfree_const(cache_name);
794b1248 492 }
3965fc36
VD
493
494out_unlock:
20cea968 495 mutex_unlock(&slab_mutex);
03afc0e2 496
05257a1a 497 memcg_put_cache_ids();
03afc0e2 498 put_online_mems();
20cea968
CL
499 put_online_cpus();
500
ba3253c7 501 if (err) {
686d550d
CL
502 if (flags & SLAB_PANIC)
503 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
504 name, err);
505 else {
1170532b 506 pr_warn("kmem_cache_create(%s) failed with error %d\n",
686d550d
CL
507 name, err);
508 dump_stack();
509 }
686d550d
CL
510 return NULL;
511 }
039363f3
CL
512 return s;
513}
8eb8284b
DW
514EXPORT_SYMBOL(kmem_cache_create_usercopy);
515
516struct kmem_cache *
f4957d5b 517kmem_cache_create(const char *name, unsigned int size, unsigned int align,
8eb8284b
DW
518 slab_flags_t flags, void (*ctor)(void *))
519{
6d07d1cd 520 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
8eb8284b
DW
521 ctor);
522}
794b1248 523EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 524
657dc2f9 525static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
d5b3cf71 526{
657dc2f9
TH
527 LIST_HEAD(to_destroy);
528 struct kmem_cache *s, *s2;
d5b3cf71 529
657dc2f9 530 /*
5f0d5a3a 531 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
657dc2f9
TH
532 * @slab_caches_to_rcu_destroy list. The slab pages are freed
533 * through RCU and and the associated kmem_cache are dereferenced
534 * while freeing the pages, so the kmem_caches should be freed only
535 * after the pending RCU operations are finished. As rcu_barrier()
536 * is a pretty slow operation, we batch all pending destructions
537 * asynchronously.
538 */
539 mutex_lock(&slab_mutex);
540 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
541 mutex_unlock(&slab_mutex);
d5b3cf71 542
657dc2f9
TH
543 if (list_empty(&to_destroy))
544 return;
545
546 rcu_barrier();
547
548 list_for_each_entry_safe(s, s2, &to_destroy, list) {
549#ifdef SLAB_SUPPORTS_SYSFS
550 sysfs_slab_release(s);
551#else
552 slab_kmem_cache_release(s);
553#endif
554 }
d5b3cf71
VD
555}
556
657dc2f9 557static int shutdown_cache(struct kmem_cache *s)
d5b3cf71 558{
f9fa1d91
GT
559 /* free asan quarantined objects */
560 kasan_cache_shutdown(s);
561
657dc2f9
TH
562 if (__kmem_cache_shutdown(s) != 0)
563 return -EBUSY;
d5b3cf71 564
510ded33 565 memcg_unlink_cache(s);
657dc2f9 566 list_del(&s->list);
d5b3cf71 567
5f0d5a3a 568 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
657dc2f9
TH
569 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
570 schedule_work(&slab_caches_to_rcu_destroy_work);
571 } else {
d5b3cf71 572#ifdef SLAB_SUPPORTS_SYSFS
bf5eb3de 573 sysfs_slab_release(s);
d5b3cf71
VD
574#else
575 slab_kmem_cache_release(s);
576#endif
577 }
657dc2f9
TH
578
579 return 0;
d5b3cf71
VD
580}
581
127424c8 582#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
794b1248 583/*
776ed0f0 584 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
794b1248
VD
585 * @memcg: The memory cgroup the new cache is for.
586 * @root_cache: The parent of the new cache.
587 *
588 * This function attempts to create a kmem cache that will serve allocation
589 * requests going from @memcg to @root_cache. The new cache inherits properties
590 * from its parent.
591 */
d5b3cf71
VD
592void memcg_create_kmem_cache(struct mem_cgroup *memcg,
593 struct kmem_cache *root_cache)
2633d7a0 594{
3e0350a3 595 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
33398cf2 596 struct cgroup_subsys_state *css = &memcg->css;
f7ce3190 597 struct memcg_cache_array *arr;
bd673145 598 struct kmem_cache *s = NULL;
794b1248 599 char *cache_name;
f7ce3190 600 int idx;
794b1248
VD
601
602 get_online_cpus();
03afc0e2
VD
603 get_online_mems();
604
794b1248
VD
605 mutex_lock(&slab_mutex);
606
2a4db7eb 607 /*
567e9ab2 608 * The memory cgroup could have been offlined while the cache
2a4db7eb
VD
609 * creation work was pending.
610 */
b6ecd2de 611 if (memcg->kmem_state != KMEM_ONLINE)
2a4db7eb
VD
612 goto out_unlock;
613
f7ce3190
VD
614 idx = memcg_cache_id(memcg);
615 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
616 lockdep_is_held(&slab_mutex));
617
d5b3cf71
VD
618 /*
619 * Since per-memcg caches are created asynchronously on first
620 * allocation (see memcg_kmem_get_cache()), several threads can try to
621 * create the same cache, but only one of them may succeed.
622 */
f7ce3190 623 if (arr->entries[idx])
d5b3cf71
VD
624 goto out_unlock;
625
f1008365 626 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
73f576c0
JW
627 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
628 css->serial_nr, memcg_name_buf);
794b1248
VD
629 if (!cache_name)
630 goto out_unlock;
631
c9a77a79 632 s = create_cache(cache_name, root_cache->object_size,
613a5eb5 633 root_cache->align,
f773e36d 634 root_cache->flags & CACHE_CREATE_MASK,
8eb8284b 635 root_cache->useroffset, root_cache->usersize,
f773e36d 636 root_cache->ctor, memcg, root_cache);
d5b3cf71
VD
637 /*
638 * If we could not create a memcg cache, do not complain, because
639 * that's not critical at all as we can always proceed with the root
640 * cache.
641 */
bd673145 642 if (IS_ERR(s)) {
794b1248 643 kfree(cache_name);
d5b3cf71 644 goto out_unlock;
bd673145 645 }
794b1248 646
d5b3cf71
VD
647 /*
648 * Since readers won't lock (see cache_from_memcg_idx()), we need a
649 * barrier here to ensure nobody will see the kmem_cache partially
650 * initialized.
651 */
652 smp_wmb();
f7ce3190 653 arr->entries[idx] = s;
d5b3cf71 654
794b1248
VD
655out_unlock:
656 mutex_unlock(&slab_mutex);
03afc0e2
VD
657
658 put_online_mems();
794b1248 659 put_online_cpus();
2633d7a0 660}
b8529907 661
01fb58bc
TH
662static void kmemcg_deactivate_workfn(struct work_struct *work)
663{
664 struct kmem_cache *s = container_of(work, struct kmem_cache,
665 memcg_params.deact_work);
666
667 get_online_cpus();
668 get_online_mems();
669
670 mutex_lock(&slab_mutex);
671
672 s->memcg_params.deact_fn(s);
673
674 mutex_unlock(&slab_mutex);
675
676 put_online_mems();
677 put_online_cpus();
678
679 /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
680 css_put(&s->memcg_params.memcg->css);
681}
682
683static void kmemcg_deactivate_rcufn(struct rcu_head *head)
684{
685 struct kmem_cache *s = container_of(head, struct kmem_cache,
686 memcg_params.deact_rcu_head);
687
688 /*
689 * We need to grab blocking locks. Bounce to ->deact_work. The
690 * work item shares the space with the RCU head and can't be
691 * initialized eariler.
692 */
693 INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
17cc4dfe 694 queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
01fb58bc
TH
695}
696
697/**
698 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
699 * sched RCU grace period
700 * @s: target kmem_cache
701 * @deact_fn: deactivation function to call
702 *
703 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
704 * held after a sched RCU grace period. The slab is guaranteed to stay
705 * alive until @deact_fn is finished. This is to be used from
706 * __kmemcg_cache_deactivate().
707 */
708void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
709 void (*deact_fn)(struct kmem_cache *))
710{
711 if (WARN_ON_ONCE(is_root_cache(s)) ||
712 WARN_ON_ONCE(s->memcg_params.deact_fn))
713 return;
714
715 /* pin memcg so that @s doesn't get destroyed in the middle */
716 css_get(&s->memcg_params.memcg->css);
717
718 s->memcg_params.deact_fn = deact_fn;
719 call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
720}
721
2a4db7eb
VD
722void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
723{
724 int idx;
725 struct memcg_cache_array *arr;
d6e0b7fa 726 struct kmem_cache *s, *c;
2a4db7eb
VD
727
728 idx = memcg_cache_id(memcg);
729
d6e0b7fa
VD
730 get_online_cpus();
731 get_online_mems();
732
2a4db7eb 733 mutex_lock(&slab_mutex);
510ded33 734 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
2a4db7eb
VD
735 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
736 lockdep_is_held(&slab_mutex));
d6e0b7fa
VD
737 c = arr->entries[idx];
738 if (!c)
739 continue;
740
c9fc5864 741 __kmemcg_cache_deactivate(c);
2a4db7eb
VD
742 arr->entries[idx] = NULL;
743 }
744 mutex_unlock(&slab_mutex);
d6e0b7fa
VD
745
746 put_online_mems();
747 put_online_cpus();
2a4db7eb
VD
748}
749
d5b3cf71 750void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
b8529907 751{
d5b3cf71 752 struct kmem_cache *s, *s2;
b8529907 753
d5b3cf71
VD
754 get_online_cpus();
755 get_online_mems();
b8529907 756
b8529907 757 mutex_lock(&slab_mutex);
bc2791f8
TH
758 list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
759 memcg_params.kmem_caches_node) {
d5b3cf71
VD
760 /*
761 * The cgroup is about to be freed and therefore has no charges
762 * left. Hence, all its caches must be empty by now.
763 */
657dc2f9 764 BUG_ON(shutdown_cache(s));
d5b3cf71
VD
765 }
766 mutex_unlock(&slab_mutex);
b8529907 767
d5b3cf71
VD
768 put_online_mems();
769 put_online_cpus();
b8529907 770}
d60fdcc9 771
657dc2f9 772static int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
773{
774 struct memcg_cache_array *arr;
775 struct kmem_cache *c, *c2;
776 LIST_HEAD(busy);
777 int i;
778
779 BUG_ON(!is_root_cache(s));
780
781 /*
782 * First, shutdown active caches, i.e. caches that belong to online
783 * memory cgroups.
784 */
785 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
786 lockdep_is_held(&slab_mutex));
787 for_each_memcg_cache_index(i) {
788 c = arr->entries[i];
789 if (!c)
790 continue;
657dc2f9 791 if (shutdown_cache(c))
d60fdcc9
VD
792 /*
793 * The cache still has objects. Move it to a temporary
794 * list so as not to try to destroy it for a second
795 * time while iterating over inactive caches below.
796 */
9eeadc8b 797 list_move(&c->memcg_params.children_node, &busy);
d60fdcc9
VD
798 else
799 /*
800 * The cache is empty and will be destroyed soon. Clear
801 * the pointer to it in the memcg_caches array so that
802 * it will never be accessed even if the root cache
803 * stays alive.
804 */
805 arr->entries[i] = NULL;
806 }
807
808 /*
809 * Second, shutdown all caches left from memory cgroups that are now
810 * offline.
811 */
9eeadc8b
TH
812 list_for_each_entry_safe(c, c2, &s->memcg_params.children,
813 memcg_params.children_node)
657dc2f9 814 shutdown_cache(c);
d60fdcc9 815
9eeadc8b 816 list_splice(&busy, &s->memcg_params.children);
d60fdcc9
VD
817
818 /*
819 * A cache being destroyed must be empty. In particular, this means
820 * that all per memcg caches attached to it must be empty too.
821 */
9eeadc8b 822 if (!list_empty(&s->memcg_params.children))
d60fdcc9
VD
823 return -EBUSY;
824 return 0;
825}
826#else
657dc2f9 827static inline int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
828{
829 return 0;
830}
127424c8 831#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
97d06609 832
41a21285
CL
833void slab_kmem_cache_release(struct kmem_cache *s)
834{
52b4b950 835 __kmem_cache_release(s);
f7ce3190 836 destroy_memcg_params(s);
3dec16ea 837 kfree_const(s->name);
41a21285
CL
838 kmem_cache_free(kmem_cache, s);
839}
840
945cf2b6
CL
841void kmem_cache_destroy(struct kmem_cache *s)
842{
d60fdcc9 843 int err;
d5b3cf71 844
3942d299
SS
845 if (unlikely(!s))
846 return;
847
945cf2b6 848 get_online_cpus();
03afc0e2
VD
849 get_online_mems();
850
945cf2b6 851 mutex_lock(&slab_mutex);
b8529907 852
945cf2b6 853 s->refcount--;
b8529907
VD
854 if (s->refcount)
855 goto out_unlock;
856
657dc2f9 857 err = shutdown_memcg_caches(s);
d60fdcc9 858 if (!err)
657dc2f9 859 err = shutdown_cache(s);
b8529907 860
cd918c55 861 if (err) {
756a025f
JP
862 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
863 s->name);
cd918c55
VD
864 dump_stack();
865 }
b8529907
VD
866out_unlock:
867 mutex_unlock(&slab_mutex);
d5b3cf71 868
03afc0e2 869 put_online_mems();
945cf2b6
CL
870 put_online_cpus();
871}
872EXPORT_SYMBOL(kmem_cache_destroy);
873
03afc0e2
VD
874/**
875 * kmem_cache_shrink - Shrink a cache.
876 * @cachep: The cache to shrink.
877 *
878 * Releases as many slabs as possible for a cache.
879 * To help debugging, a zero exit status indicates all slabs were released.
880 */
881int kmem_cache_shrink(struct kmem_cache *cachep)
882{
883 int ret;
884
885 get_online_cpus();
886 get_online_mems();
55834c59 887 kasan_cache_shrink(cachep);
c9fc5864 888 ret = __kmem_cache_shrink(cachep);
03afc0e2
VD
889 put_online_mems();
890 put_online_cpus();
891 return ret;
892}
893EXPORT_SYMBOL(kmem_cache_shrink);
894
fda90124 895bool slab_is_available(void)
97d06609
CL
896{
897 return slab_state >= UP;
898}
b7454ad3 899
45530c44
CL
900#ifndef CONFIG_SLOB
901/* Create a cache during boot when no slab services are available yet */
361d575e
AD
902void __init create_boot_cache(struct kmem_cache *s, const char *name,
903 unsigned int size, slab_flags_t flags,
904 unsigned int useroffset, unsigned int usersize)
45530c44
CL
905{
906 int err;
907
908 s->name = name;
909 s->size = s->object_size = size;
45906855 910 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
8eb8284b
DW
911 s->useroffset = useroffset;
912 s->usersize = usersize;
f7ce3190
VD
913
914 slab_init_memcg_params(s);
915
45530c44
CL
916 err = __kmem_cache_create(s, flags);
917
918 if (err)
361d575e 919 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
45530c44
CL
920 name, size, err);
921
922 s->refcount = -1; /* Exempt from merging for now */
923}
924
55de8b9c
AD
925struct kmem_cache *__init create_kmalloc_cache(const char *name,
926 unsigned int size, slab_flags_t flags,
927 unsigned int useroffset, unsigned int usersize)
45530c44
CL
928{
929 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
930
931 if (!s)
932 panic("Out of memory when creating slab %s\n", name);
933
6c0c21ad 934 create_boot_cache(s, name, size, flags, useroffset, usersize);
45530c44 935 list_add(&s->list, &slab_caches);
510ded33 936 memcg_link_cache(s);
45530c44
CL
937 s->refcount = 1;
938 return s;
939}
940
1c99ba29 941struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __ro_after_init;
9425c58e
CL
942EXPORT_SYMBOL(kmalloc_caches);
943
944#ifdef CONFIG_ZONE_DMA
1c99ba29 945struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1] __ro_after_init;
9425c58e
CL
946EXPORT_SYMBOL(kmalloc_dma_caches);
947#endif
948
2c59dd65
CL
949/*
950 * Conversion table for small slabs sizes / 8 to the index in the
951 * kmalloc array. This is necessary for slabs < 192 since we have non power
952 * of two cache sizes there. The size of larger slabs can be determined using
953 * fls.
954 */
d5f86655 955static u8 size_index[24] __ro_after_init = {
2c59dd65
CL
956 3, /* 8 */
957 4, /* 16 */
958 5, /* 24 */
959 5, /* 32 */
960 6, /* 40 */
961 6, /* 48 */
962 6, /* 56 */
963 6, /* 64 */
964 1, /* 72 */
965 1, /* 80 */
966 1, /* 88 */
967 1, /* 96 */
968 7, /* 104 */
969 7, /* 112 */
970 7, /* 120 */
971 7, /* 128 */
972 2, /* 136 */
973 2, /* 144 */
974 2, /* 152 */
975 2, /* 160 */
976 2, /* 168 */
977 2, /* 176 */
978 2, /* 184 */
979 2 /* 192 */
980};
981
ac914d08 982static inline unsigned int size_index_elem(unsigned int bytes)
2c59dd65
CL
983{
984 return (bytes - 1) / 8;
985}
986
987/*
988 * Find the kmem_cache structure that serves a given size of
989 * allocation
990 */
991struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
992{
d5f86655 993 unsigned int index;
2c59dd65 994
9de1bc87 995 if (unlikely(size > KMALLOC_MAX_SIZE)) {
907985f4 996 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
6286ae97 997 return NULL;
907985f4 998 }
6286ae97 999
2c59dd65
CL
1000 if (size <= 192) {
1001 if (!size)
1002 return ZERO_SIZE_PTR;
1003
1004 index = size_index[size_index_elem(size)];
1005 } else
1006 index = fls(size - 1);
1007
1008#ifdef CONFIG_ZONE_DMA
b1e05416 1009 if (unlikely((flags & GFP_DMA)))
2c59dd65
CL
1010 return kmalloc_dma_caches[index];
1011
1012#endif
1013 return kmalloc_caches[index];
1014}
1015
4066c33d
GG
1016/*
1017 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
1018 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1019 * kmalloc-67108864.
1020 */
af3b5f87 1021const struct kmalloc_info_struct kmalloc_info[] __initconst = {
4066c33d
GG
1022 {NULL, 0}, {"kmalloc-96", 96},
1023 {"kmalloc-192", 192}, {"kmalloc-8", 8},
1024 {"kmalloc-16", 16}, {"kmalloc-32", 32},
1025 {"kmalloc-64", 64}, {"kmalloc-128", 128},
1026 {"kmalloc-256", 256}, {"kmalloc-512", 512},
1027 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
1028 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
1029 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
1030 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
1031 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
1032 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
1033 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
1034 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
1035 {"kmalloc-67108864", 67108864}
1036};
1037
f97d5f63 1038/*
34cc6990
DS
1039 * Patch up the size_index table if we have strange large alignment
1040 * requirements for the kmalloc array. This is only the case for
1041 * MIPS it seems. The standard arches will not generate any code here.
1042 *
1043 * Largest permitted alignment is 256 bytes due to the way we
1044 * handle the index determination for the smaller caches.
1045 *
1046 * Make sure that nothing crazy happens if someone starts tinkering
1047 * around with ARCH_KMALLOC_MINALIGN
f97d5f63 1048 */
34cc6990 1049void __init setup_kmalloc_cache_index_table(void)
f97d5f63 1050{
ac914d08 1051 unsigned int i;
f97d5f63 1052
2c59dd65
CL
1053 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1054 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1055
1056 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
ac914d08 1057 unsigned int elem = size_index_elem(i);
2c59dd65
CL
1058
1059 if (elem >= ARRAY_SIZE(size_index))
1060 break;
1061 size_index[elem] = KMALLOC_SHIFT_LOW;
1062 }
1063
1064 if (KMALLOC_MIN_SIZE >= 64) {
1065 /*
1066 * The 96 byte size cache is not used if the alignment
1067 * is 64 byte.
1068 */
1069 for (i = 64 + 8; i <= 96; i += 8)
1070 size_index[size_index_elem(i)] = 7;
1071
1072 }
1073
1074 if (KMALLOC_MIN_SIZE >= 128) {
1075 /*
1076 * The 192 byte sized cache is not used if the alignment
1077 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1078 * instead.
1079 */
1080 for (i = 128 + 8; i <= 192; i += 8)
1081 size_index[size_index_elem(i)] = 8;
1082 }
34cc6990
DS
1083}
1084
d50112ed 1085static void __init new_kmalloc_cache(int idx, slab_flags_t flags)
a9730fca
CL
1086{
1087 kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
6c0c21ad
DW
1088 kmalloc_info[idx].size, flags, 0,
1089 kmalloc_info[idx].size);
a9730fca
CL
1090}
1091
34cc6990
DS
1092/*
1093 * Create the kmalloc array. Some of the regular kmalloc arrays
1094 * may already have been created because they were needed to
1095 * enable allocations for slab creation.
1096 */
d50112ed 1097void __init create_kmalloc_caches(slab_flags_t flags)
34cc6990
DS
1098{
1099 int i;
1100
a9730fca
CL
1101 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1102 if (!kmalloc_caches[i])
1103 new_kmalloc_cache(i, flags);
f97d5f63 1104
956e46ef 1105 /*
a9730fca
CL
1106 * Caches that are not of the two-to-the-power-of size.
1107 * These have to be created immediately after the
1108 * earlier power of two caches
956e46ef 1109 */
a9730fca
CL
1110 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
1111 new_kmalloc_cache(1, flags);
1112 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
1113 new_kmalloc_cache(2, flags);
8a965b3b
CL
1114 }
1115
f97d5f63
CL
1116 /* Kmalloc array is now usable */
1117 slab_state = UP;
1118
f97d5f63
CL
1119#ifdef CONFIG_ZONE_DMA
1120 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1121 struct kmem_cache *s = kmalloc_caches[i];
1122
1123 if (s) {
0be70327 1124 unsigned int size = kmalloc_size(i);
f97d5f63 1125 char *n = kasprintf(GFP_NOWAIT,
0be70327 1126 "dma-kmalloc-%u", size);
f97d5f63
CL
1127
1128 BUG_ON(!n);
1129 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
6c0c21ad 1130 size, SLAB_CACHE_DMA | flags, 0, 0);
f97d5f63
CL
1131 }
1132 }
1133#endif
1134}
45530c44
CL
1135#endif /* !CONFIG_SLOB */
1136
cea371f4
VD
1137/*
1138 * To avoid unnecessary overhead, we pass through large allocation requests
1139 * directly to the page allocator. We use __GFP_COMP, because we will need to
1140 * know the allocation order to free the pages properly in kfree.
1141 */
52383431
VD
1142void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1143{
1144 void *ret;
1145 struct page *page;
1146
1147 flags |= __GFP_COMP;
4949148a 1148 page = alloc_pages(flags, order);
52383431
VD
1149 ret = page ? page_address(page) : NULL;
1150 kmemleak_alloc(ret, size, 1, flags);
505f5dcb 1151 kasan_kmalloc_large(ret, size, flags);
52383431
VD
1152 return ret;
1153}
1154EXPORT_SYMBOL(kmalloc_order);
1155
f1b6eb6e
CL
1156#ifdef CONFIG_TRACING
1157void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1158{
1159 void *ret = kmalloc_order(size, flags, order);
1160 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1161 return ret;
1162}
1163EXPORT_SYMBOL(kmalloc_order_trace);
1164#endif
45530c44 1165
7c00fce9
TG
1166#ifdef CONFIG_SLAB_FREELIST_RANDOM
1167/* Randomize a generic freelist */
1168static void freelist_randomize(struct rnd_state *state, unsigned int *list,
302d55d5 1169 unsigned int count)
7c00fce9 1170{
7c00fce9 1171 unsigned int rand;
302d55d5 1172 unsigned int i;
7c00fce9
TG
1173
1174 for (i = 0; i < count; i++)
1175 list[i] = i;
1176
1177 /* Fisher-Yates shuffle */
1178 for (i = count - 1; i > 0; i--) {
1179 rand = prandom_u32_state(state);
1180 rand %= (i + 1);
1181 swap(list[i], list[rand]);
1182 }
1183}
1184
1185/* Create a random sequence per cache */
1186int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1187 gfp_t gfp)
1188{
1189 struct rnd_state state;
1190
1191 if (count < 2 || cachep->random_seq)
1192 return 0;
1193
1194 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1195 if (!cachep->random_seq)
1196 return -ENOMEM;
1197
1198 /* Get best entropy at this stage of boot */
1199 prandom_seed_state(&state, get_random_long());
1200
1201 freelist_randomize(&state, cachep->random_seq, count);
1202 return 0;
1203}
1204
1205/* Destroy the per-cache random freelist sequence */
1206void cache_random_seq_destroy(struct kmem_cache *cachep)
1207{
1208 kfree(cachep->random_seq);
1209 cachep->random_seq = NULL;
1210}
1211#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1212
5b365771 1213#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
e9b4db2b
WL
1214#ifdef CONFIG_SLAB
1215#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1216#else
1217#define SLABINFO_RIGHTS S_IRUSR
1218#endif
1219
b047501c 1220static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
1221{
1222 /*
1223 * Output format version, so at least we can change it
1224 * without _too_ many complaints.
1225 */
1226#ifdef CONFIG_DEBUG_SLAB
1227 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1228#else
1229 seq_puts(m, "slabinfo - version: 2.1\n");
1230#endif
756a025f 1231 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
bcee6e2a
GC
1232 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1233 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1234#ifdef CONFIG_DEBUG_SLAB
756a025f 1235 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
bcee6e2a
GC
1236 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1237#endif
1238 seq_putc(m, '\n');
1239}
1240
1df3b26f 1241void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 1242{
b7454ad3 1243 mutex_lock(&slab_mutex);
510ded33 1244 return seq_list_start(&slab_root_caches, *pos);
b7454ad3
GC
1245}
1246
276a2439 1247void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3 1248{
510ded33 1249 return seq_list_next(p, &slab_root_caches, pos);
b7454ad3
GC
1250}
1251
276a2439 1252void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
1253{
1254 mutex_unlock(&slab_mutex);
1255}
1256
749c5415
GC
1257static void
1258memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1259{
1260 struct kmem_cache *c;
1261 struct slabinfo sinfo;
749c5415
GC
1262
1263 if (!is_root_cache(s))
1264 return;
1265
426589f5 1266 for_each_memcg_cache(c, s) {
749c5415
GC
1267 memset(&sinfo, 0, sizeof(sinfo));
1268 get_slabinfo(c, &sinfo);
1269
1270 info->active_slabs += sinfo.active_slabs;
1271 info->num_slabs += sinfo.num_slabs;
1272 info->shared_avail += sinfo.shared_avail;
1273 info->active_objs += sinfo.active_objs;
1274 info->num_objs += sinfo.num_objs;
1275 }
1276}
1277
b047501c 1278static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 1279{
0d7561c6
GC
1280 struct slabinfo sinfo;
1281
1282 memset(&sinfo, 0, sizeof(sinfo));
1283 get_slabinfo(s, &sinfo);
1284
749c5415
GC
1285 memcg_accumulate_slabinfo(s, &sinfo);
1286
0d7561c6 1287 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
749c5415 1288 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
1289 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1290
1291 seq_printf(m, " : tunables %4u %4u %4u",
1292 sinfo.limit, sinfo.batchcount, sinfo.shared);
1293 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1294 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1295 slabinfo_show_stats(m, s);
1296 seq_putc(m, '\n');
b7454ad3
GC
1297}
1298
1df3b26f 1299static int slab_show(struct seq_file *m, void *p)
749c5415 1300{
510ded33 1301 struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
749c5415 1302
510ded33 1303 if (p == slab_root_caches.next)
1df3b26f 1304 print_slabinfo_header(m);
510ded33 1305 cache_show(s, m);
b047501c
VD
1306 return 0;
1307}
1308
852d8be0
YS
1309void dump_unreclaimable_slab(void)
1310{
1311 struct kmem_cache *s, *s2;
1312 struct slabinfo sinfo;
1313
1314 /*
1315 * Here acquiring slab_mutex is risky since we don't prefer to get
1316 * sleep in oom path. But, without mutex hold, it may introduce a
1317 * risk of crash.
1318 * Use mutex_trylock to protect the list traverse, dump nothing
1319 * without acquiring the mutex.
1320 */
1321 if (!mutex_trylock(&slab_mutex)) {
1322 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1323 return;
1324 }
1325
1326 pr_info("Unreclaimable slab info:\n");
1327 pr_info("Name Used Total\n");
1328
1329 list_for_each_entry_safe(s, s2, &slab_caches, list) {
1330 if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
1331 continue;
1332
1333 get_slabinfo(s, &sinfo);
1334
1335 if (sinfo.num_objs > 0)
1336 pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
1337 (sinfo.active_objs * s->size) / 1024,
1338 (sinfo.num_objs * s->size) / 1024);
1339 }
1340 mutex_unlock(&slab_mutex);
1341}
1342
5b365771 1343#if defined(CONFIG_MEMCG)
bc2791f8
TH
1344void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1345{
1346 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1347
1348 mutex_lock(&slab_mutex);
1349 return seq_list_start(&memcg->kmem_caches, *pos);
1350}
1351
1352void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1353{
1354 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1355
1356 return seq_list_next(p, &memcg->kmem_caches, pos);
1357}
1358
1359void memcg_slab_stop(struct seq_file *m, void *p)
1360{
1361 mutex_unlock(&slab_mutex);
1362}
1363
b047501c
VD
1364int memcg_slab_show(struct seq_file *m, void *p)
1365{
bc2791f8
TH
1366 struct kmem_cache *s = list_entry(p, struct kmem_cache,
1367 memcg_params.kmem_caches_node);
b047501c
VD
1368 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1369
bc2791f8 1370 if (p == memcg->kmem_caches.next)
b047501c 1371 print_slabinfo_header(m);
bc2791f8 1372 cache_show(s, m);
b047501c 1373 return 0;
749c5415 1374}
b047501c 1375#endif
749c5415 1376
b7454ad3
GC
1377/*
1378 * slabinfo_op - iterator that generates /proc/slabinfo
1379 *
1380 * Output layout:
1381 * cache-name
1382 * num-active-objs
1383 * total-objs
1384 * object size
1385 * num-active-slabs
1386 * total-slabs
1387 * num-pages-per-slab
1388 * + further values on SMP and with statistics enabled
1389 */
1390static const struct seq_operations slabinfo_op = {
1df3b26f 1391 .start = slab_start,
276a2439
WL
1392 .next = slab_next,
1393 .stop = slab_stop,
1df3b26f 1394 .show = slab_show,
b7454ad3
GC
1395};
1396
1397static int slabinfo_open(struct inode *inode, struct file *file)
1398{
1399 return seq_open(file, &slabinfo_op);
1400}
1401
1402static const struct file_operations proc_slabinfo_operations = {
1403 .open = slabinfo_open,
1404 .read = seq_read,
1405 .write = slabinfo_write,
1406 .llseek = seq_lseek,
1407 .release = seq_release,
1408};
1409
1410static int __init slab_proc_init(void)
1411{
e9b4db2b
WL
1412 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1413 &proc_slabinfo_operations);
b7454ad3
GC
1414 return 0;
1415}
1416module_init(slab_proc_init);
5b365771 1417#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
928cec9c
AR
1418
1419static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1420 gfp_t flags)
1421{
1422 void *ret;
1423 size_t ks = 0;
1424
1425 if (p)
1426 ks = ksize(p);
1427
0316bec2 1428 if (ks >= new_size) {
505f5dcb 1429 kasan_krealloc((void *)p, new_size, flags);
928cec9c 1430 return (void *)p;
0316bec2 1431 }
928cec9c
AR
1432
1433 ret = kmalloc_track_caller(new_size, flags);
1434 if (ret && p)
1435 memcpy(ret, p, ks);
1436
1437 return ret;
1438}
1439
1440/**
1441 * __krealloc - like krealloc() but don't free @p.
1442 * @p: object to reallocate memory for.
1443 * @new_size: how many bytes of memory are required.
1444 * @flags: the type of memory to allocate.
1445 *
1446 * This function is like krealloc() except it never frees the originally
1447 * allocated buffer. Use this if you don't want to free the buffer immediately
1448 * like, for example, with RCU.
1449 */
1450void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1451{
1452 if (unlikely(!new_size))
1453 return ZERO_SIZE_PTR;
1454
1455 return __do_krealloc(p, new_size, flags);
1456
1457}
1458EXPORT_SYMBOL(__krealloc);
1459
1460/**
1461 * krealloc - reallocate memory. The contents will remain unchanged.
1462 * @p: object to reallocate memory for.
1463 * @new_size: how many bytes of memory are required.
1464 * @flags: the type of memory to allocate.
1465 *
1466 * The contents of the object pointed to are preserved up to the
1467 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1468 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1469 * %NULL pointer, the object pointed to is freed.
1470 */
1471void *krealloc(const void *p, size_t new_size, gfp_t flags)
1472{
1473 void *ret;
1474
1475 if (unlikely(!new_size)) {
1476 kfree(p);
1477 return ZERO_SIZE_PTR;
1478 }
1479
1480 ret = __do_krealloc(p, new_size, flags);
1481 if (ret && p != ret)
1482 kfree(p);
1483
1484 return ret;
1485}
1486EXPORT_SYMBOL(krealloc);
1487
1488/**
1489 * kzfree - like kfree but zero memory
1490 * @p: object to free memory of
1491 *
1492 * The memory of the object @p points to is zeroed before freed.
1493 * If @p is %NULL, kzfree() does nothing.
1494 *
1495 * Note: this function zeroes the whole allocated buffer which can be a good
1496 * deal bigger than the requested buffer size passed to kmalloc(). So be
1497 * careful when using this function in performance sensitive code.
1498 */
1499void kzfree(const void *p)
1500{
1501 size_t ks;
1502 void *mem = (void *)p;
1503
1504 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1505 return;
1506 ks = ksize(mem);
1507 memset(mem, 0, ks);
1508 kfree(mem);
1509}
1510EXPORT_SYMBOL(kzfree);
1511
1512/* Tracepoints definitions. */
1513EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1514EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1515EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1516EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1517EXPORT_TRACEPOINT_SYMBOL(kfree);
1518EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);