]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/slab_common.c
mm: memcg/slab: remove redundant check in memcg_accumulate_slabinfo()
[mirror_ubuntu-hirsute-kernel.git] / mm / slab_common.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
039363f3
CL
2/*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7#include <linux/slab.h>
8
9#include <linux/mm.h>
10#include <linux/poison.h>
11#include <linux/interrupt.h>
12#include <linux/memory.h>
1c99ba29 13#include <linux/cache.h>
039363f3
CL
14#include <linux/compiler.h>
15#include <linux/module.h>
20cea968
CL
16#include <linux/cpu.h>
17#include <linux/uaccess.h>
b7454ad3
GC
18#include <linux/seq_file.h>
19#include <linux/proc_fs.h>
fcf8a1e4 20#include <linux/debugfs.h>
039363f3
CL
21#include <asm/cacheflush.h>
22#include <asm/tlbflush.h>
23#include <asm/page.h>
2633d7a0 24#include <linux/memcontrol.h>
928cec9c
AR
25
26#define CREATE_TRACE_POINTS
f1b6eb6e 27#include <trace/events/kmem.h>
039363f3 28
44405099
LL
29#include "internal.h"
30
97d06609
CL
31#include "slab.h"
32
33enum slab_state slab_state;
18004c5d
CL
34LIST_HEAD(slab_caches);
35DEFINE_MUTEX(slab_mutex);
9b030cb8 36struct kmem_cache *kmem_cache;
97d06609 37
2d891fbc
KC
38#ifdef CONFIG_HARDENED_USERCOPY
39bool usercopy_fallback __ro_after_init =
40 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
41module_param(usercopy_fallback, bool, 0400);
42MODULE_PARM_DESC(usercopy_fallback,
43 "WARN instead of reject usercopy whitelist violations");
44#endif
45
657dc2f9
TH
46static LIST_HEAD(slab_caches_to_rcu_destroy);
47static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
48static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
49 slab_caches_to_rcu_destroy_workfn);
50
423c929c
JK
51/*
52 * Set of flags that will prevent slab merging
53 */
54#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
5f0d5a3a 55 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
7ed2f9e6 56 SLAB_FAILSLAB | SLAB_KASAN)
423c929c 57
230e9fc2 58#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
6d6ea1e9 59 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
423c929c
JK
60
61/*
62 * Merge control. If this is set then no merging of slab caches will occur.
423c929c 63 */
7660a6fd 64static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
423c929c
JK
65
66static int __init setup_slab_nomerge(char *str)
67{
7660a6fd 68 slab_nomerge = true;
423c929c
JK
69 return 1;
70}
71
72#ifdef CONFIG_SLUB
73__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
74#endif
75
76__setup("slab_nomerge", setup_slab_nomerge);
77
07f361b2
JK
78/*
79 * Determine the size of a slab object
80 */
81unsigned int kmem_cache_size(struct kmem_cache *s)
82{
83 return s->object_size;
84}
85EXPORT_SYMBOL(kmem_cache_size);
86
77be4b13 87#ifdef CONFIG_DEBUG_VM
f4957d5b 88static int kmem_cache_sanity_check(const char *name, unsigned int size)
039363f3 89{
039363f3
CL
90 if (!name || in_interrupt() || size < sizeof(void *) ||
91 size > KMALLOC_MAX_SIZE) {
77be4b13
SK
92 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
93 return -EINVAL;
039363f3 94 }
b920536a 95
20cea968 96 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
97 return 0;
98}
99#else
f4957d5b 100static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
77be4b13
SK
101{
102 return 0;
103}
20cea968
CL
104#endif
105
484748f0
CL
106void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
107{
108 size_t i;
109
ca257195
JDB
110 for (i = 0; i < nr; i++) {
111 if (s)
112 kmem_cache_free(s, p[i]);
113 else
114 kfree(p[i]);
115 }
484748f0
CL
116}
117
865762a8 118int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
484748f0
CL
119 void **p)
120{
121 size_t i;
122
123 for (i = 0; i < nr; i++) {
124 void *x = p[i] = kmem_cache_alloc(s, flags);
125 if (!x) {
126 __kmem_cache_free_bulk(s, i, p);
865762a8 127 return 0;
484748f0
CL
128 }
129 }
865762a8 130 return i;
484748f0
CL
131}
132
84c07d11 133#ifdef CONFIG_MEMCG_KMEM
d797b7d0
RG
134static void memcg_kmem_cache_create_func(struct work_struct *work)
135{
136 struct kmem_cache *cachep = container_of(work, struct kmem_cache,
137 memcg_params.work);
138 memcg_create_kmem_cache(cachep);
139}
140
f7ce3190 141void slab_init_memcg_params(struct kmem_cache *s)
33a690c4 142{
9eeadc8b 143 s->memcg_params.root_cache = NULL;
9855609b 144 s->memcg_params.memcg_cache = NULL;
d797b7d0 145 INIT_WORK(&s->memcg_params.work, memcg_kmem_cache_create_func);
f7ce3190
VD
146}
147
9855609b
RG
148static void init_memcg_params(struct kmem_cache *s,
149 struct kmem_cache *root_cache)
f7ce3190 150{
9855609b 151 if (root_cache)
f7ce3190 152 s->memcg_params.root_cache = root_cache;
9855609b
RG
153 else
154 slab_init_memcg_params(s);
6f817f4c 155}
33a690c4 156#else
9855609b
RG
157static inline void init_memcg_params(struct kmem_cache *s,
158 struct kmem_cache *root_cache)
33a690c4
VD
159{
160}
84c07d11 161#endif /* CONFIG_MEMCG_KMEM */
55007d84 162
692ae74a
BL
163/*
164 * Figure out what the alignment of the objects will be given a set of
165 * flags, a user specified alignment and the size of the objects.
166 */
f4957d5b
AD
167static unsigned int calculate_alignment(slab_flags_t flags,
168 unsigned int align, unsigned int size)
692ae74a
BL
169{
170 /*
171 * If the user wants hardware cache aligned objects then follow that
172 * suggestion if the object is sufficiently large.
173 *
174 * The hardware cache alignment cannot override the specified
175 * alignment though. If that is greater then use it.
176 */
177 if (flags & SLAB_HWCACHE_ALIGN) {
f4957d5b 178 unsigned int ralign;
692ae74a
BL
179
180 ralign = cache_line_size();
181 while (size <= ralign / 2)
182 ralign /= 2;
183 align = max(align, ralign);
184 }
185
186 if (align < ARCH_SLAB_MINALIGN)
187 align = ARCH_SLAB_MINALIGN;
188
189 return ALIGN(align, sizeof(void *));
190}
191
423c929c
JK
192/*
193 * Find a mergeable slab cache
194 */
195int slab_unmergeable(struct kmem_cache *s)
196{
197 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
198 return 1;
199
200 if (!is_root_cache(s))
201 return 1;
202
203 if (s->ctor)
204 return 1;
205
8eb8284b
DW
206 if (s->usersize)
207 return 1;
208
423c929c
JK
209 /*
210 * We may have set a slab to be unmergeable during bootstrap.
211 */
212 if (s->refcount < 0)
213 return 1;
214
215 return 0;
216}
217
f4957d5b 218struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
d50112ed 219 slab_flags_t flags, const char *name, void (*ctor)(void *))
423c929c
JK
220{
221 struct kmem_cache *s;
222
c6e28895 223 if (slab_nomerge)
423c929c
JK
224 return NULL;
225
226 if (ctor)
227 return NULL;
228
229 size = ALIGN(size, sizeof(void *));
230 align = calculate_alignment(flags, align, size);
231 size = ALIGN(size, align);
232 flags = kmem_cache_flags(size, flags, name, NULL);
233
c6e28895
GM
234 if (flags & SLAB_NEVER_MERGE)
235 return NULL;
236
c7094406 237 list_for_each_entry_reverse(s, &slab_caches, list) {
423c929c
JK
238 if (slab_unmergeable(s))
239 continue;
240
241 if (size > s->size)
242 continue;
243
244 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
245 continue;
246 /*
247 * Check if alignment is compatible.
248 * Courtesy of Adrian Drzewiecki
249 */
250 if ((s->size & ~(align - 1)) != s->size)
251 continue;
252
253 if (s->size - size >= sizeof(void *))
254 continue;
255
95069ac8
JK
256 if (IS_ENABLED(CONFIG_SLAB) && align &&
257 (align > s->align || s->align % align))
258 continue;
259
423c929c
JK
260 return s;
261 }
262 return NULL;
263}
264
c9a77a79 265static struct kmem_cache *create_cache(const char *name,
613a5eb5 266 unsigned int object_size, unsigned int align,
7bbdb81e
AD
267 slab_flags_t flags, unsigned int useroffset,
268 unsigned int usersize, void (*ctor)(void *),
9855609b 269 struct kmem_cache *root_cache)
794b1248
VD
270{
271 struct kmem_cache *s;
272 int err;
273
8eb8284b
DW
274 if (WARN_ON(useroffset + usersize > object_size))
275 useroffset = usersize = 0;
276
794b1248
VD
277 err = -ENOMEM;
278 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
279 if (!s)
280 goto out;
281
282 s->name = name;
613a5eb5 283 s->size = s->object_size = object_size;
794b1248
VD
284 s->align = align;
285 s->ctor = ctor;
8eb8284b
DW
286 s->useroffset = useroffset;
287 s->usersize = usersize;
794b1248 288
9855609b 289 init_memcg_params(s, root_cache);
794b1248
VD
290 err = __kmem_cache_create(s, flags);
291 if (err)
292 goto out_free_cache;
293
294 s->refcount = 1;
295 list_add(&s->list, &slab_caches);
794b1248
VD
296out:
297 if (err)
298 return ERR_PTR(err);
299 return s;
300
301out_free_cache:
7c4da061 302 kmem_cache_free(kmem_cache, s);
794b1248
VD
303 goto out;
304}
45906855 305
f496990f
MR
306/**
307 * kmem_cache_create_usercopy - Create a cache with a region suitable
308 * for copying to userspace
77be4b13
SK
309 * @name: A string which is used in /proc/slabinfo to identify this cache.
310 * @size: The size of objects to be created in this cache.
311 * @align: The required alignment for the objects.
312 * @flags: SLAB flags
8eb8284b
DW
313 * @useroffset: Usercopy region offset
314 * @usersize: Usercopy region size
77be4b13
SK
315 * @ctor: A constructor for the objects.
316 *
77be4b13
SK
317 * Cannot be called within a interrupt, but can be interrupted.
318 * The @ctor is run when new pages are allocated by the cache.
319 *
320 * The flags are
321 *
322 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
323 * to catch references to uninitialised memory.
324 *
f496990f 325 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
77be4b13
SK
326 * for buffer overruns.
327 *
328 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
329 * cacheline. This can be beneficial if you're counting cycles as closely
330 * as davem.
f496990f
MR
331 *
332 * Return: a pointer to the cache on success, NULL on failure.
77be4b13 333 */
2633d7a0 334struct kmem_cache *
f4957d5b
AD
335kmem_cache_create_usercopy(const char *name,
336 unsigned int size, unsigned int align,
7bbdb81e
AD
337 slab_flags_t flags,
338 unsigned int useroffset, unsigned int usersize,
8eb8284b 339 void (*ctor)(void *))
77be4b13 340{
40911a79 341 struct kmem_cache *s = NULL;
3dec16ea 342 const char *cache_name;
3965fc36 343 int err;
039363f3 344
77be4b13 345 get_online_cpus();
03afc0e2 346 get_online_mems();
05257a1a 347 memcg_get_cache_ids();
03afc0e2 348
77be4b13 349 mutex_lock(&slab_mutex);
686d550d 350
794b1248 351 err = kmem_cache_sanity_check(name, size);
3aa24f51 352 if (err) {
3965fc36 353 goto out_unlock;
3aa24f51 354 }
686d550d 355
e70954fd
TG
356 /* Refuse requests with allocator specific flags */
357 if (flags & ~SLAB_FLAGS_PERMITTED) {
358 err = -EINVAL;
359 goto out_unlock;
360 }
361
d8843922
GC
362 /*
363 * Some allocators will constraint the set of valid flags to a subset
364 * of all flags. We expect them to define CACHE_CREATE_MASK in this
365 * case, and we'll just provide them with a sanitized version of the
366 * passed flags.
367 */
368 flags &= CACHE_CREATE_MASK;
686d550d 369
8eb8284b
DW
370 /* Fail closed on bad usersize of useroffset values. */
371 if (WARN_ON(!usersize && useroffset) ||
372 WARN_ON(size < usersize || size - usersize < useroffset))
373 usersize = useroffset = 0;
374
375 if (!usersize)
376 s = __kmem_cache_alias(name, size, align, flags, ctor);
794b1248 377 if (s)
3965fc36 378 goto out_unlock;
2633d7a0 379
3dec16ea 380 cache_name = kstrdup_const(name, GFP_KERNEL);
794b1248
VD
381 if (!cache_name) {
382 err = -ENOMEM;
383 goto out_unlock;
384 }
7c9adf5a 385
613a5eb5 386 s = create_cache(cache_name, size,
c9a77a79 387 calculate_alignment(flags, align, size),
9855609b 388 flags, useroffset, usersize, ctor, NULL);
794b1248
VD
389 if (IS_ERR(s)) {
390 err = PTR_ERR(s);
3dec16ea 391 kfree_const(cache_name);
794b1248 392 }
3965fc36
VD
393
394out_unlock:
20cea968 395 mutex_unlock(&slab_mutex);
03afc0e2 396
05257a1a 397 memcg_put_cache_ids();
03afc0e2 398 put_online_mems();
20cea968
CL
399 put_online_cpus();
400
ba3253c7 401 if (err) {
686d550d
CL
402 if (flags & SLAB_PANIC)
403 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
404 name, err);
405 else {
1170532b 406 pr_warn("kmem_cache_create(%s) failed with error %d\n",
686d550d
CL
407 name, err);
408 dump_stack();
409 }
686d550d
CL
410 return NULL;
411 }
039363f3
CL
412 return s;
413}
8eb8284b
DW
414EXPORT_SYMBOL(kmem_cache_create_usercopy);
415
f496990f
MR
416/**
417 * kmem_cache_create - Create a cache.
418 * @name: A string which is used in /proc/slabinfo to identify this cache.
419 * @size: The size of objects to be created in this cache.
420 * @align: The required alignment for the objects.
421 * @flags: SLAB flags
422 * @ctor: A constructor for the objects.
423 *
424 * Cannot be called within a interrupt, but can be interrupted.
425 * The @ctor is run when new pages are allocated by the cache.
426 *
427 * The flags are
428 *
429 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
430 * to catch references to uninitialised memory.
431 *
432 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
433 * for buffer overruns.
434 *
435 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
436 * cacheline. This can be beneficial if you're counting cycles as closely
437 * as davem.
438 *
439 * Return: a pointer to the cache on success, NULL on failure.
440 */
8eb8284b 441struct kmem_cache *
f4957d5b 442kmem_cache_create(const char *name, unsigned int size, unsigned int align,
8eb8284b
DW
443 slab_flags_t flags, void (*ctor)(void *))
444{
6d07d1cd 445 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
8eb8284b
DW
446 ctor);
447}
794b1248 448EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 449
657dc2f9 450static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
d5b3cf71 451{
657dc2f9
TH
452 LIST_HEAD(to_destroy);
453 struct kmem_cache *s, *s2;
d5b3cf71 454
657dc2f9 455 /*
5f0d5a3a 456 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
657dc2f9
TH
457 * @slab_caches_to_rcu_destroy list. The slab pages are freed
458 * through RCU and and the associated kmem_cache are dereferenced
459 * while freeing the pages, so the kmem_caches should be freed only
460 * after the pending RCU operations are finished. As rcu_barrier()
461 * is a pretty slow operation, we batch all pending destructions
462 * asynchronously.
463 */
464 mutex_lock(&slab_mutex);
465 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
466 mutex_unlock(&slab_mutex);
d5b3cf71 467
657dc2f9
TH
468 if (list_empty(&to_destroy))
469 return;
470
471 rcu_barrier();
472
473 list_for_each_entry_safe(s, s2, &to_destroy, list) {
474#ifdef SLAB_SUPPORTS_SYSFS
475 sysfs_slab_release(s);
476#else
477 slab_kmem_cache_release(s);
478#endif
479 }
d5b3cf71
VD
480}
481
657dc2f9 482static int shutdown_cache(struct kmem_cache *s)
d5b3cf71 483{
f9fa1d91
GT
484 /* free asan quarantined objects */
485 kasan_cache_shutdown(s);
486
657dc2f9
TH
487 if (__kmem_cache_shutdown(s) != 0)
488 return -EBUSY;
d5b3cf71 489
657dc2f9 490 list_del(&s->list);
d5b3cf71 491
5f0d5a3a 492 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
d50d82fa
MP
493#ifdef SLAB_SUPPORTS_SYSFS
494 sysfs_slab_unlink(s);
495#endif
657dc2f9
TH
496 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
497 schedule_work(&slab_caches_to_rcu_destroy_work);
498 } else {
d5b3cf71 499#ifdef SLAB_SUPPORTS_SYSFS
d50d82fa 500 sysfs_slab_unlink(s);
bf5eb3de 501 sysfs_slab_release(s);
d5b3cf71
VD
502#else
503 slab_kmem_cache_release(s);
504#endif
505 }
657dc2f9
TH
506
507 return 0;
d5b3cf71
VD
508}
509
84c07d11 510#ifdef CONFIG_MEMCG_KMEM
794b1248 511/*
9855609b 512 * memcg_create_kmem_cache - Create a cache for non-root memory cgroups.
794b1248
VD
513 * @root_cache: The parent of the new cache.
514 *
515 * This function attempts to create a kmem cache that will serve allocation
9855609b
RG
516 * requests going all non-root memory cgroups to @root_cache. The new cache
517 * inherits properties from its parent.
794b1248 518 */
9855609b 519void memcg_create_kmem_cache(struct kmem_cache *root_cache)
2633d7a0 520{
bd673145 521 struct kmem_cache *s = NULL;
794b1248
VD
522 char *cache_name;
523
524 get_online_cpus();
03afc0e2
VD
525 get_online_mems();
526
794b1248
VD
527 mutex_lock(&slab_mutex);
528
9855609b 529 if (root_cache->memcg_params.memcg_cache)
2a4db7eb
VD
530 goto out_unlock;
531
9855609b 532 cache_name = kasprintf(GFP_KERNEL, "%s-memcg", root_cache->name);
794b1248
VD
533 if (!cache_name)
534 goto out_unlock;
535
c9a77a79 536 s = create_cache(cache_name, root_cache->object_size,
613a5eb5 537 root_cache->align,
f773e36d 538 root_cache->flags & CACHE_CREATE_MASK,
8eb8284b 539 root_cache->useroffset, root_cache->usersize,
9855609b 540 root_cache->ctor, root_cache);
d5b3cf71
VD
541 /*
542 * If we could not create a memcg cache, do not complain, because
543 * that's not critical at all as we can always proceed with the root
544 * cache.
545 */
bd673145 546 if (IS_ERR(s)) {
794b1248 547 kfree(cache_name);
d5b3cf71 548 goto out_unlock;
bd673145 549 }
794b1248 550
d5b3cf71 551 /*
272911a4 552 * Since readers won't lock (see memcg_slab_pre_alloc_hook()), we need a
d5b3cf71
VD
553 * barrier here to ensure nobody will see the kmem_cache partially
554 * initialized.
555 */
556 smp_wmb();
9855609b 557 root_cache->memcg_params.memcg_cache = s;
d5b3cf71 558
794b1248
VD
559out_unlock:
560 mutex_unlock(&slab_mutex);
03afc0e2
VD
561
562 put_online_mems();
794b1248 563 put_online_cpus();
2633d7a0 564}
b8529907 565
657dc2f9 566static int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9 567{
d60fdcc9
VD
568 BUG_ON(!is_root_cache(s));
569
9855609b
RG
570 if (s->memcg_params.memcg_cache)
571 WARN_ON(shutdown_cache(s->memcg_params.memcg_cache));
d60fdcc9 572
d60fdcc9
VD
573 return 0;
574}
92ee383f 575
d797b7d0 576static void cancel_memcg_cache_creation(struct kmem_cache *s)
d38a2b7a 577{
d797b7d0 578 cancel_work_sync(&s->memcg_params.work);
92ee383f 579}
d60fdcc9 580#else
657dc2f9 581static inline int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
582{
583 return 0;
584}
9855609b 585
d797b7d0 586static inline void cancel_memcg_cache_creation(struct kmem_cache *s)
9855609b
RG
587{
588}
84c07d11 589#endif /* CONFIG_MEMCG_KMEM */
97d06609 590
41a21285
CL
591void slab_kmem_cache_release(struct kmem_cache *s)
592{
52b4b950 593 __kmem_cache_release(s);
3dec16ea 594 kfree_const(s->name);
41a21285
CL
595 kmem_cache_free(kmem_cache, s);
596}
597
945cf2b6
CL
598void kmem_cache_destroy(struct kmem_cache *s)
599{
d60fdcc9 600 int err;
d5b3cf71 601
3942d299
SS
602 if (unlikely(!s))
603 return;
604
d797b7d0 605 cancel_memcg_cache_creation(s);
9855609b 606
945cf2b6 607 get_online_cpus();
03afc0e2
VD
608 get_online_mems();
609
945cf2b6 610 mutex_lock(&slab_mutex);
b8529907 611
945cf2b6 612 s->refcount--;
b8529907
VD
613 if (s->refcount)
614 goto out_unlock;
615
657dc2f9 616 err = shutdown_memcg_caches(s);
d60fdcc9 617 if (!err)
657dc2f9 618 err = shutdown_cache(s);
b8529907 619
cd918c55 620 if (err) {
756a025f
JP
621 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
622 s->name);
cd918c55
VD
623 dump_stack();
624 }
b8529907
VD
625out_unlock:
626 mutex_unlock(&slab_mutex);
d5b3cf71 627
03afc0e2 628 put_online_mems();
945cf2b6
CL
629 put_online_cpus();
630}
631EXPORT_SYMBOL(kmem_cache_destroy);
632
03afc0e2
VD
633/**
634 * kmem_cache_shrink - Shrink a cache.
635 * @cachep: The cache to shrink.
636 *
637 * Releases as many slabs as possible for a cache.
638 * To help debugging, a zero exit status indicates all slabs were released.
a862f68a
MR
639 *
640 * Return: %0 if all slabs were released, non-zero otherwise
03afc0e2
VD
641 */
642int kmem_cache_shrink(struct kmem_cache *cachep)
643{
644 int ret;
645
646 get_online_cpus();
647 get_online_mems();
55834c59 648 kasan_cache_shrink(cachep);
c9fc5864 649 ret = __kmem_cache_shrink(cachep);
03afc0e2
VD
650 put_online_mems();
651 put_online_cpus();
652 return ret;
653}
654EXPORT_SYMBOL(kmem_cache_shrink);
655
04f768a3 656/**
9855609b 657 * kmem_cache_shrink_all - shrink root and memcg caches
04f768a3
WL
658 * @s: The cache pointer
659 */
660void kmem_cache_shrink_all(struct kmem_cache *s)
661{
662 struct kmem_cache *c;
663
664 if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || !is_root_cache(s)) {
665 kmem_cache_shrink(s);
666 return;
667 }
668
669 get_online_cpus();
670 get_online_mems();
671 kasan_cache_shrink(s);
672 __kmem_cache_shrink(s);
673
9855609b
RG
674 c = memcg_cache(s);
675 if (c) {
04f768a3
WL
676 kasan_cache_shrink(c);
677 __kmem_cache_shrink(c);
678 }
04f768a3
WL
679 put_online_mems();
680 put_online_cpus();
681}
682
fda90124 683bool slab_is_available(void)
97d06609
CL
684{
685 return slab_state >= UP;
686}
b7454ad3 687
45530c44
CL
688#ifndef CONFIG_SLOB
689/* Create a cache during boot when no slab services are available yet */
361d575e
AD
690void __init create_boot_cache(struct kmem_cache *s, const char *name,
691 unsigned int size, slab_flags_t flags,
692 unsigned int useroffset, unsigned int usersize)
45530c44
CL
693{
694 int err;
59bb4798 695 unsigned int align = ARCH_KMALLOC_MINALIGN;
45530c44
CL
696
697 s->name = name;
698 s->size = s->object_size = size;
59bb4798
VB
699
700 /*
701 * For power of two sizes, guarantee natural alignment for kmalloc
702 * caches, regardless of SL*B debugging options.
703 */
704 if (is_power_of_2(size))
705 align = max(align, size);
706 s->align = calculate_alignment(flags, align, size);
707
8eb8284b
DW
708 s->useroffset = useroffset;
709 s->usersize = usersize;
f7ce3190
VD
710
711 slab_init_memcg_params(s);
712
45530c44
CL
713 err = __kmem_cache_create(s, flags);
714
715 if (err)
361d575e 716 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
45530c44
CL
717 name, size, err);
718
719 s->refcount = -1; /* Exempt from merging for now */
720}
721
55de8b9c
AD
722struct kmem_cache *__init create_kmalloc_cache(const char *name,
723 unsigned int size, slab_flags_t flags,
724 unsigned int useroffset, unsigned int usersize)
45530c44
CL
725{
726 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
727
728 if (!s)
729 panic("Out of memory when creating slab %s\n", name);
730
6c0c21ad 731 create_boot_cache(s, name, size, flags, useroffset, usersize);
45530c44
CL
732 list_add(&s->list, &slab_caches);
733 s->refcount = 1;
734 return s;
735}
736
cc252eae 737struct kmem_cache *
a07057dc
AB
738kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
739{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
9425c58e
CL
740EXPORT_SYMBOL(kmalloc_caches);
741
2c59dd65
CL
742/*
743 * Conversion table for small slabs sizes / 8 to the index in the
744 * kmalloc array. This is necessary for slabs < 192 since we have non power
745 * of two cache sizes there. The size of larger slabs can be determined using
746 * fls.
747 */
d5f86655 748static u8 size_index[24] __ro_after_init = {
2c59dd65
CL
749 3, /* 8 */
750 4, /* 16 */
751 5, /* 24 */
752 5, /* 32 */
753 6, /* 40 */
754 6, /* 48 */
755 6, /* 56 */
756 6, /* 64 */
757 1, /* 72 */
758 1, /* 80 */
759 1, /* 88 */
760 1, /* 96 */
761 7, /* 104 */
762 7, /* 112 */
763 7, /* 120 */
764 7, /* 128 */
765 2, /* 136 */
766 2, /* 144 */
767 2, /* 152 */
768 2, /* 160 */
769 2, /* 168 */
770 2, /* 176 */
771 2, /* 184 */
772 2 /* 192 */
773};
774
ac914d08 775static inline unsigned int size_index_elem(unsigned int bytes)
2c59dd65
CL
776{
777 return (bytes - 1) / 8;
778}
779
780/*
781 * Find the kmem_cache structure that serves a given size of
782 * allocation
783 */
784struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
785{
d5f86655 786 unsigned int index;
2c59dd65
CL
787
788 if (size <= 192) {
789 if (!size)
790 return ZERO_SIZE_PTR;
791
792 index = size_index[size_index_elem(size)];
61448479 793 } else {
221d7da6 794 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
61448479 795 return NULL;
2c59dd65 796 index = fls(size - 1);
61448479 797 }
2c59dd65 798
cc252eae 799 return kmalloc_caches[kmalloc_type(flags)][index];
2c59dd65
CL
800}
801
cb5d9fb3
PL
802#ifdef CONFIG_ZONE_DMA
803#define INIT_KMALLOC_INFO(__size, __short_size) \
804{ \
805 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
806 .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \
807 .name[KMALLOC_DMA] = "dma-kmalloc-" #__short_size, \
808 .size = __size, \
809}
810#else
811#define INIT_KMALLOC_INFO(__size, __short_size) \
812{ \
813 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
814 .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \
815 .size = __size, \
816}
817#endif
818
4066c33d
GG
819/*
820 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
821 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
822 * kmalloc-67108864.
823 */
af3b5f87 824const struct kmalloc_info_struct kmalloc_info[] __initconst = {
cb5d9fb3
PL
825 INIT_KMALLOC_INFO(0, 0),
826 INIT_KMALLOC_INFO(96, 96),
827 INIT_KMALLOC_INFO(192, 192),
828 INIT_KMALLOC_INFO(8, 8),
829 INIT_KMALLOC_INFO(16, 16),
830 INIT_KMALLOC_INFO(32, 32),
831 INIT_KMALLOC_INFO(64, 64),
832 INIT_KMALLOC_INFO(128, 128),
833 INIT_KMALLOC_INFO(256, 256),
834 INIT_KMALLOC_INFO(512, 512),
835 INIT_KMALLOC_INFO(1024, 1k),
836 INIT_KMALLOC_INFO(2048, 2k),
837 INIT_KMALLOC_INFO(4096, 4k),
838 INIT_KMALLOC_INFO(8192, 8k),
839 INIT_KMALLOC_INFO(16384, 16k),
840 INIT_KMALLOC_INFO(32768, 32k),
841 INIT_KMALLOC_INFO(65536, 64k),
842 INIT_KMALLOC_INFO(131072, 128k),
843 INIT_KMALLOC_INFO(262144, 256k),
844 INIT_KMALLOC_INFO(524288, 512k),
845 INIT_KMALLOC_INFO(1048576, 1M),
846 INIT_KMALLOC_INFO(2097152, 2M),
847 INIT_KMALLOC_INFO(4194304, 4M),
848 INIT_KMALLOC_INFO(8388608, 8M),
849 INIT_KMALLOC_INFO(16777216, 16M),
850 INIT_KMALLOC_INFO(33554432, 32M),
851 INIT_KMALLOC_INFO(67108864, 64M)
4066c33d
GG
852};
853
f97d5f63 854/*
34cc6990
DS
855 * Patch up the size_index table if we have strange large alignment
856 * requirements for the kmalloc array. This is only the case for
857 * MIPS it seems. The standard arches will not generate any code here.
858 *
859 * Largest permitted alignment is 256 bytes due to the way we
860 * handle the index determination for the smaller caches.
861 *
862 * Make sure that nothing crazy happens if someone starts tinkering
863 * around with ARCH_KMALLOC_MINALIGN
f97d5f63 864 */
34cc6990 865void __init setup_kmalloc_cache_index_table(void)
f97d5f63 866{
ac914d08 867 unsigned int i;
f97d5f63 868
2c59dd65
CL
869 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
870 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
871
872 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
ac914d08 873 unsigned int elem = size_index_elem(i);
2c59dd65
CL
874
875 if (elem >= ARRAY_SIZE(size_index))
876 break;
877 size_index[elem] = KMALLOC_SHIFT_LOW;
878 }
879
880 if (KMALLOC_MIN_SIZE >= 64) {
881 /*
882 * The 96 byte size cache is not used if the alignment
883 * is 64 byte.
884 */
885 for (i = 64 + 8; i <= 96; i += 8)
886 size_index[size_index_elem(i)] = 7;
887
888 }
889
890 if (KMALLOC_MIN_SIZE >= 128) {
891 /*
892 * The 192 byte sized cache is not used if the alignment
893 * is 128 byte. Redirect kmalloc to use the 256 byte cache
894 * instead.
895 */
896 for (i = 128 + 8; i <= 192; i += 8)
897 size_index[size_index_elem(i)] = 8;
898 }
34cc6990
DS
899}
900
1291523f 901static void __init
13657d0a 902new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
a9730fca 903{
cb5d9fb3 904 if (type == KMALLOC_RECLAIM)
1291523f 905 flags |= SLAB_RECLAIM_ACCOUNT;
1291523f 906
cb5d9fb3
PL
907 kmalloc_caches[type][idx] = create_kmalloc_cache(
908 kmalloc_info[idx].name[type],
6c0c21ad
DW
909 kmalloc_info[idx].size, flags, 0,
910 kmalloc_info[idx].size);
a9730fca
CL
911}
912
34cc6990
DS
913/*
914 * Create the kmalloc array. Some of the regular kmalloc arrays
915 * may already have been created because they were needed to
916 * enable allocations for slab creation.
917 */
d50112ed 918void __init create_kmalloc_caches(slab_flags_t flags)
34cc6990 919{
13657d0a
PL
920 int i;
921 enum kmalloc_cache_type type;
34cc6990 922
1291523f
VB
923 for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
924 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
925 if (!kmalloc_caches[type][i])
926 new_kmalloc_cache(i, type, flags);
f97d5f63 927
1291523f
VB
928 /*
929 * Caches that are not of the two-to-the-power-of size.
930 * These have to be created immediately after the
931 * earlier power of two caches
932 */
933 if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
934 !kmalloc_caches[type][1])
935 new_kmalloc_cache(1, type, flags);
936 if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
937 !kmalloc_caches[type][2])
938 new_kmalloc_cache(2, type, flags);
939 }
8a965b3b
CL
940 }
941
f97d5f63
CL
942 /* Kmalloc array is now usable */
943 slab_state = UP;
944
f97d5f63
CL
945#ifdef CONFIG_ZONE_DMA
946 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
cc252eae 947 struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
f97d5f63
CL
948
949 if (s) {
cc252eae 950 kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
cb5d9fb3 951 kmalloc_info[i].name[KMALLOC_DMA],
dc0a7f75 952 kmalloc_info[i].size,
49f2d241
VB
953 SLAB_CACHE_DMA | flags, 0,
954 kmalloc_info[i].size);
f97d5f63
CL
955 }
956 }
957#endif
958}
45530c44
CL
959#endif /* !CONFIG_SLOB */
960
44405099
LL
961gfp_t kmalloc_fix_flags(gfp_t flags)
962{
963 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
964
965 flags &= ~GFP_SLAB_BUG_MASK;
966 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
967 invalid_mask, &invalid_mask, flags, &flags);
968 dump_stack();
969
970 return flags;
971}
972
cea371f4
VD
973/*
974 * To avoid unnecessary overhead, we pass through large allocation requests
975 * directly to the page allocator. We use __GFP_COMP, because we will need to
976 * know the allocation order to free the pages properly in kfree.
977 */
52383431
VD
978void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
979{
6a486c0a 980 void *ret = NULL;
52383431
VD
981 struct page *page;
982
44405099
LL
983 if (unlikely(flags & GFP_SLAB_BUG_MASK))
984 flags = kmalloc_fix_flags(flags);
985
52383431 986 flags |= __GFP_COMP;
4949148a 987 page = alloc_pages(flags, order);
6a486c0a
VB
988 if (likely(page)) {
989 ret = page_address(page);
d42f3245
RG
990 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
991 PAGE_SIZE << order);
6a486c0a 992 }
0116523c 993 ret = kasan_kmalloc_large(ret, size, flags);
a2f77575 994 /* As ret might get tagged, call kmemleak hook after KASAN. */
53128245 995 kmemleak_alloc(ret, size, 1, flags);
52383431
VD
996 return ret;
997}
998EXPORT_SYMBOL(kmalloc_order);
999
f1b6eb6e
CL
1000#ifdef CONFIG_TRACING
1001void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1002{
1003 void *ret = kmalloc_order(size, flags, order);
1004 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1005 return ret;
1006}
1007EXPORT_SYMBOL(kmalloc_order_trace);
1008#endif
45530c44 1009
7c00fce9
TG
1010#ifdef CONFIG_SLAB_FREELIST_RANDOM
1011/* Randomize a generic freelist */
1012static void freelist_randomize(struct rnd_state *state, unsigned int *list,
302d55d5 1013 unsigned int count)
7c00fce9 1014{
7c00fce9 1015 unsigned int rand;
302d55d5 1016 unsigned int i;
7c00fce9
TG
1017
1018 for (i = 0; i < count; i++)
1019 list[i] = i;
1020
1021 /* Fisher-Yates shuffle */
1022 for (i = count - 1; i > 0; i--) {
1023 rand = prandom_u32_state(state);
1024 rand %= (i + 1);
1025 swap(list[i], list[rand]);
1026 }
1027}
1028
1029/* Create a random sequence per cache */
1030int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1031 gfp_t gfp)
1032{
1033 struct rnd_state state;
1034
1035 if (count < 2 || cachep->random_seq)
1036 return 0;
1037
1038 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1039 if (!cachep->random_seq)
1040 return -ENOMEM;
1041
1042 /* Get best entropy at this stage of boot */
1043 prandom_seed_state(&state, get_random_long());
1044
1045 freelist_randomize(&state, cachep->random_seq, count);
1046 return 0;
1047}
1048
1049/* Destroy the per-cache random freelist sequence */
1050void cache_random_seq_destroy(struct kmem_cache *cachep)
1051{
1052 kfree(cachep->random_seq);
1053 cachep->random_seq = NULL;
1054}
1055#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1056
5b365771 1057#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
e9b4db2b 1058#ifdef CONFIG_SLAB
0825a6f9 1059#define SLABINFO_RIGHTS (0600)
e9b4db2b 1060#else
0825a6f9 1061#define SLABINFO_RIGHTS (0400)
e9b4db2b
WL
1062#endif
1063
b047501c 1064static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
1065{
1066 /*
1067 * Output format version, so at least we can change it
1068 * without _too_ many complaints.
1069 */
1070#ifdef CONFIG_DEBUG_SLAB
1071 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1072#else
1073 seq_puts(m, "slabinfo - version: 2.1\n");
1074#endif
756a025f 1075 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
bcee6e2a
GC
1076 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1077 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1078#ifdef CONFIG_DEBUG_SLAB
756a025f 1079 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
bcee6e2a
GC
1080 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1081#endif
1082 seq_putc(m, '\n');
1083}
1084
1df3b26f 1085void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 1086{
b7454ad3 1087 mutex_lock(&slab_mutex);
c7094406 1088 return seq_list_start(&slab_caches, *pos);
b7454ad3
GC
1089}
1090
276a2439 1091void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3 1092{
c7094406 1093 return seq_list_next(p, &slab_caches, pos);
b7454ad3
GC
1094}
1095
276a2439 1096void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
1097{
1098 mutex_unlock(&slab_mutex);
1099}
1100
749c5415
GC
1101static void
1102memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1103{
1104 struct kmem_cache *c;
1105 struct slabinfo sinfo;
749c5415 1106
9855609b
RG
1107 c = memcg_cache(s);
1108 if (c) {
749c5415
GC
1109 memset(&sinfo, 0, sizeof(sinfo));
1110 get_slabinfo(c, &sinfo);
1111
1112 info->active_slabs += sinfo.active_slabs;
1113 info->num_slabs += sinfo.num_slabs;
1114 info->shared_avail += sinfo.shared_avail;
1115 info->active_objs += sinfo.active_objs;
1116 info->num_objs += sinfo.num_objs;
1117 }
1118}
1119
b047501c 1120static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 1121{
0d7561c6
GC
1122 struct slabinfo sinfo;
1123
1124 memset(&sinfo, 0, sizeof(sinfo));
1125 get_slabinfo(s, &sinfo);
1126
749c5415
GC
1127 memcg_accumulate_slabinfo(s, &sinfo);
1128
0d7561c6 1129 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
749c5415 1130 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
1131 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1132
1133 seq_printf(m, " : tunables %4u %4u %4u",
1134 sinfo.limit, sinfo.batchcount, sinfo.shared);
1135 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1136 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1137 slabinfo_show_stats(m, s);
1138 seq_putc(m, '\n');
b7454ad3
GC
1139}
1140
1df3b26f 1141static int slab_show(struct seq_file *m, void *p)
749c5415 1142{
c7094406 1143 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
749c5415 1144
c7094406 1145 if (p == slab_caches.next)
1df3b26f 1146 print_slabinfo_header(m);
c7094406
RG
1147 if (is_root_cache(s))
1148 cache_show(s, m);
b047501c
VD
1149 return 0;
1150}
1151
852d8be0
YS
1152void dump_unreclaimable_slab(void)
1153{
1154 struct kmem_cache *s, *s2;
1155 struct slabinfo sinfo;
1156
1157 /*
1158 * Here acquiring slab_mutex is risky since we don't prefer to get
1159 * sleep in oom path. But, without mutex hold, it may introduce a
1160 * risk of crash.
1161 * Use mutex_trylock to protect the list traverse, dump nothing
1162 * without acquiring the mutex.
1163 */
1164 if (!mutex_trylock(&slab_mutex)) {
1165 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1166 return;
1167 }
1168
1169 pr_info("Unreclaimable slab info:\n");
1170 pr_info("Name Used Total\n");
1171
1172 list_for_each_entry_safe(s, s2, &slab_caches, list) {
1173 if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
1174 continue;
1175
1176 get_slabinfo(s, &sinfo);
1177
1178 if (sinfo.num_objs > 0)
1179 pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
1180 (sinfo.active_objs * s->size) / 1024,
1181 (sinfo.num_objs * s->size) / 1024);
1182 }
1183 mutex_unlock(&slab_mutex);
1184}
1185
a87425a3 1186#if defined(CONFIG_MEMCG_KMEM)
b047501c
VD
1187int memcg_slab_show(struct seq_file *m, void *p)
1188{
4330a26b
RG
1189 /*
1190 * Deprecated.
1191 * Please, take a look at tools/cgroup/slabinfo.py .
1192 */
b047501c 1193 return 0;
749c5415 1194}
b047501c 1195#endif
749c5415 1196
b7454ad3
GC
1197/*
1198 * slabinfo_op - iterator that generates /proc/slabinfo
1199 *
1200 * Output layout:
1201 * cache-name
1202 * num-active-objs
1203 * total-objs
1204 * object size
1205 * num-active-slabs
1206 * total-slabs
1207 * num-pages-per-slab
1208 * + further values on SMP and with statistics enabled
1209 */
1210static const struct seq_operations slabinfo_op = {
1df3b26f 1211 .start = slab_start,
276a2439
WL
1212 .next = slab_next,
1213 .stop = slab_stop,
1df3b26f 1214 .show = slab_show,
b7454ad3
GC
1215};
1216
1217static int slabinfo_open(struct inode *inode, struct file *file)
1218{
1219 return seq_open(file, &slabinfo_op);
1220}
1221
97a32539 1222static const struct proc_ops slabinfo_proc_ops = {
d919b33d 1223 .proc_flags = PROC_ENTRY_PERMANENT,
97a32539
AD
1224 .proc_open = slabinfo_open,
1225 .proc_read = seq_read,
1226 .proc_write = slabinfo_write,
1227 .proc_lseek = seq_lseek,
1228 .proc_release = seq_release,
b7454ad3
GC
1229};
1230
1231static int __init slab_proc_init(void)
1232{
97a32539 1233 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
b7454ad3
GC
1234 return 0;
1235}
1236module_init(slab_proc_init);
fcf8a1e4
WL
1237
1238#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_MEMCG_KMEM)
1239/*
9855609b 1240 * Display information about kmem caches that have memcg cache.
fcf8a1e4
WL
1241 */
1242static int memcg_slabinfo_show(struct seq_file *m, void *unused)
1243{
1244 struct kmem_cache *s, *c;
1245 struct slabinfo sinfo;
1246
1247 mutex_lock(&slab_mutex);
1248 seq_puts(m, "# <name> <css_id[:dead|deact]> <active_objs> <num_objs>");
1249 seq_puts(m, " <active_slabs> <num_slabs>\n");
c7094406 1250 list_for_each_entry(s, &slab_caches, list) {
fcf8a1e4 1251 /*
9855609b 1252 * Skip kmem caches that don't have the memcg cache.
fcf8a1e4 1253 */
9855609b 1254 if (!s->memcg_params.memcg_cache)
fcf8a1e4
WL
1255 continue;
1256
1257 memset(&sinfo, 0, sizeof(sinfo));
1258 get_slabinfo(s, &sinfo);
1259 seq_printf(m, "%-17s root %6lu %6lu %6lu %6lu\n",
1260 cache_name(s), sinfo.active_objs, sinfo.num_objs,
1261 sinfo.active_slabs, sinfo.num_slabs);
1262
9855609b
RG
1263 c = s->memcg_params.memcg_cache;
1264 memset(&sinfo, 0, sizeof(sinfo));
1265 get_slabinfo(c, &sinfo);
1266 seq_printf(m, "%-17s %4d %6lu %6lu %6lu %6lu\n",
1267 cache_name(c), root_mem_cgroup->css.id,
1268 sinfo.active_objs, sinfo.num_objs,
1269 sinfo.active_slabs, sinfo.num_slabs);
fcf8a1e4
WL
1270 }
1271 mutex_unlock(&slab_mutex);
1272 return 0;
1273}
1274DEFINE_SHOW_ATTRIBUTE(memcg_slabinfo);
1275
1276static int __init memcg_slabinfo_init(void)
1277{
1278 debugfs_create_file("memcg_slabinfo", S_IFREG | S_IRUGO,
1279 NULL, NULL, &memcg_slabinfo_fops);
1280 return 0;
1281}
1282
1283late_initcall(memcg_slabinfo_init);
1284#endif /* CONFIG_DEBUG_FS && CONFIG_MEMCG_KMEM */
5b365771 1285#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
928cec9c
AR
1286
1287static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1288 gfp_t flags)
1289{
1290 void *ret;
fa9ba3aa 1291 size_t ks;
928cec9c 1292
fa9ba3aa 1293 ks = ksize(p);
928cec9c 1294
0316bec2 1295 if (ks >= new_size) {
0116523c 1296 p = kasan_krealloc((void *)p, new_size, flags);
928cec9c 1297 return (void *)p;
0316bec2 1298 }
928cec9c
AR
1299
1300 ret = kmalloc_track_caller(new_size, flags);
1301 if (ret && p)
1302 memcpy(ret, p, ks);
1303
1304 return ret;
1305}
1306
928cec9c
AR
1307/**
1308 * krealloc - reallocate memory. The contents will remain unchanged.
1309 * @p: object to reallocate memory for.
1310 * @new_size: how many bytes of memory are required.
1311 * @flags: the type of memory to allocate.
1312 *
1313 * The contents of the object pointed to are preserved up to the
1314 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1315 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1316 * %NULL pointer, the object pointed to is freed.
a862f68a
MR
1317 *
1318 * Return: pointer to the allocated memory or %NULL in case of error
928cec9c
AR
1319 */
1320void *krealloc(const void *p, size_t new_size, gfp_t flags)
1321{
1322 void *ret;
1323
1324 if (unlikely(!new_size)) {
1325 kfree(p);
1326 return ZERO_SIZE_PTR;
1327 }
1328
1329 ret = __do_krealloc(p, new_size, flags);
772a2fa5 1330 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
928cec9c
AR
1331 kfree(p);
1332
1333 return ret;
1334}
1335EXPORT_SYMBOL(krealloc);
1336
1337/**
453431a5 1338 * kfree_sensitive - Clear sensitive information in memory before freeing
928cec9c
AR
1339 * @p: object to free memory of
1340 *
1341 * The memory of the object @p points to is zeroed before freed.
453431a5 1342 * If @p is %NULL, kfree_sensitive() does nothing.
928cec9c
AR
1343 *
1344 * Note: this function zeroes the whole allocated buffer which can be a good
1345 * deal bigger than the requested buffer size passed to kmalloc(). So be
1346 * careful when using this function in performance sensitive code.
1347 */
453431a5 1348void kfree_sensitive(const void *p)
928cec9c
AR
1349{
1350 size_t ks;
1351 void *mem = (void *)p;
1352
928cec9c 1353 ks = ksize(mem);
fa9ba3aa
WK
1354 if (ks)
1355 memzero_explicit(mem, ks);
928cec9c
AR
1356 kfree(mem);
1357}
453431a5 1358EXPORT_SYMBOL(kfree_sensitive);
928cec9c 1359
10d1f8cb
ME
1360/**
1361 * ksize - get the actual amount of memory allocated for a given object
1362 * @objp: Pointer to the object
1363 *
1364 * kmalloc may internally round up allocations and return more memory
1365 * than requested. ksize() can be used to determine the actual amount of
1366 * memory allocated. The caller may use this additional memory, even though
1367 * a smaller amount of memory was initially specified with the kmalloc call.
1368 * The caller must guarantee that objp points to a valid object previously
1369 * allocated with either kmalloc() or kmem_cache_alloc(). The object
1370 * must not be freed during the duration of the call.
1371 *
1372 * Return: size of the actual memory used by @objp in bytes
1373 */
1374size_t ksize(const void *objp)
1375{
0d4ca4c9
ME
1376 size_t size;
1377
0d4ca4c9
ME
1378 /*
1379 * We need to check that the pointed to object is valid, and only then
1380 * unpoison the shadow memory below. We use __kasan_check_read(), to
1381 * generate a more useful report at the time ksize() is called (rather
1382 * than later where behaviour is undefined due to potential
1383 * use-after-free or double-free).
1384 *
1385 * If the pointed to memory is invalid we return 0, to avoid users of
1386 * ksize() writing to and potentially corrupting the memory region.
1387 *
1388 * We want to perform the check before __ksize(), to avoid potentially
1389 * crashing in __ksize() due to accessing invalid metadata.
1390 */
fa9ba3aa 1391 if (unlikely(ZERO_OR_NULL_PTR(objp)) || !__kasan_check_read(objp, 1))
0d4ca4c9
ME
1392 return 0;
1393
1394 size = __ksize(objp);
10d1f8cb
ME
1395 /*
1396 * We assume that ksize callers could use whole allocated area,
1397 * so we need to unpoison this area.
1398 */
1399 kasan_unpoison_shadow(objp, size);
1400 return size;
1401}
1402EXPORT_SYMBOL(ksize);
1403
928cec9c
AR
1404/* Tracepoints definitions. */
1405EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1406EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1407EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1408EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1409EXPORT_TRACEPOINT_SYMBOL(kfree);
1410EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
4f6923fb
HM
1411
1412int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1413{
1414 if (__should_failslab(s, gfpflags))
1415 return -ENOMEM;
1416 return 0;
1417}
1418ALLOW_ERROR_INJECTION(should_failslab, ERRNO);