]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/slab_common.c
mm: dump page when hitting a VM_BUG_ON using VM_BUG_ON_PAGE
[mirror_ubuntu-zesty-kernel.git] / mm / slab_common.c
CommitLineData
039363f3
CL
1/*
2 * Slab allocator functions that are independent of the allocator strategy
3 *
4 * (C) 2012 Christoph Lameter <cl@linux.com>
5 */
6#include <linux/slab.h>
7
8#include <linux/mm.h>
9#include <linux/poison.h>
10#include <linux/interrupt.h>
11#include <linux/memory.h>
12#include <linux/compiler.h>
13#include <linux/module.h>
20cea968
CL
14#include <linux/cpu.h>
15#include <linux/uaccess.h>
b7454ad3
GC
16#include <linux/seq_file.h>
17#include <linux/proc_fs.h>
039363f3
CL
18#include <asm/cacheflush.h>
19#include <asm/tlbflush.h>
20#include <asm/page.h>
2633d7a0 21#include <linux/memcontrol.h>
f1b6eb6e 22#include <trace/events/kmem.h>
039363f3 23
97d06609
CL
24#include "slab.h"
25
26enum slab_state slab_state;
18004c5d
CL
27LIST_HEAD(slab_caches);
28DEFINE_MUTEX(slab_mutex);
9b030cb8 29struct kmem_cache *kmem_cache;
97d06609 30
77be4b13 31#ifdef CONFIG_DEBUG_VM
2633d7a0
GC
32static int kmem_cache_sanity_check(struct mem_cgroup *memcg, const char *name,
33 size_t size)
039363f3
CL
34{
35 struct kmem_cache *s = NULL;
36
039363f3
CL
37 if (!name || in_interrupt() || size < sizeof(void *) ||
38 size > KMALLOC_MAX_SIZE) {
77be4b13
SK
39 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
40 return -EINVAL;
039363f3 41 }
b920536a 42
20cea968
CL
43 list_for_each_entry(s, &slab_caches, list) {
44 char tmp;
45 int res;
46
47 /*
48 * This happens when the module gets unloaded and doesn't
49 * destroy its slab cache and no-one else reuses the vmalloc
50 * area of the module. Print a warning.
51 */
52 res = probe_kernel_address(s->name, tmp);
53 if (res) {
77be4b13 54 pr_err("Slab cache with size %d has lost its name\n",
20cea968
CL
55 s->object_size);
56 continue;
57 }
58
3e374919 59#if !defined(CONFIG_SLUB) || !defined(CONFIG_SLUB_DEBUG_ON)
2633d7a0
GC
60 /*
61 * For simplicity, we won't check this in the list of memcg
62 * caches. We have control over memcg naming, and if there
63 * aren't duplicates in the global list, there won't be any
64 * duplicates in the memcg lists as well.
65 */
66 if (!memcg && !strcmp(s->name, name)) {
77be4b13
SK
67 pr_err("%s (%s): Cache name already exists.\n",
68 __func__, name);
20cea968
CL
69 dump_stack();
70 s = NULL;
77be4b13 71 return -EINVAL;
20cea968 72 }
3e374919 73#endif
20cea968
CL
74 }
75
76 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
77 return 0;
78}
79#else
2633d7a0
GC
80static inline int kmem_cache_sanity_check(struct mem_cgroup *memcg,
81 const char *name, size_t size)
77be4b13
SK
82{
83 return 0;
84}
20cea968
CL
85#endif
86
55007d84
GC
87#ifdef CONFIG_MEMCG_KMEM
88int memcg_update_all_caches(int num_memcgs)
89{
90 struct kmem_cache *s;
91 int ret = 0;
92 mutex_lock(&slab_mutex);
93
94 list_for_each_entry(s, &slab_caches, list) {
95 if (!is_root_cache(s))
96 continue;
97
98 ret = memcg_update_cache_size(s, num_memcgs);
99 /*
100 * See comment in memcontrol.c, memcg_update_cache_size:
101 * Instead of freeing the memory, we'll just leave the caches
102 * up to this point in an updated state.
103 */
104 if (ret)
105 goto out;
106 }
107
108 memcg_update_array_size(num_memcgs);
109out:
110 mutex_unlock(&slab_mutex);
111 return ret;
112}
113#endif
114
45906855
CL
115/*
116 * Figure out what the alignment of the objects will be given a set of
117 * flags, a user specified alignment and the size of the objects.
118 */
119unsigned long calculate_alignment(unsigned long flags,
120 unsigned long align, unsigned long size)
121{
122 /*
123 * If the user wants hardware cache aligned objects then follow that
124 * suggestion if the object is sufficiently large.
125 *
126 * The hardware cache alignment cannot override the specified
127 * alignment though. If that is greater then use it.
128 */
129 if (flags & SLAB_HWCACHE_ALIGN) {
130 unsigned long ralign = cache_line_size();
131 while (size <= ralign / 2)
132 ralign /= 2;
133 align = max(align, ralign);
134 }
135
136 if (align < ARCH_SLAB_MINALIGN)
137 align = ARCH_SLAB_MINALIGN;
138
139 return ALIGN(align, sizeof(void *));
140}
141
142
77be4b13
SK
143/*
144 * kmem_cache_create - Create a cache.
145 * @name: A string which is used in /proc/slabinfo to identify this cache.
146 * @size: The size of objects to be created in this cache.
147 * @align: The required alignment for the objects.
148 * @flags: SLAB flags
149 * @ctor: A constructor for the objects.
150 *
151 * Returns a ptr to the cache on success, NULL on failure.
152 * Cannot be called within a interrupt, but can be interrupted.
153 * The @ctor is run when new pages are allocated by the cache.
154 *
155 * The flags are
156 *
157 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
158 * to catch references to uninitialised memory.
159 *
160 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
161 * for buffer overruns.
162 *
163 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
164 * cacheline. This can be beneficial if you're counting cycles as closely
165 * as davem.
166 */
167
2633d7a0
GC
168struct kmem_cache *
169kmem_cache_create_memcg(struct mem_cgroup *memcg, const char *name, size_t size,
943a451a
GC
170 size_t align, unsigned long flags, void (*ctor)(void *),
171 struct kmem_cache *parent_cache)
77be4b13
SK
172{
173 struct kmem_cache *s = NULL;
686d550d 174 int err = 0;
039363f3 175
77be4b13
SK
176 get_online_cpus();
177 mutex_lock(&slab_mutex);
686d550d 178
2633d7a0 179 if (!kmem_cache_sanity_check(memcg, name, size) == 0)
686d550d
CL
180 goto out_locked;
181
d8843922
GC
182 /*
183 * Some allocators will constraint the set of valid flags to a subset
184 * of all flags. We expect them to define CACHE_CREATE_MASK in this
185 * case, and we'll just provide them with a sanitized version of the
186 * passed flags.
187 */
188 flags &= CACHE_CREATE_MASK;
686d550d 189
2633d7a0 190 s = __kmem_cache_alias(memcg, name, size, align, flags, ctor);
cbb79694
CL
191 if (s)
192 goto out_locked;
193
278b1bb1 194 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
db265eca 195 if (s) {
8a13a4cc 196 s->object_size = s->size = size;
45906855 197 s->align = calculate_alignment(flags, align, size);
8a13a4cc 198 s->ctor = ctor;
2633d7a0 199
943a451a 200 if (memcg_register_cache(memcg, s, parent_cache)) {
2633d7a0
GC
201 kmem_cache_free(kmem_cache, s);
202 err = -ENOMEM;
203 goto out_locked;
204 }
205
8a13a4cc
CL
206 s->name = kstrdup(name, GFP_KERNEL);
207 if (!s->name) {
208 kmem_cache_free(kmem_cache, s);
209 err = -ENOMEM;
210 goto out_locked;
211 }
212
213 err = __kmem_cache_create(s, flags);
cce89f4f 214 if (!err) {
cce89f4f 215 s->refcount = 1;
db265eca 216 list_add(&s->list, &slab_caches);
2633d7a0 217 memcg_cache_list_add(memcg, s);
cce89f4f 218 } else {
8a13a4cc 219 kfree(s->name);
278b1bb1
CL
220 kmem_cache_free(kmem_cache, s);
221 }
8a13a4cc 222 } else
278b1bb1 223 err = -ENOMEM;
7c9adf5a 224
686d550d 225out_locked:
20cea968
CL
226 mutex_unlock(&slab_mutex);
227 put_online_cpus();
228
686d550d
CL
229 if (err) {
230
231 if (flags & SLAB_PANIC)
232 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
233 name, err);
234 else {
235 printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
236 name, err);
237 dump_stack();
238 }
239
240 return NULL;
241 }
039363f3
CL
242
243 return s;
244}
2633d7a0
GC
245
246struct kmem_cache *
247kmem_cache_create(const char *name, size_t size, size_t align,
248 unsigned long flags, void (*ctor)(void *))
249{
943a451a 250 return kmem_cache_create_memcg(NULL, name, size, align, flags, ctor, NULL);
2633d7a0 251}
039363f3 252EXPORT_SYMBOL(kmem_cache_create);
97d06609 253
945cf2b6
CL
254void kmem_cache_destroy(struct kmem_cache *s)
255{
7cf27982
GC
256 /* Destroy all the children caches if we aren't a memcg cache */
257 kmem_cache_destroy_memcg_children(s);
258
945cf2b6
CL
259 get_online_cpus();
260 mutex_lock(&slab_mutex);
261 s->refcount--;
262 if (!s->refcount) {
263 list_del(&s->list);
264
265 if (!__kmem_cache_shutdown(s)) {
210ed9de 266 mutex_unlock(&slab_mutex);
945cf2b6
CL
267 if (s->flags & SLAB_DESTROY_BY_RCU)
268 rcu_barrier();
269
2633d7a0 270 memcg_release_cache(s);
db265eca 271 kfree(s->name);
8f4c765c 272 kmem_cache_free(kmem_cache, s);
945cf2b6
CL
273 } else {
274 list_add(&s->list, &slab_caches);
210ed9de 275 mutex_unlock(&slab_mutex);
945cf2b6
CL
276 printk(KERN_ERR "kmem_cache_destroy %s: Slab cache still has objects\n",
277 s->name);
278 dump_stack();
279 }
210ed9de
JK
280 } else {
281 mutex_unlock(&slab_mutex);
945cf2b6 282 }
945cf2b6
CL
283 put_online_cpus();
284}
285EXPORT_SYMBOL(kmem_cache_destroy);
286
97d06609
CL
287int slab_is_available(void)
288{
289 return slab_state >= UP;
290}
b7454ad3 291
45530c44
CL
292#ifndef CONFIG_SLOB
293/* Create a cache during boot when no slab services are available yet */
294void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
295 unsigned long flags)
296{
297 int err;
298
299 s->name = name;
300 s->size = s->object_size = size;
45906855 301 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
45530c44
CL
302 err = __kmem_cache_create(s, flags);
303
304 if (err)
31ba7346 305 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
45530c44
CL
306 name, size, err);
307
308 s->refcount = -1; /* Exempt from merging for now */
309}
310
311struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
312 unsigned long flags)
313{
314 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
315
316 if (!s)
317 panic("Out of memory when creating slab %s\n", name);
318
319 create_boot_cache(s, name, size, flags);
320 list_add(&s->list, &slab_caches);
321 s->refcount = 1;
322 return s;
323}
324
9425c58e
CL
325struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
326EXPORT_SYMBOL(kmalloc_caches);
327
328#ifdef CONFIG_ZONE_DMA
329struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
330EXPORT_SYMBOL(kmalloc_dma_caches);
331#endif
332
2c59dd65
CL
333/*
334 * Conversion table for small slabs sizes / 8 to the index in the
335 * kmalloc array. This is necessary for slabs < 192 since we have non power
336 * of two cache sizes there. The size of larger slabs can be determined using
337 * fls.
338 */
339static s8 size_index[24] = {
340 3, /* 8 */
341 4, /* 16 */
342 5, /* 24 */
343 5, /* 32 */
344 6, /* 40 */
345 6, /* 48 */
346 6, /* 56 */
347 6, /* 64 */
348 1, /* 72 */
349 1, /* 80 */
350 1, /* 88 */
351 1, /* 96 */
352 7, /* 104 */
353 7, /* 112 */
354 7, /* 120 */
355 7, /* 128 */
356 2, /* 136 */
357 2, /* 144 */
358 2, /* 152 */
359 2, /* 160 */
360 2, /* 168 */
361 2, /* 176 */
362 2, /* 184 */
363 2 /* 192 */
364};
365
366static inline int size_index_elem(size_t bytes)
367{
368 return (bytes - 1) / 8;
369}
370
371/*
372 * Find the kmem_cache structure that serves a given size of
373 * allocation
374 */
375struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
376{
377 int index;
378
9de1bc87 379 if (unlikely(size > KMALLOC_MAX_SIZE)) {
907985f4 380 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
6286ae97 381 return NULL;
907985f4 382 }
6286ae97 383
2c59dd65
CL
384 if (size <= 192) {
385 if (!size)
386 return ZERO_SIZE_PTR;
387
388 index = size_index[size_index_elem(size)];
389 } else
390 index = fls(size - 1);
391
392#ifdef CONFIG_ZONE_DMA
b1e05416 393 if (unlikely((flags & GFP_DMA)))
2c59dd65
CL
394 return kmalloc_dma_caches[index];
395
396#endif
397 return kmalloc_caches[index];
398}
399
f97d5f63
CL
400/*
401 * Create the kmalloc array. Some of the regular kmalloc arrays
402 * may already have been created because they were needed to
403 * enable allocations for slab creation.
404 */
405void __init create_kmalloc_caches(unsigned long flags)
406{
407 int i;
408
2c59dd65
CL
409 /*
410 * Patch up the size_index table if we have strange large alignment
411 * requirements for the kmalloc array. This is only the case for
412 * MIPS it seems. The standard arches will not generate any code here.
413 *
414 * Largest permitted alignment is 256 bytes due to the way we
415 * handle the index determination for the smaller caches.
416 *
417 * Make sure that nothing crazy happens if someone starts tinkering
418 * around with ARCH_KMALLOC_MINALIGN
419 */
420 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
421 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
422
423 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
424 int elem = size_index_elem(i);
425
426 if (elem >= ARRAY_SIZE(size_index))
427 break;
428 size_index[elem] = KMALLOC_SHIFT_LOW;
429 }
430
431 if (KMALLOC_MIN_SIZE >= 64) {
432 /*
433 * The 96 byte size cache is not used if the alignment
434 * is 64 byte.
435 */
436 for (i = 64 + 8; i <= 96; i += 8)
437 size_index[size_index_elem(i)] = 7;
438
439 }
440
441 if (KMALLOC_MIN_SIZE >= 128) {
442 /*
443 * The 192 byte sized cache is not used if the alignment
444 * is 128 byte. Redirect kmalloc to use the 256 byte cache
445 * instead.
446 */
447 for (i = 128 + 8; i <= 192; i += 8)
448 size_index[size_index_elem(i)] = 8;
449 }
8a965b3b
CL
450 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
451 if (!kmalloc_caches[i]) {
f97d5f63
CL
452 kmalloc_caches[i] = create_kmalloc_cache(NULL,
453 1 << i, flags);
956e46ef 454 }
f97d5f63 455
956e46ef
CM
456 /*
457 * Caches that are not of the two-to-the-power-of size.
458 * These have to be created immediately after the
459 * earlier power of two caches
460 */
461 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
462 kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
8a965b3b 463
956e46ef
CM
464 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
465 kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
8a965b3b
CL
466 }
467
f97d5f63
CL
468 /* Kmalloc array is now usable */
469 slab_state = UP;
470
471 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
472 struct kmem_cache *s = kmalloc_caches[i];
473 char *n;
474
475 if (s) {
476 n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
477
478 BUG_ON(!n);
479 s->name = n;
480 }
481 }
482
483#ifdef CONFIG_ZONE_DMA
484 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
485 struct kmem_cache *s = kmalloc_caches[i];
486
487 if (s) {
488 int size = kmalloc_size(i);
489 char *n = kasprintf(GFP_NOWAIT,
490 "dma-kmalloc-%d", size);
491
492 BUG_ON(!n);
493 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
494 size, SLAB_CACHE_DMA | flags);
495 }
496 }
497#endif
498}
45530c44
CL
499#endif /* !CONFIG_SLOB */
500
f1b6eb6e
CL
501#ifdef CONFIG_TRACING
502void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
503{
504 void *ret = kmalloc_order(size, flags, order);
505 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
506 return ret;
507}
508EXPORT_SYMBOL(kmalloc_order_trace);
509#endif
45530c44 510
b7454ad3 511#ifdef CONFIG_SLABINFO
e9b4db2b
WL
512
513#ifdef CONFIG_SLAB
514#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
515#else
516#define SLABINFO_RIGHTS S_IRUSR
517#endif
518
749c5415 519void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
520{
521 /*
522 * Output format version, so at least we can change it
523 * without _too_ many complaints.
524 */
525#ifdef CONFIG_DEBUG_SLAB
526 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
527#else
528 seq_puts(m, "slabinfo - version: 2.1\n");
529#endif
530 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
531 "<objperslab> <pagesperslab>");
532 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
533 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
534#ifdef CONFIG_DEBUG_SLAB
535 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
536 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
537 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
538#endif
539 seq_putc(m, '\n');
540}
541
b7454ad3
GC
542static void *s_start(struct seq_file *m, loff_t *pos)
543{
544 loff_t n = *pos;
545
546 mutex_lock(&slab_mutex);
547 if (!n)
548 print_slabinfo_header(m);
549
550 return seq_list_start(&slab_caches, *pos);
551}
552
276a2439 553void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3
GC
554{
555 return seq_list_next(p, &slab_caches, pos);
556}
557
276a2439 558void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
559{
560 mutex_unlock(&slab_mutex);
561}
562
749c5415
GC
563static void
564memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
565{
566 struct kmem_cache *c;
567 struct slabinfo sinfo;
568 int i;
569
570 if (!is_root_cache(s))
571 return;
572
573 for_each_memcg_cache_index(i) {
2ade4de8 574 c = cache_from_memcg_idx(s, i);
749c5415
GC
575 if (!c)
576 continue;
577
578 memset(&sinfo, 0, sizeof(sinfo));
579 get_slabinfo(c, &sinfo);
580
581 info->active_slabs += sinfo.active_slabs;
582 info->num_slabs += sinfo.num_slabs;
583 info->shared_avail += sinfo.shared_avail;
584 info->active_objs += sinfo.active_objs;
585 info->num_objs += sinfo.num_objs;
586 }
587}
588
589int cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 590{
0d7561c6
GC
591 struct slabinfo sinfo;
592
593 memset(&sinfo, 0, sizeof(sinfo));
594 get_slabinfo(s, &sinfo);
595
749c5415
GC
596 memcg_accumulate_slabinfo(s, &sinfo);
597
0d7561c6 598 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
749c5415 599 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
600 sinfo.objects_per_slab, (1 << sinfo.cache_order));
601
602 seq_printf(m, " : tunables %4u %4u %4u",
603 sinfo.limit, sinfo.batchcount, sinfo.shared);
604 seq_printf(m, " : slabdata %6lu %6lu %6lu",
605 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
606 slabinfo_show_stats(m, s);
607 seq_putc(m, '\n');
608 return 0;
b7454ad3
GC
609}
610
749c5415
GC
611static int s_show(struct seq_file *m, void *p)
612{
613 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
614
615 if (!is_root_cache(s))
616 return 0;
617 return cache_show(s, m);
618}
619
b7454ad3
GC
620/*
621 * slabinfo_op - iterator that generates /proc/slabinfo
622 *
623 * Output layout:
624 * cache-name
625 * num-active-objs
626 * total-objs
627 * object size
628 * num-active-slabs
629 * total-slabs
630 * num-pages-per-slab
631 * + further values on SMP and with statistics enabled
632 */
633static const struct seq_operations slabinfo_op = {
634 .start = s_start,
276a2439
WL
635 .next = slab_next,
636 .stop = slab_stop,
b7454ad3
GC
637 .show = s_show,
638};
639
640static int slabinfo_open(struct inode *inode, struct file *file)
641{
642 return seq_open(file, &slabinfo_op);
643}
644
645static const struct file_operations proc_slabinfo_operations = {
646 .open = slabinfo_open,
647 .read = seq_read,
648 .write = slabinfo_write,
649 .llseek = seq_lseek,
650 .release = seq_release,
651};
652
653static int __init slab_proc_init(void)
654{
e9b4db2b
WL
655 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
656 &proc_slabinfo_operations);
b7454ad3
GC
657 return 0;
658}
659module_init(slab_proc_init);
660#endif /* CONFIG_SLABINFO */