]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/slab_common.c
mm: memcg/slab: stop setting page->mem_cgroup pointer for slab pages
[mirror_ubuntu-hirsute-kernel.git] / mm / slab_common.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
039363f3
CL
2/*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7#include <linux/slab.h>
8
9#include <linux/mm.h>
10#include <linux/poison.h>
11#include <linux/interrupt.h>
12#include <linux/memory.h>
1c99ba29 13#include <linux/cache.h>
039363f3
CL
14#include <linux/compiler.h>
15#include <linux/module.h>
20cea968
CL
16#include <linux/cpu.h>
17#include <linux/uaccess.h>
b7454ad3
GC
18#include <linux/seq_file.h>
19#include <linux/proc_fs.h>
039363f3
CL
20#include <asm/cacheflush.h>
21#include <asm/tlbflush.h>
22#include <asm/page.h>
2633d7a0 23#include <linux/memcontrol.h>
928cec9c
AR
24
25#define CREATE_TRACE_POINTS
f1b6eb6e 26#include <trace/events/kmem.h>
039363f3 27
97d06609
CL
28#include "slab.h"
29
30enum slab_state slab_state;
18004c5d
CL
31LIST_HEAD(slab_caches);
32DEFINE_MUTEX(slab_mutex);
9b030cb8 33struct kmem_cache *kmem_cache;
97d06609 34
2d891fbc
KC
35#ifdef CONFIG_HARDENED_USERCOPY
36bool usercopy_fallback __ro_after_init =
37 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
38module_param(usercopy_fallback, bool, 0400);
39MODULE_PARM_DESC(usercopy_fallback,
40 "WARN instead of reject usercopy whitelist violations");
41#endif
42
657dc2f9
TH
43static LIST_HEAD(slab_caches_to_rcu_destroy);
44static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
45static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
46 slab_caches_to_rcu_destroy_workfn);
47
423c929c
JK
48/*
49 * Set of flags that will prevent slab merging
50 */
51#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
5f0d5a3a 52 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
7ed2f9e6 53 SLAB_FAILSLAB | SLAB_KASAN)
423c929c 54
230e9fc2 55#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
6d6ea1e9 56 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
423c929c
JK
57
58/*
59 * Merge control. If this is set then no merging of slab caches will occur.
423c929c 60 */
7660a6fd 61static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
423c929c
JK
62
63static int __init setup_slab_nomerge(char *str)
64{
7660a6fd 65 slab_nomerge = true;
423c929c
JK
66 return 1;
67}
68
69#ifdef CONFIG_SLUB
70__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
71#endif
72
73__setup("slab_nomerge", setup_slab_nomerge);
74
07f361b2
JK
75/*
76 * Determine the size of a slab object
77 */
78unsigned int kmem_cache_size(struct kmem_cache *s)
79{
80 return s->object_size;
81}
82EXPORT_SYMBOL(kmem_cache_size);
83
77be4b13 84#ifdef CONFIG_DEBUG_VM
f4957d5b 85static int kmem_cache_sanity_check(const char *name, unsigned int size)
039363f3 86{
039363f3
CL
87 if (!name || in_interrupt() || size < sizeof(void *) ||
88 size > KMALLOC_MAX_SIZE) {
77be4b13
SK
89 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
90 return -EINVAL;
039363f3 91 }
b920536a 92
20cea968 93 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
94 return 0;
95}
96#else
f4957d5b 97static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
77be4b13
SK
98{
99 return 0;
100}
20cea968
CL
101#endif
102
484748f0
CL
103void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
104{
105 size_t i;
106
ca257195
JDB
107 for (i = 0; i < nr; i++) {
108 if (s)
109 kmem_cache_free(s, p[i]);
110 else
111 kfree(p[i]);
112 }
484748f0
CL
113}
114
865762a8 115int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
484748f0
CL
116 void **p)
117{
118 size_t i;
119
120 for (i = 0; i < nr; i++) {
121 void *x = p[i] = kmem_cache_alloc(s, flags);
122 if (!x) {
123 __kmem_cache_free_bulk(s, i, p);
865762a8 124 return 0;
484748f0
CL
125 }
126 }
865762a8 127 return i;
484748f0
CL
128}
129
84c07d11 130#ifdef CONFIG_MEMCG_KMEM
510ded33
TH
131
132LIST_HEAD(slab_root_caches);
63b02ef7 133static DEFINE_SPINLOCK(memcg_kmem_wq_lock);
510ded33 134
f0a3a24b
RG
135static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref);
136
f7ce3190 137void slab_init_memcg_params(struct kmem_cache *s)
33a690c4 138{
9eeadc8b 139 s->memcg_params.root_cache = NULL;
f7ce3190 140 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
9eeadc8b 141 INIT_LIST_HEAD(&s->memcg_params.children);
92ee383f 142 s->memcg_params.dying = false;
f7ce3190
VD
143}
144
145static int init_memcg_params(struct kmem_cache *s,
c03914b7 146 struct kmem_cache *root_cache)
f7ce3190
VD
147{
148 struct memcg_cache_array *arr;
33a690c4 149
9eeadc8b 150 if (root_cache) {
f0a3a24b
RG
151 int ret = percpu_ref_init(&s->memcg_params.refcnt,
152 kmemcg_cache_shutdown,
153 0, GFP_KERNEL);
154 if (ret)
155 return ret;
156
f7ce3190 157 s->memcg_params.root_cache = root_cache;
9eeadc8b 158 INIT_LIST_HEAD(&s->memcg_params.children_node);
bc2791f8 159 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
33a690c4 160 return 0;
f7ce3190 161 }
33a690c4 162
f7ce3190 163 slab_init_memcg_params(s);
33a690c4 164
f7ce3190
VD
165 if (!memcg_nr_cache_ids)
166 return 0;
33a690c4 167
f80c7dab
JW
168 arr = kvzalloc(sizeof(struct memcg_cache_array) +
169 memcg_nr_cache_ids * sizeof(void *),
170 GFP_KERNEL);
f7ce3190
VD
171 if (!arr)
172 return -ENOMEM;
33a690c4 173
f7ce3190 174 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
33a690c4
VD
175 return 0;
176}
177
f7ce3190 178static void destroy_memcg_params(struct kmem_cache *s)
33a690c4 179{
f7ce3190 180 if (is_root_cache(s))
f80c7dab 181 kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
f0a3a24b
RG
182 else
183 percpu_ref_exit(&s->memcg_params.refcnt);
f80c7dab
JW
184}
185
186static void free_memcg_params(struct rcu_head *rcu)
187{
188 struct memcg_cache_array *old;
189
190 old = container_of(rcu, struct memcg_cache_array, rcu);
191 kvfree(old);
33a690c4
VD
192}
193
f7ce3190 194static int update_memcg_params(struct kmem_cache *s, int new_array_size)
6f817f4c 195{
f7ce3190 196 struct memcg_cache_array *old, *new;
6f817f4c 197
f80c7dab
JW
198 new = kvzalloc(sizeof(struct memcg_cache_array) +
199 new_array_size * sizeof(void *), GFP_KERNEL);
f7ce3190 200 if (!new)
6f817f4c
VD
201 return -ENOMEM;
202
f7ce3190
VD
203 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
204 lockdep_is_held(&slab_mutex));
205 if (old)
206 memcpy(new->entries, old->entries,
207 memcg_nr_cache_ids * sizeof(void *));
6f817f4c 208
f7ce3190
VD
209 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
210 if (old)
f80c7dab 211 call_rcu(&old->rcu, free_memcg_params);
6f817f4c
VD
212 return 0;
213}
214
55007d84
GC
215int memcg_update_all_caches(int num_memcgs)
216{
217 struct kmem_cache *s;
218 int ret = 0;
55007d84 219
05257a1a 220 mutex_lock(&slab_mutex);
510ded33 221 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
f7ce3190 222 ret = update_memcg_params(s, num_memcgs);
55007d84 223 /*
55007d84
GC
224 * Instead of freeing the memory, we'll just leave the caches
225 * up to this point in an updated state.
226 */
227 if (ret)
05257a1a 228 break;
55007d84 229 }
55007d84
GC
230 mutex_unlock(&slab_mutex);
231 return ret;
232}
657dc2f9 233
c03914b7 234void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg)
657dc2f9 235{
510ded33
TH
236 if (is_root_cache(s)) {
237 list_add(&s->root_caches_node, &slab_root_caches);
238 } else {
f0a3a24b 239 css_get(&memcg->css);
c03914b7 240 s->memcg_params.memcg = memcg;
510ded33
TH
241 list_add(&s->memcg_params.children_node,
242 &s->memcg_params.root_cache->memcg_params.children);
243 list_add(&s->memcg_params.kmem_caches_node,
244 &s->memcg_params.memcg->kmem_caches);
245 }
246}
247
248static void memcg_unlink_cache(struct kmem_cache *s)
249{
250 if (is_root_cache(s)) {
251 list_del(&s->root_caches_node);
252 } else {
253 list_del(&s->memcg_params.children_node);
254 list_del(&s->memcg_params.kmem_caches_node);
f0a3a24b 255 css_put(&s->memcg_params.memcg->css);
510ded33 256 }
657dc2f9 257}
33a690c4 258#else
f7ce3190 259static inline int init_memcg_params(struct kmem_cache *s,
c03914b7 260 struct kmem_cache *root_cache)
33a690c4
VD
261{
262 return 0;
263}
264
f7ce3190 265static inline void destroy_memcg_params(struct kmem_cache *s)
33a690c4
VD
266{
267}
657dc2f9 268
510ded33 269static inline void memcg_unlink_cache(struct kmem_cache *s)
657dc2f9
TH
270{
271}
84c07d11 272#endif /* CONFIG_MEMCG_KMEM */
55007d84 273
692ae74a
BL
274/*
275 * Figure out what the alignment of the objects will be given a set of
276 * flags, a user specified alignment and the size of the objects.
277 */
f4957d5b
AD
278static unsigned int calculate_alignment(slab_flags_t flags,
279 unsigned int align, unsigned int size)
692ae74a
BL
280{
281 /*
282 * If the user wants hardware cache aligned objects then follow that
283 * suggestion if the object is sufficiently large.
284 *
285 * The hardware cache alignment cannot override the specified
286 * alignment though. If that is greater then use it.
287 */
288 if (flags & SLAB_HWCACHE_ALIGN) {
f4957d5b 289 unsigned int ralign;
692ae74a
BL
290
291 ralign = cache_line_size();
292 while (size <= ralign / 2)
293 ralign /= 2;
294 align = max(align, ralign);
295 }
296
297 if (align < ARCH_SLAB_MINALIGN)
298 align = ARCH_SLAB_MINALIGN;
299
300 return ALIGN(align, sizeof(void *));
301}
302
423c929c
JK
303/*
304 * Find a mergeable slab cache
305 */
306int slab_unmergeable(struct kmem_cache *s)
307{
308 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
309 return 1;
310
311 if (!is_root_cache(s))
312 return 1;
313
314 if (s->ctor)
315 return 1;
316
8eb8284b
DW
317 if (s->usersize)
318 return 1;
319
423c929c
JK
320 /*
321 * We may have set a slab to be unmergeable during bootstrap.
322 */
323 if (s->refcount < 0)
324 return 1;
325
326 return 0;
327}
328
f4957d5b 329struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
d50112ed 330 slab_flags_t flags, const char *name, void (*ctor)(void *))
423c929c
JK
331{
332 struct kmem_cache *s;
333
c6e28895 334 if (slab_nomerge)
423c929c
JK
335 return NULL;
336
337 if (ctor)
338 return NULL;
339
340 size = ALIGN(size, sizeof(void *));
341 align = calculate_alignment(flags, align, size);
342 size = ALIGN(size, align);
343 flags = kmem_cache_flags(size, flags, name, NULL);
344
c6e28895
GM
345 if (flags & SLAB_NEVER_MERGE)
346 return NULL;
347
510ded33 348 list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
423c929c
JK
349 if (slab_unmergeable(s))
350 continue;
351
352 if (size > s->size)
353 continue;
354
355 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
356 continue;
357 /*
358 * Check if alignment is compatible.
359 * Courtesy of Adrian Drzewiecki
360 */
361 if ((s->size & ~(align - 1)) != s->size)
362 continue;
363
364 if (s->size - size >= sizeof(void *))
365 continue;
366
95069ac8
JK
367 if (IS_ENABLED(CONFIG_SLAB) && align &&
368 (align > s->align || s->align % align))
369 continue;
370
423c929c
JK
371 return s;
372 }
373 return NULL;
374}
375
c9a77a79 376static struct kmem_cache *create_cache(const char *name,
613a5eb5 377 unsigned int object_size, unsigned int align,
7bbdb81e
AD
378 slab_flags_t flags, unsigned int useroffset,
379 unsigned int usersize, void (*ctor)(void *),
c9a77a79 380 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
794b1248
VD
381{
382 struct kmem_cache *s;
383 int err;
384
8eb8284b
DW
385 if (WARN_ON(useroffset + usersize > object_size))
386 useroffset = usersize = 0;
387
794b1248
VD
388 err = -ENOMEM;
389 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
390 if (!s)
391 goto out;
392
393 s->name = name;
613a5eb5 394 s->size = s->object_size = object_size;
794b1248
VD
395 s->align = align;
396 s->ctor = ctor;
8eb8284b
DW
397 s->useroffset = useroffset;
398 s->usersize = usersize;
794b1248 399
c03914b7 400 err = init_memcg_params(s, root_cache);
794b1248
VD
401 if (err)
402 goto out_free_cache;
403
404 err = __kmem_cache_create(s, flags);
405 if (err)
406 goto out_free_cache;
407
408 s->refcount = 1;
409 list_add(&s->list, &slab_caches);
c03914b7 410 memcg_link_cache(s, memcg);
794b1248
VD
411out:
412 if (err)
413 return ERR_PTR(err);
414 return s;
415
416out_free_cache:
f7ce3190 417 destroy_memcg_params(s);
7c4da061 418 kmem_cache_free(kmem_cache, s);
794b1248
VD
419 goto out;
420}
45906855 421
f496990f
MR
422/**
423 * kmem_cache_create_usercopy - Create a cache with a region suitable
424 * for copying to userspace
77be4b13
SK
425 * @name: A string which is used in /proc/slabinfo to identify this cache.
426 * @size: The size of objects to be created in this cache.
427 * @align: The required alignment for the objects.
428 * @flags: SLAB flags
8eb8284b
DW
429 * @useroffset: Usercopy region offset
430 * @usersize: Usercopy region size
77be4b13
SK
431 * @ctor: A constructor for the objects.
432 *
77be4b13
SK
433 * Cannot be called within a interrupt, but can be interrupted.
434 * The @ctor is run when new pages are allocated by the cache.
435 *
436 * The flags are
437 *
438 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
439 * to catch references to uninitialised memory.
440 *
f496990f 441 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
77be4b13
SK
442 * for buffer overruns.
443 *
444 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
445 * cacheline. This can be beneficial if you're counting cycles as closely
446 * as davem.
f496990f
MR
447 *
448 * Return: a pointer to the cache on success, NULL on failure.
77be4b13 449 */
2633d7a0 450struct kmem_cache *
f4957d5b
AD
451kmem_cache_create_usercopy(const char *name,
452 unsigned int size, unsigned int align,
7bbdb81e
AD
453 slab_flags_t flags,
454 unsigned int useroffset, unsigned int usersize,
8eb8284b 455 void (*ctor)(void *))
77be4b13 456{
40911a79 457 struct kmem_cache *s = NULL;
3dec16ea 458 const char *cache_name;
3965fc36 459 int err;
039363f3 460
77be4b13 461 get_online_cpus();
03afc0e2 462 get_online_mems();
05257a1a 463 memcg_get_cache_ids();
03afc0e2 464
77be4b13 465 mutex_lock(&slab_mutex);
686d550d 466
794b1248 467 err = kmem_cache_sanity_check(name, size);
3aa24f51 468 if (err) {
3965fc36 469 goto out_unlock;
3aa24f51 470 }
686d550d 471
e70954fd
TG
472 /* Refuse requests with allocator specific flags */
473 if (flags & ~SLAB_FLAGS_PERMITTED) {
474 err = -EINVAL;
475 goto out_unlock;
476 }
477
d8843922
GC
478 /*
479 * Some allocators will constraint the set of valid flags to a subset
480 * of all flags. We expect them to define CACHE_CREATE_MASK in this
481 * case, and we'll just provide them with a sanitized version of the
482 * passed flags.
483 */
484 flags &= CACHE_CREATE_MASK;
686d550d 485
8eb8284b
DW
486 /* Fail closed on bad usersize of useroffset values. */
487 if (WARN_ON(!usersize && useroffset) ||
488 WARN_ON(size < usersize || size - usersize < useroffset))
489 usersize = useroffset = 0;
490
491 if (!usersize)
492 s = __kmem_cache_alias(name, size, align, flags, ctor);
794b1248 493 if (s)
3965fc36 494 goto out_unlock;
2633d7a0 495
3dec16ea 496 cache_name = kstrdup_const(name, GFP_KERNEL);
794b1248
VD
497 if (!cache_name) {
498 err = -ENOMEM;
499 goto out_unlock;
500 }
7c9adf5a 501
613a5eb5 502 s = create_cache(cache_name, size,
c9a77a79 503 calculate_alignment(flags, align, size),
8eb8284b 504 flags, useroffset, usersize, ctor, NULL, NULL);
794b1248
VD
505 if (IS_ERR(s)) {
506 err = PTR_ERR(s);
3dec16ea 507 kfree_const(cache_name);
794b1248 508 }
3965fc36
VD
509
510out_unlock:
20cea968 511 mutex_unlock(&slab_mutex);
03afc0e2 512
05257a1a 513 memcg_put_cache_ids();
03afc0e2 514 put_online_mems();
20cea968
CL
515 put_online_cpus();
516
ba3253c7 517 if (err) {
686d550d
CL
518 if (flags & SLAB_PANIC)
519 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
520 name, err);
521 else {
1170532b 522 pr_warn("kmem_cache_create(%s) failed with error %d\n",
686d550d
CL
523 name, err);
524 dump_stack();
525 }
686d550d
CL
526 return NULL;
527 }
039363f3
CL
528 return s;
529}
8eb8284b
DW
530EXPORT_SYMBOL(kmem_cache_create_usercopy);
531
f496990f
MR
532/**
533 * kmem_cache_create - Create a cache.
534 * @name: A string which is used in /proc/slabinfo to identify this cache.
535 * @size: The size of objects to be created in this cache.
536 * @align: The required alignment for the objects.
537 * @flags: SLAB flags
538 * @ctor: A constructor for the objects.
539 *
540 * Cannot be called within a interrupt, but can be interrupted.
541 * The @ctor is run when new pages are allocated by the cache.
542 *
543 * The flags are
544 *
545 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
546 * to catch references to uninitialised memory.
547 *
548 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
549 * for buffer overruns.
550 *
551 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
552 * cacheline. This can be beneficial if you're counting cycles as closely
553 * as davem.
554 *
555 * Return: a pointer to the cache on success, NULL on failure.
556 */
8eb8284b 557struct kmem_cache *
f4957d5b 558kmem_cache_create(const char *name, unsigned int size, unsigned int align,
8eb8284b
DW
559 slab_flags_t flags, void (*ctor)(void *))
560{
6d07d1cd 561 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
8eb8284b
DW
562 ctor);
563}
794b1248 564EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 565
657dc2f9 566static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
d5b3cf71 567{
657dc2f9
TH
568 LIST_HEAD(to_destroy);
569 struct kmem_cache *s, *s2;
d5b3cf71 570
657dc2f9 571 /*
5f0d5a3a 572 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
657dc2f9
TH
573 * @slab_caches_to_rcu_destroy list. The slab pages are freed
574 * through RCU and and the associated kmem_cache are dereferenced
575 * while freeing the pages, so the kmem_caches should be freed only
576 * after the pending RCU operations are finished. As rcu_barrier()
577 * is a pretty slow operation, we batch all pending destructions
578 * asynchronously.
579 */
580 mutex_lock(&slab_mutex);
581 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
582 mutex_unlock(&slab_mutex);
d5b3cf71 583
657dc2f9
TH
584 if (list_empty(&to_destroy))
585 return;
586
587 rcu_barrier();
588
589 list_for_each_entry_safe(s, s2, &to_destroy, list) {
590#ifdef SLAB_SUPPORTS_SYSFS
591 sysfs_slab_release(s);
592#else
593 slab_kmem_cache_release(s);
594#endif
595 }
d5b3cf71
VD
596}
597
657dc2f9 598static int shutdown_cache(struct kmem_cache *s)
d5b3cf71 599{
f9fa1d91
GT
600 /* free asan quarantined objects */
601 kasan_cache_shutdown(s);
602
657dc2f9
TH
603 if (__kmem_cache_shutdown(s) != 0)
604 return -EBUSY;
d5b3cf71 605
510ded33 606 memcg_unlink_cache(s);
657dc2f9 607 list_del(&s->list);
d5b3cf71 608
5f0d5a3a 609 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
d50d82fa
MP
610#ifdef SLAB_SUPPORTS_SYSFS
611 sysfs_slab_unlink(s);
612#endif
657dc2f9
TH
613 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
614 schedule_work(&slab_caches_to_rcu_destroy_work);
615 } else {
d5b3cf71 616#ifdef SLAB_SUPPORTS_SYSFS
d50d82fa 617 sysfs_slab_unlink(s);
bf5eb3de 618 sysfs_slab_release(s);
d5b3cf71
VD
619#else
620 slab_kmem_cache_release(s);
621#endif
622 }
657dc2f9
TH
623
624 return 0;
d5b3cf71
VD
625}
626
84c07d11 627#ifdef CONFIG_MEMCG_KMEM
794b1248 628/*
776ed0f0 629 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
794b1248
VD
630 * @memcg: The memory cgroup the new cache is for.
631 * @root_cache: The parent of the new cache.
632 *
633 * This function attempts to create a kmem cache that will serve allocation
634 * requests going from @memcg to @root_cache. The new cache inherits properties
635 * from its parent.
636 */
d5b3cf71
VD
637void memcg_create_kmem_cache(struct mem_cgroup *memcg,
638 struct kmem_cache *root_cache)
2633d7a0 639{
3e0350a3 640 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
33398cf2 641 struct cgroup_subsys_state *css = &memcg->css;
f7ce3190 642 struct memcg_cache_array *arr;
bd673145 643 struct kmem_cache *s = NULL;
794b1248 644 char *cache_name;
f7ce3190 645 int idx;
794b1248
VD
646
647 get_online_cpus();
03afc0e2
VD
648 get_online_mems();
649
794b1248
VD
650 mutex_lock(&slab_mutex);
651
2a4db7eb 652 /*
567e9ab2 653 * The memory cgroup could have been offlined while the cache
2a4db7eb
VD
654 * creation work was pending.
655 */
57033297 656 if (memcg->kmem_state != KMEM_ONLINE)
2a4db7eb
VD
657 goto out_unlock;
658
f7ce3190
VD
659 idx = memcg_cache_id(memcg);
660 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
661 lockdep_is_held(&slab_mutex));
662
d5b3cf71
VD
663 /*
664 * Since per-memcg caches are created asynchronously on first
665 * allocation (see memcg_kmem_get_cache()), several threads can try to
666 * create the same cache, but only one of them may succeed.
667 */
f7ce3190 668 if (arr->entries[idx])
d5b3cf71
VD
669 goto out_unlock;
670
f1008365 671 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
73f576c0
JW
672 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
673 css->serial_nr, memcg_name_buf);
794b1248
VD
674 if (!cache_name)
675 goto out_unlock;
676
c9a77a79 677 s = create_cache(cache_name, root_cache->object_size,
613a5eb5 678 root_cache->align,
f773e36d 679 root_cache->flags & CACHE_CREATE_MASK,
8eb8284b 680 root_cache->useroffset, root_cache->usersize,
f773e36d 681 root_cache->ctor, memcg, root_cache);
d5b3cf71
VD
682 /*
683 * If we could not create a memcg cache, do not complain, because
684 * that's not critical at all as we can always proceed with the root
685 * cache.
686 */
bd673145 687 if (IS_ERR(s)) {
794b1248 688 kfree(cache_name);
d5b3cf71 689 goto out_unlock;
bd673145 690 }
794b1248 691
d5b3cf71 692 /*
f0a3a24b 693 * Since readers won't lock (see memcg_kmem_get_cache()), we need a
d5b3cf71
VD
694 * barrier here to ensure nobody will see the kmem_cache partially
695 * initialized.
696 */
697 smp_wmb();
f7ce3190 698 arr->entries[idx] = s;
d5b3cf71 699
794b1248
VD
700out_unlock:
701 mutex_unlock(&slab_mutex);
03afc0e2
VD
702
703 put_online_mems();
794b1248 704 put_online_cpus();
2633d7a0 705}
b8529907 706
0b14e8aa 707static void kmemcg_workfn(struct work_struct *work)
01fb58bc
TH
708{
709 struct kmem_cache *s = container_of(work, struct kmem_cache,
0b14e8aa 710 memcg_params.work);
01fb58bc
TH
711
712 get_online_cpus();
713 get_online_mems();
714
715 mutex_lock(&slab_mutex);
0b14e8aa 716 s->memcg_params.work_fn(s);
01fb58bc
TH
717 mutex_unlock(&slab_mutex);
718
719 put_online_mems();
720 put_online_cpus();
01fb58bc
TH
721}
722
0b14e8aa 723static void kmemcg_rcufn(struct rcu_head *head)
01fb58bc
TH
724{
725 struct kmem_cache *s = container_of(head, struct kmem_cache,
0b14e8aa 726 memcg_params.rcu_head);
01fb58bc
TH
727
728 /*
0b14e8aa 729 * We need to grab blocking locks. Bounce to ->work. The
01fb58bc
TH
730 * work item shares the space with the RCU head and can't be
731 * initialized eariler.
732 */
0b14e8aa
RG
733 INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
734 queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
01fb58bc
TH
735}
736
f0a3a24b
RG
737static void kmemcg_cache_shutdown_fn(struct kmem_cache *s)
738{
739 WARN_ON(shutdown_cache(s));
740}
741
742static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref)
743{
744 struct kmem_cache *s = container_of(percpu_ref, struct kmem_cache,
745 memcg_params.refcnt);
746 unsigned long flags;
747
748 spin_lock_irqsave(&memcg_kmem_wq_lock, flags);
749 if (s->memcg_params.root_cache->memcg_params.dying)
750 goto unlock;
751
752 s->memcg_params.work_fn = kmemcg_cache_shutdown_fn;
753 INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
754 queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
755
756unlock:
757 spin_unlock_irqrestore(&memcg_kmem_wq_lock, flags);
758}
759
760static void kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
761{
762 __kmemcg_cache_deactivate_after_rcu(s);
763 percpu_ref_kill(&s->memcg_params.refcnt);
764}
765
43486694 766static void kmemcg_cache_deactivate(struct kmem_cache *s)
01fb58bc 767{
f0a3a24b 768 if (WARN_ON_ONCE(is_root_cache(s)))
01fb58bc
TH
769 return;
770
43486694
RG
771 __kmemcg_cache_deactivate(s);
772
63b02ef7
RG
773 /*
774 * memcg_kmem_wq_lock is used to synchronize memcg_params.dying
775 * flag and make sure that no new kmem_cache deactivation tasks
776 * are queued (see flush_memcg_workqueue() ).
777 */
778 spin_lock_irq(&memcg_kmem_wq_lock);
92ee383f 779 if (s->memcg_params.root_cache->memcg_params.dying)
63b02ef7 780 goto unlock;
92ee383f 781
f0a3a24b 782 s->memcg_params.work_fn = kmemcg_cache_deactivate_after_rcu;
0b14e8aa 783 call_rcu(&s->memcg_params.rcu_head, kmemcg_rcufn);
63b02ef7
RG
784unlock:
785 spin_unlock_irq(&memcg_kmem_wq_lock);
01fb58bc
TH
786}
787
2a4db7eb
VD
788void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
789{
790 int idx;
791 struct memcg_cache_array *arr;
d6e0b7fa 792 struct kmem_cache *s, *c;
2a4db7eb
VD
793
794 idx = memcg_cache_id(memcg);
795
d6e0b7fa
VD
796 get_online_cpus();
797 get_online_mems();
798
2a4db7eb 799 mutex_lock(&slab_mutex);
510ded33 800 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
2a4db7eb
VD
801 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
802 lockdep_is_held(&slab_mutex));
d6e0b7fa
VD
803 c = arr->entries[idx];
804 if (!c)
805 continue;
806
43486694 807 kmemcg_cache_deactivate(c);
2a4db7eb
VD
808 arr->entries[idx] = NULL;
809 }
810 mutex_unlock(&slab_mutex);
d6e0b7fa
VD
811
812 put_online_mems();
813 put_online_cpus();
2a4db7eb
VD
814}
815
657dc2f9 816static int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
817{
818 struct memcg_cache_array *arr;
819 struct kmem_cache *c, *c2;
820 LIST_HEAD(busy);
821 int i;
822
823 BUG_ON(!is_root_cache(s));
824
825 /*
826 * First, shutdown active caches, i.e. caches that belong to online
827 * memory cgroups.
828 */
829 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
830 lockdep_is_held(&slab_mutex));
831 for_each_memcg_cache_index(i) {
832 c = arr->entries[i];
833 if (!c)
834 continue;
657dc2f9 835 if (shutdown_cache(c))
d60fdcc9
VD
836 /*
837 * The cache still has objects. Move it to a temporary
838 * list so as not to try to destroy it for a second
839 * time while iterating over inactive caches below.
840 */
9eeadc8b 841 list_move(&c->memcg_params.children_node, &busy);
d60fdcc9
VD
842 else
843 /*
844 * The cache is empty and will be destroyed soon. Clear
845 * the pointer to it in the memcg_caches array so that
846 * it will never be accessed even if the root cache
847 * stays alive.
848 */
849 arr->entries[i] = NULL;
850 }
851
852 /*
853 * Second, shutdown all caches left from memory cgroups that are now
854 * offline.
855 */
9eeadc8b
TH
856 list_for_each_entry_safe(c, c2, &s->memcg_params.children,
857 memcg_params.children_node)
657dc2f9 858 shutdown_cache(c);
d60fdcc9 859
9eeadc8b 860 list_splice(&busy, &s->memcg_params.children);
d60fdcc9
VD
861
862 /*
863 * A cache being destroyed must be empty. In particular, this means
864 * that all per memcg caches attached to it must be empty too.
865 */
9eeadc8b 866 if (!list_empty(&s->memcg_params.children))
d60fdcc9
VD
867 return -EBUSY;
868 return 0;
869}
92ee383f
SB
870
871static void flush_memcg_workqueue(struct kmem_cache *s)
872{
63b02ef7 873 spin_lock_irq(&memcg_kmem_wq_lock);
92ee383f 874 s->memcg_params.dying = true;
63b02ef7 875 spin_unlock_irq(&memcg_kmem_wq_lock);
92ee383f
SB
876
877 /*
43486694 878 * SLAB and SLUB deactivate the kmem_caches through call_rcu. Make
92ee383f
SB
879 * sure all registered rcu callbacks have been invoked.
880 */
43486694 881 rcu_barrier();
92ee383f
SB
882
883 /*
884 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB
885 * deactivates the memcg kmem_caches through workqueue. Make sure all
886 * previous workitems on workqueue are processed.
887 */
888 flush_workqueue(memcg_kmem_cache_wq);
889}
d60fdcc9 890#else
657dc2f9 891static inline int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
892{
893 return 0;
894}
92ee383f
SB
895
896static inline void flush_memcg_workqueue(struct kmem_cache *s)
897{
898}
84c07d11 899#endif /* CONFIG_MEMCG_KMEM */
97d06609 900
41a21285
CL
901void slab_kmem_cache_release(struct kmem_cache *s)
902{
52b4b950 903 __kmem_cache_release(s);
f7ce3190 904 destroy_memcg_params(s);
3dec16ea 905 kfree_const(s->name);
41a21285
CL
906 kmem_cache_free(kmem_cache, s);
907}
908
945cf2b6
CL
909void kmem_cache_destroy(struct kmem_cache *s)
910{
d60fdcc9 911 int err;
d5b3cf71 912
3942d299
SS
913 if (unlikely(!s))
914 return;
915
92ee383f
SB
916 flush_memcg_workqueue(s);
917
945cf2b6 918 get_online_cpus();
03afc0e2
VD
919 get_online_mems();
920
945cf2b6 921 mutex_lock(&slab_mutex);
b8529907 922
945cf2b6 923 s->refcount--;
b8529907
VD
924 if (s->refcount)
925 goto out_unlock;
926
657dc2f9 927 err = shutdown_memcg_caches(s);
d60fdcc9 928 if (!err)
657dc2f9 929 err = shutdown_cache(s);
b8529907 930
cd918c55 931 if (err) {
756a025f
JP
932 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
933 s->name);
cd918c55
VD
934 dump_stack();
935 }
b8529907
VD
936out_unlock:
937 mutex_unlock(&slab_mutex);
d5b3cf71 938
03afc0e2 939 put_online_mems();
945cf2b6
CL
940 put_online_cpus();
941}
942EXPORT_SYMBOL(kmem_cache_destroy);
943
03afc0e2
VD
944/**
945 * kmem_cache_shrink - Shrink a cache.
946 * @cachep: The cache to shrink.
947 *
948 * Releases as many slabs as possible for a cache.
949 * To help debugging, a zero exit status indicates all slabs were released.
a862f68a
MR
950 *
951 * Return: %0 if all slabs were released, non-zero otherwise
03afc0e2
VD
952 */
953int kmem_cache_shrink(struct kmem_cache *cachep)
954{
955 int ret;
956
957 get_online_cpus();
958 get_online_mems();
55834c59 959 kasan_cache_shrink(cachep);
c9fc5864 960 ret = __kmem_cache_shrink(cachep);
03afc0e2
VD
961 put_online_mems();
962 put_online_cpus();
963 return ret;
964}
965EXPORT_SYMBOL(kmem_cache_shrink);
966
fda90124 967bool slab_is_available(void)
97d06609
CL
968{
969 return slab_state >= UP;
970}
b7454ad3 971
45530c44
CL
972#ifndef CONFIG_SLOB
973/* Create a cache during boot when no slab services are available yet */
361d575e
AD
974void __init create_boot_cache(struct kmem_cache *s, const char *name,
975 unsigned int size, slab_flags_t flags,
976 unsigned int useroffset, unsigned int usersize)
45530c44
CL
977{
978 int err;
979
980 s->name = name;
981 s->size = s->object_size = size;
45906855 982 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
8eb8284b
DW
983 s->useroffset = useroffset;
984 s->usersize = usersize;
f7ce3190
VD
985
986 slab_init_memcg_params(s);
987
45530c44
CL
988 err = __kmem_cache_create(s, flags);
989
990 if (err)
361d575e 991 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
45530c44
CL
992 name, size, err);
993
994 s->refcount = -1; /* Exempt from merging for now */
995}
996
55de8b9c
AD
997struct kmem_cache *__init create_kmalloc_cache(const char *name,
998 unsigned int size, slab_flags_t flags,
999 unsigned int useroffset, unsigned int usersize)
45530c44
CL
1000{
1001 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1002
1003 if (!s)
1004 panic("Out of memory when creating slab %s\n", name);
1005
6c0c21ad 1006 create_boot_cache(s, name, size, flags, useroffset, usersize);
45530c44 1007 list_add(&s->list, &slab_caches);
c03914b7 1008 memcg_link_cache(s, NULL);
45530c44
CL
1009 s->refcount = 1;
1010 return s;
1011}
1012
cc252eae
VB
1013struct kmem_cache *
1014kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init;
9425c58e
CL
1015EXPORT_SYMBOL(kmalloc_caches);
1016
2c59dd65
CL
1017/*
1018 * Conversion table for small slabs sizes / 8 to the index in the
1019 * kmalloc array. This is necessary for slabs < 192 since we have non power
1020 * of two cache sizes there. The size of larger slabs can be determined using
1021 * fls.
1022 */
d5f86655 1023static u8 size_index[24] __ro_after_init = {
2c59dd65
CL
1024 3, /* 8 */
1025 4, /* 16 */
1026 5, /* 24 */
1027 5, /* 32 */
1028 6, /* 40 */
1029 6, /* 48 */
1030 6, /* 56 */
1031 6, /* 64 */
1032 1, /* 72 */
1033 1, /* 80 */
1034 1, /* 88 */
1035 1, /* 96 */
1036 7, /* 104 */
1037 7, /* 112 */
1038 7, /* 120 */
1039 7, /* 128 */
1040 2, /* 136 */
1041 2, /* 144 */
1042 2, /* 152 */
1043 2, /* 160 */
1044 2, /* 168 */
1045 2, /* 176 */
1046 2, /* 184 */
1047 2 /* 192 */
1048};
1049
ac914d08 1050static inline unsigned int size_index_elem(unsigned int bytes)
2c59dd65
CL
1051{
1052 return (bytes - 1) / 8;
1053}
1054
1055/*
1056 * Find the kmem_cache structure that serves a given size of
1057 * allocation
1058 */
1059struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
1060{
d5f86655 1061 unsigned int index;
2c59dd65
CL
1062
1063 if (size <= 192) {
1064 if (!size)
1065 return ZERO_SIZE_PTR;
1066
1067 index = size_index[size_index_elem(size)];
61448479 1068 } else {
221d7da6 1069 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
61448479 1070 return NULL;
2c59dd65 1071 index = fls(size - 1);
61448479 1072 }
2c59dd65 1073
cc252eae 1074 return kmalloc_caches[kmalloc_type(flags)][index];
2c59dd65
CL
1075}
1076
4066c33d
GG
1077/*
1078 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
1079 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1080 * kmalloc-67108864.
1081 */
af3b5f87 1082const struct kmalloc_info_struct kmalloc_info[] __initconst = {
4066c33d
GG
1083 {NULL, 0}, {"kmalloc-96", 96},
1084 {"kmalloc-192", 192}, {"kmalloc-8", 8},
1085 {"kmalloc-16", 16}, {"kmalloc-32", 32},
1086 {"kmalloc-64", 64}, {"kmalloc-128", 128},
1087 {"kmalloc-256", 256}, {"kmalloc-512", 512},
f0d77874
VB
1088 {"kmalloc-1k", 1024}, {"kmalloc-2k", 2048},
1089 {"kmalloc-4k", 4096}, {"kmalloc-8k", 8192},
1090 {"kmalloc-16k", 16384}, {"kmalloc-32k", 32768},
1091 {"kmalloc-64k", 65536}, {"kmalloc-128k", 131072},
1092 {"kmalloc-256k", 262144}, {"kmalloc-512k", 524288},
1093 {"kmalloc-1M", 1048576}, {"kmalloc-2M", 2097152},
1094 {"kmalloc-4M", 4194304}, {"kmalloc-8M", 8388608},
1095 {"kmalloc-16M", 16777216}, {"kmalloc-32M", 33554432},
1096 {"kmalloc-64M", 67108864}
4066c33d
GG
1097};
1098
f97d5f63 1099/*
34cc6990
DS
1100 * Patch up the size_index table if we have strange large alignment
1101 * requirements for the kmalloc array. This is only the case for
1102 * MIPS it seems. The standard arches will not generate any code here.
1103 *
1104 * Largest permitted alignment is 256 bytes due to the way we
1105 * handle the index determination for the smaller caches.
1106 *
1107 * Make sure that nothing crazy happens if someone starts tinkering
1108 * around with ARCH_KMALLOC_MINALIGN
f97d5f63 1109 */
34cc6990 1110void __init setup_kmalloc_cache_index_table(void)
f97d5f63 1111{
ac914d08 1112 unsigned int i;
f97d5f63 1113
2c59dd65
CL
1114 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1115 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1116
1117 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
ac914d08 1118 unsigned int elem = size_index_elem(i);
2c59dd65
CL
1119
1120 if (elem >= ARRAY_SIZE(size_index))
1121 break;
1122 size_index[elem] = KMALLOC_SHIFT_LOW;
1123 }
1124
1125 if (KMALLOC_MIN_SIZE >= 64) {
1126 /*
1127 * The 96 byte size cache is not used if the alignment
1128 * is 64 byte.
1129 */
1130 for (i = 64 + 8; i <= 96; i += 8)
1131 size_index[size_index_elem(i)] = 7;
1132
1133 }
1134
1135 if (KMALLOC_MIN_SIZE >= 128) {
1136 /*
1137 * The 192 byte sized cache is not used if the alignment
1138 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1139 * instead.
1140 */
1141 for (i = 128 + 8; i <= 192; i += 8)
1142 size_index[size_index_elem(i)] = 8;
1143 }
34cc6990
DS
1144}
1145
f0d77874
VB
1146static const char *
1147kmalloc_cache_name(const char *prefix, unsigned int size)
1148{
1149
1150 static const char units[3] = "\0kM";
1151 int idx = 0;
1152
1153 while (size >= 1024 && (size % 1024 == 0)) {
1154 size /= 1024;
1155 idx++;
1156 }
1157
1158 return kasprintf(GFP_NOWAIT, "%s-%u%c", prefix, size, units[idx]);
1159}
1160
1291523f
VB
1161static void __init
1162new_kmalloc_cache(int idx, int type, slab_flags_t flags)
a9730fca 1163{
1291523f
VB
1164 const char *name;
1165
1166 if (type == KMALLOC_RECLAIM) {
1167 flags |= SLAB_RECLAIM_ACCOUNT;
f0d77874 1168 name = kmalloc_cache_name("kmalloc-rcl",
1291523f
VB
1169 kmalloc_info[idx].size);
1170 BUG_ON(!name);
1171 } else {
1172 name = kmalloc_info[idx].name;
1173 }
1174
1175 kmalloc_caches[type][idx] = create_kmalloc_cache(name,
6c0c21ad
DW
1176 kmalloc_info[idx].size, flags, 0,
1177 kmalloc_info[idx].size);
a9730fca
CL
1178}
1179
34cc6990
DS
1180/*
1181 * Create the kmalloc array. Some of the regular kmalloc arrays
1182 * may already have been created because they were needed to
1183 * enable allocations for slab creation.
1184 */
d50112ed 1185void __init create_kmalloc_caches(slab_flags_t flags)
34cc6990 1186{
1291523f 1187 int i, type;
34cc6990 1188
1291523f
VB
1189 for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
1190 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1191 if (!kmalloc_caches[type][i])
1192 new_kmalloc_cache(i, type, flags);
f97d5f63 1193
1291523f
VB
1194 /*
1195 * Caches that are not of the two-to-the-power-of size.
1196 * These have to be created immediately after the
1197 * earlier power of two caches
1198 */
1199 if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
1200 !kmalloc_caches[type][1])
1201 new_kmalloc_cache(1, type, flags);
1202 if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
1203 !kmalloc_caches[type][2])
1204 new_kmalloc_cache(2, type, flags);
1205 }
8a965b3b
CL
1206 }
1207
f97d5f63
CL
1208 /* Kmalloc array is now usable */
1209 slab_state = UP;
1210
f97d5f63
CL
1211#ifdef CONFIG_ZONE_DMA
1212 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
cc252eae 1213 struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
f97d5f63
CL
1214
1215 if (s) {
0be70327 1216 unsigned int size = kmalloc_size(i);
f0d77874 1217 const char *n = kmalloc_cache_name("dma-kmalloc", size);
f97d5f63
CL
1218
1219 BUG_ON(!n);
cc252eae
VB
1220 kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
1221 n, size, SLAB_CACHE_DMA | flags, 0, 0);
f97d5f63
CL
1222 }
1223 }
1224#endif
1225}
45530c44
CL
1226#endif /* !CONFIG_SLOB */
1227
cea371f4
VD
1228/*
1229 * To avoid unnecessary overhead, we pass through large allocation requests
1230 * directly to the page allocator. We use __GFP_COMP, because we will need to
1231 * know the allocation order to free the pages properly in kfree.
1232 */
52383431
VD
1233void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1234{
1235 void *ret;
1236 struct page *page;
1237
1238 flags |= __GFP_COMP;
4949148a 1239 page = alloc_pages(flags, order);
52383431 1240 ret = page ? page_address(page) : NULL;
0116523c 1241 ret = kasan_kmalloc_large(ret, size, flags);
a2f77575 1242 /* As ret might get tagged, call kmemleak hook after KASAN. */
53128245 1243 kmemleak_alloc(ret, size, 1, flags);
52383431
VD
1244 return ret;
1245}
1246EXPORT_SYMBOL(kmalloc_order);
1247
f1b6eb6e
CL
1248#ifdef CONFIG_TRACING
1249void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1250{
1251 void *ret = kmalloc_order(size, flags, order);
1252 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1253 return ret;
1254}
1255EXPORT_SYMBOL(kmalloc_order_trace);
1256#endif
45530c44 1257
7c00fce9
TG
1258#ifdef CONFIG_SLAB_FREELIST_RANDOM
1259/* Randomize a generic freelist */
1260static void freelist_randomize(struct rnd_state *state, unsigned int *list,
302d55d5 1261 unsigned int count)
7c00fce9 1262{
7c00fce9 1263 unsigned int rand;
302d55d5 1264 unsigned int i;
7c00fce9
TG
1265
1266 for (i = 0; i < count; i++)
1267 list[i] = i;
1268
1269 /* Fisher-Yates shuffle */
1270 for (i = count - 1; i > 0; i--) {
1271 rand = prandom_u32_state(state);
1272 rand %= (i + 1);
1273 swap(list[i], list[rand]);
1274 }
1275}
1276
1277/* Create a random sequence per cache */
1278int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1279 gfp_t gfp)
1280{
1281 struct rnd_state state;
1282
1283 if (count < 2 || cachep->random_seq)
1284 return 0;
1285
1286 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1287 if (!cachep->random_seq)
1288 return -ENOMEM;
1289
1290 /* Get best entropy at this stage of boot */
1291 prandom_seed_state(&state, get_random_long());
1292
1293 freelist_randomize(&state, cachep->random_seq, count);
1294 return 0;
1295}
1296
1297/* Destroy the per-cache random freelist sequence */
1298void cache_random_seq_destroy(struct kmem_cache *cachep)
1299{
1300 kfree(cachep->random_seq);
1301 cachep->random_seq = NULL;
1302}
1303#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1304
5b365771 1305#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
e9b4db2b 1306#ifdef CONFIG_SLAB
0825a6f9 1307#define SLABINFO_RIGHTS (0600)
e9b4db2b 1308#else
0825a6f9 1309#define SLABINFO_RIGHTS (0400)
e9b4db2b
WL
1310#endif
1311
b047501c 1312static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
1313{
1314 /*
1315 * Output format version, so at least we can change it
1316 * without _too_ many complaints.
1317 */
1318#ifdef CONFIG_DEBUG_SLAB
1319 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1320#else
1321 seq_puts(m, "slabinfo - version: 2.1\n");
1322#endif
756a025f 1323 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
bcee6e2a
GC
1324 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1325 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1326#ifdef CONFIG_DEBUG_SLAB
756a025f 1327 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
bcee6e2a
GC
1328 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1329#endif
1330 seq_putc(m, '\n');
1331}
1332
1df3b26f 1333void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 1334{
b7454ad3 1335 mutex_lock(&slab_mutex);
510ded33 1336 return seq_list_start(&slab_root_caches, *pos);
b7454ad3
GC
1337}
1338
276a2439 1339void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3 1340{
510ded33 1341 return seq_list_next(p, &slab_root_caches, pos);
b7454ad3
GC
1342}
1343
276a2439 1344void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
1345{
1346 mutex_unlock(&slab_mutex);
1347}
1348
749c5415
GC
1349static void
1350memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1351{
1352 struct kmem_cache *c;
1353 struct slabinfo sinfo;
749c5415
GC
1354
1355 if (!is_root_cache(s))
1356 return;
1357
426589f5 1358 for_each_memcg_cache(c, s) {
749c5415
GC
1359 memset(&sinfo, 0, sizeof(sinfo));
1360 get_slabinfo(c, &sinfo);
1361
1362 info->active_slabs += sinfo.active_slabs;
1363 info->num_slabs += sinfo.num_slabs;
1364 info->shared_avail += sinfo.shared_avail;
1365 info->active_objs += sinfo.active_objs;
1366 info->num_objs += sinfo.num_objs;
1367 }
1368}
1369
b047501c 1370static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 1371{
0d7561c6
GC
1372 struct slabinfo sinfo;
1373
1374 memset(&sinfo, 0, sizeof(sinfo));
1375 get_slabinfo(s, &sinfo);
1376
749c5415
GC
1377 memcg_accumulate_slabinfo(s, &sinfo);
1378
0d7561c6 1379 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
749c5415 1380 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
1381 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1382
1383 seq_printf(m, " : tunables %4u %4u %4u",
1384 sinfo.limit, sinfo.batchcount, sinfo.shared);
1385 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1386 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1387 slabinfo_show_stats(m, s);
1388 seq_putc(m, '\n');
b7454ad3
GC
1389}
1390
1df3b26f 1391static int slab_show(struct seq_file *m, void *p)
749c5415 1392{
510ded33 1393 struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
749c5415 1394
510ded33 1395 if (p == slab_root_caches.next)
1df3b26f 1396 print_slabinfo_header(m);
510ded33 1397 cache_show(s, m);
b047501c
VD
1398 return 0;
1399}
1400
852d8be0
YS
1401void dump_unreclaimable_slab(void)
1402{
1403 struct kmem_cache *s, *s2;
1404 struct slabinfo sinfo;
1405
1406 /*
1407 * Here acquiring slab_mutex is risky since we don't prefer to get
1408 * sleep in oom path. But, without mutex hold, it may introduce a
1409 * risk of crash.
1410 * Use mutex_trylock to protect the list traverse, dump nothing
1411 * without acquiring the mutex.
1412 */
1413 if (!mutex_trylock(&slab_mutex)) {
1414 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1415 return;
1416 }
1417
1418 pr_info("Unreclaimable slab info:\n");
1419 pr_info("Name Used Total\n");
1420
1421 list_for_each_entry_safe(s, s2, &slab_caches, list) {
1422 if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
1423 continue;
1424
1425 get_slabinfo(s, &sinfo);
1426
1427 if (sinfo.num_objs > 0)
1428 pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
1429 (sinfo.active_objs * s->size) / 1024,
1430 (sinfo.num_objs * s->size) / 1024);
1431 }
1432 mutex_unlock(&slab_mutex);
1433}
1434
5b365771 1435#if defined(CONFIG_MEMCG)
bc2791f8
TH
1436void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1437{
aa9694bb 1438 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
bc2791f8
TH
1439
1440 mutex_lock(&slab_mutex);
1441 return seq_list_start(&memcg->kmem_caches, *pos);
1442}
1443
1444void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1445{
aa9694bb 1446 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
bc2791f8
TH
1447
1448 return seq_list_next(p, &memcg->kmem_caches, pos);
1449}
1450
1451void memcg_slab_stop(struct seq_file *m, void *p)
1452{
1453 mutex_unlock(&slab_mutex);
1454}
1455
b047501c
VD
1456int memcg_slab_show(struct seq_file *m, void *p)
1457{
bc2791f8
TH
1458 struct kmem_cache *s = list_entry(p, struct kmem_cache,
1459 memcg_params.kmem_caches_node);
aa9694bb 1460 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
b047501c 1461
bc2791f8 1462 if (p == memcg->kmem_caches.next)
b047501c 1463 print_slabinfo_header(m);
bc2791f8 1464 cache_show(s, m);
b047501c 1465 return 0;
749c5415 1466}
b047501c 1467#endif
749c5415 1468
b7454ad3
GC
1469/*
1470 * slabinfo_op - iterator that generates /proc/slabinfo
1471 *
1472 * Output layout:
1473 * cache-name
1474 * num-active-objs
1475 * total-objs
1476 * object size
1477 * num-active-slabs
1478 * total-slabs
1479 * num-pages-per-slab
1480 * + further values on SMP and with statistics enabled
1481 */
1482static const struct seq_operations slabinfo_op = {
1df3b26f 1483 .start = slab_start,
276a2439
WL
1484 .next = slab_next,
1485 .stop = slab_stop,
1df3b26f 1486 .show = slab_show,
b7454ad3
GC
1487};
1488
1489static int slabinfo_open(struct inode *inode, struct file *file)
1490{
1491 return seq_open(file, &slabinfo_op);
1492}
1493
1494static const struct file_operations proc_slabinfo_operations = {
1495 .open = slabinfo_open,
1496 .read = seq_read,
1497 .write = slabinfo_write,
1498 .llseek = seq_lseek,
1499 .release = seq_release,
1500};
1501
1502static int __init slab_proc_init(void)
1503{
e9b4db2b
WL
1504 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1505 &proc_slabinfo_operations);
b7454ad3
GC
1506 return 0;
1507}
1508module_init(slab_proc_init);
5b365771 1509#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
928cec9c
AR
1510
1511static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1512 gfp_t flags)
1513{
1514 void *ret;
1515 size_t ks = 0;
1516
1517 if (p)
1518 ks = ksize(p);
1519
0316bec2 1520 if (ks >= new_size) {
0116523c 1521 p = kasan_krealloc((void *)p, new_size, flags);
928cec9c 1522 return (void *)p;
0316bec2 1523 }
928cec9c
AR
1524
1525 ret = kmalloc_track_caller(new_size, flags);
1526 if (ret && p)
1527 memcpy(ret, p, ks);
1528
1529 return ret;
1530}
1531
1532/**
1533 * __krealloc - like krealloc() but don't free @p.
1534 * @p: object to reallocate memory for.
1535 * @new_size: how many bytes of memory are required.
1536 * @flags: the type of memory to allocate.
1537 *
1538 * This function is like krealloc() except it never frees the originally
1539 * allocated buffer. Use this if you don't want to free the buffer immediately
1540 * like, for example, with RCU.
a862f68a
MR
1541 *
1542 * Return: pointer to the allocated memory or %NULL in case of error
928cec9c
AR
1543 */
1544void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1545{
1546 if (unlikely(!new_size))
1547 return ZERO_SIZE_PTR;
1548
1549 return __do_krealloc(p, new_size, flags);
1550
1551}
1552EXPORT_SYMBOL(__krealloc);
1553
1554/**
1555 * krealloc - reallocate memory. The contents will remain unchanged.
1556 * @p: object to reallocate memory for.
1557 * @new_size: how many bytes of memory are required.
1558 * @flags: the type of memory to allocate.
1559 *
1560 * The contents of the object pointed to are preserved up to the
1561 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1562 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1563 * %NULL pointer, the object pointed to is freed.
a862f68a
MR
1564 *
1565 * Return: pointer to the allocated memory or %NULL in case of error
928cec9c
AR
1566 */
1567void *krealloc(const void *p, size_t new_size, gfp_t flags)
1568{
1569 void *ret;
1570
1571 if (unlikely(!new_size)) {
1572 kfree(p);
1573 return ZERO_SIZE_PTR;
1574 }
1575
1576 ret = __do_krealloc(p, new_size, flags);
772a2fa5 1577 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
928cec9c
AR
1578 kfree(p);
1579
1580 return ret;
1581}
1582EXPORT_SYMBOL(krealloc);
1583
1584/**
1585 * kzfree - like kfree but zero memory
1586 * @p: object to free memory of
1587 *
1588 * The memory of the object @p points to is zeroed before freed.
1589 * If @p is %NULL, kzfree() does nothing.
1590 *
1591 * Note: this function zeroes the whole allocated buffer which can be a good
1592 * deal bigger than the requested buffer size passed to kmalloc(). So be
1593 * careful when using this function in performance sensitive code.
1594 */
1595void kzfree(const void *p)
1596{
1597 size_t ks;
1598 void *mem = (void *)p;
1599
1600 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1601 return;
1602 ks = ksize(mem);
1603 memset(mem, 0, ks);
1604 kfree(mem);
1605}
1606EXPORT_SYMBOL(kzfree);
1607
10d1f8cb
ME
1608/**
1609 * ksize - get the actual amount of memory allocated for a given object
1610 * @objp: Pointer to the object
1611 *
1612 * kmalloc may internally round up allocations and return more memory
1613 * than requested. ksize() can be used to determine the actual amount of
1614 * memory allocated. The caller may use this additional memory, even though
1615 * a smaller amount of memory was initially specified with the kmalloc call.
1616 * The caller must guarantee that objp points to a valid object previously
1617 * allocated with either kmalloc() or kmem_cache_alloc(). The object
1618 * must not be freed during the duration of the call.
1619 *
1620 * Return: size of the actual memory used by @objp in bytes
1621 */
1622size_t ksize(const void *objp)
1623{
0d4ca4c9
ME
1624 size_t size;
1625
1626 if (WARN_ON_ONCE(!objp))
1627 return 0;
1628 /*
1629 * We need to check that the pointed to object is valid, and only then
1630 * unpoison the shadow memory below. We use __kasan_check_read(), to
1631 * generate a more useful report at the time ksize() is called (rather
1632 * than later where behaviour is undefined due to potential
1633 * use-after-free or double-free).
1634 *
1635 * If the pointed to memory is invalid we return 0, to avoid users of
1636 * ksize() writing to and potentially corrupting the memory region.
1637 *
1638 * We want to perform the check before __ksize(), to avoid potentially
1639 * crashing in __ksize() due to accessing invalid metadata.
1640 */
1641 if (unlikely(objp == ZERO_SIZE_PTR) || !__kasan_check_read(objp, 1))
1642 return 0;
1643
1644 size = __ksize(objp);
10d1f8cb
ME
1645 /*
1646 * We assume that ksize callers could use whole allocated area,
1647 * so we need to unpoison this area.
1648 */
1649 kasan_unpoison_shadow(objp, size);
1650 return size;
1651}
1652EXPORT_SYMBOL(ksize);
1653
928cec9c
AR
1654/* Tracepoints definitions. */
1655EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1656EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1657EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1658EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1659EXPORT_TRACEPOINT_SYMBOL(kfree);
1660EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
4f6923fb
HM
1661
1662int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1663{
1664 if (__should_failslab(s, gfpflags))
1665 return -ENOMEM;
1666 return 0;
1667}
1668ALLOW_ERROR_INJECTION(should_failslab, ERRNO);