]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/slab_common.c
memcg, slab: cleanup memcg cache creation
[mirror_ubuntu-zesty-kernel.git] / mm / slab_common.c
CommitLineData
039363f3
CL
1/*
2 * Slab allocator functions that are independent of the allocator strategy
3 *
4 * (C) 2012 Christoph Lameter <cl@linux.com>
5 */
6#include <linux/slab.h>
7
8#include <linux/mm.h>
9#include <linux/poison.h>
10#include <linux/interrupt.h>
11#include <linux/memory.h>
12#include <linux/compiler.h>
13#include <linux/module.h>
20cea968
CL
14#include <linux/cpu.h>
15#include <linux/uaccess.h>
b7454ad3
GC
16#include <linux/seq_file.h>
17#include <linux/proc_fs.h>
039363f3
CL
18#include <asm/cacheflush.h>
19#include <asm/tlbflush.h>
20#include <asm/page.h>
2633d7a0 21#include <linux/memcontrol.h>
f1b6eb6e 22#include <trace/events/kmem.h>
039363f3 23
97d06609
CL
24#include "slab.h"
25
26enum slab_state slab_state;
18004c5d
CL
27LIST_HEAD(slab_caches);
28DEFINE_MUTEX(slab_mutex);
9b030cb8 29struct kmem_cache *kmem_cache;
97d06609 30
77be4b13 31#ifdef CONFIG_DEBUG_VM
2633d7a0
GC
32static int kmem_cache_sanity_check(struct mem_cgroup *memcg, const char *name,
33 size_t size)
039363f3
CL
34{
35 struct kmem_cache *s = NULL;
36
039363f3
CL
37 if (!name || in_interrupt() || size < sizeof(void *) ||
38 size > KMALLOC_MAX_SIZE) {
77be4b13
SK
39 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
40 return -EINVAL;
039363f3 41 }
b920536a 42
20cea968
CL
43 list_for_each_entry(s, &slab_caches, list) {
44 char tmp;
45 int res;
46
47 /*
48 * This happens when the module gets unloaded and doesn't
49 * destroy its slab cache and no-one else reuses the vmalloc
50 * area of the module. Print a warning.
51 */
52 res = probe_kernel_address(s->name, tmp);
53 if (res) {
77be4b13 54 pr_err("Slab cache with size %d has lost its name\n",
20cea968
CL
55 s->object_size);
56 continue;
57 }
58
3e374919 59#if !defined(CONFIG_SLUB) || !defined(CONFIG_SLUB_DEBUG_ON)
2633d7a0
GC
60 /*
61 * For simplicity, we won't check this in the list of memcg
62 * caches. We have control over memcg naming, and if there
63 * aren't duplicates in the global list, there won't be any
64 * duplicates in the memcg lists as well.
65 */
66 if (!memcg && !strcmp(s->name, name)) {
77be4b13
SK
67 pr_err("%s (%s): Cache name already exists.\n",
68 __func__, name);
20cea968
CL
69 dump_stack();
70 s = NULL;
77be4b13 71 return -EINVAL;
20cea968 72 }
3e374919 73#endif
20cea968
CL
74 }
75
76 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
77 return 0;
78}
79#else
2633d7a0
GC
80static inline int kmem_cache_sanity_check(struct mem_cgroup *memcg,
81 const char *name, size_t size)
77be4b13
SK
82{
83 return 0;
84}
20cea968
CL
85#endif
86
55007d84
GC
87#ifdef CONFIG_MEMCG_KMEM
88int memcg_update_all_caches(int num_memcgs)
89{
90 struct kmem_cache *s;
91 int ret = 0;
92 mutex_lock(&slab_mutex);
93
94 list_for_each_entry(s, &slab_caches, list) {
95 if (!is_root_cache(s))
96 continue;
97
98 ret = memcg_update_cache_size(s, num_memcgs);
99 /*
100 * See comment in memcontrol.c, memcg_update_cache_size:
101 * Instead of freeing the memory, we'll just leave the caches
102 * up to this point in an updated state.
103 */
104 if (ret)
105 goto out;
106 }
107
108 memcg_update_array_size(num_memcgs);
109out:
110 mutex_unlock(&slab_mutex);
111 return ret;
112}
113#endif
114
45906855
CL
115/*
116 * Figure out what the alignment of the objects will be given a set of
117 * flags, a user specified alignment and the size of the objects.
118 */
119unsigned long calculate_alignment(unsigned long flags,
120 unsigned long align, unsigned long size)
121{
122 /*
123 * If the user wants hardware cache aligned objects then follow that
124 * suggestion if the object is sufficiently large.
125 *
126 * The hardware cache alignment cannot override the specified
127 * alignment though. If that is greater then use it.
128 */
129 if (flags & SLAB_HWCACHE_ALIGN) {
130 unsigned long ralign = cache_line_size();
131 while (size <= ralign / 2)
132 ralign /= 2;
133 align = max(align, ralign);
134 }
135
136 if (align < ARCH_SLAB_MINALIGN)
137 align = ARCH_SLAB_MINALIGN;
138
139 return ALIGN(align, sizeof(void *));
140}
141
142
77be4b13
SK
143/*
144 * kmem_cache_create - Create a cache.
145 * @name: A string which is used in /proc/slabinfo to identify this cache.
146 * @size: The size of objects to be created in this cache.
147 * @align: The required alignment for the objects.
148 * @flags: SLAB flags
149 * @ctor: A constructor for the objects.
150 *
151 * Returns a ptr to the cache on success, NULL on failure.
152 * Cannot be called within a interrupt, but can be interrupted.
153 * The @ctor is run when new pages are allocated by the cache.
154 *
155 * The flags are
156 *
157 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
158 * to catch references to uninitialised memory.
159 *
160 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
161 * for buffer overruns.
162 *
163 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
164 * cacheline. This can be beneficial if you're counting cycles as closely
165 * as davem.
166 */
167
2633d7a0
GC
168struct kmem_cache *
169kmem_cache_create_memcg(struct mem_cgroup *memcg, const char *name, size_t size,
943a451a
GC
170 size_t align, unsigned long flags, void (*ctor)(void *),
171 struct kmem_cache *parent_cache)
77be4b13
SK
172{
173 struct kmem_cache *s = NULL;
3965fc36 174 int err;
039363f3 175
77be4b13
SK
176 get_online_cpus();
177 mutex_lock(&slab_mutex);
686d550d 178
3965fc36
VD
179 err = kmem_cache_sanity_check(memcg, name, size);
180 if (err)
181 goto out_unlock;
686d550d 182
2edefe11
VD
183 if (memcg) {
184 /*
185 * Since per-memcg caches are created asynchronously on first
186 * allocation (see memcg_kmem_get_cache()), several threads can
187 * try to create the same cache, but only one of them may
188 * succeed. Therefore if we get here and see the cache has
189 * already been created, we silently return NULL.
190 */
191 if (cache_from_memcg_idx(parent_cache, memcg_cache_id(memcg)))
192 goto out_unlock;
193 }
194
d8843922
GC
195 /*
196 * Some allocators will constraint the set of valid flags to a subset
197 * of all flags. We expect them to define CACHE_CREATE_MASK in this
198 * case, and we'll just provide them with a sanitized version of the
199 * passed flags.
200 */
201 flags &= CACHE_CREATE_MASK;
686d550d 202
a44cb944
VD
203 if (!memcg) {
204 s = __kmem_cache_alias(name, size, align, flags, ctor);
205 if (s)
206 goto out_unlock;
207 }
cbb79694 208
3965fc36 209 err = -ENOMEM;
278b1bb1 210 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
3965fc36
VD
211 if (!s)
212 goto out_unlock;
2633d7a0 213
3965fc36
VD
214 s->object_size = s->size = size;
215 s->align = calculate_alignment(flags, align, size);
216 s->ctor = ctor;
8a13a4cc 217
5722d094
VD
218 if (memcg)
219 s->name = memcg_create_cache_name(memcg, parent_cache);
220 else
221 s->name = kstrdup(name, GFP_KERNEL);
3965fc36
VD
222 if (!s->name)
223 goto out_free_cache;
224
363a044f 225 err = memcg_alloc_cache_params(memcg, s, parent_cache);
3965fc36
VD
226 if (err)
227 goto out_free_cache;
228
229 err = __kmem_cache_create(s, flags);
230 if (err)
231 goto out_free_cache;
7c9adf5a 232
3965fc36
VD
233 s->refcount = 1;
234 list_add(&s->list, &slab_caches);
1aa13254 235 memcg_register_cache(s);
3965fc36
VD
236
237out_unlock:
20cea968
CL
238 mutex_unlock(&slab_mutex);
239 put_online_cpus();
240
ba3253c7
DJ
241 if (err) {
242 /*
243 * There is no point in flooding logs with warnings or
244 * especially crashing the system if we fail to create a cache
245 * for a memcg. In this case we will be accounting the memcg
246 * allocation to the root cgroup until we succeed to create its
247 * own cache, but it isn't that critical.
248 */
249 if (!memcg)
250 return NULL;
251
686d550d
CL
252 if (flags & SLAB_PANIC)
253 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
254 name, err);
255 else {
256 printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
257 name, err);
258 dump_stack();
259 }
686d550d
CL
260 return NULL;
261 }
039363f3 262 return s;
3965fc36
VD
263
264out_free_cache:
363a044f 265 memcg_free_cache_params(s);
3965fc36
VD
266 kfree(s->name);
267 kmem_cache_free(kmem_cache, s);
268 goto out_unlock;
039363f3 269}
2633d7a0
GC
270
271struct kmem_cache *
272kmem_cache_create(const char *name, size_t size, size_t align,
273 unsigned long flags, void (*ctor)(void *))
274{
943a451a 275 return kmem_cache_create_memcg(NULL, name, size, align, flags, ctor, NULL);
2633d7a0 276}
039363f3 277EXPORT_SYMBOL(kmem_cache_create);
97d06609 278
945cf2b6
CL
279void kmem_cache_destroy(struct kmem_cache *s)
280{
7cf27982
GC
281 /* Destroy all the children caches if we aren't a memcg cache */
282 kmem_cache_destroy_memcg_children(s);
283
945cf2b6
CL
284 get_online_cpus();
285 mutex_lock(&slab_mutex);
286 s->refcount--;
287 if (!s->refcount) {
288 list_del(&s->list);
289
290 if (!__kmem_cache_shutdown(s)) {
2edefe11 291 memcg_unregister_cache(s);
210ed9de 292 mutex_unlock(&slab_mutex);
945cf2b6
CL
293 if (s->flags & SLAB_DESTROY_BY_RCU)
294 rcu_barrier();
295
1aa13254 296 memcg_free_cache_params(s);
db265eca 297 kfree(s->name);
8f4c765c 298 kmem_cache_free(kmem_cache, s);
945cf2b6
CL
299 } else {
300 list_add(&s->list, &slab_caches);
210ed9de 301 mutex_unlock(&slab_mutex);
945cf2b6
CL
302 printk(KERN_ERR "kmem_cache_destroy %s: Slab cache still has objects\n",
303 s->name);
304 dump_stack();
305 }
210ed9de
JK
306 } else {
307 mutex_unlock(&slab_mutex);
945cf2b6 308 }
945cf2b6
CL
309 put_online_cpus();
310}
311EXPORT_SYMBOL(kmem_cache_destroy);
312
97d06609
CL
313int slab_is_available(void)
314{
315 return slab_state >= UP;
316}
b7454ad3 317
45530c44
CL
318#ifndef CONFIG_SLOB
319/* Create a cache during boot when no slab services are available yet */
320void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
321 unsigned long flags)
322{
323 int err;
324
325 s->name = name;
326 s->size = s->object_size = size;
45906855 327 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
45530c44
CL
328 err = __kmem_cache_create(s, flags);
329
330 if (err)
31ba7346 331 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
45530c44
CL
332 name, size, err);
333
334 s->refcount = -1; /* Exempt from merging for now */
335}
336
337struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
338 unsigned long flags)
339{
340 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
341
342 if (!s)
343 panic("Out of memory when creating slab %s\n", name);
344
345 create_boot_cache(s, name, size, flags);
346 list_add(&s->list, &slab_caches);
347 s->refcount = 1;
348 return s;
349}
350
9425c58e
CL
351struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
352EXPORT_SYMBOL(kmalloc_caches);
353
354#ifdef CONFIG_ZONE_DMA
355struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
356EXPORT_SYMBOL(kmalloc_dma_caches);
357#endif
358
2c59dd65
CL
359/*
360 * Conversion table for small slabs sizes / 8 to the index in the
361 * kmalloc array. This is necessary for slabs < 192 since we have non power
362 * of two cache sizes there. The size of larger slabs can be determined using
363 * fls.
364 */
365static s8 size_index[24] = {
366 3, /* 8 */
367 4, /* 16 */
368 5, /* 24 */
369 5, /* 32 */
370 6, /* 40 */
371 6, /* 48 */
372 6, /* 56 */
373 6, /* 64 */
374 1, /* 72 */
375 1, /* 80 */
376 1, /* 88 */
377 1, /* 96 */
378 7, /* 104 */
379 7, /* 112 */
380 7, /* 120 */
381 7, /* 128 */
382 2, /* 136 */
383 2, /* 144 */
384 2, /* 152 */
385 2, /* 160 */
386 2, /* 168 */
387 2, /* 176 */
388 2, /* 184 */
389 2 /* 192 */
390};
391
392static inline int size_index_elem(size_t bytes)
393{
394 return (bytes - 1) / 8;
395}
396
397/*
398 * Find the kmem_cache structure that serves a given size of
399 * allocation
400 */
401struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
402{
403 int index;
404
9de1bc87 405 if (unlikely(size > KMALLOC_MAX_SIZE)) {
907985f4 406 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
6286ae97 407 return NULL;
907985f4 408 }
6286ae97 409
2c59dd65
CL
410 if (size <= 192) {
411 if (!size)
412 return ZERO_SIZE_PTR;
413
414 index = size_index[size_index_elem(size)];
415 } else
416 index = fls(size - 1);
417
418#ifdef CONFIG_ZONE_DMA
b1e05416 419 if (unlikely((flags & GFP_DMA)))
2c59dd65
CL
420 return kmalloc_dma_caches[index];
421
422#endif
423 return kmalloc_caches[index];
424}
425
f97d5f63
CL
426/*
427 * Create the kmalloc array. Some of the regular kmalloc arrays
428 * may already have been created because they were needed to
429 * enable allocations for slab creation.
430 */
431void __init create_kmalloc_caches(unsigned long flags)
432{
433 int i;
434
2c59dd65
CL
435 /*
436 * Patch up the size_index table if we have strange large alignment
437 * requirements for the kmalloc array. This is only the case for
438 * MIPS it seems. The standard arches will not generate any code here.
439 *
440 * Largest permitted alignment is 256 bytes due to the way we
441 * handle the index determination for the smaller caches.
442 *
443 * Make sure that nothing crazy happens if someone starts tinkering
444 * around with ARCH_KMALLOC_MINALIGN
445 */
446 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
447 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
448
449 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
450 int elem = size_index_elem(i);
451
452 if (elem >= ARRAY_SIZE(size_index))
453 break;
454 size_index[elem] = KMALLOC_SHIFT_LOW;
455 }
456
457 if (KMALLOC_MIN_SIZE >= 64) {
458 /*
459 * The 96 byte size cache is not used if the alignment
460 * is 64 byte.
461 */
462 for (i = 64 + 8; i <= 96; i += 8)
463 size_index[size_index_elem(i)] = 7;
464
465 }
466
467 if (KMALLOC_MIN_SIZE >= 128) {
468 /*
469 * The 192 byte sized cache is not used if the alignment
470 * is 128 byte. Redirect kmalloc to use the 256 byte cache
471 * instead.
472 */
473 for (i = 128 + 8; i <= 192; i += 8)
474 size_index[size_index_elem(i)] = 8;
475 }
8a965b3b
CL
476 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
477 if (!kmalloc_caches[i]) {
f97d5f63
CL
478 kmalloc_caches[i] = create_kmalloc_cache(NULL,
479 1 << i, flags);
956e46ef 480 }
f97d5f63 481
956e46ef
CM
482 /*
483 * Caches that are not of the two-to-the-power-of size.
484 * These have to be created immediately after the
485 * earlier power of two caches
486 */
487 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
488 kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
8a965b3b 489
956e46ef
CM
490 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
491 kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
8a965b3b
CL
492 }
493
f97d5f63
CL
494 /* Kmalloc array is now usable */
495 slab_state = UP;
496
497 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
498 struct kmem_cache *s = kmalloc_caches[i];
499 char *n;
500
501 if (s) {
502 n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
503
504 BUG_ON(!n);
505 s->name = n;
506 }
507 }
508
509#ifdef CONFIG_ZONE_DMA
510 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
511 struct kmem_cache *s = kmalloc_caches[i];
512
513 if (s) {
514 int size = kmalloc_size(i);
515 char *n = kasprintf(GFP_NOWAIT,
516 "dma-kmalloc-%d", size);
517
518 BUG_ON(!n);
519 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
520 size, SLAB_CACHE_DMA | flags);
521 }
522 }
523#endif
524}
45530c44
CL
525#endif /* !CONFIG_SLOB */
526
f1b6eb6e
CL
527#ifdef CONFIG_TRACING
528void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
529{
530 void *ret = kmalloc_order(size, flags, order);
531 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
532 return ret;
533}
534EXPORT_SYMBOL(kmalloc_order_trace);
535#endif
45530c44 536
b7454ad3 537#ifdef CONFIG_SLABINFO
e9b4db2b
WL
538
539#ifdef CONFIG_SLAB
540#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
541#else
542#define SLABINFO_RIGHTS S_IRUSR
543#endif
544
749c5415 545void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
546{
547 /*
548 * Output format version, so at least we can change it
549 * without _too_ many complaints.
550 */
551#ifdef CONFIG_DEBUG_SLAB
552 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
553#else
554 seq_puts(m, "slabinfo - version: 2.1\n");
555#endif
556 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
557 "<objperslab> <pagesperslab>");
558 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
559 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
560#ifdef CONFIG_DEBUG_SLAB
561 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
562 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
563 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
564#endif
565 seq_putc(m, '\n');
566}
567
b7454ad3
GC
568static void *s_start(struct seq_file *m, loff_t *pos)
569{
570 loff_t n = *pos;
571
572 mutex_lock(&slab_mutex);
573 if (!n)
574 print_slabinfo_header(m);
575
576 return seq_list_start(&slab_caches, *pos);
577}
578
276a2439 579void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3
GC
580{
581 return seq_list_next(p, &slab_caches, pos);
582}
583
276a2439 584void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
585{
586 mutex_unlock(&slab_mutex);
587}
588
749c5415
GC
589static void
590memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
591{
592 struct kmem_cache *c;
593 struct slabinfo sinfo;
594 int i;
595
596 if (!is_root_cache(s))
597 return;
598
599 for_each_memcg_cache_index(i) {
2ade4de8 600 c = cache_from_memcg_idx(s, i);
749c5415
GC
601 if (!c)
602 continue;
603
604 memset(&sinfo, 0, sizeof(sinfo));
605 get_slabinfo(c, &sinfo);
606
607 info->active_slabs += sinfo.active_slabs;
608 info->num_slabs += sinfo.num_slabs;
609 info->shared_avail += sinfo.shared_avail;
610 info->active_objs += sinfo.active_objs;
611 info->num_objs += sinfo.num_objs;
612 }
613}
614
615int cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 616{
0d7561c6
GC
617 struct slabinfo sinfo;
618
619 memset(&sinfo, 0, sizeof(sinfo));
620 get_slabinfo(s, &sinfo);
621
749c5415
GC
622 memcg_accumulate_slabinfo(s, &sinfo);
623
0d7561c6 624 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
749c5415 625 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
626 sinfo.objects_per_slab, (1 << sinfo.cache_order));
627
628 seq_printf(m, " : tunables %4u %4u %4u",
629 sinfo.limit, sinfo.batchcount, sinfo.shared);
630 seq_printf(m, " : slabdata %6lu %6lu %6lu",
631 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
632 slabinfo_show_stats(m, s);
633 seq_putc(m, '\n');
634 return 0;
b7454ad3
GC
635}
636
749c5415
GC
637static int s_show(struct seq_file *m, void *p)
638{
639 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
640
641 if (!is_root_cache(s))
642 return 0;
643 return cache_show(s, m);
644}
645
b7454ad3
GC
646/*
647 * slabinfo_op - iterator that generates /proc/slabinfo
648 *
649 * Output layout:
650 * cache-name
651 * num-active-objs
652 * total-objs
653 * object size
654 * num-active-slabs
655 * total-slabs
656 * num-pages-per-slab
657 * + further values on SMP and with statistics enabled
658 */
659static const struct seq_operations slabinfo_op = {
660 .start = s_start,
276a2439
WL
661 .next = slab_next,
662 .stop = slab_stop,
b7454ad3
GC
663 .show = s_show,
664};
665
666static int slabinfo_open(struct inode *inode, struct file *file)
667{
668 return seq_open(file, &slabinfo_op);
669}
670
671static const struct file_operations proc_slabinfo_operations = {
672 .open = slabinfo_open,
673 .read = seq_read,
674 .write = slabinfo_write,
675 .llseek = seq_lseek,
676 .release = seq_release,
677};
678
679static int __init slab_proc_init(void)
680{
e9b4db2b
WL
681 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
682 &proc_slabinfo_operations);
b7454ad3
GC
683 return 0;
684}
685module_init(slab_proc_init);
686#endif /* CONFIG_SLABINFO */