]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/slab_common.c
slab: remove synchronous rcu_barrier() call in memcg cache release path
[mirror_ubuntu-bionic-kernel.git] / mm / slab_common.c
CommitLineData
039363f3
CL
1/*
2 * Slab allocator functions that are independent of the allocator strategy
3 *
4 * (C) 2012 Christoph Lameter <cl@linux.com>
5 */
6#include <linux/slab.h>
7
8#include <linux/mm.h>
9#include <linux/poison.h>
10#include <linux/interrupt.h>
11#include <linux/memory.h>
12#include <linux/compiler.h>
13#include <linux/module.h>
20cea968
CL
14#include <linux/cpu.h>
15#include <linux/uaccess.h>
b7454ad3
GC
16#include <linux/seq_file.h>
17#include <linux/proc_fs.h>
039363f3
CL
18#include <asm/cacheflush.h>
19#include <asm/tlbflush.h>
20#include <asm/page.h>
2633d7a0 21#include <linux/memcontrol.h>
928cec9c
AR
22
23#define CREATE_TRACE_POINTS
f1b6eb6e 24#include <trace/events/kmem.h>
039363f3 25
97d06609
CL
26#include "slab.h"
27
28enum slab_state slab_state;
18004c5d
CL
29LIST_HEAD(slab_caches);
30DEFINE_MUTEX(slab_mutex);
9b030cb8 31struct kmem_cache *kmem_cache;
97d06609 32
657dc2f9
TH
33static LIST_HEAD(slab_caches_to_rcu_destroy);
34static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
35static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
36 slab_caches_to_rcu_destroy_workfn);
37
423c929c
JK
38/*
39 * Set of flags that will prevent slab merging
40 */
41#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
42 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
7ed2f9e6 43 SLAB_FAILSLAB | SLAB_KASAN)
423c929c 44
230e9fc2
VD
45#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
46 SLAB_NOTRACK | SLAB_ACCOUNT)
423c929c
JK
47
48/*
49 * Merge control. If this is set then no merging of slab caches will occur.
50 * (Could be removed. This was introduced to pacify the merge skeptics.)
51 */
52static int slab_nomerge;
53
54static int __init setup_slab_nomerge(char *str)
55{
56 slab_nomerge = 1;
57 return 1;
58}
59
60#ifdef CONFIG_SLUB
61__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
62#endif
63
64__setup("slab_nomerge", setup_slab_nomerge);
65
07f361b2
JK
66/*
67 * Determine the size of a slab object
68 */
69unsigned int kmem_cache_size(struct kmem_cache *s)
70{
71 return s->object_size;
72}
73EXPORT_SYMBOL(kmem_cache_size);
74
77be4b13 75#ifdef CONFIG_DEBUG_VM
794b1248 76static int kmem_cache_sanity_check(const char *name, size_t size)
039363f3
CL
77{
78 struct kmem_cache *s = NULL;
79
039363f3
CL
80 if (!name || in_interrupt() || size < sizeof(void *) ||
81 size > KMALLOC_MAX_SIZE) {
77be4b13
SK
82 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
83 return -EINVAL;
039363f3 84 }
b920536a 85
20cea968
CL
86 list_for_each_entry(s, &slab_caches, list) {
87 char tmp;
88 int res;
89
90 /*
91 * This happens when the module gets unloaded and doesn't
92 * destroy its slab cache and no-one else reuses the vmalloc
93 * area of the module. Print a warning.
94 */
95 res = probe_kernel_address(s->name, tmp);
96 if (res) {
77be4b13 97 pr_err("Slab cache with size %d has lost its name\n",
20cea968
CL
98 s->object_size);
99 continue;
100 }
20cea968
CL
101 }
102
103 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
104 return 0;
105}
106#else
794b1248 107static inline int kmem_cache_sanity_check(const char *name, size_t size)
77be4b13
SK
108{
109 return 0;
110}
20cea968
CL
111#endif
112
484748f0
CL
113void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
114{
115 size_t i;
116
ca257195
JDB
117 for (i = 0; i < nr; i++) {
118 if (s)
119 kmem_cache_free(s, p[i]);
120 else
121 kfree(p[i]);
122 }
484748f0
CL
123}
124
865762a8 125int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
484748f0
CL
126 void **p)
127{
128 size_t i;
129
130 for (i = 0; i < nr; i++) {
131 void *x = p[i] = kmem_cache_alloc(s, flags);
132 if (!x) {
133 __kmem_cache_free_bulk(s, i, p);
865762a8 134 return 0;
484748f0
CL
135 }
136 }
865762a8 137 return i;
484748f0
CL
138}
139
127424c8 140#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
f7ce3190 141void slab_init_memcg_params(struct kmem_cache *s)
33a690c4 142{
f7ce3190 143 s->memcg_params.is_root_cache = true;
426589f5 144 INIT_LIST_HEAD(&s->memcg_params.list);
f7ce3190
VD
145 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
146}
147
148static int init_memcg_params(struct kmem_cache *s,
149 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
150{
151 struct memcg_cache_array *arr;
33a690c4 152
f7ce3190
VD
153 if (memcg) {
154 s->memcg_params.is_root_cache = false;
155 s->memcg_params.memcg = memcg;
156 s->memcg_params.root_cache = root_cache;
33a690c4 157 return 0;
f7ce3190 158 }
33a690c4 159
f7ce3190 160 slab_init_memcg_params(s);
33a690c4 161
f7ce3190
VD
162 if (!memcg_nr_cache_ids)
163 return 0;
33a690c4 164
f7ce3190
VD
165 arr = kzalloc(sizeof(struct memcg_cache_array) +
166 memcg_nr_cache_ids * sizeof(void *),
167 GFP_KERNEL);
168 if (!arr)
169 return -ENOMEM;
33a690c4 170
f7ce3190 171 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
33a690c4
VD
172 return 0;
173}
174
f7ce3190 175static void destroy_memcg_params(struct kmem_cache *s)
33a690c4 176{
f7ce3190
VD
177 if (is_root_cache(s))
178 kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
33a690c4
VD
179}
180
f7ce3190 181static int update_memcg_params(struct kmem_cache *s, int new_array_size)
6f817f4c 182{
f7ce3190 183 struct memcg_cache_array *old, *new;
6f817f4c 184
f7ce3190
VD
185 if (!is_root_cache(s))
186 return 0;
6f817f4c 187
f7ce3190
VD
188 new = kzalloc(sizeof(struct memcg_cache_array) +
189 new_array_size * sizeof(void *), GFP_KERNEL);
190 if (!new)
6f817f4c
VD
191 return -ENOMEM;
192
f7ce3190
VD
193 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
194 lockdep_is_held(&slab_mutex));
195 if (old)
196 memcpy(new->entries, old->entries,
197 memcg_nr_cache_ids * sizeof(void *));
6f817f4c 198
f7ce3190
VD
199 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
200 if (old)
201 kfree_rcu(old, rcu);
6f817f4c
VD
202 return 0;
203}
204
55007d84
GC
205int memcg_update_all_caches(int num_memcgs)
206{
207 struct kmem_cache *s;
208 int ret = 0;
55007d84 209
05257a1a 210 mutex_lock(&slab_mutex);
55007d84 211 list_for_each_entry(s, &slab_caches, list) {
f7ce3190 212 ret = update_memcg_params(s, num_memcgs);
55007d84 213 /*
55007d84
GC
214 * Instead of freeing the memory, we'll just leave the caches
215 * up to this point in an updated state.
216 */
217 if (ret)
05257a1a 218 break;
55007d84 219 }
55007d84
GC
220 mutex_unlock(&slab_mutex);
221 return ret;
222}
657dc2f9
TH
223
224static void unlink_memcg_cache(struct kmem_cache *s)
225{
226 list_del(&s->memcg_params.list);
227}
33a690c4 228#else
f7ce3190
VD
229static inline int init_memcg_params(struct kmem_cache *s,
230 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
33a690c4
VD
231{
232 return 0;
233}
234
f7ce3190 235static inline void destroy_memcg_params(struct kmem_cache *s)
33a690c4
VD
236{
237}
657dc2f9
TH
238
239static inline void unlink_memcg_cache(struct kmem_cache *s)
240{
241}
127424c8 242#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
55007d84 243
423c929c
JK
244/*
245 * Find a mergeable slab cache
246 */
247int slab_unmergeable(struct kmem_cache *s)
248{
249 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
250 return 1;
251
252 if (!is_root_cache(s))
253 return 1;
254
255 if (s->ctor)
256 return 1;
257
258 /*
259 * We may have set a slab to be unmergeable during bootstrap.
260 */
261 if (s->refcount < 0)
262 return 1;
263
264 return 0;
265}
266
267struct kmem_cache *find_mergeable(size_t size, size_t align,
268 unsigned long flags, const char *name, void (*ctor)(void *))
269{
270 struct kmem_cache *s;
271
c6e28895 272 if (slab_nomerge)
423c929c
JK
273 return NULL;
274
275 if (ctor)
276 return NULL;
277
278 size = ALIGN(size, sizeof(void *));
279 align = calculate_alignment(flags, align, size);
280 size = ALIGN(size, align);
281 flags = kmem_cache_flags(size, flags, name, NULL);
282
c6e28895
GM
283 if (flags & SLAB_NEVER_MERGE)
284 return NULL;
285
54362057 286 list_for_each_entry_reverse(s, &slab_caches, list) {
423c929c
JK
287 if (slab_unmergeable(s))
288 continue;
289
290 if (size > s->size)
291 continue;
292
293 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
294 continue;
295 /*
296 * Check if alignment is compatible.
297 * Courtesy of Adrian Drzewiecki
298 */
299 if ((s->size & ~(align - 1)) != s->size)
300 continue;
301
302 if (s->size - size >= sizeof(void *))
303 continue;
304
95069ac8
JK
305 if (IS_ENABLED(CONFIG_SLAB) && align &&
306 (align > s->align || s->align % align))
307 continue;
308
423c929c
JK
309 return s;
310 }
311 return NULL;
312}
313
45906855
CL
314/*
315 * Figure out what the alignment of the objects will be given a set of
316 * flags, a user specified alignment and the size of the objects.
317 */
318unsigned long calculate_alignment(unsigned long flags,
319 unsigned long align, unsigned long size)
320{
321 /*
322 * If the user wants hardware cache aligned objects then follow that
323 * suggestion if the object is sufficiently large.
324 *
325 * The hardware cache alignment cannot override the specified
326 * alignment though. If that is greater then use it.
327 */
328 if (flags & SLAB_HWCACHE_ALIGN) {
329 unsigned long ralign = cache_line_size();
330 while (size <= ralign / 2)
331 ralign /= 2;
332 align = max(align, ralign);
333 }
334
335 if (align < ARCH_SLAB_MINALIGN)
336 align = ARCH_SLAB_MINALIGN;
337
338 return ALIGN(align, sizeof(void *));
339}
340
c9a77a79
VD
341static struct kmem_cache *create_cache(const char *name,
342 size_t object_size, size_t size, size_t align,
343 unsigned long flags, void (*ctor)(void *),
344 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
794b1248
VD
345{
346 struct kmem_cache *s;
347 int err;
348
349 err = -ENOMEM;
350 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
351 if (!s)
352 goto out;
353
354 s->name = name;
355 s->object_size = object_size;
356 s->size = size;
357 s->align = align;
358 s->ctor = ctor;
359
f7ce3190 360 err = init_memcg_params(s, memcg, root_cache);
794b1248
VD
361 if (err)
362 goto out_free_cache;
363
364 err = __kmem_cache_create(s, flags);
365 if (err)
366 goto out_free_cache;
367
368 s->refcount = 1;
369 list_add(&s->list, &slab_caches);
794b1248
VD
370out:
371 if (err)
372 return ERR_PTR(err);
373 return s;
374
375out_free_cache:
f7ce3190 376 destroy_memcg_params(s);
7c4da061 377 kmem_cache_free(kmem_cache, s);
794b1248
VD
378 goto out;
379}
45906855 380
77be4b13
SK
381/*
382 * kmem_cache_create - Create a cache.
383 * @name: A string which is used in /proc/slabinfo to identify this cache.
384 * @size: The size of objects to be created in this cache.
385 * @align: The required alignment for the objects.
386 * @flags: SLAB flags
387 * @ctor: A constructor for the objects.
388 *
389 * Returns a ptr to the cache on success, NULL on failure.
390 * Cannot be called within a interrupt, but can be interrupted.
391 * The @ctor is run when new pages are allocated by the cache.
392 *
393 * The flags are
394 *
395 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
396 * to catch references to uninitialised memory.
397 *
398 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
399 * for buffer overruns.
400 *
401 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
402 * cacheline. This can be beneficial if you're counting cycles as closely
403 * as davem.
404 */
2633d7a0 405struct kmem_cache *
794b1248
VD
406kmem_cache_create(const char *name, size_t size, size_t align,
407 unsigned long flags, void (*ctor)(void *))
77be4b13 408{
40911a79 409 struct kmem_cache *s = NULL;
3dec16ea 410 const char *cache_name;
3965fc36 411 int err;
039363f3 412
77be4b13 413 get_online_cpus();
03afc0e2 414 get_online_mems();
05257a1a 415 memcg_get_cache_ids();
03afc0e2 416
77be4b13 417 mutex_lock(&slab_mutex);
686d550d 418
794b1248 419 err = kmem_cache_sanity_check(name, size);
3aa24f51 420 if (err) {
3965fc36 421 goto out_unlock;
3aa24f51 422 }
686d550d 423
e70954fd
TG
424 /* Refuse requests with allocator specific flags */
425 if (flags & ~SLAB_FLAGS_PERMITTED) {
426 err = -EINVAL;
427 goto out_unlock;
428 }
429
d8843922
GC
430 /*
431 * Some allocators will constraint the set of valid flags to a subset
432 * of all flags. We expect them to define CACHE_CREATE_MASK in this
433 * case, and we'll just provide them with a sanitized version of the
434 * passed flags.
435 */
436 flags &= CACHE_CREATE_MASK;
686d550d 437
794b1248
VD
438 s = __kmem_cache_alias(name, size, align, flags, ctor);
439 if (s)
3965fc36 440 goto out_unlock;
2633d7a0 441
3dec16ea 442 cache_name = kstrdup_const(name, GFP_KERNEL);
794b1248
VD
443 if (!cache_name) {
444 err = -ENOMEM;
445 goto out_unlock;
446 }
7c9adf5a 447
c9a77a79
VD
448 s = create_cache(cache_name, size, size,
449 calculate_alignment(flags, align, size),
450 flags, ctor, NULL, NULL);
794b1248
VD
451 if (IS_ERR(s)) {
452 err = PTR_ERR(s);
3dec16ea 453 kfree_const(cache_name);
794b1248 454 }
3965fc36
VD
455
456out_unlock:
20cea968 457 mutex_unlock(&slab_mutex);
03afc0e2 458
05257a1a 459 memcg_put_cache_ids();
03afc0e2 460 put_online_mems();
20cea968
CL
461 put_online_cpus();
462
ba3253c7 463 if (err) {
686d550d
CL
464 if (flags & SLAB_PANIC)
465 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
466 name, err);
467 else {
1170532b 468 pr_warn("kmem_cache_create(%s) failed with error %d\n",
686d550d
CL
469 name, err);
470 dump_stack();
471 }
686d550d
CL
472 return NULL;
473 }
039363f3
CL
474 return s;
475}
794b1248 476EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 477
657dc2f9 478static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
d5b3cf71 479{
657dc2f9
TH
480 LIST_HEAD(to_destroy);
481 struct kmem_cache *s, *s2;
d5b3cf71 482
657dc2f9
TH
483 /*
484 * On destruction, SLAB_DESTROY_BY_RCU kmem_caches are put on the
485 * @slab_caches_to_rcu_destroy list. The slab pages are freed
486 * through RCU and and the associated kmem_cache are dereferenced
487 * while freeing the pages, so the kmem_caches should be freed only
488 * after the pending RCU operations are finished. As rcu_barrier()
489 * is a pretty slow operation, we batch all pending destructions
490 * asynchronously.
491 */
492 mutex_lock(&slab_mutex);
493 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
494 mutex_unlock(&slab_mutex);
d5b3cf71 495
657dc2f9
TH
496 if (list_empty(&to_destroy))
497 return;
498
499 rcu_barrier();
500
501 list_for_each_entry_safe(s, s2, &to_destroy, list) {
502#ifdef SLAB_SUPPORTS_SYSFS
503 sysfs_slab_release(s);
504#else
505 slab_kmem_cache_release(s);
506#endif
507 }
d5b3cf71
VD
508}
509
657dc2f9 510static int shutdown_cache(struct kmem_cache *s)
d5b3cf71 511{
657dc2f9
TH
512 if (__kmem_cache_shutdown(s) != 0)
513 return -EBUSY;
d5b3cf71 514
657dc2f9
TH
515 list_del(&s->list);
516 if (!is_root_cache(s))
517 unlink_memcg_cache(s);
d5b3cf71 518
657dc2f9
TH
519 if (s->flags & SLAB_DESTROY_BY_RCU) {
520 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
521 schedule_work(&slab_caches_to_rcu_destroy_work);
522 } else {
d5b3cf71 523#ifdef SLAB_SUPPORTS_SYSFS
bf5eb3de 524 sysfs_slab_release(s);
d5b3cf71
VD
525#else
526 slab_kmem_cache_release(s);
527#endif
528 }
657dc2f9
TH
529
530 return 0;
d5b3cf71
VD
531}
532
127424c8 533#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
794b1248 534/*
776ed0f0 535 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
794b1248
VD
536 * @memcg: The memory cgroup the new cache is for.
537 * @root_cache: The parent of the new cache.
538 *
539 * This function attempts to create a kmem cache that will serve allocation
540 * requests going from @memcg to @root_cache. The new cache inherits properties
541 * from its parent.
542 */
d5b3cf71
VD
543void memcg_create_kmem_cache(struct mem_cgroup *memcg,
544 struct kmem_cache *root_cache)
2633d7a0 545{
3e0350a3 546 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
33398cf2 547 struct cgroup_subsys_state *css = &memcg->css;
f7ce3190 548 struct memcg_cache_array *arr;
bd673145 549 struct kmem_cache *s = NULL;
794b1248 550 char *cache_name;
f7ce3190 551 int idx;
794b1248
VD
552
553 get_online_cpus();
03afc0e2
VD
554 get_online_mems();
555
794b1248
VD
556 mutex_lock(&slab_mutex);
557
2a4db7eb 558 /*
567e9ab2 559 * The memory cgroup could have been offlined while the cache
2a4db7eb
VD
560 * creation work was pending.
561 */
b6ecd2de 562 if (memcg->kmem_state != KMEM_ONLINE)
2a4db7eb
VD
563 goto out_unlock;
564
f7ce3190
VD
565 idx = memcg_cache_id(memcg);
566 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
567 lockdep_is_held(&slab_mutex));
568
d5b3cf71
VD
569 /*
570 * Since per-memcg caches are created asynchronously on first
571 * allocation (see memcg_kmem_get_cache()), several threads can try to
572 * create the same cache, but only one of them may succeed.
573 */
f7ce3190 574 if (arr->entries[idx])
d5b3cf71
VD
575 goto out_unlock;
576
f1008365 577 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
73f576c0
JW
578 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
579 css->serial_nr, memcg_name_buf);
794b1248
VD
580 if (!cache_name)
581 goto out_unlock;
582
c9a77a79
VD
583 s = create_cache(cache_name, root_cache->object_size,
584 root_cache->size, root_cache->align,
f773e36d
GT
585 root_cache->flags & CACHE_CREATE_MASK,
586 root_cache->ctor, memcg, root_cache);
d5b3cf71
VD
587 /*
588 * If we could not create a memcg cache, do not complain, because
589 * that's not critical at all as we can always proceed with the root
590 * cache.
591 */
bd673145 592 if (IS_ERR(s)) {
794b1248 593 kfree(cache_name);
d5b3cf71 594 goto out_unlock;
bd673145 595 }
794b1248 596
426589f5
VD
597 list_add(&s->memcg_params.list, &root_cache->memcg_params.list);
598
d5b3cf71
VD
599 /*
600 * Since readers won't lock (see cache_from_memcg_idx()), we need a
601 * barrier here to ensure nobody will see the kmem_cache partially
602 * initialized.
603 */
604 smp_wmb();
f7ce3190 605 arr->entries[idx] = s;
d5b3cf71 606
794b1248
VD
607out_unlock:
608 mutex_unlock(&slab_mutex);
03afc0e2
VD
609
610 put_online_mems();
794b1248 611 put_online_cpus();
2633d7a0 612}
b8529907 613
2a4db7eb
VD
614void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
615{
616 int idx;
617 struct memcg_cache_array *arr;
d6e0b7fa 618 struct kmem_cache *s, *c;
2a4db7eb
VD
619
620 idx = memcg_cache_id(memcg);
621
d6e0b7fa
VD
622 get_online_cpus();
623 get_online_mems();
624
2a4db7eb
VD
625 mutex_lock(&slab_mutex);
626 list_for_each_entry(s, &slab_caches, list) {
627 if (!is_root_cache(s))
628 continue;
629
630 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
631 lockdep_is_held(&slab_mutex));
d6e0b7fa
VD
632 c = arr->entries[idx];
633 if (!c)
634 continue;
635
290b6a58 636 __kmem_cache_shrink(c, true);
2a4db7eb
VD
637 arr->entries[idx] = NULL;
638 }
639 mutex_unlock(&slab_mutex);
d6e0b7fa
VD
640
641 put_online_mems();
642 put_online_cpus();
2a4db7eb
VD
643}
644
d5b3cf71 645void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
b8529907 646{
d5b3cf71 647 struct kmem_cache *s, *s2;
b8529907 648
d5b3cf71
VD
649 get_online_cpus();
650 get_online_mems();
b8529907 651
b8529907 652 mutex_lock(&slab_mutex);
d5b3cf71 653 list_for_each_entry_safe(s, s2, &slab_caches, list) {
f7ce3190 654 if (is_root_cache(s) || s->memcg_params.memcg != memcg)
d5b3cf71
VD
655 continue;
656 /*
657 * The cgroup is about to be freed and therefore has no charges
658 * left. Hence, all its caches must be empty by now.
659 */
657dc2f9 660 BUG_ON(shutdown_cache(s));
d5b3cf71
VD
661 }
662 mutex_unlock(&slab_mutex);
b8529907 663
d5b3cf71
VD
664 put_online_mems();
665 put_online_cpus();
b8529907 666}
d60fdcc9 667
657dc2f9 668static int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
669{
670 struct memcg_cache_array *arr;
671 struct kmem_cache *c, *c2;
672 LIST_HEAD(busy);
673 int i;
674
675 BUG_ON(!is_root_cache(s));
676
677 /*
678 * First, shutdown active caches, i.e. caches that belong to online
679 * memory cgroups.
680 */
681 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
682 lockdep_is_held(&slab_mutex));
683 for_each_memcg_cache_index(i) {
684 c = arr->entries[i];
685 if (!c)
686 continue;
657dc2f9 687 if (shutdown_cache(c))
d60fdcc9
VD
688 /*
689 * The cache still has objects. Move it to a temporary
690 * list so as not to try to destroy it for a second
691 * time while iterating over inactive caches below.
692 */
693 list_move(&c->memcg_params.list, &busy);
694 else
695 /*
696 * The cache is empty and will be destroyed soon. Clear
697 * the pointer to it in the memcg_caches array so that
698 * it will never be accessed even if the root cache
699 * stays alive.
700 */
701 arr->entries[i] = NULL;
702 }
703
704 /*
705 * Second, shutdown all caches left from memory cgroups that are now
706 * offline.
707 */
708 list_for_each_entry_safe(c, c2, &s->memcg_params.list,
709 memcg_params.list)
657dc2f9 710 shutdown_cache(c);
d60fdcc9
VD
711
712 list_splice(&busy, &s->memcg_params.list);
713
714 /*
715 * A cache being destroyed must be empty. In particular, this means
716 * that all per memcg caches attached to it must be empty too.
717 */
718 if (!list_empty(&s->memcg_params.list))
719 return -EBUSY;
720 return 0;
721}
722#else
657dc2f9 723static inline int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
724{
725 return 0;
726}
127424c8 727#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
97d06609 728
41a21285
CL
729void slab_kmem_cache_release(struct kmem_cache *s)
730{
52b4b950 731 __kmem_cache_release(s);
f7ce3190 732 destroy_memcg_params(s);
3dec16ea 733 kfree_const(s->name);
41a21285
CL
734 kmem_cache_free(kmem_cache, s);
735}
736
945cf2b6
CL
737void kmem_cache_destroy(struct kmem_cache *s)
738{
d60fdcc9 739 int err;
d5b3cf71 740
3942d299
SS
741 if (unlikely(!s))
742 return;
743
945cf2b6 744 get_online_cpus();
03afc0e2
VD
745 get_online_mems();
746
55834c59 747 kasan_cache_destroy(s);
945cf2b6 748 mutex_lock(&slab_mutex);
b8529907 749
945cf2b6 750 s->refcount--;
b8529907
VD
751 if (s->refcount)
752 goto out_unlock;
753
657dc2f9 754 err = shutdown_memcg_caches(s);
d60fdcc9 755 if (!err)
657dc2f9 756 err = shutdown_cache(s);
b8529907 757
cd918c55 758 if (err) {
756a025f
JP
759 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
760 s->name);
cd918c55
VD
761 dump_stack();
762 }
b8529907
VD
763out_unlock:
764 mutex_unlock(&slab_mutex);
d5b3cf71 765
03afc0e2 766 put_online_mems();
945cf2b6
CL
767 put_online_cpus();
768}
769EXPORT_SYMBOL(kmem_cache_destroy);
770
03afc0e2
VD
771/**
772 * kmem_cache_shrink - Shrink a cache.
773 * @cachep: The cache to shrink.
774 *
775 * Releases as many slabs as possible for a cache.
776 * To help debugging, a zero exit status indicates all slabs were released.
777 */
778int kmem_cache_shrink(struct kmem_cache *cachep)
779{
780 int ret;
781
782 get_online_cpus();
783 get_online_mems();
55834c59 784 kasan_cache_shrink(cachep);
290b6a58 785 ret = __kmem_cache_shrink(cachep, false);
03afc0e2
VD
786 put_online_mems();
787 put_online_cpus();
788 return ret;
789}
790EXPORT_SYMBOL(kmem_cache_shrink);
791
fda90124 792bool slab_is_available(void)
97d06609
CL
793{
794 return slab_state >= UP;
795}
b7454ad3 796
45530c44
CL
797#ifndef CONFIG_SLOB
798/* Create a cache during boot when no slab services are available yet */
799void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
800 unsigned long flags)
801{
802 int err;
803
804 s->name = name;
805 s->size = s->object_size = size;
45906855 806 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
f7ce3190
VD
807
808 slab_init_memcg_params(s);
809
45530c44
CL
810 err = __kmem_cache_create(s, flags);
811
812 if (err)
31ba7346 813 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
45530c44
CL
814 name, size, err);
815
816 s->refcount = -1; /* Exempt from merging for now */
817}
818
819struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
820 unsigned long flags)
821{
822 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
823
824 if (!s)
825 panic("Out of memory when creating slab %s\n", name);
826
827 create_boot_cache(s, name, size, flags);
828 list_add(&s->list, &slab_caches);
829 s->refcount = 1;
830 return s;
831}
832
9425c58e
CL
833struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
834EXPORT_SYMBOL(kmalloc_caches);
835
836#ifdef CONFIG_ZONE_DMA
837struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
838EXPORT_SYMBOL(kmalloc_dma_caches);
839#endif
840
2c59dd65
CL
841/*
842 * Conversion table for small slabs sizes / 8 to the index in the
843 * kmalloc array. This is necessary for slabs < 192 since we have non power
844 * of two cache sizes there. The size of larger slabs can be determined using
845 * fls.
846 */
847static s8 size_index[24] = {
848 3, /* 8 */
849 4, /* 16 */
850 5, /* 24 */
851 5, /* 32 */
852 6, /* 40 */
853 6, /* 48 */
854 6, /* 56 */
855 6, /* 64 */
856 1, /* 72 */
857 1, /* 80 */
858 1, /* 88 */
859 1, /* 96 */
860 7, /* 104 */
861 7, /* 112 */
862 7, /* 120 */
863 7, /* 128 */
864 2, /* 136 */
865 2, /* 144 */
866 2, /* 152 */
867 2, /* 160 */
868 2, /* 168 */
869 2, /* 176 */
870 2, /* 184 */
871 2 /* 192 */
872};
873
874static inline int size_index_elem(size_t bytes)
875{
876 return (bytes - 1) / 8;
877}
878
879/*
880 * Find the kmem_cache structure that serves a given size of
881 * allocation
882 */
883struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
884{
885 int index;
886
9de1bc87 887 if (unlikely(size > KMALLOC_MAX_SIZE)) {
907985f4 888 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
6286ae97 889 return NULL;
907985f4 890 }
6286ae97 891
2c59dd65
CL
892 if (size <= 192) {
893 if (!size)
894 return ZERO_SIZE_PTR;
895
896 index = size_index[size_index_elem(size)];
897 } else
898 index = fls(size - 1);
899
900#ifdef CONFIG_ZONE_DMA
b1e05416 901 if (unlikely((flags & GFP_DMA)))
2c59dd65
CL
902 return kmalloc_dma_caches[index];
903
904#endif
905 return kmalloc_caches[index];
906}
907
4066c33d
GG
908/*
909 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
910 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
911 * kmalloc-67108864.
912 */
af3b5f87 913const struct kmalloc_info_struct kmalloc_info[] __initconst = {
4066c33d
GG
914 {NULL, 0}, {"kmalloc-96", 96},
915 {"kmalloc-192", 192}, {"kmalloc-8", 8},
916 {"kmalloc-16", 16}, {"kmalloc-32", 32},
917 {"kmalloc-64", 64}, {"kmalloc-128", 128},
918 {"kmalloc-256", 256}, {"kmalloc-512", 512},
919 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
920 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
921 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
922 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
923 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
924 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
925 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
926 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
927 {"kmalloc-67108864", 67108864}
928};
929
f97d5f63 930/*
34cc6990
DS
931 * Patch up the size_index table if we have strange large alignment
932 * requirements for the kmalloc array. This is only the case for
933 * MIPS it seems. The standard arches will not generate any code here.
934 *
935 * Largest permitted alignment is 256 bytes due to the way we
936 * handle the index determination for the smaller caches.
937 *
938 * Make sure that nothing crazy happens if someone starts tinkering
939 * around with ARCH_KMALLOC_MINALIGN
f97d5f63 940 */
34cc6990 941void __init setup_kmalloc_cache_index_table(void)
f97d5f63
CL
942{
943 int i;
944
2c59dd65
CL
945 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
946 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
947
948 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
949 int elem = size_index_elem(i);
950
951 if (elem >= ARRAY_SIZE(size_index))
952 break;
953 size_index[elem] = KMALLOC_SHIFT_LOW;
954 }
955
956 if (KMALLOC_MIN_SIZE >= 64) {
957 /*
958 * The 96 byte size cache is not used if the alignment
959 * is 64 byte.
960 */
961 for (i = 64 + 8; i <= 96; i += 8)
962 size_index[size_index_elem(i)] = 7;
963
964 }
965
966 if (KMALLOC_MIN_SIZE >= 128) {
967 /*
968 * The 192 byte sized cache is not used if the alignment
969 * is 128 byte. Redirect kmalloc to use the 256 byte cache
970 * instead.
971 */
972 for (i = 128 + 8; i <= 192; i += 8)
973 size_index[size_index_elem(i)] = 8;
974 }
34cc6990
DS
975}
976
ae6f2462 977static void __init new_kmalloc_cache(int idx, unsigned long flags)
a9730fca
CL
978{
979 kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
980 kmalloc_info[idx].size, flags);
981}
982
34cc6990
DS
983/*
984 * Create the kmalloc array. Some of the regular kmalloc arrays
985 * may already have been created because they were needed to
986 * enable allocations for slab creation.
987 */
988void __init create_kmalloc_caches(unsigned long flags)
989{
990 int i;
991
a9730fca
CL
992 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
993 if (!kmalloc_caches[i])
994 new_kmalloc_cache(i, flags);
f97d5f63 995
956e46ef 996 /*
a9730fca
CL
997 * Caches that are not of the two-to-the-power-of size.
998 * These have to be created immediately after the
999 * earlier power of two caches
956e46ef 1000 */
a9730fca
CL
1001 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
1002 new_kmalloc_cache(1, flags);
1003 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
1004 new_kmalloc_cache(2, flags);
8a965b3b
CL
1005 }
1006
f97d5f63
CL
1007 /* Kmalloc array is now usable */
1008 slab_state = UP;
1009
f97d5f63
CL
1010#ifdef CONFIG_ZONE_DMA
1011 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1012 struct kmem_cache *s = kmalloc_caches[i];
1013
1014 if (s) {
1015 int size = kmalloc_size(i);
1016 char *n = kasprintf(GFP_NOWAIT,
1017 "dma-kmalloc-%d", size);
1018
1019 BUG_ON(!n);
1020 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
1021 size, SLAB_CACHE_DMA | flags);
1022 }
1023 }
1024#endif
1025}
45530c44
CL
1026#endif /* !CONFIG_SLOB */
1027
cea371f4
VD
1028/*
1029 * To avoid unnecessary overhead, we pass through large allocation requests
1030 * directly to the page allocator. We use __GFP_COMP, because we will need to
1031 * know the allocation order to free the pages properly in kfree.
1032 */
52383431
VD
1033void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1034{
1035 void *ret;
1036 struct page *page;
1037
1038 flags |= __GFP_COMP;
4949148a 1039 page = alloc_pages(flags, order);
52383431
VD
1040 ret = page ? page_address(page) : NULL;
1041 kmemleak_alloc(ret, size, 1, flags);
505f5dcb 1042 kasan_kmalloc_large(ret, size, flags);
52383431
VD
1043 return ret;
1044}
1045EXPORT_SYMBOL(kmalloc_order);
1046
f1b6eb6e
CL
1047#ifdef CONFIG_TRACING
1048void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1049{
1050 void *ret = kmalloc_order(size, flags, order);
1051 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1052 return ret;
1053}
1054EXPORT_SYMBOL(kmalloc_order_trace);
1055#endif
45530c44 1056
7c00fce9
TG
1057#ifdef CONFIG_SLAB_FREELIST_RANDOM
1058/* Randomize a generic freelist */
1059static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1060 size_t count)
1061{
1062 size_t i;
1063 unsigned int rand;
1064
1065 for (i = 0; i < count; i++)
1066 list[i] = i;
1067
1068 /* Fisher-Yates shuffle */
1069 for (i = count - 1; i > 0; i--) {
1070 rand = prandom_u32_state(state);
1071 rand %= (i + 1);
1072 swap(list[i], list[rand]);
1073 }
1074}
1075
1076/* Create a random sequence per cache */
1077int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1078 gfp_t gfp)
1079{
1080 struct rnd_state state;
1081
1082 if (count < 2 || cachep->random_seq)
1083 return 0;
1084
1085 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1086 if (!cachep->random_seq)
1087 return -ENOMEM;
1088
1089 /* Get best entropy at this stage of boot */
1090 prandom_seed_state(&state, get_random_long());
1091
1092 freelist_randomize(&state, cachep->random_seq, count);
1093 return 0;
1094}
1095
1096/* Destroy the per-cache random freelist sequence */
1097void cache_random_seq_destroy(struct kmem_cache *cachep)
1098{
1099 kfree(cachep->random_seq);
1100 cachep->random_seq = NULL;
1101}
1102#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1103
b7454ad3 1104#ifdef CONFIG_SLABINFO
e9b4db2b
WL
1105
1106#ifdef CONFIG_SLAB
1107#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1108#else
1109#define SLABINFO_RIGHTS S_IRUSR
1110#endif
1111
b047501c 1112static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
1113{
1114 /*
1115 * Output format version, so at least we can change it
1116 * without _too_ many complaints.
1117 */
1118#ifdef CONFIG_DEBUG_SLAB
1119 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1120#else
1121 seq_puts(m, "slabinfo - version: 2.1\n");
1122#endif
756a025f 1123 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
bcee6e2a
GC
1124 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1125 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1126#ifdef CONFIG_DEBUG_SLAB
756a025f 1127 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
bcee6e2a
GC
1128 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1129#endif
1130 seq_putc(m, '\n');
1131}
1132
1df3b26f 1133void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 1134{
b7454ad3 1135 mutex_lock(&slab_mutex);
b7454ad3
GC
1136 return seq_list_start(&slab_caches, *pos);
1137}
1138
276a2439 1139void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3
GC
1140{
1141 return seq_list_next(p, &slab_caches, pos);
1142}
1143
276a2439 1144void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
1145{
1146 mutex_unlock(&slab_mutex);
1147}
1148
749c5415
GC
1149static void
1150memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1151{
1152 struct kmem_cache *c;
1153 struct slabinfo sinfo;
749c5415
GC
1154
1155 if (!is_root_cache(s))
1156 return;
1157
426589f5 1158 for_each_memcg_cache(c, s) {
749c5415
GC
1159 memset(&sinfo, 0, sizeof(sinfo));
1160 get_slabinfo(c, &sinfo);
1161
1162 info->active_slabs += sinfo.active_slabs;
1163 info->num_slabs += sinfo.num_slabs;
1164 info->shared_avail += sinfo.shared_avail;
1165 info->active_objs += sinfo.active_objs;
1166 info->num_objs += sinfo.num_objs;
1167 }
1168}
1169
b047501c 1170static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 1171{
0d7561c6
GC
1172 struct slabinfo sinfo;
1173
1174 memset(&sinfo, 0, sizeof(sinfo));
1175 get_slabinfo(s, &sinfo);
1176
749c5415
GC
1177 memcg_accumulate_slabinfo(s, &sinfo);
1178
0d7561c6 1179 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
749c5415 1180 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
1181 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1182
1183 seq_printf(m, " : tunables %4u %4u %4u",
1184 sinfo.limit, sinfo.batchcount, sinfo.shared);
1185 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1186 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1187 slabinfo_show_stats(m, s);
1188 seq_putc(m, '\n');
b7454ad3
GC
1189}
1190
1df3b26f 1191static int slab_show(struct seq_file *m, void *p)
749c5415
GC
1192{
1193 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1194
1df3b26f
VD
1195 if (p == slab_caches.next)
1196 print_slabinfo_header(m);
b047501c
VD
1197 if (is_root_cache(s))
1198 cache_show(s, m);
1199 return 0;
1200}
1201
127424c8 1202#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
b047501c
VD
1203int memcg_slab_show(struct seq_file *m, void *p)
1204{
1205 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1206 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1207
1208 if (p == slab_caches.next)
1209 print_slabinfo_header(m);
f7ce3190 1210 if (!is_root_cache(s) && s->memcg_params.memcg == memcg)
b047501c
VD
1211 cache_show(s, m);
1212 return 0;
749c5415 1213}
b047501c 1214#endif
749c5415 1215
b7454ad3
GC
1216/*
1217 * slabinfo_op - iterator that generates /proc/slabinfo
1218 *
1219 * Output layout:
1220 * cache-name
1221 * num-active-objs
1222 * total-objs
1223 * object size
1224 * num-active-slabs
1225 * total-slabs
1226 * num-pages-per-slab
1227 * + further values on SMP and with statistics enabled
1228 */
1229static const struct seq_operations slabinfo_op = {
1df3b26f 1230 .start = slab_start,
276a2439
WL
1231 .next = slab_next,
1232 .stop = slab_stop,
1df3b26f 1233 .show = slab_show,
b7454ad3
GC
1234};
1235
1236static int slabinfo_open(struct inode *inode, struct file *file)
1237{
1238 return seq_open(file, &slabinfo_op);
1239}
1240
1241static const struct file_operations proc_slabinfo_operations = {
1242 .open = slabinfo_open,
1243 .read = seq_read,
1244 .write = slabinfo_write,
1245 .llseek = seq_lseek,
1246 .release = seq_release,
1247};
1248
1249static int __init slab_proc_init(void)
1250{
e9b4db2b
WL
1251 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1252 &proc_slabinfo_operations);
b7454ad3
GC
1253 return 0;
1254}
1255module_init(slab_proc_init);
1256#endif /* CONFIG_SLABINFO */
928cec9c
AR
1257
1258static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1259 gfp_t flags)
1260{
1261 void *ret;
1262 size_t ks = 0;
1263
1264 if (p)
1265 ks = ksize(p);
1266
0316bec2 1267 if (ks >= new_size) {
505f5dcb 1268 kasan_krealloc((void *)p, new_size, flags);
928cec9c 1269 return (void *)p;
0316bec2 1270 }
928cec9c
AR
1271
1272 ret = kmalloc_track_caller(new_size, flags);
1273 if (ret && p)
1274 memcpy(ret, p, ks);
1275
1276 return ret;
1277}
1278
1279/**
1280 * __krealloc - like krealloc() but don't free @p.
1281 * @p: object to reallocate memory for.
1282 * @new_size: how many bytes of memory are required.
1283 * @flags: the type of memory to allocate.
1284 *
1285 * This function is like krealloc() except it never frees the originally
1286 * allocated buffer. Use this if you don't want to free the buffer immediately
1287 * like, for example, with RCU.
1288 */
1289void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1290{
1291 if (unlikely(!new_size))
1292 return ZERO_SIZE_PTR;
1293
1294 return __do_krealloc(p, new_size, flags);
1295
1296}
1297EXPORT_SYMBOL(__krealloc);
1298
1299/**
1300 * krealloc - reallocate memory. The contents will remain unchanged.
1301 * @p: object to reallocate memory for.
1302 * @new_size: how many bytes of memory are required.
1303 * @flags: the type of memory to allocate.
1304 *
1305 * The contents of the object pointed to are preserved up to the
1306 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1307 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1308 * %NULL pointer, the object pointed to is freed.
1309 */
1310void *krealloc(const void *p, size_t new_size, gfp_t flags)
1311{
1312 void *ret;
1313
1314 if (unlikely(!new_size)) {
1315 kfree(p);
1316 return ZERO_SIZE_PTR;
1317 }
1318
1319 ret = __do_krealloc(p, new_size, flags);
1320 if (ret && p != ret)
1321 kfree(p);
1322
1323 return ret;
1324}
1325EXPORT_SYMBOL(krealloc);
1326
1327/**
1328 * kzfree - like kfree but zero memory
1329 * @p: object to free memory of
1330 *
1331 * The memory of the object @p points to is zeroed before freed.
1332 * If @p is %NULL, kzfree() does nothing.
1333 *
1334 * Note: this function zeroes the whole allocated buffer which can be a good
1335 * deal bigger than the requested buffer size passed to kmalloc(). So be
1336 * careful when using this function in performance sensitive code.
1337 */
1338void kzfree(const void *p)
1339{
1340 size_t ks;
1341 void *mem = (void *)p;
1342
1343 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1344 return;
1345 ks = ksize(mem);
1346 memset(mem, 0, ks);
1347 kfree(mem);
1348}
1349EXPORT_SYMBOL(kzfree);
1350
1351/* Tracepoints definitions. */
1352EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1353EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1354EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1355EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1356EXPORT_TRACEPOINT_SYMBOL(kfree);
1357EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);