]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - mm/slab_common.c
kasan: make kasan_cache_create() work with 32-bit slab cache sizes
[mirror_ubuntu-eoan-kernel.git] / mm / slab_common.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
039363f3
CL
2/*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7#include <linux/slab.h>
8
9#include <linux/mm.h>
10#include <linux/poison.h>
11#include <linux/interrupt.h>
12#include <linux/memory.h>
1c99ba29 13#include <linux/cache.h>
039363f3
CL
14#include <linux/compiler.h>
15#include <linux/module.h>
20cea968
CL
16#include <linux/cpu.h>
17#include <linux/uaccess.h>
b7454ad3
GC
18#include <linux/seq_file.h>
19#include <linux/proc_fs.h>
039363f3
CL
20#include <asm/cacheflush.h>
21#include <asm/tlbflush.h>
22#include <asm/page.h>
2633d7a0 23#include <linux/memcontrol.h>
928cec9c
AR
24
25#define CREATE_TRACE_POINTS
f1b6eb6e 26#include <trace/events/kmem.h>
039363f3 27
97d06609
CL
28#include "slab.h"
29
30enum slab_state slab_state;
18004c5d
CL
31LIST_HEAD(slab_caches);
32DEFINE_MUTEX(slab_mutex);
9b030cb8 33struct kmem_cache *kmem_cache;
97d06609 34
2d891fbc
KC
35#ifdef CONFIG_HARDENED_USERCOPY
36bool usercopy_fallback __ro_after_init =
37 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
38module_param(usercopy_fallback, bool, 0400);
39MODULE_PARM_DESC(usercopy_fallback,
40 "WARN instead of reject usercopy whitelist violations");
41#endif
42
657dc2f9
TH
43static LIST_HEAD(slab_caches_to_rcu_destroy);
44static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
45static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
46 slab_caches_to_rcu_destroy_workfn);
47
423c929c
JK
48/*
49 * Set of flags that will prevent slab merging
50 */
51#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
5f0d5a3a 52 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
7ed2f9e6 53 SLAB_FAILSLAB | SLAB_KASAN)
423c929c 54
230e9fc2 55#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
75f296d9 56 SLAB_ACCOUNT)
423c929c
JK
57
58/*
59 * Merge control. If this is set then no merging of slab caches will occur.
423c929c 60 */
7660a6fd 61static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
423c929c
JK
62
63static int __init setup_slab_nomerge(char *str)
64{
7660a6fd 65 slab_nomerge = true;
423c929c
JK
66 return 1;
67}
68
69#ifdef CONFIG_SLUB
70__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
71#endif
72
73__setup("slab_nomerge", setup_slab_nomerge);
74
07f361b2
JK
75/*
76 * Determine the size of a slab object
77 */
78unsigned int kmem_cache_size(struct kmem_cache *s)
79{
80 return s->object_size;
81}
82EXPORT_SYMBOL(kmem_cache_size);
83
77be4b13 84#ifdef CONFIG_DEBUG_VM
f4957d5b 85static int kmem_cache_sanity_check(const char *name, unsigned int size)
039363f3
CL
86{
87 struct kmem_cache *s = NULL;
88
039363f3
CL
89 if (!name || in_interrupt() || size < sizeof(void *) ||
90 size > KMALLOC_MAX_SIZE) {
77be4b13
SK
91 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
92 return -EINVAL;
039363f3 93 }
b920536a 94
20cea968
CL
95 list_for_each_entry(s, &slab_caches, list) {
96 char tmp;
97 int res;
98
99 /*
100 * This happens when the module gets unloaded and doesn't
101 * destroy its slab cache and no-one else reuses the vmalloc
102 * area of the module. Print a warning.
103 */
104 res = probe_kernel_address(s->name, tmp);
105 if (res) {
1b473f29 106 pr_err("Slab cache with size %u has lost its name\n",
20cea968
CL
107 s->object_size);
108 continue;
109 }
20cea968
CL
110 }
111
112 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
113 return 0;
114}
115#else
f4957d5b 116static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
77be4b13
SK
117{
118 return 0;
119}
20cea968
CL
120#endif
121
484748f0
CL
122void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
123{
124 size_t i;
125
ca257195
JDB
126 for (i = 0; i < nr; i++) {
127 if (s)
128 kmem_cache_free(s, p[i]);
129 else
130 kfree(p[i]);
131 }
484748f0
CL
132}
133
865762a8 134int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
484748f0
CL
135 void **p)
136{
137 size_t i;
138
139 for (i = 0; i < nr; i++) {
140 void *x = p[i] = kmem_cache_alloc(s, flags);
141 if (!x) {
142 __kmem_cache_free_bulk(s, i, p);
865762a8 143 return 0;
484748f0
CL
144 }
145 }
865762a8 146 return i;
484748f0
CL
147}
148
127424c8 149#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
510ded33
TH
150
151LIST_HEAD(slab_root_caches);
152
f7ce3190 153void slab_init_memcg_params(struct kmem_cache *s)
33a690c4 154{
9eeadc8b 155 s->memcg_params.root_cache = NULL;
f7ce3190 156 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
9eeadc8b 157 INIT_LIST_HEAD(&s->memcg_params.children);
f7ce3190
VD
158}
159
160static int init_memcg_params(struct kmem_cache *s,
161 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
162{
163 struct memcg_cache_array *arr;
33a690c4 164
9eeadc8b 165 if (root_cache) {
f7ce3190 166 s->memcg_params.root_cache = root_cache;
9eeadc8b
TH
167 s->memcg_params.memcg = memcg;
168 INIT_LIST_HEAD(&s->memcg_params.children_node);
bc2791f8 169 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
33a690c4 170 return 0;
f7ce3190 171 }
33a690c4 172
f7ce3190 173 slab_init_memcg_params(s);
33a690c4 174
f7ce3190
VD
175 if (!memcg_nr_cache_ids)
176 return 0;
33a690c4 177
f80c7dab
JW
178 arr = kvzalloc(sizeof(struct memcg_cache_array) +
179 memcg_nr_cache_ids * sizeof(void *),
180 GFP_KERNEL);
f7ce3190
VD
181 if (!arr)
182 return -ENOMEM;
33a690c4 183
f7ce3190 184 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
33a690c4
VD
185 return 0;
186}
187
f7ce3190 188static void destroy_memcg_params(struct kmem_cache *s)
33a690c4 189{
f7ce3190 190 if (is_root_cache(s))
f80c7dab
JW
191 kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
192}
193
194static void free_memcg_params(struct rcu_head *rcu)
195{
196 struct memcg_cache_array *old;
197
198 old = container_of(rcu, struct memcg_cache_array, rcu);
199 kvfree(old);
33a690c4
VD
200}
201
f7ce3190 202static int update_memcg_params(struct kmem_cache *s, int new_array_size)
6f817f4c 203{
f7ce3190 204 struct memcg_cache_array *old, *new;
6f817f4c 205
f80c7dab
JW
206 new = kvzalloc(sizeof(struct memcg_cache_array) +
207 new_array_size * sizeof(void *), GFP_KERNEL);
f7ce3190 208 if (!new)
6f817f4c
VD
209 return -ENOMEM;
210
f7ce3190
VD
211 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
212 lockdep_is_held(&slab_mutex));
213 if (old)
214 memcpy(new->entries, old->entries,
215 memcg_nr_cache_ids * sizeof(void *));
6f817f4c 216
f7ce3190
VD
217 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
218 if (old)
f80c7dab 219 call_rcu(&old->rcu, free_memcg_params);
6f817f4c
VD
220 return 0;
221}
222
55007d84
GC
223int memcg_update_all_caches(int num_memcgs)
224{
225 struct kmem_cache *s;
226 int ret = 0;
55007d84 227
05257a1a 228 mutex_lock(&slab_mutex);
510ded33 229 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
f7ce3190 230 ret = update_memcg_params(s, num_memcgs);
55007d84 231 /*
55007d84
GC
232 * Instead of freeing the memory, we'll just leave the caches
233 * up to this point in an updated state.
234 */
235 if (ret)
05257a1a 236 break;
55007d84 237 }
55007d84
GC
238 mutex_unlock(&slab_mutex);
239 return ret;
240}
657dc2f9 241
510ded33 242void memcg_link_cache(struct kmem_cache *s)
657dc2f9 243{
510ded33
TH
244 if (is_root_cache(s)) {
245 list_add(&s->root_caches_node, &slab_root_caches);
246 } else {
247 list_add(&s->memcg_params.children_node,
248 &s->memcg_params.root_cache->memcg_params.children);
249 list_add(&s->memcg_params.kmem_caches_node,
250 &s->memcg_params.memcg->kmem_caches);
251 }
252}
253
254static void memcg_unlink_cache(struct kmem_cache *s)
255{
256 if (is_root_cache(s)) {
257 list_del(&s->root_caches_node);
258 } else {
259 list_del(&s->memcg_params.children_node);
260 list_del(&s->memcg_params.kmem_caches_node);
261 }
657dc2f9 262}
33a690c4 263#else
f7ce3190
VD
264static inline int init_memcg_params(struct kmem_cache *s,
265 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
33a690c4
VD
266{
267 return 0;
268}
269
f7ce3190 270static inline void destroy_memcg_params(struct kmem_cache *s)
33a690c4
VD
271{
272}
657dc2f9 273
510ded33 274static inline void memcg_unlink_cache(struct kmem_cache *s)
657dc2f9
TH
275{
276}
127424c8 277#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
55007d84 278
692ae74a
BL
279/*
280 * Figure out what the alignment of the objects will be given a set of
281 * flags, a user specified alignment and the size of the objects.
282 */
f4957d5b
AD
283static unsigned int calculate_alignment(slab_flags_t flags,
284 unsigned int align, unsigned int size)
692ae74a
BL
285{
286 /*
287 * If the user wants hardware cache aligned objects then follow that
288 * suggestion if the object is sufficiently large.
289 *
290 * The hardware cache alignment cannot override the specified
291 * alignment though. If that is greater then use it.
292 */
293 if (flags & SLAB_HWCACHE_ALIGN) {
f4957d5b 294 unsigned int ralign;
692ae74a
BL
295
296 ralign = cache_line_size();
297 while (size <= ralign / 2)
298 ralign /= 2;
299 align = max(align, ralign);
300 }
301
302 if (align < ARCH_SLAB_MINALIGN)
303 align = ARCH_SLAB_MINALIGN;
304
305 return ALIGN(align, sizeof(void *));
306}
307
423c929c
JK
308/*
309 * Find a mergeable slab cache
310 */
311int slab_unmergeable(struct kmem_cache *s)
312{
313 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
314 return 1;
315
316 if (!is_root_cache(s))
317 return 1;
318
319 if (s->ctor)
320 return 1;
321
8eb8284b
DW
322 if (s->usersize)
323 return 1;
324
423c929c
JK
325 /*
326 * We may have set a slab to be unmergeable during bootstrap.
327 */
328 if (s->refcount < 0)
329 return 1;
330
331 return 0;
332}
333
f4957d5b 334struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
d50112ed 335 slab_flags_t flags, const char *name, void (*ctor)(void *))
423c929c
JK
336{
337 struct kmem_cache *s;
338
c6e28895 339 if (slab_nomerge)
423c929c
JK
340 return NULL;
341
342 if (ctor)
343 return NULL;
344
345 size = ALIGN(size, sizeof(void *));
346 align = calculate_alignment(flags, align, size);
347 size = ALIGN(size, align);
348 flags = kmem_cache_flags(size, flags, name, NULL);
349
c6e28895
GM
350 if (flags & SLAB_NEVER_MERGE)
351 return NULL;
352
510ded33 353 list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
423c929c
JK
354 if (slab_unmergeable(s))
355 continue;
356
357 if (size > s->size)
358 continue;
359
360 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
361 continue;
362 /*
363 * Check if alignment is compatible.
364 * Courtesy of Adrian Drzewiecki
365 */
366 if ((s->size & ~(align - 1)) != s->size)
367 continue;
368
369 if (s->size - size >= sizeof(void *))
370 continue;
371
95069ac8
JK
372 if (IS_ENABLED(CONFIG_SLAB) && align &&
373 (align > s->align || s->align % align))
374 continue;
375
423c929c
JK
376 return s;
377 }
378 return NULL;
379}
380
c9a77a79 381static struct kmem_cache *create_cache(const char *name,
f4957d5b 382 unsigned int object_size, unsigned int size, unsigned int align,
8eb8284b
DW
383 slab_flags_t flags, size_t useroffset,
384 size_t usersize, void (*ctor)(void *),
c9a77a79 385 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
794b1248
VD
386{
387 struct kmem_cache *s;
388 int err;
389
8eb8284b
DW
390 if (WARN_ON(useroffset + usersize > object_size))
391 useroffset = usersize = 0;
392
794b1248
VD
393 err = -ENOMEM;
394 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
395 if (!s)
396 goto out;
397
398 s->name = name;
399 s->object_size = object_size;
400 s->size = size;
401 s->align = align;
402 s->ctor = ctor;
8eb8284b
DW
403 s->useroffset = useroffset;
404 s->usersize = usersize;
794b1248 405
f7ce3190 406 err = init_memcg_params(s, memcg, root_cache);
794b1248
VD
407 if (err)
408 goto out_free_cache;
409
410 err = __kmem_cache_create(s, flags);
411 if (err)
412 goto out_free_cache;
413
414 s->refcount = 1;
415 list_add(&s->list, &slab_caches);
510ded33 416 memcg_link_cache(s);
794b1248
VD
417out:
418 if (err)
419 return ERR_PTR(err);
420 return s;
421
422out_free_cache:
f7ce3190 423 destroy_memcg_params(s);
7c4da061 424 kmem_cache_free(kmem_cache, s);
794b1248
VD
425 goto out;
426}
45906855 427
77be4b13 428/*
8eb8284b 429 * kmem_cache_create_usercopy - Create a cache.
77be4b13
SK
430 * @name: A string which is used in /proc/slabinfo to identify this cache.
431 * @size: The size of objects to be created in this cache.
432 * @align: The required alignment for the objects.
433 * @flags: SLAB flags
8eb8284b
DW
434 * @useroffset: Usercopy region offset
435 * @usersize: Usercopy region size
77be4b13
SK
436 * @ctor: A constructor for the objects.
437 *
438 * Returns a ptr to the cache on success, NULL on failure.
439 * Cannot be called within a interrupt, but can be interrupted.
440 * The @ctor is run when new pages are allocated by the cache.
441 *
442 * The flags are
443 *
444 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
445 * to catch references to uninitialised memory.
446 *
447 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
448 * for buffer overruns.
449 *
450 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
451 * cacheline. This can be beneficial if you're counting cycles as closely
452 * as davem.
453 */
2633d7a0 454struct kmem_cache *
f4957d5b
AD
455kmem_cache_create_usercopy(const char *name,
456 unsigned int size, unsigned int align,
8eb8284b
DW
457 slab_flags_t flags, size_t useroffset, size_t usersize,
458 void (*ctor)(void *))
77be4b13 459{
40911a79 460 struct kmem_cache *s = NULL;
3dec16ea 461 const char *cache_name;
3965fc36 462 int err;
039363f3 463
77be4b13 464 get_online_cpus();
03afc0e2 465 get_online_mems();
05257a1a 466 memcg_get_cache_ids();
03afc0e2 467
77be4b13 468 mutex_lock(&slab_mutex);
686d550d 469
794b1248 470 err = kmem_cache_sanity_check(name, size);
3aa24f51 471 if (err) {
3965fc36 472 goto out_unlock;
3aa24f51 473 }
686d550d 474
e70954fd
TG
475 /* Refuse requests with allocator specific flags */
476 if (flags & ~SLAB_FLAGS_PERMITTED) {
477 err = -EINVAL;
478 goto out_unlock;
479 }
480
d8843922
GC
481 /*
482 * Some allocators will constraint the set of valid flags to a subset
483 * of all flags. We expect them to define CACHE_CREATE_MASK in this
484 * case, and we'll just provide them with a sanitized version of the
485 * passed flags.
486 */
487 flags &= CACHE_CREATE_MASK;
686d550d 488
8eb8284b
DW
489 /* Fail closed on bad usersize of useroffset values. */
490 if (WARN_ON(!usersize && useroffset) ||
491 WARN_ON(size < usersize || size - usersize < useroffset))
492 usersize = useroffset = 0;
493
494 if (!usersize)
495 s = __kmem_cache_alias(name, size, align, flags, ctor);
794b1248 496 if (s)
3965fc36 497 goto out_unlock;
2633d7a0 498
3dec16ea 499 cache_name = kstrdup_const(name, GFP_KERNEL);
794b1248
VD
500 if (!cache_name) {
501 err = -ENOMEM;
502 goto out_unlock;
503 }
7c9adf5a 504
c9a77a79
VD
505 s = create_cache(cache_name, size, size,
506 calculate_alignment(flags, align, size),
8eb8284b 507 flags, useroffset, usersize, ctor, NULL, NULL);
794b1248
VD
508 if (IS_ERR(s)) {
509 err = PTR_ERR(s);
3dec16ea 510 kfree_const(cache_name);
794b1248 511 }
3965fc36
VD
512
513out_unlock:
20cea968 514 mutex_unlock(&slab_mutex);
03afc0e2 515
05257a1a 516 memcg_put_cache_ids();
03afc0e2 517 put_online_mems();
20cea968
CL
518 put_online_cpus();
519
ba3253c7 520 if (err) {
686d550d
CL
521 if (flags & SLAB_PANIC)
522 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
523 name, err);
524 else {
1170532b 525 pr_warn("kmem_cache_create(%s) failed with error %d\n",
686d550d
CL
526 name, err);
527 dump_stack();
528 }
686d550d
CL
529 return NULL;
530 }
039363f3
CL
531 return s;
532}
8eb8284b
DW
533EXPORT_SYMBOL(kmem_cache_create_usercopy);
534
535struct kmem_cache *
f4957d5b 536kmem_cache_create(const char *name, unsigned int size, unsigned int align,
8eb8284b
DW
537 slab_flags_t flags, void (*ctor)(void *))
538{
6d07d1cd 539 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
8eb8284b
DW
540 ctor);
541}
794b1248 542EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 543
657dc2f9 544static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
d5b3cf71 545{
657dc2f9
TH
546 LIST_HEAD(to_destroy);
547 struct kmem_cache *s, *s2;
d5b3cf71 548
657dc2f9 549 /*
5f0d5a3a 550 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
657dc2f9
TH
551 * @slab_caches_to_rcu_destroy list. The slab pages are freed
552 * through RCU and and the associated kmem_cache are dereferenced
553 * while freeing the pages, so the kmem_caches should be freed only
554 * after the pending RCU operations are finished. As rcu_barrier()
555 * is a pretty slow operation, we batch all pending destructions
556 * asynchronously.
557 */
558 mutex_lock(&slab_mutex);
559 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
560 mutex_unlock(&slab_mutex);
d5b3cf71 561
657dc2f9
TH
562 if (list_empty(&to_destroy))
563 return;
564
565 rcu_barrier();
566
567 list_for_each_entry_safe(s, s2, &to_destroy, list) {
568#ifdef SLAB_SUPPORTS_SYSFS
569 sysfs_slab_release(s);
570#else
571 slab_kmem_cache_release(s);
572#endif
573 }
d5b3cf71
VD
574}
575
657dc2f9 576static int shutdown_cache(struct kmem_cache *s)
d5b3cf71 577{
f9fa1d91
GT
578 /* free asan quarantined objects */
579 kasan_cache_shutdown(s);
580
657dc2f9
TH
581 if (__kmem_cache_shutdown(s) != 0)
582 return -EBUSY;
d5b3cf71 583
510ded33 584 memcg_unlink_cache(s);
657dc2f9 585 list_del(&s->list);
d5b3cf71 586
5f0d5a3a 587 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
657dc2f9
TH
588 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
589 schedule_work(&slab_caches_to_rcu_destroy_work);
590 } else {
d5b3cf71 591#ifdef SLAB_SUPPORTS_SYSFS
bf5eb3de 592 sysfs_slab_release(s);
d5b3cf71
VD
593#else
594 slab_kmem_cache_release(s);
595#endif
596 }
657dc2f9
TH
597
598 return 0;
d5b3cf71
VD
599}
600
127424c8 601#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
794b1248 602/*
776ed0f0 603 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
794b1248
VD
604 * @memcg: The memory cgroup the new cache is for.
605 * @root_cache: The parent of the new cache.
606 *
607 * This function attempts to create a kmem cache that will serve allocation
608 * requests going from @memcg to @root_cache. The new cache inherits properties
609 * from its parent.
610 */
d5b3cf71
VD
611void memcg_create_kmem_cache(struct mem_cgroup *memcg,
612 struct kmem_cache *root_cache)
2633d7a0 613{
3e0350a3 614 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
33398cf2 615 struct cgroup_subsys_state *css = &memcg->css;
f7ce3190 616 struct memcg_cache_array *arr;
bd673145 617 struct kmem_cache *s = NULL;
794b1248 618 char *cache_name;
f7ce3190 619 int idx;
794b1248
VD
620
621 get_online_cpus();
03afc0e2
VD
622 get_online_mems();
623
794b1248
VD
624 mutex_lock(&slab_mutex);
625
2a4db7eb 626 /*
567e9ab2 627 * The memory cgroup could have been offlined while the cache
2a4db7eb
VD
628 * creation work was pending.
629 */
b6ecd2de 630 if (memcg->kmem_state != KMEM_ONLINE)
2a4db7eb
VD
631 goto out_unlock;
632
f7ce3190
VD
633 idx = memcg_cache_id(memcg);
634 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
635 lockdep_is_held(&slab_mutex));
636
d5b3cf71
VD
637 /*
638 * Since per-memcg caches are created asynchronously on first
639 * allocation (see memcg_kmem_get_cache()), several threads can try to
640 * create the same cache, but only one of them may succeed.
641 */
f7ce3190 642 if (arr->entries[idx])
d5b3cf71
VD
643 goto out_unlock;
644
f1008365 645 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
73f576c0
JW
646 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
647 css->serial_nr, memcg_name_buf);
794b1248
VD
648 if (!cache_name)
649 goto out_unlock;
650
c9a77a79
VD
651 s = create_cache(cache_name, root_cache->object_size,
652 root_cache->size, root_cache->align,
f773e36d 653 root_cache->flags & CACHE_CREATE_MASK,
8eb8284b 654 root_cache->useroffset, root_cache->usersize,
f773e36d 655 root_cache->ctor, memcg, root_cache);
d5b3cf71
VD
656 /*
657 * If we could not create a memcg cache, do not complain, because
658 * that's not critical at all as we can always proceed with the root
659 * cache.
660 */
bd673145 661 if (IS_ERR(s)) {
794b1248 662 kfree(cache_name);
d5b3cf71 663 goto out_unlock;
bd673145 664 }
794b1248 665
d5b3cf71
VD
666 /*
667 * Since readers won't lock (see cache_from_memcg_idx()), we need a
668 * barrier here to ensure nobody will see the kmem_cache partially
669 * initialized.
670 */
671 smp_wmb();
f7ce3190 672 arr->entries[idx] = s;
d5b3cf71 673
794b1248
VD
674out_unlock:
675 mutex_unlock(&slab_mutex);
03afc0e2
VD
676
677 put_online_mems();
794b1248 678 put_online_cpus();
2633d7a0 679}
b8529907 680
01fb58bc
TH
681static void kmemcg_deactivate_workfn(struct work_struct *work)
682{
683 struct kmem_cache *s = container_of(work, struct kmem_cache,
684 memcg_params.deact_work);
685
686 get_online_cpus();
687 get_online_mems();
688
689 mutex_lock(&slab_mutex);
690
691 s->memcg_params.deact_fn(s);
692
693 mutex_unlock(&slab_mutex);
694
695 put_online_mems();
696 put_online_cpus();
697
698 /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
699 css_put(&s->memcg_params.memcg->css);
700}
701
702static void kmemcg_deactivate_rcufn(struct rcu_head *head)
703{
704 struct kmem_cache *s = container_of(head, struct kmem_cache,
705 memcg_params.deact_rcu_head);
706
707 /*
708 * We need to grab blocking locks. Bounce to ->deact_work. The
709 * work item shares the space with the RCU head and can't be
710 * initialized eariler.
711 */
712 INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
17cc4dfe 713 queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
01fb58bc
TH
714}
715
716/**
717 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
718 * sched RCU grace period
719 * @s: target kmem_cache
720 * @deact_fn: deactivation function to call
721 *
722 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
723 * held after a sched RCU grace period. The slab is guaranteed to stay
724 * alive until @deact_fn is finished. This is to be used from
725 * __kmemcg_cache_deactivate().
726 */
727void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
728 void (*deact_fn)(struct kmem_cache *))
729{
730 if (WARN_ON_ONCE(is_root_cache(s)) ||
731 WARN_ON_ONCE(s->memcg_params.deact_fn))
732 return;
733
734 /* pin memcg so that @s doesn't get destroyed in the middle */
735 css_get(&s->memcg_params.memcg->css);
736
737 s->memcg_params.deact_fn = deact_fn;
738 call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
739}
740
2a4db7eb
VD
741void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
742{
743 int idx;
744 struct memcg_cache_array *arr;
d6e0b7fa 745 struct kmem_cache *s, *c;
2a4db7eb
VD
746
747 idx = memcg_cache_id(memcg);
748
d6e0b7fa
VD
749 get_online_cpus();
750 get_online_mems();
751
2a4db7eb 752 mutex_lock(&slab_mutex);
510ded33 753 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
2a4db7eb
VD
754 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
755 lockdep_is_held(&slab_mutex));
d6e0b7fa
VD
756 c = arr->entries[idx];
757 if (!c)
758 continue;
759
c9fc5864 760 __kmemcg_cache_deactivate(c);
2a4db7eb
VD
761 arr->entries[idx] = NULL;
762 }
763 mutex_unlock(&slab_mutex);
d6e0b7fa
VD
764
765 put_online_mems();
766 put_online_cpus();
2a4db7eb
VD
767}
768
d5b3cf71 769void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
b8529907 770{
d5b3cf71 771 struct kmem_cache *s, *s2;
b8529907 772
d5b3cf71
VD
773 get_online_cpus();
774 get_online_mems();
b8529907 775
b8529907 776 mutex_lock(&slab_mutex);
bc2791f8
TH
777 list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
778 memcg_params.kmem_caches_node) {
d5b3cf71
VD
779 /*
780 * The cgroup is about to be freed and therefore has no charges
781 * left. Hence, all its caches must be empty by now.
782 */
657dc2f9 783 BUG_ON(shutdown_cache(s));
d5b3cf71
VD
784 }
785 mutex_unlock(&slab_mutex);
b8529907 786
d5b3cf71
VD
787 put_online_mems();
788 put_online_cpus();
b8529907 789}
d60fdcc9 790
657dc2f9 791static int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
792{
793 struct memcg_cache_array *arr;
794 struct kmem_cache *c, *c2;
795 LIST_HEAD(busy);
796 int i;
797
798 BUG_ON(!is_root_cache(s));
799
800 /*
801 * First, shutdown active caches, i.e. caches that belong to online
802 * memory cgroups.
803 */
804 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
805 lockdep_is_held(&slab_mutex));
806 for_each_memcg_cache_index(i) {
807 c = arr->entries[i];
808 if (!c)
809 continue;
657dc2f9 810 if (shutdown_cache(c))
d60fdcc9
VD
811 /*
812 * The cache still has objects. Move it to a temporary
813 * list so as not to try to destroy it for a second
814 * time while iterating over inactive caches below.
815 */
9eeadc8b 816 list_move(&c->memcg_params.children_node, &busy);
d60fdcc9
VD
817 else
818 /*
819 * The cache is empty and will be destroyed soon. Clear
820 * the pointer to it in the memcg_caches array so that
821 * it will never be accessed even if the root cache
822 * stays alive.
823 */
824 arr->entries[i] = NULL;
825 }
826
827 /*
828 * Second, shutdown all caches left from memory cgroups that are now
829 * offline.
830 */
9eeadc8b
TH
831 list_for_each_entry_safe(c, c2, &s->memcg_params.children,
832 memcg_params.children_node)
657dc2f9 833 shutdown_cache(c);
d60fdcc9 834
9eeadc8b 835 list_splice(&busy, &s->memcg_params.children);
d60fdcc9
VD
836
837 /*
838 * A cache being destroyed must be empty. In particular, this means
839 * that all per memcg caches attached to it must be empty too.
840 */
9eeadc8b 841 if (!list_empty(&s->memcg_params.children))
d60fdcc9
VD
842 return -EBUSY;
843 return 0;
844}
845#else
657dc2f9 846static inline int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
847{
848 return 0;
849}
127424c8 850#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
97d06609 851
41a21285
CL
852void slab_kmem_cache_release(struct kmem_cache *s)
853{
52b4b950 854 __kmem_cache_release(s);
f7ce3190 855 destroy_memcg_params(s);
3dec16ea 856 kfree_const(s->name);
41a21285
CL
857 kmem_cache_free(kmem_cache, s);
858}
859
945cf2b6
CL
860void kmem_cache_destroy(struct kmem_cache *s)
861{
d60fdcc9 862 int err;
d5b3cf71 863
3942d299
SS
864 if (unlikely(!s))
865 return;
866
945cf2b6 867 get_online_cpus();
03afc0e2
VD
868 get_online_mems();
869
945cf2b6 870 mutex_lock(&slab_mutex);
b8529907 871
945cf2b6 872 s->refcount--;
b8529907
VD
873 if (s->refcount)
874 goto out_unlock;
875
657dc2f9 876 err = shutdown_memcg_caches(s);
d60fdcc9 877 if (!err)
657dc2f9 878 err = shutdown_cache(s);
b8529907 879
cd918c55 880 if (err) {
756a025f
JP
881 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
882 s->name);
cd918c55
VD
883 dump_stack();
884 }
b8529907
VD
885out_unlock:
886 mutex_unlock(&slab_mutex);
d5b3cf71 887
03afc0e2 888 put_online_mems();
945cf2b6
CL
889 put_online_cpus();
890}
891EXPORT_SYMBOL(kmem_cache_destroy);
892
03afc0e2
VD
893/**
894 * kmem_cache_shrink - Shrink a cache.
895 * @cachep: The cache to shrink.
896 *
897 * Releases as many slabs as possible for a cache.
898 * To help debugging, a zero exit status indicates all slabs were released.
899 */
900int kmem_cache_shrink(struct kmem_cache *cachep)
901{
902 int ret;
903
904 get_online_cpus();
905 get_online_mems();
55834c59 906 kasan_cache_shrink(cachep);
c9fc5864 907 ret = __kmem_cache_shrink(cachep);
03afc0e2
VD
908 put_online_mems();
909 put_online_cpus();
910 return ret;
911}
912EXPORT_SYMBOL(kmem_cache_shrink);
913
fda90124 914bool slab_is_available(void)
97d06609
CL
915{
916 return slab_state >= UP;
917}
b7454ad3 918
45530c44
CL
919#ifndef CONFIG_SLOB
920/* Create a cache during boot when no slab services are available yet */
361d575e
AD
921void __init create_boot_cache(struct kmem_cache *s, const char *name,
922 unsigned int size, slab_flags_t flags,
923 unsigned int useroffset, unsigned int usersize)
45530c44
CL
924{
925 int err;
926
927 s->name = name;
928 s->size = s->object_size = size;
45906855 929 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
8eb8284b
DW
930 s->useroffset = useroffset;
931 s->usersize = usersize;
f7ce3190
VD
932
933 slab_init_memcg_params(s);
934
45530c44
CL
935 err = __kmem_cache_create(s, flags);
936
937 if (err)
361d575e 938 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
45530c44
CL
939 name, size, err);
940
941 s->refcount = -1; /* Exempt from merging for now */
942}
943
55de8b9c
AD
944struct kmem_cache *__init create_kmalloc_cache(const char *name,
945 unsigned int size, slab_flags_t flags,
946 unsigned int useroffset, unsigned int usersize)
45530c44
CL
947{
948 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
949
950 if (!s)
951 panic("Out of memory when creating slab %s\n", name);
952
6c0c21ad 953 create_boot_cache(s, name, size, flags, useroffset, usersize);
45530c44 954 list_add(&s->list, &slab_caches);
510ded33 955 memcg_link_cache(s);
45530c44
CL
956 s->refcount = 1;
957 return s;
958}
959
1c99ba29 960struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __ro_after_init;
9425c58e
CL
961EXPORT_SYMBOL(kmalloc_caches);
962
963#ifdef CONFIG_ZONE_DMA
1c99ba29 964struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1] __ro_after_init;
9425c58e
CL
965EXPORT_SYMBOL(kmalloc_dma_caches);
966#endif
967
2c59dd65
CL
968/*
969 * Conversion table for small slabs sizes / 8 to the index in the
970 * kmalloc array. This is necessary for slabs < 192 since we have non power
971 * of two cache sizes there. The size of larger slabs can be determined using
972 * fls.
973 */
d5f86655 974static u8 size_index[24] __ro_after_init = {
2c59dd65
CL
975 3, /* 8 */
976 4, /* 16 */
977 5, /* 24 */
978 5, /* 32 */
979 6, /* 40 */
980 6, /* 48 */
981 6, /* 56 */
982 6, /* 64 */
983 1, /* 72 */
984 1, /* 80 */
985 1, /* 88 */
986 1, /* 96 */
987 7, /* 104 */
988 7, /* 112 */
989 7, /* 120 */
990 7, /* 128 */
991 2, /* 136 */
992 2, /* 144 */
993 2, /* 152 */
994 2, /* 160 */
995 2, /* 168 */
996 2, /* 176 */
997 2, /* 184 */
998 2 /* 192 */
999};
1000
ac914d08 1001static inline unsigned int size_index_elem(unsigned int bytes)
2c59dd65
CL
1002{
1003 return (bytes - 1) / 8;
1004}
1005
1006/*
1007 * Find the kmem_cache structure that serves a given size of
1008 * allocation
1009 */
1010struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
1011{
d5f86655 1012 unsigned int index;
2c59dd65 1013
9de1bc87 1014 if (unlikely(size > KMALLOC_MAX_SIZE)) {
907985f4 1015 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
6286ae97 1016 return NULL;
907985f4 1017 }
6286ae97 1018
2c59dd65
CL
1019 if (size <= 192) {
1020 if (!size)
1021 return ZERO_SIZE_PTR;
1022
1023 index = size_index[size_index_elem(size)];
1024 } else
1025 index = fls(size - 1);
1026
1027#ifdef CONFIG_ZONE_DMA
b1e05416 1028 if (unlikely((flags & GFP_DMA)))
2c59dd65
CL
1029 return kmalloc_dma_caches[index];
1030
1031#endif
1032 return kmalloc_caches[index];
1033}
1034
4066c33d
GG
1035/*
1036 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
1037 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1038 * kmalloc-67108864.
1039 */
af3b5f87 1040const struct kmalloc_info_struct kmalloc_info[] __initconst = {
4066c33d
GG
1041 {NULL, 0}, {"kmalloc-96", 96},
1042 {"kmalloc-192", 192}, {"kmalloc-8", 8},
1043 {"kmalloc-16", 16}, {"kmalloc-32", 32},
1044 {"kmalloc-64", 64}, {"kmalloc-128", 128},
1045 {"kmalloc-256", 256}, {"kmalloc-512", 512},
1046 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
1047 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
1048 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
1049 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
1050 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
1051 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
1052 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
1053 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
1054 {"kmalloc-67108864", 67108864}
1055};
1056
f97d5f63 1057/*
34cc6990
DS
1058 * Patch up the size_index table if we have strange large alignment
1059 * requirements for the kmalloc array. This is only the case for
1060 * MIPS it seems. The standard arches will not generate any code here.
1061 *
1062 * Largest permitted alignment is 256 bytes due to the way we
1063 * handle the index determination for the smaller caches.
1064 *
1065 * Make sure that nothing crazy happens if someone starts tinkering
1066 * around with ARCH_KMALLOC_MINALIGN
f97d5f63 1067 */
34cc6990 1068void __init setup_kmalloc_cache_index_table(void)
f97d5f63 1069{
ac914d08 1070 unsigned int i;
f97d5f63 1071
2c59dd65
CL
1072 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1073 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1074
1075 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
ac914d08 1076 unsigned int elem = size_index_elem(i);
2c59dd65
CL
1077
1078 if (elem >= ARRAY_SIZE(size_index))
1079 break;
1080 size_index[elem] = KMALLOC_SHIFT_LOW;
1081 }
1082
1083 if (KMALLOC_MIN_SIZE >= 64) {
1084 /*
1085 * The 96 byte size cache is not used if the alignment
1086 * is 64 byte.
1087 */
1088 for (i = 64 + 8; i <= 96; i += 8)
1089 size_index[size_index_elem(i)] = 7;
1090
1091 }
1092
1093 if (KMALLOC_MIN_SIZE >= 128) {
1094 /*
1095 * The 192 byte sized cache is not used if the alignment
1096 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1097 * instead.
1098 */
1099 for (i = 128 + 8; i <= 192; i += 8)
1100 size_index[size_index_elem(i)] = 8;
1101 }
34cc6990
DS
1102}
1103
d50112ed 1104static void __init new_kmalloc_cache(int idx, slab_flags_t flags)
a9730fca
CL
1105{
1106 kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
6c0c21ad
DW
1107 kmalloc_info[idx].size, flags, 0,
1108 kmalloc_info[idx].size);
a9730fca
CL
1109}
1110
34cc6990
DS
1111/*
1112 * Create the kmalloc array. Some of the regular kmalloc arrays
1113 * may already have been created because they were needed to
1114 * enable allocations for slab creation.
1115 */
d50112ed 1116void __init create_kmalloc_caches(slab_flags_t flags)
34cc6990
DS
1117{
1118 int i;
1119
a9730fca
CL
1120 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1121 if (!kmalloc_caches[i])
1122 new_kmalloc_cache(i, flags);
f97d5f63 1123
956e46ef 1124 /*
a9730fca
CL
1125 * Caches that are not of the two-to-the-power-of size.
1126 * These have to be created immediately after the
1127 * earlier power of two caches
956e46ef 1128 */
a9730fca
CL
1129 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
1130 new_kmalloc_cache(1, flags);
1131 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
1132 new_kmalloc_cache(2, flags);
8a965b3b
CL
1133 }
1134
f97d5f63
CL
1135 /* Kmalloc array is now usable */
1136 slab_state = UP;
1137
f97d5f63
CL
1138#ifdef CONFIG_ZONE_DMA
1139 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1140 struct kmem_cache *s = kmalloc_caches[i];
1141
1142 if (s) {
0be70327 1143 unsigned int size = kmalloc_size(i);
f97d5f63 1144 char *n = kasprintf(GFP_NOWAIT,
0be70327 1145 "dma-kmalloc-%u", size);
f97d5f63
CL
1146
1147 BUG_ON(!n);
1148 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
6c0c21ad 1149 size, SLAB_CACHE_DMA | flags, 0, 0);
f97d5f63
CL
1150 }
1151 }
1152#endif
1153}
45530c44
CL
1154#endif /* !CONFIG_SLOB */
1155
cea371f4
VD
1156/*
1157 * To avoid unnecessary overhead, we pass through large allocation requests
1158 * directly to the page allocator. We use __GFP_COMP, because we will need to
1159 * know the allocation order to free the pages properly in kfree.
1160 */
52383431
VD
1161void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1162{
1163 void *ret;
1164 struct page *page;
1165
1166 flags |= __GFP_COMP;
4949148a 1167 page = alloc_pages(flags, order);
52383431
VD
1168 ret = page ? page_address(page) : NULL;
1169 kmemleak_alloc(ret, size, 1, flags);
505f5dcb 1170 kasan_kmalloc_large(ret, size, flags);
52383431
VD
1171 return ret;
1172}
1173EXPORT_SYMBOL(kmalloc_order);
1174
f1b6eb6e
CL
1175#ifdef CONFIG_TRACING
1176void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1177{
1178 void *ret = kmalloc_order(size, flags, order);
1179 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1180 return ret;
1181}
1182EXPORT_SYMBOL(kmalloc_order_trace);
1183#endif
45530c44 1184
7c00fce9
TG
1185#ifdef CONFIG_SLAB_FREELIST_RANDOM
1186/* Randomize a generic freelist */
1187static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1188 size_t count)
1189{
1190 size_t i;
1191 unsigned int rand;
1192
1193 for (i = 0; i < count; i++)
1194 list[i] = i;
1195
1196 /* Fisher-Yates shuffle */
1197 for (i = count - 1; i > 0; i--) {
1198 rand = prandom_u32_state(state);
1199 rand %= (i + 1);
1200 swap(list[i], list[rand]);
1201 }
1202}
1203
1204/* Create a random sequence per cache */
1205int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1206 gfp_t gfp)
1207{
1208 struct rnd_state state;
1209
1210 if (count < 2 || cachep->random_seq)
1211 return 0;
1212
1213 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1214 if (!cachep->random_seq)
1215 return -ENOMEM;
1216
1217 /* Get best entropy at this stage of boot */
1218 prandom_seed_state(&state, get_random_long());
1219
1220 freelist_randomize(&state, cachep->random_seq, count);
1221 return 0;
1222}
1223
1224/* Destroy the per-cache random freelist sequence */
1225void cache_random_seq_destroy(struct kmem_cache *cachep)
1226{
1227 kfree(cachep->random_seq);
1228 cachep->random_seq = NULL;
1229}
1230#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1231
5b365771 1232#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
e9b4db2b
WL
1233#ifdef CONFIG_SLAB
1234#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1235#else
1236#define SLABINFO_RIGHTS S_IRUSR
1237#endif
1238
b047501c 1239static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
1240{
1241 /*
1242 * Output format version, so at least we can change it
1243 * without _too_ many complaints.
1244 */
1245#ifdef CONFIG_DEBUG_SLAB
1246 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1247#else
1248 seq_puts(m, "slabinfo - version: 2.1\n");
1249#endif
756a025f 1250 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
bcee6e2a
GC
1251 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1252 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1253#ifdef CONFIG_DEBUG_SLAB
756a025f 1254 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
bcee6e2a
GC
1255 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1256#endif
1257 seq_putc(m, '\n');
1258}
1259
1df3b26f 1260void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 1261{
b7454ad3 1262 mutex_lock(&slab_mutex);
510ded33 1263 return seq_list_start(&slab_root_caches, *pos);
b7454ad3
GC
1264}
1265
276a2439 1266void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3 1267{
510ded33 1268 return seq_list_next(p, &slab_root_caches, pos);
b7454ad3
GC
1269}
1270
276a2439 1271void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
1272{
1273 mutex_unlock(&slab_mutex);
1274}
1275
749c5415
GC
1276static void
1277memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1278{
1279 struct kmem_cache *c;
1280 struct slabinfo sinfo;
749c5415
GC
1281
1282 if (!is_root_cache(s))
1283 return;
1284
426589f5 1285 for_each_memcg_cache(c, s) {
749c5415
GC
1286 memset(&sinfo, 0, sizeof(sinfo));
1287 get_slabinfo(c, &sinfo);
1288
1289 info->active_slabs += sinfo.active_slabs;
1290 info->num_slabs += sinfo.num_slabs;
1291 info->shared_avail += sinfo.shared_avail;
1292 info->active_objs += sinfo.active_objs;
1293 info->num_objs += sinfo.num_objs;
1294 }
1295}
1296
b047501c 1297static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 1298{
0d7561c6
GC
1299 struct slabinfo sinfo;
1300
1301 memset(&sinfo, 0, sizeof(sinfo));
1302 get_slabinfo(s, &sinfo);
1303
749c5415
GC
1304 memcg_accumulate_slabinfo(s, &sinfo);
1305
0d7561c6 1306 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
749c5415 1307 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
1308 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1309
1310 seq_printf(m, " : tunables %4u %4u %4u",
1311 sinfo.limit, sinfo.batchcount, sinfo.shared);
1312 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1313 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1314 slabinfo_show_stats(m, s);
1315 seq_putc(m, '\n');
b7454ad3
GC
1316}
1317
1df3b26f 1318static int slab_show(struct seq_file *m, void *p)
749c5415 1319{
510ded33 1320 struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
749c5415 1321
510ded33 1322 if (p == slab_root_caches.next)
1df3b26f 1323 print_slabinfo_header(m);
510ded33 1324 cache_show(s, m);
b047501c
VD
1325 return 0;
1326}
1327
852d8be0
YS
1328void dump_unreclaimable_slab(void)
1329{
1330 struct kmem_cache *s, *s2;
1331 struct slabinfo sinfo;
1332
1333 /*
1334 * Here acquiring slab_mutex is risky since we don't prefer to get
1335 * sleep in oom path. But, without mutex hold, it may introduce a
1336 * risk of crash.
1337 * Use mutex_trylock to protect the list traverse, dump nothing
1338 * without acquiring the mutex.
1339 */
1340 if (!mutex_trylock(&slab_mutex)) {
1341 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1342 return;
1343 }
1344
1345 pr_info("Unreclaimable slab info:\n");
1346 pr_info("Name Used Total\n");
1347
1348 list_for_each_entry_safe(s, s2, &slab_caches, list) {
1349 if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
1350 continue;
1351
1352 get_slabinfo(s, &sinfo);
1353
1354 if (sinfo.num_objs > 0)
1355 pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
1356 (sinfo.active_objs * s->size) / 1024,
1357 (sinfo.num_objs * s->size) / 1024);
1358 }
1359 mutex_unlock(&slab_mutex);
1360}
1361
5b365771 1362#if defined(CONFIG_MEMCG)
bc2791f8
TH
1363void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1364{
1365 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1366
1367 mutex_lock(&slab_mutex);
1368 return seq_list_start(&memcg->kmem_caches, *pos);
1369}
1370
1371void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1372{
1373 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1374
1375 return seq_list_next(p, &memcg->kmem_caches, pos);
1376}
1377
1378void memcg_slab_stop(struct seq_file *m, void *p)
1379{
1380 mutex_unlock(&slab_mutex);
1381}
1382
b047501c
VD
1383int memcg_slab_show(struct seq_file *m, void *p)
1384{
bc2791f8
TH
1385 struct kmem_cache *s = list_entry(p, struct kmem_cache,
1386 memcg_params.kmem_caches_node);
b047501c
VD
1387 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1388
bc2791f8 1389 if (p == memcg->kmem_caches.next)
b047501c 1390 print_slabinfo_header(m);
bc2791f8 1391 cache_show(s, m);
b047501c 1392 return 0;
749c5415 1393}
b047501c 1394#endif
749c5415 1395
b7454ad3
GC
1396/*
1397 * slabinfo_op - iterator that generates /proc/slabinfo
1398 *
1399 * Output layout:
1400 * cache-name
1401 * num-active-objs
1402 * total-objs
1403 * object size
1404 * num-active-slabs
1405 * total-slabs
1406 * num-pages-per-slab
1407 * + further values on SMP and with statistics enabled
1408 */
1409static const struct seq_operations slabinfo_op = {
1df3b26f 1410 .start = slab_start,
276a2439
WL
1411 .next = slab_next,
1412 .stop = slab_stop,
1df3b26f 1413 .show = slab_show,
b7454ad3
GC
1414};
1415
1416static int slabinfo_open(struct inode *inode, struct file *file)
1417{
1418 return seq_open(file, &slabinfo_op);
1419}
1420
1421static const struct file_operations proc_slabinfo_operations = {
1422 .open = slabinfo_open,
1423 .read = seq_read,
1424 .write = slabinfo_write,
1425 .llseek = seq_lseek,
1426 .release = seq_release,
1427};
1428
1429static int __init slab_proc_init(void)
1430{
e9b4db2b
WL
1431 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1432 &proc_slabinfo_operations);
b7454ad3
GC
1433 return 0;
1434}
1435module_init(slab_proc_init);
5b365771 1436#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
928cec9c
AR
1437
1438static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1439 gfp_t flags)
1440{
1441 void *ret;
1442 size_t ks = 0;
1443
1444 if (p)
1445 ks = ksize(p);
1446
0316bec2 1447 if (ks >= new_size) {
505f5dcb 1448 kasan_krealloc((void *)p, new_size, flags);
928cec9c 1449 return (void *)p;
0316bec2 1450 }
928cec9c
AR
1451
1452 ret = kmalloc_track_caller(new_size, flags);
1453 if (ret && p)
1454 memcpy(ret, p, ks);
1455
1456 return ret;
1457}
1458
1459/**
1460 * __krealloc - like krealloc() but don't free @p.
1461 * @p: object to reallocate memory for.
1462 * @new_size: how many bytes of memory are required.
1463 * @flags: the type of memory to allocate.
1464 *
1465 * This function is like krealloc() except it never frees the originally
1466 * allocated buffer. Use this if you don't want to free the buffer immediately
1467 * like, for example, with RCU.
1468 */
1469void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1470{
1471 if (unlikely(!new_size))
1472 return ZERO_SIZE_PTR;
1473
1474 return __do_krealloc(p, new_size, flags);
1475
1476}
1477EXPORT_SYMBOL(__krealloc);
1478
1479/**
1480 * krealloc - reallocate memory. The contents will remain unchanged.
1481 * @p: object to reallocate memory for.
1482 * @new_size: how many bytes of memory are required.
1483 * @flags: the type of memory to allocate.
1484 *
1485 * The contents of the object pointed to are preserved up to the
1486 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1487 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1488 * %NULL pointer, the object pointed to is freed.
1489 */
1490void *krealloc(const void *p, size_t new_size, gfp_t flags)
1491{
1492 void *ret;
1493
1494 if (unlikely(!new_size)) {
1495 kfree(p);
1496 return ZERO_SIZE_PTR;
1497 }
1498
1499 ret = __do_krealloc(p, new_size, flags);
1500 if (ret && p != ret)
1501 kfree(p);
1502
1503 return ret;
1504}
1505EXPORT_SYMBOL(krealloc);
1506
1507/**
1508 * kzfree - like kfree but zero memory
1509 * @p: object to free memory of
1510 *
1511 * The memory of the object @p points to is zeroed before freed.
1512 * If @p is %NULL, kzfree() does nothing.
1513 *
1514 * Note: this function zeroes the whole allocated buffer which can be a good
1515 * deal bigger than the requested buffer size passed to kmalloc(). So be
1516 * careful when using this function in performance sensitive code.
1517 */
1518void kzfree(const void *p)
1519{
1520 size_t ks;
1521 void *mem = (void *)p;
1522
1523 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1524 return;
1525 ks = ksize(mem);
1526 memset(mem, 0, ks);
1527 kfree(mem);
1528}
1529EXPORT_SYMBOL(kzfree);
1530
1531/* Tracepoints definitions. */
1532EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1533EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1534EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1535EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1536EXPORT_TRACEPOINT_SYMBOL(kfree);
1537EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);