]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/slab_common.c
slub: separate out sysfs_slab_release() from sysfs_slab_remove()
[mirror_ubuntu-bionic-kernel.git] / mm / slab_common.c
CommitLineData
039363f3
CL
1/*
2 * Slab allocator functions that are independent of the allocator strategy
3 *
4 * (C) 2012 Christoph Lameter <cl@linux.com>
5 */
6#include <linux/slab.h>
7
8#include <linux/mm.h>
9#include <linux/poison.h>
10#include <linux/interrupt.h>
11#include <linux/memory.h>
12#include <linux/compiler.h>
13#include <linux/module.h>
20cea968
CL
14#include <linux/cpu.h>
15#include <linux/uaccess.h>
b7454ad3
GC
16#include <linux/seq_file.h>
17#include <linux/proc_fs.h>
039363f3
CL
18#include <asm/cacheflush.h>
19#include <asm/tlbflush.h>
20#include <asm/page.h>
2633d7a0 21#include <linux/memcontrol.h>
928cec9c
AR
22
23#define CREATE_TRACE_POINTS
f1b6eb6e 24#include <trace/events/kmem.h>
039363f3 25
97d06609
CL
26#include "slab.h"
27
28enum slab_state slab_state;
18004c5d
CL
29LIST_HEAD(slab_caches);
30DEFINE_MUTEX(slab_mutex);
9b030cb8 31struct kmem_cache *kmem_cache;
97d06609 32
423c929c
JK
33/*
34 * Set of flags that will prevent slab merging
35 */
36#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
37 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
7ed2f9e6 38 SLAB_FAILSLAB | SLAB_KASAN)
423c929c 39
230e9fc2
VD
40#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
41 SLAB_NOTRACK | SLAB_ACCOUNT)
423c929c
JK
42
43/*
44 * Merge control. If this is set then no merging of slab caches will occur.
45 * (Could be removed. This was introduced to pacify the merge skeptics.)
46 */
47static int slab_nomerge;
48
49static int __init setup_slab_nomerge(char *str)
50{
51 slab_nomerge = 1;
52 return 1;
53}
54
55#ifdef CONFIG_SLUB
56__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
57#endif
58
59__setup("slab_nomerge", setup_slab_nomerge);
60
07f361b2
JK
61/*
62 * Determine the size of a slab object
63 */
64unsigned int kmem_cache_size(struct kmem_cache *s)
65{
66 return s->object_size;
67}
68EXPORT_SYMBOL(kmem_cache_size);
69
77be4b13 70#ifdef CONFIG_DEBUG_VM
794b1248 71static int kmem_cache_sanity_check(const char *name, size_t size)
039363f3
CL
72{
73 struct kmem_cache *s = NULL;
74
039363f3
CL
75 if (!name || in_interrupt() || size < sizeof(void *) ||
76 size > KMALLOC_MAX_SIZE) {
77be4b13
SK
77 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
78 return -EINVAL;
039363f3 79 }
b920536a 80
20cea968
CL
81 list_for_each_entry(s, &slab_caches, list) {
82 char tmp;
83 int res;
84
85 /*
86 * This happens when the module gets unloaded and doesn't
87 * destroy its slab cache and no-one else reuses the vmalloc
88 * area of the module. Print a warning.
89 */
90 res = probe_kernel_address(s->name, tmp);
91 if (res) {
77be4b13 92 pr_err("Slab cache with size %d has lost its name\n",
20cea968
CL
93 s->object_size);
94 continue;
95 }
20cea968
CL
96 }
97
98 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
99 return 0;
100}
101#else
794b1248 102static inline int kmem_cache_sanity_check(const char *name, size_t size)
77be4b13
SK
103{
104 return 0;
105}
20cea968
CL
106#endif
107
484748f0
CL
108void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
109{
110 size_t i;
111
ca257195
JDB
112 for (i = 0; i < nr; i++) {
113 if (s)
114 kmem_cache_free(s, p[i]);
115 else
116 kfree(p[i]);
117 }
484748f0
CL
118}
119
865762a8 120int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
484748f0
CL
121 void **p)
122{
123 size_t i;
124
125 for (i = 0; i < nr; i++) {
126 void *x = p[i] = kmem_cache_alloc(s, flags);
127 if (!x) {
128 __kmem_cache_free_bulk(s, i, p);
865762a8 129 return 0;
484748f0
CL
130 }
131 }
865762a8 132 return i;
484748f0
CL
133}
134
127424c8 135#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
f7ce3190 136void slab_init_memcg_params(struct kmem_cache *s)
33a690c4 137{
f7ce3190 138 s->memcg_params.is_root_cache = true;
426589f5 139 INIT_LIST_HEAD(&s->memcg_params.list);
f7ce3190
VD
140 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
141}
142
143static int init_memcg_params(struct kmem_cache *s,
144 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
145{
146 struct memcg_cache_array *arr;
33a690c4 147
f7ce3190
VD
148 if (memcg) {
149 s->memcg_params.is_root_cache = false;
150 s->memcg_params.memcg = memcg;
151 s->memcg_params.root_cache = root_cache;
33a690c4 152 return 0;
f7ce3190 153 }
33a690c4 154
f7ce3190 155 slab_init_memcg_params(s);
33a690c4 156
f7ce3190
VD
157 if (!memcg_nr_cache_ids)
158 return 0;
33a690c4 159
f7ce3190
VD
160 arr = kzalloc(sizeof(struct memcg_cache_array) +
161 memcg_nr_cache_ids * sizeof(void *),
162 GFP_KERNEL);
163 if (!arr)
164 return -ENOMEM;
33a690c4 165
f7ce3190 166 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
33a690c4
VD
167 return 0;
168}
169
f7ce3190 170static void destroy_memcg_params(struct kmem_cache *s)
33a690c4 171{
f7ce3190
VD
172 if (is_root_cache(s))
173 kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
33a690c4
VD
174}
175
f7ce3190 176static int update_memcg_params(struct kmem_cache *s, int new_array_size)
6f817f4c 177{
f7ce3190 178 struct memcg_cache_array *old, *new;
6f817f4c 179
f7ce3190
VD
180 if (!is_root_cache(s))
181 return 0;
6f817f4c 182
f7ce3190
VD
183 new = kzalloc(sizeof(struct memcg_cache_array) +
184 new_array_size * sizeof(void *), GFP_KERNEL);
185 if (!new)
6f817f4c
VD
186 return -ENOMEM;
187
f7ce3190
VD
188 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
189 lockdep_is_held(&slab_mutex));
190 if (old)
191 memcpy(new->entries, old->entries,
192 memcg_nr_cache_ids * sizeof(void *));
6f817f4c 193
f7ce3190
VD
194 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
195 if (old)
196 kfree_rcu(old, rcu);
6f817f4c
VD
197 return 0;
198}
199
55007d84
GC
200int memcg_update_all_caches(int num_memcgs)
201{
202 struct kmem_cache *s;
203 int ret = 0;
55007d84 204
05257a1a 205 mutex_lock(&slab_mutex);
55007d84 206 list_for_each_entry(s, &slab_caches, list) {
f7ce3190 207 ret = update_memcg_params(s, num_memcgs);
55007d84 208 /*
55007d84
GC
209 * Instead of freeing the memory, we'll just leave the caches
210 * up to this point in an updated state.
211 */
212 if (ret)
05257a1a 213 break;
55007d84 214 }
55007d84
GC
215 mutex_unlock(&slab_mutex);
216 return ret;
217}
33a690c4 218#else
f7ce3190
VD
219static inline int init_memcg_params(struct kmem_cache *s,
220 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
33a690c4
VD
221{
222 return 0;
223}
224
f7ce3190 225static inline void destroy_memcg_params(struct kmem_cache *s)
33a690c4
VD
226{
227}
127424c8 228#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
55007d84 229
423c929c
JK
230/*
231 * Find a mergeable slab cache
232 */
233int slab_unmergeable(struct kmem_cache *s)
234{
235 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
236 return 1;
237
238 if (!is_root_cache(s))
239 return 1;
240
241 if (s->ctor)
242 return 1;
243
244 /*
245 * We may have set a slab to be unmergeable during bootstrap.
246 */
247 if (s->refcount < 0)
248 return 1;
249
250 return 0;
251}
252
253struct kmem_cache *find_mergeable(size_t size, size_t align,
254 unsigned long flags, const char *name, void (*ctor)(void *))
255{
256 struct kmem_cache *s;
257
c6e28895 258 if (slab_nomerge)
423c929c
JK
259 return NULL;
260
261 if (ctor)
262 return NULL;
263
264 size = ALIGN(size, sizeof(void *));
265 align = calculate_alignment(flags, align, size);
266 size = ALIGN(size, align);
267 flags = kmem_cache_flags(size, flags, name, NULL);
268
c6e28895
GM
269 if (flags & SLAB_NEVER_MERGE)
270 return NULL;
271
54362057 272 list_for_each_entry_reverse(s, &slab_caches, list) {
423c929c
JK
273 if (slab_unmergeable(s))
274 continue;
275
276 if (size > s->size)
277 continue;
278
279 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
280 continue;
281 /*
282 * Check if alignment is compatible.
283 * Courtesy of Adrian Drzewiecki
284 */
285 if ((s->size & ~(align - 1)) != s->size)
286 continue;
287
288 if (s->size - size >= sizeof(void *))
289 continue;
290
95069ac8
JK
291 if (IS_ENABLED(CONFIG_SLAB) && align &&
292 (align > s->align || s->align % align))
293 continue;
294
423c929c
JK
295 return s;
296 }
297 return NULL;
298}
299
45906855
CL
300/*
301 * Figure out what the alignment of the objects will be given a set of
302 * flags, a user specified alignment and the size of the objects.
303 */
304unsigned long calculate_alignment(unsigned long flags,
305 unsigned long align, unsigned long size)
306{
307 /*
308 * If the user wants hardware cache aligned objects then follow that
309 * suggestion if the object is sufficiently large.
310 *
311 * The hardware cache alignment cannot override the specified
312 * alignment though. If that is greater then use it.
313 */
314 if (flags & SLAB_HWCACHE_ALIGN) {
315 unsigned long ralign = cache_line_size();
316 while (size <= ralign / 2)
317 ralign /= 2;
318 align = max(align, ralign);
319 }
320
321 if (align < ARCH_SLAB_MINALIGN)
322 align = ARCH_SLAB_MINALIGN;
323
324 return ALIGN(align, sizeof(void *));
325}
326
c9a77a79
VD
327static struct kmem_cache *create_cache(const char *name,
328 size_t object_size, size_t size, size_t align,
329 unsigned long flags, void (*ctor)(void *),
330 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
794b1248
VD
331{
332 struct kmem_cache *s;
333 int err;
334
335 err = -ENOMEM;
336 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
337 if (!s)
338 goto out;
339
340 s->name = name;
341 s->object_size = object_size;
342 s->size = size;
343 s->align = align;
344 s->ctor = ctor;
345
f7ce3190 346 err = init_memcg_params(s, memcg, root_cache);
794b1248
VD
347 if (err)
348 goto out_free_cache;
349
350 err = __kmem_cache_create(s, flags);
351 if (err)
352 goto out_free_cache;
353
354 s->refcount = 1;
355 list_add(&s->list, &slab_caches);
794b1248
VD
356out:
357 if (err)
358 return ERR_PTR(err);
359 return s;
360
361out_free_cache:
f7ce3190 362 destroy_memcg_params(s);
7c4da061 363 kmem_cache_free(kmem_cache, s);
794b1248
VD
364 goto out;
365}
45906855 366
77be4b13
SK
367/*
368 * kmem_cache_create - Create a cache.
369 * @name: A string which is used in /proc/slabinfo to identify this cache.
370 * @size: The size of objects to be created in this cache.
371 * @align: The required alignment for the objects.
372 * @flags: SLAB flags
373 * @ctor: A constructor for the objects.
374 *
375 * Returns a ptr to the cache on success, NULL on failure.
376 * Cannot be called within a interrupt, but can be interrupted.
377 * The @ctor is run when new pages are allocated by the cache.
378 *
379 * The flags are
380 *
381 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
382 * to catch references to uninitialised memory.
383 *
384 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
385 * for buffer overruns.
386 *
387 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
388 * cacheline. This can be beneficial if you're counting cycles as closely
389 * as davem.
390 */
2633d7a0 391struct kmem_cache *
794b1248
VD
392kmem_cache_create(const char *name, size_t size, size_t align,
393 unsigned long flags, void (*ctor)(void *))
77be4b13 394{
40911a79 395 struct kmem_cache *s = NULL;
3dec16ea 396 const char *cache_name;
3965fc36 397 int err;
039363f3 398
77be4b13 399 get_online_cpus();
03afc0e2 400 get_online_mems();
05257a1a 401 memcg_get_cache_ids();
03afc0e2 402
77be4b13 403 mutex_lock(&slab_mutex);
686d550d 404
794b1248 405 err = kmem_cache_sanity_check(name, size);
3aa24f51 406 if (err) {
3965fc36 407 goto out_unlock;
3aa24f51 408 }
686d550d 409
e70954fd
TG
410 /* Refuse requests with allocator specific flags */
411 if (flags & ~SLAB_FLAGS_PERMITTED) {
412 err = -EINVAL;
413 goto out_unlock;
414 }
415
d8843922
GC
416 /*
417 * Some allocators will constraint the set of valid flags to a subset
418 * of all flags. We expect them to define CACHE_CREATE_MASK in this
419 * case, and we'll just provide them with a sanitized version of the
420 * passed flags.
421 */
422 flags &= CACHE_CREATE_MASK;
686d550d 423
794b1248
VD
424 s = __kmem_cache_alias(name, size, align, flags, ctor);
425 if (s)
3965fc36 426 goto out_unlock;
2633d7a0 427
3dec16ea 428 cache_name = kstrdup_const(name, GFP_KERNEL);
794b1248
VD
429 if (!cache_name) {
430 err = -ENOMEM;
431 goto out_unlock;
432 }
7c9adf5a 433
c9a77a79
VD
434 s = create_cache(cache_name, size, size,
435 calculate_alignment(flags, align, size),
436 flags, ctor, NULL, NULL);
794b1248
VD
437 if (IS_ERR(s)) {
438 err = PTR_ERR(s);
3dec16ea 439 kfree_const(cache_name);
794b1248 440 }
3965fc36
VD
441
442out_unlock:
20cea968 443 mutex_unlock(&slab_mutex);
03afc0e2 444
05257a1a 445 memcg_put_cache_ids();
03afc0e2 446 put_online_mems();
20cea968
CL
447 put_online_cpus();
448
ba3253c7 449 if (err) {
686d550d
CL
450 if (flags & SLAB_PANIC)
451 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
452 name, err);
453 else {
1170532b 454 pr_warn("kmem_cache_create(%s) failed with error %d\n",
686d550d
CL
455 name, err);
456 dump_stack();
457 }
686d550d
CL
458 return NULL;
459 }
039363f3
CL
460 return s;
461}
794b1248 462EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 463
c9a77a79 464static int shutdown_cache(struct kmem_cache *s,
d5b3cf71
VD
465 struct list_head *release, bool *need_rcu_barrier)
466{
cd918c55 467 if (__kmem_cache_shutdown(s) != 0)
d5b3cf71 468 return -EBUSY;
d5b3cf71
VD
469
470 if (s->flags & SLAB_DESTROY_BY_RCU)
471 *need_rcu_barrier = true;
472
d5b3cf71
VD
473 list_move(&s->list, release);
474 return 0;
475}
476
c9a77a79 477static void release_caches(struct list_head *release, bool need_rcu_barrier)
d5b3cf71
VD
478{
479 struct kmem_cache *s, *s2;
480
481 if (need_rcu_barrier)
482 rcu_barrier();
483
484 list_for_each_entry_safe(s, s2, release, list) {
485#ifdef SLAB_SUPPORTS_SYSFS
bf5eb3de 486 sysfs_slab_release(s);
d5b3cf71
VD
487#else
488 slab_kmem_cache_release(s);
489#endif
490 }
491}
492
127424c8 493#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
794b1248 494/*
776ed0f0 495 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
794b1248
VD
496 * @memcg: The memory cgroup the new cache is for.
497 * @root_cache: The parent of the new cache.
498 *
499 * This function attempts to create a kmem cache that will serve allocation
500 * requests going from @memcg to @root_cache. The new cache inherits properties
501 * from its parent.
502 */
d5b3cf71
VD
503void memcg_create_kmem_cache(struct mem_cgroup *memcg,
504 struct kmem_cache *root_cache)
2633d7a0 505{
3e0350a3 506 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
33398cf2 507 struct cgroup_subsys_state *css = &memcg->css;
f7ce3190 508 struct memcg_cache_array *arr;
bd673145 509 struct kmem_cache *s = NULL;
794b1248 510 char *cache_name;
f7ce3190 511 int idx;
794b1248
VD
512
513 get_online_cpus();
03afc0e2
VD
514 get_online_mems();
515
794b1248
VD
516 mutex_lock(&slab_mutex);
517
2a4db7eb 518 /*
567e9ab2 519 * The memory cgroup could have been offlined while the cache
2a4db7eb
VD
520 * creation work was pending.
521 */
b6ecd2de 522 if (memcg->kmem_state != KMEM_ONLINE)
2a4db7eb
VD
523 goto out_unlock;
524
f7ce3190
VD
525 idx = memcg_cache_id(memcg);
526 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
527 lockdep_is_held(&slab_mutex));
528
d5b3cf71
VD
529 /*
530 * Since per-memcg caches are created asynchronously on first
531 * allocation (see memcg_kmem_get_cache()), several threads can try to
532 * create the same cache, but only one of them may succeed.
533 */
f7ce3190 534 if (arr->entries[idx])
d5b3cf71
VD
535 goto out_unlock;
536
f1008365 537 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
73f576c0
JW
538 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
539 css->serial_nr, memcg_name_buf);
794b1248
VD
540 if (!cache_name)
541 goto out_unlock;
542
c9a77a79
VD
543 s = create_cache(cache_name, root_cache->object_size,
544 root_cache->size, root_cache->align,
f773e36d
GT
545 root_cache->flags & CACHE_CREATE_MASK,
546 root_cache->ctor, memcg, root_cache);
d5b3cf71
VD
547 /*
548 * If we could not create a memcg cache, do not complain, because
549 * that's not critical at all as we can always proceed with the root
550 * cache.
551 */
bd673145 552 if (IS_ERR(s)) {
794b1248 553 kfree(cache_name);
d5b3cf71 554 goto out_unlock;
bd673145 555 }
794b1248 556
426589f5
VD
557 list_add(&s->memcg_params.list, &root_cache->memcg_params.list);
558
d5b3cf71
VD
559 /*
560 * Since readers won't lock (see cache_from_memcg_idx()), we need a
561 * barrier here to ensure nobody will see the kmem_cache partially
562 * initialized.
563 */
564 smp_wmb();
f7ce3190 565 arr->entries[idx] = s;
d5b3cf71 566
794b1248
VD
567out_unlock:
568 mutex_unlock(&slab_mutex);
03afc0e2
VD
569
570 put_online_mems();
794b1248 571 put_online_cpus();
2633d7a0 572}
b8529907 573
2a4db7eb
VD
574void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
575{
576 int idx;
577 struct memcg_cache_array *arr;
d6e0b7fa 578 struct kmem_cache *s, *c;
2a4db7eb
VD
579
580 idx = memcg_cache_id(memcg);
581
d6e0b7fa
VD
582 get_online_cpus();
583 get_online_mems();
584
2a4db7eb
VD
585 mutex_lock(&slab_mutex);
586 list_for_each_entry(s, &slab_caches, list) {
587 if (!is_root_cache(s))
588 continue;
589
590 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
591 lockdep_is_held(&slab_mutex));
d6e0b7fa
VD
592 c = arr->entries[idx];
593 if (!c)
594 continue;
595
290b6a58 596 __kmem_cache_shrink(c, true);
2a4db7eb
VD
597 arr->entries[idx] = NULL;
598 }
599 mutex_unlock(&slab_mutex);
d6e0b7fa
VD
600
601 put_online_mems();
602 put_online_cpus();
2a4db7eb
VD
603}
604
d60fdcc9
VD
605static int __shutdown_memcg_cache(struct kmem_cache *s,
606 struct list_head *release, bool *need_rcu_barrier)
607{
608 BUG_ON(is_root_cache(s));
609
610 if (shutdown_cache(s, release, need_rcu_barrier))
611 return -EBUSY;
612
613 list_del(&s->memcg_params.list);
614 return 0;
615}
616
d5b3cf71 617void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
b8529907 618{
d5b3cf71
VD
619 LIST_HEAD(release);
620 bool need_rcu_barrier = false;
621 struct kmem_cache *s, *s2;
b8529907 622
d5b3cf71
VD
623 get_online_cpus();
624 get_online_mems();
b8529907 625
b8529907 626 mutex_lock(&slab_mutex);
d5b3cf71 627 list_for_each_entry_safe(s, s2, &slab_caches, list) {
f7ce3190 628 if (is_root_cache(s) || s->memcg_params.memcg != memcg)
d5b3cf71
VD
629 continue;
630 /*
631 * The cgroup is about to be freed and therefore has no charges
632 * left. Hence, all its caches must be empty by now.
633 */
d60fdcc9 634 BUG_ON(__shutdown_memcg_cache(s, &release, &need_rcu_barrier));
d5b3cf71
VD
635 }
636 mutex_unlock(&slab_mutex);
b8529907 637
d5b3cf71
VD
638 put_online_mems();
639 put_online_cpus();
640
c9a77a79 641 release_caches(&release, need_rcu_barrier);
b8529907 642}
d60fdcc9
VD
643
644static int shutdown_memcg_caches(struct kmem_cache *s,
645 struct list_head *release, bool *need_rcu_barrier)
646{
647 struct memcg_cache_array *arr;
648 struct kmem_cache *c, *c2;
649 LIST_HEAD(busy);
650 int i;
651
652 BUG_ON(!is_root_cache(s));
653
654 /*
655 * First, shutdown active caches, i.e. caches that belong to online
656 * memory cgroups.
657 */
658 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
659 lockdep_is_held(&slab_mutex));
660 for_each_memcg_cache_index(i) {
661 c = arr->entries[i];
662 if (!c)
663 continue;
664 if (__shutdown_memcg_cache(c, release, need_rcu_barrier))
665 /*
666 * The cache still has objects. Move it to a temporary
667 * list so as not to try to destroy it for a second
668 * time while iterating over inactive caches below.
669 */
670 list_move(&c->memcg_params.list, &busy);
671 else
672 /*
673 * The cache is empty and will be destroyed soon. Clear
674 * the pointer to it in the memcg_caches array so that
675 * it will never be accessed even if the root cache
676 * stays alive.
677 */
678 arr->entries[i] = NULL;
679 }
680
681 /*
682 * Second, shutdown all caches left from memory cgroups that are now
683 * offline.
684 */
685 list_for_each_entry_safe(c, c2, &s->memcg_params.list,
686 memcg_params.list)
687 __shutdown_memcg_cache(c, release, need_rcu_barrier);
688
689 list_splice(&busy, &s->memcg_params.list);
690
691 /*
692 * A cache being destroyed must be empty. In particular, this means
693 * that all per memcg caches attached to it must be empty too.
694 */
695 if (!list_empty(&s->memcg_params.list))
696 return -EBUSY;
697 return 0;
698}
699#else
700static inline int shutdown_memcg_caches(struct kmem_cache *s,
701 struct list_head *release, bool *need_rcu_barrier)
702{
703 return 0;
704}
127424c8 705#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
97d06609 706
41a21285
CL
707void slab_kmem_cache_release(struct kmem_cache *s)
708{
52b4b950 709 __kmem_cache_release(s);
f7ce3190 710 destroy_memcg_params(s);
3dec16ea 711 kfree_const(s->name);
41a21285
CL
712 kmem_cache_free(kmem_cache, s);
713}
714
945cf2b6
CL
715void kmem_cache_destroy(struct kmem_cache *s)
716{
d5b3cf71
VD
717 LIST_HEAD(release);
718 bool need_rcu_barrier = false;
d60fdcc9 719 int err;
d5b3cf71 720
3942d299
SS
721 if (unlikely(!s))
722 return;
723
945cf2b6 724 get_online_cpus();
03afc0e2
VD
725 get_online_mems();
726
55834c59 727 kasan_cache_destroy(s);
945cf2b6 728 mutex_lock(&slab_mutex);
b8529907 729
945cf2b6 730 s->refcount--;
b8529907
VD
731 if (s->refcount)
732 goto out_unlock;
733
d60fdcc9
VD
734 err = shutdown_memcg_caches(s, &release, &need_rcu_barrier);
735 if (!err)
cd918c55 736 err = shutdown_cache(s, &release, &need_rcu_barrier);
b8529907 737
cd918c55 738 if (err) {
756a025f
JP
739 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
740 s->name);
cd918c55
VD
741 dump_stack();
742 }
b8529907
VD
743out_unlock:
744 mutex_unlock(&slab_mutex);
d5b3cf71 745
03afc0e2 746 put_online_mems();
945cf2b6 747 put_online_cpus();
d5b3cf71 748
c9a77a79 749 release_caches(&release, need_rcu_barrier);
945cf2b6
CL
750}
751EXPORT_SYMBOL(kmem_cache_destroy);
752
03afc0e2
VD
753/**
754 * kmem_cache_shrink - Shrink a cache.
755 * @cachep: The cache to shrink.
756 *
757 * Releases as many slabs as possible for a cache.
758 * To help debugging, a zero exit status indicates all slabs were released.
759 */
760int kmem_cache_shrink(struct kmem_cache *cachep)
761{
762 int ret;
763
764 get_online_cpus();
765 get_online_mems();
55834c59 766 kasan_cache_shrink(cachep);
290b6a58 767 ret = __kmem_cache_shrink(cachep, false);
03afc0e2
VD
768 put_online_mems();
769 put_online_cpus();
770 return ret;
771}
772EXPORT_SYMBOL(kmem_cache_shrink);
773
fda90124 774bool slab_is_available(void)
97d06609
CL
775{
776 return slab_state >= UP;
777}
b7454ad3 778
45530c44
CL
779#ifndef CONFIG_SLOB
780/* Create a cache during boot when no slab services are available yet */
781void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
782 unsigned long flags)
783{
784 int err;
785
786 s->name = name;
787 s->size = s->object_size = size;
45906855 788 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
f7ce3190
VD
789
790 slab_init_memcg_params(s);
791
45530c44
CL
792 err = __kmem_cache_create(s, flags);
793
794 if (err)
31ba7346 795 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
45530c44
CL
796 name, size, err);
797
798 s->refcount = -1; /* Exempt from merging for now */
799}
800
801struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
802 unsigned long flags)
803{
804 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
805
806 if (!s)
807 panic("Out of memory when creating slab %s\n", name);
808
809 create_boot_cache(s, name, size, flags);
810 list_add(&s->list, &slab_caches);
811 s->refcount = 1;
812 return s;
813}
814
9425c58e
CL
815struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
816EXPORT_SYMBOL(kmalloc_caches);
817
818#ifdef CONFIG_ZONE_DMA
819struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
820EXPORT_SYMBOL(kmalloc_dma_caches);
821#endif
822
2c59dd65
CL
823/*
824 * Conversion table for small slabs sizes / 8 to the index in the
825 * kmalloc array. This is necessary for slabs < 192 since we have non power
826 * of two cache sizes there. The size of larger slabs can be determined using
827 * fls.
828 */
829static s8 size_index[24] = {
830 3, /* 8 */
831 4, /* 16 */
832 5, /* 24 */
833 5, /* 32 */
834 6, /* 40 */
835 6, /* 48 */
836 6, /* 56 */
837 6, /* 64 */
838 1, /* 72 */
839 1, /* 80 */
840 1, /* 88 */
841 1, /* 96 */
842 7, /* 104 */
843 7, /* 112 */
844 7, /* 120 */
845 7, /* 128 */
846 2, /* 136 */
847 2, /* 144 */
848 2, /* 152 */
849 2, /* 160 */
850 2, /* 168 */
851 2, /* 176 */
852 2, /* 184 */
853 2 /* 192 */
854};
855
856static inline int size_index_elem(size_t bytes)
857{
858 return (bytes - 1) / 8;
859}
860
861/*
862 * Find the kmem_cache structure that serves a given size of
863 * allocation
864 */
865struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
866{
867 int index;
868
9de1bc87 869 if (unlikely(size > KMALLOC_MAX_SIZE)) {
907985f4 870 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
6286ae97 871 return NULL;
907985f4 872 }
6286ae97 873
2c59dd65
CL
874 if (size <= 192) {
875 if (!size)
876 return ZERO_SIZE_PTR;
877
878 index = size_index[size_index_elem(size)];
879 } else
880 index = fls(size - 1);
881
882#ifdef CONFIG_ZONE_DMA
b1e05416 883 if (unlikely((flags & GFP_DMA)))
2c59dd65
CL
884 return kmalloc_dma_caches[index];
885
886#endif
887 return kmalloc_caches[index];
888}
889
4066c33d
GG
890/*
891 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
892 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
893 * kmalloc-67108864.
894 */
af3b5f87 895const struct kmalloc_info_struct kmalloc_info[] __initconst = {
4066c33d
GG
896 {NULL, 0}, {"kmalloc-96", 96},
897 {"kmalloc-192", 192}, {"kmalloc-8", 8},
898 {"kmalloc-16", 16}, {"kmalloc-32", 32},
899 {"kmalloc-64", 64}, {"kmalloc-128", 128},
900 {"kmalloc-256", 256}, {"kmalloc-512", 512},
901 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
902 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
903 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
904 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
905 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
906 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
907 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
908 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
909 {"kmalloc-67108864", 67108864}
910};
911
f97d5f63 912/*
34cc6990
DS
913 * Patch up the size_index table if we have strange large alignment
914 * requirements for the kmalloc array. This is only the case for
915 * MIPS it seems. The standard arches will not generate any code here.
916 *
917 * Largest permitted alignment is 256 bytes due to the way we
918 * handle the index determination for the smaller caches.
919 *
920 * Make sure that nothing crazy happens if someone starts tinkering
921 * around with ARCH_KMALLOC_MINALIGN
f97d5f63 922 */
34cc6990 923void __init setup_kmalloc_cache_index_table(void)
f97d5f63
CL
924{
925 int i;
926
2c59dd65
CL
927 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
928 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
929
930 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
931 int elem = size_index_elem(i);
932
933 if (elem >= ARRAY_SIZE(size_index))
934 break;
935 size_index[elem] = KMALLOC_SHIFT_LOW;
936 }
937
938 if (KMALLOC_MIN_SIZE >= 64) {
939 /*
940 * The 96 byte size cache is not used if the alignment
941 * is 64 byte.
942 */
943 for (i = 64 + 8; i <= 96; i += 8)
944 size_index[size_index_elem(i)] = 7;
945
946 }
947
948 if (KMALLOC_MIN_SIZE >= 128) {
949 /*
950 * The 192 byte sized cache is not used if the alignment
951 * is 128 byte. Redirect kmalloc to use the 256 byte cache
952 * instead.
953 */
954 for (i = 128 + 8; i <= 192; i += 8)
955 size_index[size_index_elem(i)] = 8;
956 }
34cc6990
DS
957}
958
ae6f2462 959static void __init new_kmalloc_cache(int idx, unsigned long flags)
a9730fca
CL
960{
961 kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
962 kmalloc_info[idx].size, flags);
963}
964
34cc6990
DS
965/*
966 * Create the kmalloc array. Some of the regular kmalloc arrays
967 * may already have been created because they were needed to
968 * enable allocations for slab creation.
969 */
970void __init create_kmalloc_caches(unsigned long flags)
971{
972 int i;
973
a9730fca
CL
974 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
975 if (!kmalloc_caches[i])
976 new_kmalloc_cache(i, flags);
f97d5f63 977
956e46ef 978 /*
a9730fca
CL
979 * Caches that are not of the two-to-the-power-of size.
980 * These have to be created immediately after the
981 * earlier power of two caches
956e46ef 982 */
a9730fca
CL
983 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
984 new_kmalloc_cache(1, flags);
985 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
986 new_kmalloc_cache(2, flags);
8a965b3b
CL
987 }
988
f97d5f63
CL
989 /* Kmalloc array is now usable */
990 slab_state = UP;
991
f97d5f63
CL
992#ifdef CONFIG_ZONE_DMA
993 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
994 struct kmem_cache *s = kmalloc_caches[i];
995
996 if (s) {
997 int size = kmalloc_size(i);
998 char *n = kasprintf(GFP_NOWAIT,
999 "dma-kmalloc-%d", size);
1000
1001 BUG_ON(!n);
1002 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
1003 size, SLAB_CACHE_DMA | flags);
1004 }
1005 }
1006#endif
1007}
45530c44
CL
1008#endif /* !CONFIG_SLOB */
1009
cea371f4
VD
1010/*
1011 * To avoid unnecessary overhead, we pass through large allocation requests
1012 * directly to the page allocator. We use __GFP_COMP, because we will need to
1013 * know the allocation order to free the pages properly in kfree.
1014 */
52383431
VD
1015void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1016{
1017 void *ret;
1018 struct page *page;
1019
1020 flags |= __GFP_COMP;
4949148a 1021 page = alloc_pages(flags, order);
52383431
VD
1022 ret = page ? page_address(page) : NULL;
1023 kmemleak_alloc(ret, size, 1, flags);
505f5dcb 1024 kasan_kmalloc_large(ret, size, flags);
52383431
VD
1025 return ret;
1026}
1027EXPORT_SYMBOL(kmalloc_order);
1028
f1b6eb6e
CL
1029#ifdef CONFIG_TRACING
1030void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1031{
1032 void *ret = kmalloc_order(size, flags, order);
1033 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1034 return ret;
1035}
1036EXPORT_SYMBOL(kmalloc_order_trace);
1037#endif
45530c44 1038
7c00fce9
TG
1039#ifdef CONFIG_SLAB_FREELIST_RANDOM
1040/* Randomize a generic freelist */
1041static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1042 size_t count)
1043{
1044 size_t i;
1045 unsigned int rand;
1046
1047 for (i = 0; i < count; i++)
1048 list[i] = i;
1049
1050 /* Fisher-Yates shuffle */
1051 for (i = count - 1; i > 0; i--) {
1052 rand = prandom_u32_state(state);
1053 rand %= (i + 1);
1054 swap(list[i], list[rand]);
1055 }
1056}
1057
1058/* Create a random sequence per cache */
1059int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1060 gfp_t gfp)
1061{
1062 struct rnd_state state;
1063
1064 if (count < 2 || cachep->random_seq)
1065 return 0;
1066
1067 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1068 if (!cachep->random_seq)
1069 return -ENOMEM;
1070
1071 /* Get best entropy at this stage of boot */
1072 prandom_seed_state(&state, get_random_long());
1073
1074 freelist_randomize(&state, cachep->random_seq, count);
1075 return 0;
1076}
1077
1078/* Destroy the per-cache random freelist sequence */
1079void cache_random_seq_destroy(struct kmem_cache *cachep)
1080{
1081 kfree(cachep->random_seq);
1082 cachep->random_seq = NULL;
1083}
1084#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1085
b7454ad3 1086#ifdef CONFIG_SLABINFO
e9b4db2b
WL
1087
1088#ifdef CONFIG_SLAB
1089#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1090#else
1091#define SLABINFO_RIGHTS S_IRUSR
1092#endif
1093
b047501c 1094static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
1095{
1096 /*
1097 * Output format version, so at least we can change it
1098 * without _too_ many complaints.
1099 */
1100#ifdef CONFIG_DEBUG_SLAB
1101 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1102#else
1103 seq_puts(m, "slabinfo - version: 2.1\n");
1104#endif
756a025f 1105 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
bcee6e2a
GC
1106 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1107 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1108#ifdef CONFIG_DEBUG_SLAB
756a025f 1109 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
bcee6e2a
GC
1110 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1111#endif
1112 seq_putc(m, '\n');
1113}
1114
1df3b26f 1115void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 1116{
b7454ad3 1117 mutex_lock(&slab_mutex);
b7454ad3
GC
1118 return seq_list_start(&slab_caches, *pos);
1119}
1120
276a2439 1121void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3
GC
1122{
1123 return seq_list_next(p, &slab_caches, pos);
1124}
1125
276a2439 1126void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
1127{
1128 mutex_unlock(&slab_mutex);
1129}
1130
749c5415
GC
1131static void
1132memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1133{
1134 struct kmem_cache *c;
1135 struct slabinfo sinfo;
749c5415
GC
1136
1137 if (!is_root_cache(s))
1138 return;
1139
426589f5 1140 for_each_memcg_cache(c, s) {
749c5415
GC
1141 memset(&sinfo, 0, sizeof(sinfo));
1142 get_slabinfo(c, &sinfo);
1143
1144 info->active_slabs += sinfo.active_slabs;
1145 info->num_slabs += sinfo.num_slabs;
1146 info->shared_avail += sinfo.shared_avail;
1147 info->active_objs += sinfo.active_objs;
1148 info->num_objs += sinfo.num_objs;
1149 }
1150}
1151
b047501c 1152static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 1153{
0d7561c6
GC
1154 struct slabinfo sinfo;
1155
1156 memset(&sinfo, 0, sizeof(sinfo));
1157 get_slabinfo(s, &sinfo);
1158
749c5415
GC
1159 memcg_accumulate_slabinfo(s, &sinfo);
1160
0d7561c6 1161 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
749c5415 1162 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
1163 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1164
1165 seq_printf(m, " : tunables %4u %4u %4u",
1166 sinfo.limit, sinfo.batchcount, sinfo.shared);
1167 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1168 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1169 slabinfo_show_stats(m, s);
1170 seq_putc(m, '\n');
b7454ad3
GC
1171}
1172
1df3b26f 1173static int slab_show(struct seq_file *m, void *p)
749c5415
GC
1174{
1175 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1176
1df3b26f
VD
1177 if (p == slab_caches.next)
1178 print_slabinfo_header(m);
b047501c
VD
1179 if (is_root_cache(s))
1180 cache_show(s, m);
1181 return 0;
1182}
1183
127424c8 1184#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
b047501c
VD
1185int memcg_slab_show(struct seq_file *m, void *p)
1186{
1187 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1188 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1189
1190 if (p == slab_caches.next)
1191 print_slabinfo_header(m);
f7ce3190 1192 if (!is_root_cache(s) && s->memcg_params.memcg == memcg)
b047501c
VD
1193 cache_show(s, m);
1194 return 0;
749c5415 1195}
b047501c 1196#endif
749c5415 1197
b7454ad3
GC
1198/*
1199 * slabinfo_op - iterator that generates /proc/slabinfo
1200 *
1201 * Output layout:
1202 * cache-name
1203 * num-active-objs
1204 * total-objs
1205 * object size
1206 * num-active-slabs
1207 * total-slabs
1208 * num-pages-per-slab
1209 * + further values on SMP and with statistics enabled
1210 */
1211static const struct seq_operations slabinfo_op = {
1df3b26f 1212 .start = slab_start,
276a2439
WL
1213 .next = slab_next,
1214 .stop = slab_stop,
1df3b26f 1215 .show = slab_show,
b7454ad3
GC
1216};
1217
1218static int slabinfo_open(struct inode *inode, struct file *file)
1219{
1220 return seq_open(file, &slabinfo_op);
1221}
1222
1223static const struct file_operations proc_slabinfo_operations = {
1224 .open = slabinfo_open,
1225 .read = seq_read,
1226 .write = slabinfo_write,
1227 .llseek = seq_lseek,
1228 .release = seq_release,
1229};
1230
1231static int __init slab_proc_init(void)
1232{
e9b4db2b
WL
1233 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1234 &proc_slabinfo_operations);
b7454ad3
GC
1235 return 0;
1236}
1237module_init(slab_proc_init);
1238#endif /* CONFIG_SLABINFO */
928cec9c
AR
1239
1240static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1241 gfp_t flags)
1242{
1243 void *ret;
1244 size_t ks = 0;
1245
1246 if (p)
1247 ks = ksize(p);
1248
0316bec2 1249 if (ks >= new_size) {
505f5dcb 1250 kasan_krealloc((void *)p, new_size, flags);
928cec9c 1251 return (void *)p;
0316bec2 1252 }
928cec9c
AR
1253
1254 ret = kmalloc_track_caller(new_size, flags);
1255 if (ret && p)
1256 memcpy(ret, p, ks);
1257
1258 return ret;
1259}
1260
1261/**
1262 * __krealloc - like krealloc() but don't free @p.
1263 * @p: object to reallocate memory for.
1264 * @new_size: how many bytes of memory are required.
1265 * @flags: the type of memory to allocate.
1266 *
1267 * This function is like krealloc() except it never frees the originally
1268 * allocated buffer. Use this if you don't want to free the buffer immediately
1269 * like, for example, with RCU.
1270 */
1271void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1272{
1273 if (unlikely(!new_size))
1274 return ZERO_SIZE_PTR;
1275
1276 return __do_krealloc(p, new_size, flags);
1277
1278}
1279EXPORT_SYMBOL(__krealloc);
1280
1281/**
1282 * krealloc - reallocate memory. The contents will remain unchanged.
1283 * @p: object to reallocate memory for.
1284 * @new_size: how many bytes of memory are required.
1285 * @flags: the type of memory to allocate.
1286 *
1287 * The contents of the object pointed to are preserved up to the
1288 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1289 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1290 * %NULL pointer, the object pointed to is freed.
1291 */
1292void *krealloc(const void *p, size_t new_size, gfp_t flags)
1293{
1294 void *ret;
1295
1296 if (unlikely(!new_size)) {
1297 kfree(p);
1298 return ZERO_SIZE_PTR;
1299 }
1300
1301 ret = __do_krealloc(p, new_size, flags);
1302 if (ret && p != ret)
1303 kfree(p);
1304
1305 return ret;
1306}
1307EXPORT_SYMBOL(krealloc);
1308
1309/**
1310 * kzfree - like kfree but zero memory
1311 * @p: object to free memory of
1312 *
1313 * The memory of the object @p points to is zeroed before freed.
1314 * If @p is %NULL, kzfree() does nothing.
1315 *
1316 * Note: this function zeroes the whole allocated buffer which can be a good
1317 * deal bigger than the requested buffer size passed to kmalloc(). So be
1318 * careful when using this function in performance sensitive code.
1319 */
1320void kzfree(const void *p)
1321{
1322 size_t ks;
1323 void *mem = (void *)p;
1324
1325 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1326 return;
1327 ks = ksize(mem);
1328 memset(mem, 0, ks);
1329 kfree(mem);
1330}
1331EXPORT_SYMBOL(kzfree);
1332
1333/* Tracepoints definitions. */
1334EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1335EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1336EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1337EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1338EXPORT_TRACEPOINT_SYMBOL(kfree);
1339EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);