]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/slab_common.c
slab: introduce __kmemcg_cache_deactivate()
[mirror_ubuntu-bionic-kernel.git] / mm / slab_common.c
CommitLineData
039363f3
CL
1/*
2 * Slab allocator functions that are independent of the allocator strategy
3 *
4 * (C) 2012 Christoph Lameter <cl@linux.com>
5 */
6#include <linux/slab.h>
7
8#include <linux/mm.h>
9#include <linux/poison.h>
10#include <linux/interrupt.h>
11#include <linux/memory.h>
12#include <linux/compiler.h>
13#include <linux/module.h>
20cea968
CL
14#include <linux/cpu.h>
15#include <linux/uaccess.h>
b7454ad3
GC
16#include <linux/seq_file.h>
17#include <linux/proc_fs.h>
039363f3
CL
18#include <asm/cacheflush.h>
19#include <asm/tlbflush.h>
20#include <asm/page.h>
2633d7a0 21#include <linux/memcontrol.h>
928cec9c
AR
22
23#define CREATE_TRACE_POINTS
f1b6eb6e 24#include <trace/events/kmem.h>
039363f3 25
97d06609
CL
26#include "slab.h"
27
28enum slab_state slab_state;
18004c5d
CL
29LIST_HEAD(slab_caches);
30DEFINE_MUTEX(slab_mutex);
9b030cb8 31struct kmem_cache *kmem_cache;
97d06609 32
657dc2f9
TH
33static LIST_HEAD(slab_caches_to_rcu_destroy);
34static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
35static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
36 slab_caches_to_rcu_destroy_workfn);
37
423c929c
JK
38/*
39 * Set of flags that will prevent slab merging
40 */
41#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
42 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
7ed2f9e6 43 SLAB_FAILSLAB | SLAB_KASAN)
423c929c 44
230e9fc2
VD
45#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
46 SLAB_NOTRACK | SLAB_ACCOUNT)
423c929c
JK
47
48/*
49 * Merge control. If this is set then no merging of slab caches will occur.
50 * (Could be removed. This was introduced to pacify the merge skeptics.)
51 */
52static int slab_nomerge;
53
54static int __init setup_slab_nomerge(char *str)
55{
56 slab_nomerge = 1;
57 return 1;
58}
59
60#ifdef CONFIG_SLUB
61__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
62#endif
63
64__setup("slab_nomerge", setup_slab_nomerge);
65
07f361b2
JK
66/*
67 * Determine the size of a slab object
68 */
69unsigned int kmem_cache_size(struct kmem_cache *s)
70{
71 return s->object_size;
72}
73EXPORT_SYMBOL(kmem_cache_size);
74
77be4b13 75#ifdef CONFIG_DEBUG_VM
794b1248 76static int kmem_cache_sanity_check(const char *name, size_t size)
039363f3
CL
77{
78 struct kmem_cache *s = NULL;
79
039363f3
CL
80 if (!name || in_interrupt() || size < sizeof(void *) ||
81 size > KMALLOC_MAX_SIZE) {
77be4b13
SK
82 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
83 return -EINVAL;
039363f3 84 }
b920536a 85
20cea968
CL
86 list_for_each_entry(s, &slab_caches, list) {
87 char tmp;
88 int res;
89
90 /*
91 * This happens when the module gets unloaded and doesn't
92 * destroy its slab cache and no-one else reuses the vmalloc
93 * area of the module. Print a warning.
94 */
95 res = probe_kernel_address(s->name, tmp);
96 if (res) {
77be4b13 97 pr_err("Slab cache with size %d has lost its name\n",
20cea968
CL
98 s->object_size);
99 continue;
100 }
20cea968
CL
101 }
102
103 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
104 return 0;
105}
106#else
794b1248 107static inline int kmem_cache_sanity_check(const char *name, size_t size)
77be4b13
SK
108{
109 return 0;
110}
20cea968
CL
111#endif
112
484748f0
CL
113void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
114{
115 size_t i;
116
ca257195
JDB
117 for (i = 0; i < nr; i++) {
118 if (s)
119 kmem_cache_free(s, p[i]);
120 else
121 kfree(p[i]);
122 }
484748f0
CL
123}
124
865762a8 125int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
484748f0
CL
126 void **p)
127{
128 size_t i;
129
130 for (i = 0; i < nr; i++) {
131 void *x = p[i] = kmem_cache_alloc(s, flags);
132 if (!x) {
133 __kmem_cache_free_bulk(s, i, p);
865762a8 134 return 0;
484748f0
CL
135 }
136 }
865762a8 137 return i;
484748f0
CL
138}
139
127424c8 140#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
510ded33
TH
141
142LIST_HEAD(slab_root_caches);
143
f7ce3190 144void slab_init_memcg_params(struct kmem_cache *s)
33a690c4 145{
9eeadc8b 146 s->memcg_params.root_cache = NULL;
f7ce3190 147 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
9eeadc8b 148 INIT_LIST_HEAD(&s->memcg_params.children);
f7ce3190
VD
149}
150
151static int init_memcg_params(struct kmem_cache *s,
152 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
153{
154 struct memcg_cache_array *arr;
33a690c4 155
9eeadc8b 156 if (root_cache) {
f7ce3190 157 s->memcg_params.root_cache = root_cache;
9eeadc8b
TH
158 s->memcg_params.memcg = memcg;
159 INIT_LIST_HEAD(&s->memcg_params.children_node);
bc2791f8 160 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
33a690c4 161 return 0;
f7ce3190 162 }
33a690c4 163
f7ce3190 164 slab_init_memcg_params(s);
33a690c4 165
f7ce3190
VD
166 if (!memcg_nr_cache_ids)
167 return 0;
33a690c4 168
f7ce3190
VD
169 arr = kzalloc(sizeof(struct memcg_cache_array) +
170 memcg_nr_cache_ids * sizeof(void *),
171 GFP_KERNEL);
172 if (!arr)
173 return -ENOMEM;
33a690c4 174
f7ce3190 175 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
33a690c4
VD
176 return 0;
177}
178
f7ce3190 179static void destroy_memcg_params(struct kmem_cache *s)
33a690c4 180{
f7ce3190
VD
181 if (is_root_cache(s))
182 kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
33a690c4
VD
183}
184
f7ce3190 185static int update_memcg_params(struct kmem_cache *s, int new_array_size)
6f817f4c 186{
f7ce3190 187 struct memcg_cache_array *old, *new;
6f817f4c 188
f7ce3190
VD
189 new = kzalloc(sizeof(struct memcg_cache_array) +
190 new_array_size * sizeof(void *), GFP_KERNEL);
191 if (!new)
6f817f4c
VD
192 return -ENOMEM;
193
f7ce3190
VD
194 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
195 lockdep_is_held(&slab_mutex));
196 if (old)
197 memcpy(new->entries, old->entries,
198 memcg_nr_cache_ids * sizeof(void *));
6f817f4c 199
f7ce3190
VD
200 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
201 if (old)
202 kfree_rcu(old, rcu);
6f817f4c
VD
203 return 0;
204}
205
55007d84
GC
206int memcg_update_all_caches(int num_memcgs)
207{
208 struct kmem_cache *s;
209 int ret = 0;
55007d84 210
05257a1a 211 mutex_lock(&slab_mutex);
510ded33 212 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
f7ce3190 213 ret = update_memcg_params(s, num_memcgs);
55007d84 214 /*
55007d84
GC
215 * Instead of freeing the memory, we'll just leave the caches
216 * up to this point in an updated state.
217 */
218 if (ret)
05257a1a 219 break;
55007d84 220 }
55007d84
GC
221 mutex_unlock(&slab_mutex);
222 return ret;
223}
657dc2f9 224
510ded33 225void memcg_link_cache(struct kmem_cache *s)
657dc2f9 226{
510ded33
TH
227 if (is_root_cache(s)) {
228 list_add(&s->root_caches_node, &slab_root_caches);
229 } else {
230 list_add(&s->memcg_params.children_node,
231 &s->memcg_params.root_cache->memcg_params.children);
232 list_add(&s->memcg_params.kmem_caches_node,
233 &s->memcg_params.memcg->kmem_caches);
234 }
235}
236
237static void memcg_unlink_cache(struct kmem_cache *s)
238{
239 if (is_root_cache(s)) {
240 list_del(&s->root_caches_node);
241 } else {
242 list_del(&s->memcg_params.children_node);
243 list_del(&s->memcg_params.kmem_caches_node);
244 }
657dc2f9 245}
33a690c4 246#else
f7ce3190
VD
247static inline int init_memcg_params(struct kmem_cache *s,
248 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
33a690c4
VD
249{
250 return 0;
251}
252
f7ce3190 253static inline void destroy_memcg_params(struct kmem_cache *s)
33a690c4
VD
254{
255}
657dc2f9 256
510ded33 257static inline void memcg_unlink_cache(struct kmem_cache *s)
657dc2f9
TH
258{
259}
127424c8 260#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
55007d84 261
423c929c
JK
262/*
263 * Find a mergeable slab cache
264 */
265int slab_unmergeable(struct kmem_cache *s)
266{
267 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
268 return 1;
269
270 if (!is_root_cache(s))
271 return 1;
272
273 if (s->ctor)
274 return 1;
275
276 /*
277 * We may have set a slab to be unmergeable during bootstrap.
278 */
279 if (s->refcount < 0)
280 return 1;
281
282 return 0;
283}
284
285struct kmem_cache *find_mergeable(size_t size, size_t align,
286 unsigned long flags, const char *name, void (*ctor)(void *))
287{
288 struct kmem_cache *s;
289
c6e28895 290 if (slab_nomerge)
423c929c
JK
291 return NULL;
292
293 if (ctor)
294 return NULL;
295
296 size = ALIGN(size, sizeof(void *));
297 align = calculate_alignment(flags, align, size);
298 size = ALIGN(size, align);
299 flags = kmem_cache_flags(size, flags, name, NULL);
300
c6e28895
GM
301 if (flags & SLAB_NEVER_MERGE)
302 return NULL;
303
510ded33 304 list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
423c929c
JK
305 if (slab_unmergeable(s))
306 continue;
307
308 if (size > s->size)
309 continue;
310
311 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
312 continue;
313 /*
314 * Check if alignment is compatible.
315 * Courtesy of Adrian Drzewiecki
316 */
317 if ((s->size & ~(align - 1)) != s->size)
318 continue;
319
320 if (s->size - size >= sizeof(void *))
321 continue;
322
95069ac8
JK
323 if (IS_ENABLED(CONFIG_SLAB) && align &&
324 (align > s->align || s->align % align))
325 continue;
326
423c929c
JK
327 return s;
328 }
329 return NULL;
330}
331
45906855
CL
332/*
333 * Figure out what the alignment of the objects will be given a set of
334 * flags, a user specified alignment and the size of the objects.
335 */
336unsigned long calculate_alignment(unsigned long flags,
337 unsigned long align, unsigned long size)
338{
339 /*
340 * If the user wants hardware cache aligned objects then follow that
341 * suggestion if the object is sufficiently large.
342 *
343 * The hardware cache alignment cannot override the specified
344 * alignment though. If that is greater then use it.
345 */
346 if (flags & SLAB_HWCACHE_ALIGN) {
347 unsigned long ralign = cache_line_size();
348 while (size <= ralign / 2)
349 ralign /= 2;
350 align = max(align, ralign);
351 }
352
353 if (align < ARCH_SLAB_MINALIGN)
354 align = ARCH_SLAB_MINALIGN;
355
356 return ALIGN(align, sizeof(void *));
357}
358
c9a77a79
VD
359static struct kmem_cache *create_cache(const char *name,
360 size_t object_size, size_t size, size_t align,
361 unsigned long flags, void (*ctor)(void *),
362 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
794b1248
VD
363{
364 struct kmem_cache *s;
365 int err;
366
367 err = -ENOMEM;
368 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
369 if (!s)
370 goto out;
371
372 s->name = name;
373 s->object_size = object_size;
374 s->size = size;
375 s->align = align;
376 s->ctor = ctor;
377
f7ce3190 378 err = init_memcg_params(s, memcg, root_cache);
794b1248
VD
379 if (err)
380 goto out_free_cache;
381
382 err = __kmem_cache_create(s, flags);
383 if (err)
384 goto out_free_cache;
385
386 s->refcount = 1;
387 list_add(&s->list, &slab_caches);
510ded33 388 memcg_link_cache(s);
794b1248
VD
389out:
390 if (err)
391 return ERR_PTR(err);
392 return s;
393
394out_free_cache:
f7ce3190 395 destroy_memcg_params(s);
7c4da061 396 kmem_cache_free(kmem_cache, s);
794b1248
VD
397 goto out;
398}
45906855 399
77be4b13
SK
400/*
401 * kmem_cache_create - Create a cache.
402 * @name: A string which is used in /proc/slabinfo to identify this cache.
403 * @size: The size of objects to be created in this cache.
404 * @align: The required alignment for the objects.
405 * @flags: SLAB flags
406 * @ctor: A constructor for the objects.
407 *
408 * Returns a ptr to the cache on success, NULL on failure.
409 * Cannot be called within a interrupt, but can be interrupted.
410 * The @ctor is run when new pages are allocated by the cache.
411 *
412 * The flags are
413 *
414 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
415 * to catch references to uninitialised memory.
416 *
417 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
418 * for buffer overruns.
419 *
420 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
421 * cacheline. This can be beneficial if you're counting cycles as closely
422 * as davem.
423 */
2633d7a0 424struct kmem_cache *
794b1248
VD
425kmem_cache_create(const char *name, size_t size, size_t align,
426 unsigned long flags, void (*ctor)(void *))
77be4b13 427{
40911a79 428 struct kmem_cache *s = NULL;
3dec16ea 429 const char *cache_name;
3965fc36 430 int err;
039363f3 431
77be4b13 432 get_online_cpus();
03afc0e2 433 get_online_mems();
05257a1a 434 memcg_get_cache_ids();
03afc0e2 435
77be4b13 436 mutex_lock(&slab_mutex);
686d550d 437
794b1248 438 err = kmem_cache_sanity_check(name, size);
3aa24f51 439 if (err) {
3965fc36 440 goto out_unlock;
3aa24f51 441 }
686d550d 442
e70954fd
TG
443 /* Refuse requests with allocator specific flags */
444 if (flags & ~SLAB_FLAGS_PERMITTED) {
445 err = -EINVAL;
446 goto out_unlock;
447 }
448
d8843922
GC
449 /*
450 * Some allocators will constraint the set of valid flags to a subset
451 * of all flags. We expect them to define CACHE_CREATE_MASK in this
452 * case, and we'll just provide them with a sanitized version of the
453 * passed flags.
454 */
455 flags &= CACHE_CREATE_MASK;
686d550d 456
794b1248
VD
457 s = __kmem_cache_alias(name, size, align, flags, ctor);
458 if (s)
3965fc36 459 goto out_unlock;
2633d7a0 460
3dec16ea 461 cache_name = kstrdup_const(name, GFP_KERNEL);
794b1248
VD
462 if (!cache_name) {
463 err = -ENOMEM;
464 goto out_unlock;
465 }
7c9adf5a 466
c9a77a79
VD
467 s = create_cache(cache_name, size, size,
468 calculate_alignment(flags, align, size),
469 flags, ctor, NULL, NULL);
794b1248
VD
470 if (IS_ERR(s)) {
471 err = PTR_ERR(s);
3dec16ea 472 kfree_const(cache_name);
794b1248 473 }
3965fc36
VD
474
475out_unlock:
20cea968 476 mutex_unlock(&slab_mutex);
03afc0e2 477
05257a1a 478 memcg_put_cache_ids();
03afc0e2 479 put_online_mems();
20cea968
CL
480 put_online_cpus();
481
ba3253c7 482 if (err) {
686d550d
CL
483 if (flags & SLAB_PANIC)
484 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
485 name, err);
486 else {
1170532b 487 pr_warn("kmem_cache_create(%s) failed with error %d\n",
686d550d
CL
488 name, err);
489 dump_stack();
490 }
686d550d
CL
491 return NULL;
492 }
039363f3
CL
493 return s;
494}
794b1248 495EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 496
657dc2f9 497static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
d5b3cf71 498{
657dc2f9
TH
499 LIST_HEAD(to_destroy);
500 struct kmem_cache *s, *s2;
d5b3cf71 501
657dc2f9
TH
502 /*
503 * On destruction, SLAB_DESTROY_BY_RCU kmem_caches are put on the
504 * @slab_caches_to_rcu_destroy list. The slab pages are freed
505 * through RCU and and the associated kmem_cache are dereferenced
506 * while freeing the pages, so the kmem_caches should be freed only
507 * after the pending RCU operations are finished. As rcu_barrier()
508 * is a pretty slow operation, we batch all pending destructions
509 * asynchronously.
510 */
511 mutex_lock(&slab_mutex);
512 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
513 mutex_unlock(&slab_mutex);
d5b3cf71 514
657dc2f9
TH
515 if (list_empty(&to_destroy))
516 return;
517
518 rcu_barrier();
519
520 list_for_each_entry_safe(s, s2, &to_destroy, list) {
521#ifdef SLAB_SUPPORTS_SYSFS
522 sysfs_slab_release(s);
523#else
524 slab_kmem_cache_release(s);
525#endif
526 }
d5b3cf71
VD
527}
528
657dc2f9 529static int shutdown_cache(struct kmem_cache *s)
d5b3cf71 530{
657dc2f9
TH
531 if (__kmem_cache_shutdown(s) != 0)
532 return -EBUSY;
d5b3cf71 533
510ded33 534 memcg_unlink_cache(s);
657dc2f9 535 list_del(&s->list);
d5b3cf71 536
657dc2f9
TH
537 if (s->flags & SLAB_DESTROY_BY_RCU) {
538 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
539 schedule_work(&slab_caches_to_rcu_destroy_work);
540 } else {
d5b3cf71 541#ifdef SLAB_SUPPORTS_SYSFS
bf5eb3de 542 sysfs_slab_release(s);
d5b3cf71
VD
543#else
544 slab_kmem_cache_release(s);
545#endif
546 }
657dc2f9
TH
547
548 return 0;
d5b3cf71
VD
549}
550
127424c8 551#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
794b1248 552/*
776ed0f0 553 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
794b1248
VD
554 * @memcg: The memory cgroup the new cache is for.
555 * @root_cache: The parent of the new cache.
556 *
557 * This function attempts to create a kmem cache that will serve allocation
558 * requests going from @memcg to @root_cache. The new cache inherits properties
559 * from its parent.
560 */
d5b3cf71
VD
561void memcg_create_kmem_cache(struct mem_cgroup *memcg,
562 struct kmem_cache *root_cache)
2633d7a0 563{
3e0350a3 564 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
33398cf2 565 struct cgroup_subsys_state *css = &memcg->css;
f7ce3190 566 struct memcg_cache_array *arr;
bd673145 567 struct kmem_cache *s = NULL;
794b1248 568 char *cache_name;
f7ce3190 569 int idx;
794b1248
VD
570
571 get_online_cpus();
03afc0e2
VD
572 get_online_mems();
573
794b1248
VD
574 mutex_lock(&slab_mutex);
575
2a4db7eb 576 /*
567e9ab2 577 * The memory cgroup could have been offlined while the cache
2a4db7eb
VD
578 * creation work was pending.
579 */
b6ecd2de 580 if (memcg->kmem_state != KMEM_ONLINE)
2a4db7eb
VD
581 goto out_unlock;
582
f7ce3190
VD
583 idx = memcg_cache_id(memcg);
584 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
585 lockdep_is_held(&slab_mutex));
586
d5b3cf71
VD
587 /*
588 * Since per-memcg caches are created asynchronously on first
589 * allocation (see memcg_kmem_get_cache()), several threads can try to
590 * create the same cache, but only one of them may succeed.
591 */
f7ce3190 592 if (arr->entries[idx])
d5b3cf71
VD
593 goto out_unlock;
594
f1008365 595 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
73f576c0
JW
596 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
597 css->serial_nr, memcg_name_buf);
794b1248
VD
598 if (!cache_name)
599 goto out_unlock;
600
c9a77a79
VD
601 s = create_cache(cache_name, root_cache->object_size,
602 root_cache->size, root_cache->align,
f773e36d
GT
603 root_cache->flags & CACHE_CREATE_MASK,
604 root_cache->ctor, memcg, root_cache);
d5b3cf71
VD
605 /*
606 * If we could not create a memcg cache, do not complain, because
607 * that's not critical at all as we can always proceed with the root
608 * cache.
609 */
bd673145 610 if (IS_ERR(s)) {
794b1248 611 kfree(cache_name);
d5b3cf71 612 goto out_unlock;
bd673145 613 }
794b1248 614
d5b3cf71
VD
615 /*
616 * Since readers won't lock (see cache_from_memcg_idx()), we need a
617 * barrier here to ensure nobody will see the kmem_cache partially
618 * initialized.
619 */
620 smp_wmb();
f7ce3190 621 arr->entries[idx] = s;
d5b3cf71 622
794b1248
VD
623out_unlock:
624 mutex_unlock(&slab_mutex);
03afc0e2
VD
625
626 put_online_mems();
794b1248 627 put_online_cpus();
2633d7a0 628}
b8529907 629
2a4db7eb
VD
630void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
631{
632 int idx;
633 struct memcg_cache_array *arr;
d6e0b7fa 634 struct kmem_cache *s, *c;
2a4db7eb
VD
635
636 idx = memcg_cache_id(memcg);
637
d6e0b7fa
VD
638 get_online_cpus();
639 get_online_mems();
640
2a4db7eb 641 mutex_lock(&slab_mutex);
510ded33 642 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
2a4db7eb
VD
643 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
644 lockdep_is_held(&slab_mutex));
d6e0b7fa
VD
645 c = arr->entries[idx];
646 if (!c)
647 continue;
648
c9fc5864 649 __kmemcg_cache_deactivate(c);
2a4db7eb
VD
650 arr->entries[idx] = NULL;
651 }
652 mutex_unlock(&slab_mutex);
d6e0b7fa
VD
653
654 put_online_mems();
655 put_online_cpus();
2a4db7eb
VD
656}
657
d5b3cf71 658void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
b8529907 659{
d5b3cf71 660 struct kmem_cache *s, *s2;
b8529907 661
d5b3cf71
VD
662 get_online_cpus();
663 get_online_mems();
b8529907 664
b8529907 665 mutex_lock(&slab_mutex);
bc2791f8
TH
666 list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
667 memcg_params.kmem_caches_node) {
d5b3cf71
VD
668 /*
669 * The cgroup is about to be freed and therefore has no charges
670 * left. Hence, all its caches must be empty by now.
671 */
657dc2f9 672 BUG_ON(shutdown_cache(s));
d5b3cf71
VD
673 }
674 mutex_unlock(&slab_mutex);
b8529907 675
d5b3cf71
VD
676 put_online_mems();
677 put_online_cpus();
b8529907 678}
d60fdcc9 679
657dc2f9 680static int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
681{
682 struct memcg_cache_array *arr;
683 struct kmem_cache *c, *c2;
684 LIST_HEAD(busy);
685 int i;
686
687 BUG_ON(!is_root_cache(s));
688
689 /*
690 * First, shutdown active caches, i.e. caches that belong to online
691 * memory cgroups.
692 */
693 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
694 lockdep_is_held(&slab_mutex));
695 for_each_memcg_cache_index(i) {
696 c = arr->entries[i];
697 if (!c)
698 continue;
657dc2f9 699 if (shutdown_cache(c))
d60fdcc9
VD
700 /*
701 * The cache still has objects. Move it to a temporary
702 * list so as not to try to destroy it for a second
703 * time while iterating over inactive caches below.
704 */
9eeadc8b 705 list_move(&c->memcg_params.children_node, &busy);
d60fdcc9
VD
706 else
707 /*
708 * The cache is empty and will be destroyed soon. Clear
709 * the pointer to it in the memcg_caches array so that
710 * it will never be accessed even if the root cache
711 * stays alive.
712 */
713 arr->entries[i] = NULL;
714 }
715
716 /*
717 * Second, shutdown all caches left from memory cgroups that are now
718 * offline.
719 */
9eeadc8b
TH
720 list_for_each_entry_safe(c, c2, &s->memcg_params.children,
721 memcg_params.children_node)
657dc2f9 722 shutdown_cache(c);
d60fdcc9 723
9eeadc8b 724 list_splice(&busy, &s->memcg_params.children);
d60fdcc9
VD
725
726 /*
727 * A cache being destroyed must be empty. In particular, this means
728 * that all per memcg caches attached to it must be empty too.
729 */
9eeadc8b 730 if (!list_empty(&s->memcg_params.children))
d60fdcc9
VD
731 return -EBUSY;
732 return 0;
733}
734#else
657dc2f9 735static inline int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
736{
737 return 0;
738}
127424c8 739#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
97d06609 740
41a21285
CL
741void slab_kmem_cache_release(struct kmem_cache *s)
742{
52b4b950 743 __kmem_cache_release(s);
f7ce3190 744 destroy_memcg_params(s);
3dec16ea 745 kfree_const(s->name);
41a21285
CL
746 kmem_cache_free(kmem_cache, s);
747}
748
945cf2b6
CL
749void kmem_cache_destroy(struct kmem_cache *s)
750{
d60fdcc9 751 int err;
d5b3cf71 752
3942d299
SS
753 if (unlikely(!s))
754 return;
755
945cf2b6 756 get_online_cpus();
03afc0e2
VD
757 get_online_mems();
758
55834c59 759 kasan_cache_destroy(s);
945cf2b6 760 mutex_lock(&slab_mutex);
b8529907 761
945cf2b6 762 s->refcount--;
b8529907
VD
763 if (s->refcount)
764 goto out_unlock;
765
657dc2f9 766 err = shutdown_memcg_caches(s);
d60fdcc9 767 if (!err)
657dc2f9 768 err = shutdown_cache(s);
b8529907 769
cd918c55 770 if (err) {
756a025f
JP
771 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
772 s->name);
cd918c55
VD
773 dump_stack();
774 }
b8529907
VD
775out_unlock:
776 mutex_unlock(&slab_mutex);
d5b3cf71 777
03afc0e2 778 put_online_mems();
945cf2b6
CL
779 put_online_cpus();
780}
781EXPORT_SYMBOL(kmem_cache_destroy);
782
03afc0e2
VD
783/**
784 * kmem_cache_shrink - Shrink a cache.
785 * @cachep: The cache to shrink.
786 *
787 * Releases as many slabs as possible for a cache.
788 * To help debugging, a zero exit status indicates all slabs were released.
789 */
790int kmem_cache_shrink(struct kmem_cache *cachep)
791{
792 int ret;
793
794 get_online_cpus();
795 get_online_mems();
55834c59 796 kasan_cache_shrink(cachep);
c9fc5864 797 ret = __kmem_cache_shrink(cachep);
03afc0e2
VD
798 put_online_mems();
799 put_online_cpus();
800 return ret;
801}
802EXPORT_SYMBOL(kmem_cache_shrink);
803
fda90124 804bool slab_is_available(void)
97d06609
CL
805{
806 return slab_state >= UP;
807}
b7454ad3 808
45530c44
CL
809#ifndef CONFIG_SLOB
810/* Create a cache during boot when no slab services are available yet */
811void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
812 unsigned long flags)
813{
814 int err;
815
816 s->name = name;
817 s->size = s->object_size = size;
45906855 818 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
f7ce3190
VD
819
820 slab_init_memcg_params(s);
821
45530c44
CL
822 err = __kmem_cache_create(s, flags);
823
824 if (err)
31ba7346 825 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
45530c44
CL
826 name, size, err);
827
828 s->refcount = -1; /* Exempt from merging for now */
829}
830
831struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
832 unsigned long flags)
833{
834 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
835
836 if (!s)
837 panic("Out of memory when creating slab %s\n", name);
838
839 create_boot_cache(s, name, size, flags);
840 list_add(&s->list, &slab_caches);
510ded33 841 memcg_link_cache(s);
45530c44
CL
842 s->refcount = 1;
843 return s;
844}
845
9425c58e
CL
846struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
847EXPORT_SYMBOL(kmalloc_caches);
848
849#ifdef CONFIG_ZONE_DMA
850struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
851EXPORT_SYMBOL(kmalloc_dma_caches);
852#endif
853
2c59dd65
CL
854/*
855 * Conversion table for small slabs sizes / 8 to the index in the
856 * kmalloc array. This is necessary for slabs < 192 since we have non power
857 * of two cache sizes there. The size of larger slabs can be determined using
858 * fls.
859 */
860static s8 size_index[24] = {
861 3, /* 8 */
862 4, /* 16 */
863 5, /* 24 */
864 5, /* 32 */
865 6, /* 40 */
866 6, /* 48 */
867 6, /* 56 */
868 6, /* 64 */
869 1, /* 72 */
870 1, /* 80 */
871 1, /* 88 */
872 1, /* 96 */
873 7, /* 104 */
874 7, /* 112 */
875 7, /* 120 */
876 7, /* 128 */
877 2, /* 136 */
878 2, /* 144 */
879 2, /* 152 */
880 2, /* 160 */
881 2, /* 168 */
882 2, /* 176 */
883 2, /* 184 */
884 2 /* 192 */
885};
886
887static inline int size_index_elem(size_t bytes)
888{
889 return (bytes - 1) / 8;
890}
891
892/*
893 * Find the kmem_cache structure that serves a given size of
894 * allocation
895 */
896struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
897{
898 int index;
899
9de1bc87 900 if (unlikely(size > KMALLOC_MAX_SIZE)) {
907985f4 901 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
6286ae97 902 return NULL;
907985f4 903 }
6286ae97 904
2c59dd65
CL
905 if (size <= 192) {
906 if (!size)
907 return ZERO_SIZE_PTR;
908
909 index = size_index[size_index_elem(size)];
910 } else
911 index = fls(size - 1);
912
913#ifdef CONFIG_ZONE_DMA
b1e05416 914 if (unlikely((flags & GFP_DMA)))
2c59dd65
CL
915 return kmalloc_dma_caches[index];
916
917#endif
918 return kmalloc_caches[index];
919}
920
4066c33d
GG
921/*
922 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
923 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
924 * kmalloc-67108864.
925 */
af3b5f87 926const struct kmalloc_info_struct kmalloc_info[] __initconst = {
4066c33d
GG
927 {NULL, 0}, {"kmalloc-96", 96},
928 {"kmalloc-192", 192}, {"kmalloc-8", 8},
929 {"kmalloc-16", 16}, {"kmalloc-32", 32},
930 {"kmalloc-64", 64}, {"kmalloc-128", 128},
931 {"kmalloc-256", 256}, {"kmalloc-512", 512},
932 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
933 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
934 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
935 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
936 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
937 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
938 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
939 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
940 {"kmalloc-67108864", 67108864}
941};
942
f97d5f63 943/*
34cc6990
DS
944 * Patch up the size_index table if we have strange large alignment
945 * requirements for the kmalloc array. This is only the case for
946 * MIPS it seems. The standard arches will not generate any code here.
947 *
948 * Largest permitted alignment is 256 bytes due to the way we
949 * handle the index determination for the smaller caches.
950 *
951 * Make sure that nothing crazy happens if someone starts tinkering
952 * around with ARCH_KMALLOC_MINALIGN
f97d5f63 953 */
34cc6990 954void __init setup_kmalloc_cache_index_table(void)
f97d5f63
CL
955{
956 int i;
957
2c59dd65
CL
958 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
959 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
960
961 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
962 int elem = size_index_elem(i);
963
964 if (elem >= ARRAY_SIZE(size_index))
965 break;
966 size_index[elem] = KMALLOC_SHIFT_LOW;
967 }
968
969 if (KMALLOC_MIN_SIZE >= 64) {
970 /*
971 * The 96 byte size cache is not used if the alignment
972 * is 64 byte.
973 */
974 for (i = 64 + 8; i <= 96; i += 8)
975 size_index[size_index_elem(i)] = 7;
976
977 }
978
979 if (KMALLOC_MIN_SIZE >= 128) {
980 /*
981 * The 192 byte sized cache is not used if the alignment
982 * is 128 byte. Redirect kmalloc to use the 256 byte cache
983 * instead.
984 */
985 for (i = 128 + 8; i <= 192; i += 8)
986 size_index[size_index_elem(i)] = 8;
987 }
34cc6990
DS
988}
989
ae6f2462 990static void __init new_kmalloc_cache(int idx, unsigned long flags)
a9730fca
CL
991{
992 kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
993 kmalloc_info[idx].size, flags);
994}
995
34cc6990
DS
996/*
997 * Create the kmalloc array. Some of the regular kmalloc arrays
998 * may already have been created because they were needed to
999 * enable allocations for slab creation.
1000 */
1001void __init create_kmalloc_caches(unsigned long flags)
1002{
1003 int i;
1004
a9730fca
CL
1005 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1006 if (!kmalloc_caches[i])
1007 new_kmalloc_cache(i, flags);
f97d5f63 1008
956e46ef 1009 /*
a9730fca
CL
1010 * Caches that are not of the two-to-the-power-of size.
1011 * These have to be created immediately after the
1012 * earlier power of two caches
956e46ef 1013 */
a9730fca
CL
1014 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
1015 new_kmalloc_cache(1, flags);
1016 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
1017 new_kmalloc_cache(2, flags);
8a965b3b
CL
1018 }
1019
f97d5f63
CL
1020 /* Kmalloc array is now usable */
1021 slab_state = UP;
1022
f97d5f63
CL
1023#ifdef CONFIG_ZONE_DMA
1024 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1025 struct kmem_cache *s = kmalloc_caches[i];
1026
1027 if (s) {
1028 int size = kmalloc_size(i);
1029 char *n = kasprintf(GFP_NOWAIT,
1030 "dma-kmalloc-%d", size);
1031
1032 BUG_ON(!n);
1033 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
1034 size, SLAB_CACHE_DMA | flags);
1035 }
1036 }
1037#endif
1038}
45530c44
CL
1039#endif /* !CONFIG_SLOB */
1040
cea371f4
VD
1041/*
1042 * To avoid unnecessary overhead, we pass through large allocation requests
1043 * directly to the page allocator. We use __GFP_COMP, because we will need to
1044 * know the allocation order to free the pages properly in kfree.
1045 */
52383431
VD
1046void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1047{
1048 void *ret;
1049 struct page *page;
1050
1051 flags |= __GFP_COMP;
4949148a 1052 page = alloc_pages(flags, order);
52383431
VD
1053 ret = page ? page_address(page) : NULL;
1054 kmemleak_alloc(ret, size, 1, flags);
505f5dcb 1055 kasan_kmalloc_large(ret, size, flags);
52383431
VD
1056 return ret;
1057}
1058EXPORT_SYMBOL(kmalloc_order);
1059
f1b6eb6e
CL
1060#ifdef CONFIG_TRACING
1061void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1062{
1063 void *ret = kmalloc_order(size, flags, order);
1064 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1065 return ret;
1066}
1067EXPORT_SYMBOL(kmalloc_order_trace);
1068#endif
45530c44 1069
7c00fce9
TG
1070#ifdef CONFIG_SLAB_FREELIST_RANDOM
1071/* Randomize a generic freelist */
1072static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1073 size_t count)
1074{
1075 size_t i;
1076 unsigned int rand;
1077
1078 for (i = 0; i < count; i++)
1079 list[i] = i;
1080
1081 /* Fisher-Yates shuffle */
1082 for (i = count - 1; i > 0; i--) {
1083 rand = prandom_u32_state(state);
1084 rand %= (i + 1);
1085 swap(list[i], list[rand]);
1086 }
1087}
1088
1089/* Create a random sequence per cache */
1090int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1091 gfp_t gfp)
1092{
1093 struct rnd_state state;
1094
1095 if (count < 2 || cachep->random_seq)
1096 return 0;
1097
1098 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1099 if (!cachep->random_seq)
1100 return -ENOMEM;
1101
1102 /* Get best entropy at this stage of boot */
1103 prandom_seed_state(&state, get_random_long());
1104
1105 freelist_randomize(&state, cachep->random_seq, count);
1106 return 0;
1107}
1108
1109/* Destroy the per-cache random freelist sequence */
1110void cache_random_seq_destroy(struct kmem_cache *cachep)
1111{
1112 kfree(cachep->random_seq);
1113 cachep->random_seq = NULL;
1114}
1115#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1116
b7454ad3 1117#ifdef CONFIG_SLABINFO
e9b4db2b
WL
1118
1119#ifdef CONFIG_SLAB
1120#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1121#else
1122#define SLABINFO_RIGHTS S_IRUSR
1123#endif
1124
b047501c 1125static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
1126{
1127 /*
1128 * Output format version, so at least we can change it
1129 * without _too_ many complaints.
1130 */
1131#ifdef CONFIG_DEBUG_SLAB
1132 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1133#else
1134 seq_puts(m, "slabinfo - version: 2.1\n");
1135#endif
756a025f 1136 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
bcee6e2a
GC
1137 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1138 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1139#ifdef CONFIG_DEBUG_SLAB
756a025f 1140 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
bcee6e2a
GC
1141 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1142#endif
1143 seq_putc(m, '\n');
1144}
1145
1df3b26f 1146void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 1147{
b7454ad3 1148 mutex_lock(&slab_mutex);
510ded33 1149 return seq_list_start(&slab_root_caches, *pos);
b7454ad3
GC
1150}
1151
276a2439 1152void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3 1153{
510ded33 1154 return seq_list_next(p, &slab_root_caches, pos);
b7454ad3
GC
1155}
1156
276a2439 1157void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
1158{
1159 mutex_unlock(&slab_mutex);
1160}
1161
749c5415
GC
1162static void
1163memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1164{
1165 struct kmem_cache *c;
1166 struct slabinfo sinfo;
749c5415
GC
1167
1168 if (!is_root_cache(s))
1169 return;
1170
426589f5 1171 for_each_memcg_cache(c, s) {
749c5415
GC
1172 memset(&sinfo, 0, sizeof(sinfo));
1173 get_slabinfo(c, &sinfo);
1174
1175 info->active_slabs += sinfo.active_slabs;
1176 info->num_slabs += sinfo.num_slabs;
1177 info->shared_avail += sinfo.shared_avail;
1178 info->active_objs += sinfo.active_objs;
1179 info->num_objs += sinfo.num_objs;
1180 }
1181}
1182
b047501c 1183static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 1184{
0d7561c6
GC
1185 struct slabinfo sinfo;
1186
1187 memset(&sinfo, 0, sizeof(sinfo));
1188 get_slabinfo(s, &sinfo);
1189
749c5415
GC
1190 memcg_accumulate_slabinfo(s, &sinfo);
1191
0d7561c6 1192 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
749c5415 1193 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
1194 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1195
1196 seq_printf(m, " : tunables %4u %4u %4u",
1197 sinfo.limit, sinfo.batchcount, sinfo.shared);
1198 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1199 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1200 slabinfo_show_stats(m, s);
1201 seq_putc(m, '\n');
b7454ad3
GC
1202}
1203
1df3b26f 1204static int slab_show(struct seq_file *m, void *p)
749c5415 1205{
510ded33 1206 struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
749c5415 1207
510ded33 1208 if (p == slab_root_caches.next)
1df3b26f 1209 print_slabinfo_header(m);
510ded33 1210 cache_show(s, m);
b047501c
VD
1211 return 0;
1212}
1213
127424c8 1214#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
bc2791f8
TH
1215void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1216{
1217 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1218
1219 mutex_lock(&slab_mutex);
1220 return seq_list_start(&memcg->kmem_caches, *pos);
1221}
1222
1223void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1224{
1225 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1226
1227 return seq_list_next(p, &memcg->kmem_caches, pos);
1228}
1229
1230void memcg_slab_stop(struct seq_file *m, void *p)
1231{
1232 mutex_unlock(&slab_mutex);
1233}
1234
b047501c
VD
1235int memcg_slab_show(struct seq_file *m, void *p)
1236{
bc2791f8
TH
1237 struct kmem_cache *s = list_entry(p, struct kmem_cache,
1238 memcg_params.kmem_caches_node);
b047501c
VD
1239 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1240
bc2791f8 1241 if (p == memcg->kmem_caches.next)
b047501c 1242 print_slabinfo_header(m);
bc2791f8 1243 cache_show(s, m);
b047501c 1244 return 0;
749c5415 1245}
b047501c 1246#endif
749c5415 1247
b7454ad3
GC
1248/*
1249 * slabinfo_op - iterator that generates /proc/slabinfo
1250 *
1251 * Output layout:
1252 * cache-name
1253 * num-active-objs
1254 * total-objs
1255 * object size
1256 * num-active-slabs
1257 * total-slabs
1258 * num-pages-per-slab
1259 * + further values on SMP and with statistics enabled
1260 */
1261static const struct seq_operations slabinfo_op = {
1df3b26f 1262 .start = slab_start,
276a2439
WL
1263 .next = slab_next,
1264 .stop = slab_stop,
1df3b26f 1265 .show = slab_show,
b7454ad3
GC
1266};
1267
1268static int slabinfo_open(struct inode *inode, struct file *file)
1269{
1270 return seq_open(file, &slabinfo_op);
1271}
1272
1273static const struct file_operations proc_slabinfo_operations = {
1274 .open = slabinfo_open,
1275 .read = seq_read,
1276 .write = slabinfo_write,
1277 .llseek = seq_lseek,
1278 .release = seq_release,
1279};
1280
1281static int __init slab_proc_init(void)
1282{
e9b4db2b
WL
1283 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1284 &proc_slabinfo_operations);
b7454ad3
GC
1285 return 0;
1286}
1287module_init(slab_proc_init);
1288#endif /* CONFIG_SLABINFO */
928cec9c
AR
1289
1290static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1291 gfp_t flags)
1292{
1293 void *ret;
1294 size_t ks = 0;
1295
1296 if (p)
1297 ks = ksize(p);
1298
0316bec2 1299 if (ks >= new_size) {
505f5dcb 1300 kasan_krealloc((void *)p, new_size, flags);
928cec9c 1301 return (void *)p;
0316bec2 1302 }
928cec9c
AR
1303
1304 ret = kmalloc_track_caller(new_size, flags);
1305 if (ret && p)
1306 memcpy(ret, p, ks);
1307
1308 return ret;
1309}
1310
1311/**
1312 * __krealloc - like krealloc() but don't free @p.
1313 * @p: object to reallocate memory for.
1314 * @new_size: how many bytes of memory are required.
1315 * @flags: the type of memory to allocate.
1316 *
1317 * This function is like krealloc() except it never frees the originally
1318 * allocated buffer. Use this if you don't want to free the buffer immediately
1319 * like, for example, with RCU.
1320 */
1321void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1322{
1323 if (unlikely(!new_size))
1324 return ZERO_SIZE_PTR;
1325
1326 return __do_krealloc(p, new_size, flags);
1327
1328}
1329EXPORT_SYMBOL(__krealloc);
1330
1331/**
1332 * krealloc - reallocate memory. The contents will remain unchanged.
1333 * @p: object to reallocate memory for.
1334 * @new_size: how many bytes of memory are required.
1335 * @flags: the type of memory to allocate.
1336 *
1337 * The contents of the object pointed to are preserved up to the
1338 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1339 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1340 * %NULL pointer, the object pointed to is freed.
1341 */
1342void *krealloc(const void *p, size_t new_size, gfp_t flags)
1343{
1344 void *ret;
1345
1346 if (unlikely(!new_size)) {
1347 kfree(p);
1348 return ZERO_SIZE_PTR;
1349 }
1350
1351 ret = __do_krealloc(p, new_size, flags);
1352 if (ret && p != ret)
1353 kfree(p);
1354
1355 return ret;
1356}
1357EXPORT_SYMBOL(krealloc);
1358
1359/**
1360 * kzfree - like kfree but zero memory
1361 * @p: object to free memory of
1362 *
1363 * The memory of the object @p points to is zeroed before freed.
1364 * If @p is %NULL, kzfree() does nothing.
1365 *
1366 * Note: this function zeroes the whole allocated buffer which can be a good
1367 * deal bigger than the requested buffer size passed to kmalloc(). So be
1368 * careful when using this function in performance sensitive code.
1369 */
1370void kzfree(const void *p)
1371{
1372 size_t ks;
1373 void *mem = (void *)p;
1374
1375 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1376 return;
1377 ks = ksize(mem);
1378 memset(mem, 0, ks);
1379 kfree(mem);
1380}
1381EXPORT_SYMBOL(kzfree);
1382
1383/* Tracepoints definitions. */
1384EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1385EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1386EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1387EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1388EXPORT_TRACEPOINT_SYMBOL(kfree);
1389EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);