]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/slab_common.c
slab: embed memcg_cache_params to kmem_cache
[mirror_ubuntu-artful-kernel.git] / mm / slab_common.c
CommitLineData
039363f3
CL
1/*
2 * Slab allocator functions that are independent of the allocator strategy
3 *
4 * (C) 2012 Christoph Lameter <cl@linux.com>
5 */
6#include <linux/slab.h>
7
8#include <linux/mm.h>
9#include <linux/poison.h>
10#include <linux/interrupt.h>
11#include <linux/memory.h>
12#include <linux/compiler.h>
13#include <linux/module.h>
20cea968
CL
14#include <linux/cpu.h>
15#include <linux/uaccess.h>
b7454ad3
GC
16#include <linux/seq_file.h>
17#include <linux/proc_fs.h>
039363f3
CL
18#include <asm/cacheflush.h>
19#include <asm/tlbflush.h>
20#include <asm/page.h>
2633d7a0 21#include <linux/memcontrol.h>
928cec9c
AR
22
23#define CREATE_TRACE_POINTS
f1b6eb6e 24#include <trace/events/kmem.h>
039363f3 25
97d06609
CL
26#include "slab.h"
27
28enum slab_state slab_state;
18004c5d
CL
29LIST_HEAD(slab_caches);
30DEFINE_MUTEX(slab_mutex);
9b030cb8 31struct kmem_cache *kmem_cache;
97d06609 32
423c929c
JK
33/*
34 * Set of flags that will prevent slab merging
35 */
36#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
37 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
38 SLAB_FAILSLAB)
39
40#define SLAB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
41 SLAB_CACHE_DMA | SLAB_NOTRACK)
42
43/*
44 * Merge control. If this is set then no merging of slab caches will occur.
45 * (Could be removed. This was introduced to pacify the merge skeptics.)
46 */
47static int slab_nomerge;
48
49static int __init setup_slab_nomerge(char *str)
50{
51 slab_nomerge = 1;
52 return 1;
53}
54
55#ifdef CONFIG_SLUB
56__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
57#endif
58
59__setup("slab_nomerge", setup_slab_nomerge);
60
07f361b2
JK
61/*
62 * Determine the size of a slab object
63 */
64unsigned int kmem_cache_size(struct kmem_cache *s)
65{
66 return s->object_size;
67}
68EXPORT_SYMBOL(kmem_cache_size);
69
77be4b13 70#ifdef CONFIG_DEBUG_VM
794b1248 71static int kmem_cache_sanity_check(const char *name, size_t size)
039363f3
CL
72{
73 struct kmem_cache *s = NULL;
74
039363f3
CL
75 if (!name || in_interrupt() || size < sizeof(void *) ||
76 size > KMALLOC_MAX_SIZE) {
77be4b13
SK
77 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
78 return -EINVAL;
039363f3 79 }
b920536a 80
20cea968
CL
81 list_for_each_entry(s, &slab_caches, list) {
82 char tmp;
83 int res;
84
85 /*
86 * This happens when the module gets unloaded and doesn't
87 * destroy its slab cache and no-one else reuses the vmalloc
88 * area of the module. Print a warning.
89 */
90 res = probe_kernel_address(s->name, tmp);
91 if (res) {
77be4b13 92 pr_err("Slab cache with size %d has lost its name\n",
20cea968
CL
93 s->object_size);
94 continue;
95 }
20cea968
CL
96 }
97
98 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
99 return 0;
100}
101#else
794b1248 102static inline int kmem_cache_sanity_check(const char *name, size_t size)
77be4b13
SK
103{
104 return 0;
105}
20cea968
CL
106#endif
107
55007d84 108#ifdef CONFIG_MEMCG_KMEM
f7ce3190 109void slab_init_memcg_params(struct kmem_cache *s)
33a690c4 110{
f7ce3190
VD
111 s->memcg_params.is_root_cache = true;
112 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
113}
114
115static int init_memcg_params(struct kmem_cache *s,
116 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
117{
118 struct memcg_cache_array *arr;
33a690c4 119
f7ce3190
VD
120 if (memcg) {
121 s->memcg_params.is_root_cache = false;
122 s->memcg_params.memcg = memcg;
123 s->memcg_params.root_cache = root_cache;
33a690c4 124 return 0;
f7ce3190 125 }
33a690c4 126
f7ce3190 127 slab_init_memcg_params(s);
33a690c4 128
f7ce3190
VD
129 if (!memcg_nr_cache_ids)
130 return 0;
33a690c4 131
f7ce3190
VD
132 arr = kzalloc(sizeof(struct memcg_cache_array) +
133 memcg_nr_cache_ids * sizeof(void *),
134 GFP_KERNEL);
135 if (!arr)
136 return -ENOMEM;
33a690c4 137
f7ce3190 138 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
33a690c4
VD
139 return 0;
140}
141
f7ce3190 142static void destroy_memcg_params(struct kmem_cache *s)
33a690c4 143{
f7ce3190
VD
144 if (is_root_cache(s))
145 kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
33a690c4
VD
146}
147
f7ce3190 148static int update_memcg_params(struct kmem_cache *s, int new_array_size)
6f817f4c 149{
f7ce3190 150 struct memcg_cache_array *old, *new;
6f817f4c 151
f7ce3190
VD
152 if (!is_root_cache(s))
153 return 0;
6f817f4c 154
f7ce3190
VD
155 new = kzalloc(sizeof(struct memcg_cache_array) +
156 new_array_size * sizeof(void *), GFP_KERNEL);
157 if (!new)
6f817f4c
VD
158 return -ENOMEM;
159
f7ce3190
VD
160 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
161 lockdep_is_held(&slab_mutex));
162 if (old)
163 memcpy(new->entries, old->entries,
164 memcg_nr_cache_ids * sizeof(void *));
6f817f4c 165
f7ce3190
VD
166 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
167 if (old)
168 kfree_rcu(old, rcu);
6f817f4c
VD
169 return 0;
170}
171
55007d84
GC
172int memcg_update_all_caches(int num_memcgs)
173{
174 struct kmem_cache *s;
175 int ret = 0;
55007d84 176
05257a1a 177 mutex_lock(&slab_mutex);
55007d84 178 list_for_each_entry(s, &slab_caches, list) {
f7ce3190 179 ret = update_memcg_params(s, num_memcgs);
55007d84 180 /*
55007d84
GC
181 * Instead of freeing the memory, we'll just leave the caches
182 * up to this point in an updated state.
183 */
184 if (ret)
05257a1a 185 break;
55007d84 186 }
55007d84
GC
187 mutex_unlock(&slab_mutex);
188 return ret;
189}
33a690c4 190#else
f7ce3190
VD
191static inline int init_memcg_params(struct kmem_cache *s,
192 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
33a690c4
VD
193{
194 return 0;
195}
196
f7ce3190 197static inline void destroy_memcg_params(struct kmem_cache *s)
33a690c4
VD
198{
199}
200#endif /* CONFIG_MEMCG_KMEM */
55007d84 201
423c929c
JK
202/*
203 * Find a mergeable slab cache
204 */
205int slab_unmergeable(struct kmem_cache *s)
206{
207 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
208 return 1;
209
210 if (!is_root_cache(s))
211 return 1;
212
213 if (s->ctor)
214 return 1;
215
216 /*
217 * We may have set a slab to be unmergeable during bootstrap.
218 */
219 if (s->refcount < 0)
220 return 1;
221
222 return 0;
223}
224
225struct kmem_cache *find_mergeable(size_t size, size_t align,
226 unsigned long flags, const char *name, void (*ctor)(void *))
227{
228 struct kmem_cache *s;
229
230 if (slab_nomerge || (flags & SLAB_NEVER_MERGE))
231 return NULL;
232
233 if (ctor)
234 return NULL;
235
236 size = ALIGN(size, sizeof(void *));
237 align = calculate_alignment(flags, align, size);
238 size = ALIGN(size, align);
239 flags = kmem_cache_flags(size, flags, name, NULL);
240
54362057 241 list_for_each_entry_reverse(s, &slab_caches, list) {
423c929c
JK
242 if (slab_unmergeable(s))
243 continue;
244
245 if (size > s->size)
246 continue;
247
248 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
249 continue;
250 /*
251 * Check if alignment is compatible.
252 * Courtesy of Adrian Drzewiecki
253 */
254 if ((s->size & ~(align - 1)) != s->size)
255 continue;
256
257 if (s->size - size >= sizeof(void *))
258 continue;
259
95069ac8
JK
260 if (IS_ENABLED(CONFIG_SLAB) && align &&
261 (align > s->align || s->align % align))
262 continue;
263
423c929c
JK
264 return s;
265 }
266 return NULL;
267}
268
45906855
CL
269/*
270 * Figure out what the alignment of the objects will be given a set of
271 * flags, a user specified alignment and the size of the objects.
272 */
273unsigned long calculate_alignment(unsigned long flags,
274 unsigned long align, unsigned long size)
275{
276 /*
277 * If the user wants hardware cache aligned objects then follow that
278 * suggestion if the object is sufficiently large.
279 *
280 * The hardware cache alignment cannot override the specified
281 * alignment though. If that is greater then use it.
282 */
283 if (flags & SLAB_HWCACHE_ALIGN) {
284 unsigned long ralign = cache_line_size();
285 while (size <= ralign / 2)
286 ralign /= 2;
287 align = max(align, ralign);
288 }
289
290 if (align < ARCH_SLAB_MINALIGN)
291 align = ARCH_SLAB_MINALIGN;
292
293 return ALIGN(align, sizeof(void *));
294}
295
794b1248
VD
296static struct kmem_cache *
297do_kmem_cache_create(char *name, size_t object_size, size_t size, size_t align,
298 unsigned long flags, void (*ctor)(void *),
299 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
300{
301 struct kmem_cache *s;
302 int err;
303
304 err = -ENOMEM;
305 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
306 if (!s)
307 goto out;
308
309 s->name = name;
310 s->object_size = object_size;
311 s->size = size;
312 s->align = align;
313 s->ctor = ctor;
314
f7ce3190 315 err = init_memcg_params(s, memcg, root_cache);
794b1248
VD
316 if (err)
317 goto out_free_cache;
318
319 err = __kmem_cache_create(s, flags);
320 if (err)
321 goto out_free_cache;
322
323 s->refcount = 1;
324 list_add(&s->list, &slab_caches);
794b1248
VD
325out:
326 if (err)
327 return ERR_PTR(err);
328 return s;
329
330out_free_cache:
f7ce3190 331 destroy_memcg_params(s);
7c4da061 332 kmem_cache_free(kmem_cache, s);
794b1248
VD
333 goto out;
334}
45906855 335
77be4b13
SK
336/*
337 * kmem_cache_create - Create a cache.
338 * @name: A string which is used in /proc/slabinfo to identify this cache.
339 * @size: The size of objects to be created in this cache.
340 * @align: The required alignment for the objects.
341 * @flags: SLAB flags
342 * @ctor: A constructor for the objects.
343 *
344 * Returns a ptr to the cache on success, NULL on failure.
345 * Cannot be called within a interrupt, but can be interrupted.
346 * The @ctor is run when new pages are allocated by the cache.
347 *
348 * The flags are
349 *
350 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
351 * to catch references to uninitialised memory.
352 *
353 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
354 * for buffer overruns.
355 *
356 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
357 * cacheline. This can be beneficial if you're counting cycles as closely
358 * as davem.
359 */
2633d7a0 360struct kmem_cache *
794b1248
VD
361kmem_cache_create(const char *name, size_t size, size_t align,
362 unsigned long flags, void (*ctor)(void *))
77be4b13 363{
794b1248
VD
364 struct kmem_cache *s;
365 char *cache_name;
3965fc36 366 int err;
039363f3 367
77be4b13 368 get_online_cpus();
03afc0e2 369 get_online_mems();
05257a1a 370 memcg_get_cache_ids();
03afc0e2 371
77be4b13 372 mutex_lock(&slab_mutex);
686d550d 373
794b1248 374 err = kmem_cache_sanity_check(name, size);
3aa24f51
AM
375 if (err) {
376 s = NULL; /* suppress uninit var warning */
3965fc36 377 goto out_unlock;
3aa24f51 378 }
686d550d 379
d8843922
GC
380 /*
381 * Some allocators will constraint the set of valid flags to a subset
382 * of all flags. We expect them to define CACHE_CREATE_MASK in this
383 * case, and we'll just provide them with a sanitized version of the
384 * passed flags.
385 */
386 flags &= CACHE_CREATE_MASK;
686d550d 387
794b1248
VD
388 s = __kmem_cache_alias(name, size, align, flags, ctor);
389 if (s)
3965fc36 390 goto out_unlock;
2633d7a0 391
794b1248
VD
392 cache_name = kstrdup(name, GFP_KERNEL);
393 if (!cache_name) {
394 err = -ENOMEM;
395 goto out_unlock;
396 }
7c9adf5a 397
794b1248
VD
398 s = do_kmem_cache_create(cache_name, size, size,
399 calculate_alignment(flags, align, size),
400 flags, ctor, NULL, NULL);
401 if (IS_ERR(s)) {
402 err = PTR_ERR(s);
403 kfree(cache_name);
404 }
3965fc36
VD
405
406out_unlock:
20cea968 407 mutex_unlock(&slab_mutex);
03afc0e2 408
05257a1a 409 memcg_put_cache_ids();
03afc0e2 410 put_online_mems();
20cea968
CL
411 put_online_cpus();
412
ba3253c7 413 if (err) {
686d550d
CL
414 if (flags & SLAB_PANIC)
415 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
416 name, err);
417 else {
418 printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
419 name, err);
420 dump_stack();
421 }
686d550d
CL
422 return NULL;
423 }
039363f3
CL
424 return s;
425}
794b1248 426EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 427
d5b3cf71
VD
428static int do_kmem_cache_shutdown(struct kmem_cache *s,
429 struct list_head *release, bool *need_rcu_barrier)
430{
431 if (__kmem_cache_shutdown(s) != 0) {
432 printk(KERN_ERR "kmem_cache_destroy %s: "
433 "Slab cache still has objects\n", s->name);
434 dump_stack();
435 return -EBUSY;
436 }
437
438 if (s->flags & SLAB_DESTROY_BY_RCU)
439 *need_rcu_barrier = true;
440
441#ifdef CONFIG_MEMCG_KMEM
442 if (!is_root_cache(s)) {
f7ce3190
VD
443 int idx;
444 struct memcg_cache_array *arr;
445
446 idx = memcg_cache_id(s->memcg_params.memcg);
447 arr = rcu_dereference_protected(s->memcg_params.root_cache->
448 memcg_params.memcg_caches,
449 lockdep_is_held(&slab_mutex));
450 BUG_ON(arr->entries[idx] != s);
451 arr->entries[idx] = NULL;
d5b3cf71
VD
452 }
453#endif
454 list_move(&s->list, release);
455 return 0;
456}
457
458static void do_kmem_cache_release(struct list_head *release,
459 bool need_rcu_barrier)
460{
461 struct kmem_cache *s, *s2;
462
463 if (need_rcu_barrier)
464 rcu_barrier();
465
466 list_for_each_entry_safe(s, s2, release, list) {
467#ifdef SLAB_SUPPORTS_SYSFS
468 sysfs_slab_remove(s);
469#else
470 slab_kmem_cache_release(s);
471#endif
472 }
473}
474
794b1248
VD
475#ifdef CONFIG_MEMCG_KMEM
476/*
776ed0f0 477 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
794b1248
VD
478 * @memcg: The memory cgroup the new cache is for.
479 * @root_cache: The parent of the new cache.
480 *
481 * This function attempts to create a kmem cache that will serve allocation
482 * requests going from @memcg to @root_cache. The new cache inherits properties
483 * from its parent.
484 */
d5b3cf71
VD
485void memcg_create_kmem_cache(struct mem_cgroup *memcg,
486 struct kmem_cache *root_cache)
2633d7a0 487{
3e0350a3 488 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
f7ce3190 489 struct memcg_cache_array *arr;
bd673145 490 struct kmem_cache *s = NULL;
794b1248 491 char *cache_name;
f7ce3190 492 int idx;
794b1248
VD
493
494 get_online_cpus();
03afc0e2
VD
495 get_online_mems();
496
794b1248
VD
497 mutex_lock(&slab_mutex);
498
f7ce3190
VD
499 idx = memcg_cache_id(memcg);
500 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
501 lockdep_is_held(&slab_mutex));
502
d5b3cf71
VD
503 /*
504 * Since per-memcg caches are created asynchronously on first
505 * allocation (see memcg_kmem_get_cache()), several threads can try to
506 * create the same cache, but only one of them may succeed.
507 */
f7ce3190 508 if (arr->entries[idx])
d5b3cf71
VD
509 goto out_unlock;
510
3e0350a3
VD
511 cgroup_name(mem_cgroup_css(memcg)->cgroup,
512 memcg_name_buf, sizeof(memcg_name_buf));
073ee1c6 513 cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
f7ce3190 514 idx, memcg_name_buf);
794b1248
VD
515 if (!cache_name)
516 goto out_unlock;
517
518 s = do_kmem_cache_create(cache_name, root_cache->object_size,
519 root_cache->size, root_cache->align,
520 root_cache->flags, root_cache->ctor,
521 memcg, root_cache);
d5b3cf71
VD
522 /*
523 * If we could not create a memcg cache, do not complain, because
524 * that's not critical at all as we can always proceed with the root
525 * cache.
526 */
bd673145 527 if (IS_ERR(s)) {
794b1248 528 kfree(cache_name);
d5b3cf71 529 goto out_unlock;
bd673145 530 }
794b1248 531
d5b3cf71
VD
532 /*
533 * Since readers won't lock (see cache_from_memcg_idx()), we need a
534 * barrier here to ensure nobody will see the kmem_cache partially
535 * initialized.
536 */
537 smp_wmb();
f7ce3190 538 arr->entries[idx] = s;
d5b3cf71 539
794b1248
VD
540out_unlock:
541 mutex_unlock(&slab_mutex);
03afc0e2
VD
542
543 put_online_mems();
794b1248 544 put_online_cpus();
2633d7a0 545}
b8529907 546
d5b3cf71 547void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
b8529907 548{
d5b3cf71
VD
549 LIST_HEAD(release);
550 bool need_rcu_barrier = false;
551 struct kmem_cache *s, *s2;
b8529907 552
d5b3cf71
VD
553 get_online_cpus();
554 get_online_mems();
b8529907 555
b8529907 556 mutex_lock(&slab_mutex);
d5b3cf71 557 list_for_each_entry_safe(s, s2, &slab_caches, list) {
f7ce3190 558 if (is_root_cache(s) || s->memcg_params.memcg != memcg)
d5b3cf71
VD
559 continue;
560 /*
561 * The cgroup is about to be freed and therefore has no charges
562 * left. Hence, all its caches must be empty by now.
563 */
564 BUG_ON(do_kmem_cache_shutdown(s, &release, &need_rcu_barrier));
565 }
566 mutex_unlock(&slab_mutex);
b8529907 567
d5b3cf71
VD
568 put_online_mems();
569 put_online_cpus();
570
571 do_kmem_cache_release(&release, need_rcu_barrier);
b8529907 572}
794b1248 573#endif /* CONFIG_MEMCG_KMEM */
97d06609 574
41a21285
CL
575void slab_kmem_cache_release(struct kmem_cache *s)
576{
f7ce3190 577 destroy_memcg_params(s);
41a21285
CL
578 kfree(s->name);
579 kmem_cache_free(kmem_cache, s);
580}
581
945cf2b6
CL
582void kmem_cache_destroy(struct kmem_cache *s)
583{
d5b3cf71
VD
584 int i;
585 LIST_HEAD(release);
586 bool need_rcu_barrier = false;
587 bool busy = false;
588
945cf2b6 589 get_online_cpus();
03afc0e2
VD
590 get_online_mems();
591
945cf2b6 592 mutex_lock(&slab_mutex);
b8529907 593
945cf2b6 594 s->refcount--;
b8529907
VD
595 if (s->refcount)
596 goto out_unlock;
597
d5b3cf71
VD
598 for_each_memcg_cache_index(i) {
599 struct kmem_cache *c = cache_from_memcg_idx(s, i);
b8529907 600
d5b3cf71
VD
601 if (c && do_kmem_cache_shutdown(c, &release, &need_rcu_barrier))
602 busy = true;
945cf2b6 603 }
b8529907 604
d5b3cf71
VD
605 if (!busy)
606 do_kmem_cache_shutdown(s, &release, &need_rcu_barrier);
b8529907
VD
607
608out_unlock:
609 mutex_unlock(&slab_mutex);
d5b3cf71 610
03afc0e2 611 put_online_mems();
945cf2b6 612 put_online_cpus();
d5b3cf71
VD
613
614 do_kmem_cache_release(&release, need_rcu_barrier);
945cf2b6
CL
615}
616EXPORT_SYMBOL(kmem_cache_destroy);
617
03afc0e2
VD
618/**
619 * kmem_cache_shrink - Shrink a cache.
620 * @cachep: The cache to shrink.
621 *
622 * Releases as many slabs as possible for a cache.
623 * To help debugging, a zero exit status indicates all slabs were released.
624 */
625int kmem_cache_shrink(struct kmem_cache *cachep)
626{
627 int ret;
628
629 get_online_cpus();
630 get_online_mems();
631 ret = __kmem_cache_shrink(cachep);
632 put_online_mems();
633 put_online_cpus();
634 return ret;
635}
636EXPORT_SYMBOL(kmem_cache_shrink);
637
97d06609
CL
638int slab_is_available(void)
639{
640 return slab_state >= UP;
641}
b7454ad3 642
45530c44
CL
643#ifndef CONFIG_SLOB
644/* Create a cache during boot when no slab services are available yet */
645void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
646 unsigned long flags)
647{
648 int err;
649
650 s->name = name;
651 s->size = s->object_size = size;
45906855 652 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
f7ce3190
VD
653
654 slab_init_memcg_params(s);
655
45530c44
CL
656 err = __kmem_cache_create(s, flags);
657
658 if (err)
31ba7346 659 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
45530c44
CL
660 name, size, err);
661
662 s->refcount = -1; /* Exempt from merging for now */
663}
664
665struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
666 unsigned long flags)
667{
668 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
669
670 if (!s)
671 panic("Out of memory when creating slab %s\n", name);
672
673 create_boot_cache(s, name, size, flags);
674 list_add(&s->list, &slab_caches);
675 s->refcount = 1;
676 return s;
677}
678
9425c58e
CL
679struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
680EXPORT_SYMBOL(kmalloc_caches);
681
682#ifdef CONFIG_ZONE_DMA
683struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
684EXPORT_SYMBOL(kmalloc_dma_caches);
685#endif
686
2c59dd65
CL
687/*
688 * Conversion table for small slabs sizes / 8 to the index in the
689 * kmalloc array. This is necessary for slabs < 192 since we have non power
690 * of two cache sizes there. The size of larger slabs can be determined using
691 * fls.
692 */
693static s8 size_index[24] = {
694 3, /* 8 */
695 4, /* 16 */
696 5, /* 24 */
697 5, /* 32 */
698 6, /* 40 */
699 6, /* 48 */
700 6, /* 56 */
701 6, /* 64 */
702 1, /* 72 */
703 1, /* 80 */
704 1, /* 88 */
705 1, /* 96 */
706 7, /* 104 */
707 7, /* 112 */
708 7, /* 120 */
709 7, /* 128 */
710 2, /* 136 */
711 2, /* 144 */
712 2, /* 152 */
713 2, /* 160 */
714 2, /* 168 */
715 2, /* 176 */
716 2, /* 184 */
717 2 /* 192 */
718};
719
720static inline int size_index_elem(size_t bytes)
721{
722 return (bytes - 1) / 8;
723}
724
725/*
726 * Find the kmem_cache structure that serves a given size of
727 * allocation
728 */
729struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
730{
731 int index;
732
9de1bc87 733 if (unlikely(size > KMALLOC_MAX_SIZE)) {
907985f4 734 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
6286ae97 735 return NULL;
907985f4 736 }
6286ae97 737
2c59dd65
CL
738 if (size <= 192) {
739 if (!size)
740 return ZERO_SIZE_PTR;
741
742 index = size_index[size_index_elem(size)];
743 } else
744 index = fls(size - 1);
745
746#ifdef CONFIG_ZONE_DMA
b1e05416 747 if (unlikely((flags & GFP_DMA)))
2c59dd65
CL
748 return kmalloc_dma_caches[index];
749
750#endif
751 return kmalloc_caches[index];
752}
753
f97d5f63
CL
754/*
755 * Create the kmalloc array. Some of the regular kmalloc arrays
756 * may already have been created because they were needed to
757 * enable allocations for slab creation.
758 */
759void __init create_kmalloc_caches(unsigned long flags)
760{
761 int i;
762
2c59dd65
CL
763 /*
764 * Patch up the size_index table if we have strange large alignment
765 * requirements for the kmalloc array. This is only the case for
766 * MIPS it seems. The standard arches will not generate any code here.
767 *
768 * Largest permitted alignment is 256 bytes due to the way we
769 * handle the index determination for the smaller caches.
770 *
771 * Make sure that nothing crazy happens if someone starts tinkering
772 * around with ARCH_KMALLOC_MINALIGN
773 */
774 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
775 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
776
777 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
778 int elem = size_index_elem(i);
779
780 if (elem >= ARRAY_SIZE(size_index))
781 break;
782 size_index[elem] = KMALLOC_SHIFT_LOW;
783 }
784
785 if (KMALLOC_MIN_SIZE >= 64) {
786 /*
787 * The 96 byte size cache is not used if the alignment
788 * is 64 byte.
789 */
790 for (i = 64 + 8; i <= 96; i += 8)
791 size_index[size_index_elem(i)] = 7;
792
793 }
794
795 if (KMALLOC_MIN_SIZE >= 128) {
796 /*
797 * The 192 byte sized cache is not used if the alignment
798 * is 128 byte. Redirect kmalloc to use the 256 byte cache
799 * instead.
800 */
801 for (i = 128 + 8; i <= 192; i += 8)
802 size_index[size_index_elem(i)] = 8;
803 }
8a965b3b
CL
804 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
805 if (!kmalloc_caches[i]) {
f97d5f63
CL
806 kmalloc_caches[i] = create_kmalloc_cache(NULL,
807 1 << i, flags);
956e46ef 808 }
f97d5f63 809
956e46ef
CM
810 /*
811 * Caches that are not of the two-to-the-power-of size.
812 * These have to be created immediately after the
813 * earlier power of two caches
814 */
815 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
816 kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
8a965b3b 817
956e46ef
CM
818 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
819 kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
8a965b3b
CL
820 }
821
f97d5f63
CL
822 /* Kmalloc array is now usable */
823 slab_state = UP;
824
825 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
826 struct kmem_cache *s = kmalloc_caches[i];
827 char *n;
828
829 if (s) {
830 n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
831
832 BUG_ON(!n);
833 s->name = n;
834 }
835 }
836
837#ifdef CONFIG_ZONE_DMA
838 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
839 struct kmem_cache *s = kmalloc_caches[i];
840
841 if (s) {
842 int size = kmalloc_size(i);
843 char *n = kasprintf(GFP_NOWAIT,
844 "dma-kmalloc-%d", size);
845
846 BUG_ON(!n);
847 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
848 size, SLAB_CACHE_DMA | flags);
849 }
850 }
851#endif
852}
45530c44
CL
853#endif /* !CONFIG_SLOB */
854
cea371f4
VD
855/*
856 * To avoid unnecessary overhead, we pass through large allocation requests
857 * directly to the page allocator. We use __GFP_COMP, because we will need to
858 * know the allocation order to free the pages properly in kfree.
859 */
52383431
VD
860void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
861{
862 void *ret;
863 struct page *page;
864
865 flags |= __GFP_COMP;
866 page = alloc_kmem_pages(flags, order);
867 ret = page ? page_address(page) : NULL;
868 kmemleak_alloc(ret, size, 1, flags);
869 return ret;
870}
871EXPORT_SYMBOL(kmalloc_order);
872
f1b6eb6e
CL
873#ifdef CONFIG_TRACING
874void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
875{
876 void *ret = kmalloc_order(size, flags, order);
877 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
878 return ret;
879}
880EXPORT_SYMBOL(kmalloc_order_trace);
881#endif
45530c44 882
b7454ad3 883#ifdef CONFIG_SLABINFO
e9b4db2b
WL
884
885#ifdef CONFIG_SLAB
886#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
887#else
888#define SLABINFO_RIGHTS S_IRUSR
889#endif
890
b047501c 891static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
892{
893 /*
894 * Output format version, so at least we can change it
895 * without _too_ many complaints.
896 */
897#ifdef CONFIG_DEBUG_SLAB
898 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
899#else
900 seq_puts(m, "slabinfo - version: 2.1\n");
901#endif
902 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
903 "<objperslab> <pagesperslab>");
904 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
905 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
906#ifdef CONFIG_DEBUG_SLAB
907 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
908 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
909 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
910#endif
911 seq_putc(m, '\n');
912}
913
1df3b26f 914void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 915{
b7454ad3 916 mutex_lock(&slab_mutex);
b7454ad3
GC
917 return seq_list_start(&slab_caches, *pos);
918}
919
276a2439 920void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3
GC
921{
922 return seq_list_next(p, &slab_caches, pos);
923}
924
276a2439 925void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
926{
927 mutex_unlock(&slab_mutex);
928}
929
749c5415
GC
930static void
931memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
932{
933 struct kmem_cache *c;
934 struct slabinfo sinfo;
935 int i;
936
937 if (!is_root_cache(s))
938 return;
939
940 for_each_memcg_cache_index(i) {
2ade4de8 941 c = cache_from_memcg_idx(s, i);
749c5415
GC
942 if (!c)
943 continue;
944
945 memset(&sinfo, 0, sizeof(sinfo));
946 get_slabinfo(c, &sinfo);
947
948 info->active_slabs += sinfo.active_slabs;
949 info->num_slabs += sinfo.num_slabs;
950 info->shared_avail += sinfo.shared_avail;
951 info->active_objs += sinfo.active_objs;
952 info->num_objs += sinfo.num_objs;
953 }
954}
955
b047501c 956static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 957{
0d7561c6
GC
958 struct slabinfo sinfo;
959
960 memset(&sinfo, 0, sizeof(sinfo));
961 get_slabinfo(s, &sinfo);
962
749c5415
GC
963 memcg_accumulate_slabinfo(s, &sinfo);
964
0d7561c6 965 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
749c5415 966 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
967 sinfo.objects_per_slab, (1 << sinfo.cache_order));
968
969 seq_printf(m, " : tunables %4u %4u %4u",
970 sinfo.limit, sinfo.batchcount, sinfo.shared);
971 seq_printf(m, " : slabdata %6lu %6lu %6lu",
972 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
973 slabinfo_show_stats(m, s);
974 seq_putc(m, '\n');
b7454ad3
GC
975}
976
1df3b26f 977static int slab_show(struct seq_file *m, void *p)
749c5415
GC
978{
979 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
980
1df3b26f
VD
981 if (p == slab_caches.next)
982 print_slabinfo_header(m);
b047501c
VD
983 if (is_root_cache(s))
984 cache_show(s, m);
985 return 0;
986}
987
988#ifdef CONFIG_MEMCG_KMEM
989int memcg_slab_show(struct seq_file *m, void *p)
990{
991 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
992 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
993
994 if (p == slab_caches.next)
995 print_slabinfo_header(m);
f7ce3190 996 if (!is_root_cache(s) && s->memcg_params.memcg == memcg)
b047501c
VD
997 cache_show(s, m);
998 return 0;
749c5415 999}
b047501c 1000#endif
749c5415 1001
b7454ad3
GC
1002/*
1003 * slabinfo_op - iterator that generates /proc/slabinfo
1004 *
1005 * Output layout:
1006 * cache-name
1007 * num-active-objs
1008 * total-objs
1009 * object size
1010 * num-active-slabs
1011 * total-slabs
1012 * num-pages-per-slab
1013 * + further values on SMP and with statistics enabled
1014 */
1015static const struct seq_operations slabinfo_op = {
1df3b26f 1016 .start = slab_start,
276a2439
WL
1017 .next = slab_next,
1018 .stop = slab_stop,
1df3b26f 1019 .show = slab_show,
b7454ad3
GC
1020};
1021
1022static int slabinfo_open(struct inode *inode, struct file *file)
1023{
1024 return seq_open(file, &slabinfo_op);
1025}
1026
1027static const struct file_operations proc_slabinfo_operations = {
1028 .open = slabinfo_open,
1029 .read = seq_read,
1030 .write = slabinfo_write,
1031 .llseek = seq_lseek,
1032 .release = seq_release,
1033};
1034
1035static int __init slab_proc_init(void)
1036{
e9b4db2b
WL
1037 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1038 &proc_slabinfo_operations);
b7454ad3
GC
1039 return 0;
1040}
1041module_init(slab_proc_init);
1042#endif /* CONFIG_SLABINFO */
928cec9c
AR
1043
1044static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1045 gfp_t flags)
1046{
1047 void *ret;
1048 size_t ks = 0;
1049
1050 if (p)
1051 ks = ksize(p);
1052
1053 if (ks >= new_size)
1054 return (void *)p;
1055
1056 ret = kmalloc_track_caller(new_size, flags);
1057 if (ret && p)
1058 memcpy(ret, p, ks);
1059
1060 return ret;
1061}
1062
1063/**
1064 * __krealloc - like krealloc() but don't free @p.
1065 * @p: object to reallocate memory for.
1066 * @new_size: how many bytes of memory are required.
1067 * @flags: the type of memory to allocate.
1068 *
1069 * This function is like krealloc() except it never frees the originally
1070 * allocated buffer. Use this if you don't want to free the buffer immediately
1071 * like, for example, with RCU.
1072 */
1073void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1074{
1075 if (unlikely(!new_size))
1076 return ZERO_SIZE_PTR;
1077
1078 return __do_krealloc(p, new_size, flags);
1079
1080}
1081EXPORT_SYMBOL(__krealloc);
1082
1083/**
1084 * krealloc - reallocate memory. The contents will remain unchanged.
1085 * @p: object to reallocate memory for.
1086 * @new_size: how many bytes of memory are required.
1087 * @flags: the type of memory to allocate.
1088 *
1089 * The contents of the object pointed to are preserved up to the
1090 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1091 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1092 * %NULL pointer, the object pointed to is freed.
1093 */
1094void *krealloc(const void *p, size_t new_size, gfp_t flags)
1095{
1096 void *ret;
1097
1098 if (unlikely(!new_size)) {
1099 kfree(p);
1100 return ZERO_SIZE_PTR;
1101 }
1102
1103 ret = __do_krealloc(p, new_size, flags);
1104 if (ret && p != ret)
1105 kfree(p);
1106
1107 return ret;
1108}
1109EXPORT_SYMBOL(krealloc);
1110
1111/**
1112 * kzfree - like kfree but zero memory
1113 * @p: object to free memory of
1114 *
1115 * The memory of the object @p points to is zeroed before freed.
1116 * If @p is %NULL, kzfree() does nothing.
1117 *
1118 * Note: this function zeroes the whole allocated buffer which can be a good
1119 * deal bigger than the requested buffer size passed to kmalloc(). So be
1120 * careful when using this function in performance sensitive code.
1121 */
1122void kzfree(const void *p)
1123{
1124 size_t ks;
1125 void *mem = (void *)p;
1126
1127 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1128 return;
1129 ks = ksize(mem);
1130 memset(mem, 0, ks);
1131 kfree(mem);
1132}
1133EXPORT_SYMBOL(kzfree);
1134
1135/* Tracepoints definitions. */
1136EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1137EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1138EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1139EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1140EXPORT_TRACEPOINT_SYMBOL(kfree);
1141EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);