]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/slab_common.c
mm: memcg/slab: reparent memcg kmem_caches on cgroup removal
[mirror_ubuntu-hirsute-kernel.git] / mm / slab_common.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
039363f3
CL
2/*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7#include <linux/slab.h>
8
9#include <linux/mm.h>
10#include <linux/poison.h>
11#include <linux/interrupt.h>
12#include <linux/memory.h>
1c99ba29 13#include <linux/cache.h>
039363f3
CL
14#include <linux/compiler.h>
15#include <linux/module.h>
20cea968
CL
16#include <linux/cpu.h>
17#include <linux/uaccess.h>
b7454ad3
GC
18#include <linux/seq_file.h>
19#include <linux/proc_fs.h>
039363f3
CL
20#include <asm/cacheflush.h>
21#include <asm/tlbflush.h>
22#include <asm/page.h>
2633d7a0 23#include <linux/memcontrol.h>
928cec9c
AR
24
25#define CREATE_TRACE_POINTS
f1b6eb6e 26#include <trace/events/kmem.h>
039363f3 27
97d06609
CL
28#include "slab.h"
29
30enum slab_state slab_state;
18004c5d
CL
31LIST_HEAD(slab_caches);
32DEFINE_MUTEX(slab_mutex);
9b030cb8 33struct kmem_cache *kmem_cache;
97d06609 34
2d891fbc
KC
35#ifdef CONFIG_HARDENED_USERCOPY
36bool usercopy_fallback __ro_after_init =
37 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
38module_param(usercopy_fallback, bool, 0400);
39MODULE_PARM_DESC(usercopy_fallback,
40 "WARN instead of reject usercopy whitelist violations");
41#endif
42
657dc2f9
TH
43static LIST_HEAD(slab_caches_to_rcu_destroy);
44static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
45static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
46 slab_caches_to_rcu_destroy_workfn);
47
423c929c
JK
48/*
49 * Set of flags that will prevent slab merging
50 */
51#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
5f0d5a3a 52 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
7ed2f9e6 53 SLAB_FAILSLAB | SLAB_KASAN)
423c929c 54
230e9fc2 55#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
6d6ea1e9 56 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
423c929c
JK
57
58/*
59 * Merge control. If this is set then no merging of slab caches will occur.
423c929c 60 */
7660a6fd 61static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
423c929c
JK
62
63static int __init setup_slab_nomerge(char *str)
64{
7660a6fd 65 slab_nomerge = true;
423c929c
JK
66 return 1;
67}
68
69#ifdef CONFIG_SLUB
70__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
71#endif
72
73__setup("slab_nomerge", setup_slab_nomerge);
74
07f361b2
JK
75/*
76 * Determine the size of a slab object
77 */
78unsigned int kmem_cache_size(struct kmem_cache *s)
79{
80 return s->object_size;
81}
82EXPORT_SYMBOL(kmem_cache_size);
83
77be4b13 84#ifdef CONFIG_DEBUG_VM
f4957d5b 85static int kmem_cache_sanity_check(const char *name, unsigned int size)
039363f3 86{
039363f3
CL
87 if (!name || in_interrupt() || size < sizeof(void *) ||
88 size > KMALLOC_MAX_SIZE) {
77be4b13
SK
89 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
90 return -EINVAL;
039363f3 91 }
b920536a 92
20cea968 93 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
94 return 0;
95}
96#else
f4957d5b 97static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
77be4b13
SK
98{
99 return 0;
100}
20cea968
CL
101#endif
102
484748f0
CL
103void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
104{
105 size_t i;
106
ca257195
JDB
107 for (i = 0; i < nr; i++) {
108 if (s)
109 kmem_cache_free(s, p[i]);
110 else
111 kfree(p[i]);
112 }
484748f0
CL
113}
114
865762a8 115int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
484748f0
CL
116 void **p)
117{
118 size_t i;
119
120 for (i = 0; i < nr; i++) {
121 void *x = p[i] = kmem_cache_alloc(s, flags);
122 if (!x) {
123 __kmem_cache_free_bulk(s, i, p);
865762a8 124 return 0;
484748f0
CL
125 }
126 }
865762a8 127 return i;
484748f0
CL
128}
129
84c07d11 130#ifdef CONFIG_MEMCG_KMEM
510ded33
TH
131
132LIST_HEAD(slab_root_caches);
63b02ef7 133static DEFINE_SPINLOCK(memcg_kmem_wq_lock);
510ded33 134
f0a3a24b
RG
135static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref);
136
f7ce3190 137void slab_init_memcg_params(struct kmem_cache *s)
33a690c4 138{
9eeadc8b 139 s->memcg_params.root_cache = NULL;
f7ce3190 140 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
9eeadc8b 141 INIT_LIST_HEAD(&s->memcg_params.children);
92ee383f 142 s->memcg_params.dying = false;
f7ce3190
VD
143}
144
145static int init_memcg_params(struct kmem_cache *s,
c03914b7 146 struct kmem_cache *root_cache)
f7ce3190
VD
147{
148 struct memcg_cache_array *arr;
33a690c4 149
9eeadc8b 150 if (root_cache) {
f0a3a24b
RG
151 int ret = percpu_ref_init(&s->memcg_params.refcnt,
152 kmemcg_cache_shutdown,
153 0, GFP_KERNEL);
154 if (ret)
155 return ret;
156
f7ce3190 157 s->memcg_params.root_cache = root_cache;
9eeadc8b 158 INIT_LIST_HEAD(&s->memcg_params.children_node);
bc2791f8 159 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
33a690c4 160 return 0;
f7ce3190 161 }
33a690c4 162
f7ce3190 163 slab_init_memcg_params(s);
33a690c4 164
f7ce3190
VD
165 if (!memcg_nr_cache_ids)
166 return 0;
33a690c4 167
f80c7dab
JW
168 arr = kvzalloc(sizeof(struct memcg_cache_array) +
169 memcg_nr_cache_ids * sizeof(void *),
170 GFP_KERNEL);
f7ce3190
VD
171 if (!arr)
172 return -ENOMEM;
33a690c4 173
f7ce3190 174 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
33a690c4
VD
175 return 0;
176}
177
f7ce3190 178static void destroy_memcg_params(struct kmem_cache *s)
33a690c4 179{
f7ce3190 180 if (is_root_cache(s))
f80c7dab 181 kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
f0a3a24b
RG
182 else
183 percpu_ref_exit(&s->memcg_params.refcnt);
f80c7dab
JW
184}
185
186static void free_memcg_params(struct rcu_head *rcu)
187{
188 struct memcg_cache_array *old;
189
190 old = container_of(rcu, struct memcg_cache_array, rcu);
191 kvfree(old);
33a690c4
VD
192}
193
f7ce3190 194static int update_memcg_params(struct kmem_cache *s, int new_array_size)
6f817f4c 195{
f7ce3190 196 struct memcg_cache_array *old, *new;
6f817f4c 197
f80c7dab
JW
198 new = kvzalloc(sizeof(struct memcg_cache_array) +
199 new_array_size * sizeof(void *), GFP_KERNEL);
f7ce3190 200 if (!new)
6f817f4c
VD
201 return -ENOMEM;
202
f7ce3190
VD
203 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
204 lockdep_is_held(&slab_mutex));
205 if (old)
206 memcpy(new->entries, old->entries,
207 memcg_nr_cache_ids * sizeof(void *));
6f817f4c 208
f7ce3190
VD
209 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
210 if (old)
f80c7dab 211 call_rcu(&old->rcu, free_memcg_params);
6f817f4c
VD
212 return 0;
213}
214
55007d84
GC
215int memcg_update_all_caches(int num_memcgs)
216{
217 struct kmem_cache *s;
218 int ret = 0;
55007d84 219
05257a1a 220 mutex_lock(&slab_mutex);
510ded33 221 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
f7ce3190 222 ret = update_memcg_params(s, num_memcgs);
55007d84 223 /*
55007d84
GC
224 * Instead of freeing the memory, we'll just leave the caches
225 * up to this point in an updated state.
226 */
227 if (ret)
05257a1a 228 break;
55007d84 229 }
55007d84
GC
230 mutex_unlock(&slab_mutex);
231 return ret;
232}
657dc2f9 233
c03914b7 234void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg)
657dc2f9 235{
510ded33
TH
236 if (is_root_cache(s)) {
237 list_add(&s->root_caches_node, &slab_root_caches);
238 } else {
f0a3a24b 239 css_get(&memcg->css);
c03914b7 240 s->memcg_params.memcg = memcg;
510ded33
TH
241 list_add(&s->memcg_params.children_node,
242 &s->memcg_params.root_cache->memcg_params.children);
243 list_add(&s->memcg_params.kmem_caches_node,
244 &s->memcg_params.memcg->kmem_caches);
245 }
246}
247
248static void memcg_unlink_cache(struct kmem_cache *s)
249{
250 if (is_root_cache(s)) {
251 list_del(&s->root_caches_node);
252 } else {
253 list_del(&s->memcg_params.children_node);
254 list_del(&s->memcg_params.kmem_caches_node);
fb2f2b0a
RG
255 mem_cgroup_put(s->memcg_params.memcg);
256 WRITE_ONCE(s->memcg_params.memcg, NULL);
510ded33 257 }
657dc2f9 258}
33a690c4 259#else
f7ce3190 260static inline int init_memcg_params(struct kmem_cache *s,
c03914b7 261 struct kmem_cache *root_cache)
33a690c4
VD
262{
263 return 0;
264}
265
f7ce3190 266static inline void destroy_memcg_params(struct kmem_cache *s)
33a690c4
VD
267{
268}
657dc2f9 269
510ded33 270static inline void memcg_unlink_cache(struct kmem_cache *s)
657dc2f9
TH
271{
272}
84c07d11 273#endif /* CONFIG_MEMCG_KMEM */
55007d84 274
692ae74a
BL
275/*
276 * Figure out what the alignment of the objects will be given a set of
277 * flags, a user specified alignment and the size of the objects.
278 */
f4957d5b
AD
279static unsigned int calculate_alignment(slab_flags_t flags,
280 unsigned int align, unsigned int size)
692ae74a
BL
281{
282 /*
283 * If the user wants hardware cache aligned objects then follow that
284 * suggestion if the object is sufficiently large.
285 *
286 * The hardware cache alignment cannot override the specified
287 * alignment though. If that is greater then use it.
288 */
289 if (flags & SLAB_HWCACHE_ALIGN) {
f4957d5b 290 unsigned int ralign;
692ae74a
BL
291
292 ralign = cache_line_size();
293 while (size <= ralign / 2)
294 ralign /= 2;
295 align = max(align, ralign);
296 }
297
298 if (align < ARCH_SLAB_MINALIGN)
299 align = ARCH_SLAB_MINALIGN;
300
301 return ALIGN(align, sizeof(void *));
302}
303
423c929c
JK
304/*
305 * Find a mergeable slab cache
306 */
307int slab_unmergeable(struct kmem_cache *s)
308{
309 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
310 return 1;
311
312 if (!is_root_cache(s))
313 return 1;
314
315 if (s->ctor)
316 return 1;
317
8eb8284b
DW
318 if (s->usersize)
319 return 1;
320
423c929c
JK
321 /*
322 * We may have set a slab to be unmergeable during bootstrap.
323 */
324 if (s->refcount < 0)
325 return 1;
326
327 return 0;
328}
329
f4957d5b 330struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
d50112ed 331 slab_flags_t flags, const char *name, void (*ctor)(void *))
423c929c
JK
332{
333 struct kmem_cache *s;
334
c6e28895 335 if (slab_nomerge)
423c929c
JK
336 return NULL;
337
338 if (ctor)
339 return NULL;
340
341 size = ALIGN(size, sizeof(void *));
342 align = calculate_alignment(flags, align, size);
343 size = ALIGN(size, align);
344 flags = kmem_cache_flags(size, flags, name, NULL);
345
c6e28895
GM
346 if (flags & SLAB_NEVER_MERGE)
347 return NULL;
348
510ded33 349 list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
423c929c
JK
350 if (slab_unmergeable(s))
351 continue;
352
353 if (size > s->size)
354 continue;
355
356 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
357 continue;
358 /*
359 * Check if alignment is compatible.
360 * Courtesy of Adrian Drzewiecki
361 */
362 if ((s->size & ~(align - 1)) != s->size)
363 continue;
364
365 if (s->size - size >= sizeof(void *))
366 continue;
367
95069ac8
JK
368 if (IS_ENABLED(CONFIG_SLAB) && align &&
369 (align > s->align || s->align % align))
370 continue;
371
423c929c
JK
372 return s;
373 }
374 return NULL;
375}
376
c9a77a79 377static struct kmem_cache *create_cache(const char *name,
613a5eb5 378 unsigned int object_size, unsigned int align,
7bbdb81e
AD
379 slab_flags_t flags, unsigned int useroffset,
380 unsigned int usersize, void (*ctor)(void *),
c9a77a79 381 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
794b1248
VD
382{
383 struct kmem_cache *s;
384 int err;
385
8eb8284b
DW
386 if (WARN_ON(useroffset + usersize > object_size))
387 useroffset = usersize = 0;
388
794b1248
VD
389 err = -ENOMEM;
390 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
391 if (!s)
392 goto out;
393
394 s->name = name;
613a5eb5 395 s->size = s->object_size = object_size;
794b1248
VD
396 s->align = align;
397 s->ctor = ctor;
8eb8284b
DW
398 s->useroffset = useroffset;
399 s->usersize = usersize;
794b1248 400
c03914b7 401 err = init_memcg_params(s, root_cache);
794b1248
VD
402 if (err)
403 goto out_free_cache;
404
405 err = __kmem_cache_create(s, flags);
406 if (err)
407 goto out_free_cache;
408
409 s->refcount = 1;
410 list_add(&s->list, &slab_caches);
c03914b7 411 memcg_link_cache(s, memcg);
794b1248
VD
412out:
413 if (err)
414 return ERR_PTR(err);
415 return s;
416
417out_free_cache:
f7ce3190 418 destroy_memcg_params(s);
7c4da061 419 kmem_cache_free(kmem_cache, s);
794b1248
VD
420 goto out;
421}
45906855 422
f496990f
MR
423/**
424 * kmem_cache_create_usercopy - Create a cache with a region suitable
425 * for copying to userspace
77be4b13
SK
426 * @name: A string which is used in /proc/slabinfo to identify this cache.
427 * @size: The size of objects to be created in this cache.
428 * @align: The required alignment for the objects.
429 * @flags: SLAB flags
8eb8284b
DW
430 * @useroffset: Usercopy region offset
431 * @usersize: Usercopy region size
77be4b13
SK
432 * @ctor: A constructor for the objects.
433 *
77be4b13
SK
434 * Cannot be called within a interrupt, but can be interrupted.
435 * The @ctor is run when new pages are allocated by the cache.
436 *
437 * The flags are
438 *
439 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
440 * to catch references to uninitialised memory.
441 *
f496990f 442 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
77be4b13
SK
443 * for buffer overruns.
444 *
445 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
446 * cacheline. This can be beneficial if you're counting cycles as closely
447 * as davem.
f496990f
MR
448 *
449 * Return: a pointer to the cache on success, NULL on failure.
77be4b13 450 */
2633d7a0 451struct kmem_cache *
f4957d5b
AD
452kmem_cache_create_usercopy(const char *name,
453 unsigned int size, unsigned int align,
7bbdb81e
AD
454 slab_flags_t flags,
455 unsigned int useroffset, unsigned int usersize,
8eb8284b 456 void (*ctor)(void *))
77be4b13 457{
40911a79 458 struct kmem_cache *s = NULL;
3dec16ea 459 const char *cache_name;
3965fc36 460 int err;
039363f3 461
77be4b13 462 get_online_cpus();
03afc0e2 463 get_online_mems();
05257a1a 464 memcg_get_cache_ids();
03afc0e2 465
77be4b13 466 mutex_lock(&slab_mutex);
686d550d 467
794b1248 468 err = kmem_cache_sanity_check(name, size);
3aa24f51 469 if (err) {
3965fc36 470 goto out_unlock;
3aa24f51 471 }
686d550d 472
e70954fd
TG
473 /* Refuse requests with allocator specific flags */
474 if (flags & ~SLAB_FLAGS_PERMITTED) {
475 err = -EINVAL;
476 goto out_unlock;
477 }
478
d8843922
GC
479 /*
480 * Some allocators will constraint the set of valid flags to a subset
481 * of all flags. We expect them to define CACHE_CREATE_MASK in this
482 * case, and we'll just provide them with a sanitized version of the
483 * passed flags.
484 */
485 flags &= CACHE_CREATE_MASK;
686d550d 486
8eb8284b
DW
487 /* Fail closed on bad usersize of useroffset values. */
488 if (WARN_ON(!usersize && useroffset) ||
489 WARN_ON(size < usersize || size - usersize < useroffset))
490 usersize = useroffset = 0;
491
492 if (!usersize)
493 s = __kmem_cache_alias(name, size, align, flags, ctor);
794b1248 494 if (s)
3965fc36 495 goto out_unlock;
2633d7a0 496
3dec16ea 497 cache_name = kstrdup_const(name, GFP_KERNEL);
794b1248
VD
498 if (!cache_name) {
499 err = -ENOMEM;
500 goto out_unlock;
501 }
7c9adf5a 502
613a5eb5 503 s = create_cache(cache_name, size,
c9a77a79 504 calculate_alignment(flags, align, size),
8eb8284b 505 flags, useroffset, usersize, ctor, NULL, NULL);
794b1248
VD
506 if (IS_ERR(s)) {
507 err = PTR_ERR(s);
3dec16ea 508 kfree_const(cache_name);
794b1248 509 }
3965fc36
VD
510
511out_unlock:
20cea968 512 mutex_unlock(&slab_mutex);
03afc0e2 513
05257a1a 514 memcg_put_cache_ids();
03afc0e2 515 put_online_mems();
20cea968
CL
516 put_online_cpus();
517
ba3253c7 518 if (err) {
686d550d
CL
519 if (flags & SLAB_PANIC)
520 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
521 name, err);
522 else {
1170532b 523 pr_warn("kmem_cache_create(%s) failed with error %d\n",
686d550d
CL
524 name, err);
525 dump_stack();
526 }
686d550d
CL
527 return NULL;
528 }
039363f3
CL
529 return s;
530}
8eb8284b
DW
531EXPORT_SYMBOL(kmem_cache_create_usercopy);
532
f496990f
MR
533/**
534 * kmem_cache_create - Create a cache.
535 * @name: A string which is used in /proc/slabinfo to identify this cache.
536 * @size: The size of objects to be created in this cache.
537 * @align: The required alignment for the objects.
538 * @flags: SLAB flags
539 * @ctor: A constructor for the objects.
540 *
541 * Cannot be called within a interrupt, but can be interrupted.
542 * The @ctor is run when new pages are allocated by the cache.
543 *
544 * The flags are
545 *
546 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
547 * to catch references to uninitialised memory.
548 *
549 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
550 * for buffer overruns.
551 *
552 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
553 * cacheline. This can be beneficial if you're counting cycles as closely
554 * as davem.
555 *
556 * Return: a pointer to the cache on success, NULL on failure.
557 */
8eb8284b 558struct kmem_cache *
f4957d5b 559kmem_cache_create(const char *name, unsigned int size, unsigned int align,
8eb8284b
DW
560 slab_flags_t flags, void (*ctor)(void *))
561{
6d07d1cd 562 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
8eb8284b
DW
563 ctor);
564}
794b1248 565EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 566
657dc2f9 567static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
d5b3cf71 568{
657dc2f9
TH
569 LIST_HEAD(to_destroy);
570 struct kmem_cache *s, *s2;
d5b3cf71 571
657dc2f9 572 /*
5f0d5a3a 573 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
657dc2f9
TH
574 * @slab_caches_to_rcu_destroy list. The slab pages are freed
575 * through RCU and and the associated kmem_cache are dereferenced
576 * while freeing the pages, so the kmem_caches should be freed only
577 * after the pending RCU operations are finished. As rcu_barrier()
578 * is a pretty slow operation, we batch all pending destructions
579 * asynchronously.
580 */
581 mutex_lock(&slab_mutex);
582 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
583 mutex_unlock(&slab_mutex);
d5b3cf71 584
657dc2f9
TH
585 if (list_empty(&to_destroy))
586 return;
587
588 rcu_barrier();
589
590 list_for_each_entry_safe(s, s2, &to_destroy, list) {
591#ifdef SLAB_SUPPORTS_SYSFS
592 sysfs_slab_release(s);
593#else
594 slab_kmem_cache_release(s);
595#endif
596 }
d5b3cf71
VD
597}
598
657dc2f9 599static int shutdown_cache(struct kmem_cache *s)
d5b3cf71 600{
f9fa1d91
GT
601 /* free asan quarantined objects */
602 kasan_cache_shutdown(s);
603
657dc2f9
TH
604 if (__kmem_cache_shutdown(s) != 0)
605 return -EBUSY;
d5b3cf71 606
510ded33 607 memcg_unlink_cache(s);
657dc2f9 608 list_del(&s->list);
d5b3cf71 609
5f0d5a3a 610 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
d50d82fa
MP
611#ifdef SLAB_SUPPORTS_SYSFS
612 sysfs_slab_unlink(s);
613#endif
657dc2f9
TH
614 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
615 schedule_work(&slab_caches_to_rcu_destroy_work);
616 } else {
d5b3cf71 617#ifdef SLAB_SUPPORTS_SYSFS
d50d82fa 618 sysfs_slab_unlink(s);
bf5eb3de 619 sysfs_slab_release(s);
d5b3cf71
VD
620#else
621 slab_kmem_cache_release(s);
622#endif
623 }
657dc2f9
TH
624
625 return 0;
d5b3cf71
VD
626}
627
84c07d11 628#ifdef CONFIG_MEMCG_KMEM
794b1248 629/*
776ed0f0 630 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
794b1248
VD
631 * @memcg: The memory cgroup the new cache is for.
632 * @root_cache: The parent of the new cache.
633 *
634 * This function attempts to create a kmem cache that will serve allocation
635 * requests going from @memcg to @root_cache. The new cache inherits properties
636 * from its parent.
637 */
d5b3cf71
VD
638void memcg_create_kmem_cache(struct mem_cgroup *memcg,
639 struct kmem_cache *root_cache)
2633d7a0 640{
3e0350a3 641 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
33398cf2 642 struct cgroup_subsys_state *css = &memcg->css;
f7ce3190 643 struct memcg_cache_array *arr;
bd673145 644 struct kmem_cache *s = NULL;
794b1248 645 char *cache_name;
f7ce3190 646 int idx;
794b1248
VD
647
648 get_online_cpus();
03afc0e2
VD
649 get_online_mems();
650
794b1248
VD
651 mutex_lock(&slab_mutex);
652
2a4db7eb 653 /*
567e9ab2 654 * The memory cgroup could have been offlined while the cache
2a4db7eb
VD
655 * creation work was pending.
656 */
57033297 657 if (memcg->kmem_state != KMEM_ONLINE)
2a4db7eb
VD
658 goto out_unlock;
659
f7ce3190
VD
660 idx = memcg_cache_id(memcg);
661 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
662 lockdep_is_held(&slab_mutex));
663
d5b3cf71
VD
664 /*
665 * Since per-memcg caches are created asynchronously on first
666 * allocation (see memcg_kmem_get_cache()), several threads can try to
667 * create the same cache, but only one of them may succeed.
668 */
f7ce3190 669 if (arr->entries[idx])
d5b3cf71
VD
670 goto out_unlock;
671
f1008365 672 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
73f576c0
JW
673 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
674 css->serial_nr, memcg_name_buf);
794b1248
VD
675 if (!cache_name)
676 goto out_unlock;
677
c9a77a79 678 s = create_cache(cache_name, root_cache->object_size,
613a5eb5 679 root_cache->align,
f773e36d 680 root_cache->flags & CACHE_CREATE_MASK,
8eb8284b 681 root_cache->useroffset, root_cache->usersize,
f773e36d 682 root_cache->ctor, memcg, root_cache);
d5b3cf71
VD
683 /*
684 * If we could not create a memcg cache, do not complain, because
685 * that's not critical at all as we can always proceed with the root
686 * cache.
687 */
bd673145 688 if (IS_ERR(s)) {
794b1248 689 kfree(cache_name);
d5b3cf71 690 goto out_unlock;
bd673145 691 }
794b1248 692
d5b3cf71 693 /*
f0a3a24b 694 * Since readers won't lock (see memcg_kmem_get_cache()), we need a
d5b3cf71
VD
695 * barrier here to ensure nobody will see the kmem_cache partially
696 * initialized.
697 */
698 smp_wmb();
f7ce3190 699 arr->entries[idx] = s;
d5b3cf71 700
794b1248
VD
701out_unlock:
702 mutex_unlock(&slab_mutex);
03afc0e2
VD
703
704 put_online_mems();
794b1248 705 put_online_cpus();
2633d7a0 706}
b8529907 707
0b14e8aa 708static void kmemcg_workfn(struct work_struct *work)
01fb58bc
TH
709{
710 struct kmem_cache *s = container_of(work, struct kmem_cache,
0b14e8aa 711 memcg_params.work);
01fb58bc
TH
712
713 get_online_cpus();
714 get_online_mems();
715
716 mutex_lock(&slab_mutex);
0b14e8aa 717 s->memcg_params.work_fn(s);
01fb58bc
TH
718 mutex_unlock(&slab_mutex);
719
720 put_online_mems();
721 put_online_cpus();
01fb58bc
TH
722}
723
0b14e8aa 724static void kmemcg_rcufn(struct rcu_head *head)
01fb58bc
TH
725{
726 struct kmem_cache *s = container_of(head, struct kmem_cache,
0b14e8aa 727 memcg_params.rcu_head);
01fb58bc
TH
728
729 /*
0b14e8aa 730 * We need to grab blocking locks. Bounce to ->work. The
01fb58bc
TH
731 * work item shares the space with the RCU head and can't be
732 * initialized eariler.
733 */
0b14e8aa
RG
734 INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
735 queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
01fb58bc
TH
736}
737
f0a3a24b
RG
738static void kmemcg_cache_shutdown_fn(struct kmem_cache *s)
739{
740 WARN_ON(shutdown_cache(s));
741}
742
743static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref)
744{
745 struct kmem_cache *s = container_of(percpu_ref, struct kmem_cache,
746 memcg_params.refcnt);
747 unsigned long flags;
748
749 spin_lock_irqsave(&memcg_kmem_wq_lock, flags);
750 if (s->memcg_params.root_cache->memcg_params.dying)
751 goto unlock;
752
753 s->memcg_params.work_fn = kmemcg_cache_shutdown_fn;
754 INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
755 queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
756
757unlock:
758 spin_unlock_irqrestore(&memcg_kmem_wq_lock, flags);
759}
760
761static void kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
762{
763 __kmemcg_cache_deactivate_after_rcu(s);
764 percpu_ref_kill(&s->memcg_params.refcnt);
765}
766
43486694 767static void kmemcg_cache_deactivate(struct kmem_cache *s)
01fb58bc 768{
f0a3a24b 769 if (WARN_ON_ONCE(is_root_cache(s)))
01fb58bc
TH
770 return;
771
43486694
RG
772 __kmemcg_cache_deactivate(s);
773
63b02ef7
RG
774 /*
775 * memcg_kmem_wq_lock is used to synchronize memcg_params.dying
776 * flag and make sure that no new kmem_cache deactivation tasks
777 * are queued (see flush_memcg_workqueue() ).
778 */
779 spin_lock_irq(&memcg_kmem_wq_lock);
92ee383f 780 if (s->memcg_params.root_cache->memcg_params.dying)
63b02ef7 781 goto unlock;
92ee383f 782
f0a3a24b 783 s->memcg_params.work_fn = kmemcg_cache_deactivate_after_rcu;
0b14e8aa 784 call_rcu(&s->memcg_params.rcu_head, kmemcg_rcufn);
63b02ef7
RG
785unlock:
786 spin_unlock_irq(&memcg_kmem_wq_lock);
01fb58bc
TH
787}
788
fb2f2b0a
RG
789void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg,
790 struct mem_cgroup *parent)
2a4db7eb
VD
791{
792 int idx;
793 struct memcg_cache_array *arr;
d6e0b7fa 794 struct kmem_cache *s, *c;
fb2f2b0a 795 unsigned int nr_reparented;
2a4db7eb
VD
796
797 idx = memcg_cache_id(memcg);
798
d6e0b7fa
VD
799 get_online_cpus();
800 get_online_mems();
801
2a4db7eb 802 mutex_lock(&slab_mutex);
510ded33 803 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
2a4db7eb
VD
804 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
805 lockdep_is_held(&slab_mutex));
d6e0b7fa
VD
806 c = arr->entries[idx];
807 if (!c)
808 continue;
809
43486694 810 kmemcg_cache_deactivate(c);
2a4db7eb
VD
811 arr->entries[idx] = NULL;
812 }
fb2f2b0a
RG
813 nr_reparented = 0;
814 list_for_each_entry(s, &memcg->kmem_caches,
815 memcg_params.kmem_caches_node) {
816 WRITE_ONCE(s->memcg_params.memcg, parent);
817 css_put(&memcg->css);
818 nr_reparented++;
819 }
820 if (nr_reparented) {
821 list_splice_init(&memcg->kmem_caches,
822 &parent->kmem_caches);
823 css_get_many(&parent->css, nr_reparented);
824 }
2a4db7eb 825 mutex_unlock(&slab_mutex);
d6e0b7fa
VD
826
827 put_online_mems();
828 put_online_cpus();
2a4db7eb
VD
829}
830
657dc2f9 831static int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
832{
833 struct memcg_cache_array *arr;
834 struct kmem_cache *c, *c2;
835 LIST_HEAD(busy);
836 int i;
837
838 BUG_ON(!is_root_cache(s));
839
840 /*
841 * First, shutdown active caches, i.e. caches that belong to online
842 * memory cgroups.
843 */
844 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
845 lockdep_is_held(&slab_mutex));
846 for_each_memcg_cache_index(i) {
847 c = arr->entries[i];
848 if (!c)
849 continue;
657dc2f9 850 if (shutdown_cache(c))
d60fdcc9
VD
851 /*
852 * The cache still has objects. Move it to a temporary
853 * list so as not to try to destroy it for a second
854 * time while iterating over inactive caches below.
855 */
9eeadc8b 856 list_move(&c->memcg_params.children_node, &busy);
d60fdcc9
VD
857 else
858 /*
859 * The cache is empty and will be destroyed soon. Clear
860 * the pointer to it in the memcg_caches array so that
861 * it will never be accessed even if the root cache
862 * stays alive.
863 */
864 arr->entries[i] = NULL;
865 }
866
867 /*
868 * Second, shutdown all caches left from memory cgroups that are now
869 * offline.
870 */
9eeadc8b
TH
871 list_for_each_entry_safe(c, c2, &s->memcg_params.children,
872 memcg_params.children_node)
657dc2f9 873 shutdown_cache(c);
d60fdcc9 874
9eeadc8b 875 list_splice(&busy, &s->memcg_params.children);
d60fdcc9
VD
876
877 /*
878 * A cache being destroyed must be empty. In particular, this means
879 * that all per memcg caches attached to it must be empty too.
880 */
9eeadc8b 881 if (!list_empty(&s->memcg_params.children))
d60fdcc9
VD
882 return -EBUSY;
883 return 0;
884}
92ee383f
SB
885
886static void flush_memcg_workqueue(struct kmem_cache *s)
887{
63b02ef7 888 spin_lock_irq(&memcg_kmem_wq_lock);
92ee383f 889 s->memcg_params.dying = true;
63b02ef7 890 spin_unlock_irq(&memcg_kmem_wq_lock);
92ee383f
SB
891
892 /*
43486694 893 * SLAB and SLUB deactivate the kmem_caches through call_rcu. Make
92ee383f
SB
894 * sure all registered rcu callbacks have been invoked.
895 */
43486694 896 rcu_barrier();
92ee383f
SB
897
898 /*
899 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB
900 * deactivates the memcg kmem_caches through workqueue. Make sure all
901 * previous workitems on workqueue are processed.
902 */
903 flush_workqueue(memcg_kmem_cache_wq);
904}
d60fdcc9 905#else
657dc2f9 906static inline int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
907{
908 return 0;
909}
92ee383f
SB
910
911static inline void flush_memcg_workqueue(struct kmem_cache *s)
912{
913}
84c07d11 914#endif /* CONFIG_MEMCG_KMEM */
97d06609 915
41a21285
CL
916void slab_kmem_cache_release(struct kmem_cache *s)
917{
52b4b950 918 __kmem_cache_release(s);
f7ce3190 919 destroy_memcg_params(s);
3dec16ea 920 kfree_const(s->name);
41a21285
CL
921 kmem_cache_free(kmem_cache, s);
922}
923
945cf2b6
CL
924void kmem_cache_destroy(struct kmem_cache *s)
925{
d60fdcc9 926 int err;
d5b3cf71 927
3942d299
SS
928 if (unlikely(!s))
929 return;
930
92ee383f
SB
931 flush_memcg_workqueue(s);
932
945cf2b6 933 get_online_cpus();
03afc0e2
VD
934 get_online_mems();
935
945cf2b6 936 mutex_lock(&slab_mutex);
b8529907 937
945cf2b6 938 s->refcount--;
b8529907
VD
939 if (s->refcount)
940 goto out_unlock;
941
657dc2f9 942 err = shutdown_memcg_caches(s);
d60fdcc9 943 if (!err)
657dc2f9 944 err = shutdown_cache(s);
b8529907 945
cd918c55 946 if (err) {
756a025f
JP
947 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
948 s->name);
cd918c55
VD
949 dump_stack();
950 }
b8529907
VD
951out_unlock:
952 mutex_unlock(&slab_mutex);
d5b3cf71 953
03afc0e2 954 put_online_mems();
945cf2b6
CL
955 put_online_cpus();
956}
957EXPORT_SYMBOL(kmem_cache_destroy);
958
03afc0e2
VD
959/**
960 * kmem_cache_shrink - Shrink a cache.
961 * @cachep: The cache to shrink.
962 *
963 * Releases as many slabs as possible for a cache.
964 * To help debugging, a zero exit status indicates all slabs were released.
a862f68a
MR
965 *
966 * Return: %0 if all slabs were released, non-zero otherwise
03afc0e2
VD
967 */
968int kmem_cache_shrink(struct kmem_cache *cachep)
969{
970 int ret;
971
972 get_online_cpus();
973 get_online_mems();
55834c59 974 kasan_cache_shrink(cachep);
c9fc5864 975 ret = __kmem_cache_shrink(cachep);
03afc0e2
VD
976 put_online_mems();
977 put_online_cpus();
978 return ret;
979}
980EXPORT_SYMBOL(kmem_cache_shrink);
981
fda90124 982bool slab_is_available(void)
97d06609
CL
983{
984 return slab_state >= UP;
985}
b7454ad3 986
45530c44
CL
987#ifndef CONFIG_SLOB
988/* Create a cache during boot when no slab services are available yet */
361d575e
AD
989void __init create_boot_cache(struct kmem_cache *s, const char *name,
990 unsigned int size, slab_flags_t flags,
991 unsigned int useroffset, unsigned int usersize)
45530c44
CL
992{
993 int err;
994
995 s->name = name;
996 s->size = s->object_size = size;
45906855 997 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
8eb8284b
DW
998 s->useroffset = useroffset;
999 s->usersize = usersize;
f7ce3190
VD
1000
1001 slab_init_memcg_params(s);
1002
45530c44
CL
1003 err = __kmem_cache_create(s, flags);
1004
1005 if (err)
361d575e 1006 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
45530c44
CL
1007 name, size, err);
1008
1009 s->refcount = -1; /* Exempt from merging for now */
1010}
1011
55de8b9c
AD
1012struct kmem_cache *__init create_kmalloc_cache(const char *name,
1013 unsigned int size, slab_flags_t flags,
1014 unsigned int useroffset, unsigned int usersize)
45530c44
CL
1015{
1016 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1017
1018 if (!s)
1019 panic("Out of memory when creating slab %s\n", name);
1020
6c0c21ad 1021 create_boot_cache(s, name, size, flags, useroffset, usersize);
45530c44 1022 list_add(&s->list, &slab_caches);
c03914b7 1023 memcg_link_cache(s, NULL);
45530c44
CL
1024 s->refcount = 1;
1025 return s;
1026}
1027
cc252eae
VB
1028struct kmem_cache *
1029kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init;
9425c58e
CL
1030EXPORT_SYMBOL(kmalloc_caches);
1031
2c59dd65
CL
1032/*
1033 * Conversion table for small slabs sizes / 8 to the index in the
1034 * kmalloc array. This is necessary for slabs < 192 since we have non power
1035 * of two cache sizes there. The size of larger slabs can be determined using
1036 * fls.
1037 */
d5f86655 1038static u8 size_index[24] __ro_after_init = {
2c59dd65
CL
1039 3, /* 8 */
1040 4, /* 16 */
1041 5, /* 24 */
1042 5, /* 32 */
1043 6, /* 40 */
1044 6, /* 48 */
1045 6, /* 56 */
1046 6, /* 64 */
1047 1, /* 72 */
1048 1, /* 80 */
1049 1, /* 88 */
1050 1, /* 96 */
1051 7, /* 104 */
1052 7, /* 112 */
1053 7, /* 120 */
1054 7, /* 128 */
1055 2, /* 136 */
1056 2, /* 144 */
1057 2, /* 152 */
1058 2, /* 160 */
1059 2, /* 168 */
1060 2, /* 176 */
1061 2, /* 184 */
1062 2 /* 192 */
1063};
1064
ac914d08 1065static inline unsigned int size_index_elem(unsigned int bytes)
2c59dd65
CL
1066{
1067 return (bytes - 1) / 8;
1068}
1069
1070/*
1071 * Find the kmem_cache structure that serves a given size of
1072 * allocation
1073 */
1074struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
1075{
d5f86655 1076 unsigned int index;
2c59dd65
CL
1077
1078 if (size <= 192) {
1079 if (!size)
1080 return ZERO_SIZE_PTR;
1081
1082 index = size_index[size_index_elem(size)];
61448479 1083 } else {
221d7da6 1084 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
61448479 1085 return NULL;
2c59dd65 1086 index = fls(size - 1);
61448479 1087 }
2c59dd65 1088
cc252eae 1089 return kmalloc_caches[kmalloc_type(flags)][index];
2c59dd65
CL
1090}
1091
4066c33d
GG
1092/*
1093 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
1094 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1095 * kmalloc-67108864.
1096 */
af3b5f87 1097const struct kmalloc_info_struct kmalloc_info[] __initconst = {
4066c33d
GG
1098 {NULL, 0}, {"kmalloc-96", 96},
1099 {"kmalloc-192", 192}, {"kmalloc-8", 8},
1100 {"kmalloc-16", 16}, {"kmalloc-32", 32},
1101 {"kmalloc-64", 64}, {"kmalloc-128", 128},
1102 {"kmalloc-256", 256}, {"kmalloc-512", 512},
f0d77874
VB
1103 {"kmalloc-1k", 1024}, {"kmalloc-2k", 2048},
1104 {"kmalloc-4k", 4096}, {"kmalloc-8k", 8192},
1105 {"kmalloc-16k", 16384}, {"kmalloc-32k", 32768},
1106 {"kmalloc-64k", 65536}, {"kmalloc-128k", 131072},
1107 {"kmalloc-256k", 262144}, {"kmalloc-512k", 524288},
1108 {"kmalloc-1M", 1048576}, {"kmalloc-2M", 2097152},
1109 {"kmalloc-4M", 4194304}, {"kmalloc-8M", 8388608},
1110 {"kmalloc-16M", 16777216}, {"kmalloc-32M", 33554432},
1111 {"kmalloc-64M", 67108864}
4066c33d
GG
1112};
1113
f97d5f63 1114/*
34cc6990
DS
1115 * Patch up the size_index table if we have strange large alignment
1116 * requirements for the kmalloc array. This is only the case for
1117 * MIPS it seems. The standard arches will not generate any code here.
1118 *
1119 * Largest permitted alignment is 256 bytes due to the way we
1120 * handle the index determination for the smaller caches.
1121 *
1122 * Make sure that nothing crazy happens if someone starts tinkering
1123 * around with ARCH_KMALLOC_MINALIGN
f97d5f63 1124 */
34cc6990 1125void __init setup_kmalloc_cache_index_table(void)
f97d5f63 1126{
ac914d08 1127 unsigned int i;
f97d5f63 1128
2c59dd65
CL
1129 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1130 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1131
1132 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
ac914d08 1133 unsigned int elem = size_index_elem(i);
2c59dd65
CL
1134
1135 if (elem >= ARRAY_SIZE(size_index))
1136 break;
1137 size_index[elem] = KMALLOC_SHIFT_LOW;
1138 }
1139
1140 if (KMALLOC_MIN_SIZE >= 64) {
1141 /*
1142 * The 96 byte size cache is not used if the alignment
1143 * is 64 byte.
1144 */
1145 for (i = 64 + 8; i <= 96; i += 8)
1146 size_index[size_index_elem(i)] = 7;
1147
1148 }
1149
1150 if (KMALLOC_MIN_SIZE >= 128) {
1151 /*
1152 * The 192 byte sized cache is not used if the alignment
1153 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1154 * instead.
1155 */
1156 for (i = 128 + 8; i <= 192; i += 8)
1157 size_index[size_index_elem(i)] = 8;
1158 }
34cc6990
DS
1159}
1160
f0d77874
VB
1161static const char *
1162kmalloc_cache_name(const char *prefix, unsigned int size)
1163{
1164
1165 static const char units[3] = "\0kM";
1166 int idx = 0;
1167
1168 while (size >= 1024 && (size % 1024 == 0)) {
1169 size /= 1024;
1170 idx++;
1171 }
1172
1173 return kasprintf(GFP_NOWAIT, "%s-%u%c", prefix, size, units[idx]);
1174}
1175
1291523f
VB
1176static void __init
1177new_kmalloc_cache(int idx, int type, slab_flags_t flags)
a9730fca 1178{
1291523f
VB
1179 const char *name;
1180
1181 if (type == KMALLOC_RECLAIM) {
1182 flags |= SLAB_RECLAIM_ACCOUNT;
f0d77874 1183 name = kmalloc_cache_name("kmalloc-rcl",
1291523f
VB
1184 kmalloc_info[idx].size);
1185 BUG_ON(!name);
1186 } else {
1187 name = kmalloc_info[idx].name;
1188 }
1189
1190 kmalloc_caches[type][idx] = create_kmalloc_cache(name,
6c0c21ad
DW
1191 kmalloc_info[idx].size, flags, 0,
1192 kmalloc_info[idx].size);
a9730fca
CL
1193}
1194
34cc6990
DS
1195/*
1196 * Create the kmalloc array. Some of the regular kmalloc arrays
1197 * may already have been created because they were needed to
1198 * enable allocations for slab creation.
1199 */
d50112ed 1200void __init create_kmalloc_caches(slab_flags_t flags)
34cc6990 1201{
1291523f 1202 int i, type;
34cc6990 1203
1291523f
VB
1204 for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
1205 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1206 if (!kmalloc_caches[type][i])
1207 new_kmalloc_cache(i, type, flags);
f97d5f63 1208
1291523f
VB
1209 /*
1210 * Caches that are not of the two-to-the-power-of size.
1211 * These have to be created immediately after the
1212 * earlier power of two caches
1213 */
1214 if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
1215 !kmalloc_caches[type][1])
1216 new_kmalloc_cache(1, type, flags);
1217 if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
1218 !kmalloc_caches[type][2])
1219 new_kmalloc_cache(2, type, flags);
1220 }
8a965b3b
CL
1221 }
1222
f97d5f63
CL
1223 /* Kmalloc array is now usable */
1224 slab_state = UP;
1225
f97d5f63
CL
1226#ifdef CONFIG_ZONE_DMA
1227 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
cc252eae 1228 struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
f97d5f63
CL
1229
1230 if (s) {
0be70327 1231 unsigned int size = kmalloc_size(i);
f0d77874 1232 const char *n = kmalloc_cache_name("dma-kmalloc", size);
f97d5f63
CL
1233
1234 BUG_ON(!n);
cc252eae
VB
1235 kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
1236 n, size, SLAB_CACHE_DMA | flags, 0, 0);
f97d5f63
CL
1237 }
1238 }
1239#endif
1240}
45530c44
CL
1241#endif /* !CONFIG_SLOB */
1242
cea371f4
VD
1243/*
1244 * To avoid unnecessary overhead, we pass through large allocation requests
1245 * directly to the page allocator. We use __GFP_COMP, because we will need to
1246 * know the allocation order to free the pages properly in kfree.
1247 */
52383431
VD
1248void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1249{
1250 void *ret;
1251 struct page *page;
1252
1253 flags |= __GFP_COMP;
4949148a 1254 page = alloc_pages(flags, order);
52383431 1255 ret = page ? page_address(page) : NULL;
0116523c 1256 ret = kasan_kmalloc_large(ret, size, flags);
a2f77575 1257 /* As ret might get tagged, call kmemleak hook after KASAN. */
53128245 1258 kmemleak_alloc(ret, size, 1, flags);
52383431
VD
1259 return ret;
1260}
1261EXPORT_SYMBOL(kmalloc_order);
1262
f1b6eb6e
CL
1263#ifdef CONFIG_TRACING
1264void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1265{
1266 void *ret = kmalloc_order(size, flags, order);
1267 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1268 return ret;
1269}
1270EXPORT_SYMBOL(kmalloc_order_trace);
1271#endif
45530c44 1272
7c00fce9
TG
1273#ifdef CONFIG_SLAB_FREELIST_RANDOM
1274/* Randomize a generic freelist */
1275static void freelist_randomize(struct rnd_state *state, unsigned int *list,
302d55d5 1276 unsigned int count)
7c00fce9 1277{
7c00fce9 1278 unsigned int rand;
302d55d5 1279 unsigned int i;
7c00fce9
TG
1280
1281 for (i = 0; i < count; i++)
1282 list[i] = i;
1283
1284 /* Fisher-Yates shuffle */
1285 for (i = count - 1; i > 0; i--) {
1286 rand = prandom_u32_state(state);
1287 rand %= (i + 1);
1288 swap(list[i], list[rand]);
1289 }
1290}
1291
1292/* Create a random sequence per cache */
1293int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1294 gfp_t gfp)
1295{
1296 struct rnd_state state;
1297
1298 if (count < 2 || cachep->random_seq)
1299 return 0;
1300
1301 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1302 if (!cachep->random_seq)
1303 return -ENOMEM;
1304
1305 /* Get best entropy at this stage of boot */
1306 prandom_seed_state(&state, get_random_long());
1307
1308 freelist_randomize(&state, cachep->random_seq, count);
1309 return 0;
1310}
1311
1312/* Destroy the per-cache random freelist sequence */
1313void cache_random_seq_destroy(struct kmem_cache *cachep)
1314{
1315 kfree(cachep->random_seq);
1316 cachep->random_seq = NULL;
1317}
1318#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1319
5b365771 1320#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
e9b4db2b 1321#ifdef CONFIG_SLAB
0825a6f9 1322#define SLABINFO_RIGHTS (0600)
e9b4db2b 1323#else
0825a6f9 1324#define SLABINFO_RIGHTS (0400)
e9b4db2b
WL
1325#endif
1326
b047501c 1327static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
1328{
1329 /*
1330 * Output format version, so at least we can change it
1331 * without _too_ many complaints.
1332 */
1333#ifdef CONFIG_DEBUG_SLAB
1334 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1335#else
1336 seq_puts(m, "slabinfo - version: 2.1\n");
1337#endif
756a025f 1338 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
bcee6e2a
GC
1339 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1340 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1341#ifdef CONFIG_DEBUG_SLAB
756a025f 1342 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
bcee6e2a
GC
1343 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1344#endif
1345 seq_putc(m, '\n');
1346}
1347
1df3b26f 1348void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 1349{
b7454ad3 1350 mutex_lock(&slab_mutex);
510ded33 1351 return seq_list_start(&slab_root_caches, *pos);
b7454ad3
GC
1352}
1353
276a2439 1354void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3 1355{
510ded33 1356 return seq_list_next(p, &slab_root_caches, pos);
b7454ad3
GC
1357}
1358
276a2439 1359void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
1360{
1361 mutex_unlock(&slab_mutex);
1362}
1363
749c5415
GC
1364static void
1365memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1366{
1367 struct kmem_cache *c;
1368 struct slabinfo sinfo;
749c5415
GC
1369
1370 if (!is_root_cache(s))
1371 return;
1372
426589f5 1373 for_each_memcg_cache(c, s) {
749c5415
GC
1374 memset(&sinfo, 0, sizeof(sinfo));
1375 get_slabinfo(c, &sinfo);
1376
1377 info->active_slabs += sinfo.active_slabs;
1378 info->num_slabs += sinfo.num_slabs;
1379 info->shared_avail += sinfo.shared_avail;
1380 info->active_objs += sinfo.active_objs;
1381 info->num_objs += sinfo.num_objs;
1382 }
1383}
1384
b047501c 1385static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 1386{
0d7561c6
GC
1387 struct slabinfo sinfo;
1388
1389 memset(&sinfo, 0, sizeof(sinfo));
1390 get_slabinfo(s, &sinfo);
1391
749c5415
GC
1392 memcg_accumulate_slabinfo(s, &sinfo);
1393
0d7561c6 1394 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
749c5415 1395 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
1396 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1397
1398 seq_printf(m, " : tunables %4u %4u %4u",
1399 sinfo.limit, sinfo.batchcount, sinfo.shared);
1400 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1401 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1402 slabinfo_show_stats(m, s);
1403 seq_putc(m, '\n');
b7454ad3
GC
1404}
1405
1df3b26f 1406static int slab_show(struct seq_file *m, void *p)
749c5415 1407{
510ded33 1408 struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
749c5415 1409
510ded33 1410 if (p == slab_root_caches.next)
1df3b26f 1411 print_slabinfo_header(m);
510ded33 1412 cache_show(s, m);
b047501c
VD
1413 return 0;
1414}
1415
852d8be0
YS
1416void dump_unreclaimable_slab(void)
1417{
1418 struct kmem_cache *s, *s2;
1419 struct slabinfo sinfo;
1420
1421 /*
1422 * Here acquiring slab_mutex is risky since we don't prefer to get
1423 * sleep in oom path. But, without mutex hold, it may introduce a
1424 * risk of crash.
1425 * Use mutex_trylock to protect the list traverse, dump nothing
1426 * without acquiring the mutex.
1427 */
1428 if (!mutex_trylock(&slab_mutex)) {
1429 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1430 return;
1431 }
1432
1433 pr_info("Unreclaimable slab info:\n");
1434 pr_info("Name Used Total\n");
1435
1436 list_for_each_entry_safe(s, s2, &slab_caches, list) {
1437 if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
1438 continue;
1439
1440 get_slabinfo(s, &sinfo);
1441
1442 if (sinfo.num_objs > 0)
1443 pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
1444 (sinfo.active_objs * s->size) / 1024,
1445 (sinfo.num_objs * s->size) / 1024);
1446 }
1447 mutex_unlock(&slab_mutex);
1448}
1449
5b365771 1450#if defined(CONFIG_MEMCG)
bc2791f8
TH
1451void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1452{
aa9694bb 1453 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
bc2791f8
TH
1454
1455 mutex_lock(&slab_mutex);
1456 return seq_list_start(&memcg->kmem_caches, *pos);
1457}
1458
1459void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1460{
aa9694bb 1461 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
bc2791f8
TH
1462
1463 return seq_list_next(p, &memcg->kmem_caches, pos);
1464}
1465
1466void memcg_slab_stop(struct seq_file *m, void *p)
1467{
1468 mutex_unlock(&slab_mutex);
1469}
1470
b047501c
VD
1471int memcg_slab_show(struct seq_file *m, void *p)
1472{
bc2791f8
TH
1473 struct kmem_cache *s = list_entry(p, struct kmem_cache,
1474 memcg_params.kmem_caches_node);
aa9694bb 1475 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
b047501c 1476
bc2791f8 1477 if (p == memcg->kmem_caches.next)
b047501c 1478 print_slabinfo_header(m);
bc2791f8 1479 cache_show(s, m);
b047501c 1480 return 0;
749c5415 1481}
b047501c 1482#endif
749c5415 1483
b7454ad3
GC
1484/*
1485 * slabinfo_op - iterator that generates /proc/slabinfo
1486 *
1487 * Output layout:
1488 * cache-name
1489 * num-active-objs
1490 * total-objs
1491 * object size
1492 * num-active-slabs
1493 * total-slabs
1494 * num-pages-per-slab
1495 * + further values on SMP and with statistics enabled
1496 */
1497static const struct seq_operations slabinfo_op = {
1df3b26f 1498 .start = slab_start,
276a2439
WL
1499 .next = slab_next,
1500 .stop = slab_stop,
1df3b26f 1501 .show = slab_show,
b7454ad3
GC
1502};
1503
1504static int slabinfo_open(struct inode *inode, struct file *file)
1505{
1506 return seq_open(file, &slabinfo_op);
1507}
1508
1509static const struct file_operations proc_slabinfo_operations = {
1510 .open = slabinfo_open,
1511 .read = seq_read,
1512 .write = slabinfo_write,
1513 .llseek = seq_lseek,
1514 .release = seq_release,
1515};
1516
1517static int __init slab_proc_init(void)
1518{
e9b4db2b
WL
1519 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1520 &proc_slabinfo_operations);
b7454ad3
GC
1521 return 0;
1522}
1523module_init(slab_proc_init);
5b365771 1524#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
928cec9c
AR
1525
1526static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1527 gfp_t flags)
1528{
1529 void *ret;
1530 size_t ks = 0;
1531
1532 if (p)
1533 ks = ksize(p);
1534
0316bec2 1535 if (ks >= new_size) {
0116523c 1536 p = kasan_krealloc((void *)p, new_size, flags);
928cec9c 1537 return (void *)p;
0316bec2 1538 }
928cec9c
AR
1539
1540 ret = kmalloc_track_caller(new_size, flags);
1541 if (ret && p)
1542 memcpy(ret, p, ks);
1543
1544 return ret;
1545}
1546
1547/**
1548 * __krealloc - like krealloc() but don't free @p.
1549 * @p: object to reallocate memory for.
1550 * @new_size: how many bytes of memory are required.
1551 * @flags: the type of memory to allocate.
1552 *
1553 * This function is like krealloc() except it never frees the originally
1554 * allocated buffer. Use this if you don't want to free the buffer immediately
1555 * like, for example, with RCU.
a862f68a
MR
1556 *
1557 * Return: pointer to the allocated memory or %NULL in case of error
928cec9c
AR
1558 */
1559void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1560{
1561 if (unlikely(!new_size))
1562 return ZERO_SIZE_PTR;
1563
1564 return __do_krealloc(p, new_size, flags);
1565
1566}
1567EXPORT_SYMBOL(__krealloc);
1568
1569/**
1570 * krealloc - reallocate memory. The contents will remain unchanged.
1571 * @p: object to reallocate memory for.
1572 * @new_size: how many bytes of memory are required.
1573 * @flags: the type of memory to allocate.
1574 *
1575 * The contents of the object pointed to are preserved up to the
1576 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1577 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1578 * %NULL pointer, the object pointed to is freed.
a862f68a
MR
1579 *
1580 * Return: pointer to the allocated memory or %NULL in case of error
928cec9c
AR
1581 */
1582void *krealloc(const void *p, size_t new_size, gfp_t flags)
1583{
1584 void *ret;
1585
1586 if (unlikely(!new_size)) {
1587 kfree(p);
1588 return ZERO_SIZE_PTR;
1589 }
1590
1591 ret = __do_krealloc(p, new_size, flags);
772a2fa5 1592 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
928cec9c
AR
1593 kfree(p);
1594
1595 return ret;
1596}
1597EXPORT_SYMBOL(krealloc);
1598
1599/**
1600 * kzfree - like kfree but zero memory
1601 * @p: object to free memory of
1602 *
1603 * The memory of the object @p points to is zeroed before freed.
1604 * If @p is %NULL, kzfree() does nothing.
1605 *
1606 * Note: this function zeroes the whole allocated buffer which can be a good
1607 * deal bigger than the requested buffer size passed to kmalloc(). So be
1608 * careful when using this function in performance sensitive code.
1609 */
1610void kzfree(const void *p)
1611{
1612 size_t ks;
1613 void *mem = (void *)p;
1614
1615 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1616 return;
1617 ks = ksize(mem);
1618 memset(mem, 0, ks);
1619 kfree(mem);
1620}
1621EXPORT_SYMBOL(kzfree);
1622
10d1f8cb
ME
1623/**
1624 * ksize - get the actual amount of memory allocated for a given object
1625 * @objp: Pointer to the object
1626 *
1627 * kmalloc may internally round up allocations and return more memory
1628 * than requested. ksize() can be used to determine the actual amount of
1629 * memory allocated. The caller may use this additional memory, even though
1630 * a smaller amount of memory was initially specified with the kmalloc call.
1631 * The caller must guarantee that objp points to a valid object previously
1632 * allocated with either kmalloc() or kmem_cache_alloc(). The object
1633 * must not be freed during the duration of the call.
1634 *
1635 * Return: size of the actual memory used by @objp in bytes
1636 */
1637size_t ksize(const void *objp)
1638{
0d4ca4c9
ME
1639 size_t size;
1640
1641 if (WARN_ON_ONCE(!objp))
1642 return 0;
1643 /*
1644 * We need to check that the pointed to object is valid, and only then
1645 * unpoison the shadow memory below. We use __kasan_check_read(), to
1646 * generate a more useful report at the time ksize() is called (rather
1647 * than later where behaviour is undefined due to potential
1648 * use-after-free or double-free).
1649 *
1650 * If the pointed to memory is invalid we return 0, to avoid users of
1651 * ksize() writing to and potentially corrupting the memory region.
1652 *
1653 * We want to perform the check before __ksize(), to avoid potentially
1654 * crashing in __ksize() due to accessing invalid metadata.
1655 */
1656 if (unlikely(objp == ZERO_SIZE_PTR) || !__kasan_check_read(objp, 1))
1657 return 0;
1658
1659 size = __ksize(objp);
10d1f8cb
ME
1660 /*
1661 * We assume that ksize callers could use whole allocated area,
1662 * so we need to unpoison this area.
1663 */
1664 kasan_unpoison_shadow(objp, size);
1665 return size;
1666}
1667EXPORT_SYMBOL(ksize);
1668
928cec9c
AR
1669/* Tracepoints definitions. */
1670EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1671EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1672EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1673EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1674EXPORT_TRACEPOINT_SYMBOL(kfree);
1675EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
4f6923fb
HM
1676
1677int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1678{
1679 if (__should_failslab(s, gfpflags))
1680 return -ENOMEM;
1681 return 0;
1682}
1683ALLOW_ERROR_INJECTION(should_failslab, ERRNO);