]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/slob.c
Merge tag 'usb-4.10-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[mirror_ubuntu-bionic-kernel.git] / mm / slob.c
CommitLineData
10cef602
MM
1/*
2 * SLOB Allocator: Simple List Of Blocks
3 *
4 * Matt Mackall <mpm@selenic.com> 12/30/03
5 *
6193a2ff
PM
6 * NUMA support by Paul Mundt, 2007.
7 *
10cef602
MM
8 * How SLOB works:
9 *
10 * The core of SLOB is a traditional K&R style heap allocator, with
11 * support for returning aligned objects. The granularity of this
55394849
NP
12 * allocator is as little as 2 bytes, however typically most architectures
13 * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
95b35127 14 *
20cecbae
MM
15 * The slob heap is a set of linked list of pages from alloc_pages(),
16 * and within each page, there is a singly-linked list of free blocks
17 * (slob_t). The heap is grown on demand. To reduce fragmentation,
18 * heap pages are segregated into three lists, with objects less than
19 * 256 bytes, objects less than 1024 bytes, and all other objects.
20 *
21 * Allocation from heap involves first searching for a page with
22 * sufficient free blocks (using a next-fit-like approach) followed by
23 * a first-fit scan of the page. Deallocation inserts objects back
24 * into the free list in address order, so this is effectively an
25 * address-ordered first fit.
10cef602
MM
26 *
27 * Above this is an implementation of kmalloc/kfree. Blocks returned
55394849 28 * from kmalloc are prepended with a 4-byte header with the kmalloc size.
10cef602 29 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
6193a2ff 30 * alloc_pages() directly, allocating compound pages so the page order
999d8795
EG
31 * does not have to be separately tracked.
32 * These objects are detected in kfree() because PageSlab()
d87a133f 33 * is false for them.
10cef602
MM
34 *
35 * SLAB is emulated on top of SLOB by simply calling constructors and
95b35127
NP
36 * destructors for every SLAB allocation. Objects are returned with the
37 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
38 * case the low-level allocator will fragment blocks to create the proper
39 * alignment. Again, objects of page-size or greater are allocated by
6193a2ff 40 * calling alloc_pages(). As SLAB objects know their size, no separate
95b35127 41 * size bookkeeping is necessary and there is essentially no allocation
d87a133f
NP
42 * space overhead, and compound pages aren't needed for multi-page
43 * allocations.
6193a2ff
PM
44 *
45 * NUMA support in SLOB is fairly simplistic, pushing most of the real
46 * logic down to the page allocator, and simply doing the node accounting
47 * on the upper levels. In the event that a node id is explicitly
96db800f 48 * provided, __alloc_pages_node() with the specified node id is used
6193a2ff
PM
49 * instead. The common case (or when the node id isn't explicitly provided)
50 * will default to the current node, as per numa_node_id().
51 *
52 * Node aware pages are still inserted in to the global freelist, and
53 * these are scanned for by matching against the node id encoded in the
54 * page flags. As a result, block allocations that can be satisfied from
55 * the freelist will only be done so on pages residing on the same node,
56 * in order to prevent random node placement.
10cef602
MM
57 */
58
95b35127 59#include <linux/kernel.h>
10cef602 60#include <linux/slab.h>
97d06609 61
10cef602 62#include <linux/mm.h>
1f0532eb 63#include <linux/swap.h> /* struct reclaim_state */
10cef602
MM
64#include <linux/cache.h>
65#include <linux/init.h>
b95f1b31 66#include <linux/export.h>
afc0cedb 67#include <linux/rcupdate.h>
95b35127 68#include <linux/list.h>
4374e616 69#include <linux/kmemleak.h>
039ca4e7
LZ
70
71#include <trace/events/kmem.h>
72
60063497 73#include <linux/atomic.h>
95b35127 74
b9ce5ef4 75#include "slab.h"
95b35127
NP
76/*
77 * slob_block has a field 'units', which indicates size of block if +ve,
78 * or offset of next block if -ve (in SLOB_UNITs).
79 *
80 * Free blocks of size 1 unit simply contain the offset of the next block.
81 * Those with larger size contain their size in the first SLOB_UNIT of
82 * memory, and the offset of the next free block in the second SLOB_UNIT.
83 */
55394849 84#if PAGE_SIZE <= (32767 * 2)
95b35127
NP
85typedef s16 slobidx_t;
86#else
87typedef s32 slobidx_t;
88#endif
89
10cef602 90struct slob_block {
95b35127 91 slobidx_t units;
55394849 92};
10cef602
MM
93typedef struct slob_block slob_t;
94
95b35127 95/*
20cecbae 96 * All partially free slob pages go on these lists.
95b35127 97 */
20cecbae
MM
98#define SLOB_BREAK1 256
99#define SLOB_BREAK2 1024
100static LIST_HEAD(free_slob_small);
101static LIST_HEAD(free_slob_medium);
102static LIST_HEAD(free_slob_large);
95b35127 103
95b35127
NP
104/*
105 * slob_page_free: true for pages on free_slob_pages list.
106 */
b8c24c4a 107static inline int slob_page_free(struct page *sp)
95b35127 108{
b8c24c4a 109 return PageSlobFree(sp);
95b35127
NP
110}
111
b8c24c4a 112static void set_slob_page_free(struct page *sp, struct list_head *list)
95b35127 113{
34bf6ef9 114 list_add(&sp->lru, list);
b8c24c4a 115 __SetPageSlobFree(sp);
95b35127
NP
116}
117
b8c24c4a 118static inline void clear_slob_page_free(struct page *sp)
95b35127 119{
34bf6ef9 120 list_del(&sp->lru);
b8c24c4a 121 __ClearPageSlobFree(sp);
95b35127
NP
122}
123
10cef602 124#define SLOB_UNIT sizeof(slob_t)
a6d78159 125#define SLOB_UNITS(size) DIV_ROUND_UP(size, SLOB_UNIT)
10cef602 126
afc0cedb
NP
127/*
128 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
129 * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
130 * the block using call_rcu.
131 */
132struct slob_rcu {
133 struct rcu_head head;
134 int size;
135};
136
95b35127
NP
137/*
138 * slob_lock protects all slob allocator structures.
139 */
10cef602 140static DEFINE_SPINLOCK(slob_lock);
10cef602 141
95b35127
NP
142/*
143 * Encode the given size and next info into a free slob block s.
144 */
145static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
146{
147 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
148 slobidx_t offset = next - base;
bcb4ddb4 149
95b35127
NP
150 if (size > 1) {
151 s[0].units = size;
152 s[1].units = offset;
153 } else
154 s[0].units = -offset;
155}
10cef602 156
95b35127
NP
157/*
158 * Return the size of a slob block.
159 */
160static slobidx_t slob_units(slob_t *s)
161{
162 if (s->units > 0)
163 return s->units;
164 return 1;
165}
166
167/*
168 * Return the next free slob block pointer after this one.
169 */
170static slob_t *slob_next(slob_t *s)
171{
172 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
173 slobidx_t next;
174
175 if (s[0].units < 0)
176 next = -s[0].units;
177 else
178 next = s[1].units;
179 return base+next;
180}
181
182/*
183 * Returns true if s is the last free block in its page.
184 */
185static int slob_last(slob_t *s)
186{
187 return !((unsigned long)slob_next(s) & ~PAGE_MASK);
188}
189
6e9ed0cc 190static void *slob_new_pages(gfp_t gfp, int order, int node)
6193a2ff
PM
191{
192 void *page;
193
194#ifdef CONFIG_NUMA
90f2cbbc 195 if (node != NUMA_NO_NODE)
96db800f 196 page = __alloc_pages_node(node, gfp, order);
6193a2ff
PM
197 else
198#endif
199 page = alloc_pages(gfp, order);
200
201 if (!page)
202 return NULL;
203
204 return page_address(page);
205}
206
6e9ed0cc
AW
207static void slob_free_pages(void *b, int order)
208{
1f0532eb
NP
209 if (current->reclaim_state)
210 current->reclaim_state->reclaimed_slab += 1 << order;
6e9ed0cc
AW
211 free_pages((unsigned long)b, order);
212}
213
95b35127
NP
214/*
215 * Allocate a slob block within a given slob_page sp.
216 */
b8c24c4a 217static void *slob_page_alloc(struct page *sp, size_t size, int align)
10cef602 218{
6e9ed0cc 219 slob_t *prev, *cur, *aligned = NULL;
10cef602 220 int delta = 0, units = SLOB_UNITS(size);
10cef602 221
b8c24c4a 222 for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) {
95b35127
NP
223 slobidx_t avail = slob_units(cur);
224
10cef602
MM
225 if (align) {
226 aligned = (slob_t *)ALIGN((unsigned long)cur, align);
227 delta = aligned - cur;
228 }
95b35127
NP
229 if (avail >= units + delta) { /* room enough? */
230 slob_t *next;
231
10cef602 232 if (delta) { /* need to fragment head to align? */
95b35127
NP
233 next = slob_next(cur);
234 set_slob(aligned, avail - delta, next);
235 set_slob(cur, delta, aligned);
10cef602
MM
236 prev = cur;
237 cur = aligned;
95b35127 238 avail = slob_units(cur);
10cef602
MM
239 }
240
95b35127
NP
241 next = slob_next(cur);
242 if (avail == units) { /* exact fit? unlink. */
243 if (prev)
244 set_slob(prev, slob_units(prev), next);
245 else
b8c24c4a 246 sp->freelist = next;
95b35127
NP
247 } else { /* fragment */
248 if (prev)
249 set_slob(prev, slob_units(prev), cur + units);
250 else
b8c24c4a 251 sp->freelist = cur + units;
95b35127 252 set_slob(cur + units, avail - units, next);
10cef602
MM
253 }
254
95b35127
NP
255 sp->units -= units;
256 if (!sp->units)
257 clear_slob_page_free(sp);
10cef602
MM
258 return cur;
259 }
95b35127
NP
260 if (slob_last(cur))
261 return NULL;
262 }
263}
10cef602 264
95b35127
NP
265/*
266 * slob_alloc: entry point into the slob allocator.
267 */
6193a2ff 268static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
95b35127 269{
b8c24c4a 270 struct page *sp;
d6269543 271 struct list_head *prev;
20cecbae 272 struct list_head *slob_list;
95b35127
NP
273 slob_t *b = NULL;
274 unsigned long flags;
10cef602 275
20cecbae
MM
276 if (size < SLOB_BREAK1)
277 slob_list = &free_slob_small;
278 else if (size < SLOB_BREAK2)
279 slob_list = &free_slob_medium;
280 else
281 slob_list = &free_slob_large;
282
95b35127
NP
283 spin_lock_irqsave(&slob_lock, flags);
284 /* Iterate through each partially free page, try to find room */
34bf6ef9 285 list_for_each_entry(sp, slob_list, lru) {
6193a2ff
PM
286#ifdef CONFIG_NUMA
287 /*
288 * If there's a node specification, search for a partial
289 * page with a matching node id in the freelist.
290 */
90f2cbbc 291 if (node != NUMA_NO_NODE && page_to_nid(sp) != node)
6193a2ff
PM
292 continue;
293#endif
d6269543
MM
294 /* Enough room on this page? */
295 if (sp->units < SLOB_UNITS(size))
296 continue;
6193a2ff 297
d6269543 298 /* Attempt to alloc */
34bf6ef9 299 prev = sp->lru.prev;
d6269543
MM
300 b = slob_page_alloc(sp, size, align);
301 if (!b)
302 continue;
303
304 /* Improve fragment distribution and reduce our average
305 * search time by starting our next search here. (see
306 * Knuth vol 1, sec 2.5, pg 449) */
20cecbae
MM
307 if (prev != slob_list->prev &&
308 slob_list->next != prev->next)
309 list_move_tail(slob_list, prev->next);
d6269543 310 break;
10cef602 311 }
95b35127
NP
312 spin_unlock_irqrestore(&slob_lock, flags);
313
314 /* Not enough space: must allocate a new page */
315 if (!b) {
6e9ed0cc 316 b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
95b35127 317 if (!b)
6e9ed0cc 318 return NULL;
b5568280
CL
319 sp = virt_to_page(b);
320 __SetPageSlab(sp);
95b35127
NP
321
322 spin_lock_irqsave(&slob_lock, flags);
323 sp->units = SLOB_UNITS(PAGE_SIZE);
b8c24c4a 324 sp->freelist = b;
34bf6ef9 325 INIT_LIST_HEAD(&sp->lru);
95b35127 326 set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
20cecbae 327 set_slob_page_free(sp, slob_list);
95b35127
NP
328 b = slob_page_alloc(sp, size, align);
329 BUG_ON(!b);
330 spin_unlock_irqrestore(&slob_lock, flags);
331 }
d07dbea4
CL
332 if (unlikely((gfp & __GFP_ZERO) && b))
333 memset(b, 0, size);
95b35127 334 return b;
10cef602
MM
335}
336
95b35127
NP
337/*
338 * slob_free: entry point into the slob allocator.
339 */
10cef602
MM
340static void slob_free(void *block, int size)
341{
b8c24c4a 342 struct page *sp;
95b35127
NP
343 slob_t *prev, *next, *b = (slob_t *)block;
344 slobidx_t units;
10cef602 345 unsigned long flags;
d602daba 346 struct list_head *slob_list;
10cef602 347
2408c550 348 if (unlikely(ZERO_OR_NULL_PTR(block)))
10cef602 349 return;
95b35127 350 BUG_ON(!size);
10cef602 351
b5568280 352 sp = virt_to_page(block);
95b35127 353 units = SLOB_UNITS(size);
10cef602 354
10cef602 355 spin_lock_irqsave(&slob_lock, flags);
10cef602 356
95b35127
NP
357 if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
358 /* Go directly to page allocator. Do not pass slob allocator */
359 if (slob_page_free(sp))
360 clear_slob_page_free(sp);
6fb8f424 361 spin_unlock_irqrestore(&slob_lock, flags);
b5568280 362 __ClearPageSlab(sp);
22b751c3 363 page_mapcount_reset(sp);
1f0532eb 364 slob_free_pages(b, 0);
6fb8f424 365 return;
95b35127 366 }
10cef602 367
95b35127
NP
368 if (!slob_page_free(sp)) {
369 /* This slob page is about to become partially free. Easy! */
370 sp->units = units;
b8c24c4a 371 sp->freelist = b;
95b35127
NP
372 set_slob(b, units,
373 (void *)((unsigned long)(b +
374 SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
d602daba
BL
375 if (size < SLOB_BREAK1)
376 slob_list = &free_slob_small;
377 else if (size < SLOB_BREAK2)
378 slob_list = &free_slob_medium;
379 else
380 slob_list = &free_slob_large;
381 set_slob_page_free(sp, slob_list);
95b35127
NP
382 goto out;
383 }
384
385 /*
386 * Otherwise the page is already partially free, so find reinsertion
387 * point.
388 */
389 sp->units += units;
10cef602 390
b8c24c4a
CL
391 if (b < (slob_t *)sp->freelist) {
392 if (b + units == sp->freelist) {
393 units += slob_units(sp->freelist);
394 sp->freelist = slob_next(sp->freelist);
679299b3 395 }
b8c24c4a
CL
396 set_slob(b, units, sp->freelist);
397 sp->freelist = b;
95b35127 398 } else {
b8c24c4a 399 prev = sp->freelist;
95b35127
NP
400 next = slob_next(prev);
401 while (b > next) {
402 prev = next;
403 next = slob_next(prev);
404 }
10cef602 405
95b35127
NP
406 if (!slob_last(prev) && b + units == next) {
407 units += slob_units(next);
408 set_slob(b, units, slob_next(next));
409 } else
410 set_slob(b, units, next);
411
412 if (prev + slob_units(prev) == b) {
413 units = slob_units(b) + slob_units(prev);
414 set_slob(prev, units, slob_next(b));
415 } else
416 set_slob(prev, slob_units(prev), b);
417 }
418out:
10cef602
MM
419 spin_unlock_irqrestore(&slob_lock, flags);
420}
421
95b35127
NP
422/*
423 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
424 */
425
f3f74101
EG
426static __always_inline void *
427__do_kmalloc_node(size_t size, gfp_t gfp, int node, unsigned long caller)
10cef602 428{
6cb8f913 429 unsigned int *m;
789306e5 430 int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
3eae2cb2 431 void *ret;
55394849 432
bd50cfa8
SR
433 gfp &= gfp_allowed_mask;
434
19cefdff 435 lockdep_trace_alloc(gfp);
cf40bd16 436
55394849 437 if (size < PAGE_SIZE - align) {
6cb8f913
CL
438 if (!size)
439 return ZERO_SIZE_PTR;
440
6193a2ff 441 m = slob_alloc(size + align, gfp, align, node);
3eae2cb2 442
239f49c0
MK
443 if (!m)
444 return NULL;
445 *m = size;
3eae2cb2
EGM
446 ret = (void *)m + align;
447
f3f74101 448 trace_kmalloc_node(caller, ret,
ca2b84cb 449 size, size + align, gfp, node);
d87a133f 450 } else {
3eae2cb2 451 unsigned int order = get_order(size);
d87a133f 452
8df275af
DR
453 if (likely(order))
454 gfp |= __GFP_COMP;
455 ret = slob_new_pages(gfp, order, node);
3eae2cb2 456
f3f74101 457 trace_kmalloc_node(caller, ret,
ca2b84cb 458 size, PAGE_SIZE << order, gfp, node);
10cef602 459 }
3eae2cb2 460
4374e616 461 kmemleak_alloc(ret, size, 1, gfp);
3eae2cb2 462 return ret;
10cef602 463}
f3f74101 464
f1b6eb6e 465void *__kmalloc(size_t size, gfp_t gfp)
f3f74101 466{
f1b6eb6e 467 return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, _RET_IP_);
f3f74101 468}
f1b6eb6e 469EXPORT_SYMBOL(__kmalloc);
10cef602 470
f3f74101
EG
471void *__kmalloc_track_caller(size_t size, gfp_t gfp, unsigned long caller)
472{
473 return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, caller);
474}
475
476#ifdef CONFIG_NUMA
82bd5508 477void *__kmalloc_node_track_caller(size_t size, gfp_t gfp,
f3f74101
EG
478 int node, unsigned long caller)
479{
480 return __do_kmalloc_node(size, gfp, node, caller);
481}
482#endif
f3f74101 483
10cef602
MM
484void kfree(const void *block)
485{
b8c24c4a 486 struct page *sp;
10cef602 487
2121db74
PE
488 trace_kfree(_RET_IP_, block);
489
2408c550 490 if (unlikely(ZERO_OR_NULL_PTR(block)))
10cef602 491 return;
4374e616 492 kmemleak_free(block);
10cef602 493
b5568280
CL
494 sp = virt_to_page(block);
495 if (PageSlab(sp)) {
789306e5 496 int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
55394849
NP
497 unsigned int *m = (unsigned int *)(block - align);
498 slob_free(m, *m + align);
d87a133f 499 } else
8cf9864b 500 __free_pages(sp, compound_order(sp));
10cef602 501}
10cef602
MM
502EXPORT_SYMBOL(kfree);
503
d87a133f 504/* can't use ksize for kmem_cache_alloc memory, only kmalloc */
fd76bab2 505size_t ksize(const void *block)
10cef602 506{
b8c24c4a 507 struct page *sp;
999d8795
EG
508 int align;
509 unsigned int *m;
10cef602 510
ef8b4520
CL
511 BUG_ON(!block);
512 if (unlikely(block == ZERO_SIZE_PTR))
10cef602
MM
513 return 0;
514
b5568280 515 sp = virt_to_page(block);
999d8795
EG
516 if (unlikely(!PageSlab(sp)))
517 return PAGE_SIZE << compound_order(sp);
518
789306e5 519 align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
999d8795
EG
520 m = (unsigned int *)(block - align);
521 return SLOB_UNITS(*m) * SLOB_UNIT;
10cef602 522}
b1aabecd 523EXPORT_SYMBOL(ksize);
10cef602 524
8a13a4cc 525int __kmem_cache_create(struct kmem_cache *c, unsigned long flags)
10cef602 526{
278b1bb1
CL
527 if (flags & SLAB_DESTROY_BY_RCU) {
528 /* leave room for rcu footer at the end of object */
529 c->size += sizeof(struct slob_rcu);
039363f3 530 }
278b1bb1 531 c->flags = flags;
278b1bb1 532 return 0;
10cef602 533}
10cef602 534
c21a6daf 535static void *slob_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
10cef602
MM
536{
537 void *b;
538
bd50cfa8
SR
539 flags &= gfp_allowed_mask;
540
541 lockdep_trace_alloc(flags);
542
3eae2cb2 543 if (c->size < PAGE_SIZE) {
6193a2ff 544 b = slob_alloc(c->size, flags, c->align, node);
fe74fe2b 545 trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
ca2b84cb
EGM
546 SLOB_UNITS(c->size) * SLOB_UNIT,
547 flags, node);
3eae2cb2 548 } else {
6e9ed0cc 549 b = slob_new_pages(flags, get_order(c->size), node);
fe74fe2b 550 trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
ca2b84cb
EGM
551 PAGE_SIZE << get_order(c->size),
552 flags, node);
3eae2cb2 553 }
10cef602 554
c1e854e9 555 if (b && c->ctor)
51cc5068 556 c->ctor(b);
10cef602 557
4374e616 558 kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
10cef602
MM
559 return b;
560}
f1b6eb6e
CL
561
562void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
563{
564 return slob_alloc_node(cachep, flags, NUMA_NO_NODE);
565}
566EXPORT_SYMBOL(kmem_cache_alloc);
567
568#ifdef CONFIG_NUMA
569void *__kmalloc_node(size_t size, gfp_t gfp, int node)
570{
571 return __do_kmalloc_node(size, gfp, node, _RET_IP_);
572}
573EXPORT_SYMBOL(__kmalloc_node);
574
575void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t gfp, int node)
576{
577 return slob_alloc_node(cachep, gfp, node);
578}
6193a2ff 579EXPORT_SYMBOL(kmem_cache_alloc_node);
f1b6eb6e 580#endif
10cef602 581
afc0cedb 582static void __kmem_cache_free(void *b, int size)
10cef602 583{
afc0cedb
NP
584 if (size < PAGE_SIZE)
585 slob_free(b, size);
10cef602 586 else
6e9ed0cc 587 slob_free_pages(b, get_order(size));
afc0cedb
NP
588}
589
590static void kmem_rcu_free(struct rcu_head *head)
591{
592 struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
593 void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
594
595 __kmem_cache_free(b, slob_rcu->size);
596}
597
598void kmem_cache_free(struct kmem_cache *c, void *b)
599{
4374e616 600 kmemleak_free_recursive(b, c->flags);
afc0cedb
NP
601 if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
602 struct slob_rcu *slob_rcu;
603 slob_rcu = b + (c->size - sizeof(struct slob_rcu));
afc0cedb
NP
604 slob_rcu->size = c->size;
605 call_rcu(&slob_rcu->head, kmem_rcu_free);
606 } else {
afc0cedb
NP
607 __kmem_cache_free(b, c->size);
608 }
3eae2cb2 609
ca2b84cb 610 trace_kmem_cache_free(_RET_IP_, b);
10cef602
MM
611}
612EXPORT_SYMBOL(kmem_cache_free);
613
484748f0
CL
614void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
615{
616 __kmem_cache_free_bulk(s, size, p);
617}
618EXPORT_SYMBOL(kmem_cache_free_bulk);
619
865762a8 620int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
484748f0
CL
621 void **p)
622{
623 return __kmem_cache_alloc_bulk(s, flags, size, p);
624}
625EXPORT_SYMBOL(kmem_cache_alloc_bulk);
626
945cf2b6
CL
627int __kmem_cache_shutdown(struct kmem_cache *c)
628{
629 /* No way to check for remaining objects */
630 return 0;
631}
632
52b4b950
DS
633void __kmem_cache_release(struct kmem_cache *c)
634{
635}
636
89e364db 637int __kmem_cache_shrink(struct kmem_cache *d)
2e892f43
CL
638{
639 return 0;
640}
2e892f43 641
9b030cb8
CL
642struct kmem_cache kmem_cache_boot = {
643 .name = "kmem_cache",
644 .size = sizeof(struct kmem_cache),
645 .flags = SLAB_PANIC,
646 .align = ARCH_KMALLOC_MINALIGN,
647};
648
bcb4ddb4
DG
649void __init kmem_cache_init(void)
650{
9b030cb8 651 kmem_cache = &kmem_cache_boot;
97d06609 652 slab_state = UP;
10cef602 653}
bbff2e43
WF
654
655void __init kmem_cache_init_late(void)
656{
97d06609 657 slab_state = FULL;
bbff2e43 658}