]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/slub.c
dt-bindings: i2c: renesas,riic: Add interrupt-names
[mirror_ubuntu-jammy-kernel.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
dc84207d 6 * The allocator synchronizes using per slab locks or atomic operations
881db7fb 7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
1b3865d0 18#include <linux/swab.h>
81819f0f
CL
19#include <linux/bitops.h>
20#include <linux/slab.h>
97d06609 21#include "slab.h"
7b3c3a50 22#include <linux/proc_fs.h>
81819f0f 23#include <linux/seq_file.h>
a79316c6 24#include <linux/kasan.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b89fb5ef 31#include <linux/kfence.h>
b9049e23 32#include <linux/memory.h>
f8bd2258 33#include <linux/math64.h>
773ff60e 34#include <linux/fault-inject.h>
bfa71457 35#include <linux/stacktrace.h>
4de900b4 36#include <linux/prefetch.h>
2633d7a0 37#include <linux/memcontrol.h>
2482ddec 38#include <linux/random.h>
1f9f78b1 39#include <kunit/test.h>
81819f0f 40
64dd6849 41#include <linux/debugfs.h>
4a92379b
RK
42#include <trace/events/kmem.h>
43
072bb0aa
MG
44#include "internal.h"
45
81819f0f
CL
46/*
47 * Lock order:
18004c5d 48 * 1. slab_mutex (Global Mutex)
881db7fb
CL
49 * 2. node->list_lock
50 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 51 *
18004c5d 52 * slab_mutex
881db7fb 53 *
18004c5d 54 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
55 * and to synchronize major metadata changes to slab cache structures.
56 *
57 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 58 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 59 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
60 * B. page->inuse -> Number of objects in use
61 * C. page->objects -> Number of objects in page
62 * D. page->frozen -> frozen state
881db7fb
CL
63 *
64 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
65 * on any list except per cpu partial list. The processor that froze the
66 * slab is the one who can perform list operations on the page. Other
67 * processors may put objects onto the freelist but the processor that
68 * froze the slab is the only one that can retrieve the objects from the
69 * page's freelist.
81819f0f
CL
70 *
71 * The list_lock protects the partial and full list on each node and
72 * the partial slab counter. If taken then no new slabs may be added or
73 * removed from the lists nor make the number of partial slabs be modified.
74 * (Note that the total number of slabs is an atomic value that may be
75 * modified without taking the list lock).
76 *
77 * The list_lock is a centralized lock and thus we avoid taking it as
78 * much as possible. As long as SLUB does not have to handle partial
79 * slabs, operations can continue without any centralized lock. F.e.
80 * allocating a long series of objects that fill up slabs does not require
81 * the list lock.
81819f0f
CL
82 * Interrupts are disabled during allocation and deallocation in order to
83 * make the slab allocator safe to use in the context of an irq. In addition
84 * interrupts are disabled to ensure that the processor does not change
85 * while handling per_cpu slabs, due to kernel preemption.
86 *
87 * SLUB assigns one slab for allocation to each processor.
88 * Allocations only occur from these slabs called cpu slabs.
89 *
672bba3a
CL
90 * Slabs with free elements are kept on a partial list and during regular
91 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 92 * freed then the slab will show up again on the partial lists.
672bba3a
CL
93 * We track full slabs for debugging purposes though because otherwise we
94 * cannot scan all objects.
81819f0f
CL
95 *
96 * Slabs are freed when they become empty. Teardown and setup is
97 * minimal so we rely on the page allocators per cpu caches for
98 * fast frees and allocs.
99 *
aed68148 100 * page->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
101 * This means that the slab is dedicated to a purpose
102 * such as satisfying allocations for a specific
103 * processor. Objects may be freed in the slab while
104 * it is frozen but slab_free will then skip the usual
105 * list operations. It is up to the processor holding
106 * the slab to integrate the slab into the slab lists
107 * when the slab is no longer needed.
108 *
109 * One use of this flag is to mark slabs that are
110 * used for allocations. Then such a slab becomes a cpu
111 * slab. The cpu slab may be equipped with an additional
dfb4f096 112 * freelist that allows lockless access to
894b8788
CL
113 * free objects in addition to the regular freelist
114 * that requires the slab lock.
81819f0f 115 *
aed68148 116 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 117 * options set. This moves slab handling out of
894b8788 118 * the fast path and disables lockless freelists.
81819f0f
CL
119 */
120
ca0cab65
VB
121#ifdef CONFIG_SLUB_DEBUG
122#ifdef CONFIG_SLUB_DEBUG_ON
123DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
124#else
125DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
126#endif
79270291 127#endif /* CONFIG_SLUB_DEBUG */
ca0cab65 128
59052e89
VB
129static inline bool kmem_cache_debug(struct kmem_cache *s)
130{
131 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 132}
5577bd8a 133
117d54df 134void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 135{
59052e89 136 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
137 p += s->red_left_pad;
138
139 return p;
140}
141
345c905d
JK
142static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
143{
144#ifdef CONFIG_SLUB_CPU_PARTIAL
145 return !kmem_cache_debug(s);
146#else
147 return false;
148#endif
149}
150
81819f0f
CL
151/*
152 * Issues still to be resolved:
153 *
81819f0f
CL
154 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
155 *
81819f0f
CL
156 * - Variable sizing of the per node arrays
157 */
158
b789ef51
CL
159/* Enable to log cmpxchg failures */
160#undef SLUB_DEBUG_CMPXCHG
161
2086d26a 162/*
dc84207d 163 * Minimum number of partial slabs. These will be left on the partial
2086d26a
CL
164 * lists even if they are empty. kmem_cache_shrink may reclaim them.
165 */
76be8950 166#define MIN_PARTIAL 5
e95eed57 167
2086d26a
CL
168/*
169 * Maximum number of desirable partial slabs.
170 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 171 * sort the partial list by the number of objects in use.
2086d26a
CL
172 */
173#define MAX_PARTIAL 10
174
becfda68 175#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 176 SLAB_POISON | SLAB_STORE_USER)
672bba3a 177
149daaf3
LA
178/*
179 * These debug flags cannot use CMPXCHG because there might be consistency
180 * issues when checking or reading debug information
181 */
182#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
183 SLAB_TRACE)
184
185
fa5ec8a1 186/*
3de47213
DR
187 * Debugging flags that require metadata to be stored in the slab. These get
188 * disabled when slub_debug=O is used and a cache's min order increases with
189 * metadata.
fa5ec8a1 190 */
3de47213 191#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 192
210b5c06
CG
193#define OO_SHIFT 16
194#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 195#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 196
81819f0f 197/* Internal SLUB flags */
d50112ed 198/* Poison object */
4fd0b46e 199#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 200/* Use cmpxchg_double */
4fd0b46e 201#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 202
02cbc874
CL
203/*
204 * Tracking user of a slab.
205 */
d6543e39 206#define TRACK_ADDRS_COUNT 16
02cbc874 207struct track {
ce71e27c 208 unsigned long addr; /* Called from address */
ae14c63a
LT
209#ifdef CONFIG_STACKTRACE
210 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
d6543e39 211#endif
02cbc874
CL
212 int cpu; /* Was running on cpu */
213 int pid; /* Pid context */
214 unsigned long when; /* When did the operation occur */
215};
216
217enum track_item { TRACK_ALLOC, TRACK_FREE };
218
ab4d5ed5 219#ifdef CONFIG_SYSFS
81819f0f
CL
220static int sysfs_slab_add(struct kmem_cache *);
221static int sysfs_slab_alias(struct kmem_cache *, const char *);
81819f0f 222#else
0c710013
CL
223static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
224static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
225 { return 0; }
81819f0f
CL
226#endif
227
64dd6849
FM
228#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
229static void debugfs_slab_add(struct kmem_cache *);
230#else
231static inline void debugfs_slab_add(struct kmem_cache *s) { }
232#endif
233
4fdccdfb 234static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
235{
236#ifdef CONFIG_SLUB_STATS
88da03a6
CL
237 /*
238 * The rmw is racy on a preemptible kernel but this is acceptable, so
239 * avoid this_cpu_add()'s irq-disable overhead.
240 */
241 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
242#endif
243}
244
7e1fa93d
VB
245/*
246 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
247 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
248 * differ during memory hotplug/hotremove operations.
249 * Protected by slab_mutex.
250 */
251static nodemask_t slab_nodes;
252
81819f0f
CL
253/********************************************************************
254 * Core slab cache functions
255 *******************************************************************/
256
2482ddec
KC
257/*
258 * Returns freelist pointer (ptr). With hardening, this is obfuscated
259 * with an XOR of the address where the pointer is held and a per-cache
260 * random number.
261 */
262static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
263 unsigned long ptr_addr)
264{
265#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9 266 /*
aa1ef4d7 267 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
d36a63a9
AK
268 * Normally, this doesn't cause any issues, as both set_freepointer()
269 * and get_freepointer() are called with a pointer with the same tag.
270 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
271 * example, when __free_slub() iterates over objects in a cache, it
272 * passes untagged pointers to check_object(). check_object() in turns
273 * calls get_freepointer() with an untagged pointer, which causes the
274 * freepointer to be restored incorrectly.
275 */
276 return (void *)((unsigned long)ptr ^ s->random ^
1ad53d9f 277 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
278#else
279 return ptr;
280#endif
281}
282
283/* Returns the freelist pointer recorded at location ptr_addr. */
284static inline void *freelist_dereference(const struct kmem_cache *s,
285 void *ptr_addr)
286{
287 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
288 (unsigned long)ptr_addr);
289}
290
7656c72b
CL
291static inline void *get_freepointer(struct kmem_cache *s, void *object)
292{
aa1ef4d7 293 object = kasan_reset_tag(object);
2482ddec 294 return freelist_dereference(s, object + s->offset);
7656c72b
CL
295}
296
0ad9500e
ED
297static void prefetch_freepointer(const struct kmem_cache *s, void *object)
298{
0882ff91 299 prefetch(object + s->offset);
0ad9500e
ED
300}
301
1393d9a1
CL
302static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
303{
2482ddec 304 unsigned long freepointer_addr;
1393d9a1
CL
305 void *p;
306
8e57f8ac 307 if (!debug_pagealloc_enabled_static())
922d566c
JK
308 return get_freepointer(s, object);
309
f70b0049 310 object = kasan_reset_tag(object);
2482ddec 311 freepointer_addr = (unsigned long)object + s->offset;
fe557319 312 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
2482ddec 313 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
314}
315
7656c72b
CL
316static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
317{
2482ddec
KC
318 unsigned long freeptr_addr = (unsigned long)object + s->offset;
319
ce6fa91b
AP
320#ifdef CONFIG_SLAB_FREELIST_HARDENED
321 BUG_ON(object == fp); /* naive detection of double free or corruption */
322#endif
323
aa1ef4d7 324 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
2482ddec 325 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
326}
327
328/* Loop over all objects in a slab */
224a88be 329#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
330 for (__p = fixup_red_left(__s, __addr); \
331 __p < (__addr) + (__objects) * (__s)->size; \
332 __p += (__s)->size)
7656c72b 333
9736d2a9 334static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 335{
9736d2a9 336 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
337}
338
19af27af 339static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 340 unsigned int size)
834f3d11
CL
341{
342 struct kmem_cache_order_objects x = {
9736d2a9 343 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
344 };
345
346 return x;
347}
348
19af27af 349static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 350{
210b5c06 351 return x.x >> OO_SHIFT;
834f3d11
CL
352}
353
19af27af 354static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 355{
210b5c06 356 return x.x & OO_MASK;
834f3d11
CL
357}
358
881db7fb
CL
359/*
360 * Per slab locking using the pagelock
361 */
362static __always_inline void slab_lock(struct page *page)
363{
48c935ad 364 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
365 bit_spin_lock(PG_locked, &page->flags);
366}
367
368static __always_inline void slab_unlock(struct page *page)
369{
48c935ad 370 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
371 __bit_spin_unlock(PG_locked, &page->flags);
372}
373
1d07171c
CL
374/* Interrupts must be disabled (for the fallback code to work right) */
375static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
378 const char *n)
379{
380 VM_BUG_ON(!irqs_disabled());
2565409f
HC
381#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 383 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 384 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
385 freelist_old, counters_old,
386 freelist_new, counters_new))
6f6528a1 387 return true;
1d07171c
CL
388 } else
389#endif
390 {
391 slab_lock(page);
d0e0ac97
CG
392 if (page->freelist == freelist_old &&
393 page->counters == counters_old) {
1d07171c 394 page->freelist = freelist_new;
7d27a04b 395 page->counters = counters_new;
1d07171c 396 slab_unlock(page);
6f6528a1 397 return true;
1d07171c
CL
398 }
399 slab_unlock(page);
400 }
401
402 cpu_relax();
403 stat(s, CMPXCHG_DOUBLE_FAIL);
404
405#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 406 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
407#endif
408
6f6528a1 409 return false;
1d07171c
CL
410}
411
b789ef51
CL
412static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 void *freelist_old, unsigned long counters_old,
414 void *freelist_new, unsigned long counters_new,
415 const char *n)
416{
2565409f
HC
417#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 419 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 420 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
421 freelist_old, counters_old,
422 freelist_new, counters_new))
6f6528a1 423 return true;
b789ef51
CL
424 } else
425#endif
426 {
1d07171c
CL
427 unsigned long flags;
428
429 local_irq_save(flags);
881db7fb 430 slab_lock(page);
d0e0ac97
CG
431 if (page->freelist == freelist_old &&
432 page->counters == counters_old) {
b789ef51 433 page->freelist = freelist_new;
7d27a04b 434 page->counters = counters_new;
881db7fb 435 slab_unlock(page);
1d07171c 436 local_irq_restore(flags);
6f6528a1 437 return true;
b789ef51 438 }
881db7fb 439 slab_unlock(page);
1d07171c 440 local_irq_restore(flags);
b789ef51
CL
441 }
442
443 cpu_relax();
444 stat(s, CMPXCHG_DOUBLE_FAIL);
445
446#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 447 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
448#endif
449
6f6528a1 450 return false;
b789ef51
CL
451}
452
41ecc55b 453#ifdef CONFIG_SLUB_DEBUG
90e9f6a6
YZ
454static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
455static DEFINE_SPINLOCK(object_map_lock);
456
1f9f78b1
OG
457#if IS_ENABLED(CONFIG_KUNIT)
458static bool slab_add_kunit_errors(void)
459{
460 struct kunit_resource *resource;
461
462 if (likely(!current->kunit_test))
463 return false;
464
465 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
466 if (!resource)
467 return false;
468
469 (*(int *)resource->data)++;
470 kunit_put_resource(resource);
471 return true;
472}
473#else
474static inline bool slab_add_kunit_errors(void) { return false; }
475#endif
476
5f80b13a
CL
477/*
478 * Determine a map of object in use on a page.
479 *
881db7fb 480 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
481 * not vanish from under us.
482 */
90e9f6a6 483static unsigned long *get_map(struct kmem_cache *s, struct page *page)
31364c2e 484 __acquires(&object_map_lock)
5f80b13a
CL
485{
486 void *p;
487 void *addr = page_address(page);
488
90e9f6a6
YZ
489 VM_BUG_ON(!irqs_disabled());
490
491 spin_lock(&object_map_lock);
492
493 bitmap_zero(object_map, page->objects);
494
5f80b13a 495 for (p = page->freelist; p; p = get_freepointer(s, p))
4138fdfc 496 set_bit(__obj_to_index(s, addr, p), object_map);
90e9f6a6
YZ
497
498 return object_map;
499}
500
81aba9e0 501static void put_map(unsigned long *map) __releases(&object_map_lock)
90e9f6a6
YZ
502{
503 VM_BUG_ON(map != object_map);
90e9f6a6 504 spin_unlock(&object_map_lock);
5f80b13a
CL
505}
506
870b1fbb 507static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
508{
509 if (s->flags & SLAB_RED_ZONE)
510 return s->size - s->red_left_pad;
511
512 return s->size;
513}
514
515static inline void *restore_red_left(struct kmem_cache *s, void *p)
516{
517 if (s->flags & SLAB_RED_ZONE)
518 p -= s->red_left_pad;
519
520 return p;
521}
522
41ecc55b
CL
523/*
524 * Debug settings:
525 */
89d3c87e 526#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 527static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 528#else
d50112ed 529static slab_flags_t slub_debug;
f0630fff 530#endif
41ecc55b 531
e17f1dfb 532static char *slub_debug_string;
fa5ec8a1 533static int disable_higher_order_debug;
41ecc55b 534
a79316c6
AR
535/*
536 * slub is about to manipulate internal object metadata. This memory lies
537 * outside the range of the allocated object, so accessing it would normally
538 * be reported by kasan as a bounds error. metadata_access_enable() is used
539 * to tell kasan that these accesses are OK.
540 */
541static inline void metadata_access_enable(void)
542{
543 kasan_disable_current();
544}
545
546static inline void metadata_access_disable(void)
547{
548 kasan_enable_current();
549}
550
81819f0f
CL
551/*
552 * Object debugging
553 */
d86bd1be
JK
554
555/* Verify that a pointer has an address that is valid within a slab page */
556static inline int check_valid_pointer(struct kmem_cache *s,
557 struct page *page, void *object)
558{
559 void *base;
560
561 if (!object)
562 return 1;
563
564 base = page_address(page);
338cfaad 565 object = kasan_reset_tag(object);
d86bd1be
JK
566 object = restore_red_left(s, object);
567 if (object < base || object >= base + page->objects * s->size ||
568 (object - base) % s->size) {
569 return 0;
570 }
571
572 return 1;
573}
574
aa2efd5e
DT
575static void print_section(char *level, char *text, u8 *addr,
576 unsigned int length)
81819f0f 577{
a79316c6 578 metadata_access_enable();
aa1ef4d7
AK
579 print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS,
580 16, 1, addr, length, 1);
a79316c6 581 metadata_access_disable();
81819f0f
CL
582}
583
cbfc35a4
WL
584/*
585 * See comment in calculate_sizes().
586 */
587static inline bool freeptr_outside_object(struct kmem_cache *s)
588{
589 return s->offset >= s->inuse;
590}
591
592/*
593 * Return offset of the end of info block which is inuse + free pointer if
594 * not overlapping with object.
595 */
596static inline unsigned int get_info_end(struct kmem_cache *s)
597{
598 if (freeptr_outside_object(s))
599 return s->inuse + sizeof(void *);
600 else
601 return s->inuse;
602}
603
81819f0f
CL
604static struct track *get_track(struct kmem_cache *s, void *object,
605 enum track_item alloc)
606{
607 struct track *p;
608
cbfc35a4 609 p = object + get_info_end(s);
81819f0f 610
aa1ef4d7 611 return kasan_reset_tag(p + alloc);
81819f0f
CL
612}
613
614static void set_track(struct kmem_cache *s, void *object,
ce71e27c 615 enum track_item alloc, unsigned long addr)
81819f0f 616{
1a00df4a 617 struct track *p = get_track(s, object, alloc);
81819f0f 618
81819f0f 619 if (addr) {
ae14c63a
LT
620#ifdef CONFIG_STACKTRACE
621 unsigned int nr_entries;
622
623 metadata_access_enable();
624 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
625 TRACK_ADDRS_COUNT, 3);
626 metadata_access_disable();
627
628 if (nr_entries < TRACK_ADDRS_COUNT)
629 p->addrs[nr_entries] = 0;
d6543e39 630#endif
81819f0f
CL
631 p->addr = addr;
632 p->cpu = smp_processor_id();
88e4ccf2 633 p->pid = current->pid;
81819f0f 634 p->when = jiffies;
b8ca7ff7 635 } else {
81819f0f 636 memset(p, 0, sizeof(struct track));
b8ca7ff7 637 }
81819f0f
CL
638}
639
81819f0f
CL
640static void init_tracking(struct kmem_cache *s, void *object)
641{
24922684
CL
642 if (!(s->flags & SLAB_STORE_USER))
643 return;
644
ce71e27c
EGM
645 set_track(s, object, TRACK_FREE, 0UL);
646 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
647}
648
86609d33 649static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
650{
651 if (!t->addr)
652 return;
653
96b94abc 654 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 655 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
ae14c63a 656#ifdef CONFIG_STACKTRACE
d6543e39 657 {
ae14c63a
LT
658 int i;
659 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
660 if (t->addrs[i])
661 pr_err("\t%pS\n", (void *)t->addrs[i]);
662 else
663 break;
d6543e39
BG
664 }
665#endif
24922684
CL
666}
667
e42f174e 668void print_tracking(struct kmem_cache *s, void *object)
24922684 669{
86609d33 670 unsigned long pr_time = jiffies;
24922684
CL
671 if (!(s->flags & SLAB_STORE_USER))
672 return;
673
86609d33
CP
674 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
675 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
676}
677
678static void print_page_info(struct page *page)
679{
96b94abc 680 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n",
4a8ef190
YS
681 page, page->objects, page->inuse, page->freelist,
682 page->flags, &page->flags);
24922684
CL
683
684}
685
686static void slab_bug(struct kmem_cache *s, char *fmt, ...)
687{
ecc42fbe 688 struct va_format vaf;
24922684 689 va_list args;
24922684
CL
690
691 va_start(args, fmt);
ecc42fbe
FF
692 vaf.fmt = fmt;
693 vaf.va = &args;
f9f58285 694 pr_err("=============================================================================\n");
ecc42fbe 695 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 696 pr_err("-----------------------------------------------------------------------------\n\n");
ecc42fbe 697 va_end(args);
81819f0f
CL
698}
699
582d1212 700__printf(2, 3)
24922684
CL
701static void slab_fix(struct kmem_cache *s, char *fmt, ...)
702{
ecc42fbe 703 struct va_format vaf;
24922684 704 va_list args;
24922684 705
1f9f78b1
OG
706 if (slab_add_kunit_errors())
707 return;
708
24922684 709 va_start(args, fmt);
ecc42fbe
FF
710 vaf.fmt = fmt;
711 vaf.va = &args;
712 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 713 va_end(args);
24922684
CL
714}
715
52f23478 716static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 717 void **freelist, void *nextfree)
52f23478
DZ
718{
719 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
dc07a728
ER
720 !check_valid_pointer(s, page, nextfree) && freelist) {
721 object_err(s, page, *freelist, "Freechain corrupt");
722 *freelist = NULL;
52f23478
DZ
723 slab_fix(s, "Isolate corrupted freechain");
724 return true;
725 }
726
727 return false;
728}
729
24922684 730static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
731{
732 unsigned int off; /* Offset of last byte */
a973e9dd 733 u8 *addr = page_address(page);
24922684
CL
734
735 print_tracking(s, p);
736
737 print_page_info(page);
738
96b94abc 739 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
f9f58285 740 p, p - addr, get_freepointer(s, p));
24922684 741
d86bd1be 742 if (s->flags & SLAB_RED_ZONE)
8669dbab 743 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
aa2efd5e 744 s->red_left_pad);
d86bd1be 745 else if (p > addr + 16)
aa2efd5e 746 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 747
8669dbab 748 print_section(KERN_ERR, "Object ", p,
1b473f29 749 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 750 if (s->flags & SLAB_RED_ZONE)
8669dbab 751 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 752 s->inuse - s->object_size);
81819f0f 753
cbfc35a4 754 off = get_info_end(s);
81819f0f 755
24922684 756 if (s->flags & SLAB_STORE_USER)
81819f0f 757 off += 2 * sizeof(struct track);
81819f0f 758
80a9201a
AP
759 off += kasan_metadata_size(s);
760
d86bd1be 761 if (off != size_from_object(s))
81819f0f 762 /* Beginning of the filler is the free pointer */
8669dbab 763 print_section(KERN_ERR, "Padding ", p + off,
aa2efd5e 764 size_from_object(s) - off);
24922684
CL
765
766 dump_stack();
81819f0f
CL
767}
768
75c66def 769void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
770 u8 *object, char *reason)
771{
1f9f78b1
OG
772 if (slab_add_kunit_errors())
773 return;
774
3dc50637 775 slab_bug(s, "%s", reason);
24922684 776 print_trailer(s, page, object);
65ebdeef 777 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
778}
779
a38965bf 780static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 781 const char *fmt, ...)
81819f0f
CL
782{
783 va_list args;
784 char buf[100];
785
1f9f78b1
OG
786 if (slab_add_kunit_errors())
787 return;
788
24922684
CL
789 va_start(args, fmt);
790 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 791 va_end(args);
3dc50637 792 slab_bug(s, "%s", buf);
24922684 793 print_page_info(page);
81819f0f 794 dump_stack();
65ebdeef 795 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
796}
797
f7cb1933 798static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f 799{
aa1ef4d7 800 u8 *p = kasan_reset_tag(object);
81819f0f 801
d86bd1be
JK
802 if (s->flags & SLAB_RED_ZONE)
803 memset(p - s->red_left_pad, val, s->red_left_pad);
804
81819f0f 805 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
806 memset(p, POISON_FREE, s->object_size - 1);
807 p[s->object_size - 1] = POISON_END;
81819f0f
CL
808 }
809
810 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 811 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
812}
813
24922684
CL
814static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
815 void *from, void *to)
816{
582d1212 817 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
24922684
CL
818 memset(from, data, to - from);
819}
820
821static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
822 u8 *object, char *what,
06428780 823 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
824{
825 u8 *fault;
826 u8 *end;
e1b70dd1 827 u8 *addr = page_address(page);
24922684 828
a79316c6 829 metadata_access_enable();
aa1ef4d7 830 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
a79316c6 831 metadata_access_disable();
24922684
CL
832 if (!fault)
833 return 1;
834
835 end = start + bytes;
836 while (end > fault && end[-1] == value)
837 end--;
838
1f9f78b1
OG
839 if (slab_add_kunit_errors())
840 goto skip_bug_print;
841
24922684 842 slab_bug(s, "%s overwritten", what);
96b94abc 843 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
e1b70dd1
MC
844 fault, end - 1, fault - addr,
845 fault[0], value);
24922684 846 print_trailer(s, page, object);
65ebdeef 847 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
24922684 848
1f9f78b1 849skip_bug_print:
24922684
CL
850 restore_bytes(s, what, value, fault, end);
851 return 0;
81819f0f
CL
852}
853
81819f0f
CL
854/*
855 * Object layout:
856 *
857 * object address
858 * Bytes of the object to be managed.
859 * If the freepointer may overlay the object then the free
cbfc35a4 860 * pointer is at the middle of the object.
672bba3a 861 *
81819f0f
CL
862 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
863 * 0xa5 (POISON_END)
864 *
3b0efdfa 865 * object + s->object_size
81819f0f 866 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 867 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 868 * object_size == inuse.
672bba3a 869 *
81819f0f
CL
870 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
871 * 0xcc (RED_ACTIVE) for objects in use.
872 *
873 * object + s->inuse
672bba3a
CL
874 * Meta data starts here.
875 *
81819f0f
CL
876 * A. Free pointer (if we cannot overwrite object on free)
877 * B. Tracking data for SLAB_STORE_USER
dc84207d 878 * C. Padding to reach required alignment boundary or at minimum
6446faa2 879 * one word if debugging is on to be able to detect writes
672bba3a
CL
880 * before the word boundary.
881 *
882 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
883 *
884 * object + s->size
672bba3a 885 * Nothing is used beyond s->size.
81819f0f 886 *
3b0efdfa 887 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 888 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
889 * may be used with merged slabcaches.
890 */
891
81819f0f
CL
892static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
893{
cbfc35a4 894 unsigned long off = get_info_end(s); /* The end of info */
81819f0f
CL
895
896 if (s->flags & SLAB_STORE_USER)
897 /* We also have user information there */
898 off += 2 * sizeof(struct track);
899
80a9201a
AP
900 off += kasan_metadata_size(s);
901
d86bd1be 902 if (size_from_object(s) == off)
81819f0f
CL
903 return 1;
904
24922684 905 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 906 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
907}
908
39b26464 909/* Check the pad bytes at the end of a slab page */
81819f0f
CL
910static int slab_pad_check(struct kmem_cache *s, struct page *page)
911{
24922684
CL
912 u8 *start;
913 u8 *fault;
914 u8 *end;
5d682681 915 u8 *pad;
24922684
CL
916 int length;
917 int remainder;
81819f0f
CL
918
919 if (!(s->flags & SLAB_POISON))
920 return 1;
921
a973e9dd 922 start = page_address(page);
a50b854e 923 length = page_size(page);
39b26464
CL
924 end = start + length;
925 remainder = length % s->size;
81819f0f
CL
926 if (!remainder)
927 return 1;
928
5d682681 929 pad = end - remainder;
a79316c6 930 metadata_access_enable();
aa1ef4d7 931 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
a79316c6 932 metadata_access_disable();
24922684
CL
933 if (!fault)
934 return 1;
935 while (end > fault && end[-1] == POISON_INUSE)
936 end--;
937
e1b70dd1
MC
938 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
939 fault, end - 1, fault - start);
5d682681 940 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 941
5d682681 942 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 943 return 0;
81819f0f
CL
944}
945
946static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 947 void *object, u8 val)
81819f0f
CL
948{
949 u8 *p = object;
3b0efdfa 950 u8 *endobject = object + s->object_size;
81819f0f
CL
951
952 if (s->flags & SLAB_RED_ZONE) {
8669dbab 953 if (!check_bytes_and_report(s, page, object, "Left Redzone",
d86bd1be
JK
954 object - s->red_left_pad, val, s->red_left_pad))
955 return 0;
956
8669dbab 957 if (!check_bytes_and_report(s, page, object, "Right Redzone",
3b0efdfa 958 endobject, val, s->inuse - s->object_size))
81819f0f 959 return 0;
81819f0f 960 } else {
3b0efdfa 961 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 962 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
963 endobject, POISON_INUSE,
964 s->inuse - s->object_size);
3adbefee 965 }
81819f0f
CL
966 }
967
968 if (s->flags & SLAB_POISON) {
f7cb1933 969 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 970 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 971 POISON_FREE, s->object_size - 1) ||
8669dbab 972 !check_bytes_and_report(s, page, p, "End Poison",
3b0efdfa 973 p + s->object_size - 1, POISON_END, 1)))
81819f0f 974 return 0;
81819f0f
CL
975 /*
976 * check_pad_bytes cleans up on its own.
977 */
978 check_pad_bytes(s, page, p);
979 }
980
cbfc35a4 981 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
982 /*
983 * Object and freepointer overlap. Cannot check
984 * freepointer while object is allocated.
985 */
986 return 1;
987
988 /* Check free pointer validity */
989 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
990 object_err(s, page, p, "Freepointer corrupt");
991 /*
9f6c708e 992 * No choice but to zap it and thus lose the remainder
81819f0f 993 * of the free objects in this slab. May cause
672bba3a 994 * another error because the object count is now wrong.
81819f0f 995 */
a973e9dd 996 set_freepointer(s, p, NULL);
81819f0f
CL
997 return 0;
998 }
999 return 1;
1000}
1001
1002static int check_slab(struct kmem_cache *s, struct page *page)
1003{
39b26464
CL
1004 int maxobj;
1005
81819f0f
CL
1006 VM_BUG_ON(!irqs_disabled());
1007
1008 if (!PageSlab(page)) {
24922684 1009 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
1010 return 0;
1011 }
39b26464 1012
9736d2a9 1013 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
1014 if (page->objects > maxobj) {
1015 slab_err(s, page, "objects %u > max %u",
f6edde9c 1016 page->objects, maxobj);
39b26464
CL
1017 return 0;
1018 }
1019 if (page->inuse > page->objects) {
24922684 1020 slab_err(s, page, "inuse %u > max %u",
f6edde9c 1021 page->inuse, page->objects);
81819f0f
CL
1022 return 0;
1023 }
1024 /* Slab_pad_check fixes things up after itself */
1025 slab_pad_check(s, page);
1026 return 1;
1027}
1028
1029/*
672bba3a
CL
1030 * Determine if a certain object on a page is on the freelist. Must hold the
1031 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
1032 */
1033static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
1034{
1035 int nr = 0;
881db7fb 1036 void *fp;
81819f0f 1037 void *object = NULL;
f6edde9c 1038 int max_objects;
81819f0f 1039
881db7fb 1040 fp = page->freelist;
39b26464 1041 while (fp && nr <= page->objects) {
81819f0f
CL
1042 if (fp == search)
1043 return 1;
1044 if (!check_valid_pointer(s, page, fp)) {
1045 if (object) {
1046 object_err(s, page, object,
1047 "Freechain corrupt");
a973e9dd 1048 set_freepointer(s, object, NULL);
81819f0f 1049 } else {
24922684 1050 slab_err(s, page, "Freepointer corrupt");
a973e9dd 1051 page->freelist = NULL;
39b26464 1052 page->inuse = page->objects;
24922684 1053 slab_fix(s, "Freelist cleared");
81819f0f
CL
1054 return 0;
1055 }
1056 break;
1057 }
1058 object = fp;
1059 fp = get_freepointer(s, object);
1060 nr++;
1061 }
1062
9736d2a9 1063 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
1064 if (max_objects > MAX_OBJS_PER_PAGE)
1065 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
1066
1067 if (page->objects != max_objects) {
756a025f
JP
1068 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1069 page->objects, max_objects);
224a88be 1070 page->objects = max_objects;
582d1212 1071 slab_fix(s, "Number of objects adjusted");
224a88be 1072 }
39b26464 1073 if (page->inuse != page->objects - nr) {
756a025f
JP
1074 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1075 page->inuse, page->objects - nr);
39b26464 1076 page->inuse = page->objects - nr;
582d1212 1077 slab_fix(s, "Object count adjusted");
81819f0f
CL
1078 }
1079 return search == NULL;
1080}
1081
0121c619
CL
1082static void trace(struct kmem_cache *s, struct page *page, void *object,
1083 int alloc)
3ec09742
CL
1084{
1085 if (s->flags & SLAB_TRACE) {
f9f58285 1086 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1087 s->name,
1088 alloc ? "alloc" : "free",
1089 object, page->inuse,
1090 page->freelist);
1091
1092 if (!alloc)
aa2efd5e 1093 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1094 s->object_size);
3ec09742
CL
1095
1096 dump_stack();
1097 }
1098}
1099
643b1138 1100/*
672bba3a 1101 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1102 */
5cc6eee8
CL
1103static void add_full(struct kmem_cache *s,
1104 struct kmem_cache_node *n, struct page *page)
643b1138 1105{
5cc6eee8
CL
1106 if (!(s->flags & SLAB_STORE_USER))
1107 return;
1108
255d0884 1109 lockdep_assert_held(&n->list_lock);
916ac052 1110 list_add(&page->slab_list, &n->full);
643b1138
CL
1111}
1112
c65c1877 1113static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1114{
643b1138
CL
1115 if (!(s->flags & SLAB_STORE_USER))
1116 return;
1117
255d0884 1118 lockdep_assert_held(&n->list_lock);
916ac052 1119 list_del(&page->slab_list);
643b1138
CL
1120}
1121
0f389ec6
CL
1122/* Tracking of the number of slabs for debugging purposes */
1123static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1124{
1125 struct kmem_cache_node *n = get_node(s, node);
1126
1127 return atomic_long_read(&n->nr_slabs);
1128}
1129
26c02cf0
AB
1130static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1131{
1132 return atomic_long_read(&n->nr_slabs);
1133}
1134
205ab99d 1135static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1136{
1137 struct kmem_cache_node *n = get_node(s, node);
1138
1139 /*
1140 * May be called early in order to allocate a slab for the
1141 * kmem_cache_node structure. Solve the chicken-egg
1142 * dilemma by deferring the increment of the count during
1143 * bootstrap (see early_kmem_cache_node_alloc).
1144 */
338b2642 1145 if (likely(n)) {
0f389ec6 1146 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1147 atomic_long_add(objects, &n->total_objects);
1148 }
0f389ec6 1149}
205ab99d 1150static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1151{
1152 struct kmem_cache_node *n = get_node(s, node);
1153
1154 atomic_long_dec(&n->nr_slabs);
205ab99d 1155 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1156}
1157
1158/* Object debug checks for alloc/free paths */
3ec09742
CL
1159static void setup_object_debug(struct kmem_cache *s, struct page *page,
1160 void *object)
1161{
8fc8d666 1162 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1163 return;
1164
f7cb1933 1165 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1166 init_tracking(s, object);
1167}
1168
a50b854e
MWO
1169static
1170void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
a7101224 1171{
8fc8d666 1172 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1173 return;
1174
1175 metadata_access_enable();
aa1ef4d7 1176 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
a7101224
AK
1177 metadata_access_disable();
1178}
1179
becfda68 1180static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1181 struct page *page, void *object)
81819f0f
CL
1182{
1183 if (!check_slab(s, page))
becfda68 1184 return 0;
81819f0f 1185
81819f0f
CL
1186 if (!check_valid_pointer(s, page, object)) {
1187 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1188 return 0;
81819f0f
CL
1189 }
1190
f7cb1933 1191 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1192 return 0;
1193
1194 return 1;
1195}
1196
1197static noinline int alloc_debug_processing(struct kmem_cache *s,
1198 struct page *page,
1199 void *object, unsigned long addr)
1200{
1201 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1202 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1203 goto bad;
1204 }
81819f0f 1205
3ec09742
CL
1206 /* Success perform special debug activities for allocs */
1207 if (s->flags & SLAB_STORE_USER)
1208 set_track(s, object, TRACK_ALLOC, addr);
1209 trace(s, page, object, 1);
f7cb1933 1210 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1211 return 1;
3ec09742 1212
81819f0f
CL
1213bad:
1214 if (PageSlab(page)) {
1215 /*
1216 * If this is a slab page then lets do the best we can
1217 * to avoid issues in the future. Marking all objects
672bba3a 1218 * as used avoids touching the remaining objects.
81819f0f 1219 */
24922684 1220 slab_fix(s, "Marking all objects used");
39b26464 1221 page->inuse = page->objects;
a973e9dd 1222 page->freelist = NULL;
81819f0f
CL
1223 }
1224 return 0;
1225}
1226
becfda68
LA
1227static inline int free_consistency_checks(struct kmem_cache *s,
1228 struct page *page, void *object, unsigned long addr)
81819f0f 1229{
81819f0f 1230 if (!check_valid_pointer(s, page, object)) {
70d71228 1231 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1232 return 0;
81819f0f
CL
1233 }
1234
1235 if (on_freelist(s, page, object)) {
24922684 1236 object_err(s, page, object, "Object already free");
becfda68 1237 return 0;
81819f0f
CL
1238 }
1239
f7cb1933 1240 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1241 return 0;
81819f0f 1242
1b4f59e3 1243 if (unlikely(s != page->slab_cache)) {
3adbefee 1244 if (!PageSlab(page)) {
756a025f
JP
1245 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1246 object);
1b4f59e3 1247 } else if (!page->slab_cache) {
f9f58285
FF
1248 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1249 object);
70d71228 1250 dump_stack();
06428780 1251 } else
24922684
CL
1252 object_err(s, page, object,
1253 "page slab pointer corrupt.");
becfda68
LA
1254 return 0;
1255 }
1256 return 1;
1257}
1258
1259/* Supports checking bulk free of a constructed freelist */
1260static noinline int free_debug_processing(
1261 struct kmem_cache *s, struct page *page,
1262 void *head, void *tail, int bulk_cnt,
1263 unsigned long addr)
1264{
1265 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1266 void *object = head;
1267 int cnt = 0;
3f649ab7 1268 unsigned long flags;
becfda68
LA
1269 int ret = 0;
1270
1271 spin_lock_irqsave(&n->list_lock, flags);
1272 slab_lock(page);
1273
1274 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1275 if (!check_slab(s, page))
1276 goto out;
1277 }
1278
1279next_object:
1280 cnt++;
1281
1282 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1283 if (!free_consistency_checks(s, page, object, addr))
1284 goto out;
81819f0f 1285 }
3ec09742 1286
3ec09742
CL
1287 if (s->flags & SLAB_STORE_USER)
1288 set_track(s, object, TRACK_FREE, addr);
1289 trace(s, page, object, 0);
81084651 1290 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1291 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1292
1293 /* Reached end of constructed freelist yet? */
1294 if (object != tail) {
1295 object = get_freepointer(s, object);
1296 goto next_object;
1297 }
804aa132
LA
1298 ret = 1;
1299
5c2e4bbb 1300out:
81084651
JDB
1301 if (cnt != bulk_cnt)
1302 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1303 bulk_cnt, cnt);
1304
881db7fb 1305 slab_unlock(page);
282acb43 1306 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1307 if (!ret)
1308 slab_fix(s, "Object at 0x%p not freed", object);
1309 return ret;
81819f0f
CL
1310}
1311
e17f1dfb
VB
1312/*
1313 * Parse a block of slub_debug options. Blocks are delimited by ';'
1314 *
1315 * @str: start of block
1316 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1317 * @slabs: return start of list of slabs, or NULL when there's no list
1318 * @init: assume this is initial parsing and not per-kmem-create parsing
1319 *
1320 * returns the start of next block if there's any, or NULL
1321 */
1322static char *
1323parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1324{
e17f1dfb 1325 bool higher_order_disable = false;
f0630fff 1326
e17f1dfb
VB
1327 /* Skip any completely empty blocks */
1328 while (*str && *str == ';')
1329 str++;
1330
1331 if (*str == ',') {
f0630fff
CL
1332 /*
1333 * No options but restriction on slabs. This means full
1334 * debugging for slabs matching a pattern.
1335 */
e17f1dfb 1336 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1337 goto check_slabs;
e17f1dfb
VB
1338 }
1339 *flags = 0;
f0630fff 1340
e17f1dfb
VB
1341 /* Determine which debug features should be switched on */
1342 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1343 switch (tolower(*str)) {
e17f1dfb
VB
1344 case '-':
1345 *flags = 0;
1346 break;
f0630fff 1347 case 'f':
e17f1dfb 1348 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1349 break;
1350 case 'z':
e17f1dfb 1351 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1352 break;
1353 case 'p':
e17f1dfb 1354 *flags |= SLAB_POISON;
f0630fff
CL
1355 break;
1356 case 'u':
e17f1dfb 1357 *flags |= SLAB_STORE_USER;
f0630fff
CL
1358 break;
1359 case 't':
e17f1dfb 1360 *flags |= SLAB_TRACE;
f0630fff 1361 break;
4c13dd3b 1362 case 'a':
e17f1dfb 1363 *flags |= SLAB_FAILSLAB;
4c13dd3b 1364 break;
08303a73
CA
1365 case 'o':
1366 /*
1367 * Avoid enabling debugging on caches if its minimum
1368 * order would increase as a result.
1369 */
e17f1dfb 1370 higher_order_disable = true;
08303a73 1371 break;
f0630fff 1372 default:
e17f1dfb
VB
1373 if (init)
1374 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
f0630fff 1375 }
41ecc55b 1376 }
f0630fff 1377check_slabs:
41ecc55b 1378 if (*str == ',')
e17f1dfb
VB
1379 *slabs = ++str;
1380 else
1381 *slabs = NULL;
1382
1383 /* Skip over the slab list */
1384 while (*str && *str != ';')
1385 str++;
1386
1387 /* Skip any completely empty blocks */
1388 while (*str && *str == ';')
1389 str++;
1390
1391 if (init && higher_order_disable)
1392 disable_higher_order_debug = 1;
1393
1394 if (*str)
1395 return str;
1396 else
1397 return NULL;
1398}
1399
1400static int __init setup_slub_debug(char *str)
1401{
1402 slab_flags_t flags;
1403 char *saved_str;
1404 char *slab_list;
1405 bool global_slub_debug_changed = false;
1406 bool slab_list_specified = false;
1407
1408 slub_debug = DEBUG_DEFAULT_FLAGS;
1409 if (*str++ != '=' || !*str)
1410 /*
1411 * No options specified. Switch on full debugging.
1412 */
1413 goto out;
1414
1415 saved_str = str;
1416 while (str) {
1417 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1418
1419 if (!slab_list) {
1420 slub_debug = flags;
1421 global_slub_debug_changed = true;
1422 } else {
1423 slab_list_specified = true;
1424 }
1425 }
1426
1427 /*
1428 * For backwards compatibility, a single list of flags with list of
1429 * slabs means debugging is only enabled for those slabs, so the global
1430 * slub_debug should be 0. We can extended that to multiple lists as
1431 * long as there is no option specifying flags without a slab list.
1432 */
1433 if (slab_list_specified) {
1434 if (!global_slub_debug_changed)
1435 slub_debug = 0;
1436 slub_debug_string = saved_str;
1437 }
f0630fff 1438out:
ca0cab65
VB
1439 if (slub_debug != 0 || slub_debug_string)
1440 static_branch_enable(&slub_debug_enabled);
02ac47d0
SB
1441 else
1442 static_branch_disable(&slub_debug_enabled);
6471384a
AP
1443 if ((static_branch_unlikely(&init_on_alloc) ||
1444 static_branch_unlikely(&init_on_free)) &&
1445 (slub_debug & SLAB_POISON))
1446 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1447 return 1;
1448}
1449
1450__setup("slub_debug", setup_slub_debug);
1451
c5fd3ca0
AT
1452/*
1453 * kmem_cache_flags - apply debugging options to the cache
1454 * @object_size: the size of an object without meta data
1455 * @flags: flags to set
1456 * @name: name of the cache
c5fd3ca0
AT
1457 *
1458 * Debug option(s) are applied to @flags. In addition to the debug
1459 * option(s), if a slab name (or multiple) is specified i.e.
1460 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1461 * then only the select slabs will receive the debug option(s).
1462 */
0293d1fd 1463slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1464 slab_flags_t flags, const char *name)
41ecc55b 1465{
c5fd3ca0
AT
1466 char *iter;
1467 size_t len;
e17f1dfb
VB
1468 char *next_block;
1469 slab_flags_t block_flags;
ca220593
JB
1470 slab_flags_t slub_debug_local = slub_debug;
1471
1472 /*
1473 * If the slab cache is for debugging (e.g. kmemleak) then
1474 * don't store user (stack trace) information by default,
1475 * but let the user enable it via the command line below.
1476 */
1477 if (flags & SLAB_NOLEAKTRACE)
1478 slub_debug_local &= ~SLAB_STORE_USER;
c5fd3ca0 1479
c5fd3ca0 1480 len = strlen(name);
e17f1dfb
VB
1481 next_block = slub_debug_string;
1482 /* Go through all blocks of debug options, see if any matches our slab's name */
1483 while (next_block) {
1484 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1485 if (!iter)
1486 continue;
1487 /* Found a block that has a slab list, search it */
1488 while (*iter) {
1489 char *end, *glob;
1490 size_t cmplen;
1491
1492 end = strchrnul(iter, ',');
1493 if (next_block && next_block < end)
1494 end = next_block - 1;
1495
1496 glob = strnchr(iter, end - iter, '*');
1497 if (glob)
1498 cmplen = glob - iter;
1499 else
1500 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1501
e17f1dfb
VB
1502 if (!strncmp(name, iter, cmplen)) {
1503 flags |= block_flags;
1504 return flags;
1505 }
c5fd3ca0 1506
e17f1dfb
VB
1507 if (!*end || *end == ';')
1508 break;
1509 iter = end + 1;
c5fd3ca0 1510 }
c5fd3ca0 1511 }
ba0268a8 1512
ca220593 1513 return flags | slub_debug_local;
41ecc55b 1514}
b4a64718 1515#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1516static inline void setup_object_debug(struct kmem_cache *s,
1517 struct page *page, void *object) {}
a50b854e
MWO
1518static inline
1519void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
41ecc55b 1520
3ec09742 1521static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1522 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1523
282acb43 1524static inline int free_debug_processing(
81084651
JDB
1525 struct kmem_cache *s, struct page *page,
1526 void *head, void *tail, int bulk_cnt,
282acb43 1527 unsigned long addr) { return 0; }
41ecc55b 1528
41ecc55b
CL
1529static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1530 { return 1; }
1531static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1532 void *object, u8 val) { return 1; }
5cc6eee8
CL
1533static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1534 struct page *page) {}
c65c1877
PZ
1535static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1536 struct page *page) {}
0293d1fd 1537slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1538 slab_flags_t flags, const char *name)
ba0268a8
CL
1539{
1540 return flags;
1541}
41ecc55b 1542#define slub_debug 0
0f389ec6 1543
fdaa45e9
IM
1544#define disable_higher_order_debug 0
1545
0f389ec6
CL
1546static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1547 { return 0; }
26c02cf0
AB
1548static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1549 { return 0; }
205ab99d
CL
1550static inline void inc_slabs_node(struct kmem_cache *s, int node,
1551 int objects) {}
1552static inline void dec_slabs_node(struct kmem_cache *s, int node,
1553 int objects) {}
7d550c56 1554
52f23478 1555static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 1556 void **freelist, void *nextfree)
52f23478
DZ
1557{
1558 return false;
1559}
02e72cc6
AR
1560#endif /* CONFIG_SLUB_DEBUG */
1561
1562/*
1563 * Hooks for other subsystems that check memory allocations. In a typical
1564 * production configuration these hooks all should produce no code at all.
1565 */
0116523c 1566static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1567{
53128245 1568 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1569 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1570 kmemleak_alloc(ptr, size, 1, flags);
53128245 1571 return ptr;
d56791b3
RB
1572}
1573
ee3ce779 1574static __always_inline void kfree_hook(void *x)
d56791b3
RB
1575{
1576 kmemleak_free(x);
027b37b5 1577 kasan_kfree_large(x);
d56791b3
RB
1578}
1579
d57a964e
AK
1580static __always_inline bool slab_free_hook(struct kmem_cache *s,
1581 void *x, bool init)
d56791b3
RB
1582{
1583 kmemleak_free_recursive(x, s->flags);
7d550c56 1584
02e72cc6
AR
1585 /*
1586 * Trouble is that we may no longer disable interrupts in the fast path
1587 * So in order to make the debug calls that expect irqs to be
1588 * disabled we need to disable interrupts temporarily.
1589 */
4675ff05 1590#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1591 {
1592 unsigned long flags;
1593
1594 local_irq_save(flags);
02e72cc6
AR
1595 debug_check_no_locks_freed(x, s->object_size);
1596 local_irq_restore(flags);
1597 }
1598#endif
1599 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1600 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1601
cfbe1636
ME
1602 /* Use KCSAN to help debug racy use-after-free. */
1603 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1604 __kcsan_check_access(x, s->object_size,
1605 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1606
d57a964e
AK
1607 /*
1608 * As memory initialization might be integrated into KASAN,
1609 * kasan_slab_free and initialization memset's must be
1610 * kept together to avoid discrepancies in behavior.
1611 *
1612 * The initialization memset's clear the object and the metadata,
1613 * but don't touch the SLAB redzone.
1614 */
1615 if (init) {
1616 int rsize;
1617
1618 if (!kasan_has_integrated_init())
1619 memset(kasan_reset_tag(x), 0, s->object_size);
1620 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1621 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1622 s->size - s->inuse - rsize);
1623 }
1624 /* KASAN might put x into memory quarantine, delaying its reuse. */
1625 return kasan_slab_free(s, x, init);
02e72cc6 1626}
205ab99d 1627
c3895391
AK
1628static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1629 void **head, void **tail)
81084651 1630{
6471384a
AP
1631
1632 void *object;
1633 void *next = *head;
1634 void *old_tail = *tail ? *tail : *head;
6471384a 1635
b89fb5ef 1636 if (is_kfence_address(next)) {
d57a964e 1637 slab_free_hook(s, next, false);
b89fb5ef
AP
1638 return true;
1639 }
1640
aea4df4c
LA
1641 /* Head and tail of the reconstructed freelist */
1642 *head = NULL;
1643 *tail = NULL;
1b7e816f 1644
aea4df4c
LA
1645 do {
1646 object = next;
1647 next = get_freepointer(s, object);
1648
c3895391 1649 /* If object's reuse doesn't have to be delayed */
d57a964e 1650 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
c3895391
AK
1651 /* Move object to the new freelist */
1652 set_freepointer(s, object, *head);
1653 *head = object;
1654 if (!*tail)
1655 *tail = object;
1656 }
1657 } while (object != old_tail);
1658
1659 if (*head == *tail)
1660 *tail = NULL;
1661
1662 return *head != NULL;
81084651
JDB
1663}
1664
4d176711 1665static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1666 void *object)
1667{
1668 setup_object_debug(s, page, object);
4d176711 1669 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1670 if (unlikely(s->ctor)) {
1671 kasan_unpoison_object_data(s, object);
1672 s->ctor(object);
1673 kasan_poison_object_data(s, object);
1674 }
4d176711 1675 return object;
588f8ba9
TG
1676}
1677
81819f0f
CL
1678/*
1679 * Slab allocation and freeing
1680 */
5dfb4175
VD
1681static inline struct page *alloc_slab_page(struct kmem_cache *s,
1682 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1683{
5dfb4175 1684 struct page *page;
19af27af 1685 unsigned int order = oo_order(oo);
65c3376a 1686
2154a336 1687 if (node == NUMA_NO_NODE)
5dfb4175 1688 page = alloc_pages(flags, order);
65c3376a 1689 else
96db800f 1690 page = __alloc_pages_node(node, flags, order);
5dfb4175 1691
5dfb4175 1692 return page;
65c3376a
CL
1693}
1694
210e7a43
TG
1695#ifdef CONFIG_SLAB_FREELIST_RANDOM
1696/* Pre-initialize the random sequence cache */
1697static int init_cache_random_seq(struct kmem_cache *s)
1698{
19af27af 1699 unsigned int count = oo_objects(s->oo);
210e7a43 1700 int err;
210e7a43 1701
a810007a
SR
1702 /* Bailout if already initialised */
1703 if (s->random_seq)
1704 return 0;
1705
210e7a43
TG
1706 err = cache_random_seq_create(s, count, GFP_KERNEL);
1707 if (err) {
1708 pr_err("SLUB: Unable to initialize free list for %s\n",
1709 s->name);
1710 return err;
1711 }
1712
1713 /* Transform to an offset on the set of pages */
1714 if (s->random_seq) {
19af27af
AD
1715 unsigned int i;
1716
210e7a43
TG
1717 for (i = 0; i < count; i++)
1718 s->random_seq[i] *= s->size;
1719 }
1720 return 0;
1721}
1722
1723/* Initialize each random sequence freelist per cache */
1724static void __init init_freelist_randomization(void)
1725{
1726 struct kmem_cache *s;
1727
1728 mutex_lock(&slab_mutex);
1729
1730 list_for_each_entry(s, &slab_caches, list)
1731 init_cache_random_seq(s);
1732
1733 mutex_unlock(&slab_mutex);
1734}
1735
1736/* Get the next entry on the pre-computed freelist randomized */
1737static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1738 unsigned long *pos, void *start,
1739 unsigned long page_limit,
1740 unsigned long freelist_count)
1741{
1742 unsigned int idx;
1743
1744 /*
1745 * If the target page allocation failed, the number of objects on the
1746 * page might be smaller than the usual size defined by the cache.
1747 */
1748 do {
1749 idx = s->random_seq[*pos];
1750 *pos += 1;
1751 if (*pos >= freelist_count)
1752 *pos = 0;
1753 } while (unlikely(idx >= page_limit));
1754
1755 return (char *)start + idx;
1756}
1757
1758/* Shuffle the single linked freelist based on a random pre-computed sequence */
1759static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1760{
1761 void *start;
1762 void *cur;
1763 void *next;
1764 unsigned long idx, pos, page_limit, freelist_count;
1765
1766 if (page->objects < 2 || !s->random_seq)
1767 return false;
1768
1769 freelist_count = oo_objects(s->oo);
1770 pos = get_random_int() % freelist_count;
1771
1772 page_limit = page->objects * s->size;
1773 start = fixup_red_left(s, page_address(page));
1774
1775 /* First entry is used as the base of the freelist */
1776 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1777 freelist_count);
4d176711 1778 cur = setup_object(s, page, cur);
210e7a43
TG
1779 page->freelist = cur;
1780
1781 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1782 next = next_freelist_entry(s, page, &pos, start, page_limit,
1783 freelist_count);
4d176711 1784 next = setup_object(s, page, next);
210e7a43
TG
1785 set_freepointer(s, cur, next);
1786 cur = next;
1787 }
210e7a43
TG
1788 set_freepointer(s, cur, NULL);
1789
1790 return true;
1791}
1792#else
1793static inline int init_cache_random_seq(struct kmem_cache *s)
1794{
1795 return 0;
1796}
1797static inline void init_freelist_randomization(void) { }
1798static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1799{
1800 return false;
1801}
1802#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1803
81819f0f
CL
1804static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1805{
06428780 1806 struct page *page;
834f3d11 1807 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1808 gfp_t alloc_gfp;
4d176711 1809 void *start, *p, *next;
a50b854e 1810 int idx;
210e7a43 1811 bool shuffle;
81819f0f 1812
7e0528da
CL
1813 flags &= gfp_allowed_mask;
1814
d0164adc 1815 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1816 local_irq_enable();
1817
b7a49f0d 1818 flags |= s->allocflags;
e12ba74d 1819
ba52270d
PE
1820 /*
1821 * Let the initial higher-order allocation fail under memory pressure
1822 * so we fall-back to the minimum order allocation.
1823 */
1824 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1825 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1826 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1827
5dfb4175 1828 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1829 if (unlikely(!page)) {
1830 oo = s->min;
80c3a998 1831 alloc_gfp = flags;
65c3376a
CL
1832 /*
1833 * Allocation may have failed due to fragmentation.
1834 * Try a lower order alloc if possible
1835 */
5dfb4175 1836 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1837 if (unlikely(!page))
1838 goto out;
1839 stat(s, ORDER_FALLBACK);
65c3376a 1840 }
5a896d9e 1841
834f3d11 1842 page->objects = oo_objects(oo);
81819f0f 1843
2e9bd483 1844 account_slab_page(page, oo_order(oo), s, flags);
1f3147b4 1845
1b4f59e3 1846 page->slab_cache = s;
c03f94cc 1847 __SetPageSlab(page);
2f064f34 1848 if (page_is_pfmemalloc(page))
072bb0aa 1849 SetPageSlabPfmemalloc(page);
81819f0f 1850
a7101224 1851 kasan_poison_slab(page);
81819f0f 1852
a7101224 1853 start = page_address(page);
81819f0f 1854
a50b854e 1855 setup_page_debug(s, page, start);
0316bec2 1856
210e7a43
TG
1857 shuffle = shuffle_freelist(s, page);
1858
1859 if (!shuffle) {
4d176711
AK
1860 start = fixup_red_left(s, start);
1861 start = setup_object(s, page, start);
1862 page->freelist = start;
18e50661
AK
1863 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1864 next = p + s->size;
1865 next = setup_object(s, page, next);
1866 set_freepointer(s, p, next);
1867 p = next;
1868 }
1869 set_freepointer(s, p, NULL);
81819f0f 1870 }
81819f0f 1871
e6e82ea1 1872 page->inuse = page->objects;
8cb0a506 1873 page->frozen = 1;
588f8ba9 1874
81819f0f 1875out:
d0164adc 1876 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1877 local_irq_disable();
1878 if (!page)
1879 return NULL;
1880
588f8ba9
TG
1881 inc_slabs_node(s, page_to_nid(page), page->objects);
1882
81819f0f
CL
1883 return page;
1884}
1885
588f8ba9
TG
1886static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1887{
44405099
LL
1888 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1889 flags = kmalloc_fix_flags(flags);
588f8ba9
TG
1890
1891 return allocate_slab(s,
1892 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1893}
1894
81819f0f
CL
1895static void __free_slab(struct kmem_cache *s, struct page *page)
1896{
834f3d11
CL
1897 int order = compound_order(page);
1898 int pages = 1 << order;
81819f0f 1899
8fc8d666 1900 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
81819f0f
CL
1901 void *p;
1902
1903 slab_pad_check(s, page);
224a88be
CL
1904 for_each_object(p, s, page_address(page),
1905 page->objects)
f7cb1933 1906 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1907 }
1908
072bb0aa 1909 __ClearPageSlabPfmemalloc(page);
49bd5221 1910 __ClearPageSlab(page);
0c06dd75
VB
1911 /* In union with page->mapping where page allocator expects NULL */
1912 page->slab_cache = NULL;
1eb5ac64
NP
1913 if (current->reclaim_state)
1914 current->reclaim_state->reclaimed_slab += pages;
74d555be 1915 unaccount_slab_page(page, order, s);
27ee57c9 1916 __free_pages(page, order);
81819f0f
CL
1917}
1918
1919static void rcu_free_slab(struct rcu_head *h)
1920{
bf68c214 1921 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1922
1b4f59e3 1923 __free_slab(page->slab_cache, page);
81819f0f
CL
1924}
1925
1926static void free_slab(struct kmem_cache *s, struct page *page)
1927{
5f0d5a3a 1928 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1929 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1930 } else
1931 __free_slab(s, page);
1932}
1933
1934static void discard_slab(struct kmem_cache *s, struct page *page)
1935{
205ab99d 1936 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1937 free_slab(s, page);
1938}
1939
1940/*
5cc6eee8 1941 * Management of partially allocated slabs.
81819f0f 1942 */
1e4dd946
SR
1943static inline void
1944__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1945{
e95eed57 1946 n->nr_partial++;
136333d1 1947 if (tail == DEACTIVATE_TO_TAIL)
916ac052 1948 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 1949 else
916ac052 1950 list_add(&page->slab_list, &n->partial);
81819f0f
CL
1951}
1952
1e4dd946
SR
1953static inline void add_partial(struct kmem_cache_node *n,
1954 struct page *page, int tail)
62e346a8 1955{
c65c1877 1956 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1957 __add_partial(n, page, tail);
1958}
c65c1877 1959
1e4dd946
SR
1960static inline void remove_partial(struct kmem_cache_node *n,
1961 struct page *page)
1962{
1963 lockdep_assert_held(&n->list_lock);
916ac052 1964 list_del(&page->slab_list);
52b4b950 1965 n->nr_partial--;
1e4dd946
SR
1966}
1967
81819f0f 1968/*
7ced3719
CL
1969 * Remove slab from the partial list, freeze it and
1970 * return the pointer to the freelist.
81819f0f 1971 *
497b66f2 1972 * Returns a list of objects or NULL if it fails.
81819f0f 1973 */
497b66f2 1974static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1975 struct kmem_cache_node *n, struct page *page,
633b0764 1976 int mode, int *objects)
81819f0f 1977{
2cfb7455
CL
1978 void *freelist;
1979 unsigned long counters;
1980 struct page new;
1981
c65c1877
PZ
1982 lockdep_assert_held(&n->list_lock);
1983
2cfb7455
CL
1984 /*
1985 * Zap the freelist and set the frozen bit.
1986 * The old freelist is the list of objects for the
1987 * per cpu allocation list.
1988 */
7ced3719
CL
1989 freelist = page->freelist;
1990 counters = page->counters;
1991 new.counters = counters;
633b0764 1992 *objects = new.objects - new.inuse;
23910c50 1993 if (mode) {
7ced3719 1994 new.inuse = page->objects;
23910c50
PE
1995 new.freelist = NULL;
1996 } else {
1997 new.freelist = freelist;
1998 }
2cfb7455 1999
a0132ac0 2000 VM_BUG_ON(new.frozen);
7ced3719 2001 new.frozen = 1;
2cfb7455 2002
7ced3719 2003 if (!__cmpxchg_double_slab(s, page,
2cfb7455 2004 freelist, counters,
02d7633f 2005 new.freelist, new.counters,
7ced3719 2006 "acquire_slab"))
7ced3719 2007 return NULL;
2cfb7455
CL
2008
2009 remove_partial(n, page);
7ced3719 2010 WARN_ON(!freelist);
49e22585 2011 return freelist;
81819f0f
CL
2012}
2013
633b0764 2014static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 2015static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 2016
81819f0f 2017/*
672bba3a 2018 * Try to allocate a partial slab from a specific node.
81819f0f 2019 */
8ba00bb6
JK
2020static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2021 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 2022{
49e22585
CL
2023 struct page *page, *page2;
2024 void *object = NULL;
e5d9998f 2025 unsigned int available = 0;
633b0764 2026 int objects;
81819f0f
CL
2027
2028 /*
2029 * Racy check. If we mistakenly see no partial slabs then we
2030 * just allocate an empty slab. If we mistakenly try to get a
70b6d25e 2031 * partial slab and there is none available then get_partial()
672bba3a 2032 * will return NULL.
81819f0f
CL
2033 */
2034 if (!n || !n->nr_partial)
2035 return NULL;
2036
2037 spin_lock(&n->list_lock);
916ac052 2038 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 2039 void *t;
49e22585 2040
8ba00bb6
JK
2041 if (!pfmemalloc_match(page, flags))
2042 continue;
2043
633b0764 2044 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585 2045 if (!t)
9b1ea29b 2046 break;
49e22585 2047
633b0764 2048 available += objects;
12d79634 2049 if (!object) {
49e22585 2050 c->page = page;
49e22585 2051 stat(s, ALLOC_FROM_PARTIAL);
49e22585 2052 object = t;
49e22585 2053 } else {
633b0764 2054 put_cpu_partial(s, page, 0);
8028dcea 2055 stat(s, CPU_PARTIAL_NODE);
49e22585 2056 }
345c905d 2057 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 2058 || available > slub_cpu_partial(s) / 2)
49e22585
CL
2059 break;
2060
497b66f2 2061 }
81819f0f 2062 spin_unlock(&n->list_lock);
497b66f2 2063 return object;
81819f0f
CL
2064}
2065
2066/*
672bba3a 2067 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 2068 */
de3ec035 2069static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 2070 struct kmem_cache_cpu *c)
81819f0f
CL
2071{
2072#ifdef CONFIG_NUMA
2073 struct zonelist *zonelist;
dd1a239f 2074 struct zoneref *z;
54a6eb5c 2075 struct zone *zone;
97a225e6 2076 enum zone_type highest_zoneidx = gfp_zone(flags);
497b66f2 2077 void *object;
cc9a6c87 2078 unsigned int cpuset_mems_cookie;
81819f0f
CL
2079
2080 /*
672bba3a
CL
2081 * The defrag ratio allows a configuration of the tradeoffs between
2082 * inter node defragmentation and node local allocations. A lower
2083 * defrag_ratio increases the tendency to do local allocations
2084 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2085 *
672bba3a
CL
2086 * If the defrag_ratio is set to 0 then kmalloc() always
2087 * returns node local objects. If the ratio is higher then kmalloc()
2088 * may return off node objects because partial slabs are obtained
2089 * from other nodes and filled up.
81819f0f 2090 *
43efd3ea
LP
2091 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2092 * (which makes defrag_ratio = 1000) then every (well almost)
2093 * allocation will first attempt to defrag slab caches on other nodes.
2094 * This means scanning over all nodes to look for partial slabs which
2095 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2096 * with available objects.
81819f0f 2097 */
9824601e
CL
2098 if (!s->remote_node_defrag_ratio ||
2099 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2100 return NULL;
2101
cc9a6c87 2102 do {
d26914d1 2103 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 2104 zonelist = node_zonelist(mempolicy_slab_node(), flags);
97a225e6 2105 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2106 struct kmem_cache_node *n;
2107
2108 n = get_node(s, zone_to_nid(zone));
2109
dee2f8aa 2110 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 2111 n->nr_partial > s->min_partial) {
8ba00bb6 2112 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
2113 if (object) {
2114 /*
d26914d1
MG
2115 * Don't check read_mems_allowed_retry()
2116 * here - if mems_allowed was updated in
2117 * parallel, that was a harmless race
2118 * between allocation and the cpuset
2119 * update
cc9a6c87 2120 */
cc9a6c87
MG
2121 return object;
2122 }
c0ff7453 2123 }
81819f0f 2124 }
d26914d1 2125 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2126#endif /* CONFIG_NUMA */
81819f0f
CL
2127 return NULL;
2128}
2129
2130/*
2131 * Get a partial page, lock it and return it.
2132 */
497b66f2 2133static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 2134 struct kmem_cache_cpu *c)
81819f0f 2135{
497b66f2 2136 void *object;
a561ce00
JK
2137 int searchnode = node;
2138
2139 if (node == NUMA_NO_NODE)
2140 searchnode = numa_mem_id();
81819f0f 2141
8ba00bb6 2142 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
2143 if (object || node != NUMA_NO_NODE)
2144 return object;
81819f0f 2145
acd19fd1 2146 return get_any_partial(s, flags, c);
81819f0f
CL
2147}
2148
923717cb 2149#ifdef CONFIG_PREEMPTION
8a5ec0ba 2150/*
0d645ed1 2151 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2152 * during cmpxchg. The transactions start with the cpu number and are then
2153 * incremented by CONFIG_NR_CPUS.
2154 */
2155#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2156#else
2157/*
2158 * No preemption supported therefore also no need to check for
2159 * different cpus.
2160 */
2161#define TID_STEP 1
2162#endif
2163
2164static inline unsigned long next_tid(unsigned long tid)
2165{
2166 return tid + TID_STEP;
2167}
2168
9d5f0be0 2169#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2170static inline unsigned int tid_to_cpu(unsigned long tid)
2171{
2172 return tid % TID_STEP;
2173}
2174
2175static inline unsigned long tid_to_event(unsigned long tid)
2176{
2177 return tid / TID_STEP;
2178}
9d5f0be0 2179#endif
8a5ec0ba
CL
2180
2181static inline unsigned int init_tid(int cpu)
2182{
2183 return cpu;
2184}
2185
2186static inline void note_cmpxchg_failure(const char *n,
2187 const struct kmem_cache *s, unsigned long tid)
2188{
2189#ifdef SLUB_DEBUG_CMPXCHG
2190 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2191
f9f58285 2192 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2193
923717cb 2194#ifdef CONFIG_PREEMPTION
8a5ec0ba 2195 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2196 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2197 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2198 else
2199#endif
2200 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2201 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2202 tid_to_event(tid), tid_to_event(actual_tid));
2203 else
f9f58285 2204 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2205 actual_tid, tid, next_tid(tid));
2206#endif
4fdccdfb 2207 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2208}
2209
788e1aad 2210static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2211{
8a5ec0ba
CL
2212 int cpu;
2213
2214 for_each_possible_cpu(cpu)
2215 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2216}
2cfb7455 2217
81819f0f
CL
2218/*
2219 * Remove the cpu slab
2220 */
d0e0ac97 2221static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2222 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2223{
2cfb7455 2224 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455 2225 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
d930ff03 2226 int lock = 0, free_delta = 0;
2cfb7455 2227 enum slab_modes l = M_NONE, m = M_NONE;
d930ff03 2228 void *nextfree, *freelist_iter, *freelist_tail;
136333d1 2229 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2230 struct page new;
2231 struct page old;
2232
2233 if (page->freelist) {
84e554e6 2234 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2235 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2236 }
2237
894b8788 2238 /*
d930ff03
VB
2239 * Stage one: Count the objects on cpu's freelist as free_delta and
2240 * remember the last object in freelist_tail for later splicing.
2cfb7455 2241 */
d930ff03
VB
2242 freelist_tail = NULL;
2243 freelist_iter = freelist;
2244 while (freelist_iter) {
2245 nextfree = get_freepointer(s, freelist_iter);
2cfb7455 2246
52f23478
DZ
2247 /*
2248 * If 'nextfree' is invalid, it is possible that the object at
d930ff03
VB
2249 * 'freelist_iter' is already corrupted. So isolate all objects
2250 * starting at 'freelist_iter' by skipping them.
52f23478 2251 */
d930ff03 2252 if (freelist_corrupted(s, page, &freelist_iter, nextfree))
52f23478
DZ
2253 break;
2254
d930ff03
VB
2255 freelist_tail = freelist_iter;
2256 free_delta++;
2cfb7455 2257
d930ff03 2258 freelist_iter = nextfree;
2cfb7455
CL
2259 }
2260
894b8788 2261 /*
d930ff03
VB
2262 * Stage two: Unfreeze the page while splicing the per-cpu
2263 * freelist to the head of page's freelist.
2264 *
2265 * Ensure that the page is unfrozen while the list presence
2266 * reflects the actual number of objects during unfreeze.
2cfb7455
CL
2267 *
2268 * We setup the list membership and then perform a cmpxchg
2269 * with the count. If there is a mismatch then the page
2270 * is not unfrozen but the page is on the wrong list.
2271 *
2272 * Then we restart the process which may have to remove
2273 * the page from the list that we just put it on again
2274 * because the number of objects in the slab may have
2275 * changed.
894b8788 2276 */
2cfb7455 2277redo:
894b8788 2278
d930ff03
VB
2279 old.freelist = READ_ONCE(page->freelist);
2280 old.counters = READ_ONCE(page->counters);
a0132ac0 2281 VM_BUG_ON(!old.frozen);
7c2e132c 2282
2cfb7455
CL
2283 /* Determine target state of the slab */
2284 new.counters = old.counters;
d930ff03
VB
2285 if (freelist_tail) {
2286 new.inuse -= free_delta;
2287 set_freepointer(s, freelist_tail, old.freelist);
2cfb7455
CL
2288 new.freelist = freelist;
2289 } else
2290 new.freelist = old.freelist;
2291
2292 new.frozen = 0;
2293
8a5b20ae 2294 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2295 m = M_FREE;
2296 else if (new.freelist) {
2297 m = M_PARTIAL;
2298 if (!lock) {
2299 lock = 1;
2300 /*
8bb4e7a2 2301 * Taking the spinlock removes the possibility
2cfb7455
CL
2302 * that acquire_slab() will see a slab page that
2303 * is frozen
2304 */
2305 spin_lock(&n->list_lock);
2306 }
2307 } else {
2308 m = M_FULL;
965c4848 2309 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2cfb7455
CL
2310 lock = 1;
2311 /*
2312 * This also ensures that the scanning of full
2313 * slabs from diagnostic functions will not see
2314 * any frozen slabs.
2315 */
2316 spin_lock(&n->list_lock);
2317 }
2318 }
2319
2320 if (l != m) {
2cfb7455 2321 if (l == M_PARTIAL)
2cfb7455 2322 remove_partial(n, page);
2cfb7455 2323 else if (l == M_FULL)
c65c1877 2324 remove_full(s, n, page);
2cfb7455 2325
88349a28 2326 if (m == M_PARTIAL)
2cfb7455 2327 add_partial(n, page, tail);
88349a28 2328 else if (m == M_FULL)
2cfb7455 2329 add_full(s, n, page);
2cfb7455
CL
2330 }
2331
2332 l = m;
1d07171c 2333 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2334 old.freelist, old.counters,
2335 new.freelist, new.counters,
2336 "unfreezing slab"))
2337 goto redo;
2338
2cfb7455
CL
2339 if (lock)
2340 spin_unlock(&n->list_lock);
2341
88349a28
WY
2342 if (m == M_PARTIAL)
2343 stat(s, tail);
2344 else if (m == M_FULL)
2345 stat(s, DEACTIVATE_FULL);
2346 else if (m == M_FREE) {
2cfb7455
CL
2347 stat(s, DEACTIVATE_EMPTY);
2348 discard_slab(s, page);
2349 stat(s, FREE_SLAB);
894b8788 2350 }
d4ff6d35
WY
2351
2352 c->page = NULL;
2353 c->freelist = NULL;
81819f0f
CL
2354}
2355
d24ac77f
JK
2356/*
2357 * Unfreeze all the cpu partial slabs.
2358 *
59a09917
CL
2359 * This function must be called with interrupts disabled
2360 * for the cpu using c (or some other guarantee must be there
2361 * to guarantee no concurrent accesses).
d24ac77f 2362 */
59a09917
CL
2363static void unfreeze_partials(struct kmem_cache *s,
2364 struct kmem_cache_cpu *c)
49e22585 2365{
345c905d 2366#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2367 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2368 struct page *page, *discard_page = NULL;
49e22585 2369
4c7ba22e 2370 while ((page = slub_percpu_partial(c))) {
49e22585
CL
2371 struct page new;
2372 struct page old;
2373
4c7ba22e 2374 slub_set_percpu_partial(c, page);
43d77867
JK
2375
2376 n2 = get_node(s, page_to_nid(page));
2377 if (n != n2) {
2378 if (n)
2379 spin_unlock(&n->list_lock);
2380
2381 n = n2;
2382 spin_lock(&n->list_lock);
2383 }
49e22585
CL
2384
2385 do {
2386
2387 old.freelist = page->freelist;
2388 old.counters = page->counters;
a0132ac0 2389 VM_BUG_ON(!old.frozen);
49e22585
CL
2390
2391 new.counters = old.counters;
2392 new.freelist = old.freelist;
2393
2394 new.frozen = 0;
2395
d24ac77f 2396 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2397 old.freelist, old.counters,
2398 new.freelist, new.counters,
2399 "unfreezing slab"));
2400
8a5b20ae 2401 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2402 page->next = discard_page;
2403 discard_page = page;
43d77867
JK
2404 } else {
2405 add_partial(n, page, DEACTIVATE_TO_TAIL);
2406 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2407 }
2408 }
2409
2410 if (n)
2411 spin_unlock(&n->list_lock);
9ada1934
SL
2412
2413 while (discard_page) {
2414 page = discard_page;
2415 discard_page = discard_page->next;
2416
2417 stat(s, DEACTIVATE_EMPTY);
2418 discard_slab(s, page);
2419 stat(s, FREE_SLAB);
2420 }
6dfd1b65 2421#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2422}
2423
2424/*
9234bae9
WY
2425 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2426 * partial page slot if available.
49e22585
CL
2427 *
2428 * If we did not find a slot then simply move all the partials to the
2429 * per node partial list.
2430 */
633b0764 2431static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2432{
345c905d 2433#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2434 struct page *oldpage;
2435 int pages;
2436 int pobjects;
2437
d6e0b7fa 2438 preempt_disable();
49e22585
CL
2439 do {
2440 pages = 0;
2441 pobjects = 0;
2442 oldpage = this_cpu_read(s->cpu_slab->partial);
2443
2444 if (oldpage) {
2445 pobjects = oldpage->pobjects;
2446 pages = oldpage->pages;
bbd4e305 2447 if (drain && pobjects > slub_cpu_partial(s)) {
49e22585
CL
2448 unsigned long flags;
2449 /*
2450 * partial array is full. Move the existing
2451 * set to the per node partial list.
2452 */
2453 local_irq_save(flags);
59a09917 2454 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2455 local_irq_restore(flags);
e24fc410 2456 oldpage = NULL;
49e22585
CL
2457 pobjects = 0;
2458 pages = 0;
8028dcea 2459 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2460 }
2461 }
2462
2463 pages++;
2464 pobjects += page->objects - page->inuse;
2465
2466 page->pages = pages;
2467 page->pobjects = pobjects;
2468 page->next = oldpage;
2469
d0e0ac97
CG
2470 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2471 != oldpage);
bbd4e305 2472 if (unlikely(!slub_cpu_partial(s))) {
d6e0b7fa
VD
2473 unsigned long flags;
2474
2475 local_irq_save(flags);
2476 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2477 local_irq_restore(flags);
2478 }
2479 preempt_enable();
6dfd1b65 2480#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2481}
2482
dfb4f096 2483static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2484{
84e554e6 2485 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2486 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2487
2488 c->tid = next_tid(c->tid);
81819f0f
CL
2489}
2490
2491/*
2492 * Flush cpu slab.
6446faa2 2493 *
81819f0f
CL
2494 * Called from IPI handler with interrupts disabled.
2495 */
0c710013 2496static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2497{
9dfc6e68 2498 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2499
1265ef2d
WY
2500 if (c->page)
2501 flush_slab(s, c);
49e22585 2502
1265ef2d 2503 unfreeze_partials(s, c);
81819f0f
CL
2504}
2505
2506static void flush_cpu_slab(void *d)
2507{
2508 struct kmem_cache *s = d;
81819f0f 2509
dfb4f096 2510 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2511}
2512
a8364d55
GBY
2513static bool has_cpu_slab(int cpu, void *info)
2514{
2515 struct kmem_cache *s = info;
2516 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2517
a93cf07b 2518 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2519}
2520
81819f0f
CL
2521static void flush_all(struct kmem_cache *s)
2522{
cb923159 2523 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
81819f0f
CL
2524}
2525
a96a87bf
SAS
2526/*
2527 * Use the cpu notifier to insure that the cpu slabs are flushed when
2528 * necessary.
2529 */
2530static int slub_cpu_dead(unsigned int cpu)
2531{
2532 struct kmem_cache *s;
2533 unsigned long flags;
2534
2535 mutex_lock(&slab_mutex);
2536 list_for_each_entry(s, &slab_caches, list) {
2537 local_irq_save(flags);
2538 __flush_cpu_slab(s, cpu);
2539 local_irq_restore(flags);
2540 }
2541 mutex_unlock(&slab_mutex);
2542 return 0;
2543}
2544
dfb4f096
CL
2545/*
2546 * Check if the objects in a per cpu structure fit numa
2547 * locality expectations.
2548 */
57d437d2 2549static inline int node_match(struct page *page, int node)
dfb4f096
CL
2550{
2551#ifdef CONFIG_NUMA
6159d0f5 2552 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2553 return 0;
2554#endif
2555 return 1;
2556}
2557
9a02d699 2558#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2559static int count_free(struct page *page)
2560{
2561 return page->objects - page->inuse;
2562}
2563
9a02d699
DR
2564static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2565{
2566 return atomic_long_read(&n->total_objects);
2567}
2568#endif /* CONFIG_SLUB_DEBUG */
2569
2570#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2571static unsigned long count_partial(struct kmem_cache_node *n,
2572 int (*get_count)(struct page *))
2573{
2574 unsigned long flags;
2575 unsigned long x = 0;
2576 struct page *page;
2577
2578 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2579 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2580 x += get_count(page);
2581 spin_unlock_irqrestore(&n->list_lock, flags);
2582 return x;
2583}
9a02d699 2584#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2585
781b2ba6
PE
2586static noinline void
2587slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2588{
9a02d699
DR
2589#ifdef CONFIG_SLUB_DEBUG
2590 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2591 DEFAULT_RATELIMIT_BURST);
781b2ba6 2592 int node;
fa45dc25 2593 struct kmem_cache_node *n;
781b2ba6 2594
9a02d699
DR
2595 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2596 return;
2597
5b3810e5
VB
2598 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2599 nid, gfpflags, &gfpflags);
19af27af 2600 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2601 s->name, s->object_size, s->size, oo_order(s->oo),
2602 oo_order(s->min));
781b2ba6 2603
3b0efdfa 2604 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2605 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2606 s->name);
fa5ec8a1 2607
fa45dc25 2608 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2609 unsigned long nr_slabs;
2610 unsigned long nr_objs;
2611 unsigned long nr_free;
2612
26c02cf0
AB
2613 nr_free = count_partial(n, count_free);
2614 nr_slabs = node_nr_slabs(n);
2615 nr_objs = node_nr_objs(n);
781b2ba6 2616
f9f58285 2617 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2618 node, nr_slabs, nr_objs, nr_free);
2619 }
9a02d699 2620#endif
781b2ba6
PE
2621}
2622
497b66f2
CL
2623static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2624 int node, struct kmem_cache_cpu **pc)
2625{
6faa6833 2626 void *freelist;
188fd063
CL
2627 struct kmem_cache_cpu *c = *pc;
2628 struct page *page;
497b66f2 2629
128227e7
MW
2630 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2631
188fd063 2632 freelist = get_partial(s, flags, node, c);
497b66f2 2633
188fd063
CL
2634 if (freelist)
2635 return freelist;
2636
2637 page = new_slab(s, flags, node);
497b66f2 2638 if (page) {
7c8e0181 2639 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2640 if (c->page)
2641 flush_slab(s, c);
2642
2643 /*
2644 * No other reference to the page yet so we can
2645 * muck around with it freely without cmpxchg
2646 */
6faa6833 2647 freelist = page->freelist;
497b66f2
CL
2648 page->freelist = NULL;
2649
2650 stat(s, ALLOC_SLAB);
497b66f2
CL
2651 c->page = page;
2652 *pc = c;
edde82b6 2653 }
497b66f2 2654
6faa6833 2655 return freelist;
497b66f2
CL
2656}
2657
072bb0aa
MG
2658static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2659{
2660 if (unlikely(PageSlabPfmemalloc(page)))
2661 return gfp_pfmemalloc_allowed(gfpflags);
2662
2663 return true;
2664}
2665
213eeb9f 2666/*
d0e0ac97
CG
2667 * Check the page->freelist of a page and either transfer the freelist to the
2668 * per cpu freelist or deactivate the page.
213eeb9f
CL
2669 *
2670 * The page is still frozen if the return value is not NULL.
2671 *
2672 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2673 *
2674 * This function must be called with interrupt disabled.
213eeb9f
CL
2675 */
2676static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2677{
2678 struct page new;
2679 unsigned long counters;
2680 void *freelist;
2681
2682 do {
2683 freelist = page->freelist;
2684 counters = page->counters;
6faa6833 2685
213eeb9f 2686 new.counters = counters;
a0132ac0 2687 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2688
2689 new.inuse = page->objects;
2690 new.frozen = freelist != NULL;
2691
d24ac77f 2692 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2693 freelist, counters,
2694 NULL, new.counters,
2695 "get_freelist"));
2696
2697 return freelist;
2698}
2699
81819f0f 2700/*
894b8788
CL
2701 * Slow path. The lockless freelist is empty or we need to perform
2702 * debugging duties.
2703 *
894b8788
CL
2704 * Processing is still very fast if new objects have been freed to the
2705 * regular freelist. In that case we simply take over the regular freelist
2706 * as the lockless freelist and zap the regular freelist.
81819f0f 2707 *
894b8788
CL
2708 * If that is not working then we fall back to the partial lists. We take the
2709 * first element of the freelist as the object to allocate now and move the
2710 * rest of the freelist to the lockless freelist.
81819f0f 2711 *
894b8788 2712 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2713 * we need to allocate a new slab. This is the slowest path since it involves
2714 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2715 *
2716 * Version of __slab_alloc to use when we know that interrupts are
2717 * already disabled (which is the case for bulk allocation).
81819f0f 2718 */
a380a3c7 2719static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2720 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2721{
6faa6833 2722 void *freelist;
f6e7def7 2723 struct page *page;
81819f0f 2724
9f986d99
AW
2725 stat(s, ALLOC_SLOWPATH);
2726
f6e7def7 2727 page = c->page;
0715e6c5
VB
2728 if (!page) {
2729 /*
2730 * if the node is not online or has no normal memory, just
2731 * ignore the node constraint
2732 */
2733 if (unlikely(node != NUMA_NO_NODE &&
7e1fa93d 2734 !node_isset(node, slab_nodes)))
0715e6c5 2735 node = NUMA_NO_NODE;
81819f0f 2736 goto new_slab;
0715e6c5 2737 }
49e22585 2738redo:
6faa6833 2739
57d437d2 2740 if (unlikely(!node_match(page, node))) {
0715e6c5
VB
2741 /*
2742 * same as above but node_match() being false already
2743 * implies node != NUMA_NO_NODE
2744 */
7e1fa93d 2745 if (!node_isset(node, slab_nodes)) {
0715e6c5
VB
2746 node = NUMA_NO_NODE;
2747 goto redo;
2748 } else {
a561ce00 2749 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2750 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2751 goto new_slab;
2752 }
fc59c053 2753 }
6446faa2 2754
072bb0aa
MG
2755 /*
2756 * By rights, we should be searching for a slab page that was
2757 * PFMEMALLOC but right now, we are losing the pfmemalloc
2758 * information when the page leaves the per-cpu allocator
2759 */
2760 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2761 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2762 goto new_slab;
2763 }
2764
73736e03 2765 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2766 freelist = c->freelist;
2767 if (freelist)
73736e03 2768 goto load_freelist;
03e404af 2769
f6e7def7 2770 freelist = get_freelist(s, page);
6446faa2 2771
6faa6833 2772 if (!freelist) {
03e404af
CL
2773 c->page = NULL;
2774 stat(s, DEACTIVATE_BYPASS);
fc59c053 2775 goto new_slab;
03e404af 2776 }
6446faa2 2777
84e554e6 2778 stat(s, ALLOC_REFILL);
6446faa2 2779
894b8788 2780load_freelist:
507effea
CL
2781 /*
2782 * freelist is pointing to the list of objects to be used.
2783 * page is pointing to the page from which the objects are obtained.
2784 * That page must be frozen for per cpu allocations to work.
2785 */
a0132ac0 2786 VM_BUG_ON(!c->page->frozen);
6faa6833 2787 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2788 c->tid = next_tid(c->tid);
6faa6833 2789 return freelist;
81819f0f 2790
81819f0f 2791new_slab:
2cfb7455 2792
a93cf07b
WY
2793 if (slub_percpu_partial(c)) {
2794 page = c->page = slub_percpu_partial(c);
2795 slub_set_percpu_partial(c, page);
49e22585 2796 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2797 goto redo;
81819f0f
CL
2798 }
2799
188fd063 2800 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2801
f4697436 2802 if (unlikely(!freelist)) {
9a02d699 2803 slab_out_of_memory(s, gfpflags, node);
f4697436 2804 return NULL;
81819f0f 2805 }
2cfb7455 2806
f6e7def7 2807 page = c->page;
5091b74a 2808 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2809 goto load_freelist;
2cfb7455 2810
497b66f2 2811 /* Only entered in the debug case */
d0e0ac97
CG
2812 if (kmem_cache_debug(s) &&
2813 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2814 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2815
d4ff6d35 2816 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2817 return freelist;
894b8788
CL
2818}
2819
a380a3c7
CL
2820/*
2821 * Another one that disabled interrupt and compensates for possible
2822 * cpu changes by refetching the per cpu area pointer.
2823 */
2824static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2825 unsigned long addr, struct kmem_cache_cpu *c)
2826{
2827 void *p;
2828 unsigned long flags;
2829
2830 local_irq_save(flags);
923717cb 2831#ifdef CONFIG_PREEMPTION
a380a3c7
CL
2832 /*
2833 * We may have been preempted and rescheduled on a different
2834 * cpu before disabling interrupts. Need to reload cpu area
2835 * pointer.
2836 */
2837 c = this_cpu_ptr(s->cpu_slab);
2838#endif
2839
2840 p = ___slab_alloc(s, gfpflags, node, addr, c);
2841 local_irq_restore(flags);
2842 return p;
2843}
2844
0f181f9f
AP
2845/*
2846 * If the object has been wiped upon free, make sure it's fully initialized by
2847 * zeroing out freelist pointer.
2848 */
2849static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2850 void *obj)
2851{
2852 if (unlikely(slab_want_init_on_free(s)) && obj)
ce5716c6
AK
2853 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
2854 0, sizeof(void *));
0f181f9f
AP
2855}
2856
894b8788
CL
2857/*
2858 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2859 * have the fastpath folded into their functions. So no function call
2860 * overhead for requests that can be satisfied on the fastpath.
2861 *
2862 * The fastpath works by first checking if the lockless freelist can be used.
2863 * If not then __slab_alloc is called for slow processing.
2864 *
2865 * Otherwise we can simply pick the next object from the lockless free list.
2866 */
2b847c3c 2867static __always_inline void *slab_alloc_node(struct kmem_cache *s,
b89fb5ef 2868 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
894b8788 2869{
03ec0ed5 2870 void *object;
dfb4f096 2871 struct kmem_cache_cpu *c;
57d437d2 2872 struct page *page;
8a5ec0ba 2873 unsigned long tid;
964d4bd3 2874 struct obj_cgroup *objcg = NULL;
da844b78 2875 bool init = false;
1f84260c 2876
964d4bd3 2877 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
8135be5a 2878 if (!s)
773ff60e 2879 return NULL;
b89fb5ef
AP
2880
2881 object = kfence_alloc(s, orig_size, gfpflags);
2882 if (unlikely(object))
2883 goto out;
2884
8a5ec0ba 2885redo:
8a5ec0ba
CL
2886 /*
2887 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2888 * enabled. We may switch back and forth between cpus while
2889 * reading from one cpu area. That does not matter as long
2890 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2891 *
9aabf810 2892 * We should guarantee that tid and kmem_cache are retrieved on
923717cb 2893 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
9aabf810 2894 * to check if it is matched or not.
8a5ec0ba 2895 */
9aabf810
JK
2896 do {
2897 tid = this_cpu_read(s->cpu_slab->tid);
2898 c = raw_cpu_ptr(s->cpu_slab);
923717cb 2899 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 2900 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2901
2902 /*
2903 * Irqless object alloc/free algorithm used here depends on sequence
2904 * of fetching cpu_slab's data. tid should be fetched before anything
2905 * on c to guarantee that object and page associated with previous tid
2906 * won't be used with current tid. If we fetch tid first, object and
2907 * page could be one associated with next tid and our alloc/free
2908 * request will be failed. In this case, we will retry. So, no problem.
2909 */
2910 barrier();
8a5ec0ba 2911
8a5ec0ba
CL
2912 /*
2913 * The transaction ids are globally unique per cpu and per operation on
2914 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2915 * occurs on the right processor and that there was no operation on the
2916 * linked list in between.
2917 */
8a5ec0ba 2918
9dfc6e68 2919 object = c->freelist;
57d437d2 2920 page = c->page;
22e4663e 2921 if (unlikely(!object || !page || !node_match(page, node))) {
dfb4f096 2922 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492 2923 } else {
0ad9500e
ED
2924 void *next_object = get_freepointer_safe(s, object);
2925
8a5ec0ba 2926 /*
25985edc 2927 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2928 * operation and if we are on the right processor.
2929 *
d0e0ac97
CG
2930 * The cmpxchg does the following atomically (without lock
2931 * semantics!)
8a5ec0ba
CL
2932 * 1. Relocate first pointer to the current per cpu area.
2933 * 2. Verify that tid and freelist have not been changed
2934 * 3. If they were not changed replace tid and freelist
2935 *
d0e0ac97
CG
2936 * Since this is without lock semantics the protection is only
2937 * against code executing on this cpu *not* from access by
2938 * other cpus.
8a5ec0ba 2939 */
933393f5 2940 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2941 s->cpu_slab->freelist, s->cpu_slab->tid,
2942 object, tid,
0ad9500e 2943 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2944
2945 note_cmpxchg_failure("slab_alloc", s, tid);
2946 goto redo;
2947 }
0ad9500e 2948 prefetch_freepointer(s, next_object);
84e554e6 2949 stat(s, ALLOC_FASTPATH);
894b8788 2950 }
0f181f9f 2951
ce5716c6 2952 maybe_wipe_obj_freeptr(s, object);
da844b78 2953 init = slab_want_init_on_alloc(gfpflags, s);
d07dbea4 2954
b89fb5ef 2955out:
da844b78 2956 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
5a896d9e 2957
894b8788 2958 return object;
81819f0f
CL
2959}
2960
2b847c3c 2961static __always_inline void *slab_alloc(struct kmem_cache *s,
b89fb5ef 2962 gfp_t gfpflags, unsigned long addr, size_t orig_size)
2b847c3c 2963{
b89fb5ef 2964 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
2b847c3c
EG
2965}
2966
81819f0f
CL
2967void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2968{
b89fb5ef 2969 void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
5b882be4 2970
d0e0ac97
CG
2971 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2972 s->size, gfpflags);
5b882be4
EGM
2973
2974 return ret;
81819f0f
CL
2975}
2976EXPORT_SYMBOL(kmem_cache_alloc);
2977
0f24f128 2978#ifdef CONFIG_TRACING
4a92379b
RK
2979void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2980{
b89fb5ef 2981 void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
4a92379b 2982 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 2983 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2984 return ret;
2985}
2986EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2987#endif
2988
81819f0f
CL
2989#ifdef CONFIG_NUMA
2990void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2991{
b89fb5ef 2992 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
5b882be4 2993
ca2b84cb 2994 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2995 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2996
2997 return ret;
81819f0f
CL
2998}
2999EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 3000
0f24f128 3001#ifdef CONFIG_TRACING
4a92379b 3002void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 3003 gfp_t gfpflags,
4a92379b 3004 int node, size_t size)
5b882be4 3005{
b89fb5ef 3006 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
4a92379b
RK
3007
3008 trace_kmalloc_node(_RET_IP_, ret,
3009 size, s->size, gfpflags, node);
0316bec2 3010
0116523c 3011 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 3012 return ret;
5b882be4 3013}
4a92379b 3014EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 3015#endif
6dfd1b65 3016#endif /* CONFIG_NUMA */
5b882be4 3017
81819f0f 3018/*
94e4d712 3019 * Slow path handling. This may still be called frequently since objects
894b8788 3020 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 3021 *
894b8788
CL
3022 * So we still attempt to reduce cache line usage. Just take the slab
3023 * lock and free the item. If there is no additional partial page
3024 * handling required then we can return immediately.
81819f0f 3025 */
894b8788 3026static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
3027 void *head, void *tail, int cnt,
3028 unsigned long addr)
3029
81819f0f
CL
3030{
3031 void *prior;
2cfb7455 3032 int was_frozen;
2cfb7455
CL
3033 struct page new;
3034 unsigned long counters;
3035 struct kmem_cache_node *n = NULL;
3f649ab7 3036 unsigned long flags;
81819f0f 3037
8a5ec0ba 3038 stat(s, FREE_SLOWPATH);
81819f0f 3039
b89fb5ef
AP
3040 if (kfence_free(head))
3041 return;
3042
19c7ff9e 3043 if (kmem_cache_debug(s) &&
282acb43 3044 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 3045 return;
6446faa2 3046
2cfb7455 3047 do {
837d678d
JK
3048 if (unlikely(n)) {
3049 spin_unlock_irqrestore(&n->list_lock, flags);
3050 n = NULL;
3051 }
2cfb7455
CL
3052 prior = page->freelist;
3053 counters = page->counters;
81084651 3054 set_freepointer(s, tail, prior);
2cfb7455
CL
3055 new.counters = counters;
3056 was_frozen = new.frozen;
81084651 3057 new.inuse -= cnt;
837d678d 3058 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 3059
c65c1877 3060 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
3061
3062 /*
d0e0ac97
CG
3063 * Slab was on no list before and will be
3064 * partially empty
3065 * We can defer the list move and instead
3066 * freeze it.
49e22585
CL
3067 */
3068 new.frozen = 1;
3069
c65c1877 3070 } else { /* Needs to be taken off a list */
49e22585 3071
b455def2 3072 n = get_node(s, page_to_nid(page));
49e22585
CL
3073 /*
3074 * Speculatively acquire the list_lock.
3075 * If the cmpxchg does not succeed then we may
3076 * drop the list_lock without any processing.
3077 *
3078 * Otherwise the list_lock will synchronize with
3079 * other processors updating the list of slabs.
3080 */
3081 spin_lock_irqsave(&n->list_lock, flags);
3082
3083 }
2cfb7455 3084 }
81819f0f 3085
2cfb7455
CL
3086 } while (!cmpxchg_double_slab(s, page,
3087 prior, counters,
81084651 3088 head, new.counters,
2cfb7455 3089 "__slab_free"));
81819f0f 3090
2cfb7455 3091 if (likely(!n)) {
49e22585 3092
c270cf30
AW
3093 if (likely(was_frozen)) {
3094 /*
3095 * The list lock was not taken therefore no list
3096 * activity can be necessary.
3097 */
3098 stat(s, FREE_FROZEN);
3099 } else if (new.frozen) {
3100 /*
3101 * If we just froze the page then put it onto the
3102 * per cpu partial list.
3103 */
49e22585 3104 put_cpu_partial(s, page, 1);
8028dcea
AS
3105 stat(s, CPU_PARTIAL_FREE);
3106 }
c270cf30 3107
b455def2
L
3108 return;
3109 }
81819f0f 3110
8a5b20ae 3111 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
3112 goto slab_empty;
3113
81819f0f 3114 /*
837d678d
JK
3115 * Objects left in the slab. If it was not on the partial list before
3116 * then add it.
81819f0f 3117 */
345c905d 3118 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 3119 remove_full(s, n, page);
837d678d
JK
3120 add_partial(n, page, DEACTIVATE_TO_TAIL);
3121 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 3122 }
80f08c19 3123 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
3124 return;
3125
3126slab_empty:
a973e9dd 3127 if (prior) {
81819f0f 3128 /*
6fbabb20 3129 * Slab on the partial list.
81819f0f 3130 */
5cc6eee8 3131 remove_partial(n, page);
84e554e6 3132 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 3133 } else {
6fbabb20 3134 /* Slab must be on the full list */
c65c1877
PZ
3135 remove_full(s, n, page);
3136 }
2cfb7455 3137
80f08c19 3138 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 3139 stat(s, FREE_SLAB);
81819f0f 3140 discard_slab(s, page);
81819f0f
CL
3141}
3142
894b8788
CL
3143/*
3144 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3145 * can perform fastpath freeing without additional function calls.
3146 *
3147 * The fastpath is only possible if we are freeing to the current cpu slab
3148 * of this processor. This typically the case if we have just allocated
3149 * the item before.
3150 *
3151 * If fastpath is not possible then fall back to __slab_free where we deal
3152 * with all sorts of special processing.
81084651
JDB
3153 *
3154 * Bulk free of a freelist with several objects (all pointing to the
3155 * same page) possible by specifying head and tail ptr, plus objects
3156 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 3157 */
80a9201a
AP
3158static __always_inline void do_slab_free(struct kmem_cache *s,
3159 struct page *page, void *head, void *tail,
3160 int cnt, unsigned long addr)
894b8788 3161{
81084651 3162 void *tail_obj = tail ? : head;
dfb4f096 3163 struct kmem_cache_cpu *c;
8a5ec0ba 3164 unsigned long tid;
964d4bd3 3165
d1b2cf6c 3166 memcg_slab_free_hook(s, &head, 1);
8a5ec0ba
CL
3167redo:
3168 /*
3169 * Determine the currently cpus per cpu slab.
3170 * The cpu may change afterward. However that does not matter since
3171 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3172 * during the cmpxchg then the free will succeed.
8a5ec0ba 3173 */
9aabf810
JK
3174 do {
3175 tid = this_cpu_read(s->cpu_slab->tid);
3176 c = raw_cpu_ptr(s->cpu_slab);
923717cb 3177 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 3178 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 3179
9aabf810
JK
3180 /* Same with comment on barrier() in slab_alloc_node() */
3181 barrier();
c016b0bd 3182
442b06bc 3183 if (likely(page == c->page)) {
5076190d
LT
3184 void **freelist = READ_ONCE(c->freelist);
3185
3186 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3187
933393f5 3188 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba 3189 s->cpu_slab->freelist, s->cpu_slab->tid,
5076190d 3190 freelist, tid,
81084651 3191 head, next_tid(tid)))) {
8a5ec0ba
CL
3192
3193 note_cmpxchg_failure("slab_free", s, tid);
3194 goto redo;
3195 }
84e554e6 3196 stat(s, FREE_FASTPATH);
894b8788 3197 } else
81084651 3198 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 3199
894b8788
CL
3200}
3201
80a9201a
AP
3202static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3203 void *head, void *tail, int cnt,
3204 unsigned long addr)
3205{
80a9201a 3206 /*
c3895391
AK
3207 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3208 * to remove objects, whose reuse must be delayed.
80a9201a 3209 */
c3895391
AK
3210 if (slab_free_freelist_hook(s, &head, &tail))
3211 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3212}
3213
2bd926b4 3214#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3215void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3216{
3217 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3218}
3219#endif
3220
81819f0f
CL
3221void kmem_cache_free(struct kmem_cache *s, void *x)
3222{
b9ce5ef4
GC
3223 s = cache_from_obj(s, x);
3224 if (!s)
79576102 3225 return;
81084651 3226 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3544de8e 3227 trace_kmem_cache_free(_RET_IP_, x, s->name);
81819f0f
CL
3228}
3229EXPORT_SYMBOL(kmem_cache_free);
3230
d0ecd894 3231struct detached_freelist {
fbd02630 3232 struct page *page;
d0ecd894
JDB
3233 void *tail;
3234 void *freelist;
3235 int cnt;
376bf125 3236 struct kmem_cache *s;
d0ecd894 3237};
fbd02630 3238
d0ecd894
JDB
3239/*
3240 * This function progressively scans the array with free objects (with
3241 * a limited look ahead) and extract objects belonging to the same
3242 * page. It builds a detached freelist directly within the given
3243 * page/objects. This can happen without any need for
3244 * synchronization, because the objects are owned by running process.
3245 * The freelist is build up as a single linked list in the objects.
3246 * The idea is, that this detached freelist can then be bulk
3247 * transferred to the real freelist(s), but only requiring a single
3248 * synchronization primitive. Look ahead in the array is limited due
3249 * to performance reasons.
3250 */
376bf125
JDB
3251static inline
3252int build_detached_freelist(struct kmem_cache *s, size_t size,
3253 void **p, struct detached_freelist *df)
d0ecd894
JDB
3254{
3255 size_t first_skipped_index = 0;
3256 int lookahead = 3;
3257 void *object;
ca257195 3258 struct page *page;
fbd02630 3259
d0ecd894
JDB
3260 /* Always re-init detached_freelist */
3261 df->page = NULL;
fbd02630 3262
d0ecd894
JDB
3263 do {
3264 object = p[--size];
ca257195 3265 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3266 } while (!object && size);
3eed034d 3267
d0ecd894
JDB
3268 if (!object)
3269 return 0;
fbd02630 3270
ca257195
JDB
3271 page = virt_to_head_page(object);
3272 if (!s) {
3273 /* Handle kalloc'ed objects */
3274 if (unlikely(!PageSlab(page))) {
3275 BUG_ON(!PageCompound(page));
3276 kfree_hook(object);
4949148a 3277 __free_pages(page, compound_order(page));
ca257195
JDB
3278 p[size] = NULL; /* mark object processed */
3279 return size;
3280 }
3281 /* Derive kmem_cache from object */
3282 df->s = page->slab_cache;
3283 } else {
3284 df->s = cache_from_obj(s, object); /* Support for memcg */
3285 }
376bf125 3286
b89fb5ef 3287 if (is_kfence_address(object)) {
d57a964e 3288 slab_free_hook(df->s, object, false);
b89fb5ef
AP
3289 __kfence_free(object);
3290 p[size] = NULL; /* mark object processed */
3291 return size;
3292 }
3293
d0ecd894 3294 /* Start new detached freelist */
ca257195 3295 df->page = page;
376bf125 3296 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3297 df->tail = object;
3298 df->freelist = object;
3299 p[size] = NULL; /* mark object processed */
3300 df->cnt = 1;
3301
3302 while (size) {
3303 object = p[--size];
3304 if (!object)
3305 continue; /* Skip processed objects */
3306
3307 /* df->page is always set at this point */
3308 if (df->page == virt_to_head_page(object)) {
3309 /* Opportunity build freelist */
376bf125 3310 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3311 df->freelist = object;
3312 df->cnt++;
3313 p[size] = NULL; /* mark object processed */
3314
3315 continue;
fbd02630 3316 }
d0ecd894
JDB
3317
3318 /* Limit look ahead search */
3319 if (!--lookahead)
3320 break;
3321
3322 if (!first_skipped_index)
3323 first_skipped_index = size + 1;
fbd02630 3324 }
d0ecd894
JDB
3325
3326 return first_skipped_index;
3327}
3328
d0ecd894 3329/* Note that interrupts must be enabled when calling this function. */
376bf125 3330void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3331{
3332 if (WARN_ON(!size))
3333 return;
3334
d1b2cf6c 3335 memcg_slab_free_hook(s, p, size);
d0ecd894
JDB
3336 do {
3337 struct detached_freelist df;
3338
3339 size = build_detached_freelist(s, size, p, &df);
84582c8a 3340 if (!df.page)
d0ecd894
JDB
3341 continue;
3342
457c82c3 3343 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
d0ecd894 3344 } while (likely(size));
484748f0
CL
3345}
3346EXPORT_SYMBOL(kmem_cache_free_bulk);
3347
994eb764 3348/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3349int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3350 void **p)
484748f0 3351{
994eb764
JDB
3352 struct kmem_cache_cpu *c;
3353 int i;
964d4bd3 3354 struct obj_cgroup *objcg = NULL;
994eb764 3355
03ec0ed5 3356 /* memcg and kmem_cache debug support */
964d4bd3 3357 s = slab_pre_alloc_hook(s, &objcg, size, flags);
03ec0ed5
JDB
3358 if (unlikely(!s))
3359 return false;
994eb764
JDB
3360 /*
3361 * Drain objects in the per cpu slab, while disabling local
3362 * IRQs, which protects against PREEMPT and interrupts
3363 * handlers invoking normal fastpath.
3364 */
3365 local_irq_disable();
3366 c = this_cpu_ptr(s->cpu_slab);
3367
3368 for (i = 0; i < size; i++) {
b89fb5ef 3369 void *object = kfence_alloc(s, s->object_size, flags);
994eb764 3370
b89fb5ef
AP
3371 if (unlikely(object)) {
3372 p[i] = object;
3373 continue;
3374 }
3375
3376 object = c->freelist;
ebe909e0 3377 if (unlikely(!object)) {
fd4d9c7d
JH
3378 /*
3379 * We may have removed an object from c->freelist using
3380 * the fastpath in the previous iteration; in that case,
3381 * c->tid has not been bumped yet.
3382 * Since ___slab_alloc() may reenable interrupts while
3383 * allocating memory, we should bump c->tid now.
3384 */
3385 c->tid = next_tid(c->tid);
3386
ebe909e0
JDB
3387 /*
3388 * Invoking slow path likely have side-effect
3389 * of re-populating per CPU c->freelist
3390 */
87098373 3391 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3392 _RET_IP_, c);
87098373
CL
3393 if (unlikely(!p[i]))
3394 goto error;
3395
ebe909e0 3396 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3397 maybe_wipe_obj_freeptr(s, p[i]);
3398
ebe909e0
JDB
3399 continue; /* goto for-loop */
3400 }
994eb764
JDB
3401 c->freelist = get_freepointer(s, object);
3402 p[i] = object;
0f181f9f 3403 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3404 }
3405 c->tid = next_tid(c->tid);
3406 local_irq_enable();
3407
da844b78
AK
3408 /*
3409 * memcg and kmem_cache debug support and memory initialization.
3410 * Done outside of the IRQ disabled fastpath loop.
3411 */
3412 slab_post_alloc_hook(s, objcg, flags, size, p,
3413 slab_want_init_on_alloc(flags, s));
865762a8 3414 return i;
87098373 3415error:
87098373 3416 local_irq_enable();
da844b78 3417 slab_post_alloc_hook(s, objcg, flags, i, p, false);
03ec0ed5 3418 __kmem_cache_free_bulk(s, i, p);
865762a8 3419 return 0;
484748f0
CL
3420}
3421EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3422
3423
81819f0f 3424/*
672bba3a
CL
3425 * Object placement in a slab is made very easy because we always start at
3426 * offset 0. If we tune the size of the object to the alignment then we can
3427 * get the required alignment by putting one properly sized object after
3428 * another.
81819f0f
CL
3429 *
3430 * Notice that the allocation order determines the sizes of the per cpu
3431 * caches. Each processor has always one slab available for allocations.
3432 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3433 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3434 * locking overhead.
81819f0f
CL
3435 */
3436
3437/*
f0953a1b 3438 * Minimum / Maximum order of slab pages. This influences locking overhead
81819f0f
CL
3439 * and slab fragmentation. A higher order reduces the number of partial slabs
3440 * and increases the number of allocations possible without having to
3441 * take the list_lock.
3442 */
19af27af
AD
3443static unsigned int slub_min_order;
3444static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3445static unsigned int slub_min_objects;
81819f0f 3446
81819f0f
CL
3447/*
3448 * Calculate the order of allocation given an slab object size.
3449 *
672bba3a
CL
3450 * The order of allocation has significant impact on performance and other
3451 * system components. Generally order 0 allocations should be preferred since
3452 * order 0 does not cause fragmentation in the page allocator. Larger objects
3453 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3454 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3455 * would be wasted.
3456 *
3457 * In order to reach satisfactory performance we must ensure that a minimum
3458 * number of objects is in one slab. Otherwise we may generate too much
3459 * activity on the partial lists which requires taking the list_lock. This is
3460 * less a concern for large slabs though which are rarely used.
81819f0f 3461 *
672bba3a
CL
3462 * slub_max_order specifies the order where we begin to stop considering the
3463 * number of objects in a slab as critical. If we reach slub_max_order then
3464 * we try to keep the page order as low as possible. So we accept more waste
3465 * of space in favor of a small page order.
81819f0f 3466 *
672bba3a
CL
3467 * Higher order allocations also allow the placement of more objects in a
3468 * slab and thereby reduce object handling overhead. If the user has
dc84207d 3469 * requested a higher minimum order then we start with that one instead of
672bba3a 3470 * the smallest order which will fit the object.
81819f0f 3471 */
19af27af
AD
3472static inline unsigned int slab_order(unsigned int size,
3473 unsigned int min_objects, unsigned int max_order,
9736d2a9 3474 unsigned int fract_leftover)
81819f0f 3475{
19af27af
AD
3476 unsigned int min_order = slub_min_order;
3477 unsigned int order;
81819f0f 3478
9736d2a9 3479 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3480 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3481
9736d2a9 3482 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3483 order <= max_order; order++) {
81819f0f 3484
19af27af
AD
3485 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3486 unsigned int rem;
81819f0f 3487
9736d2a9 3488 rem = slab_size % size;
81819f0f 3489
5e6d444e 3490 if (rem <= slab_size / fract_leftover)
81819f0f 3491 break;
81819f0f 3492 }
672bba3a 3493
81819f0f
CL
3494 return order;
3495}
3496
9736d2a9 3497static inline int calculate_order(unsigned int size)
5e6d444e 3498{
19af27af
AD
3499 unsigned int order;
3500 unsigned int min_objects;
3501 unsigned int max_objects;
3286222f 3502 unsigned int nr_cpus;
5e6d444e
CL
3503
3504 /*
3505 * Attempt to find best configuration for a slab. This
3506 * works by first attempting to generate a layout with
3507 * the best configuration and backing off gradually.
3508 *
422ff4d7 3509 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3510 * we reduce the minimum objects required in a slab.
3511 */
3512 min_objects = slub_min_objects;
3286222f
VB
3513 if (!min_objects) {
3514 /*
3515 * Some architectures will only update present cpus when
3516 * onlining them, so don't trust the number if it's just 1. But
3517 * we also don't want to use nr_cpu_ids always, as on some other
3518 * architectures, there can be many possible cpus, but never
3519 * onlined. Here we compromise between trying to avoid too high
3520 * order on systems that appear larger than they are, and too
3521 * low order on systems that appear smaller than they are.
3522 */
3523 nr_cpus = num_present_cpus();
3524 if (nr_cpus <= 1)
3525 nr_cpus = nr_cpu_ids;
3526 min_objects = 4 * (fls(nr_cpus) + 1);
3527 }
9736d2a9 3528 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3529 min_objects = min(min_objects, max_objects);
3530
5e6d444e 3531 while (min_objects > 1) {
19af27af
AD
3532 unsigned int fraction;
3533
c124f5b5 3534 fraction = 16;
5e6d444e
CL
3535 while (fraction >= 4) {
3536 order = slab_order(size, min_objects,
9736d2a9 3537 slub_max_order, fraction);
5e6d444e
CL
3538 if (order <= slub_max_order)
3539 return order;
3540 fraction /= 2;
3541 }
5086c389 3542 min_objects--;
5e6d444e
CL
3543 }
3544
3545 /*
3546 * We were unable to place multiple objects in a slab. Now
3547 * lets see if we can place a single object there.
3548 */
9736d2a9 3549 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3550 if (order <= slub_max_order)
3551 return order;
3552
3553 /*
3554 * Doh this slab cannot be placed using slub_max_order.
3555 */
9736d2a9 3556 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3557 if (order < MAX_ORDER)
5e6d444e
CL
3558 return order;
3559 return -ENOSYS;
3560}
3561
5595cffc 3562static void
4053497d 3563init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3564{
3565 n->nr_partial = 0;
81819f0f
CL
3566 spin_lock_init(&n->list_lock);
3567 INIT_LIST_HEAD(&n->partial);
8ab1372f 3568#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3569 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3570 atomic_long_set(&n->total_objects, 0);
643b1138 3571 INIT_LIST_HEAD(&n->full);
8ab1372f 3572#endif
81819f0f
CL
3573}
3574
55136592 3575static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3576{
6c182dc0 3577 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3578 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3579
8a5ec0ba 3580 /*
d4d84fef
CM
3581 * Must align to double word boundary for the double cmpxchg
3582 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3583 */
d4d84fef
CM
3584 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3585 2 * sizeof(void *));
8a5ec0ba
CL
3586
3587 if (!s->cpu_slab)
3588 return 0;
3589
3590 init_kmem_cache_cpus(s);
4c93c355 3591
8a5ec0ba 3592 return 1;
4c93c355 3593}
4c93c355 3594
51df1142
CL
3595static struct kmem_cache *kmem_cache_node;
3596
81819f0f
CL
3597/*
3598 * No kmalloc_node yet so do it by hand. We know that this is the first
3599 * slab on the node for this slabcache. There are no concurrent accesses
3600 * possible.
3601 *
721ae22a
ZYW
3602 * Note that this function only works on the kmem_cache_node
3603 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3604 * memory on a fresh node that has no slab structures yet.
81819f0f 3605 */
55136592 3606static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3607{
3608 struct page *page;
3609 struct kmem_cache_node *n;
3610
51df1142 3611 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3612
51df1142 3613 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3614
3615 BUG_ON(!page);
a2f92ee7 3616 if (page_to_nid(page) != node) {
f9f58285
FF
3617 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3618 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3619 }
3620
81819f0f
CL
3621 n = page->freelist;
3622 BUG_ON(!n);
8ab1372f 3623#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3624 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3625 init_tracking(kmem_cache_node, n);
8ab1372f 3626#endif
da844b78 3627 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
12b22386
AK
3628 page->freelist = get_freepointer(kmem_cache_node, n);
3629 page->inuse = 1;
3630 page->frozen = 0;
3631 kmem_cache_node->node[node] = n;
4053497d 3632 init_kmem_cache_node(n);
51df1142 3633 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3634
67b6c900 3635 /*
1e4dd946
SR
3636 * No locks need to be taken here as it has just been
3637 * initialized and there is no concurrent access.
67b6c900 3638 */
1e4dd946 3639 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3640}
3641
3642static void free_kmem_cache_nodes(struct kmem_cache *s)
3643{
3644 int node;
fa45dc25 3645 struct kmem_cache_node *n;
81819f0f 3646
fa45dc25 3647 for_each_kmem_cache_node(s, node, n) {
81819f0f 3648 s->node[node] = NULL;
ea37df54 3649 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3650 }
3651}
3652
52b4b950
DS
3653void __kmem_cache_release(struct kmem_cache *s)
3654{
210e7a43 3655 cache_random_seq_destroy(s);
52b4b950
DS
3656 free_percpu(s->cpu_slab);
3657 free_kmem_cache_nodes(s);
3658}
3659
55136592 3660static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3661{
3662 int node;
81819f0f 3663
7e1fa93d 3664 for_each_node_mask(node, slab_nodes) {
81819f0f
CL
3665 struct kmem_cache_node *n;
3666
73367bd8 3667 if (slab_state == DOWN) {
55136592 3668 early_kmem_cache_node_alloc(node);
73367bd8
AD
3669 continue;
3670 }
51df1142 3671 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3672 GFP_KERNEL, node);
81819f0f 3673
73367bd8
AD
3674 if (!n) {
3675 free_kmem_cache_nodes(s);
3676 return 0;
81819f0f 3677 }
73367bd8 3678
4053497d 3679 init_kmem_cache_node(n);
ea37df54 3680 s->node[node] = n;
81819f0f
CL
3681 }
3682 return 1;
3683}
81819f0f 3684
c0bdb232 3685static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3686{
3687 if (min < MIN_PARTIAL)
3688 min = MIN_PARTIAL;
3689 else if (min > MAX_PARTIAL)
3690 min = MAX_PARTIAL;
3691 s->min_partial = min;
3692}
3693
e6d0e1dc
WY
3694static void set_cpu_partial(struct kmem_cache *s)
3695{
3696#ifdef CONFIG_SLUB_CPU_PARTIAL
3697 /*
3698 * cpu_partial determined the maximum number of objects kept in the
3699 * per cpu partial lists of a processor.
3700 *
3701 * Per cpu partial lists mainly contain slabs that just have one
3702 * object freed. If they are used for allocation then they can be
3703 * filled up again with minimal effort. The slab will never hit the
3704 * per node partial lists and therefore no locking will be required.
3705 *
3706 * This setting also determines
3707 *
3708 * A) The number of objects from per cpu partial slabs dumped to the
3709 * per node list when we reach the limit.
3710 * B) The number of objects in cpu partial slabs to extract from the
3711 * per node list when we run out of per cpu objects. We only fetch
3712 * 50% to keep some capacity around for frees.
3713 */
3714 if (!kmem_cache_has_cpu_partial(s))
bbd4e305 3715 slub_set_cpu_partial(s, 0);
e6d0e1dc 3716 else if (s->size >= PAGE_SIZE)
bbd4e305 3717 slub_set_cpu_partial(s, 2);
e6d0e1dc 3718 else if (s->size >= 1024)
bbd4e305 3719 slub_set_cpu_partial(s, 6);
e6d0e1dc 3720 else if (s->size >= 256)
bbd4e305 3721 slub_set_cpu_partial(s, 13);
e6d0e1dc 3722 else
bbd4e305 3723 slub_set_cpu_partial(s, 30);
e6d0e1dc
WY
3724#endif
3725}
3726
81819f0f
CL
3727/*
3728 * calculate_sizes() determines the order and the distribution of data within
3729 * a slab object.
3730 */
06b285dc 3731static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3732{
d50112ed 3733 slab_flags_t flags = s->flags;
be4a7988 3734 unsigned int size = s->object_size;
19af27af 3735 unsigned int order;
81819f0f 3736
d8b42bf5
CL
3737 /*
3738 * Round up object size to the next word boundary. We can only
3739 * place the free pointer at word boundaries and this determines
3740 * the possible location of the free pointer.
3741 */
3742 size = ALIGN(size, sizeof(void *));
3743
3744#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3745 /*
3746 * Determine if we can poison the object itself. If the user of
3747 * the slab may touch the object after free or before allocation
3748 * then we should never poison the object itself.
3749 */
5f0d5a3a 3750 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3751 !s->ctor)
81819f0f
CL
3752 s->flags |= __OBJECT_POISON;
3753 else
3754 s->flags &= ~__OBJECT_POISON;
3755
81819f0f
CL
3756
3757 /*
672bba3a 3758 * If we are Redzoning then check if there is some space between the
81819f0f 3759 * end of the object and the free pointer. If not then add an
672bba3a 3760 * additional word to have some bytes to store Redzone information.
81819f0f 3761 */
3b0efdfa 3762 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3763 size += sizeof(void *);
41ecc55b 3764#endif
81819f0f
CL
3765
3766 /*
672bba3a 3767 * With that we have determined the number of bytes in actual use
e41a49fa 3768 * by the object and redzoning.
81819f0f
CL
3769 */
3770 s->inuse = size;
3771
74c1d3e0
KC
3772 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3773 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
3774 s->ctor) {
81819f0f
CL
3775 /*
3776 * Relocate free pointer after the object if it is not
3777 * permitted to overwrite the first word of the object on
3778 * kmem_cache_free.
3779 *
3780 * This is the case if we do RCU, have a constructor or
74c1d3e0
KC
3781 * destructor, are poisoning the objects, or are
3782 * redzoning an object smaller than sizeof(void *).
cbfc35a4
WL
3783 *
3784 * The assumption that s->offset >= s->inuse means free
3785 * pointer is outside of the object is used in the
3786 * freeptr_outside_object() function. If that is no
3787 * longer true, the function needs to be modified.
81819f0f
CL
3788 */
3789 s->offset = size;
3790 size += sizeof(void *);
e41a49fa 3791 } else {
3202fa62
KC
3792 /*
3793 * Store freelist pointer near middle of object to keep
3794 * it away from the edges of the object to avoid small
3795 * sized over/underflows from neighboring allocations.
3796 */
e41a49fa 3797 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
81819f0f
CL
3798 }
3799
c12b3c62 3800#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3801 if (flags & SLAB_STORE_USER)
3802 /*
3803 * Need to store information about allocs and frees after
3804 * the object.
3805 */
3806 size += 2 * sizeof(struct track);
80a9201a 3807#endif
81819f0f 3808
80a9201a
AP
3809 kasan_cache_create(s, &size, &s->flags);
3810#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3811 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3812 /*
3813 * Add some empty padding so that we can catch
3814 * overwrites from earlier objects rather than let
3815 * tracking information or the free pointer be
0211a9c8 3816 * corrupted if a user writes before the start
81819f0f
CL
3817 * of the object.
3818 */
3819 size += sizeof(void *);
d86bd1be
JK
3820
3821 s->red_left_pad = sizeof(void *);
3822 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3823 size += s->red_left_pad;
3824 }
41ecc55b 3825#endif
672bba3a 3826
81819f0f
CL
3827 /*
3828 * SLUB stores one object immediately after another beginning from
3829 * offset 0. In order to align the objects we have to simply size
3830 * each object to conform to the alignment.
3831 */
45906855 3832 size = ALIGN(size, s->align);
81819f0f 3833 s->size = size;
4138fdfc 3834 s->reciprocal_size = reciprocal_value(size);
06b285dc
CL
3835 if (forced_order >= 0)
3836 order = forced_order;
3837 else
9736d2a9 3838 order = calculate_order(size);
81819f0f 3839
19af27af 3840 if ((int)order < 0)
81819f0f
CL
3841 return 0;
3842
b7a49f0d 3843 s->allocflags = 0;
834f3d11 3844 if (order)
b7a49f0d
CL
3845 s->allocflags |= __GFP_COMP;
3846
3847 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3848 s->allocflags |= GFP_DMA;
b7a49f0d 3849
6d6ea1e9
NB
3850 if (s->flags & SLAB_CACHE_DMA32)
3851 s->allocflags |= GFP_DMA32;
3852
b7a49f0d
CL
3853 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3854 s->allocflags |= __GFP_RECLAIMABLE;
3855
81819f0f
CL
3856 /*
3857 * Determine the number of objects per slab
3858 */
9736d2a9
MW
3859 s->oo = oo_make(order, size);
3860 s->min = oo_make(get_order(size), size);
205ab99d
CL
3861 if (oo_objects(s->oo) > oo_objects(s->max))
3862 s->max = s->oo;
81819f0f 3863
834f3d11 3864 return !!oo_objects(s->oo);
81819f0f
CL
3865}
3866
d50112ed 3867static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3868{
37540008 3869 s->flags = kmem_cache_flags(s->size, flags, s->name);
2482ddec
KC
3870#ifdef CONFIG_SLAB_FREELIST_HARDENED
3871 s->random = get_random_long();
3872#endif
81819f0f 3873
06b285dc 3874 if (!calculate_sizes(s, -1))
81819f0f 3875 goto error;
3de47213
DR
3876 if (disable_higher_order_debug) {
3877 /*
3878 * Disable debugging flags that store metadata if the min slab
3879 * order increased.
3880 */
3b0efdfa 3881 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3882 s->flags &= ~DEBUG_METADATA_FLAGS;
3883 s->offset = 0;
3884 if (!calculate_sizes(s, -1))
3885 goto error;
3886 }
3887 }
81819f0f 3888
2565409f
HC
3889#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3890 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3891 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3892 /* Enable fast mode */
3893 s->flags |= __CMPXCHG_DOUBLE;
3894#endif
3895
3b89d7d8
DR
3896 /*
3897 * The larger the object size is, the more pages we want on the partial
3898 * list to avoid pounding the page allocator excessively.
3899 */
49e22585
CL
3900 set_min_partial(s, ilog2(s->size) / 2);
3901
e6d0e1dc 3902 set_cpu_partial(s);
49e22585 3903
81819f0f 3904#ifdef CONFIG_NUMA
e2cb96b7 3905 s->remote_node_defrag_ratio = 1000;
81819f0f 3906#endif
210e7a43
TG
3907
3908 /* Initialize the pre-computed randomized freelist if slab is up */
3909 if (slab_state >= UP) {
3910 if (init_cache_random_seq(s))
3911 goto error;
3912 }
3913
55136592 3914 if (!init_kmem_cache_nodes(s))
dfb4f096 3915 goto error;
81819f0f 3916
55136592 3917 if (alloc_kmem_cache_cpus(s))
278b1bb1 3918 return 0;
ff12059e 3919
4c93c355 3920 free_kmem_cache_nodes(s);
81819f0f 3921error:
278b1bb1 3922 return -EINVAL;
81819f0f 3923}
81819f0f 3924
33b12c38 3925static void list_slab_objects(struct kmem_cache *s, struct page *page,
55860d96 3926 const char *text)
33b12c38
CL
3927{
3928#ifdef CONFIG_SLUB_DEBUG
3929 void *addr = page_address(page);
55860d96 3930 unsigned long *map;
33b12c38 3931 void *p;
aa456c7a 3932
945cf2b6 3933 slab_err(s, page, text, s->name);
33b12c38 3934 slab_lock(page);
33b12c38 3935
90e9f6a6 3936 map = get_map(s, page);
33b12c38
CL
3937 for_each_object(p, s, addr, page->objects) {
3938
4138fdfc 3939 if (!test_bit(__obj_to_index(s, addr, p), map)) {
96b94abc 3940 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3941 print_tracking(s, p);
3942 }
3943 }
55860d96 3944 put_map(map);
33b12c38
CL
3945 slab_unlock(page);
3946#endif
3947}
3948
81819f0f 3949/*
599870b1 3950 * Attempt to free all partial slabs on a node.
52b4b950
DS
3951 * This is called from __kmem_cache_shutdown(). We must take list_lock
3952 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3953 */
599870b1 3954static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3955{
60398923 3956 LIST_HEAD(discard);
81819f0f
CL
3957 struct page *page, *h;
3958
52b4b950
DS
3959 BUG_ON(irqs_disabled());
3960 spin_lock_irq(&n->list_lock);
916ac052 3961 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 3962 if (!page->inuse) {
52b4b950 3963 remove_partial(n, page);
916ac052 3964 list_add(&page->slab_list, &discard);
33b12c38
CL
3965 } else {
3966 list_slab_objects(s, page,
55860d96 3967 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3968 }
33b12c38 3969 }
52b4b950 3970 spin_unlock_irq(&n->list_lock);
60398923 3971
916ac052 3972 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 3973 discard_slab(s, page);
81819f0f
CL
3974}
3975
f9e13c0a
SB
3976bool __kmem_cache_empty(struct kmem_cache *s)
3977{
3978 int node;
3979 struct kmem_cache_node *n;
3980
3981 for_each_kmem_cache_node(s, node, n)
3982 if (n->nr_partial || slabs_node(s, node))
3983 return false;
3984 return true;
3985}
3986
81819f0f 3987/*
672bba3a 3988 * Release all resources used by a slab cache.
81819f0f 3989 */
52b4b950 3990int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3991{
3992 int node;
fa45dc25 3993 struct kmem_cache_node *n;
81819f0f
CL
3994
3995 flush_all(s);
81819f0f 3996 /* Attempt to free all objects */
fa45dc25 3997 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3998 free_partial(s, n);
3999 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
4000 return 1;
4001 }
81819f0f
CL
4002 return 0;
4003}
4004
5bb1bb35 4005#ifdef CONFIG_PRINTK
8e7f37f2
PM
4006void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
4007{
4008 void *base;
4009 int __maybe_unused i;
4010 unsigned int objnr;
4011 void *objp;
4012 void *objp0;
4013 struct kmem_cache *s = page->slab_cache;
4014 struct track __maybe_unused *trackp;
4015
4016 kpp->kp_ptr = object;
4017 kpp->kp_page = page;
4018 kpp->kp_slab_cache = s;
4019 base = page_address(page);
4020 objp0 = kasan_reset_tag(object);
4021#ifdef CONFIG_SLUB_DEBUG
4022 objp = restore_red_left(s, objp0);
4023#else
4024 objp = objp0;
4025#endif
4026 objnr = obj_to_index(s, page, objp);
4027 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4028 objp = base + s->size * objnr;
4029 kpp->kp_objp = objp;
4030 if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
4031 !(s->flags & SLAB_STORE_USER))
4032 return;
4033#ifdef CONFIG_SLUB_DEBUG
0cbc124b 4034 objp = fixup_red_left(s, objp);
8e7f37f2
PM
4035 trackp = get_track(s, objp, TRACK_ALLOC);
4036 kpp->kp_ret = (void *)trackp->addr;
ae14c63a
LT
4037#ifdef CONFIG_STACKTRACE
4038 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4039 kpp->kp_stack[i] = (void *)trackp->addrs[i];
4040 if (!kpp->kp_stack[i])
4041 break;
4042 }
78869146 4043
ae14c63a
LT
4044 trackp = get_track(s, objp, TRACK_FREE);
4045 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4046 kpp->kp_free_stack[i] = (void *)trackp->addrs[i];
4047 if (!kpp->kp_free_stack[i])
4048 break;
e548eaa1 4049 }
8e7f37f2
PM
4050#endif
4051#endif
4052}
5bb1bb35 4053#endif
8e7f37f2 4054
81819f0f
CL
4055/********************************************************************
4056 * Kmalloc subsystem
4057 *******************************************************************/
4058
81819f0f
CL
4059static int __init setup_slub_min_order(char *str)
4060{
19af27af 4061 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
4062
4063 return 1;
4064}
4065
4066__setup("slub_min_order=", setup_slub_min_order);
4067
4068static int __init setup_slub_max_order(char *str)
4069{
19af27af
AD
4070 get_option(&str, (int *)&slub_max_order);
4071 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
4072
4073 return 1;
4074}
4075
4076__setup("slub_max_order=", setup_slub_max_order);
4077
4078static int __init setup_slub_min_objects(char *str)
4079{
19af27af 4080 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
4081
4082 return 1;
4083}
4084
4085__setup("slub_min_objects=", setup_slub_min_objects);
4086
81819f0f
CL
4087void *__kmalloc(size_t size, gfp_t flags)
4088{
aadb4bc4 4089 struct kmem_cache *s;
5b882be4 4090 void *ret;
81819f0f 4091
95a05b42 4092 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 4093 return kmalloc_large(size, flags);
aadb4bc4 4094
2c59dd65 4095 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4096
4097 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4098 return s;
4099
b89fb5ef 4100 ret = slab_alloc(s, flags, _RET_IP_, size);
5b882be4 4101
ca2b84cb 4102 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 4103
0116523c 4104 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4105
5b882be4 4106 return ret;
81819f0f
CL
4107}
4108EXPORT_SYMBOL(__kmalloc);
4109
5d1f57e4 4110#ifdef CONFIG_NUMA
f619cfe1
CL
4111static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4112{
b1eeab67 4113 struct page *page;
e4f7c0b4 4114 void *ptr = NULL;
6a486c0a 4115 unsigned int order = get_order(size);
f619cfe1 4116
75f296d9 4117 flags |= __GFP_COMP;
6a486c0a
VB
4118 page = alloc_pages_node(node, flags, order);
4119 if (page) {
e4f7c0b4 4120 ptr = page_address(page);
96403bfe
MS
4121 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4122 PAGE_SIZE << order);
6a486c0a 4123 }
e4f7c0b4 4124
0116523c 4125 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
4126}
4127
81819f0f
CL
4128void *__kmalloc_node(size_t size, gfp_t flags, int node)
4129{
aadb4bc4 4130 struct kmem_cache *s;
5b882be4 4131 void *ret;
81819f0f 4132
95a05b42 4133 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
4134 ret = kmalloc_large_node(size, flags, node);
4135
ca2b84cb
EGM
4136 trace_kmalloc_node(_RET_IP_, ret,
4137 size, PAGE_SIZE << get_order(size),
4138 flags, node);
5b882be4
EGM
4139
4140 return ret;
4141 }
aadb4bc4 4142
2c59dd65 4143 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4144
4145 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4146 return s;
4147
b89fb5ef 4148 ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
5b882be4 4149
ca2b84cb 4150 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 4151
0116523c 4152 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4153
5b882be4 4154 return ret;
81819f0f
CL
4155}
4156EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 4157#endif /* CONFIG_NUMA */
81819f0f 4158
ed18adc1
KC
4159#ifdef CONFIG_HARDENED_USERCOPY
4160/*
afcc90f8
KC
4161 * Rejects incorrectly sized objects and objects that are to be copied
4162 * to/from userspace but do not fall entirely within the containing slab
4163 * cache's usercopy region.
ed18adc1
KC
4164 *
4165 * Returns NULL if check passes, otherwise const char * to name of cache
4166 * to indicate an error.
4167 */
f4e6e289
KC
4168void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4169 bool to_user)
ed18adc1
KC
4170{
4171 struct kmem_cache *s;
44065b2e 4172 unsigned int offset;
ed18adc1 4173 size_t object_size;
b89fb5ef 4174 bool is_kfence = is_kfence_address(ptr);
ed18adc1 4175
96fedce2
AK
4176 ptr = kasan_reset_tag(ptr);
4177
ed18adc1
KC
4178 /* Find object and usable object size. */
4179 s = page->slab_cache;
ed18adc1
KC
4180
4181 /* Reject impossible pointers. */
4182 if (ptr < page_address(page))
f4e6e289
KC
4183 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4184 to_user, 0, n);
ed18adc1
KC
4185
4186 /* Find offset within object. */
b89fb5ef
AP
4187 if (is_kfence)
4188 offset = ptr - kfence_object_start(ptr);
4189 else
4190 offset = (ptr - page_address(page)) % s->size;
ed18adc1
KC
4191
4192 /* Adjust for redzone and reject if within the redzone. */
b89fb5ef 4193 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 4194 if (offset < s->red_left_pad)
f4e6e289
KC
4195 usercopy_abort("SLUB object in left red zone",
4196 s->name, to_user, offset, n);
ed18adc1
KC
4197 offset -= s->red_left_pad;
4198 }
4199
afcc90f8
KC
4200 /* Allow address range falling entirely within usercopy region. */
4201 if (offset >= s->useroffset &&
4202 offset - s->useroffset <= s->usersize &&
4203 n <= s->useroffset - offset + s->usersize)
f4e6e289 4204 return;
ed18adc1 4205
afcc90f8
KC
4206 /*
4207 * If the copy is still within the allocated object, produce
4208 * a warning instead of rejecting the copy. This is intended
4209 * to be a temporary method to find any missing usercopy
4210 * whitelists.
4211 */
4212 object_size = slab_ksize(s);
2d891fbc
KC
4213 if (usercopy_fallback &&
4214 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
4215 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4216 return;
4217 }
ed18adc1 4218
f4e6e289 4219 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
4220}
4221#endif /* CONFIG_HARDENED_USERCOPY */
4222
10d1f8cb 4223size_t __ksize(const void *object)
81819f0f 4224{
272c1d21 4225 struct page *page;
81819f0f 4226
ef8b4520 4227 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
4228 return 0;
4229
294a80a8 4230 page = virt_to_head_page(object);
294a80a8 4231
76994412
PE
4232 if (unlikely(!PageSlab(page))) {
4233 WARN_ON(!PageCompound(page));
a50b854e 4234 return page_size(page);
76994412 4235 }
81819f0f 4236
1b4f59e3 4237 return slab_ksize(page->slab_cache);
81819f0f 4238}
10d1f8cb 4239EXPORT_SYMBOL(__ksize);
81819f0f
CL
4240
4241void kfree(const void *x)
4242{
81819f0f 4243 struct page *page;
5bb983b0 4244 void *object = (void *)x;
81819f0f 4245
2121db74
PE
4246 trace_kfree(_RET_IP_, x);
4247
2408c550 4248 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
4249 return;
4250
b49af68f 4251 page = virt_to_head_page(x);
aadb4bc4 4252 if (unlikely(!PageSlab(page))) {
6a486c0a
VB
4253 unsigned int order = compound_order(page);
4254
0937502a 4255 BUG_ON(!PageCompound(page));
47adccce 4256 kfree_hook(object);
96403bfe
MS
4257 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4258 -(PAGE_SIZE << order));
6a486c0a 4259 __free_pages(page, order);
aadb4bc4
CL
4260 return;
4261 }
81084651 4262 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
4263}
4264EXPORT_SYMBOL(kfree);
4265
832f37f5
VD
4266#define SHRINK_PROMOTE_MAX 32
4267
2086d26a 4268/*
832f37f5
VD
4269 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4270 * up most to the head of the partial lists. New allocations will then
4271 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4272 *
4273 * The slabs with the least items are placed last. This results in them
4274 * being allocated from last increasing the chance that the last objects
4275 * are freed in them.
2086d26a 4276 */
c9fc5864 4277int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
4278{
4279 int node;
4280 int i;
4281 struct kmem_cache_node *n;
4282 struct page *page;
4283 struct page *t;
832f37f5
VD
4284 struct list_head discard;
4285 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4286 unsigned long flags;
ce3712d7 4287 int ret = 0;
2086d26a 4288
2086d26a 4289 flush_all(s);
fa45dc25 4290 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4291 INIT_LIST_HEAD(&discard);
4292 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4293 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4294
4295 spin_lock_irqsave(&n->list_lock, flags);
4296
4297 /*
832f37f5 4298 * Build lists of slabs to discard or promote.
2086d26a 4299 *
672bba3a
CL
4300 * Note that concurrent frees may occur while we hold the
4301 * list_lock. page->inuse here is the upper limit.
2086d26a 4302 */
916ac052 4303 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
4304 int free = page->objects - page->inuse;
4305
4306 /* Do not reread page->inuse */
4307 barrier();
4308
4309 /* We do not keep full slabs on the list */
4310 BUG_ON(free <= 0);
4311
4312 if (free == page->objects) {
916ac052 4313 list_move(&page->slab_list, &discard);
69cb8e6b 4314 n->nr_partial--;
832f37f5 4315 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4316 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4317 }
4318
2086d26a 4319 /*
832f37f5
VD
4320 * Promote the slabs filled up most to the head of the
4321 * partial list.
2086d26a 4322 */
832f37f5
VD
4323 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4324 list_splice(promote + i, &n->partial);
2086d26a 4325
2086d26a 4326 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4327
4328 /* Release empty slabs */
916ac052 4329 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4330 discard_slab(s, page);
ce3712d7
VD
4331
4332 if (slabs_node(s, node))
4333 ret = 1;
2086d26a
CL
4334 }
4335
ce3712d7 4336 return ret;
2086d26a 4337}
2086d26a 4338
b9049e23
YG
4339static int slab_mem_going_offline_callback(void *arg)
4340{
4341 struct kmem_cache *s;
4342
18004c5d 4343 mutex_lock(&slab_mutex);
b9049e23 4344 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4345 __kmem_cache_shrink(s);
18004c5d 4346 mutex_unlock(&slab_mutex);
b9049e23
YG
4347
4348 return 0;
4349}
4350
4351static void slab_mem_offline_callback(void *arg)
4352{
b9049e23
YG
4353 struct memory_notify *marg = arg;
4354 int offline_node;
4355
b9d5ab25 4356 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4357
4358 /*
4359 * If the node still has available memory. we need kmem_cache_node
4360 * for it yet.
4361 */
4362 if (offline_node < 0)
4363 return;
4364
18004c5d 4365 mutex_lock(&slab_mutex);
7e1fa93d 4366 node_clear(offline_node, slab_nodes);
666716fd
VB
4367 /*
4368 * We no longer free kmem_cache_node structures here, as it would be
4369 * racy with all get_node() users, and infeasible to protect them with
4370 * slab_mutex.
4371 */
18004c5d 4372 mutex_unlock(&slab_mutex);
b9049e23
YG
4373}
4374
4375static int slab_mem_going_online_callback(void *arg)
4376{
4377 struct kmem_cache_node *n;
4378 struct kmem_cache *s;
4379 struct memory_notify *marg = arg;
b9d5ab25 4380 int nid = marg->status_change_nid_normal;
b9049e23
YG
4381 int ret = 0;
4382
4383 /*
4384 * If the node's memory is already available, then kmem_cache_node is
4385 * already created. Nothing to do.
4386 */
4387 if (nid < 0)
4388 return 0;
4389
4390 /*
0121c619 4391 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4392 * allocate a kmem_cache_node structure in order to bring the node
4393 * online.
4394 */
18004c5d 4395 mutex_lock(&slab_mutex);
b9049e23 4396 list_for_each_entry(s, &slab_caches, list) {
666716fd
VB
4397 /*
4398 * The structure may already exist if the node was previously
4399 * onlined and offlined.
4400 */
4401 if (get_node(s, nid))
4402 continue;
b9049e23
YG
4403 /*
4404 * XXX: kmem_cache_alloc_node will fallback to other nodes
4405 * since memory is not yet available from the node that
4406 * is brought up.
4407 */
8de66a0c 4408 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4409 if (!n) {
4410 ret = -ENOMEM;
4411 goto out;
4412 }
4053497d 4413 init_kmem_cache_node(n);
b9049e23
YG
4414 s->node[nid] = n;
4415 }
7e1fa93d
VB
4416 /*
4417 * Any cache created after this point will also have kmem_cache_node
4418 * initialized for the new node.
4419 */
4420 node_set(nid, slab_nodes);
b9049e23 4421out:
18004c5d 4422 mutex_unlock(&slab_mutex);
b9049e23
YG
4423 return ret;
4424}
4425
4426static int slab_memory_callback(struct notifier_block *self,
4427 unsigned long action, void *arg)
4428{
4429 int ret = 0;
4430
4431 switch (action) {
4432 case MEM_GOING_ONLINE:
4433 ret = slab_mem_going_online_callback(arg);
4434 break;
4435 case MEM_GOING_OFFLINE:
4436 ret = slab_mem_going_offline_callback(arg);
4437 break;
4438 case MEM_OFFLINE:
4439 case MEM_CANCEL_ONLINE:
4440 slab_mem_offline_callback(arg);
4441 break;
4442 case MEM_ONLINE:
4443 case MEM_CANCEL_OFFLINE:
4444 break;
4445 }
dc19f9db
KH
4446 if (ret)
4447 ret = notifier_from_errno(ret);
4448 else
4449 ret = NOTIFY_OK;
b9049e23
YG
4450 return ret;
4451}
4452
3ac38faa
AM
4453static struct notifier_block slab_memory_callback_nb = {
4454 .notifier_call = slab_memory_callback,
4455 .priority = SLAB_CALLBACK_PRI,
4456};
b9049e23 4457
81819f0f
CL
4458/********************************************************************
4459 * Basic setup of slabs
4460 *******************************************************************/
4461
51df1142
CL
4462/*
4463 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4464 * the page allocator. Allocate them properly then fix up the pointers
4465 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4466 */
4467
dffb4d60 4468static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4469{
4470 int node;
dffb4d60 4471 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4472 struct kmem_cache_node *n;
51df1142 4473
dffb4d60 4474 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4475
7d557b3c
GC
4476 /*
4477 * This runs very early, and only the boot processor is supposed to be
4478 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4479 * IPIs around.
4480 */
4481 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4482 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4483 struct page *p;
4484
916ac052 4485 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4486 p->slab_cache = s;
51df1142 4487
607bf324 4488#ifdef CONFIG_SLUB_DEBUG
916ac052 4489 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4490 p->slab_cache = s;
51df1142 4491#endif
51df1142 4492 }
dffb4d60
CL
4493 list_add(&s->list, &slab_caches);
4494 return s;
51df1142
CL
4495}
4496
81819f0f
CL
4497void __init kmem_cache_init(void)
4498{
dffb4d60
CL
4499 static __initdata struct kmem_cache boot_kmem_cache,
4500 boot_kmem_cache_node;
7e1fa93d 4501 int node;
51df1142 4502
fc8d8620
SG
4503 if (debug_guardpage_minorder())
4504 slub_max_order = 0;
4505
79270291
SB
4506 /* Print slub debugging pointers without hashing */
4507 if (__slub_debug_enabled())
4508 no_hash_pointers_enable(NULL);
4509
dffb4d60
CL
4510 kmem_cache_node = &boot_kmem_cache_node;
4511 kmem_cache = &boot_kmem_cache;
51df1142 4512
7e1fa93d
VB
4513 /*
4514 * Initialize the nodemask for which we will allocate per node
4515 * structures. Here we don't need taking slab_mutex yet.
4516 */
4517 for_each_node_state(node, N_NORMAL_MEMORY)
4518 node_set(node, slab_nodes);
4519
dffb4d60 4520 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4521 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4522
3ac38faa 4523 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4524
4525 /* Able to allocate the per node structures */
4526 slab_state = PARTIAL;
4527
dffb4d60
CL
4528 create_boot_cache(kmem_cache, "kmem_cache",
4529 offsetof(struct kmem_cache, node) +
4530 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4531 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4532
dffb4d60 4533 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4534 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4535
4536 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4537 setup_kmalloc_cache_index_table();
f97d5f63 4538 create_kmalloc_caches(0);
81819f0f 4539
210e7a43
TG
4540 /* Setup random freelists for each cache */
4541 init_freelist_randomization();
4542
a96a87bf
SAS
4543 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4544 slub_cpu_dead);
81819f0f 4545
b9726c26 4546 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4547 cache_line_size(),
81819f0f
CL
4548 slub_min_order, slub_max_order, slub_min_objects,
4549 nr_cpu_ids, nr_node_ids);
4550}
4551
7e85ee0c
PE
4552void __init kmem_cache_init_late(void)
4553{
7e85ee0c
PE
4554}
4555
2633d7a0 4556struct kmem_cache *
f4957d5b 4557__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4558 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4559{
10befea9 4560 struct kmem_cache *s;
81819f0f 4561
a44cb944 4562 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4563 if (s) {
4564 s->refcount++;
84d0ddd6 4565
81819f0f
CL
4566 /*
4567 * Adjust the object sizes so that we clear
4568 * the complete object on kzalloc.
4569 */
1b473f29 4570 s->object_size = max(s->object_size, size);
52ee6d74 4571 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4572
7b8f3b66 4573 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4574 s->refcount--;
cbb79694 4575 s = NULL;
7b8f3b66 4576 }
a0e1d1be 4577 }
6446faa2 4578
cbb79694
CL
4579 return s;
4580}
84c1cf62 4581
d50112ed 4582int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4583{
aac3a166
PE
4584 int err;
4585
4586 err = kmem_cache_open(s, flags);
4587 if (err)
4588 return err;
20cea968 4589
45530c44
CL
4590 /* Mutex is not taken during early boot */
4591 if (slab_state <= UP)
4592 return 0;
4593
aac3a166 4594 err = sysfs_slab_add(s);
aac3a166 4595 if (err)
52b4b950 4596 __kmem_cache_release(s);
20cea968 4597
64dd6849
FM
4598 if (s->flags & SLAB_STORE_USER)
4599 debugfs_slab_add(s);
4600
aac3a166 4601 return err;
81819f0f 4602}
81819f0f 4603
ce71e27c 4604void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4605{
aadb4bc4 4606 struct kmem_cache *s;
94b528d0 4607 void *ret;
aadb4bc4 4608
95a05b42 4609 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4610 return kmalloc_large(size, gfpflags);
4611
2c59dd65 4612 s = kmalloc_slab(size, gfpflags);
81819f0f 4613
2408c550 4614 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4615 return s;
81819f0f 4616
b89fb5ef 4617 ret = slab_alloc(s, gfpflags, caller, size);
94b528d0 4618
25985edc 4619 /* Honor the call site pointer we received. */
ca2b84cb 4620 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4621
4622 return ret;
81819f0f 4623}
fd7cb575 4624EXPORT_SYMBOL(__kmalloc_track_caller);
81819f0f 4625
5d1f57e4 4626#ifdef CONFIG_NUMA
81819f0f 4627void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4628 int node, unsigned long caller)
81819f0f 4629{
aadb4bc4 4630 struct kmem_cache *s;
94b528d0 4631 void *ret;
aadb4bc4 4632
95a05b42 4633 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4634 ret = kmalloc_large_node(size, gfpflags, node);
4635
4636 trace_kmalloc_node(caller, ret,
4637 size, PAGE_SIZE << get_order(size),
4638 gfpflags, node);
4639
4640 return ret;
4641 }
eada35ef 4642
2c59dd65 4643 s = kmalloc_slab(size, gfpflags);
81819f0f 4644
2408c550 4645 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4646 return s;
81819f0f 4647
b89fb5ef 4648 ret = slab_alloc_node(s, gfpflags, node, caller, size);
94b528d0 4649
25985edc 4650 /* Honor the call site pointer we received. */
ca2b84cb 4651 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4652
4653 return ret;
81819f0f 4654}
fd7cb575 4655EXPORT_SYMBOL(__kmalloc_node_track_caller);
5d1f57e4 4656#endif
81819f0f 4657
ab4d5ed5 4658#ifdef CONFIG_SYSFS
205ab99d
CL
4659static int count_inuse(struct page *page)
4660{
4661 return page->inuse;
4662}
4663
4664static int count_total(struct page *page)
4665{
4666 return page->objects;
4667}
ab4d5ed5 4668#endif
205ab99d 4669
ab4d5ed5 4670#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 4671static void validate_slab(struct kmem_cache *s, struct page *page)
53e15af0
CL
4672{
4673 void *p;
a973e9dd 4674 void *addr = page_address(page);
90e9f6a6
YZ
4675 unsigned long *map;
4676
4677 slab_lock(page);
53e15af0 4678
dd98afd4 4679 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
90e9f6a6 4680 goto unlock;
53e15af0
CL
4681
4682 /* Now we know that a valid freelist exists */
90e9f6a6 4683 map = get_map(s, page);
5f80b13a 4684 for_each_object(p, s, addr, page->objects) {
4138fdfc 4685 u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
dd98afd4 4686 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 4687
dd98afd4
YZ
4688 if (!check_object(s, page, p, val))
4689 break;
4690 }
90e9f6a6
YZ
4691 put_map(map);
4692unlock:
881db7fb 4693 slab_unlock(page);
53e15af0
CL
4694}
4695
434e245d 4696static int validate_slab_node(struct kmem_cache *s,
90e9f6a6 4697 struct kmem_cache_node *n)
53e15af0
CL
4698{
4699 unsigned long count = 0;
4700 struct page *page;
4701 unsigned long flags;
4702
4703 spin_lock_irqsave(&n->list_lock, flags);
4704
916ac052 4705 list_for_each_entry(page, &n->partial, slab_list) {
90e9f6a6 4706 validate_slab(s, page);
53e15af0
CL
4707 count++;
4708 }
1f9f78b1 4709 if (count != n->nr_partial) {
f9f58285
FF
4710 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4711 s->name, count, n->nr_partial);
1f9f78b1
OG
4712 slab_add_kunit_errors();
4713 }
53e15af0
CL
4714
4715 if (!(s->flags & SLAB_STORE_USER))
4716 goto out;
4717
916ac052 4718 list_for_each_entry(page, &n->full, slab_list) {
90e9f6a6 4719 validate_slab(s, page);
53e15af0
CL
4720 count++;
4721 }
1f9f78b1 4722 if (count != atomic_long_read(&n->nr_slabs)) {
f9f58285
FF
4723 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4724 s->name, count, atomic_long_read(&n->nr_slabs));
1f9f78b1
OG
4725 slab_add_kunit_errors();
4726 }
53e15af0
CL
4727
4728out:
4729 spin_unlock_irqrestore(&n->list_lock, flags);
4730 return count;
4731}
4732
1f9f78b1 4733long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4734{
4735 int node;
4736 unsigned long count = 0;
fa45dc25 4737 struct kmem_cache_node *n;
53e15af0
CL
4738
4739 flush_all(s);
fa45dc25 4740 for_each_kmem_cache_node(s, node, n)
90e9f6a6
YZ
4741 count += validate_slab_node(s, n);
4742
53e15af0
CL
4743 return count;
4744}
1f9f78b1
OG
4745EXPORT_SYMBOL(validate_slab_cache);
4746
64dd6849 4747#ifdef CONFIG_DEBUG_FS
88a420e4 4748/*
672bba3a 4749 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4750 * and freed.
4751 */
4752
4753struct location {
4754 unsigned long count;
ce71e27c 4755 unsigned long addr;
45edfa58
CL
4756 long long sum_time;
4757 long min_time;
4758 long max_time;
4759 long min_pid;
4760 long max_pid;
174596a0 4761 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4762 nodemask_t nodes;
88a420e4
CL
4763};
4764
4765struct loc_track {
4766 unsigned long max;
4767 unsigned long count;
4768 struct location *loc;
4769};
4770
64dd6849
FM
4771static struct dentry *slab_debugfs_root;
4772
88a420e4
CL
4773static void free_loc_track(struct loc_track *t)
4774{
4775 if (t->max)
4776 free_pages((unsigned long)t->loc,
4777 get_order(sizeof(struct location) * t->max));
4778}
4779
68dff6a9 4780static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4781{
4782 struct location *l;
4783 int order;
4784
88a420e4
CL
4785 order = get_order(sizeof(struct location) * max);
4786
68dff6a9 4787 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4788 if (!l)
4789 return 0;
4790
4791 if (t->count) {
4792 memcpy(l, t->loc, sizeof(struct location) * t->count);
4793 free_loc_track(t);
4794 }
4795 t->max = max;
4796 t->loc = l;
4797 return 1;
4798}
4799
4800static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4801 const struct track *track)
88a420e4
CL
4802{
4803 long start, end, pos;
4804 struct location *l;
ce71e27c 4805 unsigned long caddr;
45edfa58 4806 unsigned long age = jiffies - track->when;
88a420e4
CL
4807
4808 start = -1;
4809 end = t->count;
4810
4811 for ( ; ; ) {
4812 pos = start + (end - start + 1) / 2;
4813
4814 /*
4815 * There is nothing at "end". If we end up there
4816 * we need to add something to before end.
4817 */
4818 if (pos == end)
4819 break;
4820
4821 caddr = t->loc[pos].addr;
45edfa58
CL
4822 if (track->addr == caddr) {
4823
4824 l = &t->loc[pos];
4825 l->count++;
4826 if (track->when) {
4827 l->sum_time += age;
4828 if (age < l->min_time)
4829 l->min_time = age;
4830 if (age > l->max_time)
4831 l->max_time = age;
4832
4833 if (track->pid < l->min_pid)
4834 l->min_pid = track->pid;
4835 if (track->pid > l->max_pid)
4836 l->max_pid = track->pid;
4837
174596a0
RR
4838 cpumask_set_cpu(track->cpu,
4839 to_cpumask(l->cpus));
45edfa58
CL
4840 }
4841 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4842 return 1;
4843 }
4844
45edfa58 4845 if (track->addr < caddr)
88a420e4
CL
4846 end = pos;
4847 else
4848 start = pos;
4849 }
4850
4851 /*
672bba3a 4852 * Not found. Insert new tracking element.
88a420e4 4853 */
68dff6a9 4854 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4855 return 0;
4856
4857 l = t->loc + pos;
4858 if (pos < t->count)
4859 memmove(l + 1, l,
4860 (t->count - pos) * sizeof(struct location));
4861 t->count++;
4862 l->count = 1;
45edfa58
CL
4863 l->addr = track->addr;
4864 l->sum_time = age;
4865 l->min_time = age;
4866 l->max_time = age;
4867 l->min_pid = track->pid;
4868 l->max_pid = track->pid;
174596a0
RR
4869 cpumask_clear(to_cpumask(l->cpus));
4870 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4871 nodes_clear(l->nodes);
4872 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4873 return 1;
4874}
4875
4876static void process_slab(struct loc_track *t, struct kmem_cache *s,
90e9f6a6 4877 struct page *page, enum track_item alloc)
88a420e4 4878{
a973e9dd 4879 void *addr = page_address(page);
88a420e4 4880 void *p;
90e9f6a6 4881 unsigned long *map;
88a420e4 4882
90e9f6a6 4883 map = get_map(s, page);
224a88be 4884 for_each_object(p, s, addr, page->objects)
4138fdfc 4885 if (!test_bit(__obj_to_index(s, addr, p), map))
45edfa58 4886 add_location(t, s, get_track(s, p, alloc));
90e9f6a6 4887 put_map(map);
88a420e4 4888}
64dd6849 4889#endif /* CONFIG_DEBUG_FS */
6dfd1b65 4890#endif /* CONFIG_SLUB_DEBUG */
88a420e4 4891
ab4d5ed5 4892#ifdef CONFIG_SYSFS
81819f0f 4893enum slab_stat_type {
205ab99d
CL
4894 SL_ALL, /* All slabs */
4895 SL_PARTIAL, /* Only partially allocated slabs */
4896 SL_CPU, /* Only slabs used for cpu caches */
4897 SL_OBJECTS, /* Determine allocated objects not slabs */
4898 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4899};
4900
205ab99d 4901#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4902#define SO_PARTIAL (1 << SL_PARTIAL)
4903#define SO_CPU (1 << SL_CPU)
4904#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4905#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4906
62e5c4b4 4907static ssize_t show_slab_objects(struct kmem_cache *s,
bf16d19a 4908 char *buf, unsigned long flags)
81819f0f
CL
4909{
4910 unsigned long total = 0;
81819f0f
CL
4911 int node;
4912 int x;
4913 unsigned long *nodes;
bf16d19a 4914 int len = 0;
81819f0f 4915
6396bb22 4916 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
4917 if (!nodes)
4918 return -ENOMEM;
81819f0f 4919
205ab99d
CL
4920 if (flags & SO_CPU) {
4921 int cpu;
81819f0f 4922
205ab99d 4923 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4924 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4925 cpu);
ec3ab083 4926 int node;
49e22585 4927 struct page *page;
dfb4f096 4928
4db0c3c2 4929 page = READ_ONCE(c->page);
ec3ab083
CL
4930 if (!page)
4931 continue;
205ab99d 4932
ec3ab083
CL
4933 node = page_to_nid(page);
4934 if (flags & SO_TOTAL)
4935 x = page->objects;
4936 else if (flags & SO_OBJECTS)
4937 x = page->inuse;
4938 else
4939 x = 1;
49e22585 4940
ec3ab083
CL
4941 total += x;
4942 nodes[node] += x;
4943
a93cf07b 4944 page = slub_percpu_partial_read_once(c);
49e22585 4945 if (page) {
8afb1474
LZ
4946 node = page_to_nid(page);
4947 if (flags & SO_TOTAL)
4948 WARN_ON_ONCE(1);
4949 else if (flags & SO_OBJECTS)
4950 WARN_ON_ONCE(1);
4951 else
4952 x = page->pages;
bc6697d8
ED
4953 total += x;
4954 nodes[node] += x;
49e22585 4955 }
81819f0f
CL
4956 }
4957 }
4958
e4f8e513
QC
4959 /*
4960 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4961 * already held which will conflict with an existing lock order:
4962 *
4963 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4964 *
4965 * We don't really need mem_hotplug_lock (to hold off
4966 * slab_mem_going_offline_callback) here because slab's memory hot
4967 * unplug code doesn't destroy the kmem_cache->node[] data.
4968 */
4969
ab4d5ed5 4970#ifdef CONFIG_SLUB_DEBUG
205ab99d 4971 if (flags & SO_ALL) {
fa45dc25
CL
4972 struct kmem_cache_node *n;
4973
4974 for_each_kmem_cache_node(s, node, n) {
205ab99d 4975
d0e0ac97
CG
4976 if (flags & SO_TOTAL)
4977 x = atomic_long_read(&n->total_objects);
4978 else if (flags & SO_OBJECTS)
4979 x = atomic_long_read(&n->total_objects) -
4980 count_partial(n, count_free);
81819f0f 4981 else
205ab99d 4982 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4983 total += x;
4984 nodes[node] += x;
4985 }
4986
ab4d5ed5
CL
4987 } else
4988#endif
4989 if (flags & SO_PARTIAL) {
fa45dc25 4990 struct kmem_cache_node *n;
81819f0f 4991
fa45dc25 4992 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4993 if (flags & SO_TOTAL)
4994 x = count_partial(n, count_total);
4995 else if (flags & SO_OBJECTS)
4996 x = count_partial(n, count_inuse);
81819f0f 4997 else
205ab99d 4998 x = n->nr_partial;
81819f0f
CL
4999 total += x;
5000 nodes[node] += x;
5001 }
5002 }
bf16d19a
JP
5003
5004 len += sysfs_emit_at(buf, len, "%lu", total);
81819f0f 5005#ifdef CONFIG_NUMA
bf16d19a 5006 for (node = 0; node < nr_node_ids; node++) {
81819f0f 5007 if (nodes[node])
bf16d19a
JP
5008 len += sysfs_emit_at(buf, len, " N%d=%lu",
5009 node, nodes[node]);
5010 }
81819f0f 5011#endif
bf16d19a 5012 len += sysfs_emit_at(buf, len, "\n");
81819f0f 5013 kfree(nodes);
bf16d19a
JP
5014
5015 return len;
81819f0f
CL
5016}
5017
81819f0f 5018#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 5019#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
5020
5021struct slab_attribute {
5022 struct attribute attr;
5023 ssize_t (*show)(struct kmem_cache *s, char *buf);
5024 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5025};
5026
5027#define SLAB_ATTR_RO(_name) \
ab067e99
VK
5028 static struct slab_attribute _name##_attr = \
5029 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
5030
5031#define SLAB_ATTR(_name) \
5032 static struct slab_attribute _name##_attr = \
ab067e99 5033 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 5034
81819f0f
CL
5035static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5036{
bf16d19a 5037 return sysfs_emit(buf, "%u\n", s->size);
81819f0f
CL
5038}
5039SLAB_ATTR_RO(slab_size);
5040
5041static ssize_t align_show(struct kmem_cache *s, char *buf)
5042{
bf16d19a 5043 return sysfs_emit(buf, "%u\n", s->align);
81819f0f
CL
5044}
5045SLAB_ATTR_RO(align);
5046
5047static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5048{
bf16d19a 5049 return sysfs_emit(buf, "%u\n", s->object_size);
81819f0f
CL
5050}
5051SLAB_ATTR_RO(object_size);
5052
5053static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5054{
bf16d19a 5055 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
5056}
5057SLAB_ATTR_RO(objs_per_slab);
5058
5059static ssize_t order_show(struct kmem_cache *s, char *buf)
5060{
bf16d19a 5061 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
81819f0f 5062}
32a6f409 5063SLAB_ATTR_RO(order);
81819f0f 5064
73d342b1
DR
5065static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5066{
bf16d19a 5067 return sysfs_emit(buf, "%lu\n", s->min_partial);
73d342b1
DR
5068}
5069
5070static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5071 size_t length)
5072{
5073 unsigned long min;
5074 int err;
5075
3dbb95f7 5076 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5077 if (err)
5078 return err;
5079
c0bdb232 5080 set_min_partial(s, min);
73d342b1
DR
5081 return length;
5082}
5083SLAB_ATTR(min_partial);
5084
49e22585
CL
5085static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5086{
bf16d19a 5087 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
5088}
5089
5090static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5091 size_t length)
5092{
e5d9998f 5093 unsigned int objects;
49e22585
CL
5094 int err;
5095
e5d9998f 5096 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5097 if (err)
5098 return err;
345c905d 5099 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5100 return -EINVAL;
49e22585 5101
e6d0e1dc 5102 slub_set_cpu_partial(s, objects);
49e22585
CL
5103 flush_all(s);
5104 return length;
5105}
5106SLAB_ATTR(cpu_partial);
5107
81819f0f
CL
5108static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5109{
62c70bce
JP
5110 if (!s->ctor)
5111 return 0;
bf16d19a 5112 return sysfs_emit(buf, "%pS\n", s->ctor);
81819f0f
CL
5113}
5114SLAB_ATTR_RO(ctor);
5115
81819f0f
CL
5116static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5117{
bf16d19a 5118 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5119}
5120SLAB_ATTR_RO(aliases);
5121
81819f0f
CL
5122static ssize_t partial_show(struct kmem_cache *s, char *buf)
5123{
d9acf4b7 5124 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5125}
5126SLAB_ATTR_RO(partial);
5127
5128static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5129{
d9acf4b7 5130 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5131}
5132SLAB_ATTR_RO(cpu_slabs);
5133
5134static ssize_t objects_show(struct kmem_cache *s, char *buf)
5135{
205ab99d 5136 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5137}
5138SLAB_ATTR_RO(objects);
5139
205ab99d
CL
5140static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5141{
5142 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5143}
5144SLAB_ATTR_RO(objects_partial);
5145
49e22585
CL
5146static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5147{
5148 int objects = 0;
5149 int pages = 0;
5150 int cpu;
bf16d19a 5151 int len = 0;
49e22585
CL
5152
5153 for_each_online_cpu(cpu) {
a93cf07b
WY
5154 struct page *page;
5155
5156 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5157
5158 if (page) {
5159 pages += page->pages;
5160 objects += page->pobjects;
5161 }
5162 }
5163
bf16d19a 5164 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
49e22585
CL
5165
5166#ifdef CONFIG_SMP
5167 for_each_online_cpu(cpu) {
a93cf07b
WY
5168 struct page *page;
5169
5170 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
bf16d19a
JP
5171 if (page)
5172 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5173 cpu, page->pobjects, page->pages);
49e22585
CL
5174 }
5175#endif
bf16d19a
JP
5176 len += sysfs_emit_at(buf, len, "\n");
5177
5178 return len;
49e22585
CL
5179}
5180SLAB_ATTR_RO(slabs_cpu_partial);
5181
a5a84755
CL
5182static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5183{
bf16d19a 5184 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
a5a84755 5185}
8f58119a 5186SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
5187
5188static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5189{
bf16d19a 5190 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
a5a84755
CL
5191}
5192SLAB_ATTR_RO(hwcache_align);
5193
5194#ifdef CONFIG_ZONE_DMA
5195static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5196{
bf16d19a 5197 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
a5a84755
CL
5198}
5199SLAB_ATTR_RO(cache_dma);
5200#endif
5201
8eb8284b
DW
5202static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5203{
bf16d19a 5204 return sysfs_emit(buf, "%u\n", s->usersize);
8eb8284b
DW
5205}
5206SLAB_ATTR_RO(usersize);
5207
a5a84755
CL
5208static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5209{
bf16d19a 5210 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5211}
5212SLAB_ATTR_RO(destroy_by_rcu);
5213
ab4d5ed5 5214#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5215static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5216{
5217 return show_slab_objects(s, buf, SO_ALL);
5218}
5219SLAB_ATTR_RO(slabs);
5220
205ab99d
CL
5221static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5222{
5223 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5224}
5225SLAB_ATTR_RO(total_objects);
5226
81819f0f
CL
5227static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5228{
bf16d19a 5229 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 5230}
060807f8 5231SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
5232
5233static ssize_t trace_show(struct kmem_cache *s, char *buf)
5234{
bf16d19a 5235 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
81819f0f 5236}
060807f8 5237SLAB_ATTR_RO(trace);
81819f0f 5238
81819f0f
CL
5239static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5240{
bf16d19a 5241 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
81819f0f
CL
5242}
5243
ad38b5b1 5244SLAB_ATTR_RO(red_zone);
81819f0f
CL
5245
5246static ssize_t poison_show(struct kmem_cache *s, char *buf)
5247{
bf16d19a 5248 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
81819f0f
CL
5249}
5250
ad38b5b1 5251SLAB_ATTR_RO(poison);
81819f0f
CL
5252
5253static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5254{
bf16d19a 5255 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
81819f0f
CL
5256}
5257
ad38b5b1 5258SLAB_ATTR_RO(store_user);
81819f0f 5259
53e15af0
CL
5260static ssize_t validate_show(struct kmem_cache *s, char *buf)
5261{
5262 return 0;
5263}
5264
5265static ssize_t validate_store(struct kmem_cache *s,
5266 const char *buf, size_t length)
5267{
434e245d
CL
5268 int ret = -EINVAL;
5269
5270 if (buf[0] == '1') {
5271 ret = validate_slab_cache(s);
5272 if (ret >= 0)
5273 ret = length;
5274 }
5275 return ret;
53e15af0
CL
5276}
5277SLAB_ATTR(validate);
a5a84755 5278
a5a84755
CL
5279#endif /* CONFIG_SLUB_DEBUG */
5280
5281#ifdef CONFIG_FAILSLAB
5282static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5283{
bf16d19a 5284 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
a5a84755 5285}
060807f8 5286SLAB_ATTR_RO(failslab);
ab4d5ed5 5287#endif
53e15af0 5288
2086d26a
CL
5289static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5290{
5291 return 0;
5292}
5293
5294static ssize_t shrink_store(struct kmem_cache *s,
5295 const char *buf, size_t length)
5296{
832f37f5 5297 if (buf[0] == '1')
10befea9 5298 kmem_cache_shrink(s);
832f37f5 5299 else
2086d26a
CL
5300 return -EINVAL;
5301 return length;
5302}
5303SLAB_ATTR(shrink);
5304
81819f0f 5305#ifdef CONFIG_NUMA
9824601e 5306static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5307{
bf16d19a 5308 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5309}
5310
9824601e 5311static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5312 const char *buf, size_t length)
5313{
eb7235eb 5314 unsigned int ratio;
0121c619
CL
5315 int err;
5316
eb7235eb 5317 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5318 if (err)
5319 return err;
eb7235eb
AD
5320 if (ratio > 100)
5321 return -ERANGE;
0121c619 5322
eb7235eb 5323 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5324
81819f0f
CL
5325 return length;
5326}
9824601e 5327SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5328#endif
5329
8ff12cfc 5330#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5331static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5332{
5333 unsigned long sum = 0;
5334 int cpu;
bf16d19a 5335 int len = 0;
6da2ec56 5336 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5337
5338 if (!data)
5339 return -ENOMEM;
5340
5341 for_each_online_cpu(cpu) {
9dfc6e68 5342 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5343
5344 data[cpu] = x;
5345 sum += x;
5346 }
5347
bf16d19a 5348 len += sysfs_emit_at(buf, len, "%lu", sum);
8ff12cfc 5349
50ef37b9 5350#ifdef CONFIG_SMP
8ff12cfc 5351 for_each_online_cpu(cpu) {
bf16d19a
JP
5352 if (data[cpu])
5353 len += sysfs_emit_at(buf, len, " C%d=%u",
5354 cpu, data[cpu]);
8ff12cfc 5355 }
50ef37b9 5356#endif
8ff12cfc 5357 kfree(data);
bf16d19a
JP
5358 len += sysfs_emit_at(buf, len, "\n");
5359
5360 return len;
8ff12cfc
CL
5361}
5362
78eb00cc
DR
5363static void clear_stat(struct kmem_cache *s, enum stat_item si)
5364{
5365 int cpu;
5366
5367 for_each_online_cpu(cpu)
9dfc6e68 5368 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5369}
5370
8ff12cfc
CL
5371#define STAT_ATTR(si, text) \
5372static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5373{ \
5374 return show_stat(s, buf, si); \
5375} \
78eb00cc
DR
5376static ssize_t text##_store(struct kmem_cache *s, \
5377 const char *buf, size_t length) \
5378{ \
5379 if (buf[0] != '0') \
5380 return -EINVAL; \
5381 clear_stat(s, si); \
5382 return length; \
5383} \
5384SLAB_ATTR(text); \
8ff12cfc
CL
5385
5386STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5387STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5388STAT_ATTR(FREE_FASTPATH, free_fastpath);
5389STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5390STAT_ATTR(FREE_FROZEN, free_frozen);
5391STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5392STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5393STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5394STAT_ATTR(ALLOC_SLAB, alloc_slab);
5395STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5396STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5397STAT_ATTR(FREE_SLAB, free_slab);
5398STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5399STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5400STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5401STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5402STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5403STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5404STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5405STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5406STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5407STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5408STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5409STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5410STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5411STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5412#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5413
06428780 5414static struct attribute *slab_attrs[] = {
81819f0f
CL
5415 &slab_size_attr.attr,
5416 &object_size_attr.attr,
5417 &objs_per_slab_attr.attr,
5418 &order_attr.attr,
73d342b1 5419 &min_partial_attr.attr,
49e22585 5420 &cpu_partial_attr.attr,
81819f0f 5421 &objects_attr.attr,
205ab99d 5422 &objects_partial_attr.attr,
81819f0f
CL
5423 &partial_attr.attr,
5424 &cpu_slabs_attr.attr,
5425 &ctor_attr.attr,
81819f0f
CL
5426 &aliases_attr.attr,
5427 &align_attr.attr,
81819f0f
CL
5428 &hwcache_align_attr.attr,
5429 &reclaim_account_attr.attr,
5430 &destroy_by_rcu_attr.attr,
a5a84755 5431 &shrink_attr.attr,
49e22585 5432 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5433#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5434 &total_objects_attr.attr,
5435 &slabs_attr.attr,
5436 &sanity_checks_attr.attr,
5437 &trace_attr.attr,
81819f0f
CL
5438 &red_zone_attr.attr,
5439 &poison_attr.attr,
5440 &store_user_attr.attr,
53e15af0 5441 &validate_attr.attr,
ab4d5ed5 5442#endif
81819f0f
CL
5443#ifdef CONFIG_ZONE_DMA
5444 &cache_dma_attr.attr,
5445#endif
5446#ifdef CONFIG_NUMA
9824601e 5447 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5448#endif
5449#ifdef CONFIG_SLUB_STATS
5450 &alloc_fastpath_attr.attr,
5451 &alloc_slowpath_attr.attr,
5452 &free_fastpath_attr.attr,
5453 &free_slowpath_attr.attr,
5454 &free_frozen_attr.attr,
5455 &free_add_partial_attr.attr,
5456 &free_remove_partial_attr.attr,
5457 &alloc_from_partial_attr.attr,
5458 &alloc_slab_attr.attr,
5459 &alloc_refill_attr.attr,
e36a2652 5460 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5461 &free_slab_attr.attr,
5462 &cpuslab_flush_attr.attr,
5463 &deactivate_full_attr.attr,
5464 &deactivate_empty_attr.attr,
5465 &deactivate_to_head_attr.attr,
5466 &deactivate_to_tail_attr.attr,
5467 &deactivate_remote_frees_attr.attr,
03e404af 5468 &deactivate_bypass_attr.attr,
65c3376a 5469 &order_fallback_attr.attr,
b789ef51
CL
5470 &cmpxchg_double_fail_attr.attr,
5471 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5472 &cpu_partial_alloc_attr.attr,
5473 &cpu_partial_free_attr.attr,
8028dcea
AS
5474 &cpu_partial_node_attr.attr,
5475 &cpu_partial_drain_attr.attr,
81819f0f 5476#endif
4c13dd3b
DM
5477#ifdef CONFIG_FAILSLAB
5478 &failslab_attr.attr,
5479#endif
8eb8284b 5480 &usersize_attr.attr,
4c13dd3b 5481
81819f0f
CL
5482 NULL
5483};
5484
1fdaaa23 5485static const struct attribute_group slab_attr_group = {
81819f0f
CL
5486 .attrs = slab_attrs,
5487};
5488
5489static ssize_t slab_attr_show(struct kobject *kobj,
5490 struct attribute *attr,
5491 char *buf)
5492{
5493 struct slab_attribute *attribute;
5494 struct kmem_cache *s;
5495 int err;
5496
5497 attribute = to_slab_attr(attr);
5498 s = to_slab(kobj);
5499
5500 if (!attribute->show)
5501 return -EIO;
5502
5503 err = attribute->show(s, buf);
5504
5505 return err;
5506}
5507
5508static ssize_t slab_attr_store(struct kobject *kobj,
5509 struct attribute *attr,
5510 const char *buf, size_t len)
5511{
5512 struct slab_attribute *attribute;
5513 struct kmem_cache *s;
5514 int err;
5515
5516 attribute = to_slab_attr(attr);
5517 s = to_slab(kobj);
5518
5519 if (!attribute->store)
5520 return -EIO;
5521
5522 err = attribute->store(s, buf, len);
81819f0f
CL
5523 return err;
5524}
5525
41a21285
CL
5526static void kmem_cache_release(struct kobject *k)
5527{
5528 slab_kmem_cache_release(to_slab(k));
5529}
5530
52cf25d0 5531static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5532 .show = slab_attr_show,
5533 .store = slab_attr_store,
5534};
5535
5536static struct kobj_type slab_ktype = {
5537 .sysfs_ops = &slab_sysfs_ops,
41a21285 5538 .release = kmem_cache_release,
81819f0f
CL
5539};
5540
27c3a314 5541static struct kset *slab_kset;
81819f0f 5542
9a41707b
VD
5543static inline struct kset *cache_kset(struct kmem_cache *s)
5544{
9a41707b
VD
5545 return slab_kset;
5546}
5547
81819f0f
CL
5548#define ID_STR_LENGTH 64
5549
5550/* Create a unique string id for a slab cache:
6446faa2
CL
5551 *
5552 * Format :[flags-]size
81819f0f
CL
5553 */
5554static char *create_unique_id(struct kmem_cache *s)
5555{
5556 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5557 char *p = name;
5558
5559 BUG_ON(!name);
5560
5561 *p++ = ':';
5562 /*
5563 * First flags affecting slabcache operations. We will only
5564 * get here for aliasable slabs so we do not need to support
5565 * too many flags. The flags here must cover all flags that
5566 * are matched during merging to guarantee that the id is
5567 * unique.
5568 */
5569 if (s->flags & SLAB_CACHE_DMA)
5570 *p++ = 'd';
6d6ea1e9
NB
5571 if (s->flags & SLAB_CACHE_DMA32)
5572 *p++ = 'D';
81819f0f
CL
5573 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5574 *p++ = 'a';
becfda68 5575 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5576 *p++ = 'F';
230e9fc2
VD
5577 if (s->flags & SLAB_ACCOUNT)
5578 *p++ = 'A';
81819f0f
CL
5579 if (p != name + 1)
5580 *p++ = '-';
44065b2e 5581 p += sprintf(p, "%07u", s->size);
2633d7a0 5582
81819f0f
CL
5583 BUG_ON(p > name + ID_STR_LENGTH - 1);
5584 return name;
5585}
5586
5587static int sysfs_slab_add(struct kmem_cache *s)
5588{
5589 int err;
5590 const char *name;
1663f26d 5591 struct kset *kset = cache_kset(s);
45530c44 5592 int unmergeable = slab_unmergeable(s);
81819f0f 5593
1663f26d
TH
5594 if (!kset) {
5595 kobject_init(&s->kobj, &slab_ktype);
5596 return 0;
5597 }
5598
11066386
MC
5599 if (!unmergeable && disable_higher_order_debug &&
5600 (slub_debug & DEBUG_METADATA_FLAGS))
5601 unmergeable = 1;
5602
81819f0f
CL
5603 if (unmergeable) {
5604 /*
5605 * Slabcache can never be merged so we can use the name proper.
5606 * This is typically the case for debug situations. In that
5607 * case we can catch duplicate names easily.
5608 */
27c3a314 5609 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5610 name = s->name;
5611 } else {
5612 /*
5613 * Create a unique name for the slab as a target
5614 * for the symlinks.
5615 */
5616 name = create_unique_id(s);
5617 }
5618
1663f26d 5619 s->kobj.kset = kset;
26e4f205 5620 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
757fed1d 5621 if (err)
80da026a 5622 goto out;
81819f0f
CL
5623
5624 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5625 if (err)
5626 goto out_del_kobj;
9a41707b 5627
81819f0f
CL
5628 if (!unmergeable) {
5629 /* Setup first alias */
5630 sysfs_slab_alias(s, s->name);
81819f0f 5631 }
54b6a731
DJ
5632out:
5633 if (!unmergeable)
5634 kfree(name);
5635 return err;
5636out_del_kobj:
5637 kobject_del(&s->kobj);
54b6a731 5638 goto out;
81819f0f
CL
5639}
5640
d50d82fa
MP
5641void sysfs_slab_unlink(struct kmem_cache *s)
5642{
5643 if (slab_state >= FULL)
5644 kobject_del(&s->kobj);
5645}
5646
bf5eb3de
TH
5647void sysfs_slab_release(struct kmem_cache *s)
5648{
5649 if (slab_state >= FULL)
5650 kobject_put(&s->kobj);
81819f0f
CL
5651}
5652
5653/*
5654 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5655 * available lest we lose that information.
81819f0f
CL
5656 */
5657struct saved_alias {
5658 struct kmem_cache *s;
5659 const char *name;
5660 struct saved_alias *next;
5661};
5662
5af328a5 5663static struct saved_alias *alias_list;
81819f0f
CL
5664
5665static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5666{
5667 struct saved_alias *al;
5668
97d06609 5669 if (slab_state == FULL) {
81819f0f
CL
5670 /*
5671 * If we have a leftover link then remove it.
5672 */
27c3a314
GKH
5673 sysfs_remove_link(&slab_kset->kobj, name);
5674 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5675 }
5676
5677 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5678 if (!al)
5679 return -ENOMEM;
5680
5681 al->s = s;
5682 al->name = name;
5683 al->next = alias_list;
5684 alias_list = al;
5685 return 0;
5686}
5687
5688static int __init slab_sysfs_init(void)
5689{
5b95a4ac 5690 struct kmem_cache *s;
81819f0f
CL
5691 int err;
5692
18004c5d 5693 mutex_lock(&slab_mutex);
2bce6485 5694
d7660ce5 5695 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 5696 if (!slab_kset) {
18004c5d 5697 mutex_unlock(&slab_mutex);
f9f58285 5698 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5699 return -ENOSYS;
5700 }
5701
97d06609 5702 slab_state = FULL;
26a7bd03 5703
5b95a4ac 5704 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5705 err = sysfs_slab_add(s);
5d540fb7 5706 if (err)
f9f58285
FF
5707 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5708 s->name);
26a7bd03 5709 }
81819f0f
CL
5710
5711 while (alias_list) {
5712 struct saved_alias *al = alias_list;
5713
5714 alias_list = alias_list->next;
5715 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5716 if (err)
f9f58285
FF
5717 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5718 al->name);
81819f0f
CL
5719 kfree(al);
5720 }
5721
18004c5d 5722 mutex_unlock(&slab_mutex);
81819f0f
CL
5723 return 0;
5724}
5725
5726__initcall(slab_sysfs_init);
ab4d5ed5 5727#endif /* CONFIG_SYSFS */
57ed3eda 5728
64dd6849
FM
5729#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
5730static int slab_debugfs_show(struct seq_file *seq, void *v)
5731{
5732
5733 struct location *l;
5734 unsigned int idx = *(unsigned int *)v;
5735 struct loc_track *t = seq->private;
5736
5737 if (idx < t->count) {
5738 l = &t->loc[idx];
5739
5740 seq_printf(seq, "%7ld ", l->count);
5741
5742 if (l->addr)
5743 seq_printf(seq, "%pS", (void *)l->addr);
5744 else
5745 seq_puts(seq, "<not-available>");
5746
5747 if (l->sum_time != l->min_time) {
5748 seq_printf(seq, " age=%ld/%llu/%ld",
5749 l->min_time, div_u64(l->sum_time, l->count),
5750 l->max_time);
5751 } else
5752 seq_printf(seq, " age=%ld", l->min_time);
5753
5754 if (l->min_pid != l->max_pid)
5755 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
5756 else
5757 seq_printf(seq, " pid=%ld",
5758 l->min_pid);
5759
5760 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
5761 seq_printf(seq, " cpus=%*pbl",
5762 cpumask_pr_args(to_cpumask(l->cpus)));
5763
5764 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
5765 seq_printf(seq, " nodes=%*pbl",
5766 nodemask_pr_args(&l->nodes));
5767
5768 seq_puts(seq, "\n");
5769 }
5770
5771 if (!idx && !t->count)
5772 seq_puts(seq, "No data\n");
5773
5774 return 0;
5775}
5776
5777static void slab_debugfs_stop(struct seq_file *seq, void *v)
5778{
5779}
5780
5781static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
5782{
5783 struct loc_track *t = seq->private;
5784
5785 v = ppos;
5786 ++*ppos;
5787 if (*ppos <= t->count)
5788 return v;
5789
5790 return NULL;
5791}
5792
5793static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
5794{
5795 return ppos;
5796}
5797
5798static const struct seq_operations slab_debugfs_sops = {
5799 .start = slab_debugfs_start,
5800 .next = slab_debugfs_next,
5801 .stop = slab_debugfs_stop,
5802 .show = slab_debugfs_show,
5803};
5804
5805static int slab_debug_trace_open(struct inode *inode, struct file *filep)
5806{
5807
5808 struct kmem_cache_node *n;
5809 enum track_item alloc;
5810 int node;
5811 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
5812 sizeof(struct loc_track));
5813 struct kmem_cache *s = file_inode(filep)->i_private;
5814
5815 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
5816 alloc = TRACK_ALLOC;
5817 else
5818 alloc = TRACK_FREE;
5819
5820 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL))
5821 return -ENOMEM;
5822
5823 /* Push back cpu slabs */
5824 flush_all(s);
5825
5826 for_each_kmem_cache_node(s, node, n) {
5827 unsigned long flags;
5828 struct page *page;
5829
5830 if (!atomic_long_read(&n->nr_slabs))
5831 continue;
5832
5833 spin_lock_irqsave(&n->list_lock, flags);
5834 list_for_each_entry(page, &n->partial, slab_list)
5835 process_slab(t, s, page, alloc);
5836 list_for_each_entry(page, &n->full, slab_list)
5837 process_slab(t, s, page, alloc);
5838 spin_unlock_irqrestore(&n->list_lock, flags);
5839 }
5840
5841 return 0;
5842}
5843
5844static int slab_debug_trace_release(struct inode *inode, struct file *file)
5845{
5846 struct seq_file *seq = file->private_data;
5847 struct loc_track *t = seq->private;
5848
5849 free_loc_track(t);
5850 return seq_release_private(inode, file);
5851}
5852
5853static const struct file_operations slab_debugfs_fops = {
5854 .open = slab_debug_trace_open,
5855 .read = seq_read,
5856 .llseek = seq_lseek,
5857 .release = slab_debug_trace_release,
5858};
5859
5860static void debugfs_slab_add(struct kmem_cache *s)
5861{
5862 struct dentry *slab_cache_dir;
5863
5864 if (unlikely(!slab_debugfs_root))
5865 return;
5866
5867 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
5868
5869 debugfs_create_file("alloc_traces", 0400,
5870 slab_cache_dir, s, &slab_debugfs_fops);
5871
5872 debugfs_create_file("free_traces", 0400,
5873 slab_cache_dir, s, &slab_debugfs_fops);
5874}
5875
5876void debugfs_slab_release(struct kmem_cache *s)
5877{
5878 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
5879}
5880
5881static int __init slab_debugfs_init(void)
5882{
5883 struct kmem_cache *s;
5884
5885 slab_debugfs_root = debugfs_create_dir("slab", NULL);
5886
5887 list_for_each_entry(s, &slab_caches, list)
5888 if (s->flags & SLAB_STORE_USER)
5889 debugfs_slab_add(s);
5890
5891 return 0;
5892
5893}
5894__initcall(slab_debugfs_init);
5895#endif
57ed3eda
PE
5896/*
5897 * The /proc/slabinfo ABI
5898 */
5b365771 5899#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5900void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5901{
57ed3eda 5902 unsigned long nr_slabs = 0;
205ab99d
CL
5903 unsigned long nr_objs = 0;
5904 unsigned long nr_free = 0;
57ed3eda 5905 int node;
fa45dc25 5906 struct kmem_cache_node *n;
57ed3eda 5907
fa45dc25 5908 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5909 nr_slabs += node_nr_slabs(n);
5910 nr_objs += node_nr_objs(n);
205ab99d 5911 nr_free += count_partial(n, count_free);
57ed3eda
PE
5912 }
5913
0d7561c6
GC
5914 sinfo->active_objs = nr_objs - nr_free;
5915 sinfo->num_objs = nr_objs;
5916 sinfo->active_slabs = nr_slabs;
5917 sinfo->num_slabs = nr_slabs;
5918 sinfo->objects_per_slab = oo_objects(s->oo);
5919 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5920}
5921
0d7561c6 5922void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5923{
7b3c3a50
AD
5924}
5925
b7454ad3
GC
5926ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5927 size_t count, loff_t *ppos)
7b3c3a50 5928{
b7454ad3 5929 return -EIO;
7b3c3a50 5930}
5b365771 5931#endif /* CONFIG_SLUB_DEBUG */