]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/slub.c
Merge tag 'for-5.6-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[mirror_ubuntu-hirsute-kernel.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
881db7fb
CL
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
2482ddec 36#include <linux/random.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 54 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 55 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
881db7fb
CL
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
65 * page's freelist.
81819f0f
CL
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
81819f0f
CL
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
672bba3a
CL
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 88 * freed then the slab will show up again on the partial lists.
672bba3a
CL
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
81819f0f
CL
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
aed68148 96 * page->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f 111 *
aed68148 112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
af537b0a
CL
117static inline int kmem_cache_debug(struct kmem_cache *s)
118{
5577bd8a 119#ifdef CONFIG_SLUB_DEBUG
af537b0a 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 121#else
af537b0a 122 return 0;
5577bd8a 123#endif
af537b0a 124}
5577bd8a 125
117d54df 126void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be
JK
127{
128 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
129 p += s->red_left_pad;
130
131 return p;
132}
133
345c905d
JK
134static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
135{
136#ifdef CONFIG_SLUB_CPU_PARTIAL
137 return !kmem_cache_debug(s);
138#else
139 return false;
140#endif
141}
142
81819f0f
CL
143/*
144 * Issues still to be resolved:
145 *
81819f0f
CL
146 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
147 *
81819f0f
CL
148 * - Variable sizing of the per node arrays
149 */
150
151/* Enable to test recovery from slab corruption on boot */
152#undef SLUB_RESILIENCY_TEST
153
b789ef51
CL
154/* Enable to log cmpxchg failures */
155#undef SLUB_DEBUG_CMPXCHG
156
2086d26a
CL
157/*
158 * Mininum number of partial slabs. These will be left on the partial
159 * lists even if they are empty. kmem_cache_shrink may reclaim them.
160 */
76be8950 161#define MIN_PARTIAL 5
e95eed57 162
2086d26a
CL
163/*
164 * Maximum number of desirable partial slabs.
165 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 166 * sort the partial list by the number of objects in use.
2086d26a
CL
167 */
168#define MAX_PARTIAL 10
169
becfda68 170#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 171 SLAB_POISON | SLAB_STORE_USER)
672bba3a 172
149daaf3
LA
173/*
174 * These debug flags cannot use CMPXCHG because there might be consistency
175 * issues when checking or reading debug information
176 */
177#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
178 SLAB_TRACE)
179
180
fa5ec8a1 181/*
3de47213
DR
182 * Debugging flags that require metadata to be stored in the slab. These get
183 * disabled when slub_debug=O is used and a cache's min order increases with
184 * metadata.
fa5ec8a1 185 */
3de47213 186#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 187
210b5c06
CG
188#define OO_SHIFT 16
189#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 190#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 191
81819f0f 192/* Internal SLUB flags */
d50112ed 193/* Poison object */
4fd0b46e 194#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 195/* Use cmpxchg_double */
4fd0b46e 196#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 197
02cbc874
CL
198/*
199 * Tracking user of a slab.
200 */
d6543e39 201#define TRACK_ADDRS_COUNT 16
02cbc874 202struct track {
ce71e27c 203 unsigned long addr; /* Called from address */
d6543e39
BG
204#ifdef CONFIG_STACKTRACE
205 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
206#endif
02cbc874
CL
207 int cpu; /* Was running on cpu */
208 int pid; /* Pid context */
209 unsigned long when; /* When did the operation occur */
210};
211
212enum track_item { TRACK_ALLOC, TRACK_FREE };
213
ab4d5ed5 214#ifdef CONFIG_SYSFS
81819f0f
CL
215static int sysfs_slab_add(struct kmem_cache *);
216static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 217static void memcg_propagate_slab_attrs(struct kmem_cache *s);
bf5eb3de 218static void sysfs_slab_remove(struct kmem_cache *s);
81819f0f 219#else
0c710013
CL
220static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
221static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
222 { return 0; }
107dab5c 223static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
bf5eb3de 224static inline void sysfs_slab_remove(struct kmem_cache *s) { }
81819f0f
CL
225#endif
226
4fdccdfb 227static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
228{
229#ifdef CONFIG_SLUB_STATS
88da03a6
CL
230 /*
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
233 */
234 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
235#endif
236}
237
81819f0f
CL
238/********************************************************************
239 * Core slab cache functions
240 *******************************************************************/
241
2482ddec
KC
242/*
243 * Returns freelist pointer (ptr). With hardening, this is obfuscated
244 * with an XOR of the address where the pointer is held and a per-cache
245 * random number.
246 */
247static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 unsigned long ptr_addr)
249{
250#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9
AK
251 /*
252 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
253 * Normally, this doesn't cause any issues, as both set_freepointer()
254 * and get_freepointer() are called with a pointer with the same tag.
255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 * example, when __free_slub() iterates over objects in a cache, it
257 * passes untagged pointers to check_object(). check_object() in turns
258 * calls get_freepointer() with an untagged pointer, which causes the
259 * freepointer to be restored incorrectly.
260 */
261 return (void *)((unsigned long)ptr ^ s->random ^
262 (unsigned long)kasan_reset_tag((void *)ptr_addr));
2482ddec
KC
263#else
264 return ptr;
265#endif
266}
267
268/* Returns the freelist pointer recorded at location ptr_addr. */
269static inline void *freelist_dereference(const struct kmem_cache *s,
270 void *ptr_addr)
271{
272 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
273 (unsigned long)ptr_addr);
274}
275
7656c72b
CL
276static inline void *get_freepointer(struct kmem_cache *s, void *object)
277{
2482ddec 278 return freelist_dereference(s, object + s->offset);
7656c72b
CL
279}
280
0ad9500e
ED
281static void prefetch_freepointer(const struct kmem_cache *s, void *object)
282{
0882ff91 283 prefetch(object + s->offset);
0ad9500e
ED
284}
285
1393d9a1
CL
286static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
287{
2482ddec 288 unsigned long freepointer_addr;
1393d9a1
CL
289 void *p;
290
8e57f8ac 291 if (!debug_pagealloc_enabled_static())
922d566c
JK
292 return get_freepointer(s, object);
293
2482ddec
KC
294 freepointer_addr = (unsigned long)object + s->offset;
295 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
296 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
297}
298
7656c72b
CL
299static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
300{
2482ddec
KC
301 unsigned long freeptr_addr = (unsigned long)object + s->offset;
302
ce6fa91b
AP
303#ifdef CONFIG_SLAB_FREELIST_HARDENED
304 BUG_ON(object == fp); /* naive detection of double free or corruption */
305#endif
306
2482ddec 307 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
308}
309
310/* Loop over all objects in a slab */
224a88be 311#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
312 for (__p = fixup_red_left(__s, __addr); \
313 __p < (__addr) + (__objects) * (__s)->size; \
314 __p += (__s)->size)
7656c72b 315
7656c72b 316/* Determine object index from a given position */
284b50dd 317static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
7656c72b 318{
6373dca1 319 return (kasan_reset_tag(p) - addr) / s->size;
7656c72b
CL
320}
321
9736d2a9 322static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 323{
9736d2a9 324 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
325}
326
19af27af 327static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 328 unsigned int size)
834f3d11
CL
329{
330 struct kmem_cache_order_objects x = {
9736d2a9 331 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
332 };
333
334 return x;
335}
336
19af27af 337static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 338{
210b5c06 339 return x.x >> OO_SHIFT;
834f3d11
CL
340}
341
19af27af 342static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 343{
210b5c06 344 return x.x & OO_MASK;
834f3d11
CL
345}
346
881db7fb
CL
347/*
348 * Per slab locking using the pagelock
349 */
350static __always_inline void slab_lock(struct page *page)
351{
48c935ad 352 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
353 bit_spin_lock(PG_locked, &page->flags);
354}
355
356static __always_inline void slab_unlock(struct page *page)
357{
48c935ad 358 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
359 __bit_spin_unlock(PG_locked, &page->flags);
360}
361
1d07171c
CL
362/* Interrupts must be disabled (for the fallback code to work right) */
363static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 void *freelist_old, unsigned long counters_old,
365 void *freelist_new, unsigned long counters_new,
366 const char *n)
367{
368 VM_BUG_ON(!irqs_disabled());
2565409f
HC
369#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
370 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 371 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 372 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
373 freelist_old, counters_old,
374 freelist_new, counters_new))
6f6528a1 375 return true;
1d07171c
CL
376 } else
377#endif
378 {
379 slab_lock(page);
d0e0ac97
CG
380 if (page->freelist == freelist_old &&
381 page->counters == counters_old) {
1d07171c 382 page->freelist = freelist_new;
7d27a04b 383 page->counters = counters_new;
1d07171c 384 slab_unlock(page);
6f6528a1 385 return true;
1d07171c
CL
386 }
387 slab_unlock(page);
388 }
389
390 cpu_relax();
391 stat(s, CMPXCHG_DOUBLE_FAIL);
392
393#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 394 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
395#endif
396
6f6528a1 397 return false;
1d07171c
CL
398}
399
b789ef51
CL
400static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
401 void *freelist_old, unsigned long counters_old,
402 void *freelist_new, unsigned long counters_new,
403 const char *n)
404{
2565409f
HC
405#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
406 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 407 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 408 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
409 freelist_old, counters_old,
410 freelist_new, counters_new))
6f6528a1 411 return true;
b789ef51
CL
412 } else
413#endif
414 {
1d07171c
CL
415 unsigned long flags;
416
417 local_irq_save(flags);
881db7fb 418 slab_lock(page);
d0e0ac97
CG
419 if (page->freelist == freelist_old &&
420 page->counters == counters_old) {
b789ef51 421 page->freelist = freelist_new;
7d27a04b 422 page->counters = counters_new;
881db7fb 423 slab_unlock(page);
1d07171c 424 local_irq_restore(flags);
6f6528a1 425 return true;
b789ef51 426 }
881db7fb 427 slab_unlock(page);
1d07171c 428 local_irq_restore(flags);
b789ef51
CL
429 }
430
431 cpu_relax();
432 stat(s, CMPXCHG_DOUBLE_FAIL);
433
434#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 435 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
436#endif
437
6f6528a1 438 return false;
b789ef51
CL
439}
440
41ecc55b 441#ifdef CONFIG_SLUB_DEBUG
90e9f6a6
YZ
442static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
443static DEFINE_SPINLOCK(object_map_lock);
444
5f80b13a
CL
445/*
446 * Determine a map of object in use on a page.
447 *
881db7fb 448 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
449 * not vanish from under us.
450 */
90e9f6a6 451static unsigned long *get_map(struct kmem_cache *s, struct page *page)
5f80b13a
CL
452{
453 void *p;
454 void *addr = page_address(page);
455
90e9f6a6
YZ
456 VM_BUG_ON(!irqs_disabled());
457
458 spin_lock(&object_map_lock);
459
460 bitmap_zero(object_map, page->objects);
461
5f80b13a 462 for (p = page->freelist; p; p = get_freepointer(s, p))
90e9f6a6
YZ
463 set_bit(slab_index(p, s, addr), object_map);
464
465 return object_map;
466}
467
468static void put_map(unsigned long *map)
469{
470 VM_BUG_ON(map != object_map);
471 lockdep_assert_held(&object_map_lock);
472
473 spin_unlock(&object_map_lock);
5f80b13a
CL
474}
475
870b1fbb 476static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
477{
478 if (s->flags & SLAB_RED_ZONE)
479 return s->size - s->red_left_pad;
480
481 return s->size;
482}
483
484static inline void *restore_red_left(struct kmem_cache *s, void *p)
485{
486 if (s->flags & SLAB_RED_ZONE)
487 p -= s->red_left_pad;
488
489 return p;
490}
491
41ecc55b
CL
492/*
493 * Debug settings:
494 */
89d3c87e 495#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 496static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 497#else
d50112ed 498static slab_flags_t slub_debug;
f0630fff 499#endif
41ecc55b
CL
500
501static char *slub_debug_slabs;
fa5ec8a1 502static int disable_higher_order_debug;
41ecc55b 503
a79316c6
AR
504/*
505 * slub is about to manipulate internal object metadata. This memory lies
506 * outside the range of the allocated object, so accessing it would normally
507 * be reported by kasan as a bounds error. metadata_access_enable() is used
508 * to tell kasan that these accesses are OK.
509 */
510static inline void metadata_access_enable(void)
511{
512 kasan_disable_current();
513}
514
515static inline void metadata_access_disable(void)
516{
517 kasan_enable_current();
518}
519
81819f0f
CL
520/*
521 * Object debugging
522 */
d86bd1be
JK
523
524/* Verify that a pointer has an address that is valid within a slab page */
525static inline int check_valid_pointer(struct kmem_cache *s,
526 struct page *page, void *object)
527{
528 void *base;
529
530 if (!object)
531 return 1;
532
533 base = page_address(page);
338cfaad 534 object = kasan_reset_tag(object);
d86bd1be
JK
535 object = restore_red_left(s, object);
536 if (object < base || object >= base + page->objects * s->size ||
537 (object - base) % s->size) {
538 return 0;
539 }
540
541 return 1;
542}
543
aa2efd5e
DT
544static void print_section(char *level, char *text, u8 *addr,
545 unsigned int length)
81819f0f 546{
a79316c6 547 metadata_access_enable();
aa2efd5e 548 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 549 length, 1);
a79316c6 550 metadata_access_disable();
81819f0f
CL
551}
552
81819f0f
CL
553static struct track *get_track(struct kmem_cache *s, void *object,
554 enum track_item alloc)
555{
556 struct track *p;
557
558 if (s->offset)
559 p = object + s->offset + sizeof(void *);
560 else
561 p = object + s->inuse;
562
563 return p + alloc;
564}
565
566static void set_track(struct kmem_cache *s, void *object,
ce71e27c 567 enum track_item alloc, unsigned long addr)
81819f0f 568{
1a00df4a 569 struct track *p = get_track(s, object, alloc);
81819f0f 570
81819f0f 571 if (addr) {
d6543e39 572#ifdef CONFIG_STACKTRACE
79716799 573 unsigned int nr_entries;
d6543e39 574
a79316c6 575 metadata_access_enable();
79716799 576 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
a79316c6 577 metadata_access_disable();
d6543e39 578
79716799
TG
579 if (nr_entries < TRACK_ADDRS_COUNT)
580 p->addrs[nr_entries] = 0;
d6543e39 581#endif
81819f0f
CL
582 p->addr = addr;
583 p->cpu = smp_processor_id();
88e4ccf2 584 p->pid = current->pid;
81819f0f 585 p->when = jiffies;
b8ca7ff7 586 } else {
81819f0f 587 memset(p, 0, sizeof(struct track));
b8ca7ff7 588 }
81819f0f
CL
589}
590
81819f0f
CL
591static void init_tracking(struct kmem_cache *s, void *object)
592{
24922684
CL
593 if (!(s->flags & SLAB_STORE_USER))
594 return;
595
ce71e27c
EGM
596 set_track(s, object, TRACK_FREE, 0UL);
597 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
598}
599
86609d33 600static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
601{
602 if (!t->addr)
603 return;
604
f9f58285 605 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 606 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
d6543e39
BG
607#ifdef CONFIG_STACKTRACE
608 {
609 int i;
610 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
611 if (t->addrs[i])
f9f58285 612 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
613 else
614 break;
615 }
616#endif
24922684
CL
617}
618
619static void print_tracking(struct kmem_cache *s, void *object)
620{
86609d33 621 unsigned long pr_time = jiffies;
24922684
CL
622 if (!(s->flags & SLAB_STORE_USER))
623 return;
624
86609d33
CP
625 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
626 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
627}
628
629static void print_page_info(struct page *page)
630{
f9f58285 631 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 632 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
633
634}
635
636static void slab_bug(struct kmem_cache *s, char *fmt, ...)
637{
ecc42fbe 638 struct va_format vaf;
24922684 639 va_list args;
24922684
CL
640
641 va_start(args, fmt);
ecc42fbe
FF
642 vaf.fmt = fmt;
643 vaf.va = &args;
f9f58285 644 pr_err("=============================================================================\n");
ecc42fbe 645 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 646 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 647
373d4d09 648 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 649 va_end(args);
81819f0f
CL
650}
651
24922684
CL
652static void slab_fix(struct kmem_cache *s, char *fmt, ...)
653{
ecc42fbe 654 struct va_format vaf;
24922684 655 va_list args;
24922684
CL
656
657 va_start(args, fmt);
ecc42fbe
FF
658 vaf.fmt = fmt;
659 vaf.va = &args;
660 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 661 va_end(args);
24922684
CL
662}
663
664static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
665{
666 unsigned int off; /* Offset of last byte */
a973e9dd 667 u8 *addr = page_address(page);
24922684
CL
668
669 print_tracking(s, p);
670
671 print_page_info(page);
672
f9f58285
FF
673 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
674 p, p - addr, get_freepointer(s, p));
24922684 675
d86bd1be 676 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
677 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
678 s->red_left_pad);
d86bd1be 679 else if (p > addr + 16)
aa2efd5e 680 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 681
aa2efd5e 682 print_section(KERN_ERR, "Object ", p,
1b473f29 683 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 684 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 685 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 686 s->inuse - s->object_size);
81819f0f 687
81819f0f
CL
688 if (s->offset)
689 off = s->offset + sizeof(void *);
690 else
691 off = s->inuse;
692
24922684 693 if (s->flags & SLAB_STORE_USER)
81819f0f 694 off += 2 * sizeof(struct track);
81819f0f 695
80a9201a
AP
696 off += kasan_metadata_size(s);
697
d86bd1be 698 if (off != size_from_object(s))
81819f0f 699 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
700 print_section(KERN_ERR, "Padding ", p + off,
701 size_from_object(s) - off);
24922684
CL
702
703 dump_stack();
81819f0f
CL
704}
705
75c66def 706void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
707 u8 *object, char *reason)
708{
3dc50637 709 slab_bug(s, "%s", reason);
24922684 710 print_trailer(s, page, object);
81819f0f
CL
711}
712
a38965bf 713static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 714 const char *fmt, ...)
81819f0f
CL
715{
716 va_list args;
717 char buf[100];
718
24922684
CL
719 va_start(args, fmt);
720 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 721 va_end(args);
3dc50637 722 slab_bug(s, "%s", buf);
24922684 723 print_page_info(page);
81819f0f
CL
724 dump_stack();
725}
726
f7cb1933 727static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
728{
729 u8 *p = object;
730
d86bd1be
JK
731 if (s->flags & SLAB_RED_ZONE)
732 memset(p - s->red_left_pad, val, s->red_left_pad);
733
81819f0f 734 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
735 memset(p, POISON_FREE, s->object_size - 1);
736 p[s->object_size - 1] = POISON_END;
81819f0f
CL
737 }
738
739 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 740 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
741}
742
24922684
CL
743static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
744 void *from, void *to)
745{
746 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
747 memset(from, data, to - from);
748}
749
750static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
751 u8 *object, char *what,
06428780 752 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
753{
754 u8 *fault;
755 u8 *end;
e1b70dd1 756 u8 *addr = page_address(page);
24922684 757
a79316c6 758 metadata_access_enable();
79824820 759 fault = memchr_inv(start, value, bytes);
a79316c6 760 metadata_access_disable();
24922684
CL
761 if (!fault)
762 return 1;
763
764 end = start + bytes;
765 while (end > fault && end[-1] == value)
766 end--;
767
768 slab_bug(s, "%s overwritten", what);
e1b70dd1
MC
769 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
770 fault, end - 1, fault - addr,
771 fault[0], value);
24922684
CL
772 print_trailer(s, page, object);
773
774 restore_bytes(s, what, value, fault, end);
775 return 0;
81819f0f
CL
776}
777
81819f0f
CL
778/*
779 * Object layout:
780 *
781 * object address
782 * Bytes of the object to be managed.
783 * If the freepointer may overlay the object then the free
784 * pointer is the first word of the object.
672bba3a 785 *
81819f0f
CL
786 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
787 * 0xa5 (POISON_END)
788 *
3b0efdfa 789 * object + s->object_size
81819f0f 790 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 791 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 792 * object_size == inuse.
672bba3a 793 *
81819f0f
CL
794 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
795 * 0xcc (RED_ACTIVE) for objects in use.
796 *
797 * object + s->inuse
672bba3a
CL
798 * Meta data starts here.
799 *
81819f0f
CL
800 * A. Free pointer (if we cannot overwrite object on free)
801 * B. Tracking data for SLAB_STORE_USER
672bba3a 802 * C. Padding to reach required alignment boundary or at mininum
6446faa2 803 * one word if debugging is on to be able to detect writes
672bba3a
CL
804 * before the word boundary.
805 *
806 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
807 *
808 * object + s->size
672bba3a 809 * Nothing is used beyond s->size.
81819f0f 810 *
3b0efdfa 811 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 812 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
813 * may be used with merged slabcaches.
814 */
815
81819f0f
CL
816static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
817{
818 unsigned long off = s->inuse; /* The end of info */
819
820 if (s->offset)
821 /* Freepointer is placed after the object. */
822 off += sizeof(void *);
823
824 if (s->flags & SLAB_STORE_USER)
825 /* We also have user information there */
826 off += 2 * sizeof(struct track);
827
80a9201a
AP
828 off += kasan_metadata_size(s);
829
d86bd1be 830 if (size_from_object(s) == off)
81819f0f
CL
831 return 1;
832
24922684 833 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 834 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
835}
836
39b26464 837/* Check the pad bytes at the end of a slab page */
81819f0f
CL
838static int slab_pad_check(struct kmem_cache *s, struct page *page)
839{
24922684
CL
840 u8 *start;
841 u8 *fault;
842 u8 *end;
5d682681 843 u8 *pad;
24922684
CL
844 int length;
845 int remainder;
81819f0f
CL
846
847 if (!(s->flags & SLAB_POISON))
848 return 1;
849
a973e9dd 850 start = page_address(page);
a50b854e 851 length = page_size(page);
39b26464
CL
852 end = start + length;
853 remainder = length % s->size;
81819f0f
CL
854 if (!remainder)
855 return 1;
856
5d682681 857 pad = end - remainder;
a79316c6 858 metadata_access_enable();
5d682681 859 fault = memchr_inv(pad, POISON_INUSE, remainder);
a79316c6 860 metadata_access_disable();
24922684
CL
861 if (!fault)
862 return 1;
863 while (end > fault && end[-1] == POISON_INUSE)
864 end--;
865
e1b70dd1
MC
866 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
867 fault, end - 1, fault - start);
5d682681 868 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 869
5d682681 870 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 871 return 0;
81819f0f
CL
872}
873
874static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 875 void *object, u8 val)
81819f0f
CL
876{
877 u8 *p = object;
3b0efdfa 878 u8 *endobject = object + s->object_size;
81819f0f
CL
879
880 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
881 if (!check_bytes_and_report(s, page, object, "Redzone",
882 object - s->red_left_pad, val, s->red_left_pad))
883 return 0;
884
24922684 885 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 886 endobject, val, s->inuse - s->object_size))
81819f0f 887 return 0;
81819f0f 888 } else {
3b0efdfa 889 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 890 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
891 endobject, POISON_INUSE,
892 s->inuse - s->object_size);
3adbefee 893 }
81819f0f
CL
894 }
895
896 if (s->flags & SLAB_POISON) {
f7cb1933 897 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 898 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 899 POISON_FREE, s->object_size - 1) ||
24922684 900 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 901 p + s->object_size - 1, POISON_END, 1)))
81819f0f 902 return 0;
81819f0f
CL
903 /*
904 * check_pad_bytes cleans up on its own.
905 */
906 check_pad_bytes(s, page, p);
907 }
908
f7cb1933 909 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
910 /*
911 * Object and freepointer overlap. Cannot check
912 * freepointer while object is allocated.
913 */
914 return 1;
915
916 /* Check free pointer validity */
917 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
918 object_err(s, page, p, "Freepointer corrupt");
919 /*
9f6c708e 920 * No choice but to zap it and thus lose the remainder
81819f0f 921 * of the free objects in this slab. May cause
672bba3a 922 * another error because the object count is now wrong.
81819f0f 923 */
a973e9dd 924 set_freepointer(s, p, NULL);
81819f0f
CL
925 return 0;
926 }
927 return 1;
928}
929
930static int check_slab(struct kmem_cache *s, struct page *page)
931{
39b26464
CL
932 int maxobj;
933
81819f0f
CL
934 VM_BUG_ON(!irqs_disabled());
935
936 if (!PageSlab(page)) {
24922684 937 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
938 return 0;
939 }
39b26464 940
9736d2a9 941 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
942 if (page->objects > maxobj) {
943 slab_err(s, page, "objects %u > max %u",
f6edde9c 944 page->objects, maxobj);
39b26464
CL
945 return 0;
946 }
947 if (page->inuse > page->objects) {
24922684 948 slab_err(s, page, "inuse %u > max %u",
f6edde9c 949 page->inuse, page->objects);
81819f0f
CL
950 return 0;
951 }
952 /* Slab_pad_check fixes things up after itself */
953 slab_pad_check(s, page);
954 return 1;
955}
956
957/*
672bba3a
CL
958 * Determine if a certain object on a page is on the freelist. Must hold the
959 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
960 */
961static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
962{
963 int nr = 0;
881db7fb 964 void *fp;
81819f0f 965 void *object = NULL;
f6edde9c 966 int max_objects;
81819f0f 967
881db7fb 968 fp = page->freelist;
39b26464 969 while (fp && nr <= page->objects) {
81819f0f
CL
970 if (fp == search)
971 return 1;
972 if (!check_valid_pointer(s, page, fp)) {
973 if (object) {
974 object_err(s, page, object,
975 "Freechain corrupt");
a973e9dd 976 set_freepointer(s, object, NULL);
81819f0f 977 } else {
24922684 978 slab_err(s, page, "Freepointer corrupt");
a973e9dd 979 page->freelist = NULL;
39b26464 980 page->inuse = page->objects;
24922684 981 slab_fix(s, "Freelist cleared");
81819f0f
CL
982 return 0;
983 }
984 break;
985 }
986 object = fp;
987 fp = get_freepointer(s, object);
988 nr++;
989 }
990
9736d2a9 991 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
992 if (max_objects > MAX_OBJS_PER_PAGE)
993 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
994
995 if (page->objects != max_objects) {
756a025f
JP
996 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
997 page->objects, max_objects);
224a88be
CL
998 page->objects = max_objects;
999 slab_fix(s, "Number of objects adjusted.");
1000 }
39b26464 1001 if (page->inuse != page->objects - nr) {
756a025f
JP
1002 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1003 page->inuse, page->objects - nr);
39b26464 1004 page->inuse = page->objects - nr;
24922684 1005 slab_fix(s, "Object count adjusted.");
81819f0f
CL
1006 }
1007 return search == NULL;
1008}
1009
0121c619
CL
1010static void trace(struct kmem_cache *s, struct page *page, void *object,
1011 int alloc)
3ec09742
CL
1012{
1013 if (s->flags & SLAB_TRACE) {
f9f58285 1014 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1015 s->name,
1016 alloc ? "alloc" : "free",
1017 object, page->inuse,
1018 page->freelist);
1019
1020 if (!alloc)
aa2efd5e 1021 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1022 s->object_size);
3ec09742
CL
1023
1024 dump_stack();
1025 }
1026}
1027
643b1138 1028/*
672bba3a 1029 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1030 */
5cc6eee8
CL
1031static void add_full(struct kmem_cache *s,
1032 struct kmem_cache_node *n, struct page *page)
643b1138 1033{
5cc6eee8
CL
1034 if (!(s->flags & SLAB_STORE_USER))
1035 return;
1036
255d0884 1037 lockdep_assert_held(&n->list_lock);
916ac052 1038 list_add(&page->slab_list, &n->full);
643b1138
CL
1039}
1040
c65c1877 1041static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1042{
643b1138
CL
1043 if (!(s->flags & SLAB_STORE_USER))
1044 return;
1045
255d0884 1046 lockdep_assert_held(&n->list_lock);
916ac052 1047 list_del(&page->slab_list);
643b1138
CL
1048}
1049
0f389ec6
CL
1050/* Tracking of the number of slabs for debugging purposes */
1051static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1052{
1053 struct kmem_cache_node *n = get_node(s, node);
1054
1055 return atomic_long_read(&n->nr_slabs);
1056}
1057
26c02cf0
AB
1058static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1059{
1060 return atomic_long_read(&n->nr_slabs);
1061}
1062
205ab99d 1063static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1064{
1065 struct kmem_cache_node *n = get_node(s, node);
1066
1067 /*
1068 * May be called early in order to allocate a slab for the
1069 * kmem_cache_node structure. Solve the chicken-egg
1070 * dilemma by deferring the increment of the count during
1071 * bootstrap (see early_kmem_cache_node_alloc).
1072 */
338b2642 1073 if (likely(n)) {
0f389ec6 1074 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1075 atomic_long_add(objects, &n->total_objects);
1076 }
0f389ec6 1077}
205ab99d 1078static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1079{
1080 struct kmem_cache_node *n = get_node(s, node);
1081
1082 atomic_long_dec(&n->nr_slabs);
205ab99d 1083 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1084}
1085
1086/* Object debug checks for alloc/free paths */
3ec09742
CL
1087static void setup_object_debug(struct kmem_cache *s, struct page *page,
1088 void *object)
1089{
1090 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1091 return;
1092
f7cb1933 1093 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1094 init_tracking(s, object);
1095}
1096
a50b854e
MWO
1097static
1098void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
a7101224
AK
1099{
1100 if (!(s->flags & SLAB_POISON))
1101 return;
1102
1103 metadata_access_enable();
a50b854e 1104 memset(addr, POISON_INUSE, page_size(page));
a7101224
AK
1105 metadata_access_disable();
1106}
1107
becfda68 1108static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1109 struct page *page, void *object)
81819f0f
CL
1110{
1111 if (!check_slab(s, page))
becfda68 1112 return 0;
81819f0f 1113
81819f0f
CL
1114 if (!check_valid_pointer(s, page, object)) {
1115 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1116 return 0;
81819f0f
CL
1117 }
1118
f7cb1933 1119 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1120 return 0;
1121
1122 return 1;
1123}
1124
1125static noinline int alloc_debug_processing(struct kmem_cache *s,
1126 struct page *page,
1127 void *object, unsigned long addr)
1128{
1129 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1130 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1131 goto bad;
1132 }
81819f0f 1133
3ec09742
CL
1134 /* Success perform special debug activities for allocs */
1135 if (s->flags & SLAB_STORE_USER)
1136 set_track(s, object, TRACK_ALLOC, addr);
1137 trace(s, page, object, 1);
f7cb1933 1138 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1139 return 1;
3ec09742 1140
81819f0f
CL
1141bad:
1142 if (PageSlab(page)) {
1143 /*
1144 * If this is a slab page then lets do the best we can
1145 * to avoid issues in the future. Marking all objects
672bba3a 1146 * as used avoids touching the remaining objects.
81819f0f 1147 */
24922684 1148 slab_fix(s, "Marking all objects used");
39b26464 1149 page->inuse = page->objects;
a973e9dd 1150 page->freelist = NULL;
81819f0f
CL
1151 }
1152 return 0;
1153}
1154
becfda68
LA
1155static inline int free_consistency_checks(struct kmem_cache *s,
1156 struct page *page, void *object, unsigned long addr)
81819f0f 1157{
81819f0f 1158 if (!check_valid_pointer(s, page, object)) {
70d71228 1159 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1160 return 0;
81819f0f
CL
1161 }
1162
1163 if (on_freelist(s, page, object)) {
24922684 1164 object_err(s, page, object, "Object already free");
becfda68 1165 return 0;
81819f0f
CL
1166 }
1167
f7cb1933 1168 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1169 return 0;
81819f0f 1170
1b4f59e3 1171 if (unlikely(s != page->slab_cache)) {
3adbefee 1172 if (!PageSlab(page)) {
756a025f
JP
1173 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1174 object);
1b4f59e3 1175 } else if (!page->slab_cache) {
f9f58285
FF
1176 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1177 object);
70d71228 1178 dump_stack();
06428780 1179 } else
24922684
CL
1180 object_err(s, page, object,
1181 "page slab pointer corrupt.");
becfda68
LA
1182 return 0;
1183 }
1184 return 1;
1185}
1186
1187/* Supports checking bulk free of a constructed freelist */
1188static noinline int free_debug_processing(
1189 struct kmem_cache *s, struct page *page,
1190 void *head, void *tail, int bulk_cnt,
1191 unsigned long addr)
1192{
1193 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1194 void *object = head;
1195 int cnt = 0;
1196 unsigned long uninitialized_var(flags);
1197 int ret = 0;
1198
1199 spin_lock_irqsave(&n->list_lock, flags);
1200 slab_lock(page);
1201
1202 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1203 if (!check_slab(s, page))
1204 goto out;
1205 }
1206
1207next_object:
1208 cnt++;
1209
1210 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1211 if (!free_consistency_checks(s, page, object, addr))
1212 goto out;
81819f0f 1213 }
3ec09742 1214
3ec09742
CL
1215 if (s->flags & SLAB_STORE_USER)
1216 set_track(s, object, TRACK_FREE, addr);
1217 trace(s, page, object, 0);
81084651 1218 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1219 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1220
1221 /* Reached end of constructed freelist yet? */
1222 if (object != tail) {
1223 object = get_freepointer(s, object);
1224 goto next_object;
1225 }
804aa132
LA
1226 ret = 1;
1227
5c2e4bbb 1228out:
81084651
JDB
1229 if (cnt != bulk_cnt)
1230 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1231 bulk_cnt, cnt);
1232
881db7fb 1233 slab_unlock(page);
282acb43 1234 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1235 if (!ret)
1236 slab_fix(s, "Object at 0x%p not freed", object);
1237 return ret;
81819f0f
CL
1238}
1239
41ecc55b
CL
1240static int __init setup_slub_debug(char *str)
1241{
f0630fff
CL
1242 slub_debug = DEBUG_DEFAULT_FLAGS;
1243 if (*str++ != '=' || !*str)
1244 /*
1245 * No options specified. Switch on full debugging.
1246 */
1247 goto out;
1248
1249 if (*str == ',')
1250 /*
1251 * No options but restriction on slabs. This means full
1252 * debugging for slabs matching a pattern.
1253 */
1254 goto check_slabs;
1255
1256 slub_debug = 0;
1257 if (*str == '-')
1258 /*
1259 * Switch off all debugging measures.
1260 */
1261 goto out;
1262
1263 /*
1264 * Determine which debug features should be switched on
1265 */
06428780 1266 for (; *str && *str != ','; str++) {
f0630fff
CL
1267 switch (tolower(*str)) {
1268 case 'f':
becfda68 1269 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1270 break;
1271 case 'z':
1272 slub_debug |= SLAB_RED_ZONE;
1273 break;
1274 case 'p':
1275 slub_debug |= SLAB_POISON;
1276 break;
1277 case 'u':
1278 slub_debug |= SLAB_STORE_USER;
1279 break;
1280 case 't':
1281 slub_debug |= SLAB_TRACE;
1282 break;
4c13dd3b
DM
1283 case 'a':
1284 slub_debug |= SLAB_FAILSLAB;
1285 break;
08303a73
CA
1286 case 'o':
1287 /*
1288 * Avoid enabling debugging on caches if its minimum
1289 * order would increase as a result.
1290 */
1291 disable_higher_order_debug = 1;
1292 break;
f0630fff 1293 default:
f9f58285
FF
1294 pr_err("slub_debug option '%c' unknown. skipped\n",
1295 *str);
f0630fff 1296 }
41ecc55b
CL
1297 }
1298
f0630fff 1299check_slabs:
41ecc55b
CL
1300 if (*str == ',')
1301 slub_debug_slabs = str + 1;
f0630fff 1302out:
6471384a
AP
1303 if ((static_branch_unlikely(&init_on_alloc) ||
1304 static_branch_unlikely(&init_on_free)) &&
1305 (slub_debug & SLAB_POISON))
1306 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1307 return 1;
1308}
1309
1310__setup("slub_debug", setup_slub_debug);
1311
c5fd3ca0
AT
1312/*
1313 * kmem_cache_flags - apply debugging options to the cache
1314 * @object_size: the size of an object without meta data
1315 * @flags: flags to set
1316 * @name: name of the cache
1317 * @ctor: constructor function
1318 *
1319 * Debug option(s) are applied to @flags. In addition to the debug
1320 * option(s), if a slab name (or multiple) is specified i.e.
1321 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1322 * then only the select slabs will receive the debug option(s).
1323 */
0293d1fd 1324slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1325 slab_flags_t flags, const char *name,
51cc5068 1326 void (*ctor)(void *))
41ecc55b 1327{
c5fd3ca0
AT
1328 char *iter;
1329 size_t len;
1330
1331 /* If slub_debug = 0, it folds into the if conditional. */
1332 if (!slub_debug_slabs)
1333 return flags | slub_debug;
1334
1335 len = strlen(name);
1336 iter = slub_debug_slabs;
1337 while (*iter) {
1338 char *end, *glob;
1339 size_t cmplen;
1340
9cf3a8d8 1341 end = strchrnul(iter, ',');
c5fd3ca0
AT
1342
1343 glob = strnchr(iter, end - iter, '*');
1344 if (glob)
1345 cmplen = glob - iter;
1346 else
1347 cmplen = max_t(size_t, len, (end - iter));
1348
1349 if (!strncmp(name, iter, cmplen)) {
1350 flags |= slub_debug;
1351 break;
1352 }
1353
1354 if (!*end)
1355 break;
1356 iter = end + 1;
1357 }
ba0268a8
CL
1358
1359 return flags;
41ecc55b 1360}
b4a64718 1361#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1362static inline void setup_object_debug(struct kmem_cache *s,
1363 struct page *page, void *object) {}
a50b854e
MWO
1364static inline
1365void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
41ecc55b 1366
3ec09742 1367static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1368 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1369
282acb43 1370static inline int free_debug_processing(
81084651
JDB
1371 struct kmem_cache *s, struct page *page,
1372 void *head, void *tail, int bulk_cnt,
282acb43 1373 unsigned long addr) { return 0; }
41ecc55b 1374
41ecc55b
CL
1375static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1376 { return 1; }
1377static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1378 void *object, u8 val) { return 1; }
5cc6eee8
CL
1379static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1380 struct page *page) {}
c65c1877
PZ
1381static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1382 struct page *page) {}
0293d1fd 1383slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1384 slab_flags_t flags, const char *name,
51cc5068 1385 void (*ctor)(void *))
ba0268a8
CL
1386{
1387 return flags;
1388}
41ecc55b 1389#define slub_debug 0
0f389ec6 1390
fdaa45e9
IM
1391#define disable_higher_order_debug 0
1392
0f389ec6
CL
1393static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1394 { return 0; }
26c02cf0
AB
1395static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1396 { return 0; }
205ab99d
CL
1397static inline void inc_slabs_node(struct kmem_cache *s, int node,
1398 int objects) {}
1399static inline void dec_slabs_node(struct kmem_cache *s, int node,
1400 int objects) {}
7d550c56 1401
02e72cc6
AR
1402#endif /* CONFIG_SLUB_DEBUG */
1403
1404/*
1405 * Hooks for other subsystems that check memory allocations. In a typical
1406 * production configuration these hooks all should produce no code at all.
1407 */
0116523c 1408static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1409{
53128245 1410 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1411 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1412 kmemleak_alloc(ptr, size, 1, flags);
53128245 1413 return ptr;
d56791b3
RB
1414}
1415
ee3ce779 1416static __always_inline void kfree_hook(void *x)
d56791b3
RB
1417{
1418 kmemleak_free(x);
ee3ce779 1419 kasan_kfree_large(x, _RET_IP_);
d56791b3
RB
1420}
1421
c3895391 1422static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
d56791b3
RB
1423{
1424 kmemleak_free_recursive(x, s->flags);
7d550c56 1425
02e72cc6
AR
1426 /*
1427 * Trouble is that we may no longer disable interrupts in the fast path
1428 * So in order to make the debug calls that expect irqs to be
1429 * disabled we need to disable interrupts temporarily.
1430 */
4675ff05 1431#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1432 {
1433 unsigned long flags;
1434
1435 local_irq_save(flags);
02e72cc6
AR
1436 debug_check_no_locks_freed(x, s->object_size);
1437 local_irq_restore(flags);
1438 }
1439#endif
1440 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1441 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1442
c3895391
AK
1443 /* KASAN might put x into memory quarantine, delaying its reuse */
1444 return kasan_slab_free(s, x, _RET_IP_);
02e72cc6 1445}
205ab99d 1446
c3895391
AK
1447static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1448 void **head, void **tail)
81084651 1449{
6471384a
AP
1450
1451 void *object;
1452 void *next = *head;
1453 void *old_tail = *tail ? *tail : *head;
1454 int rsize;
1455
aea4df4c
LA
1456 /* Head and tail of the reconstructed freelist */
1457 *head = NULL;
1458 *tail = NULL;
1b7e816f 1459
aea4df4c
LA
1460 do {
1461 object = next;
1462 next = get_freepointer(s, object);
1463
1464 if (slab_want_init_on_free(s)) {
6471384a
AP
1465 /*
1466 * Clear the object and the metadata, but don't touch
1467 * the redzone.
1468 */
1469 memset(object, 0, s->object_size);
1470 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1471 : 0;
1472 memset((char *)object + s->inuse, 0,
1473 s->size - s->inuse - rsize);
81084651 1474
aea4df4c 1475 }
c3895391
AK
1476 /* If object's reuse doesn't have to be delayed */
1477 if (!slab_free_hook(s, object)) {
1478 /* Move object to the new freelist */
1479 set_freepointer(s, object, *head);
1480 *head = object;
1481 if (!*tail)
1482 *tail = object;
1483 }
1484 } while (object != old_tail);
1485
1486 if (*head == *tail)
1487 *tail = NULL;
1488
1489 return *head != NULL;
81084651
JDB
1490}
1491
4d176711 1492static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1493 void *object)
1494{
1495 setup_object_debug(s, page, object);
4d176711 1496 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1497 if (unlikely(s->ctor)) {
1498 kasan_unpoison_object_data(s, object);
1499 s->ctor(object);
1500 kasan_poison_object_data(s, object);
1501 }
4d176711 1502 return object;
588f8ba9
TG
1503}
1504
81819f0f
CL
1505/*
1506 * Slab allocation and freeing
1507 */
5dfb4175
VD
1508static inline struct page *alloc_slab_page(struct kmem_cache *s,
1509 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1510{
5dfb4175 1511 struct page *page;
19af27af 1512 unsigned int order = oo_order(oo);
65c3376a 1513
2154a336 1514 if (node == NUMA_NO_NODE)
5dfb4175 1515 page = alloc_pages(flags, order);
65c3376a 1516 else
96db800f 1517 page = __alloc_pages_node(node, flags, order);
5dfb4175 1518
6cea1d56 1519 if (page && charge_slab_page(page, flags, order, s)) {
f3ccb2c4
VD
1520 __free_pages(page, order);
1521 page = NULL;
1522 }
5dfb4175
VD
1523
1524 return page;
65c3376a
CL
1525}
1526
210e7a43
TG
1527#ifdef CONFIG_SLAB_FREELIST_RANDOM
1528/* Pre-initialize the random sequence cache */
1529static int init_cache_random_seq(struct kmem_cache *s)
1530{
19af27af 1531 unsigned int count = oo_objects(s->oo);
210e7a43 1532 int err;
210e7a43 1533
a810007a
SR
1534 /* Bailout if already initialised */
1535 if (s->random_seq)
1536 return 0;
1537
210e7a43
TG
1538 err = cache_random_seq_create(s, count, GFP_KERNEL);
1539 if (err) {
1540 pr_err("SLUB: Unable to initialize free list for %s\n",
1541 s->name);
1542 return err;
1543 }
1544
1545 /* Transform to an offset on the set of pages */
1546 if (s->random_seq) {
19af27af
AD
1547 unsigned int i;
1548
210e7a43
TG
1549 for (i = 0; i < count; i++)
1550 s->random_seq[i] *= s->size;
1551 }
1552 return 0;
1553}
1554
1555/* Initialize each random sequence freelist per cache */
1556static void __init init_freelist_randomization(void)
1557{
1558 struct kmem_cache *s;
1559
1560 mutex_lock(&slab_mutex);
1561
1562 list_for_each_entry(s, &slab_caches, list)
1563 init_cache_random_seq(s);
1564
1565 mutex_unlock(&slab_mutex);
1566}
1567
1568/* Get the next entry on the pre-computed freelist randomized */
1569static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1570 unsigned long *pos, void *start,
1571 unsigned long page_limit,
1572 unsigned long freelist_count)
1573{
1574 unsigned int idx;
1575
1576 /*
1577 * If the target page allocation failed, the number of objects on the
1578 * page might be smaller than the usual size defined by the cache.
1579 */
1580 do {
1581 idx = s->random_seq[*pos];
1582 *pos += 1;
1583 if (*pos >= freelist_count)
1584 *pos = 0;
1585 } while (unlikely(idx >= page_limit));
1586
1587 return (char *)start + idx;
1588}
1589
1590/* Shuffle the single linked freelist based on a random pre-computed sequence */
1591static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1592{
1593 void *start;
1594 void *cur;
1595 void *next;
1596 unsigned long idx, pos, page_limit, freelist_count;
1597
1598 if (page->objects < 2 || !s->random_seq)
1599 return false;
1600
1601 freelist_count = oo_objects(s->oo);
1602 pos = get_random_int() % freelist_count;
1603
1604 page_limit = page->objects * s->size;
1605 start = fixup_red_left(s, page_address(page));
1606
1607 /* First entry is used as the base of the freelist */
1608 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1609 freelist_count);
4d176711 1610 cur = setup_object(s, page, cur);
210e7a43
TG
1611 page->freelist = cur;
1612
1613 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1614 next = next_freelist_entry(s, page, &pos, start, page_limit,
1615 freelist_count);
4d176711 1616 next = setup_object(s, page, next);
210e7a43
TG
1617 set_freepointer(s, cur, next);
1618 cur = next;
1619 }
210e7a43
TG
1620 set_freepointer(s, cur, NULL);
1621
1622 return true;
1623}
1624#else
1625static inline int init_cache_random_seq(struct kmem_cache *s)
1626{
1627 return 0;
1628}
1629static inline void init_freelist_randomization(void) { }
1630static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1631{
1632 return false;
1633}
1634#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1635
81819f0f
CL
1636static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1637{
06428780 1638 struct page *page;
834f3d11 1639 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1640 gfp_t alloc_gfp;
4d176711 1641 void *start, *p, *next;
a50b854e 1642 int idx;
210e7a43 1643 bool shuffle;
81819f0f 1644
7e0528da
CL
1645 flags &= gfp_allowed_mask;
1646
d0164adc 1647 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1648 local_irq_enable();
1649
b7a49f0d 1650 flags |= s->allocflags;
e12ba74d 1651
ba52270d
PE
1652 /*
1653 * Let the initial higher-order allocation fail under memory pressure
1654 * so we fall-back to the minimum order allocation.
1655 */
1656 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1657 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1658 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1659
5dfb4175 1660 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1661 if (unlikely(!page)) {
1662 oo = s->min;
80c3a998 1663 alloc_gfp = flags;
65c3376a
CL
1664 /*
1665 * Allocation may have failed due to fragmentation.
1666 * Try a lower order alloc if possible
1667 */
5dfb4175 1668 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1669 if (unlikely(!page))
1670 goto out;
1671 stat(s, ORDER_FALLBACK);
65c3376a 1672 }
5a896d9e 1673
834f3d11 1674 page->objects = oo_objects(oo);
81819f0f 1675
1b4f59e3 1676 page->slab_cache = s;
c03f94cc 1677 __SetPageSlab(page);
2f064f34 1678 if (page_is_pfmemalloc(page))
072bb0aa 1679 SetPageSlabPfmemalloc(page);
81819f0f 1680
a7101224 1681 kasan_poison_slab(page);
81819f0f 1682
a7101224 1683 start = page_address(page);
81819f0f 1684
a50b854e 1685 setup_page_debug(s, page, start);
0316bec2 1686
210e7a43
TG
1687 shuffle = shuffle_freelist(s, page);
1688
1689 if (!shuffle) {
4d176711
AK
1690 start = fixup_red_left(s, start);
1691 start = setup_object(s, page, start);
1692 page->freelist = start;
18e50661
AK
1693 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1694 next = p + s->size;
1695 next = setup_object(s, page, next);
1696 set_freepointer(s, p, next);
1697 p = next;
1698 }
1699 set_freepointer(s, p, NULL);
81819f0f 1700 }
81819f0f 1701
e6e82ea1 1702 page->inuse = page->objects;
8cb0a506 1703 page->frozen = 1;
588f8ba9 1704
81819f0f 1705out:
d0164adc 1706 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1707 local_irq_disable();
1708 if (!page)
1709 return NULL;
1710
588f8ba9
TG
1711 inc_slabs_node(s, page_to_nid(page), page->objects);
1712
81819f0f
CL
1713 return page;
1714}
1715
588f8ba9
TG
1716static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1717{
1718 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 1719 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
1720 flags &= ~GFP_SLAB_BUG_MASK;
1721 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1722 invalid_mask, &invalid_mask, flags, &flags);
65b9de75 1723 dump_stack();
588f8ba9
TG
1724 }
1725
1726 return allocate_slab(s,
1727 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1728}
1729
81819f0f
CL
1730static void __free_slab(struct kmem_cache *s, struct page *page)
1731{
834f3d11
CL
1732 int order = compound_order(page);
1733 int pages = 1 << order;
81819f0f 1734
becfda68 1735 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1736 void *p;
1737
1738 slab_pad_check(s, page);
224a88be
CL
1739 for_each_object(p, s, page_address(page),
1740 page->objects)
f7cb1933 1741 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1742 }
1743
072bb0aa 1744 __ClearPageSlabPfmemalloc(page);
49bd5221 1745 __ClearPageSlab(page);
1f458cbf 1746
d4fc5069 1747 page->mapping = NULL;
1eb5ac64
NP
1748 if (current->reclaim_state)
1749 current->reclaim_state->reclaimed_slab += pages;
6cea1d56 1750 uncharge_slab_page(page, order, s);
27ee57c9 1751 __free_pages(page, order);
81819f0f
CL
1752}
1753
1754static void rcu_free_slab(struct rcu_head *h)
1755{
bf68c214 1756 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1757
1b4f59e3 1758 __free_slab(page->slab_cache, page);
81819f0f
CL
1759}
1760
1761static void free_slab(struct kmem_cache *s, struct page *page)
1762{
5f0d5a3a 1763 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1764 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1765 } else
1766 __free_slab(s, page);
1767}
1768
1769static void discard_slab(struct kmem_cache *s, struct page *page)
1770{
205ab99d 1771 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1772 free_slab(s, page);
1773}
1774
1775/*
5cc6eee8 1776 * Management of partially allocated slabs.
81819f0f 1777 */
1e4dd946
SR
1778static inline void
1779__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1780{
e95eed57 1781 n->nr_partial++;
136333d1 1782 if (tail == DEACTIVATE_TO_TAIL)
916ac052 1783 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 1784 else
916ac052 1785 list_add(&page->slab_list, &n->partial);
81819f0f
CL
1786}
1787
1e4dd946
SR
1788static inline void add_partial(struct kmem_cache_node *n,
1789 struct page *page, int tail)
62e346a8 1790{
c65c1877 1791 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1792 __add_partial(n, page, tail);
1793}
c65c1877 1794
1e4dd946
SR
1795static inline void remove_partial(struct kmem_cache_node *n,
1796 struct page *page)
1797{
1798 lockdep_assert_held(&n->list_lock);
916ac052 1799 list_del(&page->slab_list);
52b4b950 1800 n->nr_partial--;
1e4dd946
SR
1801}
1802
81819f0f 1803/*
7ced3719
CL
1804 * Remove slab from the partial list, freeze it and
1805 * return the pointer to the freelist.
81819f0f 1806 *
497b66f2 1807 * Returns a list of objects or NULL if it fails.
81819f0f 1808 */
497b66f2 1809static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1810 struct kmem_cache_node *n, struct page *page,
633b0764 1811 int mode, int *objects)
81819f0f 1812{
2cfb7455
CL
1813 void *freelist;
1814 unsigned long counters;
1815 struct page new;
1816
c65c1877
PZ
1817 lockdep_assert_held(&n->list_lock);
1818
2cfb7455
CL
1819 /*
1820 * Zap the freelist and set the frozen bit.
1821 * The old freelist is the list of objects for the
1822 * per cpu allocation list.
1823 */
7ced3719
CL
1824 freelist = page->freelist;
1825 counters = page->counters;
1826 new.counters = counters;
633b0764 1827 *objects = new.objects - new.inuse;
23910c50 1828 if (mode) {
7ced3719 1829 new.inuse = page->objects;
23910c50
PE
1830 new.freelist = NULL;
1831 } else {
1832 new.freelist = freelist;
1833 }
2cfb7455 1834
a0132ac0 1835 VM_BUG_ON(new.frozen);
7ced3719 1836 new.frozen = 1;
2cfb7455 1837
7ced3719 1838 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1839 freelist, counters,
02d7633f 1840 new.freelist, new.counters,
7ced3719 1841 "acquire_slab"))
7ced3719 1842 return NULL;
2cfb7455
CL
1843
1844 remove_partial(n, page);
7ced3719 1845 WARN_ON(!freelist);
49e22585 1846 return freelist;
81819f0f
CL
1847}
1848
633b0764 1849static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1850static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1851
81819f0f 1852/*
672bba3a 1853 * Try to allocate a partial slab from a specific node.
81819f0f 1854 */
8ba00bb6
JK
1855static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1856 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1857{
49e22585
CL
1858 struct page *page, *page2;
1859 void *object = NULL;
e5d9998f 1860 unsigned int available = 0;
633b0764 1861 int objects;
81819f0f
CL
1862
1863 /*
1864 * Racy check. If we mistakenly see no partial slabs then we
1865 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1866 * partial slab and there is none available then get_partials()
1867 * will return NULL.
81819f0f
CL
1868 */
1869 if (!n || !n->nr_partial)
1870 return NULL;
1871
1872 spin_lock(&n->list_lock);
916ac052 1873 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 1874 void *t;
49e22585 1875
8ba00bb6
JK
1876 if (!pfmemalloc_match(page, flags))
1877 continue;
1878
633b0764 1879 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1880 if (!t)
1881 break;
1882
633b0764 1883 available += objects;
12d79634 1884 if (!object) {
49e22585 1885 c->page = page;
49e22585 1886 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1887 object = t;
49e22585 1888 } else {
633b0764 1889 put_cpu_partial(s, page, 0);
8028dcea 1890 stat(s, CPU_PARTIAL_NODE);
49e22585 1891 }
345c905d 1892 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 1893 || available > slub_cpu_partial(s) / 2)
49e22585
CL
1894 break;
1895
497b66f2 1896 }
81819f0f 1897 spin_unlock(&n->list_lock);
497b66f2 1898 return object;
81819f0f
CL
1899}
1900
1901/*
672bba3a 1902 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1903 */
de3ec035 1904static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1905 struct kmem_cache_cpu *c)
81819f0f
CL
1906{
1907#ifdef CONFIG_NUMA
1908 struct zonelist *zonelist;
dd1a239f 1909 struct zoneref *z;
54a6eb5c
MG
1910 struct zone *zone;
1911 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1912 void *object;
cc9a6c87 1913 unsigned int cpuset_mems_cookie;
81819f0f
CL
1914
1915 /*
672bba3a
CL
1916 * The defrag ratio allows a configuration of the tradeoffs between
1917 * inter node defragmentation and node local allocations. A lower
1918 * defrag_ratio increases the tendency to do local allocations
1919 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1920 *
672bba3a
CL
1921 * If the defrag_ratio is set to 0 then kmalloc() always
1922 * returns node local objects. If the ratio is higher then kmalloc()
1923 * may return off node objects because partial slabs are obtained
1924 * from other nodes and filled up.
81819f0f 1925 *
43efd3ea
LP
1926 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1927 * (which makes defrag_ratio = 1000) then every (well almost)
1928 * allocation will first attempt to defrag slab caches on other nodes.
1929 * This means scanning over all nodes to look for partial slabs which
1930 * may be expensive if we do it every time we are trying to find a slab
672bba3a 1931 * with available objects.
81819f0f 1932 */
9824601e
CL
1933 if (!s->remote_node_defrag_ratio ||
1934 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1935 return NULL;
1936
cc9a6c87 1937 do {
d26914d1 1938 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1939 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1940 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1941 struct kmem_cache_node *n;
1942
1943 n = get_node(s, zone_to_nid(zone));
1944
dee2f8aa 1945 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1946 n->nr_partial > s->min_partial) {
8ba00bb6 1947 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1948 if (object) {
1949 /*
d26914d1
MG
1950 * Don't check read_mems_allowed_retry()
1951 * here - if mems_allowed was updated in
1952 * parallel, that was a harmless race
1953 * between allocation and the cpuset
1954 * update
cc9a6c87 1955 */
cc9a6c87
MG
1956 return object;
1957 }
c0ff7453 1958 }
81819f0f 1959 }
d26914d1 1960 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 1961#endif /* CONFIG_NUMA */
81819f0f
CL
1962 return NULL;
1963}
1964
1965/*
1966 * Get a partial page, lock it and return it.
1967 */
497b66f2 1968static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1969 struct kmem_cache_cpu *c)
81819f0f 1970{
497b66f2 1971 void *object;
a561ce00
JK
1972 int searchnode = node;
1973
1974 if (node == NUMA_NO_NODE)
1975 searchnode = numa_mem_id();
1976 else if (!node_present_pages(node))
1977 searchnode = node_to_mem_node(node);
81819f0f 1978
8ba00bb6 1979 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1980 if (object || node != NUMA_NO_NODE)
1981 return object;
81819f0f 1982
acd19fd1 1983 return get_any_partial(s, flags, c);
81819f0f
CL
1984}
1985
923717cb 1986#ifdef CONFIG_PREEMPTION
8a5ec0ba
CL
1987/*
1988 * Calculate the next globally unique transaction for disambiguiation
1989 * during cmpxchg. The transactions start with the cpu number and are then
1990 * incremented by CONFIG_NR_CPUS.
1991 */
1992#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1993#else
1994/*
1995 * No preemption supported therefore also no need to check for
1996 * different cpus.
1997 */
1998#define TID_STEP 1
1999#endif
2000
2001static inline unsigned long next_tid(unsigned long tid)
2002{
2003 return tid + TID_STEP;
2004}
2005
9d5f0be0 2006#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2007static inline unsigned int tid_to_cpu(unsigned long tid)
2008{
2009 return tid % TID_STEP;
2010}
2011
2012static inline unsigned long tid_to_event(unsigned long tid)
2013{
2014 return tid / TID_STEP;
2015}
9d5f0be0 2016#endif
8a5ec0ba
CL
2017
2018static inline unsigned int init_tid(int cpu)
2019{
2020 return cpu;
2021}
2022
2023static inline void note_cmpxchg_failure(const char *n,
2024 const struct kmem_cache *s, unsigned long tid)
2025{
2026#ifdef SLUB_DEBUG_CMPXCHG
2027 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2028
f9f58285 2029 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2030
923717cb 2031#ifdef CONFIG_PREEMPTION
8a5ec0ba 2032 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2033 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2034 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2035 else
2036#endif
2037 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2038 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2039 tid_to_event(tid), tid_to_event(actual_tid));
2040 else
f9f58285 2041 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2042 actual_tid, tid, next_tid(tid));
2043#endif
4fdccdfb 2044 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2045}
2046
788e1aad 2047static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2048{
8a5ec0ba
CL
2049 int cpu;
2050
2051 for_each_possible_cpu(cpu)
2052 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2053}
2cfb7455 2054
81819f0f
CL
2055/*
2056 * Remove the cpu slab
2057 */
d0e0ac97 2058static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2059 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2060{
2cfb7455 2061 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
2062 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2063 int lock = 0;
2064 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2065 void *nextfree;
136333d1 2066 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2067 struct page new;
2068 struct page old;
2069
2070 if (page->freelist) {
84e554e6 2071 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2072 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2073 }
2074
894b8788 2075 /*
2cfb7455
CL
2076 * Stage one: Free all available per cpu objects back
2077 * to the page freelist while it is still frozen. Leave the
2078 * last one.
2079 *
2080 * There is no need to take the list->lock because the page
2081 * is still frozen.
2082 */
2083 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2084 void *prior;
2085 unsigned long counters;
2086
2087 do {
2088 prior = page->freelist;
2089 counters = page->counters;
2090 set_freepointer(s, freelist, prior);
2091 new.counters = counters;
2092 new.inuse--;
a0132ac0 2093 VM_BUG_ON(!new.frozen);
2cfb7455 2094
1d07171c 2095 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2096 prior, counters,
2097 freelist, new.counters,
2098 "drain percpu freelist"));
2099
2100 freelist = nextfree;
2101 }
2102
894b8788 2103 /*
2cfb7455
CL
2104 * Stage two: Ensure that the page is unfrozen while the
2105 * list presence reflects the actual number of objects
2106 * during unfreeze.
2107 *
2108 * We setup the list membership and then perform a cmpxchg
2109 * with the count. If there is a mismatch then the page
2110 * is not unfrozen but the page is on the wrong list.
2111 *
2112 * Then we restart the process which may have to remove
2113 * the page from the list that we just put it on again
2114 * because the number of objects in the slab may have
2115 * changed.
894b8788 2116 */
2cfb7455 2117redo:
894b8788 2118
2cfb7455
CL
2119 old.freelist = page->freelist;
2120 old.counters = page->counters;
a0132ac0 2121 VM_BUG_ON(!old.frozen);
7c2e132c 2122
2cfb7455
CL
2123 /* Determine target state of the slab */
2124 new.counters = old.counters;
2125 if (freelist) {
2126 new.inuse--;
2127 set_freepointer(s, freelist, old.freelist);
2128 new.freelist = freelist;
2129 } else
2130 new.freelist = old.freelist;
2131
2132 new.frozen = 0;
2133
8a5b20ae 2134 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2135 m = M_FREE;
2136 else if (new.freelist) {
2137 m = M_PARTIAL;
2138 if (!lock) {
2139 lock = 1;
2140 /*
8bb4e7a2 2141 * Taking the spinlock removes the possibility
2cfb7455
CL
2142 * that acquire_slab() will see a slab page that
2143 * is frozen
2144 */
2145 spin_lock(&n->list_lock);
2146 }
2147 } else {
2148 m = M_FULL;
2149 if (kmem_cache_debug(s) && !lock) {
2150 lock = 1;
2151 /*
2152 * This also ensures that the scanning of full
2153 * slabs from diagnostic functions will not see
2154 * any frozen slabs.
2155 */
2156 spin_lock(&n->list_lock);
2157 }
2158 }
2159
2160 if (l != m) {
2cfb7455 2161 if (l == M_PARTIAL)
2cfb7455 2162 remove_partial(n, page);
2cfb7455 2163 else if (l == M_FULL)
c65c1877 2164 remove_full(s, n, page);
2cfb7455 2165
88349a28 2166 if (m == M_PARTIAL)
2cfb7455 2167 add_partial(n, page, tail);
88349a28 2168 else if (m == M_FULL)
2cfb7455 2169 add_full(s, n, page);
2cfb7455
CL
2170 }
2171
2172 l = m;
1d07171c 2173 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2174 old.freelist, old.counters,
2175 new.freelist, new.counters,
2176 "unfreezing slab"))
2177 goto redo;
2178
2cfb7455
CL
2179 if (lock)
2180 spin_unlock(&n->list_lock);
2181
88349a28
WY
2182 if (m == M_PARTIAL)
2183 stat(s, tail);
2184 else if (m == M_FULL)
2185 stat(s, DEACTIVATE_FULL);
2186 else if (m == M_FREE) {
2cfb7455
CL
2187 stat(s, DEACTIVATE_EMPTY);
2188 discard_slab(s, page);
2189 stat(s, FREE_SLAB);
894b8788 2190 }
d4ff6d35
WY
2191
2192 c->page = NULL;
2193 c->freelist = NULL;
81819f0f
CL
2194}
2195
d24ac77f
JK
2196/*
2197 * Unfreeze all the cpu partial slabs.
2198 *
59a09917
CL
2199 * This function must be called with interrupts disabled
2200 * for the cpu using c (or some other guarantee must be there
2201 * to guarantee no concurrent accesses).
d24ac77f 2202 */
59a09917
CL
2203static void unfreeze_partials(struct kmem_cache *s,
2204 struct kmem_cache_cpu *c)
49e22585 2205{
345c905d 2206#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2207 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2208 struct page *page, *discard_page = NULL;
49e22585
CL
2209
2210 while ((page = c->partial)) {
49e22585
CL
2211 struct page new;
2212 struct page old;
2213
2214 c->partial = page->next;
43d77867
JK
2215
2216 n2 = get_node(s, page_to_nid(page));
2217 if (n != n2) {
2218 if (n)
2219 spin_unlock(&n->list_lock);
2220
2221 n = n2;
2222 spin_lock(&n->list_lock);
2223 }
49e22585
CL
2224
2225 do {
2226
2227 old.freelist = page->freelist;
2228 old.counters = page->counters;
a0132ac0 2229 VM_BUG_ON(!old.frozen);
49e22585
CL
2230
2231 new.counters = old.counters;
2232 new.freelist = old.freelist;
2233
2234 new.frozen = 0;
2235
d24ac77f 2236 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2237 old.freelist, old.counters,
2238 new.freelist, new.counters,
2239 "unfreezing slab"));
2240
8a5b20ae 2241 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2242 page->next = discard_page;
2243 discard_page = page;
43d77867
JK
2244 } else {
2245 add_partial(n, page, DEACTIVATE_TO_TAIL);
2246 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2247 }
2248 }
2249
2250 if (n)
2251 spin_unlock(&n->list_lock);
9ada1934
SL
2252
2253 while (discard_page) {
2254 page = discard_page;
2255 discard_page = discard_page->next;
2256
2257 stat(s, DEACTIVATE_EMPTY);
2258 discard_slab(s, page);
2259 stat(s, FREE_SLAB);
2260 }
6dfd1b65 2261#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2262}
2263
2264/*
9234bae9
WY
2265 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2266 * partial page slot if available.
49e22585
CL
2267 *
2268 * If we did not find a slot then simply move all the partials to the
2269 * per node partial list.
2270 */
633b0764 2271static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2272{
345c905d 2273#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2274 struct page *oldpage;
2275 int pages;
2276 int pobjects;
2277
d6e0b7fa 2278 preempt_disable();
49e22585
CL
2279 do {
2280 pages = 0;
2281 pobjects = 0;
2282 oldpage = this_cpu_read(s->cpu_slab->partial);
2283
2284 if (oldpage) {
2285 pobjects = oldpage->pobjects;
2286 pages = oldpage->pages;
2287 if (drain && pobjects > s->cpu_partial) {
2288 unsigned long flags;
2289 /*
2290 * partial array is full. Move the existing
2291 * set to the per node partial list.
2292 */
2293 local_irq_save(flags);
59a09917 2294 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2295 local_irq_restore(flags);
e24fc410 2296 oldpage = NULL;
49e22585
CL
2297 pobjects = 0;
2298 pages = 0;
8028dcea 2299 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2300 }
2301 }
2302
2303 pages++;
2304 pobjects += page->objects - page->inuse;
2305
2306 page->pages = pages;
2307 page->pobjects = pobjects;
2308 page->next = oldpage;
2309
d0e0ac97
CG
2310 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2311 != oldpage);
d6e0b7fa
VD
2312 if (unlikely(!s->cpu_partial)) {
2313 unsigned long flags;
2314
2315 local_irq_save(flags);
2316 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2317 local_irq_restore(flags);
2318 }
2319 preempt_enable();
6dfd1b65 2320#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2321}
2322
dfb4f096 2323static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2324{
84e554e6 2325 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2326 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2327
2328 c->tid = next_tid(c->tid);
81819f0f
CL
2329}
2330
2331/*
2332 * Flush cpu slab.
6446faa2 2333 *
81819f0f
CL
2334 * Called from IPI handler with interrupts disabled.
2335 */
0c710013 2336static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2337{
9dfc6e68 2338 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2339
1265ef2d
WY
2340 if (c->page)
2341 flush_slab(s, c);
49e22585 2342
1265ef2d 2343 unfreeze_partials(s, c);
81819f0f
CL
2344}
2345
2346static void flush_cpu_slab(void *d)
2347{
2348 struct kmem_cache *s = d;
81819f0f 2349
dfb4f096 2350 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2351}
2352
a8364d55
GBY
2353static bool has_cpu_slab(int cpu, void *info)
2354{
2355 struct kmem_cache *s = info;
2356 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2357
a93cf07b 2358 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2359}
2360
81819f0f
CL
2361static void flush_all(struct kmem_cache *s)
2362{
cb923159 2363 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
81819f0f
CL
2364}
2365
a96a87bf
SAS
2366/*
2367 * Use the cpu notifier to insure that the cpu slabs are flushed when
2368 * necessary.
2369 */
2370static int slub_cpu_dead(unsigned int cpu)
2371{
2372 struct kmem_cache *s;
2373 unsigned long flags;
2374
2375 mutex_lock(&slab_mutex);
2376 list_for_each_entry(s, &slab_caches, list) {
2377 local_irq_save(flags);
2378 __flush_cpu_slab(s, cpu);
2379 local_irq_restore(flags);
2380 }
2381 mutex_unlock(&slab_mutex);
2382 return 0;
2383}
2384
dfb4f096
CL
2385/*
2386 * Check if the objects in a per cpu structure fit numa
2387 * locality expectations.
2388 */
57d437d2 2389static inline int node_match(struct page *page, int node)
dfb4f096
CL
2390{
2391#ifdef CONFIG_NUMA
6159d0f5 2392 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2393 return 0;
2394#endif
2395 return 1;
2396}
2397
9a02d699 2398#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2399static int count_free(struct page *page)
2400{
2401 return page->objects - page->inuse;
2402}
2403
9a02d699
DR
2404static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2405{
2406 return atomic_long_read(&n->total_objects);
2407}
2408#endif /* CONFIG_SLUB_DEBUG */
2409
2410#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2411static unsigned long count_partial(struct kmem_cache_node *n,
2412 int (*get_count)(struct page *))
2413{
2414 unsigned long flags;
2415 unsigned long x = 0;
2416 struct page *page;
2417
2418 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2419 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2420 x += get_count(page);
2421 spin_unlock_irqrestore(&n->list_lock, flags);
2422 return x;
2423}
9a02d699 2424#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2425
781b2ba6
PE
2426static noinline void
2427slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2428{
9a02d699
DR
2429#ifdef CONFIG_SLUB_DEBUG
2430 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2431 DEFAULT_RATELIMIT_BURST);
781b2ba6 2432 int node;
fa45dc25 2433 struct kmem_cache_node *n;
781b2ba6 2434
9a02d699
DR
2435 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2436 return;
2437
5b3810e5
VB
2438 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2439 nid, gfpflags, &gfpflags);
19af27af 2440 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2441 s->name, s->object_size, s->size, oo_order(s->oo),
2442 oo_order(s->min));
781b2ba6 2443
3b0efdfa 2444 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2445 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2446 s->name);
fa5ec8a1 2447
fa45dc25 2448 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2449 unsigned long nr_slabs;
2450 unsigned long nr_objs;
2451 unsigned long nr_free;
2452
26c02cf0
AB
2453 nr_free = count_partial(n, count_free);
2454 nr_slabs = node_nr_slabs(n);
2455 nr_objs = node_nr_objs(n);
781b2ba6 2456
f9f58285 2457 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2458 node, nr_slabs, nr_objs, nr_free);
2459 }
9a02d699 2460#endif
781b2ba6
PE
2461}
2462
497b66f2
CL
2463static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2464 int node, struct kmem_cache_cpu **pc)
2465{
6faa6833 2466 void *freelist;
188fd063
CL
2467 struct kmem_cache_cpu *c = *pc;
2468 struct page *page;
497b66f2 2469
128227e7
MW
2470 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2471
188fd063 2472 freelist = get_partial(s, flags, node, c);
497b66f2 2473
188fd063
CL
2474 if (freelist)
2475 return freelist;
2476
2477 page = new_slab(s, flags, node);
497b66f2 2478 if (page) {
7c8e0181 2479 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2480 if (c->page)
2481 flush_slab(s, c);
2482
2483 /*
2484 * No other reference to the page yet so we can
2485 * muck around with it freely without cmpxchg
2486 */
6faa6833 2487 freelist = page->freelist;
497b66f2
CL
2488 page->freelist = NULL;
2489
2490 stat(s, ALLOC_SLAB);
497b66f2
CL
2491 c->page = page;
2492 *pc = c;
edde82b6 2493 }
497b66f2 2494
6faa6833 2495 return freelist;
497b66f2
CL
2496}
2497
072bb0aa
MG
2498static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2499{
2500 if (unlikely(PageSlabPfmemalloc(page)))
2501 return gfp_pfmemalloc_allowed(gfpflags);
2502
2503 return true;
2504}
2505
213eeb9f 2506/*
d0e0ac97
CG
2507 * Check the page->freelist of a page and either transfer the freelist to the
2508 * per cpu freelist or deactivate the page.
213eeb9f
CL
2509 *
2510 * The page is still frozen if the return value is not NULL.
2511 *
2512 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2513 *
2514 * This function must be called with interrupt disabled.
213eeb9f
CL
2515 */
2516static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2517{
2518 struct page new;
2519 unsigned long counters;
2520 void *freelist;
2521
2522 do {
2523 freelist = page->freelist;
2524 counters = page->counters;
6faa6833 2525
213eeb9f 2526 new.counters = counters;
a0132ac0 2527 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2528
2529 new.inuse = page->objects;
2530 new.frozen = freelist != NULL;
2531
d24ac77f 2532 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2533 freelist, counters,
2534 NULL, new.counters,
2535 "get_freelist"));
2536
2537 return freelist;
2538}
2539
81819f0f 2540/*
894b8788
CL
2541 * Slow path. The lockless freelist is empty or we need to perform
2542 * debugging duties.
2543 *
894b8788
CL
2544 * Processing is still very fast if new objects have been freed to the
2545 * regular freelist. In that case we simply take over the regular freelist
2546 * as the lockless freelist and zap the regular freelist.
81819f0f 2547 *
894b8788
CL
2548 * If that is not working then we fall back to the partial lists. We take the
2549 * first element of the freelist as the object to allocate now and move the
2550 * rest of the freelist to the lockless freelist.
81819f0f 2551 *
894b8788 2552 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2553 * we need to allocate a new slab. This is the slowest path since it involves
2554 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2555 *
2556 * Version of __slab_alloc to use when we know that interrupts are
2557 * already disabled (which is the case for bulk allocation).
81819f0f 2558 */
a380a3c7 2559static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2560 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2561{
6faa6833 2562 void *freelist;
f6e7def7 2563 struct page *page;
81819f0f 2564
f6e7def7
CL
2565 page = c->page;
2566 if (!page)
81819f0f 2567 goto new_slab;
49e22585 2568redo:
6faa6833 2569
57d437d2 2570 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2571 int searchnode = node;
2572
2573 if (node != NUMA_NO_NODE && !node_present_pages(node))
2574 searchnode = node_to_mem_node(node);
2575
2576 if (unlikely(!node_match(page, searchnode))) {
2577 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2578 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2579 goto new_slab;
2580 }
fc59c053 2581 }
6446faa2 2582
072bb0aa
MG
2583 /*
2584 * By rights, we should be searching for a slab page that was
2585 * PFMEMALLOC but right now, we are losing the pfmemalloc
2586 * information when the page leaves the per-cpu allocator
2587 */
2588 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2589 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2590 goto new_slab;
2591 }
2592
73736e03 2593 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2594 freelist = c->freelist;
2595 if (freelist)
73736e03 2596 goto load_freelist;
03e404af 2597
f6e7def7 2598 freelist = get_freelist(s, page);
6446faa2 2599
6faa6833 2600 if (!freelist) {
03e404af
CL
2601 c->page = NULL;
2602 stat(s, DEACTIVATE_BYPASS);
fc59c053 2603 goto new_slab;
03e404af 2604 }
6446faa2 2605
84e554e6 2606 stat(s, ALLOC_REFILL);
6446faa2 2607
894b8788 2608load_freelist:
507effea
CL
2609 /*
2610 * freelist is pointing to the list of objects to be used.
2611 * page is pointing to the page from which the objects are obtained.
2612 * That page must be frozen for per cpu allocations to work.
2613 */
a0132ac0 2614 VM_BUG_ON(!c->page->frozen);
6faa6833 2615 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2616 c->tid = next_tid(c->tid);
6faa6833 2617 return freelist;
81819f0f 2618
81819f0f 2619new_slab:
2cfb7455 2620
a93cf07b
WY
2621 if (slub_percpu_partial(c)) {
2622 page = c->page = slub_percpu_partial(c);
2623 slub_set_percpu_partial(c, page);
49e22585 2624 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2625 goto redo;
81819f0f
CL
2626 }
2627
188fd063 2628 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2629
f4697436 2630 if (unlikely(!freelist)) {
9a02d699 2631 slab_out_of_memory(s, gfpflags, node);
f4697436 2632 return NULL;
81819f0f 2633 }
2cfb7455 2634
f6e7def7 2635 page = c->page;
5091b74a 2636 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2637 goto load_freelist;
2cfb7455 2638
497b66f2 2639 /* Only entered in the debug case */
d0e0ac97
CG
2640 if (kmem_cache_debug(s) &&
2641 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2642 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2643
d4ff6d35 2644 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2645 return freelist;
894b8788
CL
2646}
2647
a380a3c7
CL
2648/*
2649 * Another one that disabled interrupt and compensates for possible
2650 * cpu changes by refetching the per cpu area pointer.
2651 */
2652static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2653 unsigned long addr, struct kmem_cache_cpu *c)
2654{
2655 void *p;
2656 unsigned long flags;
2657
2658 local_irq_save(flags);
923717cb 2659#ifdef CONFIG_PREEMPTION
a380a3c7
CL
2660 /*
2661 * We may have been preempted and rescheduled on a different
2662 * cpu before disabling interrupts. Need to reload cpu area
2663 * pointer.
2664 */
2665 c = this_cpu_ptr(s->cpu_slab);
2666#endif
2667
2668 p = ___slab_alloc(s, gfpflags, node, addr, c);
2669 local_irq_restore(flags);
2670 return p;
2671}
2672
0f181f9f
AP
2673/*
2674 * If the object has been wiped upon free, make sure it's fully initialized by
2675 * zeroing out freelist pointer.
2676 */
2677static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2678 void *obj)
2679{
2680 if (unlikely(slab_want_init_on_free(s)) && obj)
2681 memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2682}
2683
894b8788
CL
2684/*
2685 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2686 * have the fastpath folded into their functions. So no function call
2687 * overhead for requests that can be satisfied on the fastpath.
2688 *
2689 * The fastpath works by first checking if the lockless freelist can be used.
2690 * If not then __slab_alloc is called for slow processing.
2691 *
2692 * Otherwise we can simply pick the next object from the lockless free list.
2693 */
2b847c3c 2694static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2695 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2696{
03ec0ed5 2697 void *object;
dfb4f096 2698 struct kmem_cache_cpu *c;
57d437d2 2699 struct page *page;
8a5ec0ba 2700 unsigned long tid;
1f84260c 2701
8135be5a
VD
2702 s = slab_pre_alloc_hook(s, gfpflags);
2703 if (!s)
773ff60e 2704 return NULL;
8a5ec0ba 2705redo:
8a5ec0ba
CL
2706 /*
2707 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2708 * enabled. We may switch back and forth between cpus while
2709 * reading from one cpu area. That does not matter as long
2710 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2711 *
9aabf810 2712 * We should guarantee that tid and kmem_cache are retrieved on
923717cb 2713 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
9aabf810 2714 * to check if it is matched or not.
8a5ec0ba 2715 */
9aabf810
JK
2716 do {
2717 tid = this_cpu_read(s->cpu_slab->tid);
2718 c = raw_cpu_ptr(s->cpu_slab);
923717cb 2719 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 2720 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2721
2722 /*
2723 * Irqless object alloc/free algorithm used here depends on sequence
2724 * of fetching cpu_slab's data. tid should be fetched before anything
2725 * on c to guarantee that object and page associated with previous tid
2726 * won't be used with current tid. If we fetch tid first, object and
2727 * page could be one associated with next tid and our alloc/free
2728 * request will be failed. In this case, we will retry. So, no problem.
2729 */
2730 barrier();
8a5ec0ba 2731
8a5ec0ba
CL
2732 /*
2733 * The transaction ids are globally unique per cpu and per operation on
2734 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2735 * occurs on the right processor and that there was no operation on the
2736 * linked list in between.
2737 */
8a5ec0ba 2738
9dfc6e68 2739 object = c->freelist;
57d437d2 2740 page = c->page;
8eae1492 2741 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2742 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2743 stat(s, ALLOC_SLOWPATH);
2744 } else {
0ad9500e
ED
2745 void *next_object = get_freepointer_safe(s, object);
2746
8a5ec0ba 2747 /*
25985edc 2748 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2749 * operation and if we are on the right processor.
2750 *
d0e0ac97
CG
2751 * The cmpxchg does the following atomically (without lock
2752 * semantics!)
8a5ec0ba
CL
2753 * 1. Relocate first pointer to the current per cpu area.
2754 * 2. Verify that tid and freelist have not been changed
2755 * 3. If they were not changed replace tid and freelist
2756 *
d0e0ac97
CG
2757 * Since this is without lock semantics the protection is only
2758 * against code executing on this cpu *not* from access by
2759 * other cpus.
8a5ec0ba 2760 */
933393f5 2761 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2762 s->cpu_slab->freelist, s->cpu_slab->tid,
2763 object, tid,
0ad9500e 2764 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2765
2766 note_cmpxchg_failure("slab_alloc", s, tid);
2767 goto redo;
2768 }
0ad9500e 2769 prefetch_freepointer(s, next_object);
84e554e6 2770 stat(s, ALLOC_FASTPATH);
894b8788 2771 }
0f181f9f
AP
2772
2773 maybe_wipe_obj_freeptr(s, object);
8a5ec0ba 2774
6471384a 2775 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
3b0efdfa 2776 memset(object, 0, s->object_size);
d07dbea4 2777
03ec0ed5 2778 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2779
894b8788 2780 return object;
81819f0f
CL
2781}
2782
2b847c3c
EG
2783static __always_inline void *slab_alloc(struct kmem_cache *s,
2784 gfp_t gfpflags, unsigned long addr)
2785{
2786 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2787}
2788
81819f0f
CL
2789void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2790{
2b847c3c 2791 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2792
d0e0ac97
CG
2793 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2794 s->size, gfpflags);
5b882be4
EGM
2795
2796 return ret;
81819f0f
CL
2797}
2798EXPORT_SYMBOL(kmem_cache_alloc);
2799
0f24f128 2800#ifdef CONFIG_TRACING
4a92379b
RK
2801void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2802{
2b847c3c 2803 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2804 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 2805 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2806 return ret;
2807}
2808EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2809#endif
2810
81819f0f
CL
2811#ifdef CONFIG_NUMA
2812void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2813{
2b847c3c 2814 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2815
ca2b84cb 2816 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2817 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2818
2819 return ret;
81819f0f
CL
2820}
2821EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2822
0f24f128 2823#ifdef CONFIG_TRACING
4a92379b 2824void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2825 gfp_t gfpflags,
4a92379b 2826 int node, size_t size)
5b882be4 2827{
2b847c3c 2828 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2829
2830 trace_kmalloc_node(_RET_IP_, ret,
2831 size, s->size, gfpflags, node);
0316bec2 2832
0116523c 2833 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2834 return ret;
5b882be4 2835}
4a92379b 2836EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2837#endif
6dfd1b65 2838#endif /* CONFIG_NUMA */
5b882be4 2839
81819f0f 2840/*
94e4d712 2841 * Slow path handling. This may still be called frequently since objects
894b8788 2842 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2843 *
894b8788
CL
2844 * So we still attempt to reduce cache line usage. Just take the slab
2845 * lock and free the item. If there is no additional partial page
2846 * handling required then we can return immediately.
81819f0f 2847 */
894b8788 2848static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2849 void *head, void *tail, int cnt,
2850 unsigned long addr)
2851
81819f0f
CL
2852{
2853 void *prior;
2cfb7455 2854 int was_frozen;
2cfb7455
CL
2855 struct page new;
2856 unsigned long counters;
2857 struct kmem_cache_node *n = NULL;
61728d1e 2858 unsigned long uninitialized_var(flags);
81819f0f 2859
8a5ec0ba 2860 stat(s, FREE_SLOWPATH);
81819f0f 2861
19c7ff9e 2862 if (kmem_cache_debug(s) &&
282acb43 2863 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2864 return;
6446faa2 2865
2cfb7455 2866 do {
837d678d
JK
2867 if (unlikely(n)) {
2868 spin_unlock_irqrestore(&n->list_lock, flags);
2869 n = NULL;
2870 }
2cfb7455
CL
2871 prior = page->freelist;
2872 counters = page->counters;
81084651 2873 set_freepointer(s, tail, prior);
2cfb7455
CL
2874 new.counters = counters;
2875 was_frozen = new.frozen;
81084651 2876 new.inuse -= cnt;
837d678d 2877 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2878
c65c1877 2879 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2880
2881 /*
d0e0ac97
CG
2882 * Slab was on no list before and will be
2883 * partially empty
2884 * We can defer the list move and instead
2885 * freeze it.
49e22585
CL
2886 */
2887 new.frozen = 1;
2888
c65c1877 2889 } else { /* Needs to be taken off a list */
49e22585 2890
b455def2 2891 n = get_node(s, page_to_nid(page));
49e22585
CL
2892 /*
2893 * Speculatively acquire the list_lock.
2894 * If the cmpxchg does not succeed then we may
2895 * drop the list_lock without any processing.
2896 *
2897 * Otherwise the list_lock will synchronize with
2898 * other processors updating the list of slabs.
2899 */
2900 spin_lock_irqsave(&n->list_lock, flags);
2901
2902 }
2cfb7455 2903 }
81819f0f 2904
2cfb7455
CL
2905 } while (!cmpxchg_double_slab(s, page,
2906 prior, counters,
81084651 2907 head, new.counters,
2cfb7455 2908 "__slab_free"));
81819f0f 2909
2cfb7455 2910 if (likely(!n)) {
49e22585
CL
2911
2912 /*
2913 * If we just froze the page then put it onto the
2914 * per cpu partial list.
2915 */
8028dcea 2916 if (new.frozen && !was_frozen) {
49e22585 2917 put_cpu_partial(s, page, 1);
8028dcea
AS
2918 stat(s, CPU_PARTIAL_FREE);
2919 }
49e22585 2920 /*
2cfb7455
CL
2921 * The list lock was not taken therefore no list
2922 * activity can be necessary.
2923 */
b455def2
L
2924 if (was_frozen)
2925 stat(s, FREE_FROZEN);
2926 return;
2927 }
81819f0f 2928
8a5b20ae 2929 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2930 goto slab_empty;
2931
81819f0f 2932 /*
837d678d
JK
2933 * Objects left in the slab. If it was not on the partial list before
2934 * then add it.
81819f0f 2935 */
345c905d 2936 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 2937 remove_full(s, n, page);
837d678d
JK
2938 add_partial(n, page, DEACTIVATE_TO_TAIL);
2939 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2940 }
80f08c19 2941 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2942 return;
2943
2944slab_empty:
a973e9dd 2945 if (prior) {
81819f0f 2946 /*
6fbabb20 2947 * Slab on the partial list.
81819f0f 2948 */
5cc6eee8 2949 remove_partial(n, page);
84e554e6 2950 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2951 } else {
6fbabb20 2952 /* Slab must be on the full list */
c65c1877
PZ
2953 remove_full(s, n, page);
2954 }
2cfb7455 2955
80f08c19 2956 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2957 stat(s, FREE_SLAB);
81819f0f 2958 discard_slab(s, page);
81819f0f
CL
2959}
2960
894b8788
CL
2961/*
2962 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2963 * can perform fastpath freeing without additional function calls.
2964 *
2965 * The fastpath is only possible if we are freeing to the current cpu slab
2966 * of this processor. This typically the case if we have just allocated
2967 * the item before.
2968 *
2969 * If fastpath is not possible then fall back to __slab_free where we deal
2970 * with all sorts of special processing.
81084651
JDB
2971 *
2972 * Bulk free of a freelist with several objects (all pointing to the
2973 * same page) possible by specifying head and tail ptr, plus objects
2974 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2975 */
80a9201a
AP
2976static __always_inline void do_slab_free(struct kmem_cache *s,
2977 struct page *page, void *head, void *tail,
2978 int cnt, unsigned long addr)
894b8788 2979{
81084651 2980 void *tail_obj = tail ? : head;
dfb4f096 2981 struct kmem_cache_cpu *c;
8a5ec0ba 2982 unsigned long tid;
8a5ec0ba
CL
2983redo:
2984 /*
2985 * Determine the currently cpus per cpu slab.
2986 * The cpu may change afterward. However that does not matter since
2987 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2988 * during the cmpxchg then the free will succeed.
8a5ec0ba 2989 */
9aabf810
JK
2990 do {
2991 tid = this_cpu_read(s->cpu_slab->tid);
2992 c = raw_cpu_ptr(s->cpu_slab);
923717cb 2993 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 2994 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2995
9aabf810
JK
2996 /* Same with comment on barrier() in slab_alloc_node() */
2997 barrier();
c016b0bd 2998
442b06bc 2999 if (likely(page == c->page)) {
81084651 3000 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 3001
933393f5 3002 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
3003 s->cpu_slab->freelist, s->cpu_slab->tid,
3004 c->freelist, tid,
81084651 3005 head, next_tid(tid)))) {
8a5ec0ba
CL
3006
3007 note_cmpxchg_failure("slab_free", s, tid);
3008 goto redo;
3009 }
84e554e6 3010 stat(s, FREE_FASTPATH);
894b8788 3011 } else
81084651 3012 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 3013
894b8788
CL
3014}
3015
80a9201a
AP
3016static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3017 void *head, void *tail, int cnt,
3018 unsigned long addr)
3019{
80a9201a 3020 /*
c3895391
AK
3021 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3022 * to remove objects, whose reuse must be delayed.
80a9201a 3023 */
c3895391
AK
3024 if (slab_free_freelist_hook(s, &head, &tail))
3025 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3026}
3027
2bd926b4 3028#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3029void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3030{
3031 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3032}
3033#endif
3034
81819f0f
CL
3035void kmem_cache_free(struct kmem_cache *s, void *x)
3036{
b9ce5ef4
GC
3037 s = cache_from_obj(s, x);
3038 if (!s)
79576102 3039 return;
81084651 3040 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 3041 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
3042}
3043EXPORT_SYMBOL(kmem_cache_free);
3044
d0ecd894 3045struct detached_freelist {
fbd02630 3046 struct page *page;
d0ecd894
JDB
3047 void *tail;
3048 void *freelist;
3049 int cnt;
376bf125 3050 struct kmem_cache *s;
d0ecd894 3051};
fbd02630 3052
d0ecd894
JDB
3053/*
3054 * This function progressively scans the array with free objects (with
3055 * a limited look ahead) and extract objects belonging to the same
3056 * page. It builds a detached freelist directly within the given
3057 * page/objects. This can happen without any need for
3058 * synchronization, because the objects are owned by running process.
3059 * The freelist is build up as a single linked list in the objects.
3060 * The idea is, that this detached freelist can then be bulk
3061 * transferred to the real freelist(s), but only requiring a single
3062 * synchronization primitive. Look ahead in the array is limited due
3063 * to performance reasons.
3064 */
376bf125
JDB
3065static inline
3066int build_detached_freelist(struct kmem_cache *s, size_t size,
3067 void **p, struct detached_freelist *df)
d0ecd894
JDB
3068{
3069 size_t first_skipped_index = 0;
3070 int lookahead = 3;
3071 void *object;
ca257195 3072 struct page *page;
fbd02630 3073
d0ecd894
JDB
3074 /* Always re-init detached_freelist */
3075 df->page = NULL;
fbd02630 3076
d0ecd894
JDB
3077 do {
3078 object = p[--size];
ca257195 3079 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3080 } while (!object && size);
3eed034d 3081
d0ecd894
JDB
3082 if (!object)
3083 return 0;
fbd02630 3084
ca257195
JDB
3085 page = virt_to_head_page(object);
3086 if (!s) {
3087 /* Handle kalloc'ed objects */
3088 if (unlikely(!PageSlab(page))) {
3089 BUG_ON(!PageCompound(page));
3090 kfree_hook(object);
4949148a 3091 __free_pages(page, compound_order(page));
ca257195
JDB
3092 p[size] = NULL; /* mark object processed */
3093 return size;
3094 }
3095 /* Derive kmem_cache from object */
3096 df->s = page->slab_cache;
3097 } else {
3098 df->s = cache_from_obj(s, object); /* Support for memcg */
3099 }
376bf125 3100
d0ecd894 3101 /* Start new detached freelist */
ca257195 3102 df->page = page;
376bf125 3103 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3104 df->tail = object;
3105 df->freelist = object;
3106 p[size] = NULL; /* mark object processed */
3107 df->cnt = 1;
3108
3109 while (size) {
3110 object = p[--size];
3111 if (!object)
3112 continue; /* Skip processed objects */
3113
3114 /* df->page is always set at this point */
3115 if (df->page == virt_to_head_page(object)) {
3116 /* Opportunity build freelist */
376bf125 3117 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3118 df->freelist = object;
3119 df->cnt++;
3120 p[size] = NULL; /* mark object processed */
3121
3122 continue;
fbd02630 3123 }
d0ecd894
JDB
3124
3125 /* Limit look ahead search */
3126 if (!--lookahead)
3127 break;
3128
3129 if (!first_skipped_index)
3130 first_skipped_index = size + 1;
fbd02630 3131 }
d0ecd894
JDB
3132
3133 return first_skipped_index;
3134}
3135
d0ecd894 3136/* Note that interrupts must be enabled when calling this function. */
376bf125 3137void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3138{
3139 if (WARN_ON(!size))
3140 return;
3141
3142 do {
3143 struct detached_freelist df;
3144
3145 size = build_detached_freelist(s, size, p, &df);
84582c8a 3146 if (!df.page)
d0ecd894
JDB
3147 continue;
3148
376bf125 3149 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3150 } while (likely(size));
484748f0
CL
3151}
3152EXPORT_SYMBOL(kmem_cache_free_bulk);
3153
994eb764 3154/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3155int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3156 void **p)
484748f0 3157{
994eb764
JDB
3158 struct kmem_cache_cpu *c;
3159 int i;
3160
03ec0ed5
JDB
3161 /* memcg and kmem_cache debug support */
3162 s = slab_pre_alloc_hook(s, flags);
3163 if (unlikely(!s))
3164 return false;
994eb764
JDB
3165 /*
3166 * Drain objects in the per cpu slab, while disabling local
3167 * IRQs, which protects against PREEMPT and interrupts
3168 * handlers invoking normal fastpath.
3169 */
3170 local_irq_disable();
3171 c = this_cpu_ptr(s->cpu_slab);
3172
3173 for (i = 0; i < size; i++) {
3174 void *object = c->freelist;
3175
ebe909e0 3176 if (unlikely(!object)) {
ebe909e0
JDB
3177 /*
3178 * Invoking slow path likely have side-effect
3179 * of re-populating per CPU c->freelist
3180 */
87098373 3181 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3182 _RET_IP_, c);
87098373
CL
3183 if (unlikely(!p[i]))
3184 goto error;
3185
ebe909e0 3186 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3187 maybe_wipe_obj_freeptr(s, p[i]);
3188
ebe909e0
JDB
3189 continue; /* goto for-loop */
3190 }
994eb764
JDB
3191 c->freelist = get_freepointer(s, object);
3192 p[i] = object;
0f181f9f 3193 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3194 }
3195 c->tid = next_tid(c->tid);
3196 local_irq_enable();
3197
3198 /* Clear memory outside IRQ disabled fastpath loop */
6471384a 3199 if (unlikely(slab_want_init_on_alloc(flags, s))) {
994eb764
JDB
3200 int j;
3201
3202 for (j = 0; j < i; j++)
3203 memset(p[j], 0, s->object_size);
3204 }
3205
03ec0ed5
JDB
3206 /* memcg and kmem_cache debug support */
3207 slab_post_alloc_hook(s, flags, size, p);
865762a8 3208 return i;
87098373 3209error:
87098373 3210 local_irq_enable();
03ec0ed5
JDB
3211 slab_post_alloc_hook(s, flags, i, p);
3212 __kmem_cache_free_bulk(s, i, p);
865762a8 3213 return 0;
484748f0
CL
3214}
3215EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3216
3217
81819f0f 3218/*
672bba3a
CL
3219 * Object placement in a slab is made very easy because we always start at
3220 * offset 0. If we tune the size of the object to the alignment then we can
3221 * get the required alignment by putting one properly sized object after
3222 * another.
81819f0f
CL
3223 *
3224 * Notice that the allocation order determines the sizes of the per cpu
3225 * caches. Each processor has always one slab available for allocations.
3226 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3227 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3228 * locking overhead.
81819f0f
CL
3229 */
3230
3231/*
3232 * Mininum / Maximum order of slab pages. This influences locking overhead
3233 * and slab fragmentation. A higher order reduces the number of partial slabs
3234 * and increases the number of allocations possible without having to
3235 * take the list_lock.
3236 */
19af27af
AD
3237static unsigned int slub_min_order;
3238static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3239static unsigned int slub_min_objects;
81819f0f 3240
81819f0f
CL
3241/*
3242 * Calculate the order of allocation given an slab object size.
3243 *
672bba3a
CL
3244 * The order of allocation has significant impact on performance and other
3245 * system components. Generally order 0 allocations should be preferred since
3246 * order 0 does not cause fragmentation in the page allocator. Larger objects
3247 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3248 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3249 * would be wasted.
3250 *
3251 * In order to reach satisfactory performance we must ensure that a minimum
3252 * number of objects is in one slab. Otherwise we may generate too much
3253 * activity on the partial lists which requires taking the list_lock. This is
3254 * less a concern for large slabs though which are rarely used.
81819f0f 3255 *
672bba3a
CL
3256 * slub_max_order specifies the order where we begin to stop considering the
3257 * number of objects in a slab as critical. If we reach slub_max_order then
3258 * we try to keep the page order as low as possible. So we accept more waste
3259 * of space in favor of a small page order.
81819f0f 3260 *
672bba3a
CL
3261 * Higher order allocations also allow the placement of more objects in a
3262 * slab and thereby reduce object handling overhead. If the user has
3263 * requested a higher mininum order then we start with that one instead of
3264 * the smallest order which will fit the object.
81819f0f 3265 */
19af27af
AD
3266static inline unsigned int slab_order(unsigned int size,
3267 unsigned int min_objects, unsigned int max_order,
9736d2a9 3268 unsigned int fract_leftover)
81819f0f 3269{
19af27af
AD
3270 unsigned int min_order = slub_min_order;
3271 unsigned int order;
81819f0f 3272
9736d2a9 3273 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3274 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3275
9736d2a9 3276 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3277 order <= max_order; order++) {
81819f0f 3278
19af27af
AD
3279 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3280 unsigned int rem;
81819f0f 3281
9736d2a9 3282 rem = slab_size % size;
81819f0f 3283
5e6d444e 3284 if (rem <= slab_size / fract_leftover)
81819f0f 3285 break;
81819f0f 3286 }
672bba3a 3287
81819f0f
CL
3288 return order;
3289}
3290
9736d2a9 3291static inline int calculate_order(unsigned int size)
5e6d444e 3292{
19af27af
AD
3293 unsigned int order;
3294 unsigned int min_objects;
3295 unsigned int max_objects;
5e6d444e
CL
3296
3297 /*
3298 * Attempt to find best configuration for a slab. This
3299 * works by first attempting to generate a layout with
3300 * the best configuration and backing off gradually.
3301 *
422ff4d7 3302 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3303 * we reduce the minimum objects required in a slab.
3304 */
3305 min_objects = slub_min_objects;
9b2cd506
CL
3306 if (!min_objects)
3307 min_objects = 4 * (fls(nr_cpu_ids) + 1);
9736d2a9 3308 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3309 min_objects = min(min_objects, max_objects);
3310
5e6d444e 3311 while (min_objects > 1) {
19af27af
AD
3312 unsigned int fraction;
3313
c124f5b5 3314 fraction = 16;
5e6d444e
CL
3315 while (fraction >= 4) {
3316 order = slab_order(size, min_objects,
9736d2a9 3317 slub_max_order, fraction);
5e6d444e
CL
3318 if (order <= slub_max_order)
3319 return order;
3320 fraction /= 2;
3321 }
5086c389 3322 min_objects--;
5e6d444e
CL
3323 }
3324
3325 /*
3326 * We were unable to place multiple objects in a slab. Now
3327 * lets see if we can place a single object there.
3328 */
9736d2a9 3329 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3330 if (order <= slub_max_order)
3331 return order;
3332
3333 /*
3334 * Doh this slab cannot be placed using slub_max_order.
3335 */
9736d2a9 3336 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3337 if (order < MAX_ORDER)
5e6d444e
CL
3338 return order;
3339 return -ENOSYS;
3340}
3341
5595cffc 3342static void
4053497d 3343init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3344{
3345 n->nr_partial = 0;
81819f0f
CL
3346 spin_lock_init(&n->list_lock);
3347 INIT_LIST_HEAD(&n->partial);
8ab1372f 3348#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3349 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3350 atomic_long_set(&n->total_objects, 0);
643b1138 3351 INIT_LIST_HEAD(&n->full);
8ab1372f 3352#endif
81819f0f
CL
3353}
3354
55136592 3355static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3356{
6c182dc0 3357 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3358 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3359
8a5ec0ba 3360 /*
d4d84fef
CM
3361 * Must align to double word boundary for the double cmpxchg
3362 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3363 */
d4d84fef
CM
3364 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3365 2 * sizeof(void *));
8a5ec0ba
CL
3366
3367 if (!s->cpu_slab)
3368 return 0;
3369
3370 init_kmem_cache_cpus(s);
4c93c355 3371
8a5ec0ba 3372 return 1;
4c93c355 3373}
4c93c355 3374
51df1142
CL
3375static struct kmem_cache *kmem_cache_node;
3376
81819f0f
CL
3377/*
3378 * No kmalloc_node yet so do it by hand. We know that this is the first
3379 * slab on the node for this slabcache. There are no concurrent accesses
3380 * possible.
3381 *
721ae22a
ZYW
3382 * Note that this function only works on the kmem_cache_node
3383 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3384 * memory on a fresh node that has no slab structures yet.
81819f0f 3385 */
55136592 3386static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3387{
3388 struct page *page;
3389 struct kmem_cache_node *n;
3390
51df1142 3391 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3392
51df1142 3393 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3394
3395 BUG_ON(!page);
a2f92ee7 3396 if (page_to_nid(page) != node) {
f9f58285
FF
3397 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3398 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3399 }
3400
81819f0f
CL
3401 n = page->freelist;
3402 BUG_ON(!n);
8ab1372f 3403#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3404 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3405 init_tracking(kmem_cache_node, n);
8ab1372f 3406#endif
12b22386 3407 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
505f5dcb 3408 GFP_KERNEL);
12b22386
AK
3409 page->freelist = get_freepointer(kmem_cache_node, n);
3410 page->inuse = 1;
3411 page->frozen = 0;
3412 kmem_cache_node->node[node] = n;
4053497d 3413 init_kmem_cache_node(n);
51df1142 3414 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3415
67b6c900 3416 /*
1e4dd946
SR
3417 * No locks need to be taken here as it has just been
3418 * initialized and there is no concurrent access.
67b6c900 3419 */
1e4dd946 3420 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3421}
3422
3423static void free_kmem_cache_nodes(struct kmem_cache *s)
3424{
3425 int node;
fa45dc25 3426 struct kmem_cache_node *n;
81819f0f 3427
fa45dc25 3428 for_each_kmem_cache_node(s, node, n) {
81819f0f 3429 s->node[node] = NULL;
ea37df54 3430 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3431 }
3432}
3433
52b4b950
DS
3434void __kmem_cache_release(struct kmem_cache *s)
3435{
210e7a43 3436 cache_random_seq_destroy(s);
52b4b950
DS
3437 free_percpu(s->cpu_slab);
3438 free_kmem_cache_nodes(s);
3439}
3440
55136592 3441static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3442{
3443 int node;
81819f0f 3444
f64dc58c 3445 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3446 struct kmem_cache_node *n;
3447
73367bd8 3448 if (slab_state == DOWN) {
55136592 3449 early_kmem_cache_node_alloc(node);
73367bd8
AD
3450 continue;
3451 }
51df1142 3452 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3453 GFP_KERNEL, node);
81819f0f 3454
73367bd8
AD
3455 if (!n) {
3456 free_kmem_cache_nodes(s);
3457 return 0;
81819f0f 3458 }
73367bd8 3459
4053497d 3460 init_kmem_cache_node(n);
ea37df54 3461 s->node[node] = n;
81819f0f
CL
3462 }
3463 return 1;
3464}
81819f0f 3465
c0bdb232 3466static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3467{
3468 if (min < MIN_PARTIAL)
3469 min = MIN_PARTIAL;
3470 else if (min > MAX_PARTIAL)
3471 min = MAX_PARTIAL;
3472 s->min_partial = min;
3473}
3474
e6d0e1dc
WY
3475static void set_cpu_partial(struct kmem_cache *s)
3476{
3477#ifdef CONFIG_SLUB_CPU_PARTIAL
3478 /*
3479 * cpu_partial determined the maximum number of objects kept in the
3480 * per cpu partial lists of a processor.
3481 *
3482 * Per cpu partial lists mainly contain slabs that just have one
3483 * object freed. If they are used for allocation then they can be
3484 * filled up again with minimal effort. The slab will never hit the
3485 * per node partial lists and therefore no locking will be required.
3486 *
3487 * This setting also determines
3488 *
3489 * A) The number of objects from per cpu partial slabs dumped to the
3490 * per node list when we reach the limit.
3491 * B) The number of objects in cpu partial slabs to extract from the
3492 * per node list when we run out of per cpu objects. We only fetch
3493 * 50% to keep some capacity around for frees.
3494 */
3495 if (!kmem_cache_has_cpu_partial(s))
3496 s->cpu_partial = 0;
3497 else if (s->size >= PAGE_SIZE)
3498 s->cpu_partial = 2;
3499 else if (s->size >= 1024)
3500 s->cpu_partial = 6;
3501 else if (s->size >= 256)
3502 s->cpu_partial = 13;
3503 else
3504 s->cpu_partial = 30;
3505#endif
3506}
3507
81819f0f
CL
3508/*
3509 * calculate_sizes() determines the order and the distribution of data within
3510 * a slab object.
3511 */
06b285dc 3512static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3513{
d50112ed 3514 slab_flags_t flags = s->flags;
be4a7988 3515 unsigned int size = s->object_size;
19af27af 3516 unsigned int order;
81819f0f 3517
d8b42bf5
CL
3518 /*
3519 * Round up object size to the next word boundary. We can only
3520 * place the free pointer at word boundaries and this determines
3521 * the possible location of the free pointer.
3522 */
3523 size = ALIGN(size, sizeof(void *));
3524
3525#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3526 /*
3527 * Determine if we can poison the object itself. If the user of
3528 * the slab may touch the object after free or before allocation
3529 * then we should never poison the object itself.
3530 */
5f0d5a3a 3531 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3532 !s->ctor)
81819f0f
CL
3533 s->flags |= __OBJECT_POISON;
3534 else
3535 s->flags &= ~__OBJECT_POISON;
3536
81819f0f
CL
3537
3538 /*
672bba3a 3539 * If we are Redzoning then check if there is some space between the
81819f0f 3540 * end of the object and the free pointer. If not then add an
672bba3a 3541 * additional word to have some bytes to store Redzone information.
81819f0f 3542 */
3b0efdfa 3543 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3544 size += sizeof(void *);
41ecc55b 3545#endif
81819f0f
CL
3546
3547 /*
672bba3a
CL
3548 * With that we have determined the number of bytes in actual use
3549 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3550 */
3551 s->inuse = size;
3552
5f0d5a3a 3553 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3554 s->ctor)) {
81819f0f
CL
3555 /*
3556 * Relocate free pointer after the object if it is not
3557 * permitted to overwrite the first word of the object on
3558 * kmem_cache_free.
3559 *
3560 * This is the case if we do RCU, have a constructor or
3561 * destructor or are poisoning the objects.
3562 */
3563 s->offset = size;
3564 size += sizeof(void *);
3565 }
3566
c12b3c62 3567#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3568 if (flags & SLAB_STORE_USER)
3569 /*
3570 * Need to store information about allocs and frees after
3571 * the object.
3572 */
3573 size += 2 * sizeof(struct track);
80a9201a 3574#endif
81819f0f 3575
80a9201a
AP
3576 kasan_cache_create(s, &size, &s->flags);
3577#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3578 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3579 /*
3580 * Add some empty padding so that we can catch
3581 * overwrites from earlier objects rather than let
3582 * tracking information or the free pointer be
0211a9c8 3583 * corrupted if a user writes before the start
81819f0f
CL
3584 * of the object.
3585 */
3586 size += sizeof(void *);
d86bd1be
JK
3587
3588 s->red_left_pad = sizeof(void *);
3589 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3590 size += s->red_left_pad;
3591 }
41ecc55b 3592#endif
672bba3a 3593
81819f0f
CL
3594 /*
3595 * SLUB stores one object immediately after another beginning from
3596 * offset 0. In order to align the objects we have to simply size
3597 * each object to conform to the alignment.
3598 */
45906855 3599 size = ALIGN(size, s->align);
81819f0f 3600 s->size = size;
06b285dc
CL
3601 if (forced_order >= 0)
3602 order = forced_order;
3603 else
9736d2a9 3604 order = calculate_order(size);
81819f0f 3605
19af27af 3606 if ((int)order < 0)
81819f0f
CL
3607 return 0;
3608
b7a49f0d 3609 s->allocflags = 0;
834f3d11 3610 if (order)
b7a49f0d
CL
3611 s->allocflags |= __GFP_COMP;
3612
3613 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3614 s->allocflags |= GFP_DMA;
b7a49f0d 3615
6d6ea1e9
NB
3616 if (s->flags & SLAB_CACHE_DMA32)
3617 s->allocflags |= GFP_DMA32;
3618
b7a49f0d
CL
3619 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3620 s->allocflags |= __GFP_RECLAIMABLE;
3621
81819f0f
CL
3622 /*
3623 * Determine the number of objects per slab
3624 */
9736d2a9
MW
3625 s->oo = oo_make(order, size);
3626 s->min = oo_make(get_order(size), size);
205ab99d
CL
3627 if (oo_objects(s->oo) > oo_objects(s->max))
3628 s->max = s->oo;
81819f0f 3629
834f3d11 3630 return !!oo_objects(s->oo);
81819f0f
CL
3631}
3632
d50112ed 3633static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3634{
8a13a4cc 3635 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
2482ddec
KC
3636#ifdef CONFIG_SLAB_FREELIST_HARDENED
3637 s->random = get_random_long();
3638#endif
81819f0f 3639
06b285dc 3640 if (!calculate_sizes(s, -1))
81819f0f 3641 goto error;
3de47213
DR
3642 if (disable_higher_order_debug) {
3643 /*
3644 * Disable debugging flags that store metadata if the min slab
3645 * order increased.
3646 */
3b0efdfa 3647 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3648 s->flags &= ~DEBUG_METADATA_FLAGS;
3649 s->offset = 0;
3650 if (!calculate_sizes(s, -1))
3651 goto error;
3652 }
3653 }
81819f0f 3654
2565409f
HC
3655#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3656 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3657 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3658 /* Enable fast mode */
3659 s->flags |= __CMPXCHG_DOUBLE;
3660#endif
3661
3b89d7d8
DR
3662 /*
3663 * The larger the object size is, the more pages we want on the partial
3664 * list to avoid pounding the page allocator excessively.
3665 */
49e22585
CL
3666 set_min_partial(s, ilog2(s->size) / 2);
3667
e6d0e1dc 3668 set_cpu_partial(s);
49e22585 3669
81819f0f 3670#ifdef CONFIG_NUMA
e2cb96b7 3671 s->remote_node_defrag_ratio = 1000;
81819f0f 3672#endif
210e7a43
TG
3673
3674 /* Initialize the pre-computed randomized freelist if slab is up */
3675 if (slab_state >= UP) {
3676 if (init_cache_random_seq(s))
3677 goto error;
3678 }
3679
55136592 3680 if (!init_kmem_cache_nodes(s))
dfb4f096 3681 goto error;
81819f0f 3682
55136592 3683 if (alloc_kmem_cache_cpus(s))
278b1bb1 3684 return 0;
ff12059e 3685
4c93c355 3686 free_kmem_cache_nodes(s);
81819f0f 3687error:
278b1bb1 3688 return -EINVAL;
81819f0f 3689}
81819f0f 3690
33b12c38
CL
3691static void list_slab_objects(struct kmem_cache *s, struct page *page,
3692 const char *text)
3693{
3694#ifdef CONFIG_SLUB_DEBUG
3695 void *addr = page_address(page);
3696 void *p;
90e9f6a6
YZ
3697 unsigned long *map;
3698
945cf2b6 3699 slab_err(s, page, text, s->name);
33b12c38 3700 slab_lock(page);
33b12c38 3701
90e9f6a6 3702 map = get_map(s, page);
33b12c38
CL
3703 for_each_object(p, s, addr, page->objects) {
3704
3705 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3706 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3707 print_tracking(s, p);
3708 }
3709 }
90e9f6a6
YZ
3710 put_map(map);
3711
33b12c38
CL
3712 slab_unlock(page);
3713#endif
3714}
3715
81819f0f 3716/*
599870b1 3717 * Attempt to free all partial slabs on a node.
52b4b950
DS
3718 * This is called from __kmem_cache_shutdown(). We must take list_lock
3719 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3720 */
599870b1 3721static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3722{
60398923 3723 LIST_HEAD(discard);
81819f0f
CL
3724 struct page *page, *h;
3725
52b4b950
DS
3726 BUG_ON(irqs_disabled());
3727 spin_lock_irq(&n->list_lock);
916ac052 3728 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 3729 if (!page->inuse) {
52b4b950 3730 remove_partial(n, page);
916ac052 3731 list_add(&page->slab_list, &discard);
33b12c38
CL
3732 } else {
3733 list_slab_objects(s, page,
52b4b950 3734 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3735 }
33b12c38 3736 }
52b4b950 3737 spin_unlock_irq(&n->list_lock);
60398923 3738
916ac052 3739 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 3740 discard_slab(s, page);
81819f0f
CL
3741}
3742
f9e13c0a
SB
3743bool __kmem_cache_empty(struct kmem_cache *s)
3744{
3745 int node;
3746 struct kmem_cache_node *n;
3747
3748 for_each_kmem_cache_node(s, node, n)
3749 if (n->nr_partial || slabs_node(s, node))
3750 return false;
3751 return true;
3752}
3753
81819f0f 3754/*
672bba3a 3755 * Release all resources used by a slab cache.
81819f0f 3756 */
52b4b950 3757int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3758{
3759 int node;
fa45dc25 3760 struct kmem_cache_node *n;
81819f0f
CL
3761
3762 flush_all(s);
81819f0f 3763 /* Attempt to free all objects */
fa45dc25 3764 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3765 free_partial(s, n);
3766 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3767 return 1;
3768 }
bf5eb3de 3769 sysfs_slab_remove(s);
81819f0f
CL
3770 return 0;
3771}
3772
81819f0f
CL
3773/********************************************************************
3774 * Kmalloc subsystem
3775 *******************************************************************/
3776
81819f0f
CL
3777static int __init setup_slub_min_order(char *str)
3778{
19af27af 3779 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
3780
3781 return 1;
3782}
3783
3784__setup("slub_min_order=", setup_slub_min_order);
3785
3786static int __init setup_slub_max_order(char *str)
3787{
19af27af
AD
3788 get_option(&str, (int *)&slub_max_order);
3789 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
3790
3791 return 1;
3792}
3793
3794__setup("slub_max_order=", setup_slub_max_order);
3795
3796static int __init setup_slub_min_objects(char *str)
3797{
19af27af 3798 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
3799
3800 return 1;
3801}
3802
3803__setup("slub_min_objects=", setup_slub_min_objects);
3804
81819f0f
CL
3805void *__kmalloc(size_t size, gfp_t flags)
3806{
aadb4bc4 3807 struct kmem_cache *s;
5b882be4 3808 void *ret;
81819f0f 3809
95a05b42 3810 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3811 return kmalloc_large(size, flags);
aadb4bc4 3812
2c59dd65 3813 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3814
3815 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3816 return s;
3817
2b847c3c 3818 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3819
ca2b84cb 3820 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3821
0116523c 3822 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3823
5b882be4 3824 return ret;
81819f0f
CL
3825}
3826EXPORT_SYMBOL(__kmalloc);
3827
5d1f57e4 3828#ifdef CONFIG_NUMA
f619cfe1
CL
3829static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3830{
b1eeab67 3831 struct page *page;
e4f7c0b4 3832 void *ptr = NULL;
6a486c0a 3833 unsigned int order = get_order(size);
f619cfe1 3834
75f296d9 3835 flags |= __GFP_COMP;
6a486c0a
VB
3836 page = alloc_pages_node(node, flags, order);
3837 if (page) {
e4f7c0b4 3838 ptr = page_address(page);
6a486c0a
VB
3839 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3840 1 << order);
3841 }
e4f7c0b4 3842
0116523c 3843 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
3844}
3845
81819f0f
CL
3846void *__kmalloc_node(size_t size, gfp_t flags, int node)
3847{
aadb4bc4 3848 struct kmem_cache *s;
5b882be4 3849 void *ret;
81819f0f 3850
95a05b42 3851 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3852 ret = kmalloc_large_node(size, flags, node);
3853
ca2b84cb
EGM
3854 trace_kmalloc_node(_RET_IP_, ret,
3855 size, PAGE_SIZE << get_order(size),
3856 flags, node);
5b882be4
EGM
3857
3858 return ret;
3859 }
aadb4bc4 3860
2c59dd65 3861 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3862
3863 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3864 return s;
3865
2b847c3c 3866 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3867
ca2b84cb 3868 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3869
0116523c 3870 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3871
5b882be4 3872 return ret;
81819f0f
CL
3873}
3874EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 3875#endif /* CONFIG_NUMA */
81819f0f 3876
ed18adc1
KC
3877#ifdef CONFIG_HARDENED_USERCOPY
3878/*
afcc90f8
KC
3879 * Rejects incorrectly sized objects and objects that are to be copied
3880 * to/from userspace but do not fall entirely within the containing slab
3881 * cache's usercopy region.
ed18adc1
KC
3882 *
3883 * Returns NULL if check passes, otherwise const char * to name of cache
3884 * to indicate an error.
3885 */
f4e6e289
KC
3886void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3887 bool to_user)
ed18adc1
KC
3888{
3889 struct kmem_cache *s;
44065b2e 3890 unsigned int offset;
ed18adc1
KC
3891 size_t object_size;
3892
96fedce2
AK
3893 ptr = kasan_reset_tag(ptr);
3894
ed18adc1
KC
3895 /* Find object and usable object size. */
3896 s = page->slab_cache;
ed18adc1
KC
3897
3898 /* Reject impossible pointers. */
3899 if (ptr < page_address(page))
f4e6e289
KC
3900 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3901 to_user, 0, n);
ed18adc1
KC
3902
3903 /* Find offset within object. */
3904 offset = (ptr - page_address(page)) % s->size;
3905
3906 /* Adjust for redzone and reject if within the redzone. */
3907 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3908 if (offset < s->red_left_pad)
f4e6e289
KC
3909 usercopy_abort("SLUB object in left red zone",
3910 s->name, to_user, offset, n);
ed18adc1
KC
3911 offset -= s->red_left_pad;
3912 }
3913
afcc90f8
KC
3914 /* Allow address range falling entirely within usercopy region. */
3915 if (offset >= s->useroffset &&
3916 offset - s->useroffset <= s->usersize &&
3917 n <= s->useroffset - offset + s->usersize)
f4e6e289 3918 return;
ed18adc1 3919
afcc90f8
KC
3920 /*
3921 * If the copy is still within the allocated object, produce
3922 * a warning instead of rejecting the copy. This is intended
3923 * to be a temporary method to find any missing usercopy
3924 * whitelists.
3925 */
3926 object_size = slab_ksize(s);
2d891fbc
KC
3927 if (usercopy_fallback &&
3928 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
3929 usercopy_warn("SLUB object", s->name, to_user, offset, n);
3930 return;
3931 }
ed18adc1 3932
f4e6e289 3933 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
3934}
3935#endif /* CONFIG_HARDENED_USERCOPY */
3936
10d1f8cb 3937size_t __ksize(const void *object)
81819f0f 3938{
272c1d21 3939 struct page *page;
81819f0f 3940
ef8b4520 3941 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3942 return 0;
3943
294a80a8 3944 page = virt_to_head_page(object);
294a80a8 3945
76994412
PE
3946 if (unlikely(!PageSlab(page))) {
3947 WARN_ON(!PageCompound(page));
a50b854e 3948 return page_size(page);
76994412 3949 }
81819f0f 3950
1b4f59e3 3951 return slab_ksize(page->slab_cache);
81819f0f 3952}
10d1f8cb 3953EXPORT_SYMBOL(__ksize);
81819f0f
CL
3954
3955void kfree(const void *x)
3956{
81819f0f 3957 struct page *page;
5bb983b0 3958 void *object = (void *)x;
81819f0f 3959
2121db74
PE
3960 trace_kfree(_RET_IP_, x);
3961
2408c550 3962 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3963 return;
3964
b49af68f 3965 page = virt_to_head_page(x);
aadb4bc4 3966 if (unlikely(!PageSlab(page))) {
6a486c0a
VB
3967 unsigned int order = compound_order(page);
3968
0937502a 3969 BUG_ON(!PageCompound(page));
47adccce 3970 kfree_hook(object);
6a486c0a
VB
3971 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3972 -(1 << order));
3973 __free_pages(page, order);
aadb4bc4
CL
3974 return;
3975 }
81084651 3976 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3977}
3978EXPORT_SYMBOL(kfree);
3979
832f37f5
VD
3980#define SHRINK_PROMOTE_MAX 32
3981
2086d26a 3982/*
832f37f5
VD
3983 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3984 * up most to the head of the partial lists. New allocations will then
3985 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3986 *
3987 * The slabs with the least items are placed last. This results in them
3988 * being allocated from last increasing the chance that the last objects
3989 * are freed in them.
2086d26a 3990 */
c9fc5864 3991int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
3992{
3993 int node;
3994 int i;
3995 struct kmem_cache_node *n;
3996 struct page *page;
3997 struct page *t;
832f37f5
VD
3998 struct list_head discard;
3999 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4000 unsigned long flags;
ce3712d7 4001 int ret = 0;
2086d26a 4002
2086d26a 4003 flush_all(s);
fa45dc25 4004 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4005 INIT_LIST_HEAD(&discard);
4006 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4007 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4008
4009 spin_lock_irqsave(&n->list_lock, flags);
4010
4011 /*
832f37f5 4012 * Build lists of slabs to discard or promote.
2086d26a 4013 *
672bba3a
CL
4014 * Note that concurrent frees may occur while we hold the
4015 * list_lock. page->inuse here is the upper limit.
2086d26a 4016 */
916ac052 4017 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
4018 int free = page->objects - page->inuse;
4019
4020 /* Do not reread page->inuse */
4021 barrier();
4022
4023 /* We do not keep full slabs on the list */
4024 BUG_ON(free <= 0);
4025
4026 if (free == page->objects) {
916ac052 4027 list_move(&page->slab_list, &discard);
69cb8e6b 4028 n->nr_partial--;
832f37f5 4029 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4030 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4031 }
4032
2086d26a 4033 /*
832f37f5
VD
4034 * Promote the slabs filled up most to the head of the
4035 * partial list.
2086d26a 4036 */
832f37f5
VD
4037 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4038 list_splice(promote + i, &n->partial);
2086d26a 4039
2086d26a 4040 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4041
4042 /* Release empty slabs */
916ac052 4043 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4044 discard_slab(s, page);
ce3712d7
VD
4045
4046 if (slabs_node(s, node))
4047 ret = 1;
2086d26a
CL
4048 }
4049
ce3712d7 4050 return ret;
2086d26a 4051}
2086d26a 4052
c9fc5864 4053#ifdef CONFIG_MEMCG
43486694 4054void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
01fb58bc 4055{
50862ce7
TH
4056 /*
4057 * Called with all the locks held after a sched RCU grace period.
4058 * Even if @s becomes empty after shrinking, we can't know that @s
4059 * doesn't have allocations already in-flight and thus can't
4060 * destroy @s until the associated memcg is released.
4061 *
4062 * However, let's remove the sysfs files for empty caches here.
4063 * Each cache has a lot of interface files which aren't
4064 * particularly useful for empty draining caches; otherwise, we can
4065 * easily end up with millions of unnecessary sysfs files on
4066 * systems which have a lot of memory and transient cgroups.
4067 */
4068 if (!__kmem_cache_shrink(s))
4069 sysfs_slab_remove(s);
01fb58bc
TH
4070}
4071
c9fc5864
TH
4072void __kmemcg_cache_deactivate(struct kmem_cache *s)
4073{
4074 /*
4075 * Disable empty slabs caching. Used to avoid pinning offline
4076 * memory cgroups by kmem pages that can be freed.
4077 */
e6d0e1dc 4078 slub_set_cpu_partial(s, 0);
c9fc5864 4079 s->min_partial = 0;
c9fc5864 4080}
6dfd1b65 4081#endif /* CONFIG_MEMCG */
c9fc5864 4082
b9049e23
YG
4083static int slab_mem_going_offline_callback(void *arg)
4084{
4085 struct kmem_cache *s;
4086
18004c5d 4087 mutex_lock(&slab_mutex);
b9049e23 4088 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4089 __kmem_cache_shrink(s);
18004c5d 4090 mutex_unlock(&slab_mutex);
b9049e23
YG
4091
4092 return 0;
4093}
4094
4095static void slab_mem_offline_callback(void *arg)
4096{
4097 struct kmem_cache_node *n;
4098 struct kmem_cache *s;
4099 struct memory_notify *marg = arg;
4100 int offline_node;
4101
b9d5ab25 4102 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4103
4104 /*
4105 * If the node still has available memory. we need kmem_cache_node
4106 * for it yet.
4107 */
4108 if (offline_node < 0)
4109 return;
4110
18004c5d 4111 mutex_lock(&slab_mutex);
b9049e23
YG
4112 list_for_each_entry(s, &slab_caches, list) {
4113 n = get_node(s, offline_node);
4114 if (n) {
4115 /*
4116 * if n->nr_slabs > 0, slabs still exist on the node
4117 * that is going down. We were unable to free them,
c9404c9c 4118 * and offline_pages() function shouldn't call this
b9049e23
YG
4119 * callback. So, we must fail.
4120 */
0f389ec6 4121 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4122
4123 s->node[offline_node] = NULL;
8de66a0c 4124 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4125 }
4126 }
18004c5d 4127 mutex_unlock(&slab_mutex);
b9049e23
YG
4128}
4129
4130static int slab_mem_going_online_callback(void *arg)
4131{
4132 struct kmem_cache_node *n;
4133 struct kmem_cache *s;
4134 struct memory_notify *marg = arg;
b9d5ab25 4135 int nid = marg->status_change_nid_normal;
b9049e23
YG
4136 int ret = 0;
4137
4138 /*
4139 * If the node's memory is already available, then kmem_cache_node is
4140 * already created. Nothing to do.
4141 */
4142 if (nid < 0)
4143 return 0;
4144
4145 /*
0121c619 4146 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4147 * allocate a kmem_cache_node structure in order to bring the node
4148 * online.
4149 */
18004c5d 4150 mutex_lock(&slab_mutex);
b9049e23
YG
4151 list_for_each_entry(s, &slab_caches, list) {
4152 /*
4153 * XXX: kmem_cache_alloc_node will fallback to other nodes
4154 * since memory is not yet available from the node that
4155 * is brought up.
4156 */
8de66a0c 4157 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4158 if (!n) {
4159 ret = -ENOMEM;
4160 goto out;
4161 }
4053497d 4162 init_kmem_cache_node(n);
b9049e23
YG
4163 s->node[nid] = n;
4164 }
4165out:
18004c5d 4166 mutex_unlock(&slab_mutex);
b9049e23
YG
4167 return ret;
4168}
4169
4170static int slab_memory_callback(struct notifier_block *self,
4171 unsigned long action, void *arg)
4172{
4173 int ret = 0;
4174
4175 switch (action) {
4176 case MEM_GOING_ONLINE:
4177 ret = slab_mem_going_online_callback(arg);
4178 break;
4179 case MEM_GOING_OFFLINE:
4180 ret = slab_mem_going_offline_callback(arg);
4181 break;
4182 case MEM_OFFLINE:
4183 case MEM_CANCEL_ONLINE:
4184 slab_mem_offline_callback(arg);
4185 break;
4186 case MEM_ONLINE:
4187 case MEM_CANCEL_OFFLINE:
4188 break;
4189 }
dc19f9db
KH
4190 if (ret)
4191 ret = notifier_from_errno(ret);
4192 else
4193 ret = NOTIFY_OK;
b9049e23
YG
4194 return ret;
4195}
4196
3ac38faa
AM
4197static struct notifier_block slab_memory_callback_nb = {
4198 .notifier_call = slab_memory_callback,
4199 .priority = SLAB_CALLBACK_PRI,
4200};
b9049e23 4201
81819f0f
CL
4202/********************************************************************
4203 * Basic setup of slabs
4204 *******************************************************************/
4205
51df1142
CL
4206/*
4207 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4208 * the page allocator. Allocate them properly then fix up the pointers
4209 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4210 */
4211
dffb4d60 4212static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4213{
4214 int node;
dffb4d60 4215 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4216 struct kmem_cache_node *n;
51df1142 4217
dffb4d60 4218 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4219
7d557b3c
GC
4220 /*
4221 * This runs very early, and only the boot processor is supposed to be
4222 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4223 * IPIs around.
4224 */
4225 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4226 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4227 struct page *p;
4228
916ac052 4229 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4230 p->slab_cache = s;
51df1142 4231
607bf324 4232#ifdef CONFIG_SLUB_DEBUG
916ac052 4233 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4234 p->slab_cache = s;
51df1142 4235#endif
51df1142 4236 }
f7ce3190 4237 slab_init_memcg_params(s);
dffb4d60 4238 list_add(&s->list, &slab_caches);
c03914b7 4239 memcg_link_cache(s, NULL);
dffb4d60 4240 return s;
51df1142
CL
4241}
4242
81819f0f
CL
4243void __init kmem_cache_init(void)
4244{
dffb4d60
CL
4245 static __initdata struct kmem_cache boot_kmem_cache,
4246 boot_kmem_cache_node;
51df1142 4247
fc8d8620
SG
4248 if (debug_guardpage_minorder())
4249 slub_max_order = 0;
4250
dffb4d60
CL
4251 kmem_cache_node = &boot_kmem_cache_node;
4252 kmem_cache = &boot_kmem_cache;
51df1142 4253
dffb4d60 4254 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4255 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4256
3ac38faa 4257 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4258
4259 /* Able to allocate the per node structures */
4260 slab_state = PARTIAL;
4261
dffb4d60
CL
4262 create_boot_cache(kmem_cache, "kmem_cache",
4263 offsetof(struct kmem_cache, node) +
4264 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4265 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4266
dffb4d60 4267 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4268 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4269
4270 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4271 setup_kmalloc_cache_index_table();
f97d5f63 4272 create_kmalloc_caches(0);
81819f0f 4273
210e7a43
TG
4274 /* Setup random freelists for each cache */
4275 init_freelist_randomization();
4276
a96a87bf
SAS
4277 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4278 slub_cpu_dead);
81819f0f 4279
b9726c26 4280 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4281 cache_line_size(),
81819f0f
CL
4282 slub_min_order, slub_max_order, slub_min_objects,
4283 nr_cpu_ids, nr_node_ids);
4284}
4285
7e85ee0c
PE
4286void __init kmem_cache_init_late(void)
4287{
7e85ee0c
PE
4288}
4289
2633d7a0 4290struct kmem_cache *
f4957d5b 4291__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4292 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4293{
426589f5 4294 struct kmem_cache *s, *c;
81819f0f 4295
a44cb944 4296 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4297 if (s) {
4298 s->refcount++;
84d0ddd6 4299
81819f0f
CL
4300 /*
4301 * Adjust the object sizes so that we clear
4302 * the complete object on kzalloc.
4303 */
1b473f29 4304 s->object_size = max(s->object_size, size);
52ee6d74 4305 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4306
426589f5 4307 for_each_memcg_cache(c, s) {
84d0ddd6 4308 c->object_size = s->object_size;
52ee6d74 4309 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
84d0ddd6
VD
4310 }
4311
7b8f3b66 4312 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4313 s->refcount--;
cbb79694 4314 s = NULL;
7b8f3b66 4315 }
a0e1d1be 4316 }
6446faa2 4317
cbb79694
CL
4318 return s;
4319}
84c1cf62 4320
d50112ed 4321int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4322{
aac3a166
PE
4323 int err;
4324
4325 err = kmem_cache_open(s, flags);
4326 if (err)
4327 return err;
20cea968 4328
45530c44
CL
4329 /* Mutex is not taken during early boot */
4330 if (slab_state <= UP)
4331 return 0;
4332
107dab5c 4333 memcg_propagate_slab_attrs(s);
aac3a166 4334 err = sysfs_slab_add(s);
aac3a166 4335 if (err)
52b4b950 4336 __kmem_cache_release(s);
20cea968 4337
aac3a166 4338 return err;
81819f0f 4339}
81819f0f 4340
ce71e27c 4341void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4342{
aadb4bc4 4343 struct kmem_cache *s;
94b528d0 4344 void *ret;
aadb4bc4 4345
95a05b42 4346 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4347 return kmalloc_large(size, gfpflags);
4348
2c59dd65 4349 s = kmalloc_slab(size, gfpflags);
81819f0f 4350
2408c550 4351 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4352 return s;
81819f0f 4353
2b847c3c 4354 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4355
25985edc 4356 /* Honor the call site pointer we received. */
ca2b84cb 4357 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4358
4359 return ret;
81819f0f
CL
4360}
4361
5d1f57e4 4362#ifdef CONFIG_NUMA
81819f0f 4363void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4364 int node, unsigned long caller)
81819f0f 4365{
aadb4bc4 4366 struct kmem_cache *s;
94b528d0 4367 void *ret;
aadb4bc4 4368
95a05b42 4369 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4370 ret = kmalloc_large_node(size, gfpflags, node);
4371
4372 trace_kmalloc_node(caller, ret,
4373 size, PAGE_SIZE << get_order(size),
4374 gfpflags, node);
4375
4376 return ret;
4377 }
eada35ef 4378
2c59dd65 4379 s = kmalloc_slab(size, gfpflags);
81819f0f 4380
2408c550 4381 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4382 return s;
81819f0f 4383
2b847c3c 4384 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4385
25985edc 4386 /* Honor the call site pointer we received. */
ca2b84cb 4387 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4388
4389 return ret;
81819f0f 4390}
5d1f57e4 4391#endif
81819f0f 4392
ab4d5ed5 4393#ifdef CONFIG_SYSFS
205ab99d
CL
4394static int count_inuse(struct page *page)
4395{
4396 return page->inuse;
4397}
4398
4399static int count_total(struct page *page)
4400{
4401 return page->objects;
4402}
ab4d5ed5 4403#endif
205ab99d 4404
ab4d5ed5 4405#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 4406static void validate_slab(struct kmem_cache *s, struct page *page)
53e15af0
CL
4407{
4408 void *p;
a973e9dd 4409 void *addr = page_address(page);
90e9f6a6
YZ
4410 unsigned long *map;
4411
4412 slab_lock(page);
53e15af0 4413
dd98afd4 4414 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
90e9f6a6 4415 goto unlock;
53e15af0
CL
4416
4417 /* Now we know that a valid freelist exists */
90e9f6a6 4418 map = get_map(s, page);
5f80b13a 4419 for_each_object(p, s, addr, page->objects) {
dd98afd4
YZ
4420 u8 val = test_bit(slab_index(p, s, addr), map) ?
4421 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 4422
dd98afd4
YZ
4423 if (!check_object(s, page, p, val))
4424 break;
4425 }
90e9f6a6
YZ
4426 put_map(map);
4427unlock:
881db7fb 4428 slab_unlock(page);
53e15af0
CL
4429}
4430
434e245d 4431static int validate_slab_node(struct kmem_cache *s,
90e9f6a6 4432 struct kmem_cache_node *n)
53e15af0
CL
4433{
4434 unsigned long count = 0;
4435 struct page *page;
4436 unsigned long flags;
4437
4438 spin_lock_irqsave(&n->list_lock, flags);
4439
916ac052 4440 list_for_each_entry(page, &n->partial, slab_list) {
90e9f6a6 4441 validate_slab(s, page);
53e15af0
CL
4442 count++;
4443 }
4444 if (count != n->nr_partial)
f9f58285
FF
4445 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4446 s->name, count, n->nr_partial);
53e15af0
CL
4447
4448 if (!(s->flags & SLAB_STORE_USER))
4449 goto out;
4450
916ac052 4451 list_for_each_entry(page, &n->full, slab_list) {
90e9f6a6 4452 validate_slab(s, page);
53e15af0
CL
4453 count++;
4454 }
4455 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4456 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4457 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4458
4459out:
4460 spin_unlock_irqrestore(&n->list_lock, flags);
4461 return count;
4462}
4463
434e245d 4464static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4465{
4466 int node;
4467 unsigned long count = 0;
fa45dc25 4468 struct kmem_cache_node *n;
53e15af0
CL
4469
4470 flush_all(s);
fa45dc25 4471 for_each_kmem_cache_node(s, node, n)
90e9f6a6
YZ
4472 count += validate_slab_node(s, n);
4473
53e15af0
CL
4474 return count;
4475}
88a420e4 4476/*
672bba3a 4477 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4478 * and freed.
4479 */
4480
4481struct location {
4482 unsigned long count;
ce71e27c 4483 unsigned long addr;
45edfa58
CL
4484 long long sum_time;
4485 long min_time;
4486 long max_time;
4487 long min_pid;
4488 long max_pid;
174596a0 4489 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4490 nodemask_t nodes;
88a420e4
CL
4491};
4492
4493struct loc_track {
4494 unsigned long max;
4495 unsigned long count;
4496 struct location *loc;
4497};
4498
4499static void free_loc_track(struct loc_track *t)
4500{
4501 if (t->max)
4502 free_pages((unsigned long)t->loc,
4503 get_order(sizeof(struct location) * t->max));
4504}
4505
68dff6a9 4506static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4507{
4508 struct location *l;
4509 int order;
4510
88a420e4
CL
4511 order = get_order(sizeof(struct location) * max);
4512
68dff6a9 4513 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4514 if (!l)
4515 return 0;
4516
4517 if (t->count) {
4518 memcpy(l, t->loc, sizeof(struct location) * t->count);
4519 free_loc_track(t);
4520 }
4521 t->max = max;
4522 t->loc = l;
4523 return 1;
4524}
4525
4526static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4527 const struct track *track)
88a420e4
CL
4528{
4529 long start, end, pos;
4530 struct location *l;
ce71e27c 4531 unsigned long caddr;
45edfa58 4532 unsigned long age = jiffies - track->when;
88a420e4
CL
4533
4534 start = -1;
4535 end = t->count;
4536
4537 for ( ; ; ) {
4538 pos = start + (end - start + 1) / 2;
4539
4540 /*
4541 * There is nothing at "end". If we end up there
4542 * we need to add something to before end.
4543 */
4544 if (pos == end)
4545 break;
4546
4547 caddr = t->loc[pos].addr;
45edfa58
CL
4548 if (track->addr == caddr) {
4549
4550 l = &t->loc[pos];
4551 l->count++;
4552 if (track->when) {
4553 l->sum_time += age;
4554 if (age < l->min_time)
4555 l->min_time = age;
4556 if (age > l->max_time)
4557 l->max_time = age;
4558
4559 if (track->pid < l->min_pid)
4560 l->min_pid = track->pid;
4561 if (track->pid > l->max_pid)
4562 l->max_pid = track->pid;
4563
174596a0
RR
4564 cpumask_set_cpu(track->cpu,
4565 to_cpumask(l->cpus));
45edfa58
CL
4566 }
4567 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4568 return 1;
4569 }
4570
45edfa58 4571 if (track->addr < caddr)
88a420e4
CL
4572 end = pos;
4573 else
4574 start = pos;
4575 }
4576
4577 /*
672bba3a 4578 * Not found. Insert new tracking element.
88a420e4 4579 */
68dff6a9 4580 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4581 return 0;
4582
4583 l = t->loc + pos;
4584 if (pos < t->count)
4585 memmove(l + 1, l,
4586 (t->count - pos) * sizeof(struct location));
4587 t->count++;
4588 l->count = 1;
45edfa58
CL
4589 l->addr = track->addr;
4590 l->sum_time = age;
4591 l->min_time = age;
4592 l->max_time = age;
4593 l->min_pid = track->pid;
4594 l->max_pid = track->pid;
174596a0
RR
4595 cpumask_clear(to_cpumask(l->cpus));
4596 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4597 nodes_clear(l->nodes);
4598 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4599 return 1;
4600}
4601
4602static void process_slab(struct loc_track *t, struct kmem_cache *s,
90e9f6a6 4603 struct page *page, enum track_item alloc)
88a420e4 4604{
a973e9dd 4605 void *addr = page_address(page);
88a420e4 4606 void *p;
90e9f6a6 4607 unsigned long *map;
88a420e4 4608
90e9f6a6 4609 map = get_map(s, page);
224a88be 4610 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4611 if (!test_bit(slab_index(p, s, addr), map))
4612 add_location(t, s, get_track(s, p, alloc));
90e9f6a6 4613 put_map(map);
88a420e4
CL
4614}
4615
4616static int list_locations(struct kmem_cache *s, char *buf,
4617 enum track_item alloc)
4618{
e374d483 4619 int len = 0;
88a420e4 4620 unsigned long i;
68dff6a9 4621 struct loc_track t = { 0, 0, NULL };
88a420e4 4622 int node;
fa45dc25 4623 struct kmem_cache_node *n;
88a420e4 4624
90e9f6a6
YZ
4625 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4626 GFP_KERNEL)) {
68dff6a9 4627 return sprintf(buf, "Out of memory\n");
bbd7d57b 4628 }
88a420e4
CL
4629 /* Push back cpu slabs */
4630 flush_all(s);
4631
fa45dc25 4632 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4633 unsigned long flags;
4634 struct page *page;
4635
9e86943b 4636 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4637 continue;
4638
4639 spin_lock_irqsave(&n->list_lock, flags);
916ac052 4640 list_for_each_entry(page, &n->partial, slab_list)
90e9f6a6 4641 process_slab(&t, s, page, alloc);
916ac052 4642 list_for_each_entry(page, &n->full, slab_list)
90e9f6a6 4643 process_slab(&t, s, page, alloc);
88a420e4
CL
4644 spin_unlock_irqrestore(&n->list_lock, flags);
4645 }
4646
4647 for (i = 0; i < t.count; i++) {
45edfa58 4648 struct location *l = &t.loc[i];
88a420e4 4649
9c246247 4650 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4651 break;
e374d483 4652 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4653
4654 if (l->addr)
62c70bce 4655 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4656 else
e374d483 4657 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4658
4659 if (l->sum_time != l->min_time) {
e374d483 4660 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4661 l->min_time,
4662 (long)div_u64(l->sum_time, l->count),
4663 l->max_time);
45edfa58 4664 } else
e374d483 4665 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4666 l->min_time);
4667
4668 if (l->min_pid != l->max_pid)
e374d483 4669 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4670 l->min_pid, l->max_pid);
4671 else
e374d483 4672 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4673 l->min_pid);
4674
174596a0
RR
4675 if (num_online_cpus() > 1 &&
4676 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4677 len < PAGE_SIZE - 60)
4678 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4679 " cpus=%*pbl",
4680 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4681
62bc62a8 4682 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4683 len < PAGE_SIZE - 60)
4684 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4685 " nodes=%*pbl",
4686 nodemask_pr_args(&l->nodes));
45edfa58 4687
e374d483 4688 len += sprintf(buf + len, "\n");
88a420e4
CL
4689 }
4690
4691 free_loc_track(&t);
4692 if (!t.count)
e374d483
HH
4693 len += sprintf(buf, "No data\n");
4694 return len;
88a420e4 4695}
6dfd1b65 4696#endif /* CONFIG_SLUB_DEBUG */
88a420e4 4697
a5a84755 4698#ifdef SLUB_RESILIENCY_TEST
c07b8183 4699static void __init resiliency_test(void)
a5a84755
CL
4700{
4701 u8 *p;
cc252eae 4702 int type = KMALLOC_NORMAL;
a5a84755 4703
95a05b42 4704 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4705
f9f58285
FF
4706 pr_err("SLUB resiliency testing\n");
4707 pr_err("-----------------------\n");
4708 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4709
4710 p = kzalloc(16, GFP_KERNEL);
4711 p[16] = 0x12;
f9f58285
FF
4712 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4713 p + 16);
a5a84755 4714
cc252eae 4715 validate_slab_cache(kmalloc_caches[type][4]);
a5a84755
CL
4716
4717 /* Hmmm... The next two are dangerous */
4718 p = kzalloc(32, GFP_KERNEL);
4719 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4720 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4721 p);
4722 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755 4723
cc252eae 4724 validate_slab_cache(kmalloc_caches[type][5]);
a5a84755
CL
4725 p = kzalloc(64, GFP_KERNEL);
4726 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4727 *p = 0x56;
f9f58285
FF
4728 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4729 p);
4730 pr_err("If allocated object is overwritten then not detectable\n\n");
cc252eae 4731 validate_slab_cache(kmalloc_caches[type][6]);
a5a84755 4732
f9f58285 4733 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4734 p = kzalloc(128, GFP_KERNEL);
4735 kfree(p);
4736 *p = 0x78;
f9f58285 4737 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
cc252eae 4738 validate_slab_cache(kmalloc_caches[type][7]);
a5a84755
CL
4739
4740 p = kzalloc(256, GFP_KERNEL);
4741 kfree(p);
4742 p[50] = 0x9a;
f9f58285 4743 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
cc252eae 4744 validate_slab_cache(kmalloc_caches[type][8]);
a5a84755
CL
4745
4746 p = kzalloc(512, GFP_KERNEL);
4747 kfree(p);
4748 p[512] = 0xab;
f9f58285 4749 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
cc252eae 4750 validate_slab_cache(kmalloc_caches[type][9]);
a5a84755
CL
4751}
4752#else
4753#ifdef CONFIG_SYSFS
4754static void resiliency_test(void) {};
4755#endif
6dfd1b65 4756#endif /* SLUB_RESILIENCY_TEST */
a5a84755 4757
ab4d5ed5 4758#ifdef CONFIG_SYSFS
81819f0f 4759enum slab_stat_type {
205ab99d
CL
4760 SL_ALL, /* All slabs */
4761 SL_PARTIAL, /* Only partially allocated slabs */
4762 SL_CPU, /* Only slabs used for cpu caches */
4763 SL_OBJECTS, /* Determine allocated objects not slabs */
4764 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4765};
4766
205ab99d 4767#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4768#define SO_PARTIAL (1 << SL_PARTIAL)
4769#define SO_CPU (1 << SL_CPU)
4770#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4771#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4772
1663f26d
TH
4773#ifdef CONFIG_MEMCG
4774static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4775
4776static int __init setup_slub_memcg_sysfs(char *str)
4777{
4778 int v;
4779
4780 if (get_option(&str, &v) > 0)
4781 memcg_sysfs_enabled = v;
4782
4783 return 1;
4784}
4785
4786__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4787#endif
4788
62e5c4b4
CG
4789static ssize_t show_slab_objects(struct kmem_cache *s,
4790 char *buf, unsigned long flags)
81819f0f
CL
4791{
4792 unsigned long total = 0;
81819f0f
CL
4793 int node;
4794 int x;
4795 unsigned long *nodes;
81819f0f 4796
6396bb22 4797 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
4798 if (!nodes)
4799 return -ENOMEM;
81819f0f 4800
205ab99d
CL
4801 if (flags & SO_CPU) {
4802 int cpu;
81819f0f 4803
205ab99d 4804 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4805 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4806 cpu);
ec3ab083 4807 int node;
49e22585 4808 struct page *page;
dfb4f096 4809
4db0c3c2 4810 page = READ_ONCE(c->page);
ec3ab083
CL
4811 if (!page)
4812 continue;
205ab99d 4813
ec3ab083
CL
4814 node = page_to_nid(page);
4815 if (flags & SO_TOTAL)
4816 x = page->objects;
4817 else if (flags & SO_OBJECTS)
4818 x = page->inuse;
4819 else
4820 x = 1;
49e22585 4821
ec3ab083
CL
4822 total += x;
4823 nodes[node] += x;
4824
a93cf07b 4825 page = slub_percpu_partial_read_once(c);
49e22585 4826 if (page) {
8afb1474
LZ
4827 node = page_to_nid(page);
4828 if (flags & SO_TOTAL)
4829 WARN_ON_ONCE(1);
4830 else if (flags & SO_OBJECTS)
4831 WARN_ON_ONCE(1);
4832 else
4833 x = page->pages;
bc6697d8
ED
4834 total += x;
4835 nodes[node] += x;
49e22585 4836 }
81819f0f
CL
4837 }
4838 }
4839
e4f8e513
QC
4840 /*
4841 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4842 * already held which will conflict with an existing lock order:
4843 *
4844 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4845 *
4846 * We don't really need mem_hotplug_lock (to hold off
4847 * slab_mem_going_offline_callback) here because slab's memory hot
4848 * unplug code doesn't destroy the kmem_cache->node[] data.
4849 */
4850
ab4d5ed5 4851#ifdef CONFIG_SLUB_DEBUG
205ab99d 4852 if (flags & SO_ALL) {
fa45dc25
CL
4853 struct kmem_cache_node *n;
4854
4855 for_each_kmem_cache_node(s, node, n) {
205ab99d 4856
d0e0ac97
CG
4857 if (flags & SO_TOTAL)
4858 x = atomic_long_read(&n->total_objects);
4859 else if (flags & SO_OBJECTS)
4860 x = atomic_long_read(&n->total_objects) -
4861 count_partial(n, count_free);
81819f0f 4862 else
205ab99d 4863 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4864 total += x;
4865 nodes[node] += x;
4866 }
4867
ab4d5ed5
CL
4868 } else
4869#endif
4870 if (flags & SO_PARTIAL) {
fa45dc25 4871 struct kmem_cache_node *n;
81819f0f 4872
fa45dc25 4873 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4874 if (flags & SO_TOTAL)
4875 x = count_partial(n, count_total);
4876 else if (flags & SO_OBJECTS)
4877 x = count_partial(n, count_inuse);
81819f0f 4878 else
205ab99d 4879 x = n->nr_partial;
81819f0f
CL
4880 total += x;
4881 nodes[node] += x;
4882 }
4883 }
81819f0f
CL
4884 x = sprintf(buf, "%lu", total);
4885#ifdef CONFIG_NUMA
fa45dc25 4886 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4887 if (nodes[node])
4888 x += sprintf(buf + x, " N%d=%lu",
4889 node, nodes[node]);
4890#endif
4891 kfree(nodes);
4892 return x + sprintf(buf + x, "\n");
4893}
4894
ab4d5ed5 4895#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4896static int any_slab_objects(struct kmem_cache *s)
4897{
4898 int node;
fa45dc25 4899 struct kmem_cache_node *n;
81819f0f 4900
fa45dc25 4901 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4902 if (atomic_long_read(&n->total_objects))
81819f0f 4903 return 1;
fa45dc25 4904
81819f0f
CL
4905 return 0;
4906}
ab4d5ed5 4907#endif
81819f0f
CL
4908
4909#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4910#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4911
4912struct slab_attribute {
4913 struct attribute attr;
4914 ssize_t (*show)(struct kmem_cache *s, char *buf);
4915 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4916};
4917
4918#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4919 static struct slab_attribute _name##_attr = \
4920 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4921
4922#define SLAB_ATTR(_name) \
4923 static struct slab_attribute _name##_attr = \
ab067e99 4924 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4925
81819f0f
CL
4926static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4927{
44065b2e 4928 return sprintf(buf, "%u\n", s->size);
81819f0f
CL
4929}
4930SLAB_ATTR_RO(slab_size);
4931
4932static ssize_t align_show(struct kmem_cache *s, char *buf)
4933{
3a3791ec 4934 return sprintf(buf, "%u\n", s->align);
81819f0f
CL
4935}
4936SLAB_ATTR_RO(align);
4937
4938static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4939{
1b473f29 4940 return sprintf(buf, "%u\n", s->object_size);
81819f0f
CL
4941}
4942SLAB_ATTR_RO(object_size);
4943
4944static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4945{
19af27af 4946 return sprintf(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
4947}
4948SLAB_ATTR_RO(objs_per_slab);
4949
06b285dc
CL
4950static ssize_t order_store(struct kmem_cache *s,
4951 const char *buf, size_t length)
4952{
19af27af 4953 unsigned int order;
0121c619
CL
4954 int err;
4955
19af27af 4956 err = kstrtouint(buf, 10, &order);
0121c619
CL
4957 if (err)
4958 return err;
06b285dc
CL
4959
4960 if (order > slub_max_order || order < slub_min_order)
4961 return -EINVAL;
4962
4963 calculate_sizes(s, order);
4964 return length;
4965}
4966
81819f0f
CL
4967static ssize_t order_show(struct kmem_cache *s, char *buf)
4968{
19af27af 4969 return sprintf(buf, "%u\n", oo_order(s->oo));
81819f0f 4970}
06b285dc 4971SLAB_ATTR(order);
81819f0f 4972
73d342b1
DR
4973static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4974{
4975 return sprintf(buf, "%lu\n", s->min_partial);
4976}
4977
4978static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4979 size_t length)
4980{
4981 unsigned long min;
4982 int err;
4983
3dbb95f7 4984 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4985 if (err)
4986 return err;
4987
c0bdb232 4988 set_min_partial(s, min);
73d342b1
DR
4989 return length;
4990}
4991SLAB_ATTR(min_partial);
4992
49e22585
CL
4993static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4994{
e6d0e1dc 4995 return sprintf(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
4996}
4997
4998static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4999 size_t length)
5000{
e5d9998f 5001 unsigned int objects;
49e22585
CL
5002 int err;
5003
e5d9998f 5004 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5005 if (err)
5006 return err;
345c905d 5007 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5008 return -EINVAL;
49e22585 5009
e6d0e1dc 5010 slub_set_cpu_partial(s, objects);
49e22585
CL
5011 flush_all(s);
5012 return length;
5013}
5014SLAB_ATTR(cpu_partial);
5015
81819f0f
CL
5016static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5017{
62c70bce
JP
5018 if (!s->ctor)
5019 return 0;
5020 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
5021}
5022SLAB_ATTR_RO(ctor);
5023
81819f0f
CL
5024static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5025{
4307c14f 5026 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5027}
5028SLAB_ATTR_RO(aliases);
5029
81819f0f
CL
5030static ssize_t partial_show(struct kmem_cache *s, char *buf)
5031{
d9acf4b7 5032 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5033}
5034SLAB_ATTR_RO(partial);
5035
5036static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5037{
d9acf4b7 5038 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5039}
5040SLAB_ATTR_RO(cpu_slabs);
5041
5042static ssize_t objects_show(struct kmem_cache *s, char *buf)
5043{
205ab99d 5044 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5045}
5046SLAB_ATTR_RO(objects);
5047
205ab99d
CL
5048static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5049{
5050 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5051}
5052SLAB_ATTR_RO(objects_partial);
5053
49e22585
CL
5054static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5055{
5056 int objects = 0;
5057 int pages = 0;
5058 int cpu;
5059 int len;
5060
5061 for_each_online_cpu(cpu) {
a93cf07b
WY
5062 struct page *page;
5063
5064 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5065
5066 if (page) {
5067 pages += page->pages;
5068 objects += page->pobjects;
5069 }
5070 }
5071
5072 len = sprintf(buf, "%d(%d)", objects, pages);
5073
5074#ifdef CONFIG_SMP
5075 for_each_online_cpu(cpu) {
a93cf07b
WY
5076 struct page *page;
5077
5078 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5079
5080 if (page && len < PAGE_SIZE - 20)
5081 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5082 page->pobjects, page->pages);
5083 }
5084#endif
5085 return len + sprintf(buf + len, "\n");
5086}
5087SLAB_ATTR_RO(slabs_cpu_partial);
5088
a5a84755
CL
5089static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5090{
5091 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5092}
5093
5094static ssize_t reclaim_account_store(struct kmem_cache *s,
5095 const char *buf, size_t length)
5096{
5097 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5098 if (buf[0] == '1')
5099 s->flags |= SLAB_RECLAIM_ACCOUNT;
5100 return length;
5101}
5102SLAB_ATTR(reclaim_account);
5103
5104static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5105{
5106 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5107}
5108SLAB_ATTR_RO(hwcache_align);
5109
5110#ifdef CONFIG_ZONE_DMA
5111static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5112{
5113 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5114}
5115SLAB_ATTR_RO(cache_dma);
5116#endif
5117
8eb8284b
DW
5118static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5119{
7bbdb81e 5120 return sprintf(buf, "%u\n", s->usersize);
8eb8284b
DW
5121}
5122SLAB_ATTR_RO(usersize);
5123
a5a84755
CL
5124static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5125{
5f0d5a3a 5126 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5127}
5128SLAB_ATTR_RO(destroy_by_rcu);
5129
ab4d5ed5 5130#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5131static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5132{
5133 return show_slab_objects(s, buf, SO_ALL);
5134}
5135SLAB_ATTR_RO(slabs);
5136
205ab99d
CL
5137static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5138{
5139 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5140}
5141SLAB_ATTR_RO(total_objects);
5142
81819f0f
CL
5143static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5144{
becfda68 5145 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
5146}
5147
5148static ssize_t sanity_checks_store(struct kmem_cache *s,
5149 const char *buf, size_t length)
5150{
becfda68 5151 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
5152 if (buf[0] == '1') {
5153 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 5154 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 5155 }
81819f0f
CL
5156 return length;
5157}
5158SLAB_ATTR(sanity_checks);
5159
5160static ssize_t trace_show(struct kmem_cache *s, char *buf)
5161{
5162 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5163}
5164
5165static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5166 size_t length)
5167{
c9e16131
CL
5168 /*
5169 * Tracing a merged cache is going to give confusing results
5170 * as well as cause other issues like converting a mergeable
5171 * cache into an umergeable one.
5172 */
5173 if (s->refcount > 1)
5174 return -EINVAL;
5175
81819f0f 5176 s->flags &= ~SLAB_TRACE;
b789ef51
CL
5177 if (buf[0] == '1') {
5178 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5179 s->flags |= SLAB_TRACE;
b789ef51 5180 }
81819f0f
CL
5181 return length;
5182}
5183SLAB_ATTR(trace);
5184
81819f0f
CL
5185static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5186{
5187 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5188}
5189
5190static ssize_t red_zone_store(struct kmem_cache *s,
5191 const char *buf, size_t length)
5192{
5193 if (any_slab_objects(s))
5194 return -EBUSY;
5195
5196 s->flags &= ~SLAB_RED_ZONE;
b789ef51 5197 if (buf[0] == '1') {
81819f0f 5198 s->flags |= SLAB_RED_ZONE;
b789ef51 5199 }
06b285dc 5200 calculate_sizes(s, -1);
81819f0f
CL
5201 return length;
5202}
5203SLAB_ATTR(red_zone);
5204
5205static ssize_t poison_show(struct kmem_cache *s, char *buf)
5206{
5207 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5208}
5209
5210static ssize_t poison_store(struct kmem_cache *s,
5211 const char *buf, size_t length)
5212{
5213 if (any_slab_objects(s))
5214 return -EBUSY;
5215
5216 s->flags &= ~SLAB_POISON;
b789ef51 5217 if (buf[0] == '1') {
81819f0f 5218 s->flags |= SLAB_POISON;
b789ef51 5219 }
06b285dc 5220 calculate_sizes(s, -1);
81819f0f
CL
5221 return length;
5222}
5223SLAB_ATTR(poison);
5224
5225static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5226{
5227 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5228}
5229
5230static ssize_t store_user_store(struct kmem_cache *s,
5231 const char *buf, size_t length)
5232{
5233 if (any_slab_objects(s))
5234 return -EBUSY;
5235
5236 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
5237 if (buf[0] == '1') {
5238 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5239 s->flags |= SLAB_STORE_USER;
b789ef51 5240 }
06b285dc 5241 calculate_sizes(s, -1);
81819f0f
CL
5242 return length;
5243}
5244SLAB_ATTR(store_user);
5245
53e15af0
CL
5246static ssize_t validate_show(struct kmem_cache *s, char *buf)
5247{
5248 return 0;
5249}
5250
5251static ssize_t validate_store(struct kmem_cache *s,
5252 const char *buf, size_t length)
5253{
434e245d
CL
5254 int ret = -EINVAL;
5255
5256 if (buf[0] == '1') {
5257 ret = validate_slab_cache(s);
5258 if (ret >= 0)
5259 ret = length;
5260 }
5261 return ret;
53e15af0
CL
5262}
5263SLAB_ATTR(validate);
a5a84755
CL
5264
5265static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5266{
5267 if (!(s->flags & SLAB_STORE_USER))
5268 return -ENOSYS;
5269 return list_locations(s, buf, TRACK_ALLOC);
5270}
5271SLAB_ATTR_RO(alloc_calls);
5272
5273static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5274{
5275 if (!(s->flags & SLAB_STORE_USER))
5276 return -ENOSYS;
5277 return list_locations(s, buf, TRACK_FREE);
5278}
5279SLAB_ATTR_RO(free_calls);
5280#endif /* CONFIG_SLUB_DEBUG */
5281
5282#ifdef CONFIG_FAILSLAB
5283static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5284{
5285 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5286}
5287
5288static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5289 size_t length)
5290{
c9e16131
CL
5291 if (s->refcount > 1)
5292 return -EINVAL;
5293
a5a84755
CL
5294 s->flags &= ~SLAB_FAILSLAB;
5295 if (buf[0] == '1')
5296 s->flags |= SLAB_FAILSLAB;
5297 return length;
5298}
5299SLAB_ATTR(failslab);
ab4d5ed5 5300#endif
53e15af0 5301
2086d26a
CL
5302static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5303{
5304 return 0;
5305}
5306
5307static ssize_t shrink_store(struct kmem_cache *s,
5308 const char *buf, size_t length)
5309{
832f37f5 5310 if (buf[0] == '1')
04f768a3 5311 kmem_cache_shrink_all(s);
832f37f5 5312 else
2086d26a
CL
5313 return -EINVAL;
5314 return length;
5315}
5316SLAB_ATTR(shrink);
5317
81819f0f 5318#ifdef CONFIG_NUMA
9824601e 5319static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5320{
eb7235eb 5321 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5322}
5323
9824601e 5324static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5325 const char *buf, size_t length)
5326{
eb7235eb 5327 unsigned int ratio;
0121c619
CL
5328 int err;
5329
eb7235eb 5330 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5331 if (err)
5332 return err;
eb7235eb
AD
5333 if (ratio > 100)
5334 return -ERANGE;
0121c619 5335
eb7235eb 5336 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5337
81819f0f
CL
5338 return length;
5339}
9824601e 5340SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5341#endif
5342
8ff12cfc 5343#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5344static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5345{
5346 unsigned long sum = 0;
5347 int cpu;
5348 int len;
6da2ec56 5349 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5350
5351 if (!data)
5352 return -ENOMEM;
5353
5354 for_each_online_cpu(cpu) {
9dfc6e68 5355 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5356
5357 data[cpu] = x;
5358 sum += x;
5359 }
5360
5361 len = sprintf(buf, "%lu", sum);
5362
50ef37b9 5363#ifdef CONFIG_SMP
8ff12cfc
CL
5364 for_each_online_cpu(cpu) {
5365 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5366 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5367 }
50ef37b9 5368#endif
8ff12cfc
CL
5369 kfree(data);
5370 return len + sprintf(buf + len, "\n");
5371}
5372
78eb00cc
DR
5373static void clear_stat(struct kmem_cache *s, enum stat_item si)
5374{
5375 int cpu;
5376
5377 for_each_online_cpu(cpu)
9dfc6e68 5378 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5379}
5380
8ff12cfc
CL
5381#define STAT_ATTR(si, text) \
5382static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5383{ \
5384 return show_stat(s, buf, si); \
5385} \
78eb00cc
DR
5386static ssize_t text##_store(struct kmem_cache *s, \
5387 const char *buf, size_t length) \
5388{ \
5389 if (buf[0] != '0') \
5390 return -EINVAL; \
5391 clear_stat(s, si); \
5392 return length; \
5393} \
5394SLAB_ATTR(text); \
8ff12cfc
CL
5395
5396STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5397STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5398STAT_ATTR(FREE_FASTPATH, free_fastpath);
5399STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5400STAT_ATTR(FREE_FROZEN, free_frozen);
5401STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5402STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5403STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5404STAT_ATTR(ALLOC_SLAB, alloc_slab);
5405STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5406STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5407STAT_ATTR(FREE_SLAB, free_slab);
5408STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5409STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5410STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5411STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5412STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5413STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5414STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5415STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5416STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5417STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5418STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5419STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5420STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5421STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5422#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5423
06428780 5424static struct attribute *slab_attrs[] = {
81819f0f
CL
5425 &slab_size_attr.attr,
5426 &object_size_attr.attr,
5427 &objs_per_slab_attr.attr,
5428 &order_attr.attr,
73d342b1 5429 &min_partial_attr.attr,
49e22585 5430 &cpu_partial_attr.attr,
81819f0f 5431 &objects_attr.attr,
205ab99d 5432 &objects_partial_attr.attr,
81819f0f
CL
5433 &partial_attr.attr,
5434 &cpu_slabs_attr.attr,
5435 &ctor_attr.attr,
81819f0f
CL
5436 &aliases_attr.attr,
5437 &align_attr.attr,
81819f0f
CL
5438 &hwcache_align_attr.attr,
5439 &reclaim_account_attr.attr,
5440 &destroy_by_rcu_attr.attr,
a5a84755 5441 &shrink_attr.attr,
49e22585 5442 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5443#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5444 &total_objects_attr.attr,
5445 &slabs_attr.attr,
5446 &sanity_checks_attr.attr,
5447 &trace_attr.attr,
81819f0f
CL
5448 &red_zone_attr.attr,
5449 &poison_attr.attr,
5450 &store_user_attr.attr,
53e15af0 5451 &validate_attr.attr,
88a420e4
CL
5452 &alloc_calls_attr.attr,
5453 &free_calls_attr.attr,
ab4d5ed5 5454#endif
81819f0f
CL
5455#ifdef CONFIG_ZONE_DMA
5456 &cache_dma_attr.attr,
5457#endif
5458#ifdef CONFIG_NUMA
9824601e 5459 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5460#endif
5461#ifdef CONFIG_SLUB_STATS
5462 &alloc_fastpath_attr.attr,
5463 &alloc_slowpath_attr.attr,
5464 &free_fastpath_attr.attr,
5465 &free_slowpath_attr.attr,
5466 &free_frozen_attr.attr,
5467 &free_add_partial_attr.attr,
5468 &free_remove_partial_attr.attr,
5469 &alloc_from_partial_attr.attr,
5470 &alloc_slab_attr.attr,
5471 &alloc_refill_attr.attr,
e36a2652 5472 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5473 &free_slab_attr.attr,
5474 &cpuslab_flush_attr.attr,
5475 &deactivate_full_attr.attr,
5476 &deactivate_empty_attr.attr,
5477 &deactivate_to_head_attr.attr,
5478 &deactivate_to_tail_attr.attr,
5479 &deactivate_remote_frees_attr.attr,
03e404af 5480 &deactivate_bypass_attr.attr,
65c3376a 5481 &order_fallback_attr.attr,
b789ef51
CL
5482 &cmpxchg_double_fail_attr.attr,
5483 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5484 &cpu_partial_alloc_attr.attr,
5485 &cpu_partial_free_attr.attr,
8028dcea
AS
5486 &cpu_partial_node_attr.attr,
5487 &cpu_partial_drain_attr.attr,
81819f0f 5488#endif
4c13dd3b
DM
5489#ifdef CONFIG_FAILSLAB
5490 &failslab_attr.attr,
5491#endif
8eb8284b 5492 &usersize_attr.attr,
4c13dd3b 5493
81819f0f
CL
5494 NULL
5495};
5496
1fdaaa23 5497static const struct attribute_group slab_attr_group = {
81819f0f
CL
5498 .attrs = slab_attrs,
5499};
5500
5501static ssize_t slab_attr_show(struct kobject *kobj,
5502 struct attribute *attr,
5503 char *buf)
5504{
5505 struct slab_attribute *attribute;
5506 struct kmem_cache *s;
5507 int err;
5508
5509 attribute = to_slab_attr(attr);
5510 s = to_slab(kobj);
5511
5512 if (!attribute->show)
5513 return -EIO;
5514
5515 err = attribute->show(s, buf);
5516
5517 return err;
5518}
5519
5520static ssize_t slab_attr_store(struct kobject *kobj,
5521 struct attribute *attr,
5522 const char *buf, size_t len)
5523{
5524 struct slab_attribute *attribute;
5525 struct kmem_cache *s;
5526 int err;
5527
5528 attribute = to_slab_attr(attr);
5529 s = to_slab(kobj);
5530
5531 if (!attribute->store)
5532 return -EIO;
5533
5534 err = attribute->store(s, buf, len);
127424c8 5535#ifdef CONFIG_MEMCG
107dab5c 5536 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5537 struct kmem_cache *c;
81819f0f 5538
107dab5c
GC
5539 mutex_lock(&slab_mutex);
5540 if (s->max_attr_size < len)
5541 s->max_attr_size = len;
5542
ebe945c2
GC
5543 /*
5544 * This is a best effort propagation, so this function's return
5545 * value will be determined by the parent cache only. This is
5546 * basically because not all attributes will have a well
5547 * defined semantics for rollbacks - most of the actions will
5548 * have permanent effects.
5549 *
5550 * Returning the error value of any of the children that fail
5551 * is not 100 % defined, in the sense that users seeing the
5552 * error code won't be able to know anything about the state of
5553 * the cache.
5554 *
5555 * Only returning the error code for the parent cache at least
5556 * has well defined semantics. The cache being written to
5557 * directly either failed or succeeded, in which case we loop
5558 * through the descendants with best-effort propagation.
5559 */
426589f5
VD
5560 for_each_memcg_cache(c, s)
5561 attribute->store(c, buf, len);
107dab5c
GC
5562 mutex_unlock(&slab_mutex);
5563 }
5564#endif
81819f0f
CL
5565 return err;
5566}
5567
107dab5c
GC
5568static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5569{
127424c8 5570#ifdef CONFIG_MEMCG
107dab5c
GC
5571 int i;
5572 char *buffer = NULL;
93030d83 5573 struct kmem_cache *root_cache;
107dab5c 5574
93030d83 5575 if (is_root_cache(s))
107dab5c
GC
5576 return;
5577
f7ce3190 5578 root_cache = s->memcg_params.root_cache;
93030d83 5579
107dab5c
GC
5580 /*
5581 * This mean this cache had no attribute written. Therefore, no point
5582 * in copying default values around
5583 */
93030d83 5584 if (!root_cache->max_attr_size)
107dab5c
GC
5585 return;
5586
5587 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5588 char mbuf[64];
5589 char *buf;
5590 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
478fe303 5591 ssize_t len;
107dab5c
GC
5592
5593 if (!attr || !attr->store || !attr->show)
5594 continue;
5595
5596 /*
5597 * It is really bad that we have to allocate here, so we will
5598 * do it only as a fallback. If we actually allocate, though,
5599 * we can just use the allocated buffer until the end.
5600 *
5601 * Most of the slub attributes will tend to be very small in
5602 * size, but sysfs allows buffers up to a page, so they can
5603 * theoretically happen.
5604 */
5605 if (buffer)
5606 buf = buffer;
93030d83 5607 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5608 buf = mbuf;
5609 else {
5610 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5611 if (WARN_ON(!buffer))
5612 continue;
5613 buf = buffer;
5614 }
5615
478fe303
TG
5616 len = attr->show(root_cache, buf);
5617 if (len > 0)
5618 attr->store(s, buf, len);
107dab5c
GC
5619 }
5620
5621 if (buffer)
5622 free_page((unsigned long)buffer);
6dfd1b65 5623#endif /* CONFIG_MEMCG */
107dab5c
GC
5624}
5625
41a21285
CL
5626static void kmem_cache_release(struct kobject *k)
5627{
5628 slab_kmem_cache_release(to_slab(k));
5629}
5630
52cf25d0 5631static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5632 .show = slab_attr_show,
5633 .store = slab_attr_store,
5634};
5635
5636static struct kobj_type slab_ktype = {
5637 .sysfs_ops = &slab_sysfs_ops,
41a21285 5638 .release = kmem_cache_release,
81819f0f
CL
5639};
5640
5641static int uevent_filter(struct kset *kset, struct kobject *kobj)
5642{
5643 struct kobj_type *ktype = get_ktype(kobj);
5644
5645 if (ktype == &slab_ktype)
5646 return 1;
5647 return 0;
5648}
5649
9cd43611 5650static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5651 .filter = uevent_filter,
5652};
5653
27c3a314 5654static struct kset *slab_kset;
81819f0f 5655
9a41707b
VD
5656static inline struct kset *cache_kset(struct kmem_cache *s)
5657{
127424c8 5658#ifdef CONFIG_MEMCG
9a41707b 5659 if (!is_root_cache(s))
f7ce3190 5660 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5661#endif
5662 return slab_kset;
5663}
5664
81819f0f
CL
5665#define ID_STR_LENGTH 64
5666
5667/* Create a unique string id for a slab cache:
6446faa2
CL
5668 *
5669 * Format :[flags-]size
81819f0f
CL
5670 */
5671static char *create_unique_id(struct kmem_cache *s)
5672{
5673 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5674 char *p = name;
5675
5676 BUG_ON(!name);
5677
5678 *p++ = ':';
5679 /*
5680 * First flags affecting slabcache operations. We will only
5681 * get here for aliasable slabs so we do not need to support
5682 * too many flags. The flags here must cover all flags that
5683 * are matched during merging to guarantee that the id is
5684 * unique.
5685 */
5686 if (s->flags & SLAB_CACHE_DMA)
5687 *p++ = 'd';
6d6ea1e9
NB
5688 if (s->flags & SLAB_CACHE_DMA32)
5689 *p++ = 'D';
81819f0f
CL
5690 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5691 *p++ = 'a';
becfda68 5692 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5693 *p++ = 'F';
230e9fc2
VD
5694 if (s->flags & SLAB_ACCOUNT)
5695 *p++ = 'A';
81819f0f
CL
5696 if (p != name + 1)
5697 *p++ = '-';
44065b2e 5698 p += sprintf(p, "%07u", s->size);
2633d7a0 5699
81819f0f
CL
5700 BUG_ON(p > name + ID_STR_LENGTH - 1);
5701 return name;
5702}
5703
3b7b3140
TH
5704static void sysfs_slab_remove_workfn(struct work_struct *work)
5705{
5706 struct kmem_cache *s =
5707 container_of(work, struct kmem_cache, kobj_remove_work);
5708
5709 if (!s->kobj.state_in_sysfs)
5710 /*
5711 * For a memcg cache, this may be called during
5712 * deactivation and again on shutdown. Remove only once.
5713 * A cache is never shut down before deactivation is
5714 * complete, so no need to worry about synchronization.
5715 */
f6ba4880 5716 goto out;
3b7b3140
TH
5717
5718#ifdef CONFIG_MEMCG
5719 kset_unregister(s->memcg_kset);
5720#endif
5721 kobject_uevent(&s->kobj, KOBJ_REMOVE);
f6ba4880 5722out:
3b7b3140
TH
5723 kobject_put(&s->kobj);
5724}
5725
81819f0f
CL
5726static int sysfs_slab_add(struct kmem_cache *s)
5727{
5728 int err;
5729 const char *name;
1663f26d 5730 struct kset *kset = cache_kset(s);
45530c44 5731 int unmergeable = slab_unmergeable(s);
81819f0f 5732
3b7b3140
TH
5733 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5734
1663f26d
TH
5735 if (!kset) {
5736 kobject_init(&s->kobj, &slab_ktype);
5737 return 0;
5738 }
5739
11066386
MC
5740 if (!unmergeable && disable_higher_order_debug &&
5741 (slub_debug & DEBUG_METADATA_FLAGS))
5742 unmergeable = 1;
5743
81819f0f
CL
5744 if (unmergeable) {
5745 /*
5746 * Slabcache can never be merged so we can use the name proper.
5747 * This is typically the case for debug situations. In that
5748 * case we can catch duplicate names easily.
5749 */
27c3a314 5750 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5751 name = s->name;
5752 } else {
5753 /*
5754 * Create a unique name for the slab as a target
5755 * for the symlinks.
5756 */
5757 name = create_unique_id(s);
5758 }
5759
1663f26d 5760 s->kobj.kset = kset;
26e4f205 5761 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5762 if (err)
80da026a 5763 goto out;
81819f0f
CL
5764
5765 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5766 if (err)
5767 goto out_del_kobj;
9a41707b 5768
127424c8 5769#ifdef CONFIG_MEMCG
1663f26d 5770 if (is_root_cache(s) && memcg_sysfs_enabled) {
9a41707b
VD
5771 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5772 if (!s->memcg_kset) {
54b6a731
DJ
5773 err = -ENOMEM;
5774 goto out_del_kobj;
9a41707b
VD
5775 }
5776 }
5777#endif
5778
81819f0f
CL
5779 kobject_uevent(&s->kobj, KOBJ_ADD);
5780 if (!unmergeable) {
5781 /* Setup first alias */
5782 sysfs_slab_alias(s, s->name);
81819f0f 5783 }
54b6a731
DJ
5784out:
5785 if (!unmergeable)
5786 kfree(name);
5787 return err;
5788out_del_kobj:
5789 kobject_del(&s->kobj);
54b6a731 5790 goto out;
81819f0f
CL
5791}
5792
bf5eb3de 5793static void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5794{
97d06609 5795 if (slab_state < FULL)
2bce6485
CL
5796 /*
5797 * Sysfs has not been setup yet so no need to remove the
5798 * cache from sysfs.
5799 */
5800 return;
5801
3b7b3140
TH
5802 kobject_get(&s->kobj);
5803 schedule_work(&s->kobj_remove_work);
bf5eb3de
TH
5804}
5805
d50d82fa
MP
5806void sysfs_slab_unlink(struct kmem_cache *s)
5807{
5808 if (slab_state >= FULL)
5809 kobject_del(&s->kobj);
5810}
5811
bf5eb3de
TH
5812void sysfs_slab_release(struct kmem_cache *s)
5813{
5814 if (slab_state >= FULL)
5815 kobject_put(&s->kobj);
81819f0f
CL
5816}
5817
5818/*
5819 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5820 * available lest we lose that information.
81819f0f
CL
5821 */
5822struct saved_alias {
5823 struct kmem_cache *s;
5824 const char *name;
5825 struct saved_alias *next;
5826};
5827
5af328a5 5828static struct saved_alias *alias_list;
81819f0f
CL
5829
5830static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5831{
5832 struct saved_alias *al;
5833
97d06609 5834 if (slab_state == FULL) {
81819f0f
CL
5835 /*
5836 * If we have a leftover link then remove it.
5837 */
27c3a314
GKH
5838 sysfs_remove_link(&slab_kset->kobj, name);
5839 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5840 }
5841
5842 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5843 if (!al)
5844 return -ENOMEM;
5845
5846 al->s = s;
5847 al->name = name;
5848 al->next = alias_list;
5849 alias_list = al;
5850 return 0;
5851}
5852
5853static int __init slab_sysfs_init(void)
5854{
5b95a4ac 5855 struct kmem_cache *s;
81819f0f
CL
5856 int err;
5857
18004c5d 5858 mutex_lock(&slab_mutex);
2bce6485 5859
0ff21e46 5860 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5861 if (!slab_kset) {
18004c5d 5862 mutex_unlock(&slab_mutex);
f9f58285 5863 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5864 return -ENOSYS;
5865 }
5866
97d06609 5867 slab_state = FULL;
26a7bd03 5868
5b95a4ac 5869 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5870 err = sysfs_slab_add(s);
5d540fb7 5871 if (err)
f9f58285
FF
5872 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5873 s->name);
26a7bd03 5874 }
81819f0f
CL
5875
5876 while (alias_list) {
5877 struct saved_alias *al = alias_list;
5878
5879 alias_list = alias_list->next;
5880 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5881 if (err)
f9f58285
FF
5882 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5883 al->name);
81819f0f
CL
5884 kfree(al);
5885 }
5886
18004c5d 5887 mutex_unlock(&slab_mutex);
81819f0f
CL
5888 resiliency_test();
5889 return 0;
5890}
5891
5892__initcall(slab_sysfs_init);
ab4d5ed5 5893#endif /* CONFIG_SYSFS */
57ed3eda
PE
5894
5895/*
5896 * The /proc/slabinfo ABI
5897 */
5b365771 5898#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5899void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5900{
57ed3eda 5901 unsigned long nr_slabs = 0;
205ab99d
CL
5902 unsigned long nr_objs = 0;
5903 unsigned long nr_free = 0;
57ed3eda 5904 int node;
fa45dc25 5905 struct kmem_cache_node *n;
57ed3eda 5906
fa45dc25 5907 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5908 nr_slabs += node_nr_slabs(n);
5909 nr_objs += node_nr_objs(n);
205ab99d 5910 nr_free += count_partial(n, count_free);
57ed3eda
PE
5911 }
5912
0d7561c6
GC
5913 sinfo->active_objs = nr_objs - nr_free;
5914 sinfo->num_objs = nr_objs;
5915 sinfo->active_slabs = nr_slabs;
5916 sinfo->num_slabs = nr_slabs;
5917 sinfo->objects_per_slab = oo_objects(s->oo);
5918 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5919}
5920
0d7561c6 5921void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5922{
7b3c3a50
AD
5923}
5924
b7454ad3
GC
5925ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5926 size_t count, loff_t *ppos)
7b3c3a50 5927{
b7454ad3 5928 return -EIO;
7b3c3a50 5929}
5b365771 5930#endif /* CONFIG_SLUB_DEBUG */