]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/slub.c
mm, memcontrol: move swap charge handling into get_swap_page()
[mirror_ubuntu-jammy-kernel.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
881db7fb
CL
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
3ac38faa 22#include <linux/notifier.h>
81819f0f 23#include <linux/seq_file.h>
a79316c6 24#include <linux/kasan.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
2482ddec 37#include <linux/random.h>
81819f0f 38
4a92379b
RK
39#include <trace/events/kmem.h>
40
072bb0aa
MG
41#include "internal.h"
42
81819f0f
CL
43/*
44 * Lock order:
18004c5d 45 * 1. slab_mutex (Global Mutex)
881db7fb
CL
46 * 2. node->list_lock
47 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 48 *
18004c5d 49 * slab_mutex
881db7fb 50 *
18004c5d 51 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
52 * and to synchronize major metadata changes to slab cache structures.
53 *
54 * The slab_lock is only used for debugging and on arches that do not
55 * have the ability to do a cmpxchg_double. It only protects the second
56 * double word in the page struct. Meaning
57 * A. page->freelist -> List of object free in a page
58 * B. page->counters -> Counters of objects
59 * C. page->frozen -> frozen state
60 *
61 * If a slab is frozen then it is exempt from list management. It is not
62 * on any list. The processor that froze the slab is the one who can
63 * perform list operations on the page. Other processors may put objects
64 * onto the freelist but the processor that froze the slab is the only
65 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
81819f0f
CL
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
672bba3a
CL
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 88 * freed then the slab will show up again on the partial lists.
672bba3a
CL
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
81819f0f
CL
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
96 * Overloading of page flags that are otherwise used for LRU management.
97 *
4b6f0750
CL
98 * PageActive The slab is frozen and exempt from list processing.
99 * This means that the slab is dedicated to a purpose
100 * such as satisfying allocations for a specific
101 * processor. Objects may be freed in the slab while
102 * it is frozen but slab_free will then skip the usual
103 * list operations. It is up to the processor holding
104 * the slab to integrate the slab into the slab lists
105 * when the slab is no longer needed.
106 *
107 * One use of this flag is to mark slabs that are
108 * used for allocations. Then such a slab becomes a cpu
109 * slab. The cpu slab may be equipped with an additional
dfb4f096 110 * freelist that allows lockless access to
894b8788
CL
111 * free objects in addition to the regular freelist
112 * that requires the slab lock.
81819f0f
CL
113 *
114 * PageError Slab requires special handling due to debug
115 * options set. This moves slab handling out of
894b8788 116 * the fast path and disables lockless freelists.
81819f0f
CL
117 */
118
af537b0a
CL
119static inline int kmem_cache_debug(struct kmem_cache *s)
120{
5577bd8a 121#ifdef CONFIG_SLUB_DEBUG
af537b0a 122 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 123#else
af537b0a 124 return 0;
5577bd8a 125#endif
af537b0a 126}
5577bd8a 127
117d54df 128void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be
JK
129{
130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 p += s->red_left_pad;
132
133 return p;
134}
135
345c905d
JK
136static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137{
138#ifdef CONFIG_SLUB_CPU_PARTIAL
139 return !kmem_cache_debug(s);
140#else
141 return false;
142#endif
143}
144
81819f0f
CL
145/*
146 * Issues still to be resolved:
147 *
81819f0f
CL
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 *
81819f0f
CL
150 * - Variable sizing of the per node arrays
151 */
152
153/* Enable to test recovery from slab corruption on boot */
154#undef SLUB_RESILIENCY_TEST
155
b789ef51
CL
156/* Enable to log cmpxchg failures */
157#undef SLUB_DEBUG_CMPXCHG
158
2086d26a
CL
159/*
160 * Mininum number of partial slabs. These will be left on the partial
161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 */
76be8950 163#define MIN_PARTIAL 5
e95eed57 164
2086d26a
CL
165/*
166 * Maximum number of desirable partial slabs.
167 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 168 * sort the partial list by the number of objects in use.
2086d26a
CL
169 */
170#define MAX_PARTIAL 10
171
becfda68 172#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 173 SLAB_POISON | SLAB_STORE_USER)
672bba3a 174
149daaf3
LA
175/*
176 * These debug flags cannot use CMPXCHG because there might be consistency
177 * issues when checking or reading debug information
178 */
179#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 SLAB_TRACE)
181
182
fa5ec8a1 183/*
3de47213
DR
184 * Debugging flags that require metadata to be stored in the slab. These get
185 * disabled when slub_debug=O is used and a cache's min order increases with
186 * metadata.
fa5ec8a1 187 */
3de47213 188#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 189
210b5c06
CG
190#define OO_SHIFT 16
191#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 192#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 193
81819f0f 194/* Internal SLUB flags */
d50112ed 195/* Poison object */
4fd0b46e 196#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 197/* Use cmpxchg_double */
4fd0b46e 198#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 199
02cbc874
CL
200/*
201 * Tracking user of a slab.
202 */
d6543e39 203#define TRACK_ADDRS_COUNT 16
02cbc874 204struct track {
ce71e27c 205 unsigned long addr; /* Called from address */
d6543e39
BG
206#ifdef CONFIG_STACKTRACE
207 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
208#endif
02cbc874
CL
209 int cpu; /* Was running on cpu */
210 int pid; /* Pid context */
211 unsigned long when; /* When did the operation occur */
212};
213
214enum track_item { TRACK_ALLOC, TRACK_FREE };
215
ab4d5ed5 216#ifdef CONFIG_SYSFS
81819f0f
CL
217static int sysfs_slab_add(struct kmem_cache *);
218static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 219static void memcg_propagate_slab_attrs(struct kmem_cache *s);
bf5eb3de 220static void sysfs_slab_remove(struct kmem_cache *s);
81819f0f 221#else
0c710013
CL
222static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
107dab5c 225static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
bf5eb3de 226static inline void sysfs_slab_remove(struct kmem_cache *s) { }
81819f0f
CL
227#endif
228
4fdccdfb 229static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
230{
231#ifdef CONFIG_SLUB_STATS
88da03a6
CL
232 /*
233 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 * avoid this_cpu_add()'s irq-disable overhead.
235 */
236 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
237#endif
238}
239
81819f0f
CL
240/********************************************************************
241 * Core slab cache functions
242 *******************************************************************/
243
2482ddec
KC
244/*
245 * Returns freelist pointer (ptr). With hardening, this is obfuscated
246 * with an XOR of the address where the pointer is held and a per-cache
247 * random number.
248 */
249static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
250 unsigned long ptr_addr)
251{
252#ifdef CONFIG_SLAB_FREELIST_HARDENED
253 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
254#else
255 return ptr;
256#endif
257}
258
259/* Returns the freelist pointer recorded at location ptr_addr. */
260static inline void *freelist_dereference(const struct kmem_cache *s,
261 void *ptr_addr)
262{
263 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
264 (unsigned long)ptr_addr);
265}
266
7656c72b
CL
267static inline void *get_freepointer(struct kmem_cache *s, void *object)
268{
2482ddec 269 return freelist_dereference(s, object + s->offset);
7656c72b
CL
270}
271
0ad9500e
ED
272static void prefetch_freepointer(const struct kmem_cache *s, void *object)
273{
2482ddec
KC
274 if (object)
275 prefetch(freelist_dereference(s, object + s->offset));
0ad9500e
ED
276}
277
1393d9a1
CL
278static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
279{
2482ddec 280 unsigned long freepointer_addr;
1393d9a1
CL
281 void *p;
282
922d566c
JK
283 if (!debug_pagealloc_enabled())
284 return get_freepointer(s, object);
285
2482ddec
KC
286 freepointer_addr = (unsigned long)object + s->offset;
287 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
288 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
289}
290
7656c72b
CL
291static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
292{
2482ddec
KC
293 unsigned long freeptr_addr = (unsigned long)object + s->offset;
294
ce6fa91b
AP
295#ifdef CONFIG_SLAB_FREELIST_HARDENED
296 BUG_ON(object == fp); /* naive detection of double free or corruption */
297#endif
298
2482ddec 299 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
300}
301
302/* Loop over all objects in a slab */
224a88be 303#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
304 for (__p = fixup_red_left(__s, __addr); \
305 __p < (__addr) + (__objects) * (__s)->size; \
306 __p += (__s)->size)
7656c72b 307
54266640 308#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
d86bd1be
JK
309 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
310 __idx <= __objects; \
311 __p += (__s)->size, __idx++)
54266640 312
7656c72b 313/* Determine object index from a given position */
284b50dd 314static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
7656c72b
CL
315{
316 return (p - addr) / s->size;
317}
318
19af27af 319static inline unsigned int order_objects(unsigned int order, unsigned int size, unsigned int reserved)
ab9a0f19 320{
19af27af 321 return (((unsigned int)PAGE_SIZE << order) - reserved) / size;
ab9a0f19
LJ
322}
323
19af27af
AD
324static inline struct kmem_cache_order_objects oo_make(unsigned int order,
325 unsigned int size, unsigned int reserved)
834f3d11
CL
326{
327 struct kmem_cache_order_objects x = {
ab9a0f19 328 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
329 };
330
331 return x;
332}
333
19af27af 334static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 335{
210b5c06 336 return x.x >> OO_SHIFT;
834f3d11
CL
337}
338
19af27af 339static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 340{
210b5c06 341 return x.x & OO_MASK;
834f3d11
CL
342}
343
881db7fb
CL
344/*
345 * Per slab locking using the pagelock
346 */
347static __always_inline void slab_lock(struct page *page)
348{
48c935ad 349 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
350 bit_spin_lock(PG_locked, &page->flags);
351}
352
353static __always_inline void slab_unlock(struct page *page)
354{
48c935ad 355 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
356 __bit_spin_unlock(PG_locked, &page->flags);
357}
358
a0320865
DH
359static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
360{
361 struct page tmp;
362 tmp.counters = counters_new;
363 /*
364 * page->counters can cover frozen/inuse/objects as well
0139aa7b
JK
365 * as page->_refcount. If we assign to ->counters directly
366 * we run the risk of losing updates to page->_refcount, so
a0320865
DH
367 * be careful and only assign to the fields we need.
368 */
369 page->frozen = tmp.frozen;
370 page->inuse = tmp.inuse;
371 page->objects = tmp.objects;
372}
373
1d07171c
CL
374/* Interrupts must be disabled (for the fallback code to work right) */
375static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
378 const char *n)
379{
380 VM_BUG_ON(!irqs_disabled());
2565409f
HC
381#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 383 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 384 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
385 freelist_old, counters_old,
386 freelist_new, counters_new))
6f6528a1 387 return true;
1d07171c
CL
388 } else
389#endif
390 {
391 slab_lock(page);
d0e0ac97
CG
392 if (page->freelist == freelist_old &&
393 page->counters == counters_old) {
1d07171c 394 page->freelist = freelist_new;
a0320865 395 set_page_slub_counters(page, counters_new);
1d07171c 396 slab_unlock(page);
6f6528a1 397 return true;
1d07171c
CL
398 }
399 slab_unlock(page);
400 }
401
402 cpu_relax();
403 stat(s, CMPXCHG_DOUBLE_FAIL);
404
405#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 406 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
407#endif
408
6f6528a1 409 return false;
1d07171c
CL
410}
411
b789ef51
CL
412static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 void *freelist_old, unsigned long counters_old,
414 void *freelist_new, unsigned long counters_new,
415 const char *n)
416{
2565409f
HC
417#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 419 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 420 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
421 freelist_old, counters_old,
422 freelist_new, counters_new))
6f6528a1 423 return true;
b789ef51
CL
424 } else
425#endif
426 {
1d07171c
CL
427 unsigned long flags;
428
429 local_irq_save(flags);
881db7fb 430 slab_lock(page);
d0e0ac97
CG
431 if (page->freelist == freelist_old &&
432 page->counters == counters_old) {
b789ef51 433 page->freelist = freelist_new;
a0320865 434 set_page_slub_counters(page, counters_new);
881db7fb 435 slab_unlock(page);
1d07171c 436 local_irq_restore(flags);
6f6528a1 437 return true;
b789ef51 438 }
881db7fb 439 slab_unlock(page);
1d07171c 440 local_irq_restore(flags);
b789ef51
CL
441 }
442
443 cpu_relax();
444 stat(s, CMPXCHG_DOUBLE_FAIL);
445
446#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 447 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
448#endif
449
6f6528a1 450 return false;
b789ef51
CL
451}
452
41ecc55b 453#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
454/*
455 * Determine a map of object in use on a page.
456 *
881db7fb 457 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
458 * not vanish from under us.
459 */
460static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
461{
462 void *p;
463 void *addr = page_address(page);
464
465 for (p = page->freelist; p; p = get_freepointer(s, p))
466 set_bit(slab_index(p, s, addr), map);
467}
468
870b1fbb 469static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
470{
471 if (s->flags & SLAB_RED_ZONE)
472 return s->size - s->red_left_pad;
473
474 return s->size;
475}
476
477static inline void *restore_red_left(struct kmem_cache *s, void *p)
478{
479 if (s->flags & SLAB_RED_ZONE)
480 p -= s->red_left_pad;
481
482 return p;
483}
484
41ecc55b
CL
485/*
486 * Debug settings:
487 */
89d3c87e 488#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 489static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 490#else
d50112ed 491static slab_flags_t slub_debug;
f0630fff 492#endif
41ecc55b
CL
493
494static char *slub_debug_slabs;
fa5ec8a1 495static int disable_higher_order_debug;
41ecc55b 496
a79316c6
AR
497/*
498 * slub is about to manipulate internal object metadata. This memory lies
499 * outside the range of the allocated object, so accessing it would normally
500 * be reported by kasan as a bounds error. metadata_access_enable() is used
501 * to tell kasan that these accesses are OK.
502 */
503static inline void metadata_access_enable(void)
504{
505 kasan_disable_current();
506}
507
508static inline void metadata_access_disable(void)
509{
510 kasan_enable_current();
511}
512
81819f0f
CL
513/*
514 * Object debugging
515 */
d86bd1be
JK
516
517/* Verify that a pointer has an address that is valid within a slab page */
518static inline int check_valid_pointer(struct kmem_cache *s,
519 struct page *page, void *object)
520{
521 void *base;
522
523 if (!object)
524 return 1;
525
526 base = page_address(page);
527 object = restore_red_left(s, object);
528 if (object < base || object >= base + page->objects * s->size ||
529 (object - base) % s->size) {
530 return 0;
531 }
532
533 return 1;
534}
535
aa2efd5e
DT
536static void print_section(char *level, char *text, u8 *addr,
537 unsigned int length)
81819f0f 538{
a79316c6 539 metadata_access_enable();
aa2efd5e 540 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 541 length, 1);
a79316c6 542 metadata_access_disable();
81819f0f
CL
543}
544
81819f0f
CL
545static struct track *get_track(struct kmem_cache *s, void *object,
546 enum track_item alloc)
547{
548 struct track *p;
549
550 if (s->offset)
551 p = object + s->offset + sizeof(void *);
552 else
553 p = object + s->inuse;
554
555 return p + alloc;
556}
557
558static void set_track(struct kmem_cache *s, void *object,
ce71e27c 559 enum track_item alloc, unsigned long addr)
81819f0f 560{
1a00df4a 561 struct track *p = get_track(s, object, alloc);
81819f0f 562
81819f0f 563 if (addr) {
d6543e39
BG
564#ifdef CONFIG_STACKTRACE
565 struct stack_trace trace;
566 int i;
567
568 trace.nr_entries = 0;
569 trace.max_entries = TRACK_ADDRS_COUNT;
570 trace.entries = p->addrs;
571 trace.skip = 3;
a79316c6 572 metadata_access_enable();
d6543e39 573 save_stack_trace(&trace);
a79316c6 574 metadata_access_disable();
d6543e39
BG
575
576 /* See rant in lockdep.c */
577 if (trace.nr_entries != 0 &&
578 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
579 trace.nr_entries--;
580
581 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
582 p->addrs[i] = 0;
583#endif
81819f0f
CL
584 p->addr = addr;
585 p->cpu = smp_processor_id();
88e4ccf2 586 p->pid = current->pid;
81819f0f
CL
587 p->when = jiffies;
588 } else
589 memset(p, 0, sizeof(struct track));
590}
591
81819f0f
CL
592static void init_tracking(struct kmem_cache *s, void *object)
593{
24922684
CL
594 if (!(s->flags & SLAB_STORE_USER))
595 return;
596
ce71e27c
EGM
597 set_track(s, object, TRACK_FREE, 0UL);
598 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
599}
600
86609d33 601static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
602{
603 if (!t->addr)
604 return;
605
f9f58285 606 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 607 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
d6543e39
BG
608#ifdef CONFIG_STACKTRACE
609 {
610 int i;
611 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
612 if (t->addrs[i])
f9f58285 613 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
614 else
615 break;
616 }
617#endif
24922684
CL
618}
619
620static void print_tracking(struct kmem_cache *s, void *object)
621{
86609d33 622 unsigned long pr_time = jiffies;
24922684
CL
623 if (!(s->flags & SLAB_STORE_USER))
624 return;
625
86609d33
CP
626 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
627 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
628}
629
630static void print_page_info(struct page *page)
631{
f9f58285 632 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 633 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
634
635}
636
637static void slab_bug(struct kmem_cache *s, char *fmt, ...)
638{
ecc42fbe 639 struct va_format vaf;
24922684 640 va_list args;
24922684
CL
641
642 va_start(args, fmt);
ecc42fbe
FF
643 vaf.fmt = fmt;
644 vaf.va = &args;
f9f58285 645 pr_err("=============================================================================\n");
ecc42fbe 646 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 647 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 648
373d4d09 649 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 650 va_end(args);
81819f0f
CL
651}
652
24922684
CL
653static void slab_fix(struct kmem_cache *s, char *fmt, ...)
654{
ecc42fbe 655 struct va_format vaf;
24922684 656 va_list args;
24922684
CL
657
658 va_start(args, fmt);
ecc42fbe
FF
659 vaf.fmt = fmt;
660 vaf.va = &args;
661 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 662 va_end(args);
24922684
CL
663}
664
665static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
666{
667 unsigned int off; /* Offset of last byte */
a973e9dd 668 u8 *addr = page_address(page);
24922684
CL
669
670 print_tracking(s, p);
671
672 print_page_info(page);
673
f9f58285
FF
674 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
675 p, p - addr, get_freepointer(s, p));
24922684 676
d86bd1be 677 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
678 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
679 s->red_left_pad);
d86bd1be 680 else if (p > addr + 16)
aa2efd5e 681 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 682
aa2efd5e 683 print_section(KERN_ERR, "Object ", p,
1b473f29 684 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 685 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 686 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 687 s->inuse - s->object_size);
81819f0f 688
81819f0f
CL
689 if (s->offset)
690 off = s->offset + sizeof(void *);
691 else
692 off = s->inuse;
693
24922684 694 if (s->flags & SLAB_STORE_USER)
81819f0f 695 off += 2 * sizeof(struct track);
81819f0f 696
80a9201a
AP
697 off += kasan_metadata_size(s);
698
d86bd1be 699 if (off != size_from_object(s))
81819f0f 700 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
701 print_section(KERN_ERR, "Padding ", p + off,
702 size_from_object(s) - off);
24922684
CL
703
704 dump_stack();
81819f0f
CL
705}
706
75c66def 707void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
708 u8 *object, char *reason)
709{
3dc50637 710 slab_bug(s, "%s", reason);
24922684 711 print_trailer(s, page, object);
81819f0f
CL
712}
713
a38965bf 714static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 715 const char *fmt, ...)
81819f0f
CL
716{
717 va_list args;
718 char buf[100];
719
24922684
CL
720 va_start(args, fmt);
721 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 722 va_end(args);
3dc50637 723 slab_bug(s, "%s", buf);
24922684 724 print_page_info(page);
81819f0f
CL
725 dump_stack();
726}
727
f7cb1933 728static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
729{
730 u8 *p = object;
731
d86bd1be
JK
732 if (s->flags & SLAB_RED_ZONE)
733 memset(p - s->red_left_pad, val, s->red_left_pad);
734
81819f0f 735 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
736 memset(p, POISON_FREE, s->object_size - 1);
737 p[s->object_size - 1] = POISON_END;
81819f0f
CL
738 }
739
740 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 741 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
742}
743
24922684
CL
744static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
745 void *from, void *to)
746{
747 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
748 memset(from, data, to - from);
749}
750
751static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
752 u8 *object, char *what,
06428780 753 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
754{
755 u8 *fault;
756 u8 *end;
757
a79316c6 758 metadata_access_enable();
79824820 759 fault = memchr_inv(start, value, bytes);
a79316c6 760 metadata_access_disable();
24922684
CL
761 if (!fault)
762 return 1;
763
764 end = start + bytes;
765 while (end > fault && end[-1] == value)
766 end--;
767
768 slab_bug(s, "%s overwritten", what);
f9f58285 769 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
770 fault, end - 1, fault[0], value);
771 print_trailer(s, page, object);
772
773 restore_bytes(s, what, value, fault, end);
774 return 0;
81819f0f
CL
775}
776
81819f0f
CL
777/*
778 * Object layout:
779 *
780 * object address
781 * Bytes of the object to be managed.
782 * If the freepointer may overlay the object then the free
783 * pointer is the first word of the object.
672bba3a 784 *
81819f0f
CL
785 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
786 * 0xa5 (POISON_END)
787 *
3b0efdfa 788 * object + s->object_size
81819f0f 789 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 790 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 791 * object_size == inuse.
672bba3a 792 *
81819f0f
CL
793 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
794 * 0xcc (RED_ACTIVE) for objects in use.
795 *
796 * object + s->inuse
672bba3a
CL
797 * Meta data starts here.
798 *
81819f0f
CL
799 * A. Free pointer (if we cannot overwrite object on free)
800 * B. Tracking data for SLAB_STORE_USER
672bba3a 801 * C. Padding to reach required alignment boundary or at mininum
6446faa2 802 * one word if debugging is on to be able to detect writes
672bba3a
CL
803 * before the word boundary.
804 *
805 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
806 *
807 * object + s->size
672bba3a 808 * Nothing is used beyond s->size.
81819f0f 809 *
3b0efdfa 810 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 811 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
812 * may be used with merged slabcaches.
813 */
814
81819f0f
CL
815static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
816{
817 unsigned long off = s->inuse; /* The end of info */
818
819 if (s->offset)
820 /* Freepointer is placed after the object. */
821 off += sizeof(void *);
822
823 if (s->flags & SLAB_STORE_USER)
824 /* We also have user information there */
825 off += 2 * sizeof(struct track);
826
80a9201a
AP
827 off += kasan_metadata_size(s);
828
d86bd1be 829 if (size_from_object(s) == off)
81819f0f
CL
830 return 1;
831
24922684 832 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 833 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
834}
835
39b26464 836/* Check the pad bytes at the end of a slab page */
81819f0f
CL
837static int slab_pad_check(struct kmem_cache *s, struct page *page)
838{
24922684
CL
839 u8 *start;
840 u8 *fault;
841 u8 *end;
5d682681 842 u8 *pad;
24922684
CL
843 int length;
844 int remainder;
81819f0f
CL
845
846 if (!(s->flags & SLAB_POISON))
847 return 1;
848
a973e9dd 849 start = page_address(page);
ab9a0f19 850 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
851 end = start + length;
852 remainder = length % s->size;
81819f0f
CL
853 if (!remainder)
854 return 1;
855
5d682681 856 pad = end - remainder;
a79316c6 857 metadata_access_enable();
5d682681 858 fault = memchr_inv(pad, POISON_INUSE, remainder);
a79316c6 859 metadata_access_disable();
24922684
CL
860 if (!fault)
861 return 1;
862 while (end > fault && end[-1] == POISON_INUSE)
863 end--;
864
865 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
5d682681 866 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 867
5d682681 868 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 869 return 0;
81819f0f
CL
870}
871
872static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 873 void *object, u8 val)
81819f0f
CL
874{
875 u8 *p = object;
3b0efdfa 876 u8 *endobject = object + s->object_size;
81819f0f
CL
877
878 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
879 if (!check_bytes_and_report(s, page, object, "Redzone",
880 object - s->red_left_pad, val, s->red_left_pad))
881 return 0;
882
24922684 883 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 884 endobject, val, s->inuse - s->object_size))
81819f0f 885 return 0;
81819f0f 886 } else {
3b0efdfa 887 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 888 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
889 endobject, POISON_INUSE,
890 s->inuse - s->object_size);
3adbefee 891 }
81819f0f
CL
892 }
893
894 if (s->flags & SLAB_POISON) {
f7cb1933 895 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 896 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 897 POISON_FREE, s->object_size - 1) ||
24922684 898 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 899 p + s->object_size - 1, POISON_END, 1)))
81819f0f 900 return 0;
81819f0f
CL
901 /*
902 * check_pad_bytes cleans up on its own.
903 */
904 check_pad_bytes(s, page, p);
905 }
906
f7cb1933 907 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
908 /*
909 * Object and freepointer overlap. Cannot check
910 * freepointer while object is allocated.
911 */
912 return 1;
913
914 /* Check free pointer validity */
915 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
916 object_err(s, page, p, "Freepointer corrupt");
917 /*
9f6c708e 918 * No choice but to zap it and thus lose the remainder
81819f0f 919 * of the free objects in this slab. May cause
672bba3a 920 * another error because the object count is now wrong.
81819f0f 921 */
a973e9dd 922 set_freepointer(s, p, NULL);
81819f0f
CL
923 return 0;
924 }
925 return 1;
926}
927
928static int check_slab(struct kmem_cache *s, struct page *page)
929{
39b26464
CL
930 int maxobj;
931
81819f0f
CL
932 VM_BUG_ON(!irqs_disabled());
933
934 if (!PageSlab(page)) {
24922684 935 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
936 return 0;
937 }
39b26464 938
ab9a0f19 939 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
940 if (page->objects > maxobj) {
941 slab_err(s, page, "objects %u > max %u",
f6edde9c 942 page->objects, maxobj);
39b26464
CL
943 return 0;
944 }
945 if (page->inuse > page->objects) {
24922684 946 slab_err(s, page, "inuse %u > max %u",
f6edde9c 947 page->inuse, page->objects);
81819f0f
CL
948 return 0;
949 }
950 /* Slab_pad_check fixes things up after itself */
951 slab_pad_check(s, page);
952 return 1;
953}
954
955/*
672bba3a
CL
956 * Determine if a certain object on a page is on the freelist. Must hold the
957 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
958 */
959static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
960{
961 int nr = 0;
881db7fb 962 void *fp;
81819f0f 963 void *object = NULL;
f6edde9c 964 int max_objects;
81819f0f 965
881db7fb 966 fp = page->freelist;
39b26464 967 while (fp && nr <= page->objects) {
81819f0f
CL
968 if (fp == search)
969 return 1;
970 if (!check_valid_pointer(s, page, fp)) {
971 if (object) {
972 object_err(s, page, object,
973 "Freechain corrupt");
a973e9dd 974 set_freepointer(s, object, NULL);
81819f0f 975 } else {
24922684 976 slab_err(s, page, "Freepointer corrupt");
a973e9dd 977 page->freelist = NULL;
39b26464 978 page->inuse = page->objects;
24922684 979 slab_fix(s, "Freelist cleared");
81819f0f
CL
980 return 0;
981 }
982 break;
983 }
984 object = fp;
985 fp = get_freepointer(s, object);
986 nr++;
987 }
988
ab9a0f19 989 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
990 if (max_objects > MAX_OBJS_PER_PAGE)
991 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
992
993 if (page->objects != max_objects) {
756a025f
JP
994 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
995 page->objects, max_objects);
224a88be
CL
996 page->objects = max_objects;
997 slab_fix(s, "Number of objects adjusted.");
998 }
39b26464 999 if (page->inuse != page->objects - nr) {
756a025f
JP
1000 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1001 page->inuse, page->objects - nr);
39b26464 1002 page->inuse = page->objects - nr;
24922684 1003 slab_fix(s, "Object count adjusted.");
81819f0f
CL
1004 }
1005 return search == NULL;
1006}
1007
0121c619
CL
1008static void trace(struct kmem_cache *s, struct page *page, void *object,
1009 int alloc)
3ec09742
CL
1010{
1011 if (s->flags & SLAB_TRACE) {
f9f58285 1012 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1013 s->name,
1014 alloc ? "alloc" : "free",
1015 object, page->inuse,
1016 page->freelist);
1017
1018 if (!alloc)
aa2efd5e 1019 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1020 s->object_size);
3ec09742
CL
1021
1022 dump_stack();
1023 }
1024}
1025
643b1138 1026/*
672bba3a 1027 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1028 */
5cc6eee8
CL
1029static void add_full(struct kmem_cache *s,
1030 struct kmem_cache_node *n, struct page *page)
643b1138 1031{
5cc6eee8
CL
1032 if (!(s->flags & SLAB_STORE_USER))
1033 return;
1034
255d0884 1035 lockdep_assert_held(&n->list_lock);
643b1138 1036 list_add(&page->lru, &n->full);
643b1138
CL
1037}
1038
c65c1877 1039static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1040{
643b1138
CL
1041 if (!(s->flags & SLAB_STORE_USER))
1042 return;
1043
255d0884 1044 lockdep_assert_held(&n->list_lock);
643b1138 1045 list_del(&page->lru);
643b1138
CL
1046}
1047
0f389ec6
CL
1048/* Tracking of the number of slabs for debugging purposes */
1049static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1050{
1051 struct kmem_cache_node *n = get_node(s, node);
1052
1053 return atomic_long_read(&n->nr_slabs);
1054}
1055
26c02cf0
AB
1056static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1057{
1058 return atomic_long_read(&n->nr_slabs);
1059}
1060
205ab99d 1061static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1062{
1063 struct kmem_cache_node *n = get_node(s, node);
1064
1065 /*
1066 * May be called early in order to allocate a slab for the
1067 * kmem_cache_node structure. Solve the chicken-egg
1068 * dilemma by deferring the increment of the count during
1069 * bootstrap (see early_kmem_cache_node_alloc).
1070 */
338b2642 1071 if (likely(n)) {
0f389ec6 1072 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1073 atomic_long_add(objects, &n->total_objects);
1074 }
0f389ec6 1075}
205ab99d 1076static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1077{
1078 struct kmem_cache_node *n = get_node(s, node);
1079
1080 atomic_long_dec(&n->nr_slabs);
205ab99d 1081 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1082}
1083
1084/* Object debug checks for alloc/free paths */
3ec09742
CL
1085static void setup_object_debug(struct kmem_cache *s, struct page *page,
1086 void *object)
1087{
1088 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1089 return;
1090
f7cb1933 1091 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1092 init_tracking(s, object);
1093}
1094
becfda68 1095static inline int alloc_consistency_checks(struct kmem_cache *s,
d0e0ac97 1096 struct page *page,
ce71e27c 1097 void *object, unsigned long addr)
81819f0f
CL
1098{
1099 if (!check_slab(s, page))
becfda68 1100 return 0;
81819f0f 1101
81819f0f
CL
1102 if (!check_valid_pointer(s, page, object)) {
1103 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1104 return 0;
81819f0f
CL
1105 }
1106
f7cb1933 1107 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1108 return 0;
1109
1110 return 1;
1111}
1112
1113static noinline int alloc_debug_processing(struct kmem_cache *s,
1114 struct page *page,
1115 void *object, unsigned long addr)
1116{
1117 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1118 if (!alloc_consistency_checks(s, page, object, addr))
1119 goto bad;
1120 }
81819f0f 1121
3ec09742
CL
1122 /* Success perform special debug activities for allocs */
1123 if (s->flags & SLAB_STORE_USER)
1124 set_track(s, object, TRACK_ALLOC, addr);
1125 trace(s, page, object, 1);
f7cb1933 1126 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1127 return 1;
3ec09742 1128
81819f0f
CL
1129bad:
1130 if (PageSlab(page)) {
1131 /*
1132 * If this is a slab page then lets do the best we can
1133 * to avoid issues in the future. Marking all objects
672bba3a 1134 * as used avoids touching the remaining objects.
81819f0f 1135 */
24922684 1136 slab_fix(s, "Marking all objects used");
39b26464 1137 page->inuse = page->objects;
a973e9dd 1138 page->freelist = NULL;
81819f0f
CL
1139 }
1140 return 0;
1141}
1142
becfda68
LA
1143static inline int free_consistency_checks(struct kmem_cache *s,
1144 struct page *page, void *object, unsigned long addr)
81819f0f 1145{
81819f0f 1146 if (!check_valid_pointer(s, page, object)) {
70d71228 1147 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1148 return 0;
81819f0f
CL
1149 }
1150
1151 if (on_freelist(s, page, object)) {
24922684 1152 object_err(s, page, object, "Object already free");
becfda68 1153 return 0;
81819f0f
CL
1154 }
1155
f7cb1933 1156 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1157 return 0;
81819f0f 1158
1b4f59e3 1159 if (unlikely(s != page->slab_cache)) {
3adbefee 1160 if (!PageSlab(page)) {
756a025f
JP
1161 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1162 object);
1b4f59e3 1163 } else if (!page->slab_cache) {
f9f58285
FF
1164 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1165 object);
70d71228 1166 dump_stack();
06428780 1167 } else
24922684
CL
1168 object_err(s, page, object,
1169 "page slab pointer corrupt.");
becfda68
LA
1170 return 0;
1171 }
1172 return 1;
1173}
1174
1175/* Supports checking bulk free of a constructed freelist */
1176static noinline int free_debug_processing(
1177 struct kmem_cache *s, struct page *page,
1178 void *head, void *tail, int bulk_cnt,
1179 unsigned long addr)
1180{
1181 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1182 void *object = head;
1183 int cnt = 0;
1184 unsigned long uninitialized_var(flags);
1185 int ret = 0;
1186
1187 spin_lock_irqsave(&n->list_lock, flags);
1188 slab_lock(page);
1189
1190 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1191 if (!check_slab(s, page))
1192 goto out;
1193 }
1194
1195next_object:
1196 cnt++;
1197
1198 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1199 if (!free_consistency_checks(s, page, object, addr))
1200 goto out;
81819f0f 1201 }
3ec09742 1202
3ec09742
CL
1203 if (s->flags & SLAB_STORE_USER)
1204 set_track(s, object, TRACK_FREE, addr);
1205 trace(s, page, object, 0);
81084651 1206 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1207 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1208
1209 /* Reached end of constructed freelist yet? */
1210 if (object != tail) {
1211 object = get_freepointer(s, object);
1212 goto next_object;
1213 }
804aa132
LA
1214 ret = 1;
1215
5c2e4bbb 1216out:
81084651
JDB
1217 if (cnt != bulk_cnt)
1218 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1219 bulk_cnt, cnt);
1220
881db7fb 1221 slab_unlock(page);
282acb43 1222 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1223 if (!ret)
1224 slab_fix(s, "Object at 0x%p not freed", object);
1225 return ret;
81819f0f
CL
1226}
1227
41ecc55b
CL
1228static int __init setup_slub_debug(char *str)
1229{
f0630fff
CL
1230 slub_debug = DEBUG_DEFAULT_FLAGS;
1231 if (*str++ != '=' || !*str)
1232 /*
1233 * No options specified. Switch on full debugging.
1234 */
1235 goto out;
1236
1237 if (*str == ',')
1238 /*
1239 * No options but restriction on slabs. This means full
1240 * debugging for slabs matching a pattern.
1241 */
1242 goto check_slabs;
1243
1244 slub_debug = 0;
1245 if (*str == '-')
1246 /*
1247 * Switch off all debugging measures.
1248 */
1249 goto out;
1250
1251 /*
1252 * Determine which debug features should be switched on
1253 */
06428780 1254 for (; *str && *str != ','; str++) {
f0630fff
CL
1255 switch (tolower(*str)) {
1256 case 'f':
becfda68 1257 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1258 break;
1259 case 'z':
1260 slub_debug |= SLAB_RED_ZONE;
1261 break;
1262 case 'p':
1263 slub_debug |= SLAB_POISON;
1264 break;
1265 case 'u':
1266 slub_debug |= SLAB_STORE_USER;
1267 break;
1268 case 't':
1269 slub_debug |= SLAB_TRACE;
1270 break;
4c13dd3b
DM
1271 case 'a':
1272 slub_debug |= SLAB_FAILSLAB;
1273 break;
08303a73
CA
1274 case 'o':
1275 /*
1276 * Avoid enabling debugging on caches if its minimum
1277 * order would increase as a result.
1278 */
1279 disable_higher_order_debug = 1;
1280 break;
f0630fff 1281 default:
f9f58285
FF
1282 pr_err("slub_debug option '%c' unknown. skipped\n",
1283 *str);
f0630fff 1284 }
41ecc55b
CL
1285 }
1286
f0630fff 1287check_slabs:
41ecc55b
CL
1288 if (*str == ',')
1289 slub_debug_slabs = str + 1;
f0630fff 1290out:
41ecc55b
CL
1291 return 1;
1292}
1293
1294__setup("slub_debug", setup_slub_debug);
1295
0293d1fd 1296slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1297 slab_flags_t flags, const char *name,
51cc5068 1298 void (*ctor)(void *))
41ecc55b
CL
1299{
1300 /*
e153362a 1301 * Enable debugging if selected on the kernel commandline.
41ecc55b 1302 */
c6f58d9b
CL
1303 if (slub_debug && (!slub_debug_slabs || (name &&
1304 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1305 flags |= slub_debug;
ba0268a8
CL
1306
1307 return flags;
41ecc55b 1308}
b4a64718 1309#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1310static inline void setup_object_debug(struct kmem_cache *s,
1311 struct page *page, void *object) {}
41ecc55b 1312
3ec09742 1313static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1314 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1315
282acb43 1316static inline int free_debug_processing(
81084651
JDB
1317 struct kmem_cache *s, struct page *page,
1318 void *head, void *tail, int bulk_cnt,
282acb43 1319 unsigned long addr) { return 0; }
41ecc55b 1320
41ecc55b
CL
1321static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1322 { return 1; }
1323static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1324 void *object, u8 val) { return 1; }
5cc6eee8
CL
1325static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1326 struct page *page) {}
c65c1877
PZ
1327static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1328 struct page *page) {}
0293d1fd 1329slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1330 slab_flags_t flags, const char *name,
51cc5068 1331 void (*ctor)(void *))
ba0268a8
CL
1332{
1333 return flags;
1334}
41ecc55b 1335#define slub_debug 0
0f389ec6 1336
fdaa45e9
IM
1337#define disable_higher_order_debug 0
1338
0f389ec6
CL
1339static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1340 { return 0; }
26c02cf0
AB
1341static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1342 { return 0; }
205ab99d
CL
1343static inline void inc_slabs_node(struct kmem_cache *s, int node,
1344 int objects) {}
1345static inline void dec_slabs_node(struct kmem_cache *s, int node,
1346 int objects) {}
7d550c56 1347
02e72cc6
AR
1348#endif /* CONFIG_SLUB_DEBUG */
1349
1350/*
1351 * Hooks for other subsystems that check memory allocations. In a typical
1352 * production configuration these hooks all should produce no code at all.
1353 */
d56791b3
RB
1354static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1355{
1356 kmemleak_alloc(ptr, size, 1, flags);
505f5dcb 1357 kasan_kmalloc_large(ptr, size, flags);
d56791b3
RB
1358}
1359
ee3ce779 1360static __always_inline void kfree_hook(void *x)
d56791b3
RB
1361{
1362 kmemleak_free(x);
ee3ce779 1363 kasan_kfree_large(x, _RET_IP_);
d56791b3
RB
1364}
1365
c3895391 1366static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
d56791b3
RB
1367{
1368 kmemleak_free_recursive(x, s->flags);
7d550c56 1369
02e72cc6
AR
1370 /*
1371 * Trouble is that we may no longer disable interrupts in the fast path
1372 * So in order to make the debug calls that expect irqs to be
1373 * disabled we need to disable interrupts temporarily.
1374 */
4675ff05 1375#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1376 {
1377 unsigned long flags;
1378
1379 local_irq_save(flags);
02e72cc6
AR
1380 debug_check_no_locks_freed(x, s->object_size);
1381 local_irq_restore(flags);
1382 }
1383#endif
1384 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1385 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1386
c3895391
AK
1387 /* KASAN might put x into memory quarantine, delaying its reuse */
1388 return kasan_slab_free(s, x, _RET_IP_);
02e72cc6 1389}
205ab99d 1390
c3895391
AK
1391static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1392 void **head, void **tail)
81084651
JDB
1393{
1394/*
1395 * Compiler cannot detect this function can be removed if slab_free_hook()
1396 * evaluates to nothing. Thus, catch all relevant config debug options here.
1397 */
4675ff05 1398#if defined(CONFIG_LOCKDEP) || \
81084651
JDB
1399 defined(CONFIG_DEBUG_KMEMLEAK) || \
1400 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1401 defined(CONFIG_KASAN)
1402
c3895391
AK
1403 void *object;
1404 void *next = *head;
1405 void *old_tail = *tail ? *tail : *head;
1406
1407 /* Head and tail of the reconstructed freelist */
1408 *head = NULL;
1409 *tail = NULL;
81084651
JDB
1410
1411 do {
c3895391
AK
1412 object = next;
1413 next = get_freepointer(s, object);
1414 /* If object's reuse doesn't have to be delayed */
1415 if (!slab_free_hook(s, object)) {
1416 /* Move object to the new freelist */
1417 set_freepointer(s, object, *head);
1418 *head = object;
1419 if (!*tail)
1420 *tail = object;
1421 }
1422 } while (object != old_tail);
1423
1424 if (*head == *tail)
1425 *tail = NULL;
1426
1427 return *head != NULL;
1428#else
1429 return true;
81084651
JDB
1430#endif
1431}
1432
588f8ba9
TG
1433static void setup_object(struct kmem_cache *s, struct page *page,
1434 void *object)
1435{
1436 setup_object_debug(s, page, object);
b3cbd9bf 1437 kasan_init_slab_obj(s, object);
588f8ba9
TG
1438 if (unlikely(s->ctor)) {
1439 kasan_unpoison_object_data(s, object);
1440 s->ctor(object);
1441 kasan_poison_object_data(s, object);
1442 }
1443}
1444
81819f0f
CL
1445/*
1446 * Slab allocation and freeing
1447 */
5dfb4175
VD
1448static inline struct page *alloc_slab_page(struct kmem_cache *s,
1449 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1450{
5dfb4175 1451 struct page *page;
19af27af 1452 unsigned int order = oo_order(oo);
65c3376a 1453
2154a336 1454 if (node == NUMA_NO_NODE)
5dfb4175 1455 page = alloc_pages(flags, order);
65c3376a 1456 else
96db800f 1457 page = __alloc_pages_node(node, flags, order);
5dfb4175 1458
f3ccb2c4
VD
1459 if (page && memcg_charge_slab(page, flags, order, s)) {
1460 __free_pages(page, order);
1461 page = NULL;
1462 }
5dfb4175
VD
1463
1464 return page;
65c3376a
CL
1465}
1466
210e7a43
TG
1467#ifdef CONFIG_SLAB_FREELIST_RANDOM
1468/* Pre-initialize the random sequence cache */
1469static int init_cache_random_seq(struct kmem_cache *s)
1470{
19af27af 1471 unsigned int count = oo_objects(s->oo);
210e7a43 1472 int err;
210e7a43 1473
a810007a
SR
1474 /* Bailout if already initialised */
1475 if (s->random_seq)
1476 return 0;
1477
210e7a43
TG
1478 err = cache_random_seq_create(s, count, GFP_KERNEL);
1479 if (err) {
1480 pr_err("SLUB: Unable to initialize free list for %s\n",
1481 s->name);
1482 return err;
1483 }
1484
1485 /* Transform to an offset on the set of pages */
1486 if (s->random_seq) {
19af27af
AD
1487 unsigned int i;
1488
210e7a43
TG
1489 for (i = 0; i < count; i++)
1490 s->random_seq[i] *= s->size;
1491 }
1492 return 0;
1493}
1494
1495/* Initialize each random sequence freelist per cache */
1496static void __init init_freelist_randomization(void)
1497{
1498 struct kmem_cache *s;
1499
1500 mutex_lock(&slab_mutex);
1501
1502 list_for_each_entry(s, &slab_caches, list)
1503 init_cache_random_seq(s);
1504
1505 mutex_unlock(&slab_mutex);
1506}
1507
1508/* Get the next entry on the pre-computed freelist randomized */
1509static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1510 unsigned long *pos, void *start,
1511 unsigned long page_limit,
1512 unsigned long freelist_count)
1513{
1514 unsigned int idx;
1515
1516 /*
1517 * If the target page allocation failed, the number of objects on the
1518 * page might be smaller than the usual size defined by the cache.
1519 */
1520 do {
1521 idx = s->random_seq[*pos];
1522 *pos += 1;
1523 if (*pos >= freelist_count)
1524 *pos = 0;
1525 } while (unlikely(idx >= page_limit));
1526
1527 return (char *)start + idx;
1528}
1529
1530/* Shuffle the single linked freelist based on a random pre-computed sequence */
1531static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1532{
1533 void *start;
1534 void *cur;
1535 void *next;
1536 unsigned long idx, pos, page_limit, freelist_count;
1537
1538 if (page->objects < 2 || !s->random_seq)
1539 return false;
1540
1541 freelist_count = oo_objects(s->oo);
1542 pos = get_random_int() % freelist_count;
1543
1544 page_limit = page->objects * s->size;
1545 start = fixup_red_left(s, page_address(page));
1546
1547 /* First entry is used as the base of the freelist */
1548 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1549 freelist_count);
1550 page->freelist = cur;
1551
1552 for (idx = 1; idx < page->objects; idx++) {
1553 setup_object(s, page, cur);
1554 next = next_freelist_entry(s, page, &pos, start, page_limit,
1555 freelist_count);
1556 set_freepointer(s, cur, next);
1557 cur = next;
1558 }
1559 setup_object(s, page, cur);
1560 set_freepointer(s, cur, NULL);
1561
1562 return true;
1563}
1564#else
1565static inline int init_cache_random_seq(struct kmem_cache *s)
1566{
1567 return 0;
1568}
1569static inline void init_freelist_randomization(void) { }
1570static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1571{
1572 return false;
1573}
1574#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1575
81819f0f
CL
1576static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1577{
06428780 1578 struct page *page;
834f3d11 1579 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1580 gfp_t alloc_gfp;
588f8ba9
TG
1581 void *start, *p;
1582 int idx, order;
210e7a43 1583 bool shuffle;
81819f0f 1584
7e0528da
CL
1585 flags &= gfp_allowed_mask;
1586
d0164adc 1587 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1588 local_irq_enable();
1589
b7a49f0d 1590 flags |= s->allocflags;
e12ba74d 1591
ba52270d
PE
1592 /*
1593 * Let the initial higher-order allocation fail under memory pressure
1594 * so we fall-back to the minimum order allocation.
1595 */
1596 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1597 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1598 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1599
5dfb4175 1600 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1601 if (unlikely(!page)) {
1602 oo = s->min;
80c3a998 1603 alloc_gfp = flags;
65c3376a
CL
1604 /*
1605 * Allocation may have failed due to fragmentation.
1606 * Try a lower order alloc if possible
1607 */
5dfb4175 1608 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1609 if (unlikely(!page))
1610 goto out;
1611 stat(s, ORDER_FALLBACK);
65c3376a 1612 }
5a896d9e 1613
834f3d11 1614 page->objects = oo_objects(oo);
81819f0f 1615
1f458cbf 1616 order = compound_order(page);
1b4f59e3 1617 page->slab_cache = s;
c03f94cc 1618 __SetPageSlab(page);
2f064f34 1619 if (page_is_pfmemalloc(page))
072bb0aa 1620 SetPageSlabPfmemalloc(page);
81819f0f
CL
1621
1622 start = page_address(page);
81819f0f
CL
1623
1624 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1625 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1626
0316bec2
AR
1627 kasan_poison_slab(page);
1628
210e7a43
TG
1629 shuffle = shuffle_freelist(s, page);
1630
1631 if (!shuffle) {
1632 for_each_object_idx(p, idx, s, start, page->objects) {
1633 setup_object(s, page, p);
1634 if (likely(idx < page->objects))
1635 set_freepointer(s, p, p + s->size);
1636 else
1637 set_freepointer(s, p, NULL);
1638 }
1639 page->freelist = fixup_red_left(s, start);
81819f0f 1640 }
81819f0f 1641
e6e82ea1 1642 page->inuse = page->objects;
8cb0a506 1643 page->frozen = 1;
588f8ba9 1644
81819f0f 1645out:
d0164adc 1646 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1647 local_irq_disable();
1648 if (!page)
1649 return NULL;
1650
7779f212 1651 mod_lruvec_page_state(page,
588f8ba9
TG
1652 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1653 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1654 1 << oo_order(oo));
1655
1656 inc_slabs_node(s, page_to_nid(page), page->objects);
1657
81819f0f
CL
1658 return page;
1659}
1660
588f8ba9
TG
1661static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1662{
1663 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 1664 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
1665 flags &= ~GFP_SLAB_BUG_MASK;
1666 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1667 invalid_mask, &invalid_mask, flags, &flags);
65b9de75 1668 dump_stack();
588f8ba9
TG
1669 }
1670
1671 return allocate_slab(s,
1672 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1673}
1674
81819f0f
CL
1675static void __free_slab(struct kmem_cache *s, struct page *page)
1676{
834f3d11
CL
1677 int order = compound_order(page);
1678 int pages = 1 << order;
81819f0f 1679
becfda68 1680 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1681 void *p;
1682
1683 slab_pad_check(s, page);
224a88be
CL
1684 for_each_object(p, s, page_address(page),
1685 page->objects)
f7cb1933 1686 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1687 }
1688
7779f212 1689 mod_lruvec_page_state(page,
81819f0f
CL
1690 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1691 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1692 -pages);
81819f0f 1693
072bb0aa 1694 __ClearPageSlabPfmemalloc(page);
49bd5221 1695 __ClearPageSlab(page);
1f458cbf 1696
22b751c3 1697 page_mapcount_reset(page);
1eb5ac64
NP
1698 if (current->reclaim_state)
1699 current->reclaim_state->reclaimed_slab += pages;
27ee57c9
VD
1700 memcg_uncharge_slab(page, order, s);
1701 __free_pages(page, order);
81819f0f
CL
1702}
1703
da9a638c
LJ
1704#define need_reserve_slab_rcu \
1705 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1706
81819f0f
CL
1707static void rcu_free_slab(struct rcu_head *h)
1708{
1709 struct page *page;
1710
da9a638c
LJ
1711 if (need_reserve_slab_rcu)
1712 page = virt_to_head_page(h);
1713 else
1714 page = container_of((struct list_head *)h, struct page, lru);
1715
1b4f59e3 1716 __free_slab(page->slab_cache, page);
81819f0f
CL
1717}
1718
1719static void free_slab(struct kmem_cache *s, struct page *page)
1720{
5f0d5a3a 1721 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
da9a638c
LJ
1722 struct rcu_head *head;
1723
1724 if (need_reserve_slab_rcu) {
1725 int order = compound_order(page);
1726 int offset = (PAGE_SIZE << order) - s->reserved;
1727
1728 VM_BUG_ON(s->reserved != sizeof(*head));
1729 head = page_address(page) + offset;
1730 } else {
bc4f610d 1731 head = &page->rcu_head;
da9a638c 1732 }
81819f0f
CL
1733
1734 call_rcu(head, rcu_free_slab);
1735 } else
1736 __free_slab(s, page);
1737}
1738
1739static void discard_slab(struct kmem_cache *s, struct page *page)
1740{
205ab99d 1741 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1742 free_slab(s, page);
1743}
1744
1745/*
5cc6eee8 1746 * Management of partially allocated slabs.
81819f0f 1747 */
1e4dd946
SR
1748static inline void
1749__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1750{
e95eed57 1751 n->nr_partial++;
136333d1 1752 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1753 list_add_tail(&page->lru, &n->partial);
1754 else
1755 list_add(&page->lru, &n->partial);
81819f0f
CL
1756}
1757
1e4dd946
SR
1758static inline void add_partial(struct kmem_cache_node *n,
1759 struct page *page, int tail)
62e346a8 1760{
c65c1877 1761 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1762 __add_partial(n, page, tail);
1763}
c65c1877 1764
1e4dd946
SR
1765static inline void remove_partial(struct kmem_cache_node *n,
1766 struct page *page)
1767{
1768 lockdep_assert_held(&n->list_lock);
52b4b950
DS
1769 list_del(&page->lru);
1770 n->nr_partial--;
1e4dd946
SR
1771}
1772
81819f0f 1773/*
7ced3719
CL
1774 * Remove slab from the partial list, freeze it and
1775 * return the pointer to the freelist.
81819f0f 1776 *
497b66f2 1777 * Returns a list of objects or NULL if it fails.
81819f0f 1778 */
497b66f2 1779static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1780 struct kmem_cache_node *n, struct page *page,
633b0764 1781 int mode, int *objects)
81819f0f 1782{
2cfb7455
CL
1783 void *freelist;
1784 unsigned long counters;
1785 struct page new;
1786
c65c1877
PZ
1787 lockdep_assert_held(&n->list_lock);
1788
2cfb7455
CL
1789 /*
1790 * Zap the freelist and set the frozen bit.
1791 * The old freelist is the list of objects for the
1792 * per cpu allocation list.
1793 */
7ced3719
CL
1794 freelist = page->freelist;
1795 counters = page->counters;
1796 new.counters = counters;
633b0764 1797 *objects = new.objects - new.inuse;
23910c50 1798 if (mode) {
7ced3719 1799 new.inuse = page->objects;
23910c50
PE
1800 new.freelist = NULL;
1801 } else {
1802 new.freelist = freelist;
1803 }
2cfb7455 1804
a0132ac0 1805 VM_BUG_ON(new.frozen);
7ced3719 1806 new.frozen = 1;
2cfb7455 1807
7ced3719 1808 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1809 freelist, counters,
02d7633f 1810 new.freelist, new.counters,
7ced3719 1811 "acquire_slab"))
7ced3719 1812 return NULL;
2cfb7455
CL
1813
1814 remove_partial(n, page);
7ced3719 1815 WARN_ON(!freelist);
49e22585 1816 return freelist;
81819f0f
CL
1817}
1818
633b0764 1819static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1820static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1821
81819f0f 1822/*
672bba3a 1823 * Try to allocate a partial slab from a specific node.
81819f0f 1824 */
8ba00bb6
JK
1825static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1826 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1827{
49e22585
CL
1828 struct page *page, *page2;
1829 void *object = NULL;
e5d9998f 1830 unsigned int available = 0;
633b0764 1831 int objects;
81819f0f
CL
1832
1833 /*
1834 * Racy check. If we mistakenly see no partial slabs then we
1835 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1836 * partial slab and there is none available then get_partials()
1837 * will return NULL.
81819f0f
CL
1838 */
1839 if (!n || !n->nr_partial)
1840 return NULL;
1841
1842 spin_lock(&n->list_lock);
49e22585 1843 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1844 void *t;
49e22585 1845
8ba00bb6
JK
1846 if (!pfmemalloc_match(page, flags))
1847 continue;
1848
633b0764 1849 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1850 if (!t)
1851 break;
1852
633b0764 1853 available += objects;
12d79634 1854 if (!object) {
49e22585 1855 c->page = page;
49e22585 1856 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1857 object = t;
49e22585 1858 } else {
633b0764 1859 put_cpu_partial(s, page, 0);
8028dcea 1860 stat(s, CPU_PARTIAL_NODE);
49e22585 1861 }
345c905d 1862 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 1863 || available > slub_cpu_partial(s) / 2)
49e22585
CL
1864 break;
1865
497b66f2 1866 }
81819f0f 1867 spin_unlock(&n->list_lock);
497b66f2 1868 return object;
81819f0f
CL
1869}
1870
1871/*
672bba3a 1872 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1873 */
de3ec035 1874static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1875 struct kmem_cache_cpu *c)
81819f0f
CL
1876{
1877#ifdef CONFIG_NUMA
1878 struct zonelist *zonelist;
dd1a239f 1879 struct zoneref *z;
54a6eb5c
MG
1880 struct zone *zone;
1881 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1882 void *object;
cc9a6c87 1883 unsigned int cpuset_mems_cookie;
81819f0f
CL
1884
1885 /*
672bba3a
CL
1886 * The defrag ratio allows a configuration of the tradeoffs between
1887 * inter node defragmentation and node local allocations. A lower
1888 * defrag_ratio increases the tendency to do local allocations
1889 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1890 *
672bba3a
CL
1891 * If the defrag_ratio is set to 0 then kmalloc() always
1892 * returns node local objects. If the ratio is higher then kmalloc()
1893 * may return off node objects because partial slabs are obtained
1894 * from other nodes and filled up.
81819f0f 1895 *
43efd3ea
LP
1896 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1897 * (which makes defrag_ratio = 1000) then every (well almost)
1898 * allocation will first attempt to defrag slab caches on other nodes.
1899 * This means scanning over all nodes to look for partial slabs which
1900 * may be expensive if we do it every time we are trying to find a slab
672bba3a 1901 * with available objects.
81819f0f 1902 */
9824601e
CL
1903 if (!s->remote_node_defrag_ratio ||
1904 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1905 return NULL;
1906
cc9a6c87 1907 do {
d26914d1 1908 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1909 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1910 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1911 struct kmem_cache_node *n;
1912
1913 n = get_node(s, zone_to_nid(zone));
1914
dee2f8aa 1915 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1916 n->nr_partial > s->min_partial) {
8ba00bb6 1917 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1918 if (object) {
1919 /*
d26914d1
MG
1920 * Don't check read_mems_allowed_retry()
1921 * here - if mems_allowed was updated in
1922 * parallel, that was a harmless race
1923 * between allocation and the cpuset
1924 * update
cc9a6c87 1925 */
cc9a6c87
MG
1926 return object;
1927 }
c0ff7453 1928 }
81819f0f 1929 }
d26914d1 1930 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1931#endif
1932 return NULL;
1933}
1934
1935/*
1936 * Get a partial page, lock it and return it.
1937 */
497b66f2 1938static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1939 struct kmem_cache_cpu *c)
81819f0f 1940{
497b66f2 1941 void *object;
a561ce00
JK
1942 int searchnode = node;
1943
1944 if (node == NUMA_NO_NODE)
1945 searchnode = numa_mem_id();
1946 else if (!node_present_pages(node))
1947 searchnode = node_to_mem_node(node);
81819f0f 1948
8ba00bb6 1949 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1950 if (object || node != NUMA_NO_NODE)
1951 return object;
81819f0f 1952
acd19fd1 1953 return get_any_partial(s, flags, c);
81819f0f
CL
1954}
1955
8a5ec0ba
CL
1956#ifdef CONFIG_PREEMPT
1957/*
1958 * Calculate the next globally unique transaction for disambiguiation
1959 * during cmpxchg. The transactions start with the cpu number and are then
1960 * incremented by CONFIG_NR_CPUS.
1961 */
1962#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1963#else
1964/*
1965 * No preemption supported therefore also no need to check for
1966 * different cpus.
1967 */
1968#define TID_STEP 1
1969#endif
1970
1971static inline unsigned long next_tid(unsigned long tid)
1972{
1973 return tid + TID_STEP;
1974}
1975
1976static inline unsigned int tid_to_cpu(unsigned long tid)
1977{
1978 return tid % TID_STEP;
1979}
1980
1981static inline unsigned long tid_to_event(unsigned long tid)
1982{
1983 return tid / TID_STEP;
1984}
1985
1986static inline unsigned int init_tid(int cpu)
1987{
1988 return cpu;
1989}
1990
1991static inline void note_cmpxchg_failure(const char *n,
1992 const struct kmem_cache *s, unsigned long tid)
1993{
1994#ifdef SLUB_DEBUG_CMPXCHG
1995 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1996
f9f58285 1997 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1998
1999#ifdef CONFIG_PREEMPT
2000 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2001 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2002 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2003 else
2004#endif
2005 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2006 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2007 tid_to_event(tid), tid_to_event(actual_tid));
2008 else
f9f58285 2009 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2010 actual_tid, tid, next_tid(tid));
2011#endif
4fdccdfb 2012 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2013}
2014
788e1aad 2015static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2016{
8a5ec0ba
CL
2017 int cpu;
2018
2019 for_each_possible_cpu(cpu)
2020 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2021}
2cfb7455 2022
81819f0f
CL
2023/*
2024 * Remove the cpu slab
2025 */
d0e0ac97 2026static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2027 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2028{
2cfb7455 2029 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
2030 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2031 int lock = 0;
2032 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2033 void *nextfree;
136333d1 2034 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2035 struct page new;
2036 struct page old;
2037
2038 if (page->freelist) {
84e554e6 2039 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2040 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2041 }
2042
894b8788 2043 /*
2cfb7455
CL
2044 * Stage one: Free all available per cpu objects back
2045 * to the page freelist while it is still frozen. Leave the
2046 * last one.
2047 *
2048 * There is no need to take the list->lock because the page
2049 * is still frozen.
2050 */
2051 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2052 void *prior;
2053 unsigned long counters;
2054
2055 do {
2056 prior = page->freelist;
2057 counters = page->counters;
2058 set_freepointer(s, freelist, prior);
2059 new.counters = counters;
2060 new.inuse--;
a0132ac0 2061 VM_BUG_ON(!new.frozen);
2cfb7455 2062
1d07171c 2063 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2064 prior, counters,
2065 freelist, new.counters,
2066 "drain percpu freelist"));
2067
2068 freelist = nextfree;
2069 }
2070
894b8788 2071 /*
2cfb7455
CL
2072 * Stage two: Ensure that the page is unfrozen while the
2073 * list presence reflects the actual number of objects
2074 * during unfreeze.
2075 *
2076 * We setup the list membership and then perform a cmpxchg
2077 * with the count. If there is a mismatch then the page
2078 * is not unfrozen but the page is on the wrong list.
2079 *
2080 * Then we restart the process which may have to remove
2081 * the page from the list that we just put it on again
2082 * because the number of objects in the slab may have
2083 * changed.
894b8788 2084 */
2cfb7455 2085redo:
894b8788 2086
2cfb7455
CL
2087 old.freelist = page->freelist;
2088 old.counters = page->counters;
a0132ac0 2089 VM_BUG_ON(!old.frozen);
7c2e132c 2090
2cfb7455
CL
2091 /* Determine target state of the slab */
2092 new.counters = old.counters;
2093 if (freelist) {
2094 new.inuse--;
2095 set_freepointer(s, freelist, old.freelist);
2096 new.freelist = freelist;
2097 } else
2098 new.freelist = old.freelist;
2099
2100 new.frozen = 0;
2101
8a5b20ae 2102 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2103 m = M_FREE;
2104 else if (new.freelist) {
2105 m = M_PARTIAL;
2106 if (!lock) {
2107 lock = 1;
2108 /*
2109 * Taking the spinlock removes the possiblity
2110 * that acquire_slab() will see a slab page that
2111 * is frozen
2112 */
2113 spin_lock(&n->list_lock);
2114 }
2115 } else {
2116 m = M_FULL;
2117 if (kmem_cache_debug(s) && !lock) {
2118 lock = 1;
2119 /*
2120 * This also ensures that the scanning of full
2121 * slabs from diagnostic functions will not see
2122 * any frozen slabs.
2123 */
2124 spin_lock(&n->list_lock);
2125 }
2126 }
2127
2128 if (l != m) {
2129
2130 if (l == M_PARTIAL)
2131
2132 remove_partial(n, page);
2133
2134 else if (l == M_FULL)
894b8788 2135
c65c1877 2136 remove_full(s, n, page);
2cfb7455
CL
2137
2138 if (m == M_PARTIAL) {
2139
2140 add_partial(n, page, tail);
136333d1 2141 stat(s, tail);
2cfb7455
CL
2142
2143 } else if (m == M_FULL) {
894b8788 2144
2cfb7455
CL
2145 stat(s, DEACTIVATE_FULL);
2146 add_full(s, n, page);
2147
2148 }
2149 }
2150
2151 l = m;
1d07171c 2152 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2153 old.freelist, old.counters,
2154 new.freelist, new.counters,
2155 "unfreezing slab"))
2156 goto redo;
2157
2cfb7455
CL
2158 if (lock)
2159 spin_unlock(&n->list_lock);
2160
2161 if (m == M_FREE) {
2162 stat(s, DEACTIVATE_EMPTY);
2163 discard_slab(s, page);
2164 stat(s, FREE_SLAB);
894b8788 2165 }
d4ff6d35
WY
2166
2167 c->page = NULL;
2168 c->freelist = NULL;
81819f0f
CL
2169}
2170
d24ac77f
JK
2171/*
2172 * Unfreeze all the cpu partial slabs.
2173 *
59a09917
CL
2174 * This function must be called with interrupts disabled
2175 * for the cpu using c (or some other guarantee must be there
2176 * to guarantee no concurrent accesses).
d24ac77f 2177 */
59a09917
CL
2178static void unfreeze_partials(struct kmem_cache *s,
2179 struct kmem_cache_cpu *c)
49e22585 2180{
345c905d 2181#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2182 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2183 struct page *page, *discard_page = NULL;
49e22585
CL
2184
2185 while ((page = c->partial)) {
49e22585
CL
2186 struct page new;
2187 struct page old;
2188
2189 c->partial = page->next;
43d77867
JK
2190
2191 n2 = get_node(s, page_to_nid(page));
2192 if (n != n2) {
2193 if (n)
2194 spin_unlock(&n->list_lock);
2195
2196 n = n2;
2197 spin_lock(&n->list_lock);
2198 }
49e22585
CL
2199
2200 do {
2201
2202 old.freelist = page->freelist;
2203 old.counters = page->counters;
a0132ac0 2204 VM_BUG_ON(!old.frozen);
49e22585
CL
2205
2206 new.counters = old.counters;
2207 new.freelist = old.freelist;
2208
2209 new.frozen = 0;
2210
d24ac77f 2211 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2212 old.freelist, old.counters,
2213 new.freelist, new.counters,
2214 "unfreezing slab"));
2215
8a5b20ae 2216 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2217 page->next = discard_page;
2218 discard_page = page;
43d77867
JK
2219 } else {
2220 add_partial(n, page, DEACTIVATE_TO_TAIL);
2221 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2222 }
2223 }
2224
2225 if (n)
2226 spin_unlock(&n->list_lock);
9ada1934
SL
2227
2228 while (discard_page) {
2229 page = discard_page;
2230 discard_page = discard_page->next;
2231
2232 stat(s, DEACTIVATE_EMPTY);
2233 discard_slab(s, page);
2234 stat(s, FREE_SLAB);
2235 }
345c905d 2236#endif
49e22585
CL
2237}
2238
2239/*
2240 * Put a page that was just frozen (in __slab_free) into a partial page
0d2d5d40 2241 * slot if available.
49e22585
CL
2242 *
2243 * If we did not find a slot then simply move all the partials to the
2244 * per node partial list.
2245 */
633b0764 2246static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2247{
345c905d 2248#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2249 struct page *oldpage;
2250 int pages;
2251 int pobjects;
2252
d6e0b7fa 2253 preempt_disable();
49e22585
CL
2254 do {
2255 pages = 0;
2256 pobjects = 0;
2257 oldpage = this_cpu_read(s->cpu_slab->partial);
2258
2259 if (oldpage) {
2260 pobjects = oldpage->pobjects;
2261 pages = oldpage->pages;
2262 if (drain && pobjects > s->cpu_partial) {
2263 unsigned long flags;
2264 /*
2265 * partial array is full. Move the existing
2266 * set to the per node partial list.
2267 */
2268 local_irq_save(flags);
59a09917 2269 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2270 local_irq_restore(flags);
e24fc410 2271 oldpage = NULL;
49e22585
CL
2272 pobjects = 0;
2273 pages = 0;
8028dcea 2274 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2275 }
2276 }
2277
2278 pages++;
2279 pobjects += page->objects - page->inuse;
2280
2281 page->pages = pages;
2282 page->pobjects = pobjects;
2283 page->next = oldpage;
2284
d0e0ac97
CG
2285 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2286 != oldpage);
d6e0b7fa
VD
2287 if (unlikely(!s->cpu_partial)) {
2288 unsigned long flags;
2289
2290 local_irq_save(flags);
2291 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2292 local_irq_restore(flags);
2293 }
2294 preempt_enable();
345c905d 2295#endif
49e22585
CL
2296}
2297
dfb4f096 2298static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2299{
84e554e6 2300 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2301 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2302
2303 c->tid = next_tid(c->tid);
81819f0f
CL
2304}
2305
2306/*
2307 * Flush cpu slab.
6446faa2 2308 *
81819f0f
CL
2309 * Called from IPI handler with interrupts disabled.
2310 */
0c710013 2311static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2312{
9dfc6e68 2313 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2314
49e22585
CL
2315 if (likely(c)) {
2316 if (c->page)
2317 flush_slab(s, c);
2318
59a09917 2319 unfreeze_partials(s, c);
49e22585 2320 }
81819f0f
CL
2321}
2322
2323static void flush_cpu_slab(void *d)
2324{
2325 struct kmem_cache *s = d;
81819f0f 2326
dfb4f096 2327 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2328}
2329
a8364d55
GBY
2330static bool has_cpu_slab(int cpu, void *info)
2331{
2332 struct kmem_cache *s = info;
2333 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2334
a93cf07b 2335 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2336}
2337
81819f0f
CL
2338static void flush_all(struct kmem_cache *s)
2339{
a8364d55 2340 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2341}
2342
a96a87bf
SAS
2343/*
2344 * Use the cpu notifier to insure that the cpu slabs are flushed when
2345 * necessary.
2346 */
2347static int slub_cpu_dead(unsigned int cpu)
2348{
2349 struct kmem_cache *s;
2350 unsigned long flags;
2351
2352 mutex_lock(&slab_mutex);
2353 list_for_each_entry(s, &slab_caches, list) {
2354 local_irq_save(flags);
2355 __flush_cpu_slab(s, cpu);
2356 local_irq_restore(flags);
2357 }
2358 mutex_unlock(&slab_mutex);
2359 return 0;
2360}
2361
dfb4f096
CL
2362/*
2363 * Check if the objects in a per cpu structure fit numa
2364 * locality expectations.
2365 */
57d437d2 2366static inline int node_match(struct page *page, int node)
dfb4f096
CL
2367{
2368#ifdef CONFIG_NUMA
4d7868e6 2369 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2370 return 0;
2371#endif
2372 return 1;
2373}
2374
9a02d699 2375#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2376static int count_free(struct page *page)
2377{
2378 return page->objects - page->inuse;
2379}
2380
9a02d699
DR
2381static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2382{
2383 return atomic_long_read(&n->total_objects);
2384}
2385#endif /* CONFIG_SLUB_DEBUG */
2386
2387#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2388static unsigned long count_partial(struct kmem_cache_node *n,
2389 int (*get_count)(struct page *))
2390{
2391 unsigned long flags;
2392 unsigned long x = 0;
2393 struct page *page;
2394
2395 spin_lock_irqsave(&n->list_lock, flags);
2396 list_for_each_entry(page, &n->partial, lru)
2397 x += get_count(page);
2398 spin_unlock_irqrestore(&n->list_lock, flags);
2399 return x;
2400}
9a02d699 2401#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2402
781b2ba6
PE
2403static noinline void
2404slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2405{
9a02d699
DR
2406#ifdef CONFIG_SLUB_DEBUG
2407 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2408 DEFAULT_RATELIMIT_BURST);
781b2ba6 2409 int node;
fa45dc25 2410 struct kmem_cache_node *n;
781b2ba6 2411
9a02d699
DR
2412 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2413 return;
2414
5b3810e5
VB
2415 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2416 nid, gfpflags, &gfpflags);
19af27af 2417 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2418 s->name, s->object_size, s->size, oo_order(s->oo),
2419 oo_order(s->min));
781b2ba6 2420
3b0efdfa 2421 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2422 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2423 s->name);
fa5ec8a1 2424
fa45dc25 2425 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2426 unsigned long nr_slabs;
2427 unsigned long nr_objs;
2428 unsigned long nr_free;
2429
26c02cf0
AB
2430 nr_free = count_partial(n, count_free);
2431 nr_slabs = node_nr_slabs(n);
2432 nr_objs = node_nr_objs(n);
781b2ba6 2433
f9f58285 2434 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2435 node, nr_slabs, nr_objs, nr_free);
2436 }
9a02d699 2437#endif
781b2ba6
PE
2438}
2439
497b66f2
CL
2440static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2441 int node, struct kmem_cache_cpu **pc)
2442{
6faa6833 2443 void *freelist;
188fd063
CL
2444 struct kmem_cache_cpu *c = *pc;
2445 struct page *page;
497b66f2 2446
128227e7
MW
2447 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2448
188fd063 2449 freelist = get_partial(s, flags, node, c);
497b66f2 2450
188fd063
CL
2451 if (freelist)
2452 return freelist;
2453
2454 page = new_slab(s, flags, node);
497b66f2 2455 if (page) {
7c8e0181 2456 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2457 if (c->page)
2458 flush_slab(s, c);
2459
2460 /*
2461 * No other reference to the page yet so we can
2462 * muck around with it freely without cmpxchg
2463 */
6faa6833 2464 freelist = page->freelist;
497b66f2
CL
2465 page->freelist = NULL;
2466
2467 stat(s, ALLOC_SLAB);
497b66f2
CL
2468 c->page = page;
2469 *pc = c;
2470 } else
6faa6833 2471 freelist = NULL;
497b66f2 2472
6faa6833 2473 return freelist;
497b66f2
CL
2474}
2475
072bb0aa
MG
2476static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2477{
2478 if (unlikely(PageSlabPfmemalloc(page)))
2479 return gfp_pfmemalloc_allowed(gfpflags);
2480
2481 return true;
2482}
2483
213eeb9f 2484/*
d0e0ac97
CG
2485 * Check the page->freelist of a page and either transfer the freelist to the
2486 * per cpu freelist or deactivate the page.
213eeb9f
CL
2487 *
2488 * The page is still frozen if the return value is not NULL.
2489 *
2490 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2491 *
2492 * This function must be called with interrupt disabled.
213eeb9f
CL
2493 */
2494static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2495{
2496 struct page new;
2497 unsigned long counters;
2498 void *freelist;
2499
2500 do {
2501 freelist = page->freelist;
2502 counters = page->counters;
6faa6833 2503
213eeb9f 2504 new.counters = counters;
a0132ac0 2505 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2506
2507 new.inuse = page->objects;
2508 new.frozen = freelist != NULL;
2509
d24ac77f 2510 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2511 freelist, counters,
2512 NULL, new.counters,
2513 "get_freelist"));
2514
2515 return freelist;
2516}
2517
81819f0f 2518/*
894b8788
CL
2519 * Slow path. The lockless freelist is empty or we need to perform
2520 * debugging duties.
2521 *
894b8788
CL
2522 * Processing is still very fast if new objects have been freed to the
2523 * regular freelist. In that case we simply take over the regular freelist
2524 * as the lockless freelist and zap the regular freelist.
81819f0f 2525 *
894b8788
CL
2526 * If that is not working then we fall back to the partial lists. We take the
2527 * first element of the freelist as the object to allocate now and move the
2528 * rest of the freelist to the lockless freelist.
81819f0f 2529 *
894b8788 2530 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2531 * we need to allocate a new slab. This is the slowest path since it involves
2532 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2533 *
2534 * Version of __slab_alloc to use when we know that interrupts are
2535 * already disabled (which is the case for bulk allocation).
81819f0f 2536 */
a380a3c7 2537static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2538 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2539{
6faa6833 2540 void *freelist;
f6e7def7 2541 struct page *page;
81819f0f 2542
f6e7def7
CL
2543 page = c->page;
2544 if (!page)
81819f0f 2545 goto new_slab;
49e22585 2546redo:
6faa6833 2547
57d437d2 2548 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2549 int searchnode = node;
2550
2551 if (node != NUMA_NO_NODE && !node_present_pages(node))
2552 searchnode = node_to_mem_node(node);
2553
2554 if (unlikely(!node_match(page, searchnode))) {
2555 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2556 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2557 goto new_slab;
2558 }
fc59c053 2559 }
6446faa2 2560
072bb0aa
MG
2561 /*
2562 * By rights, we should be searching for a slab page that was
2563 * PFMEMALLOC but right now, we are losing the pfmemalloc
2564 * information when the page leaves the per-cpu allocator
2565 */
2566 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2567 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2568 goto new_slab;
2569 }
2570
73736e03 2571 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2572 freelist = c->freelist;
2573 if (freelist)
73736e03 2574 goto load_freelist;
03e404af 2575
f6e7def7 2576 freelist = get_freelist(s, page);
6446faa2 2577
6faa6833 2578 if (!freelist) {
03e404af
CL
2579 c->page = NULL;
2580 stat(s, DEACTIVATE_BYPASS);
fc59c053 2581 goto new_slab;
03e404af 2582 }
6446faa2 2583
84e554e6 2584 stat(s, ALLOC_REFILL);
6446faa2 2585
894b8788 2586load_freelist:
507effea
CL
2587 /*
2588 * freelist is pointing to the list of objects to be used.
2589 * page is pointing to the page from which the objects are obtained.
2590 * That page must be frozen for per cpu allocations to work.
2591 */
a0132ac0 2592 VM_BUG_ON(!c->page->frozen);
6faa6833 2593 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2594 c->tid = next_tid(c->tid);
6faa6833 2595 return freelist;
81819f0f 2596
81819f0f 2597new_slab:
2cfb7455 2598
a93cf07b
WY
2599 if (slub_percpu_partial(c)) {
2600 page = c->page = slub_percpu_partial(c);
2601 slub_set_percpu_partial(c, page);
49e22585 2602 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2603 goto redo;
81819f0f
CL
2604 }
2605
188fd063 2606 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2607
f4697436 2608 if (unlikely(!freelist)) {
9a02d699 2609 slab_out_of_memory(s, gfpflags, node);
f4697436 2610 return NULL;
81819f0f 2611 }
2cfb7455 2612
f6e7def7 2613 page = c->page;
5091b74a 2614 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2615 goto load_freelist;
2cfb7455 2616
497b66f2 2617 /* Only entered in the debug case */
d0e0ac97
CG
2618 if (kmem_cache_debug(s) &&
2619 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2620 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2621
d4ff6d35 2622 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2623 return freelist;
894b8788
CL
2624}
2625
a380a3c7
CL
2626/*
2627 * Another one that disabled interrupt and compensates for possible
2628 * cpu changes by refetching the per cpu area pointer.
2629 */
2630static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2631 unsigned long addr, struct kmem_cache_cpu *c)
2632{
2633 void *p;
2634 unsigned long flags;
2635
2636 local_irq_save(flags);
2637#ifdef CONFIG_PREEMPT
2638 /*
2639 * We may have been preempted and rescheduled on a different
2640 * cpu before disabling interrupts. Need to reload cpu area
2641 * pointer.
2642 */
2643 c = this_cpu_ptr(s->cpu_slab);
2644#endif
2645
2646 p = ___slab_alloc(s, gfpflags, node, addr, c);
2647 local_irq_restore(flags);
2648 return p;
2649}
2650
894b8788
CL
2651/*
2652 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2653 * have the fastpath folded into their functions. So no function call
2654 * overhead for requests that can be satisfied on the fastpath.
2655 *
2656 * The fastpath works by first checking if the lockless freelist can be used.
2657 * If not then __slab_alloc is called for slow processing.
2658 *
2659 * Otherwise we can simply pick the next object from the lockless free list.
2660 */
2b847c3c 2661static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2662 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2663{
03ec0ed5 2664 void *object;
dfb4f096 2665 struct kmem_cache_cpu *c;
57d437d2 2666 struct page *page;
8a5ec0ba 2667 unsigned long tid;
1f84260c 2668
8135be5a
VD
2669 s = slab_pre_alloc_hook(s, gfpflags);
2670 if (!s)
773ff60e 2671 return NULL;
8a5ec0ba 2672redo:
8a5ec0ba
CL
2673 /*
2674 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2675 * enabled. We may switch back and forth between cpus while
2676 * reading from one cpu area. That does not matter as long
2677 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2678 *
9aabf810
JK
2679 * We should guarantee that tid and kmem_cache are retrieved on
2680 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2681 * to check if it is matched or not.
8a5ec0ba 2682 */
9aabf810
JK
2683 do {
2684 tid = this_cpu_read(s->cpu_slab->tid);
2685 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2686 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2687 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2688
2689 /*
2690 * Irqless object alloc/free algorithm used here depends on sequence
2691 * of fetching cpu_slab's data. tid should be fetched before anything
2692 * on c to guarantee that object and page associated with previous tid
2693 * won't be used with current tid. If we fetch tid first, object and
2694 * page could be one associated with next tid and our alloc/free
2695 * request will be failed. In this case, we will retry. So, no problem.
2696 */
2697 barrier();
8a5ec0ba 2698
8a5ec0ba
CL
2699 /*
2700 * The transaction ids are globally unique per cpu and per operation on
2701 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2702 * occurs on the right processor and that there was no operation on the
2703 * linked list in between.
2704 */
8a5ec0ba 2705
9dfc6e68 2706 object = c->freelist;
57d437d2 2707 page = c->page;
8eae1492 2708 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2709 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2710 stat(s, ALLOC_SLOWPATH);
2711 } else {
0ad9500e
ED
2712 void *next_object = get_freepointer_safe(s, object);
2713
8a5ec0ba 2714 /*
25985edc 2715 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2716 * operation and if we are on the right processor.
2717 *
d0e0ac97
CG
2718 * The cmpxchg does the following atomically (without lock
2719 * semantics!)
8a5ec0ba
CL
2720 * 1. Relocate first pointer to the current per cpu area.
2721 * 2. Verify that tid and freelist have not been changed
2722 * 3. If they were not changed replace tid and freelist
2723 *
d0e0ac97
CG
2724 * Since this is without lock semantics the protection is only
2725 * against code executing on this cpu *not* from access by
2726 * other cpus.
8a5ec0ba 2727 */
933393f5 2728 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2729 s->cpu_slab->freelist, s->cpu_slab->tid,
2730 object, tid,
0ad9500e 2731 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2732
2733 note_cmpxchg_failure("slab_alloc", s, tid);
2734 goto redo;
2735 }
0ad9500e 2736 prefetch_freepointer(s, next_object);
84e554e6 2737 stat(s, ALLOC_FASTPATH);
894b8788 2738 }
8a5ec0ba 2739
74e2134f 2740 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2741 memset(object, 0, s->object_size);
d07dbea4 2742
03ec0ed5 2743 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2744
894b8788 2745 return object;
81819f0f
CL
2746}
2747
2b847c3c
EG
2748static __always_inline void *slab_alloc(struct kmem_cache *s,
2749 gfp_t gfpflags, unsigned long addr)
2750{
2751 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2752}
2753
81819f0f
CL
2754void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2755{
2b847c3c 2756 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2757
d0e0ac97
CG
2758 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2759 s->size, gfpflags);
5b882be4
EGM
2760
2761 return ret;
81819f0f
CL
2762}
2763EXPORT_SYMBOL(kmem_cache_alloc);
2764
0f24f128 2765#ifdef CONFIG_TRACING
4a92379b
RK
2766void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2767{
2b847c3c 2768 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2769 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
505f5dcb 2770 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2771 return ret;
2772}
2773EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2774#endif
2775
81819f0f
CL
2776#ifdef CONFIG_NUMA
2777void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2778{
2b847c3c 2779 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2780
ca2b84cb 2781 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2782 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2783
2784 return ret;
81819f0f
CL
2785}
2786EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2787
0f24f128 2788#ifdef CONFIG_TRACING
4a92379b 2789void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2790 gfp_t gfpflags,
4a92379b 2791 int node, size_t size)
5b882be4 2792{
2b847c3c 2793 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2794
2795 trace_kmalloc_node(_RET_IP_, ret,
2796 size, s->size, gfpflags, node);
0316bec2 2797
505f5dcb 2798 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2799 return ret;
5b882be4 2800}
4a92379b 2801EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2802#endif
5d1f57e4 2803#endif
5b882be4 2804
81819f0f 2805/*
94e4d712 2806 * Slow path handling. This may still be called frequently since objects
894b8788 2807 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2808 *
894b8788
CL
2809 * So we still attempt to reduce cache line usage. Just take the slab
2810 * lock and free the item. If there is no additional partial page
2811 * handling required then we can return immediately.
81819f0f 2812 */
894b8788 2813static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2814 void *head, void *tail, int cnt,
2815 unsigned long addr)
2816
81819f0f
CL
2817{
2818 void *prior;
2cfb7455 2819 int was_frozen;
2cfb7455
CL
2820 struct page new;
2821 unsigned long counters;
2822 struct kmem_cache_node *n = NULL;
61728d1e 2823 unsigned long uninitialized_var(flags);
81819f0f 2824
8a5ec0ba 2825 stat(s, FREE_SLOWPATH);
81819f0f 2826
19c7ff9e 2827 if (kmem_cache_debug(s) &&
282acb43 2828 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2829 return;
6446faa2 2830
2cfb7455 2831 do {
837d678d
JK
2832 if (unlikely(n)) {
2833 spin_unlock_irqrestore(&n->list_lock, flags);
2834 n = NULL;
2835 }
2cfb7455
CL
2836 prior = page->freelist;
2837 counters = page->counters;
81084651 2838 set_freepointer(s, tail, prior);
2cfb7455
CL
2839 new.counters = counters;
2840 was_frozen = new.frozen;
81084651 2841 new.inuse -= cnt;
837d678d 2842 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2843
c65c1877 2844 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2845
2846 /*
d0e0ac97
CG
2847 * Slab was on no list before and will be
2848 * partially empty
2849 * We can defer the list move and instead
2850 * freeze it.
49e22585
CL
2851 */
2852 new.frozen = 1;
2853
c65c1877 2854 } else { /* Needs to be taken off a list */
49e22585 2855
b455def2 2856 n = get_node(s, page_to_nid(page));
49e22585
CL
2857 /*
2858 * Speculatively acquire the list_lock.
2859 * If the cmpxchg does not succeed then we may
2860 * drop the list_lock without any processing.
2861 *
2862 * Otherwise the list_lock will synchronize with
2863 * other processors updating the list of slabs.
2864 */
2865 spin_lock_irqsave(&n->list_lock, flags);
2866
2867 }
2cfb7455 2868 }
81819f0f 2869
2cfb7455
CL
2870 } while (!cmpxchg_double_slab(s, page,
2871 prior, counters,
81084651 2872 head, new.counters,
2cfb7455 2873 "__slab_free"));
81819f0f 2874
2cfb7455 2875 if (likely(!n)) {
49e22585
CL
2876
2877 /*
2878 * If we just froze the page then put it onto the
2879 * per cpu partial list.
2880 */
8028dcea 2881 if (new.frozen && !was_frozen) {
49e22585 2882 put_cpu_partial(s, page, 1);
8028dcea
AS
2883 stat(s, CPU_PARTIAL_FREE);
2884 }
49e22585 2885 /*
2cfb7455
CL
2886 * The list lock was not taken therefore no list
2887 * activity can be necessary.
2888 */
b455def2
L
2889 if (was_frozen)
2890 stat(s, FREE_FROZEN);
2891 return;
2892 }
81819f0f 2893
8a5b20ae 2894 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2895 goto slab_empty;
2896
81819f0f 2897 /*
837d678d
JK
2898 * Objects left in the slab. If it was not on the partial list before
2899 * then add it.
81819f0f 2900 */
345c905d
JK
2901 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2902 if (kmem_cache_debug(s))
c65c1877 2903 remove_full(s, n, page);
837d678d
JK
2904 add_partial(n, page, DEACTIVATE_TO_TAIL);
2905 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2906 }
80f08c19 2907 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2908 return;
2909
2910slab_empty:
a973e9dd 2911 if (prior) {
81819f0f 2912 /*
6fbabb20 2913 * Slab on the partial list.
81819f0f 2914 */
5cc6eee8 2915 remove_partial(n, page);
84e554e6 2916 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2917 } else {
6fbabb20 2918 /* Slab must be on the full list */
c65c1877
PZ
2919 remove_full(s, n, page);
2920 }
2cfb7455 2921
80f08c19 2922 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2923 stat(s, FREE_SLAB);
81819f0f 2924 discard_slab(s, page);
81819f0f
CL
2925}
2926
894b8788
CL
2927/*
2928 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2929 * can perform fastpath freeing without additional function calls.
2930 *
2931 * The fastpath is only possible if we are freeing to the current cpu slab
2932 * of this processor. This typically the case if we have just allocated
2933 * the item before.
2934 *
2935 * If fastpath is not possible then fall back to __slab_free where we deal
2936 * with all sorts of special processing.
81084651
JDB
2937 *
2938 * Bulk free of a freelist with several objects (all pointing to the
2939 * same page) possible by specifying head and tail ptr, plus objects
2940 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2941 */
80a9201a
AP
2942static __always_inline void do_slab_free(struct kmem_cache *s,
2943 struct page *page, void *head, void *tail,
2944 int cnt, unsigned long addr)
894b8788 2945{
81084651 2946 void *tail_obj = tail ? : head;
dfb4f096 2947 struct kmem_cache_cpu *c;
8a5ec0ba 2948 unsigned long tid;
8a5ec0ba
CL
2949redo:
2950 /*
2951 * Determine the currently cpus per cpu slab.
2952 * The cpu may change afterward. However that does not matter since
2953 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2954 * during the cmpxchg then the free will succeed.
8a5ec0ba 2955 */
9aabf810
JK
2956 do {
2957 tid = this_cpu_read(s->cpu_slab->tid);
2958 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2959 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2960 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2961
9aabf810
JK
2962 /* Same with comment on barrier() in slab_alloc_node() */
2963 barrier();
c016b0bd 2964
442b06bc 2965 if (likely(page == c->page)) {
81084651 2966 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2967
933393f5 2968 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2969 s->cpu_slab->freelist, s->cpu_slab->tid,
2970 c->freelist, tid,
81084651 2971 head, next_tid(tid)))) {
8a5ec0ba
CL
2972
2973 note_cmpxchg_failure("slab_free", s, tid);
2974 goto redo;
2975 }
84e554e6 2976 stat(s, FREE_FASTPATH);
894b8788 2977 } else
81084651 2978 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 2979
894b8788
CL
2980}
2981
80a9201a
AP
2982static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2983 void *head, void *tail, int cnt,
2984 unsigned long addr)
2985{
80a9201a 2986 /*
c3895391
AK
2987 * With KASAN enabled slab_free_freelist_hook modifies the freelist
2988 * to remove objects, whose reuse must be delayed.
80a9201a 2989 */
c3895391
AK
2990 if (slab_free_freelist_hook(s, &head, &tail))
2991 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
2992}
2993
2994#ifdef CONFIG_KASAN
2995void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2996{
2997 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2998}
2999#endif
3000
81819f0f
CL
3001void kmem_cache_free(struct kmem_cache *s, void *x)
3002{
b9ce5ef4
GC
3003 s = cache_from_obj(s, x);
3004 if (!s)
79576102 3005 return;
81084651 3006 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 3007 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
3008}
3009EXPORT_SYMBOL(kmem_cache_free);
3010
d0ecd894 3011struct detached_freelist {
fbd02630 3012 struct page *page;
d0ecd894
JDB
3013 void *tail;
3014 void *freelist;
3015 int cnt;
376bf125 3016 struct kmem_cache *s;
d0ecd894 3017};
fbd02630 3018
d0ecd894
JDB
3019/*
3020 * This function progressively scans the array with free objects (with
3021 * a limited look ahead) and extract objects belonging to the same
3022 * page. It builds a detached freelist directly within the given
3023 * page/objects. This can happen without any need for
3024 * synchronization, because the objects are owned by running process.
3025 * The freelist is build up as a single linked list in the objects.
3026 * The idea is, that this detached freelist can then be bulk
3027 * transferred to the real freelist(s), but only requiring a single
3028 * synchronization primitive. Look ahead in the array is limited due
3029 * to performance reasons.
3030 */
376bf125
JDB
3031static inline
3032int build_detached_freelist(struct kmem_cache *s, size_t size,
3033 void **p, struct detached_freelist *df)
d0ecd894
JDB
3034{
3035 size_t first_skipped_index = 0;
3036 int lookahead = 3;
3037 void *object;
ca257195 3038 struct page *page;
fbd02630 3039
d0ecd894
JDB
3040 /* Always re-init detached_freelist */
3041 df->page = NULL;
fbd02630 3042
d0ecd894
JDB
3043 do {
3044 object = p[--size];
ca257195 3045 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3046 } while (!object && size);
3eed034d 3047
d0ecd894
JDB
3048 if (!object)
3049 return 0;
fbd02630 3050
ca257195
JDB
3051 page = virt_to_head_page(object);
3052 if (!s) {
3053 /* Handle kalloc'ed objects */
3054 if (unlikely(!PageSlab(page))) {
3055 BUG_ON(!PageCompound(page));
3056 kfree_hook(object);
4949148a 3057 __free_pages(page, compound_order(page));
ca257195
JDB
3058 p[size] = NULL; /* mark object processed */
3059 return size;
3060 }
3061 /* Derive kmem_cache from object */
3062 df->s = page->slab_cache;
3063 } else {
3064 df->s = cache_from_obj(s, object); /* Support for memcg */
3065 }
376bf125 3066
d0ecd894 3067 /* Start new detached freelist */
ca257195 3068 df->page = page;
376bf125 3069 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3070 df->tail = object;
3071 df->freelist = object;
3072 p[size] = NULL; /* mark object processed */
3073 df->cnt = 1;
3074
3075 while (size) {
3076 object = p[--size];
3077 if (!object)
3078 continue; /* Skip processed objects */
3079
3080 /* df->page is always set at this point */
3081 if (df->page == virt_to_head_page(object)) {
3082 /* Opportunity build freelist */
376bf125 3083 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3084 df->freelist = object;
3085 df->cnt++;
3086 p[size] = NULL; /* mark object processed */
3087
3088 continue;
fbd02630 3089 }
d0ecd894
JDB
3090
3091 /* Limit look ahead search */
3092 if (!--lookahead)
3093 break;
3094
3095 if (!first_skipped_index)
3096 first_skipped_index = size + 1;
fbd02630 3097 }
d0ecd894
JDB
3098
3099 return first_skipped_index;
3100}
3101
d0ecd894 3102/* Note that interrupts must be enabled when calling this function. */
376bf125 3103void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3104{
3105 if (WARN_ON(!size))
3106 return;
3107
3108 do {
3109 struct detached_freelist df;
3110
3111 size = build_detached_freelist(s, size, p, &df);
84582c8a 3112 if (!df.page)
d0ecd894
JDB
3113 continue;
3114
376bf125 3115 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3116 } while (likely(size));
484748f0
CL
3117}
3118EXPORT_SYMBOL(kmem_cache_free_bulk);
3119
994eb764 3120/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3121int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3122 void **p)
484748f0 3123{
994eb764
JDB
3124 struct kmem_cache_cpu *c;
3125 int i;
3126
03ec0ed5
JDB
3127 /* memcg and kmem_cache debug support */
3128 s = slab_pre_alloc_hook(s, flags);
3129 if (unlikely(!s))
3130 return false;
994eb764
JDB
3131 /*
3132 * Drain objects in the per cpu slab, while disabling local
3133 * IRQs, which protects against PREEMPT and interrupts
3134 * handlers invoking normal fastpath.
3135 */
3136 local_irq_disable();
3137 c = this_cpu_ptr(s->cpu_slab);
3138
3139 for (i = 0; i < size; i++) {
3140 void *object = c->freelist;
3141
ebe909e0 3142 if (unlikely(!object)) {
ebe909e0
JDB
3143 /*
3144 * Invoking slow path likely have side-effect
3145 * of re-populating per CPU c->freelist
3146 */
87098373 3147 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3148 _RET_IP_, c);
87098373
CL
3149 if (unlikely(!p[i]))
3150 goto error;
3151
ebe909e0
JDB
3152 c = this_cpu_ptr(s->cpu_slab);
3153 continue; /* goto for-loop */
3154 }
994eb764
JDB
3155 c->freelist = get_freepointer(s, object);
3156 p[i] = object;
3157 }
3158 c->tid = next_tid(c->tid);
3159 local_irq_enable();
3160
3161 /* Clear memory outside IRQ disabled fastpath loop */
3162 if (unlikely(flags & __GFP_ZERO)) {
3163 int j;
3164
3165 for (j = 0; j < i; j++)
3166 memset(p[j], 0, s->object_size);
3167 }
3168
03ec0ed5
JDB
3169 /* memcg and kmem_cache debug support */
3170 slab_post_alloc_hook(s, flags, size, p);
865762a8 3171 return i;
87098373 3172error:
87098373 3173 local_irq_enable();
03ec0ed5
JDB
3174 slab_post_alloc_hook(s, flags, i, p);
3175 __kmem_cache_free_bulk(s, i, p);
865762a8 3176 return 0;
484748f0
CL
3177}
3178EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3179
3180
81819f0f 3181/*
672bba3a
CL
3182 * Object placement in a slab is made very easy because we always start at
3183 * offset 0. If we tune the size of the object to the alignment then we can
3184 * get the required alignment by putting one properly sized object after
3185 * another.
81819f0f
CL
3186 *
3187 * Notice that the allocation order determines the sizes of the per cpu
3188 * caches. Each processor has always one slab available for allocations.
3189 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3190 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3191 * locking overhead.
81819f0f
CL
3192 */
3193
3194/*
3195 * Mininum / Maximum order of slab pages. This influences locking overhead
3196 * and slab fragmentation. A higher order reduces the number of partial slabs
3197 * and increases the number of allocations possible without having to
3198 * take the list_lock.
3199 */
19af27af
AD
3200static unsigned int slub_min_order;
3201static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3202static unsigned int slub_min_objects;
81819f0f 3203
81819f0f
CL
3204/*
3205 * Calculate the order of allocation given an slab object size.
3206 *
672bba3a
CL
3207 * The order of allocation has significant impact on performance and other
3208 * system components. Generally order 0 allocations should be preferred since
3209 * order 0 does not cause fragmentation in the page allocator. Larger objects
3210 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3211 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3212 * would be wasted.
3213 *
3214 * In order to reach satisfactory performance we must ensure that a minimum
3215 * number of objects is in one slab. Otherwise we may generate too much
3216 * activity on the partial lists which requires taking the list_lock. This is
3217 * less a concern for large slabs though which are rarely used.
81819f0f 3218 *
672bba3a
CL
3219 * slub_max_order specifies the order where we begin to stop considering the
3220 * number of objects in a slab as critical. If we reach slub_max_order then
3221 * we try to keep the page order as low as possible. So we accept more waste
3222 * of space in favor of a small page order.
81819f0f 3223 *
672bba3a
CL
3224 * Higher order allocations also allow the placement of more objects in a
3225 * slab and thereby reduce object handling overhead. If the user has
3226 * requested a higher mininum order then we start with that one instead of
3227 * the smallest order which will fit the object.
81819f0f 3228 */
19af27af
AD
3229static inline unsigned int slab_order(unsigned int size,
3230 unsigned int min_objects, unsigned int max_order,
3231 unsigned int fract_leftover, unsigned int reserved)
81819f0f 3232{
19af27af
AD
3233 unsigned int min_order = slub_min_order;
3234 unsigned int order;
81819f0f 3235
ab9a0f19 3236 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 3237 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3238
19af27af 3239 for (order = max(min_order, (unsigned int)get_order(min_objects * size + reserved));
5e6d444e 3240 order <= max_order; order++) {
81819f0f 3241
19af27af
AD
3242 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3243 unsigned int rem;
81819f0f 3244
ab9a0f19 3245 rem = (slab_size - reserved) % size;
81819f0f 3246
5e6d444e 3247 if (rem <= slab_size / fract_leftover)
81819f0f 3248 break;
81819f0f 3249 }
672bba3a 3250
81819f0f
CL
3251 return order;
3252}
3253
19af27af 3254static inline int calculate_order(unsigned int size, unsigned int reserved)
5e6d444e 3255{
19af27af
AD
3256 unsigned int order;
3257 unsigned int min_objects;
3258 unsigned int max_objects;
5e6d444e
CL
3259
3260 /*
3261 * Attempt to find best configuration for a slab. This
3262 * works by first attempting to generate a layout with
3263 * the best configuration and backing off gradually.
3264 *
422ff4d7 3265 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3266 * we reduce the minimum objects required in a slab.
3267 */
3268 min_objects = slub_min_objects;
9b2cd506
CL
3269 if (!min_objects)
3270 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 3271 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
3272 min_objects = min(min_objects, max_objects);
3273
5e6d444e 3274 while (min_objects > 1) {
19af27af
AD
3275 unsigned int fraction;
3276
c124f5b5 3277 fraction = 16;
5e6d444e
CL
3278 while (fraction >= 4) {
3279 order = slab_order(size, min_objects,
ab9a0f19 3280 slub_max_order, fraction, reserved);
5e6d444e
CL
3281 if (order <= slub_max_order)
3282 return order;
3283 fraction /= 2;
3284 }
5086c389 3285 min_objects--;
5e6d444e
CL
3286 }
3287
3288 /*
3289 * We were unable to place multiple objects in a slab. Now
3290 * lets see if we can place a single object there.
3291 */
ab9a0f19 3292 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
3293 if (order <= slub_max_order)
3294 return order;
3295
3296 /*
3297 * Doh this slab cannot be placed using slub_max_order.
3298 */
ab9a0f19 3299 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 3300 if (order < MAX_ORDER)
5e6d444e
CL
3301 return order;
3302 return -ENOSYS;
3303}
3304
5595cffc 3305static void
4053497d 3306init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3307{
3308 n->nr_partial = 0;
81819f0f
CL
3309 spin_lock_init(&n->list_lock);
3310 INIT_LIST_HEAD(&n->partial);
8ab1372f 3311#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3312 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3313 atomic_long_set(&n->total_objects, 0);
643b1138 3314 INIT_LIST_HEAD(&n->full);
8ab1372f 3315#endif
81819f0f
CL
3316}
3317
55136592 3318static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3319{
6c182dc0 3320 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3321 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3322
8a5ec0ba 3323 /*
d4d84fef
CM
3324 * Must align to double word boundary for the double cmpxchg
3325 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3326 */
d4d84fef
CM
3327 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3328 2 * sizeof(void *));
8a5ec0ba
CL
3329
3330 if (!s->cpu_slab)
3331 return 0;
3332
3333 init_kmem_cache_cpus(s);
4c93c355 3334
8a5ec0ba 3335 return 1;
4c93c355 3336}
4c93c355 3337
51df1142
CL
3338static struct kmem_cache *kmem_cache_node;
3339
81819f0f
CL
3340/*
3341 * No kmalloc_node yet so do it by hand. We know that this is the first
3342 * slab on the node for this slabcache. There are no concurrent accesses
3343 * possible.
3344 *
721ae22a
ZYW
3345 * Note that this function only works on the kmem_cache_node
3346 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3347 * memory on a fresh node that has no slab structures yet.
81819f0f 3348 */
55136592 3349static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3350{
3351 struct page *page;
3352 struct kmem_cache_node *n;
3353
51df1142 3354 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3355
51df1142 3356 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3357
3358 BUG_ON(!page);
a2f92ee7 3359 if (page_to_nid(page) != node) {
f9f58285
FF
3360 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3361 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3362 }
3363
81819f0f
CL
3364 n = page->freelist;
3365 BUG_ON(!n);
51df1142 3366 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 3367 page->inuse = 1;
8cb0a506 3368 page->frozen = 0;
51df1142 3369 kmem_cache_node->node[node] = n;
8ab1372f 3370#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3371 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3372 init_tracking(kmem_cache_node, n);
8ab1372f 3373#endif
505f5dcb
AP
3374 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3375 GFP_KERNEL);
4053497d 3376 init_kmem_cache_node(n);
51df1142 3377 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3378
67b6c900 3379 /*
1e4dd946
SR
3380 * No locks need to be taken here as it has just been
3381 * initialized and there is no concurrent access.
67b6c900 3382 */
1e4dd946 3383 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3384}
3385
3386static void free_kmem_cache_nodes(struct kmem_cache *s)
3387{
3388 int node;
fa45dc25 3389 struct kmem_cache_node *n;
81819f0f 3390
fa45dc25 3391 for_each_kmem_cache_node(s, node, n) {
81819f0f 3392 s->node[node] = NULL;
ea37df54 3393 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3394 }
3395}
3396
52b4b950
DS
3397void __kmem_cache_release(struct kmem_cache *s)
3398{
210e7a43 3399 cache_random_seq_destroy(s);
52b4b950
DS
3400 free_percpu(s->cpu_slab);
3401 free_kmem_cache_nodes(s);
3402}
3403
55136592 3404static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3405{
3406 int node;
81819f0f 3407
f64dc58c 3408 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3409 struct kmem_cache_node *n;
3410
73367bd8 3411 if (slab_state == DOWN) {
55136592 3412 early_kmem_cache_node_alloc(node);
73367bd8
AD
3413 continue;
3414 }
51df1142 3415 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3416 GFP_KERNEL, node);
81819f0f 3417
73367bd8
AD
3418 if (!n) {
3419 free_kmem_cache_nodes(s);
3420 return 0;
81819f0f 3421 }
73367bd8 3422
4053497d 3423 init_kmem_cache_node(n);
ea37df54 3424 s->node[node] = n;
81819f0f
CL
3425 }
3426 return 1;
3427}
81819f0f 3428
c0bdb232 3429static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3430{
3431 if (min < MIN_PARTIAL)
3432 min = MIN_PARTIAL;
3433 else if (min > MAX_PARTIAL)
3434 min = MAX_PARTIAL;
3435 s->min_partial = min;
3436}
3437
e6d0e1dc
WY
3438static void set_cpu_partial(struct kmem_cache *s)
3439{
3440#ifdef CONFIG_SLUB_CPU_PARTIAL
3441 /*
3442 * cpu_partial determined the maximum number of objects kept in the
3443 * per cpu partial lists of a processor.
3444 *
3445 * Per cpu partial lists mainly contain slabs that just have one
3446 * object freed. If they are used for allocation then they can be
3447 * filled up again with minimal effort. The slab will never hit the
3448 * per node partial lists and therefore no locking will be required.
3449 *
3450 * This setting also determines
3451 *
3452 * A) The number of objects from per cpu partial slabs dumped to the
3453 * per node list when we reach the limit.
3454 * B) The number of objects in cpu partial slabs to extract from the
3455 * per node list when we run out of per cpu objects. We only fetch
3456 * 50% to keep some capacity around for frees.
3457 */
3458 if (!kmem_cache_has_cpu_partial(s))
3459 s->cpu_partial = 0;
3460 else if (s->size >= PAGE_SIZE)
3461 s->cpu_partial = 2;
3462 else if (s->size >= 1024)
3463 s->cpu_partial = 6;
3464 else if (s->size >= 256)
3465 s->cpu_partial = 13;
3466 else
3467 s->cpu_partial = 30;
3468#endif
3469}
3470
81819f0f
CL
3471/*
3472 * calculate_sizes() determines the order and the distribution of data within
3473 * a slab object.
3474 */
06b285dc 3475static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3476{
d50112ed 3477 slab_flags_t flags = s->flags;
be4a7988 3478 unsigned int size = s->object_size;
19af27af 3479 unsigned int order;
81819f0f 3480
d8b42bf5
CL
3481 /*
3482 * Round up object size to the next word boundary. We can only
3483 * place the free pointer at word boundaries and this determines
3484 * the possible location of the free pointer.
3485 */
3486 size = ALIGN(size, sizeof(void *));
3487
3488#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3489 /*
3490 * Determine if we can poison the object itself. If the user of
3491 * the slab may touch the object after free or before allocation
3492 * then we should never poison the object itself.
3493 */
5f0d5a3a 3494 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3495 !s->ctor)
81819f0f
CL
3496 s->flags |= __OBJECT_POISON;
3497 else
3498 s->flags &= ~__OBJECT_POISON;
3499
81819f0f
CL
3500
3501 /*
672bba3a 3502 * If we are Redzoning then check if there is some space between the
81819f0f 3503 * end of the object and the free pointer. If not then add an
672bba3a 3504 * additional word to have some bytes to store Redzone information.
81819f0f 3505 */
3b0efdfa 3506 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3507 size += sizeof(void *);
41ecc55b 3508#endif
81819f0f
CL
3509
3510 /*
672bba3a
CL
3511 * With that we have determined the number of bytes in actual use
3512 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3513 */
3514 s->inuse = size;
3515
5f0d5a3a 3516 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3517 s->ctor)) {
81819f0f
CL
3518 /*
3519 * Relocate free pointer after the object if it is not
3520 * permitted to overwrite the first word of the object on
3521 * kmem_cache_free.
3522 *
3523 * This is the case if we do RCU, have a constructor or
3524 * destructor or are poisoning the objects.
3525 */
3526 s->offset = size;
3527 size += sizeof(void *);
3528 }
3529
c12b3c62 3530#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3531 if (flags & SLAB_STORE_USER)
3532 /*
3533 * Need to store information about allocs and frees after
3534 * the object.
3535 */
3536 size += 2 * sizeof(struct track);
80a9201a 3537#endif
81819f0f 3538
80a9201a
AP
3539 kasan_cache_create(s, &size, &s->flags);
3540#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3541 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3542 /*
3543 * Add some empty padding so that we can catch
3544 * overwrites from earlier objects rather than let
3545 * tracking information or the free pointer be
0211a9c8 3546 * corrupted if a user writes before the start
81819f0f
CL
3547 * of the object.
3548 */
3549 size += sizeof(void *);
d86bd1be
JK
3550
3551 s->red_left_pad = sizeof(void *);
3552 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3553 size += s->red_left_pad;
3554 }
41ecc55b 3555#endif
672bba3a 3556
81819f0f
CL
3557 /*
3558 * SLUB stores one object immediately after another beginning from
3559 * offset 0. In order to align the objects we have to simply size
3560 * each object to conform to the alignment.
3561 */
45906855 3562 size = ALIGN(size, s->align);
81819f0f 3563 s->size = size;
06b285dc
CL
3564 if (forced_order >= 0)
3565 order = forced_order;
3566 else
ab9a0f19 3567 order = calculate_order(size, s->reserved);
81819f0f 3568
19af27af 3569 if ((int)order < 0)
81819f0f
CL
3570 return 0;
3571
b7a49f0d 3572 s->allocflags = 0;
834f3d11 3573 if (order)
b7a49f0d
CL
3574 s->allocflags |= __GFP_COMP;
3575
3576 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3577 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3578
3579 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3580 s->allocflags |= __GFP_RECLAIMABLE;
3581
81819f0f
CL
3582 /*
3583 * Determine the number of objects per slab
3584 */
ab9a0f19
LJ
3585 s->oo = oo_make(order, size, s->reserved);
3586 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3587 if (oo_objects(s->oo) > oo_objects(s->max))
3588 s->max = s->oo;
81819f0f 3589
834f3d11 3590 return !!oo_objects(s->oo);
81819f0f
CL
3591}
3592
d50112ed 3593static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3594{
8a13a4cc 3595 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3596 s->reserved = 0;
2482ddec
KC
3597#ifdef CONFIG_SLAB_FREELIST_HARDENED
3598 s->random = get_random_long();
3599#endif
81819f0f 3600
5f0d5a3a 3601 if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
da9a638c 3602 s->reserved = sizeof(struct rcu_head);
81819f0f 3603
06b285dc 3604 if (!calculate_sizes(s, -1))
81819f0f 3605 goto error;
3de47213
DR
3606 if (disable_higher_order_debug) {
3607 /*
3608 * Disable debugging flags that store metadata if the min slab
3609 * order increased.
3610 */
3b0efdfa 3611 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3612 s->flags &= ~DEBUG_METADATA_FLAGS;
3613 s->offset = 0;
3614 if (!calculate_sizes(s, -1))
3615 goto error;
3616 }
3617 }
81819f0f 3618
2565409f
HC
3619#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3620 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3621 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3622 /* Enable fast mode */
3623 s->flags |= __CMPXCHG_DOUBLE;
3624#endif
3625
3b89d7d8
DR
3626 /*
3627 * The larger the object size is, the more pages we want on the partial
3628 * list to avoid pounding the page allocator excessively.
3629 */
49e22585
CL
3630 set_min_partial(s, ilog2(s->size) / 2);
3631
e6d0e1dc 3632 set_cpu_partial(s);
49e22585 3633
81819f0f 3634#ifdef CONFIG_NUMA
e2cb96b7 3635 s->remote_node_defrag_ratio = 1000;
81819f0f 3636#endif
210e7a43
TG
3637
3638 /* Initialize the pre-computed randomized freelist if slab is up */
3639 if (slab_state >= UP) {
3640 if (init_cache_random_seq(s))
3641 goto error;
3642 }
3643
55136592 3644 if (!init_kmem_cache_nodes(s))
dfb4f096 3645 goto error;
81819f0f 3646
55136592 3647 if (alloc_kmem_cache_cpus(s))
278b1bb1 3648 return 0;
ff12059e 3649
4c93c355 3650 free_kmem_cache_nodes(s);
81819f0f
CL
3651error:
3652 if (flags & SLAB_PANIC)
44065b2e
AD
3653 panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
3654 s->name, s->size, s->size,
4fd0b46e 3655 oo_order(s->oo), s->offset, (unsigned long)flags);
278b1bb1 3656 return -EINVAL;
81819f0f 3657}
81819f0f 3658
33b12c38
CL
3659static void list_slab_objects(struct kmem_cache *s, struct page *page,
3660 const char *text)
3661{
3662#ifdef CONFIG_SLUB_DEBUG
3663 void *addr = page_address(page);
3664 void *p;
a5dd5c11
NK
3665 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3666 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3667 if (!map)
3668 return;
945cf2b6 3669 slab_err(s, page, text, s->name);
33b12c38 3670 slab_lock(page);
33b12c38 3671
5f80b13a 3672 get_map(s, page, map);
33b12c38
CL
3673 for_each_object(p, s, addr, page->objects) {
3674
3675 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3676 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3677 print_tracking(s, p);
3678 }
3679 }
3680 slab_unlock(page);
bbd7d57b 3681 kfree(map);
33b12c38
CL
3682#endif
3683}
3684
81819f0f 3685/*
599870b1 3686 * Attempt to free all partial slabs on a node.
52b4b950
DS
3687 * This is called from __kmem_cache_shutdown(). We must take list_lock
3688 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3689 */
599870b1 3690static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3691{
60398923 3692 LIST_HEAD(discard);
81819f0f
CL
3693 struct page *page, *h;
3694
52b4b950
DS
3695 BUG_ON(irqs_disabled());
3696 spin_lock_irq(&n->list_lock);
33b12c38 3697 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3698 if (!page->inuse) {
52b4b950 3699 remove_partial(n, page);
60398923 3700 list_add(&page->lru, &discard);
33b12c38
CL
3701 } else {
3702 list_slab_objects(s, page,
52b4b950 3703 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3704 }
33b12c38 3705 }
52b4b950 3706 spin_unlock_irq(&n->list_lock);
60398923
CW
3707
3708 list_for_each_entry_safe(page, h, &discard, lru)
3709 discard_slab(s, page);
81819f0f
CL
3710}
3711
f9e13c0a
SB
3712bool __kmem_cache_empty(struct kmem_cache *s)
3713{
3714 int node;
3715 struct kmem_cache_node *n;
3716
3717 for_each_kmem_cache_node(s, node, n)
3718 if (n->nr_partial || slabs_node(s, node))
3719 return false;
3720 return true;
3721}
3722
81819f0f 3723/*
672bba3a 3724 * Release all resources used by a slab cache.
81819f0f 3725 */
52b4b950 3726int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3727{
3728 int node;
fa45dc25 3729 struct kmem_cache_node *n;
81819f0f
CL
3730
3731 flush_all(s);
81819f0f 3732 /* Attempt to free all objects */
fa45dc25 3733 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3734 free_partial(s, n);
3735 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3736 return 1;
3737 }
bf5eb3de 3738 sysfs_slab_remove(s);
81819f0f
CL
3739 return 0;
3740}
3741
81819f0f
CL
3742/********************************************************************
3743 * Kmalloc subsystem
3744 *******************************************************************/
3745
81819f0f
CL
3746static int __init setup_slub_min_order(char *str)
3747{
19af27af 3748 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
3749
3750 return 1;
3751}
3752
3753__setup("slub_min_order=", setup_slub_min_order);
3754
3755static int __init setup_slub_max_order(char *str)
3756{
19af27af
AD
3757 get_option(&str, (int *)&slub_max_order);
3758 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
3759
3760 return 1;
3761}
3762
3763__setup("slub_max_order=", setup_slub_max_order);
3764
3765static int __init setup_slub_min_objects(char *str)
3766{
19af27af 3767 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
3768
3769 return 1;
3770}
3771
3772__setup("slub_min_objects=", setup_slub_min_objects);
3773
81819f0f
CL
3774void *__kmalloc(size_t size, gfp_t flags)
3775{
aadb4bc4 3776 struct kmem_cache *s;
5b882be4 3777 void *ret;
81819f0f 3778
95a05b42 3779 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3780 return kmalloc_large(size, flags);
aadb4bc4 3781
2c59dd65 3782 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3783
3784 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3785 return s;
3786
2b847c3c 3787 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3788
ca2b84cb 3789 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3790
505f5dcb 3791 kasan_kmalloc(s, ret, size, flags);
0316bec2 3792
5b882be4 3793 return ret;
81819f0f
CL
3794}
3795EXPORT_SYMBOL(__kmalloc);
3796
5d1f57e4 3797#ifdef CONFIG_NUMA
f619cfe1
CL
3798static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3799{
b1eeab67 3800 struct page *page;
e4f7c0b4 3801 void *ptr = NULL;
f619cfe1 3802
75f296d9 3803 flags |= __GFP_COMP;
4949148a 3804 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3805 if (page)
e4f7c0b4
CM
3806 ptr = page_address(page);
3807
d56791b3 3808 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3809 return ptr;
f619cfe1
CL
3810}
3811
81819f0f
CL
3812void *__kmalloc_node(size_t size, gfp_t flags, int node)
3813{
aadb4bc4 3814 struct kmem_cache *s;
5b882be4 3815 void *ret;
81819f0f 3816
95a05b42 3817 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3818 ret = kmalloc_large_node(size, flags, node);
3819
ca2b84cb
EGM
3820 trace_kmalloc_node(_RET_IP_, ret,
3821 size, PAGE_SIZE << get_order(size),
3822 flags, node);
5b882be4
EGM
3823
3824 return ret;
3825 }
aadb4bc4 3826
2c59dd65 3827 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3828
3829 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3830 return s;
3831
2b847c3c 3832 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3833
ca2b84cb 3834 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3835
505f5dcb 3836 kasan_kmalloc(s, ret, size, flags);
0316bec2 3837
5b882be4 3838 return ret;
81819f0f
CL
3839}
3840EXPORT_SYMBOL(__kmalloc_node);
3841#endif
3842
ed18adc1
KC
3843#ifdef CONFIG_HARDENED_USERCOPY
3844/*
afcc90f8
KC
3845 * Rejects incorrectly sized objects and objects that are to be copied
3846 * to/from userspace but do not fall entirely within the containing slab
3847 * cache's usercopy region.
ed18adc1
KC
3848 *
3849 * Returns NULL if check passes, otherwise const char * to name of cache
3850 * to indicate an error.
3851 */
f4e6e289
KC
3852void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3853 bool to_user)
ed18adc1
KC
3854{
3855 struct kmem_cache *s;
44065b2e 3856 unsigned int offset;
ed18adc1
KC
3857 size_t object_size;
3858
3859 /* Find object and usable object size. */
3860 s = page->slab_cache;
ed18adc1
KC
3861
3862 /* Reject impossible pointers. */
3863 if (ptr < page_address(page))
f4e6e289
KC
3864 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3865 to_user, 0, n);
ed18adc1
KC
3866
3867 /* Find offset within object. */
3868 offset = (ptr - page_address(page)) % s->size;
3869
3870 /* Adjust for redzone and reject if within the redzone. */
3871 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3872 if (offset < s->red_left_pad)
f4e6e289
KC
3873 usercopy_abort("SLUB object in left red zone",
3874 s->name, to_user, offset, n);
ed18adc1
KC
3875 offset -= s->red_left_pad;
3876 }
3877
afcc90f8
KC
3878 /* Allow address range falling entirely within usercopy region. */
3879 if (offset >= s->useroffset &&
3880 offset - s->useroffset <= s->usersize &&
3881 n <= s->useroffset - offset + s->usersize)
f4e6e289 3882 return;
ed18adc1 3883
afcc90f8
KC
3884 /*
3885 * If the copy is still within the allocated object, produce
3886 * a warning instead of rejecting the copy. This is intended
3887 * to be a temporary method to find any missing usercopy
3888 * whitelists.
3889 */
3890 object_size = slab_ksize(s);
2d891fbc
KC
3891 if (usercopy_fallback &&
3892 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
3893 usercopy_warn("SLUB object", s->name, to_user, offset, n);
3894 return;
3895 }
ed18adc1 3896
f4e6e289 3897 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
3898}
3899#endif /* CONFIG_HARDENED_USERCOPY */
3900
0316bec2 3901static size_t __ksize(const void *object)
81819f0f 3902{
272c1d21 3903 struct page *page;
81819f0f 3904
ef8b4520 3905 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3906 return 0;
3907
294a80a8 3908 page = virt_to_head_page(object);
294a80a8 3909
76994412
PE
3910 if (unlikely(!PageSlab(page))) {
3911 WARN_ON(!PageCompound(page));
294a80a8 3912 return PAGE_SIZE << compound_order(page);
76994412 3913 }
81819f0f 3914
1b4f59e3 3915 return slab_ksize(page->slab_cache);
81819f0f 3916}
0316bec2
AR
3917
3918size_t ksize(const void *object)
3919{
3920 size_t size = __ksize(object);
3921 /* We assume that ksize callers could use whole allocated area,
4ebb31a4
AP
3922 * so we need to unpoison this area.
3923 */
3924 kasan_unpoison_shadow(object, size);
0316bec2
AR
3925 return size;
3926}
b1aabecd 3927EXPORT_SYMBOL(ksize);
81819f0f
CL
3928
3929void kfree(const void *x)
3930{
81819f0f 3931 struct page *page;
5bb983b0 3932 void *object = (void *)x;
81819f0f 3933
2121db74
PE
3934 trace_kfree(_RET_IP_, x);
3935
2408c550 3936 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3937 return;
3938
b49af68f 3939 page = virt_to_head_page(x);
aadb4bc4 3940 if (unlikely(!PageSlab(page))) {
0937502a 3941 BUG_ON(!PageCompound(page));
47adccce 3942 kfree_hook(object);
4949148a 3943 __free_pages(page, compound_order(page));
aadb4bc4
CL
3944 return;
3945 }
81084651 3946 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3947}
3948EXPORT_SYMBOL(kfree);
3949
832f37f5
VD
3950#define SHRINK_PROMOTE_MAX 32
3951
2086d26a 3952/*
832f37f5
VD
3953 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3954 * up most to the head of the partial lists. New allocations will then
3955 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3956 *
3957 * The slabs with the least items are placed last. This results in them
3958 * being allocated from last increasing the chance that the last objects
3959 * are freed in them.
2086d26a 3960 */
c9fc5864 3961int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
3962{
3963 int node;
3964 int i;
3965 struct kmem_cache_node *n;
3966 struct page *page;
3967 struct page *t;
832f37f5
VD
3968 struct list_head discard;
3969 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3970 unsigned long flags;
ce3712d7 3971 int ret = 0;
2086d26a 3972
2086d26a 3973 flush_all(s);
fa45dc25 3974 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3975 INIT_LIST_HEAD(&discard);
3976 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3977 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3978
3979 spin_lock_irqsave(&n->list_lock, flags);
3980
3981 /*
832f37f5 3982 * Build lists of slabs to discard or promote.
2086d26a 3983 *
672bba3a
CL
3984 * Note that concurrent frees may occur while we hold the
3985 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3986 */
3987 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3988 int free = page->objects - page->inuse;
3989
3990 /* Do not reread page->inuse */
3991 barrier();
3992
3993 /* We do not keep full slabs on the list */
3994 BUG_ON(free <= 0);
3995
3996 if (free == page->objects) {
3997 list_move(&page->lru, &discard);
69cb8e6b 3998 n->nr_partial--;
832f37f5
VD
3999 } else if (free <= SHRINK_PROMOTE_MAX)
4000 list_move(&page->lru, promote + free - 1);
2086d26a
CL
4001 }
4002
2086d26a 4003 /*
832f37f5
VD
4004 * Promote the slabs filled up most to the head of the
4005 * partial list.
2086d26a 4006 */
832f37f5
VD
4007 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4008 list_splice(promote + i, &n->partial);
2086d26a 4009
2086d26a 4010 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4011
4012 /* Release empty slabs */
832f37f5 4013 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 4014 discard_slab(s, page);
ce3712d7
VD
4015
4016 if (slabs_node(s, node))
4017 ret = 1;
2086d26a
CL
4018 }
4019
ce3712d7 4020 return ret;
2086d26a 4021}
2086d26a 4022
c9fc5864 4023#ifdef CONFIG_MEMCG
01fb58bc
TH
4024static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
4025{
50862ce7
TH
4026 /*
4027 * Called with all the locks held after a sched RCU grace period.
4028 * Even if @s becomes empty after shrinking, we can't know that @s
4029 * doesn't have allocations already in-flight and thus can't
4030 * destroy @s until the associated memcg is released.
4031 *
4032 * However, let's remove the sysfs files for empty caches here.
4033 * Each cache has a lot of interface files which aren't
4034 * particularly useful for empty draining caches; otherwise, we can
4035 * easily end up with millions of unnecessary sysfs files on
4036 * systems which have a lot of memory and transient cgroups.
4037 */
4038 if (!__kmem_cache_shrink(s))
4039 sysfs_slab_remove(s);
01fb58bc
TH
4040}
4041
c9fc5864
TH
4042void __kmemcg_cache_deactivate(struct kmem_cache *s)
4043{
4044 /*
4045 * Disable empty slabs caching. Used to avoid pinning offline
4046 * memory cgroups by kmem pages that can be freed.
4047 */
e6d0e1dc 4048 slub_set_cpu_partial(s, 0);
c9fc5864
TH
4049 s->min_partial = 0;
4050
4051 /*
4052 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
01fb58bc 4053 * we have to make sure the change is visible before shrinking.
c9fc5864 4054 */
01fb58bc 4055 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
c9fc5864
TH
4056}
4057#endif
4058
b9049e23
YG
4059static int slab_mem_going_offline_callback(void *arg)
4060{
4061 struct kmem_cache *s;
4062
18004c5d 4063 mutex_lock(&slab_mutex);
b9049e23 4064 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4065 __kmem_cache_shrink(s);
18004c5d 4066 mutex_unlock(&slab_mutex);
b9049e23
YG
4067
4068 return 0;
4069}
4070
4071static void slab_mem_offline_callback(void *arg)
4072{
4073 struct kmem_cache_node *n;
4074 struct kmem_cache *s;
4075 struct memory_notify *marg = arg;
4076 int offline_node;
4077
b9d5ab25 4078 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4079
4080 /*
4081 * If the node still has available memory. we need kmem_cache_node
4082 * for it yet.
4083 */
4084 if (offline_node < 0)
4085 return;
4086
18004c5d 4087 mutex_lock(&slab_mutex);
b9049e23
YG
4088 list_for_each_entry(s, &slab_caches, list) {
4089 n = get_node(s, offline_node);
4090 if (n) {
4091 /*
4092 * if n->nr_slabs > 0, slabs still exist on the node
4093 * that is going down. We were unable to free them,
c9404c9c 4094 * and offline_pages() function shouldn't call this
b9049e23
YG
4095 * callback. So, we must fail.
4096 */
0f389ec6 4097 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4098
4099 s->node[offline_node] = NULL;
8de66a0c 4100 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4101 }
4102 }
18004c5d 4103 mutex_unlock(&slab_mutex);
b9049e23
YG
4104}
4105
4106static int slab_mem_going_online_callback(void *arg)
4107{
4108 struct kmem_cache_node *n;
4109 struct kmem_cache *s;
4110 struct memory_notify *marg = arg;
b9d5ab25 4111 int nid = marg->status_change_nid_normal;
b9049e23
YG
4112 int ret = 0;
4113
4114 /*
4115 * If the node's memory is already available, then kmem_cache_node is
4116 * already created. Nothing to do.
4117 */
4118 if (nid < 0)
4119 return 0;
4120
4121 /*
0121c619 4122 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4123 * allocate a kmem_cache_node structure in order to bring the node
4124 * online.
4125 */
18004c5d 4126 mutex_lock(&slab_mutex);
b9049e23
YG
4127 list_for_each_entry(s, &slab_caches, list) {
4128 /*
4129 * XXX: kmem_cache_alloc_node will fallback to other nodes
4130 * since memory is not yet available from the node that
4131 * is brought up.
4132 */
8de66a0c 4133 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4134 if (!n) {
4135 ret = -ENOMEM;
4136 goto out;
4137 }
4053497d 4138 init_kmem_cache_node(n);
b9049e23
YG
4139 s->node[nid] = n;
4140 }
4141out:
18004c5d 4142 mutex_unlock(&slab_mutex);
b9049e23
YG
4143 return ret;
4144}
4145
4146static int slab_memory_callback(struct notifier_block *self,
4147 unsigned long action, void *arg)
4148{
4149 int ret = 0;
4150
4151 switch (action) {
4152 case MEM_GOING_ONLINE:
4153 ret = slab_mem_going_online_callback(arg);
4154 break;
4155 case MEM_GOING_OFFLINE:
4156 ret = slab_mem_going_offline_callback(arg);
4157 break;
4158 case MEM_OFFLINE:
4159 case MEM_CANCEL_ONLINE:
4160 slab_mem_offline_callback(arg);
4161 break;
4162 case MEM_ONLINE:
4163 case MEM_CANCEL_OFFLINE:
4164 break;
4165 }
dc19f9db
KH
4166 if (ret)
4167 ret = notifier_from_errno(ret);
4168 else
4169 ret = NOTIFY_OK;
b9049e23
YG
4170 return ret;
4171}
4172
3ac38faa
AM
4173static struct notifier_block slab_memory_callback_nb = {
4174 .notifier_call = slab_memory_callback,
4175 .priority = SLAB_CALLBACK_PRI,
4176};
b9049e23 4177
81819f0f
CL
4178/********************************************************************
4179 * Basic setup of slabs
4180 *******************************************************************/
4181
51df1142
CL
4182/*
4183 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4184 * the page allocator. Allocate them properly then fix up the pointers
4185 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4186 */
4187
dffb4d60 4188static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4189{
4190 int node;
dffb4d60 4191 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4192 struct kmem_cache_node *n;
51df1142 4193
dffb4d60 4194 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4195
7d557b3c
GC
4196 /*
4197 * This runs very early, and only the boot processor is supposed to be
4198 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4199 * IPIs around.
4200 */
4201 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4202 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4203 struct page *p;
4204
fa45dc25
CL
4205 list_for_each_entry(p, &n->partial, lru)
4206 p->slab_cache = s;
51df1142 4207
607bf324 4208#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
4209 list_for_each_entry(p, &n->full, lru)
4210 p->slab_cache = s;
51df1142 4211#endif
51df1142 4212 }
f7ce3190 4213 slab_init_memcg_params(s);
dffb4d60 4214 list_add(&s->list, &slab_caches);
510ded33 4215 memcg_link_cache(s);
dffb4d60 4216 return s;
51df1142
CL
4217}
4218
81819f0f
CL
4219void __init kmem_cache_init(void)
4220{
dffb4d60
CL
4221 static __initdata struct kmem_cache boot_kmem_cache,
4222 boot_kmem_cache_node;
51df1142 4223
fc8d8620
SG
4224 if (debug_guardpage_minorder())
4225 slub_max_order = 0;
4226
dffb4d60
CL
4227 kmem_cache_node = &boot_kmem_cache_node;
4228 kmem_cache = &boot_kmem_cache;
51df1142 4229
dffb4d60 4230 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4231 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4232
3ac38faa 4233 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4234
4235 /* Able to allocate the per node structures */
4236 slab_state = PARTIAL;
4237
dffb4d60
CL
4238 create_boot_cache(kmem_cache, "kmem_cache",
4239 offsetof(struct kmem_cache, node) +
4240 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4241 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4242
dffb4d60 4243 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4244 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4245
4246 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4247 setup_kmalloc_cache_index_table();
f97d5f63 4248 create_kmalloc_caches(0);
81819f0f 4249
210e7a43
TG
4250 /* Setup random freelists for each cache */
4251 init_freelist_randomization();
4252
a96a87bf
SAS
4253 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4254 slub_cpu_dead);
81819f0f 4255
19af27af 4256 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n",
f97d5f63 4257 cache_line_size(),
81819f0f
CL
4258 slub_min_order, slub_max_order, slub_min_objects,
4259 nr_cpu_ids, nr_node_ids);
4260}
4261
7e85ee0c
PE
4262void __init kmem_cache_init_late(void)
4263{
7e85ee0c
PE
4264}
4265
2633d7a0 4266struct kmem_cache *
f4957d5b 4267__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4268 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4269{
426589f5 4270 struct kmem_cache *s, *c;
81819f0f 4271
a44cb944 4272 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4273 if (s) {
4274 s->refcount++;
84d0ddd6 4275
81819f0f
CL
4276 /*
4277 * Adjust the object sizes so that we clear
4278 * the complete object on kzalloc.
4279 */
1b473f29 4280 s->object_size = max(s->object_size, size);
52ee6d74 4281 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4282
426589f5 4283 for_each_memcg_cache(c, s) {
84d0ddd6 4284 c->object_size = s->object_size;
52ee6d74 4285 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
84d0ddd6
VD
4286 }
4287
7b8f3b66 4288 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4289 s->refcount--;
cbb79694 4290 s = NULL;
7b8f3b66 4291 }
a0e1d1be 4292 }
6446faa2 4293
cbb79694
CL
4294 return s;
4295}
84c1cf62 4296
d50112ed 4297int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4298{
aac3a166
PE
4299 int err;
4300
4301 err = kmem_cache_open(s, flags);
4302 if (err)
4303 return err;
20cea968 4304
45530c44
CL
4305 /* Mutex is not taken during early boot */
4306 if (slab_state <= UP)
4307 return 0;
4308
107dab5c 4309 memcg_propagate_slab_attrs(s);
aac3a166 4310 err = sysfs_slab_add(s);
aac3a166 4311 if (err)
52b4b950 4312 __kmem_cache_release(s);
20cea968 4313
aac3a166 4314 return err;
81819f0f 4315}
81819f0f 4316
ce71e27c 4317void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4318{
aadb4bc4 4319 struct kmem_cache *s;
94b528d0 4320 void *ret;
aadb4bc4 4321
95a05b42 4322 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4323 return kmalloc_large(size, gfpflags);
4324
2c59dd65 4325 s = kmalloc_slab(size, gfpflags);
81819f0f 4326
2408c550 4327 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4328 return s;
81819f0f 4329
2b847c3c 4330 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4331
25985edc 4332 /* Honor the call site pointer we received. */
ca2b84cb 4333 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4334
4335 return ret;
81819f0f
CL
4336}
4337
5d1f57e4 4338#ifdef CONFIG_NUMA
81819f0f 4339void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4340 int node, unsigned long caller)
81819f0f 4341{
aadb4bc4 4342 struct kmem_cache *s;
94b528d0 4343 void *ret;
aadb4bc4 4344
95a05b42 4345 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4346 ret = kmalloc_large_node(size, gfpflags, node);
4347
4348 trace_kmalloc_node(caller, ret,
4349 size, PAGE_SIZE << get_order(size),
4350 gfpflags, node);
4351
4352 return ret;
4353 }
eada35ef 4354
2c59dd65 4355 s = kmalloc_slab(size, gfpflags);
81819f0f 4356
2408c550 4357 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4358 return s;
81819f0f 4359
2b847c3c 4360 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4361
25985edc 4362 /* Honor the call site pointer we received. */
ca2b84cb 4363 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4364
4365 return ret;
81819f0f 4366}
5d1f57e4 4367#endif
81819f0f 4368
ab4d5ed5 4369#ifdef CONFIG_SYSFS
205ab99d
CL
4370static int count_inuse(struct page *page)
4371{
4372 return page->inuse;
4373}
4374
4375static int count_total(struct page *page)
4376{
4377 return page->objects;
4378}
ab4d5ed5 4379#endif
205ab99d 4380
ab4d5ed5 4381#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4382static int validate_slab(struct kmem_cache *s, struct page *page,
4383 unsigned long *map)
53e15af0
CL
4384{
4385 void *p;
a973e9dd 4386 void *addr = page_address(page);
53e15af0
CL
4387
4388 if (!check_slab(s, page) ||
4389 !on_freelist(s, page, NULL))
4390 return 0;
4391
4392 /* Now we know that a valid freelist exists */
39b26464 4393 bitmap_zero(map, page->objects);
53e15af0 4394
5f80b13a
CL
4395 get_map(s, page, map);
4396 for_each_object(p, s, addr, page->objects) {
4397 if (test_bit(slab_index(p, s, addr), map))
4398 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4399 return 0;
53e15af0
CL
4400 }
4401
224a88be 4402 for_each_object(p, s, addr, page->objects)
7656c72b 4403 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4404 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4405 return 0;
4406 return 1;
4407}
4408
434e245d
CL
4409static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4410 unsigned long *map)
53e15af0 4411{
881db7fb
CL
4412 slab_lock(page);
4413 validate_slab(s, page, map);
4414 slab_unlock(page);
53e15af0
CL
4415}
4416
434e245d
CL
4417static int validate_slab_node(struct kmem_cache *s,
4418 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4419{
4420 unsigned long count = 0;
4421 struct page *page;
4422 unsigned long flags;
4423
4424 spin_lock_irqsave(&n->list_lock, flags);
4425
4426 list_for_each_entry(page, &n->partial, lru) {
434e245d 4427 validate_slab_slab(s, page, map);
53e15af0
CL
4428 count++;
4429 }
4430 if (count != n->nr_partial)
f9f58285
FF
4431 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4432 s->name, count, n->nr_partial);
53e15af0
CL
4433
4434 if (!(s->flags & SLAB_STORE_USER))
4435 goto out;
4436
4437 list_for_each_entry(page, &n->full, lru) {
434e245d 4438 validate_slab_slab(s, page, map);
53e15af0
CL
4439 count++;
4440 }
4441 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4442 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4443 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4444
4445out:
4446 spin_unlock_irqrestore(&n->list_lock, flags);
4447 return count;
4448}
4449
434e245d 4450static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4451{
4452 int node;
4453 unsigned long count = 0;
205ab99d 4454 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 4455 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4456 struct kmem_cache_node *n;
434e245d
CL
4457
4458 if (!map)
4459 return -ENOMEM;
53e15af0
CL
4460
4461 flush_all(s);
fa45dc25 4462 for_each_kmem_cache_node(s, node, n)
434e245d 4463 count += validate_slab_node(s, n, map);
434e245d 4464 kfree(map);
53e15af0
CL
4465 return count;
4466}
88a420e4 4467/*
672bba3a 4468 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4469 * and freed.
4470 */
4471
4472struct location {
4473 unsigned long count;
ce71e27c 4474 unsigned long addr;
45edfa58
CL
4475 long long sum_time;
4476 long min_time;
4477 long max_time;
4478 long min_pid;
4479 long max_pid;
174596a0 4480 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4481 nodemask_t nodes;
88a420e4
CL
4482};
4483
4484struct loc_track {
4485 unsigned long max;
4486 unsigned long count;
4487 struct location *loc;
4488};
4489
4490static void free_loc_track(struct loc_track *t)
4491{
4492 if (t->max)
4493 free_pages((unsigned long)t->loc,
4494 get_order(sizeof(struct location) * t->max));
4495}
4496
68dff6a9 4497static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4498{
4499 struct location *l;
4500 int order;
4501
88a420e4
CL
4502 order = get_order(sizeof(struct location) * max);
4503
68dff6a9 4504 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4505 if (!l)
4506 return 0;
4507
4508 if (t->count) {
4509 memcpy(l, t->loc, sizeof(struct location) * t->count);
4510 free_loc_track(t);
4511 }
4512 t->max = max;
4513 t->loc = l;
4514 return 1;
4515}
4516
4517static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4518 const struct track *track)
88a420e4
CL
4519{
4520 long start, end, pos;
4521 struct location *l;
ce71e27c 4522 unsigned long caddr;
45edfa58 4523 unsigned long age = jiffies - track->when;
88a420e4
CL
4524
4525 start = -1;
4526 end = t->count;
4527
4528 for ( ; ; ) {
4529 pos = start + (end - start + 1) / 2;
4530
4531 /*
4532 * There is nothing at "end". If we end up there
4533 * we need to add something to before end.
4534 */
4535 if (pos == end)
4536 break;
4537
4538 caddr = t->loc[pos].addr;
45edfa58
CL
4539 if (track->addr == caddr) {
4540
4541 l = &t->loc[pos];
4542 l->count++;
4543 if (track->when) {
4544 l->sum_time += age;
4545 if (age < l->min_time)
4546 l->min_time = age;
4547 if (age > l->max_time)
4548 l->max_time = age;
4549
4550 if (track->pid < l->min_pid)
4551 l->min_pid = track->pid;
4552 if (track->pid > l->max_pid)
4553 l->max_pid = track->pid;
4554
174596a0
RR
4555 cpumask_set_cpu(track->cpu,
4556 to_cpumask(l->cpus));
45edfa58
CL
4557 }
4558 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4559 return 1;
4560 }
4561
45edfa58 4562 if (track->addr < caddr)
88a420e4
CL
4563 end = pos;
4564 else
4565 start = pos;
4566 }
4567
4568 /*
672bba3a 4569 * Not found. Insert new tracking element.
88a420e4 4570 */
68dff6a9 4571 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4572 return 0;
4573
4574 l = t->loc + pos;
4575 if (pos < t->count)
4576 memmove(l + 1, l,
4577 (t->count - pos) * sizeof(struct location));
4578 t->count++;
4579 l->count = 1;
45edfa58
CL
4580 l->addr = track->addr;
4581 l->sum_time = age;
4582 l->min_time = age;
4583 l->max_time = age;
4584 l->min_pid = track->pid;
4585 l->max_pid = track->pid;
174596a0
RR
4586 cpumask_clear(to_cpumask(l->cpus));
4587 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4588 nodes_clear(l->nodes);
4589 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4590 return 1;
4591}
4592
4593static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4594 struct page *page, enum track_item alloc,
a5dd5c11 4595 unsigned long *map)
88a420e4 4596{
a973e9dd 4597 void *addr = page_address(page);
88a420e4
CL
4598 void *p;
4599
39b26464 4600 bitmap_zero(map, page->objects);
5f80b13a 4601 get_map(s, page, map);
88a420e4 4602
224a88be 4603 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4604 if (!test_bit(slab_index(p, s, addr), map))
4605 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4606}
4607
4608static int list_locations(struct kmem_cache *s, char *buf,
4609 enum track_item alloc)
4610{
e374d483 4611 int len = 0;
88a420e4 4612 unsigned long i;
68dff6a9 4613 struct loc_track t = { 0, 0, NULL };
88a420e4 4614 int node;
bbd7d57b
ED
4615 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4616 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4617 struct kmem_cache_node *n;
88a420e4 4618
bbd7d57b 4619 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
0ee931c4 4620 GFP_KERNEL)) {
bbd7d57b 4621 kfree(map);
68dff6a9 4622 return sprintf(buf, "Out of memory\n");
bbd7d57b 4623 }
88a420e4
CL
4624 /* Push back cpu slabs */
4625 flush_all(s);
4626
fa45dc25 4627 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4628 unsigned long flags;
4629 struct page *page;
4630
9e86943b 4631 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4632 continue;
4633
4634 spin_lock_irqsave(&n->list_lock, flags);
4635 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4636 process_slab(&t, s, page, alloc, map);
88a420e4 4637 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4638 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4639 spin_unlock_irqrestore(&n->list_lock, flags);
4640 }
4641
4642 for (i = 0; i < t.count; i++) {
45edfa58 4643 struct location *l = &t.loc[i];
88a420e4 4644
9c246247 4645 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4646 break;
e374d483 4647 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4648
4649 if (l->addr)
62c70bce 4650 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4651 else
e374d483 4652 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4653
4654 if (l->sum_time != l->min_time) {
e374d483 4655 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4656 l->min_time,
4657 (long)div_u64(l->sum_time, l->count),
4658 l->max_time);
45edfa58 4659 } else
e374d483 4660 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4661 l->min_time);
4662
4663 if (l->min_pid != l->max_pid)
e374d483 4664 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4665 l->min_pid, l->max_pid);
4666 else
e374d483 4667 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4668 l->min_pid);
4669
174596a0
RR
4670 if (num_online_cpus() > 1 &&
4671 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4672 len < PAGE_SIZE - 60)
4673 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4674 " cpus=%*pbl",
4675 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4676
62bc62a8 4677 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4678 len < PAGE_SIZE - 60)
4679 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4680 " nodes=%*pbl",
4681 nodemask_pr_args(&l->nodes));
45edfa58 4682
e374d483 4683 len += sprintf(buf + len, "\n");
88a420e4
CL
4684 }
4685
4686 free_loc_track(&t);
bbd7d57b 4687 kfree(map);
88a420e4 4688 if (!t.count)
e374d483
HH
4689 len += sprintf(buf, "No data\n");
4690 return len;
88a420e4 4691}
ab4d5ed5 4692#endif
88a420e4 4693
a5a84755 4694#ifdef SLUB_RESILIENCY_TEST
c07b8183 4695static void __init resiliency_test(void)
a5a84755
CL
4696{
4697 u8 *p;
4698
95a05b42 4699 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4700
f9f58285
FF
4701 pr_err("SLUB resiliency testing\n");
4702 pr_err("-----------------------\n");
4703 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4704
4705 p = kzalloc(16, GFP_KERNEL);
4706 p[16] = 0x12;
f9f58285
FF
4707 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4708 p + 16);
a5a84755
CL
4709
4710 validate_slab_cache(kmalloc_caches[4]);
4711
4712 /* Hmmm... The next two are dangerous */
4713 p = kzalloc(32, GFP_KERNEL);
4714 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4715 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4716 p);
4717 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4718
4719 validate_slab_cache(kmalloc_caches[5]);
4720 p = kzalloc(64, GFP_KERNEL);
4721 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4722 *p = 0x56;
f9f58285
FF
4723 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4724 p);
4725 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4726 validate_slab_cache(kmalloc_caches[6]);
4727
f9f58285 4728 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4729 p = kzalloc(128, GFP_KERNEL);
4730 kfree(p);
4731 *p = 0x78;
f9f58285 4732 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4733 validate_slab_cache(kmalloc_caches[7]);
4734
4735 p = kzalloc(256, GFP_KERNEL);
4736 kfree(p);
4737 p[50] = 0x9a;
f9f58285 4738 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4739 validate_slab_cache(kmalloc_caches[8]);
4740
4741 p = kzalloc(512, GFP_KERNEL);
4742 kfree(p);
4743 p[512] = 0xab;
f9f58285 4744 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4745 validate_slab_cache(kmalloc_caches[9]);
4746}
4747#else
4748#ifdef CONFIG_SYSFS
4749static void resiliency_test(void) {};
4750#endif
4751#endif
4752
ab4d5ed5 4753#ifdef CONFIG_SYSFS
81819f0f 4754enum slab_stat_type {
205ab99d
CL
4755 SL_ALL, /* All slabs */
4756 SL_PARTIAL, /* Only partially allocated slabs */
4757 SL_CPU, /* Only slabs used for cpu caches */
4758 SL_OBJECTS, /* Determine allocated objects not slabs */
4759 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4760};
4761
205ab99d 4762#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4763#define SO_PARTIAL (1 << SL_PARTIAL)
4764#define SO_CPU (1 << SL_CPU)
4765#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4766#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4767
1663f26d
TH
4768#ifdef CONFIG_MEMCG
4769static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4770
4771static int __init setup_slub_memcg_sysfs(char *str)
4772{
4773 int v;
4774
4775 if (get_option(&str, &v) > 0)
4776 memcg_sysfs_enabled = v;
4777
4778 return 1;
4779}
4780
4781__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4782#endif
4783
62e5c4b4
CG
4784static ssize_t show_slab_objects(struct kmem_cache *s,
4785 char *buf, unsigned long flags)
81819f0f
CL
4786{
4787 unsigned long total = 0;
81819f0f
CL
4788 int node;
4789 int x;
4790 unsigned long *nodes;
81819f0f 4791
e35e1a97 4792 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4793 if (!nodes)
4794 return -ENOMEM;
81819f0f 4795
205ab99d
CL
4796 if (flags & SO_CPU) {
4797 int cpu;
81819f0f 4798
205ab99d 4799 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4800 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4801 cpu);
ec3ab083 4802 int node;
49e22585 4803 struct page *page;
dfb4f096 4804
4db0c3c2 4805 page = READ_ONCE(c->page);
ec3ab083
CL
4806 if (!page)
4807 continue;
205ab99d 4808
ec3ab083
CL
4809 node = page_to_nid(page);
4810 if (flags & SO_TOTAL)
4811 x = page->objects;
4812 else if (flags & SO_OBJECTS)
4813 x = page->inuse;
4814 else
4815 x = 1;
49e22585 4816
ec3ab083
CL
4817 total += x;
4818 nodes[node] += x;
4819
a93cf07b 4820 page = slub_percpu_partial_read_once(c);
49e22585 4821 if (page) {
8afb1474
LZ
4822 node = page_to_nid(page);
4823 if (flags & SO_TOTAL)
4824 WARN_ON_ONCE(1);
4825 else if (flags & SO_OBJECTS)
4826 WARN_ON_ONCE(1);
4827 else
4828 x = page->pages;
bc6697d8
ED
4829 total += x;
4830 nodes[node] += x;
49e22585 4831 }
81819f0f
CL
4832 }
4833 }
4834
bfc8c901 4835 get_online_mems();
ab4d5ed5 4836#ifdef CONFIG_SLUB_DEBUG
205ab99d 4837 if (flags & SO_ALL) {
fa45dc25
CL
4838 struct kmem_cache_node *n;
4839
4840 for_each_kmem_cache_node(s, node, n) {
205ab99d 4841
d0e0ac97
CG
4842 if (flags & SO_TOTAL)
4843 x = atomic_long_read(&n->total_objects);
4844 else if (flags & SO_OBJECTS)
4845 x = atomic_long_read(&n->total_objects) -
4846 count_partial(n, count_free);
81819f0f 4847 else
205ab99d 4848 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4849 total += x;
4850 nodes[node] += x;
4851 }
4852
ab4d5ed5
CL
4853 } else
4854#endif
4855 if (flags & SO_PARTIAL) {
fa45dc25 4856 struct kmem_cache_node *n;
81819f0f 4857
fa45dc25 4858 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4859 if (flags & SO_TOTAL)
4860 x = count_partial(n, count_total);
4861 else if (flags & SO_OBJECTS)
4862 x = count_partial(n, count_inuse);
81819f0f 4863 else
205ab99d 4864 x = n->nr_partial;
81819f0f
CL
4865 total += x;
4866 nodes[node] += x;
4867 }
4868 }
81819f0f
CL
4869 x = sprintf(buf, "%lu", total);
4870#ifdef CONFIG_NUMA
fa45dc25 4871 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4872 if (nodes[node])
4873 x += sprintf(buf + x, " N%d=%lu",
4874 node, nodes[node]);
4875#endif
bfc8c901 4876 put_online_mems();
81819f0f
CL
4877 kfree(nodes);
4878 return x + sprintf(buf + x, "\n");
4879}
4880
ab4d5ed5 4881#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4882static int any_slab_objects(struct kmem_cache *s)
4883{
4884 int node;
fa45dc25 4885 struct kmem_cache_node *n;
81819f0f 4886
fa45dc25 4887 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4888 if (atomic_long_read(&n->total_objects))
81819f0f 4889 return 1;
fa45dc25 4890
81819f0f
CL
4891 return 0;
4892}
ab4d5ed5 4893#endif
81819f0f
CL
4894
4895#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4896#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4897
4898struct slab_attribute {
4899 struct attribute attr;
4900 ssize_t (*show)(struct kmem_cache *s, char *buf);
4901 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4902};
4903
4904#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4905 static struct slab_attribute _name##_attr = \
4906 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4907
4908#define SLAB_ATTR(_name) \
4909 static struct slab_attribute _name##_attr = \
ab067e99 4910 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4911
81819f0f
CL
4912static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4913{
44065b2e 4914 return sprintf(buf, "%u\n", s->size);
81819f0f
CL
4915}
4916SLAB_ATTR_RO(slab_size);
4917
4918static ssize_t align_show(struct kmem_cache *s, char *buf)
4919{
3a3791ec 4920 return sprintf(buf, "%u\n", s->align);
81819f0f
CL
4921}
4922SLAB_ATTR_RO(align);
4923
4924static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4925{
1b473f29 4926 return sprintf(buf, "%u\n", s->object_size);
81819f0f
CL
4927}
4928SLAB_ATTR_RO(object_size);
4929
4930static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4931{
19af27af 4932 return sprintf(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
4933}
4934SLAB_ATTR_RO(objs_per_slab);
4935
06b285dc
CL
4936static ssize_t order_store(struct kmem_cache *s,
4937 const char *buf, size_t length)
4938{
19af27af 4939 unsigned int order;
0121c619
CL
4940 int err;
4941
19af27af 4942 err = kstrtouint(buf, 10, &order);
0121c619
CL
4943 if (err)
4944 return err;
06b285dc
CL
4945
4946 if (order > slub_max_order || order < slub_min_order)
4947 return -EINVAL;
4948
4949 calculate_sizes(s, order);
4950 return length;
4951}
4952
81819f0f
CL
4953static ssize_t order_show(struct kmem_cache *s, char *buf)
4954{
19af27af 4955 return sprintf(buf, "%u\n", oo_order(s->oo));
81819f0f 4956}
06b285dc 4957SLAB_ATTR(order);
81819f0f 4958
73d342b1
DR
4959static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4960{
4961 return sprintf(buf, "%lu\n", s->min_partial);
4962}
4963
4964static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4965 size_t length)
4966{
4967 unsigned long min;
4968 int err;
4969
3dbb95f7 4970 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4971 if (err)
4972 return err;
4973
c0bdb232 4974 set_min_partial(s, min);
73d342b1
DR
4975 return length;
4976}
4977SLAB_ATTR(min_partial);
4978
49e22585
CL
4979static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4980{
e6d0e1dc 4981 return sprintf(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
4982}
4983
4984static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4985 size_t length)
4986{
e5d9998f 4987 unsigned int objects;
49e22585
CL
4988 int err;
4989
e5d9998f 4990 err = kstrtouint(buf, 10, &objects);
49e22585
CL
4991 if (err)
4992 return err;
345c905d 4993 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4994 return -EINVAL;
49e22585 4995
e6d0e1dc 4996 slub_set_cpu_partial(s, objects);
49e22585
CL
4997 flush_all(s);
4998 return length;
4999}
5000SLAB_ATTR(cpu_partial);
5001
81819f0f
CL
5002static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5003{
62c70bce
JP
5004 if (!s->ctor)
5005 return 0;
5006 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
5007}
5008SLAB_ATTR_RO(ctor);
5009
81819f0f
CL
5010static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5011{
4307c14f 5012 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5013}
5014SLAB_ATTR_RO(aliases);
5015
81819f0f
CL
5016static ssize_t partial_show(struct kmem_cache *s, char *buf)
5017{
d9acf4b7 5018 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5019}
5020SLAB_ATTR_RO(partial);
5021
5022static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5023{
d9acf4b7 5024 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5025}
5026SLAB_ATTR_RO(cpu_slabs);
5027
5028static ssize_t objects_show(struct kmem_cache *s, char *buf)
5029{
205ab99d 5030 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5031}
5032SLAB_ATTR_RO(objects);
5033
205ab99d
CL
5034static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5035{
5036 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5037}
5038SLAB_ATTR_RO(objects_partial);
5039
49e22585
CL
5040static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5041{
5042 int objects = 0;
5043 int pages = 0;
5044 int cpu;
5045 int len;
5046
5047 for_each_online_cpu(cpu) {
a93cf07b
WY
5048 struct page *page;
5049
5050 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5051
5052 if (page) {
5053 pages += page->pages;
5054 objects += page->pobjects;
5055 }
5056 }
5057
5058 len = sprintf(buf, "%d(%d)", objects, pages);
5059
5060#ifdef CONFIG_SMP
5061 for_each_online_cpu(cpu) {
a93cf07b
WY
5062 struct page *page;
5063
5064 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5065
5066 if (page && len < PAGE_SIZE - 20)
5067 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5068 page->pobjects, page->pages);
5069 }
5070#endif
5071 return len + sprintf(buf + len, "\n");
5072}
5073SLAB_ATTR_RO(slabs_cpu_partial);
5074
a5a84755
CL
5075static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5076{
5077 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5078}
5079
5080static ssize_t reclaim_account_store(struct kmem_cache *s,
5081 const char *buf, size_t length)
5082{
5083 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5084 if (buf[0] == '1')
5085 s->flags |= SLAB_RECLAIM_ACCOUNT;
5086 return length;
5087}
5088SLAB_ATTR(reclaim_account);
5089
5090static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5091{
5092 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5093}
5094SLAB_ATTR_RO(hwcache_align);
5095
5096#ifdef CONFIG_ZONE_DMA
5097static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5098{
5099 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5100}
5101SLAB_ATTR_RO(cache_dma);
5102#endif
5103
8eb8284b
DW
5104static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5105{
7bbdb81e 5106 return sprintf(buf, "%u\n", s->usersize);
8eb8284b
DW
5107}
5108SLAB_ATTR_RO(usersize);
5109
a5a84755
CL
5110static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5111{
5f0d5a3a 5112 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5113}
5114SLAB_ATTR_RO(destroy_by_rcu);
5115
ab9a0f19
LJ
5116static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5117{
d66e52d1 5118 return sprintf(buf, "%u\n", s->reserved);
ab9a0f19
LJ
5119}
5120SLAB_ATTR_RO(reserved);
5121
ab4d5ed5 5122#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5123static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5124{
5125 return show_slab_objects(s, buf, SO_ALL);
5126}
5127SLAB_ATTR_RO(slabs);
5128
205ab99d
CL
5129static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5130{
5131 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5132}
5133SLAB_ATTR_RO(total_objects);
5134
81819f0f
CL
5135static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5136{
becfda68 5137 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
5138}
5139
5140static ssize_t sanity_checks_store(struct kmem_cache *s,
5141 const char *buf, size_t length)
5142{
becfda68 5143 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
5144 if (buf[0] == '1') {
5145 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 5146 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 5147 }
81819f0f
CL
5148 return length;
5149}
5150SLAB_ATTR(sanity_checks);
5151
5152static ssize_t trace_show(struct kmem_cache *s, char *buf)
5153{
5154 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5155}
5156
5157static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5158 size_t length)
5159{
c9e16131
CL
5160 /*
5161 * Tracing a merged cache is going to give confusing results
5162 * as well as cause other issues like converting a mergeable
5163 * cache into an umergeable one.
5164 */
5165 if (s->refcount > 1)
5166 return -EINVAL;
5167
81819f0f 5168 s->flags &= ~SLAB_TRACE;
b789ef51
CL
5169 if (buf[0] == '1') {
5170 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5171 s->flags |= SLAB_TRACE;
b789ef51 5172 }
81819f0f
CL
5173 return length;
5174}
5175SLAB_ATTR(trace);
5176
81819f0f
CL
5177static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5178{
5179 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5180}
5181
5182static ssize_t red_zone_store(struct kmem_cache *s,
5183 const char *buf, size_t length)
5184{
5185 if (any_slab_objects(s))
5186 return -EBUSY;
5187
5188 s->flags &= ~SLAB_RED_ZONE;
b789ef51 5189 if (buf[0] == '1') {
81819f0f 5190 s->flags |= SLAB_RED_ZONE;
b789ef51 5191 }
06b285dc 5192 calculate_sizes(s, -1);
81819f0f
CL
5193 return length;
5194}
5195SLAB_ATTR(red_zone);
5196
5197static ssize_t poison_show(struct kmem_cache *s, char *buf)
5198{
5199 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5200}
5201
5202static ssize_t poison_store(struct kmem_cache *s,
5203 const char *buf, size_t length)
5204{
5205 if (any_slab_objects(s))
5206 return -EBUSY;
5207
5208 s->flags &= ~SLAB_POISON;
b789ef51 5209 if (buf[0] == '1') {
81819f0f 5210 s->flags |= SLAB_POISON;
b789ef51 5211 }
06b285dc 5212 calculate_sizes(s, -1);
81819f0f
CL
5213 return length;
5214}
5215SLAB_ATTR(poison);
5216
5217static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5218{
5219 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5220}
5221
5222static ssize_t store_user_store(struct kmem_cache *s,
5223 const char *buf, size_t length)
5224{
5225 if (any_slab_objects(s))
5226 return -EBUSY;
5227
5228 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
5229 if (buf[0] == '1') {
5230 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5231 s->flags |= SLAB_STORE_USER;
b789ef51 5232 }
06b285dc 5233 calculate_sizes(s, -1);
81819f0f
CL
5234 return length;
5235}
5236SLAB_ATTR(store_user);
5237
53e15af0
CL
5238static ssize_t validate_show(struct kmem_cache *s, char *buf)
5239{
5240 return 0;
5241}
5242
5243static ssize_t validate_store(struct kmem_cache *s,
5244 const char *buf, size_t length)
5245{
434e245d
CL
5246 int ret = -EINVAL;
5247
5248 if (buf[0] == '1') {
5249 ret = validate_slab_cache(s);
5250 if (ret >= 0)
5251 ret = length;
5252 }
5253 return ret;
53e15af0
CL
5254}
5255SLAB_ATTR(validate);
a5a84755
CL
5256
5257static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5258{
5259 if (!(s->flags & SLAB_STORE_USER))
5260 return -ENOSYS;
5261 return list_locations(s, buf, TRACK_ALLOC);
5262}
5263SLAB_ATTR_RO(alloc_calls);
5264
5265static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5266{
5267 if (!(s->flags & SLAB_STORE_USER))
5268 return -ENOSYS;
5269 return list_locations(s, buf, TRACK_FREE);
5270}
5271SLAB_ATTR_RO(free_calls);
5272#endif /* CONFIG_SLUB_DEBUG */
5273
5274#ifdef CONFIG_FAILSLAB
5275static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5276{
5277 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5278}
5279
5280static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5281 size_t length)
5282{
c9e16131
CL
5283 if (s->refcount > 1)
5284 return -EINVAL;
5285
a5a84755
CL
5286 s->flags &= ~SLAB_FAILSLAB;
5287 if (buf[0] == '1')
5288 s->flags |= SLAB_FAILSLAB;
5289 return length;
5290}
5291SLAB_ATTR(failslab);
ab4d5ed5 5292#endif
53e15af0 5293
2086d26a
CL
5294static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5295{
5296 return 0;
5297}
5298
5299static ssize_t shrink_store(struct kmem_cache *s,
5300 const char *buf, size_t length)
5301{
832f37f5
VD
5302 if (buf[0] == '1')
5303 kmem_cache_shrink(s);
5304 else
2086d26a
CL
5305 return -EINVAL;
5306 return length;
5307}
5308SLAB_ATTR(shrink);
5309
81819f0f 5310#ifdef CONFIG_NUMA
9824601e 5311static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5312{
eb7235eb 5313 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5314}
5315
9824601e 5316static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5317 const char *buf, size_t length)
5318{
eb7235eb 5319 unsigned int ratio;
0121c619
CL
5320 int err;
5321
eb7235eb 5322 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5323 if (err)
5324 return err;
eb7235eb
AD
5325 if (ratio > 100)
5326 return -ERANGE;
0121c619 5327
eb7235eb 5328 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5329
81819f0f
CL
5330 return length;
5331}
9824601e 5332SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5333#endif
5334
8ff12cfc 5335#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5336static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5337{
5338 unsigned long sum = 0;
5339 int cpu;
5340 int len;
5341 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5342
5343 if (!data)
5344 return -ENOMEM;
5345
5346 for_each_online_cpu(cpu) {
9dfc6e68 5347 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5348
5349 data[cpu] = x;
5350 sum += x;
5351 }
5352
5353 len = sprintf(buf, "%lu", sum);
5354
50ef37b9 5355#ifdef CONFIG_SMP
8ff12cfc
CL
5356 for_each_online_cpu(cpu) {
5357 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5358 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5359 }
50ef37b9 5360#endif
8ff12cfc
CL
5361 kfree(data);
5362 return len + sprintf(buf + len, "\n");
5363}
5364
78eb00cc
DR
5365static void clear_stat(struct kmem_cache *s, enum stat_item si)
5366{
5367 int cpu;
5368
5369 for_each_online_cpu(cpu)
9dfc6e68 5370 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5371}
5372
8ff12cfc
CL
5373#define STAT_ATTR(si, text) \
5374static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5375{ \
5376 return show_stat(s, buf, si); \
5377} \
78eb00cc
DR
5378static ssize_t text##_store(struct kmem_cache *s, \
5379 const char *buf, size_t length) \
5380{ \
5381 if (buf[0] != '0') \
5382 return -EINVAL; \
5383 clear_stat(s, si); \
5384 return length; \
5385} \
5386SLAB_ATTR(text); \
8ff12cfc
CL
5387
5388STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5389STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5390STAT_ATTR(FREE_FASTPATH, free_fastpath);
5391STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5392STAT_ATTR(FREE_FROZEN, free_frozen);
5393STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5394STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5395STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5396STAT_ATTR(ALLOC_SLAB, alloc_slab);
5397STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5398STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5399STAT_ATTR(FREE_SLAB, free_slab);
5400STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5401STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5402STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5403STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5404STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5405STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5406STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5407STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5408STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5409STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5410STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5411STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5412STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5413STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5414#endif
5415
06428780 5416static struct attribute *slab_attrs[] = {
81819f0f
CL
5417 &slab_size_attr.attr,
5418 &object_size_attr.attr,
5419 &objs_per_slab_attr.attr,
5420 &order_attr.attr,
73d342b1 5421 &min_partial_attr.attr,
49e22585 5422 &cpu_partial_attr.attr,
81819f0f 5423 &objects_attr.attr,
205ab99d 5424 &objects_partial_attr.attr,
81819f0f
CL
5425 &partial_attr.attr,
5426 &cpu_slabs_attr.attr,
5427 &ctor_attr.attr,
81819f0f
CL
5428 &aliases_attr.attr,
5429 &align_attr.attr,
81819f0f
CL
5430 &hwcache_align_attr.attr,
5431 &reclaim_account_attr.attr,
5432 &destroy_by_rcu_attr.attr,
a5a84755 5433 &shrink_attr.attr,
ab9a0f19 5434 &reserved_attr.attr,
49e22585 5435 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5436#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5437 &total_objects_attr.attr,
5438 &slabs_attr.attr,
5439 &sanity_checks_attr.attr,
5440 &trace_attr.attr,
81819f0f
CL
5441 &red_zone_attr.attr,
5442 &poison_attr.attr,
5443 &store_user_attr.attr,
53e15af0 5444 &validate_attr.attr,
88a420e4
CL
5445 &alloc_calls_attr.attr,
5446 &free_calls_attr.attr,
ab4d5ed5 5447#endif
81819f0f
CL
5448#ifdef CONFIG_ZONE_DMA
5449 &cache_dma_attr.attr,
5450#endif
5451#ifdef CONFIG_NUMA
9824601e 5452 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5453#endif
5454#ifdef CONFIG_SLUB_STATS
5455 &alloc_fastpath_attr.attr,
5456 &alloc_slowpath_attr.attr,
5457 &free_fastpath_attr.attr,
5458 &free_slowpath_attr.attr,
5459 &free_frozen_attr.attr,
5460 &free_add_partial_attr.attr,
5461 &free_remove_partial_attr.attr,
5462 &alloc_from_partial_attr.attr,
5463 &alloc_slab_attr.attr,
5464 &alloc_refill_attr.attr,
e36a2652 5465 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5466 &free_slab_attr.attr,
5467 &cpuslab_flush_attr.attr,
5468 &deactivate_full_attr.attr,
5469 &deactivate_empty_attr.attr,
5470 &deactivate_to_head_attr.attr,
5471 &deactivate_to_tail_attr.attr,
5472 &deactivate_remote_frees_attr.attr,
03e404af 5473 &deactivate_bypass_attr.attr,
65c3376a 5474 &order_fallback_attr.attr,
b789ef51
CL
5475 &cmpxchg_double_fail_attr.attr,
5476 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5477 &cpu_partial_alloc_attr.attr,
5478 &cpu_partial_free_attr.attr,
8028dcea
AS
5479 &cpu_partial_node_attr.attr,
5480 &cpu_partial_drain_attr.attr,
81819f0f 5481#endif
4c13dd3b
DM
5482#ifdef CONFIG_FAILSLAB
5483 &failslab_attr.attr,
5484#endif
8eb8284b 5485 &usersize_attr.attr,
4c13dd3b 5486
81819f0f
CL
5487 NULL
5488};
5489
1fdaaa23 5490static const struct attribute_group slab_attr_group = {
81819f0f
CL
5491 .attrs = slab_attrs,
5492};
5493
5494static ssize_t slab_attr_show(struct kobject *kobj,
5495 struct attribute *attr,
5496 char *buf)
5497{
5498 struct slab_attribute *attribute;
5499 struct kmem_cache *s;
5500 int err;
5501
5502 attribute = to_slab_attr(attr);
5503 s = to_slab(kobj);
5504
5505 if (!attribute->show)
5506 return -EIO;
5507
5508 err = attribute->show(s, buf);
5509
5510 return err;
5511}
5512
5513static ssize_t slab_attr_store(struct kobject *kobj,
5514 struct attribute *attr,
5515 const char *buf, size_t len)
5516{
5517 struct slab_attribute *attribute;
5518 struct kmem_cache *s;
5519 int err;
5520
5521 attribute = to_slab_attr(attr);
5522 s = to_slab(kobj);
5523
5524 if (!attribute->store)
5525 return -EIO;
5526
5527 err = attribute->store(s, buf, len);
127424c8 5528#ifdef CONFIG_MEMCG
107dab5c 5529 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5530 struct kmem_cache *c;
81819f0f 5531
107dab5c
GC
5532 mutex_lock(&slab_mutex);
5533 if (s->max_attr_size < len)
5534 s->max_attr_size = len;
5535
ebe945c2
GC
5536 /*
5537 * This is a best effort propagation, so this function's return
5538 * value will be determined by the parent cache only. This is
5539 * basically because not all attributes will have a well
5540 * defined semantics for rollbacks - most of the actions will
5541 * have permanent effects.
5542 *
5543 * Returning the error value of any of the children that fail
5544 * is not 100 % defined, in the sense that users seeing the
5545 * error code won't be able to know anything about the state of
5546 * the cache.
5547 *
5548 * Only returning the error code for the parent cache at least
5549 * has well defined semantics. The cache being written to
5550 * directly either failed or succeeded, in which case we loop
5551 * through the descendants with best-effort propagation.
5552 */
426589f5
VD
5553 for_each_memcg_cache(c, s)
5554 attribute->store(c, buf, len);
107dab5c
GC
5555 mutex_unlock(&slab_mutex);
5556 }
5557#endif
81819f0f
CL
5558 return err;
5559}
5560
107dab5c
GC
5561static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5562{
127424c8 5563#ifdef CONFIG_MEMCG
107dab5c
GC
5564 int i;
5565 char *buffer = NULL;
93030d83 5566 struct kmem_cache *root_cache;
107dab5c 5567
93030d83 5568 if (is_root_cache(s))
107dab5c
GC
5569 return;
5570
f7ce3190 5571 root_cache = s->memcg_params.root_cache;
93030d83 5572
107dab5c
GC
5573 /*
5574 * This mean this cache had no attribute written. Therefore, no point
5575 * in copying default values around
5576 */
93030d83 5577 if (!root_cache->max_attr_size)
107dab5c
GC
5578 return;
5579
5580 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5581 char mbuf[64];
5582 char *buf;
5583 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
478fe303 5584 ssize_t len;
107dab5c
GC
5585
5586 if (!attr || !attr->store || !attr->show)
5587 continue;
5588
5589 /*
5590 * It is really bad that we have to allocate here, so we will
5591 * do it only as a fallback. If we actually allocate, though,
5592 * we can just use the allocated buffer until the end.
5593 *
5594 * Most of the slub attributes will tend to be very small in
5595 * size, but sysfs allows buffers up to a page, so they can
5596 * theoretically happen.
5597 */
5598 if (buffer)
5599 buf = buffer;
93030d83 5600 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5601 buf = mbuf;
5602 else {
5603 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5604 if (WARN_ON(!buffer))
5605 continue;
5606 buf = buffer;
5607 }
5608
478fe303
TG
5609 len = attr->show(root_cache, buf);
5610 if (len > 0)
5611 attr->store(s, buf, len);
107dab5c
GC
5612 }
5613
5614 if (buffer)
5615 free_page((unsigned long)buffer);
5616#endif
5617}
5618
41a21285
CL
5619static void kmem_cache_release(struct kobject *k)
5620{
5621 slab_kmem_cache_release(to_slab(k));
5622}
5623
52cf25d0 5624static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5625 .show = slab_attr_show,
5626 .store = slab_attr_store,
5627};
5628
5629static struct kobj_type slab_ktype = {
5630 .sysfs_ops = &slab_sysfs_ops,
41a21285 5631 .release = kmem_cache_release,
81819f0f
CL
5632};
5633
5634static int uevent_filter(struct kset *kset, struct kobject *kobj)
5635{
5636 struct kobj_type *ktype = get_ktype(kobj);
5637
5638 if (ktype == &slab_ktype)
5639 return 1;
5640 return 0;
5641}
5642
9cd43611 5643static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5644 .filter = uevent_filter,
5645};
5646
27c3a314 5647static struct kset *slab_kset;
81819f0f 5648
9a41707b
VD
5649static inline struct kset *cache_kset(struct kmem_cache *s)
5650{
127424c8 5651#ifdef CONFIG_MEMCG
9a41707b 5652 if (!is_root_cache(s))
f7ce3190 5653 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5654#endif
5655 return slab_kset;
5656}
5657
81819f0f
CL
5658#define ID_STR_LENGTH 64
5659
5660/* Create a unique string id for a slab cache:
6446faa2
CL
5661 *
5662 * Format :[flags-]size
81819f0f
CL
5663 */
5664static char *create_unique_id(struct kmem_cache *s)
5665{
5666 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5667 char *p = name;
5668
5669 BUG_ON(!name);
5670
5671 *p++ = ':';
5672 /*
5673 * First flags affecting slabcache operations. We will only
5674 * get here for aliasable slabs so we do not need to support
5675 * too many flags. The flags here must cover all flags that
5676 * are matched during merging to guarantee that the id is
5677 * unique.
5678 */
5679 if (s->flags & SLAB_CACHE_DMA)
5680 *p++ = 'd';
5681 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5682 *p++ = 'a';
becfda68 5683 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5684 *p++ = 'F';
230e9fc2
VD
5685 if (s->flags & SLAB_ACCOUNT)
5686 *p++ = 'A';
81819f0f
CL
5687 if (p != name + 1)
5688 *p++ = '-';
44065b2e 5689 p += sprintf(p, "%07u", s->size);
2633d7a0 5690
81819f0f
CL
5691 BUG_ON(p > name + ID_STR_LENGTH - 1);
5692 return name;
5693}
5694
3b7b3140
TH
5695static void sysfs_slab_remove_workfn(struct work_struct *work)
5696{
5697 struct kmem_cache *s =
5698 container_of(work, struct kmem_cache, kobj_remove_work);
5699
5700 if (!s->kobj.state_in_sysfs)
5701 /*
5702 * For a memcg cache, this may be called during
5703 * deactivation and again on shutdown. Remove only once.
5704 * A cache is never shut down before deactivation is
5705 * complete, so no need to worry about synchronization.
5706 */
f6ba4880 5707 goto out;
3b7b3140
TH
5708
5709#ifdef CONFIG_MEMCG
5710 kset_unregister(s->memcg_kset);
5711#endif
5712 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5713 kobject_del(&s->kobj);
f6ba4880 5714out:
3b7b3140
TH
5715 kobject_put(&s->kobj);
5716}
5717
81819f0f
CL
5718static int sysfs_slab_add(struct kmem_cache *s)
5719{
5720 int err;
5721 const char *name;
1663f26d 5722 struct kset *kset = cache_kset(s);
45530c44 5723 int unmergeable = slab_unmergeable(s);
81819f0f 5724
3b7b3140
TH
5725 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5726
1663f26d
TH
5727 if (!kset) {
5728 kobject_init(&s->kobj, &slab_ktype);
5729 return 0;
5730 }
5731
11066386
MC
5732 if (!unmergeable && disable_higher_order_debug &&
5733 (slub_debug & DEBUG_METADATA_FLAGS))
5734 unmergeable = 1;
5735
81819f0f
CL
5736 if (unmergeable) {
5737 /*
5738 * Slabcache can never be merged so we can use the name proper.
5739 * This is typically the case for debug situations. In that
5740 * case we can catch duplicate names easily.
5741 */
27c3a314 5742 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5743 name = s->name;
5744 } else {
5745 /*
5746 * Create a unique name for the slab as a target
5747 * for the symlinks.
5748 */
5749 name = create_unique_id(s);
5750 }
5751
1663f26d 5752 s->kobj.kset = kset;
26e4f205 5753 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5754 if (err)
80da026a 5755 goto out;
81819f0f
CL
5756
5757 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5758 if (err)
5759 goto out_del_kobj;
9a41707b 5760
127424c8 5761#ifdef CONFIG_MEMCG
1663f26d 5762 if (is_root_cache(s) && memcg_sysfs_enabled) {
9a41707b
VD
5763 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5764 if (!s->memcg_kset) {
54b6a731
DJ
5765 err = -ENOMEM;
5766 goto out_del_kobj;
9a41707b
VD
5767 }
5768 }
5769#endif
5770
81819f0f
CL
5771 kobject_uevent(&s->kobj, KOBJ_ADD);
5772 if (!unmergeable) {
5773 /* Setup first alias */
5774 sysfs_slab_alias(s, s->name);
81819f0f 5775 }
54b6a731
DJ
5776out:
5777 if (!unmergeable)
5778 kfree(name);
5779 return err;
5780out_del_kobj:
5781 kobject_del(&s->kobj);
54b6a731 5782 goto out;
81819f0f
CL
5783}
5784
bf5eb3de 5785static void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5786{
97d06609 5787 if (slab_state < FULL)
2bce6485
CL
5788 /*
5789 * Sysfs has not been setup yet so no need to remove the
5790 * cache from sysfs.
5791 */
5792 return;
5793
3b7b3140
TH
5794 kobject_get(&s->kobj);
5795 schedule_work(&s->kobj_remove_work);
bf5eb3de
TH
5796}
5797
5798void sysfs_slab_release(struct kmem_cache *s)
5799{
5800 if (slab_state >= FULL)
5801 kobject_put(&s->kobj);
81819f0f
CL
5802}
5803
5804/*
5805 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5806 * available lest we lose that information.
81819f0f
CL
5807 */
5808struct saved_alias {
5809 struct kmem_cache *s;
5810 const char *name;
5811 struct saved_alias *next;
5812};
5813
5af328a5 5814static struct saved_alias *alias_list;
81819f0f
CL
5815
5816static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5817{
5818 struct saved_alias *al;
5819
97d06609 5820 if (slab_state == FULL) {
81819f0f
CL
5821 /*
5822 * If we have a leftover link then remove it.
5823 */
27c3a314
GKH
5824 sysfs_remove_link(&slab_kset->kobj, name);
5825 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5826 }
5827
5828 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5829 if (!al)
5830 return -ENOMEM;
5831
5832 al->s = s;
5833 al->name = name;
5834 al->next = alias_list;
5835 alias_list = al;
5836 return 0;
5837}
5838
5839static int __init slab_sysfs_init(void)
5840{
5b95a4ac 5841 struct kmem_cache *s;
81819f0f
CL
5842 int err;
5843
18004c5d 5844 mutex_lock(&slab_mutex);
2bce6485 5845
0ff21e46 5846 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5847 if (!slab_kset) {
18004c5d 5848 mutex_unlock(&slab_mutex);
f9f58285 5849 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5850 return -ENOSYS;
5851 }
5852
97d06609 5853 slab_state = FULL;
26a7bd03 5854
5b95a4ac 5855 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5856 err = sysfs_slab_add(s);
5d540fb7 5857 if (err)
f9f58285
FF
5858 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5859 s->name);
26a7bd03 5860 }
81819f0f
CL
5861
5862 while (alias_list) {
5863 struct saved_alias *al = alias_list;
5864
5865 alias_list = alias_list->next;
5866 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5867 if (err)
f9f58285
FF
5868 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5869 al->name);
81819f0f
CL
5870 kfree(al);
5871 }
5872
18004c5d 5873 mutex_unlock(&slab_mutex);
81819f0f
CL
5874 resiliency_test();
5875 return 0;
5876}
5877
5878__initcall(slab_sysfs_init);
ab4d5ed5 5879#endif /* CONFIG_SYSFS */
57ed3eda
PE
5880
5881/*
5882 * The /proc/slabinfo ABI
5883 */
5b365771 5884#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5885void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5886{
57ed3eda 5887 unsigned long nr_slabs = 0;
205ab99d
CL
5888 unsigned long nr_objs = 0;
5889 unsigned long nr_free = 0;
57ed3eda 5890 int node;
fa45dc25 5891 struct kmem_cache_node *n;
57ed3eda 5892
fa45dc25 5893 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5894 nr_slabs += node_nr_slabs(n);
5895 nr_objs += node_nr_objs(n);
205ab99d 5896 nr_free += count_partial(n, count_free);
57ed3eda
PE
5897 }
5898
0d7561c6
GC
5899 sinfo->active_objs = nr_objs - nr_free;
5900 sinfo->num_objs = nr_objs;
5901 sinfo->active_slabs = nr_slabs;
5902 sinfo->num_slabs = nr_slabs;
5903 sinfo->objects_per_slab = oo_objects(s->oo);
5904 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5905}
5906
0d7561c6 5907void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5908{
7b3c3a50
AD
5909}
5910
b7454ad3
GC
5911ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5912 size_t count, loff_t *ppos)
7b3c3a50 5913{
b7454ad3 5914 return -EIO;
7b3c3a50 5915}
5b365771 5916#endif /* CONFIG_SLUB_DEBUG */