]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - mm/slub.c
tuntap: add sanity checks about msg_controllen in sendmsg
[mirror_ubuntu-focal-kernel.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
881db7fb
CL
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
89c2f0e3 18#include <linux/swab.h>
81819f0f
CL
19#include <linux/bitops.h>
20#include <linux/slab.h>
97d06609 21#include "slab.h"
7b3c3a50 22#include <linux/proc_fs.h>
81819f0f 23#include <linux/seq_file.h>
a79316c6 24#include <linux/kasan.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
2482ddec 37#include <linux/random.h>
81819f0f 38
4a92379b
RK
39#include <trace/events/kmem.h>
40
072bb0aa
MG
41#include "internal.h"
42
81819f0f
CL
43/*
44 * Lock order:
18004c5d 45 * 1. slab_mutex (Global Mutex)
881db7fb
CL
46 * 2. node->list_lock
47 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 48 *
18004c5d 49 * slab_mutex
881db7fb 50 *
18004c5d 51 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
52 * and to synchronize major metadata changes to slab cache structures.
53 *
54 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 55 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 56 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
57 * B. page->inuse -> Number of objects in use
58 * C. page->objects -> Number of objects in page
59 * D. page->frozen -> frozen state
881db7fb
CL
60 *
61 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
62 * on any list except per cpu partial list. The processor that froze the
63 * slab is the one who can perform list operations on the page. Other
64 * processors may put objects onto the freelist but the processor that
65 * froze the slab is the only one that can retrieve the objects from the
66 * page's freelist.
81819f0f
CL
67 *
68 * The list_lock protects the partial and full list on each node and
69 * the partial slab counter. If taken then no new slabs may be added or
70 * removed from the lists nor make the number of partial slabs be modified.
71 * (Note that the total number of slabs is an atomic value that may be
72 * modified without taking the list lock).
73 *
74 * The list_lock is a centralized lock and thus we avoid taking it as
75 * much as possible. As long as SLUB does not have to handle partial
76 * slabs, operations can continue without any centralized lock. F.e.
77 * allocating a long series of objects that fill up slabs does not require
78 * the list lock.
81819f0f
CL
79 * Interrupts are disabled during allocation and deallocation in order to
80 * make the slab allocator safe to use in the context of an irq. In addition
81 * interrupts are disabled to ensure that the processor does not change
82 * while handling per_cpu slabs, due to kernel preemption.
83 *
84 * SLUB assigns one slab for allocation to each processor.
85 * Allocations only occur from these slabs called cpu slabs.
86 *
672bba3a
CL
87 * Slabs with free elements are kept on a partial list and during regular
88 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 89 * freed then the slab will show up again on the partial lists.
672bba3a
CL
90 * We track full slabs for debugging purposes though because otherwise we
91 * cannot scan all objects.
81819f0f
CL
92 *
93 * Slabs are freed when they become empty. Teardown and setup is
94 * minimal so we rely on the page allocators per cpu caches for
95 * fast frees and allocs.
96 *
97 * Overloading of page flags that are otherwise used for LRU management.
98 *
4b6f0750
CL
99 * PageActive The slab is frozen and exempt from list processing.
100 * This means that the slab is dedicated to a purpose
101 * such as satisfying allocations for a specific
102 * processor. Objects may be freed in the slab while
103 * it is frozen but slab_free will then skip the usual
104 * list operations. It is up to the processor holding
105 * the slab to integrate the slab into the slab lists
106 * when the slab is no longer needed.
107 *
108 * One use of this flag is to mark slabs that are
109 * used for allocations. Then such a slab becomes a cpu
110 * slab. The cpu slab may be equipped with an additional
dfb4f096 111 * freelist that allows lockless access to
894b8788
CL
112 * free objects in addition to the regular freelist
113 * that requires the slab lock.
81819f0f
CL
114 *
115 * PageError Slab requires special handling due to debug
116 * options set. This moves slab handling out of
894b8788 117 * the fast path and disables lockless freelists.
81819f0f
CL
118 */
119
af537b0a
CL
120static inline int kmem_cache_debug(struct kmem_cache *s)
121{
5577bd8a 122#ifdef CONFIG_SLUB_DEBUG
af537b0a 123 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 124#else
af537b0a 125 return 0;
5577bd8a 126#endif
af537b0a 127}
5577bd8a 128
117d54df 129void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be
JK
130{
131 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
132 p += s->red_left_pad;
133
134 return p;
135}
136
345c905d
JK
137static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
138{
139#ifdef CONFIG_SLUB_CPU_PARTIAL
140 return !kmem_cache_debug(s);
141#else
142 return false;
143#endif
144}
145
81819f0f
CL
146/*
147 * Issues still to be resolved:
148 *
81819f0f
CL
149 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
150 *
81819f0f
CL
151 * - Variable sizing of the per node arrays
152 */
153
154/* Enable to test recovery from slab corruption on boot */
155#undef SLUB_RESILIENCY_TEST
156
b789ef51
CL
157/* Enable to log cmpxchg failures */
158#undef SLUB_DEBUG_CMPXCHG
159
2086d26a
CL
160/*
161 * Mininum number of partial slabs. These will be left on the partial
162 * lists even if they are empty. kmem_cache_shrink may reclaim them.
163 */
76be8950 164#define MIN_PARTIAL 5
e95eed57 165
2086d26a
CL
166/*
167 * Maximum number of desirable partial slabs.
168 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 169 * sort the partial list by the number of objects in use.
2086d26a
CL
170 */
171#define MAX_PARTIAL 10
172
becfda68 173#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 174 SLAB_POISON | SLAB_STORE_USER)
672bba3a 175
149daaf3
LA
176/*
177 * These debug flags cannot use CMPXCHG because there might be consistency
178 * issues when checking or reading debug information
179 */
180#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
181 SLAB_TRACE)
182
183
fa5ec8a1 184/*
3de47213
DR
185 * Debugging flags that require metadata to be stored in the slab. These get
186 * disabled when slub_debug=O is used and a cache's min order increases with
187 * metadata.
fa5ec8a1 188 */
3de47213 189#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 190
210b5c06
CG
191#define OO_SHIFT 16
192#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 193#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 194
81819f0f 195/* Internal SLUB flags */
d50112ed 196/* Poison object */
4fd0b46e 197#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 198/* Use cmpxchg_double */
4fd0b46e 199#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 200
02cbc874
CL
201/*
202 * Tracking user of a slab.
203 */
d6543e39 204#define TRACK_ADDRS_COUNT 16
02cbc874 205struct track {
ce71e27c 206 unsigned long addr; /* Called from address */
d6543e39
BG
207#ifdef CONFIG_STACKTRACE
208 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
209#endif
02cbc874
CL
210 int cpu; /* Was running on cpu */
211 int pid; /* Pid context */
212 unsigned long when; /* When did the operation occur */
213};
214
215enum track_item { TRACK_ALLOC, TRACK_FREE };
216
ab4d5ed5 217#ifdef CONFIG_SYSFS
81819f0f
CL
218static int sysfs_slab_add(struct kmem_cache *);
219static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 220static void memcg_propagate_slab_attrs(struct kmem_cache *s);
bf5eb3de 221static void sysfs_slab_remove(struct kmem_cache *s);
81819f0f 222#else
0c710013
CL
223static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
224static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
225 { return 0; }
107dab5c 226static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
bf5eb3de 227static inline void sysfs_slab_remove(struct kmem_cache *s) { }
81819f0f
CL
228#endif
229
4fdccdfb 230static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
231{
232#ifdef CONFIG_SLUB_STATS
88da03a6
CL
233 /*
234 * The rmw is racy on a preemptible kernel but this is acceptable, so
235 * avoid this_cpu_add()'s irq-disable overhead.
236 */
237 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
238#endif
239}
240
81819f0f
CL
241/********************************************************************
242 * Core slab cache functions
243 *******************************************************************/
244
2482ddec
KC
245/*
246 * Returns freelist pointer (ptr). With hardening, this is obfuscated
247 * with an XOR of the address where the pointer is held and a per-cache
248 * random number.
249 */
250static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
251 unsigned long ptr_addr)
252{
253#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9
AK
254 /*
255 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
256 * Normally, this doesn't cause any issues, as both set_freepointer()
257 * and get_freepointer() are called with a pointer with the same tag.
258 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
259 * example, when __free_slub() iterates over objects in a cache, it
260 * passes untagged pointers to check_object(). check_object() in turns
261 * calls get_freepointer() with an untagged pointer, which causes the
262 * freepointer to be restored incorrectly.
263 */
264 return (void *)((unsigned long)ptr ^ s->random ^
8e417e08 265 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
266#else
267 return ptr;
268#endif
269}
270
271/* Returns the freelist pointer recorded at location ptr_addr. */
272static inline void *freelist_dereference(const struct kmem_cache *s,
273 void *ptr_addr)
274{
275 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
276 (unsigned long)ptr_addr);
277}
278
7656c72b
CL
279static inline void *get_freepointer(struct kmem_cache *s, void *object)
280{
2482ddec 281 return freelist_dereference(s, object + s->offset);
7656c72b
CL
282}
283
0ad9500e
ED
284static void prefetch_freepointer(const struct kmem_cache *s, void *object)
285{
0882ff91 286 prefetch(object + s->offset);
0ad9500e
ED
287}
288
1393d9a1
CL
289static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
290{
2482ddec 291 unsigned long freepointer_addr;
1393d9a1
CL
292 void *p;
293
01e00c4d 294 if (!debug_pagealloc_enabled_static())
922d566c
JK
295 return get_freepointer(s, object);
296
2482ddec
KC
297 freepointer_addr = (unsigned long)object + s->offset;
298 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
299 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
300}
301
7656c72b
CL
302static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
303{
2482ddec
KC
304 unsigned long freeptr_addr = (unsigned long)object + s->offset;
305
ce6fa91b
AP
306#ifdef CONFIG_SLAB_FREELIST_HARDENED
307 BUG_ON(object == fp); /* naive detection of double free or corruption */
308#endif
309
2482ddec 310 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
311}
312
313/* Loop over all objects in a slab */
224a88be 314#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
315 for (__p = fixup_red_left(__s, __addr); \
316 __p < (__addr) + (__objects) * (__s)->size; \
317 __p += (__s)->size)
7656c72b 318
7656c72b 319/* Determine object index from a given position */
284b50dd 320static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
7656c72b 321{
6373dca1 322 return (kasan_reset_tag(p) - addr) / s->size;
7656c72b
CL
323}
324
9736d2a9 325static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 326{
9736d2a9 327 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
328}
329
19af27af 330static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 331 unsigned int size)
834f3d11
CL
332{
333 struct kmem_cache_order_objects x = {
9736d2a9 334 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
335 };
336
337 return x;
338}
339
19af27af 340static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 341{
210b5c06 342 return x.x >> OO_SHIFT;
834f3d11
CL
343}
344
19af27af 345static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 346{
210b5c06 347 return x.x & OO_MASK;
834f3d11
CL
348}
349
881db7fb
CL
350/*
351 * Per slab locking using the pagelock
352 */
353static __always_inline void slab_lock(struct page *page)
354{
48c935ad 355 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
356 bit_spin_lock(PG_locked, &page->flags);
357}
358
359static __always_inline void slab_unlock(struct page *page)
360{
48c935ad 361 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
362 __bit_spin_unlock(PG_locked, &page->flags);
363}
364
1d07171c
CL
365/* Interrupts must be disabled (for the fallback code to work right) */
366static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
367 void *freelist_old, unsigned long counters_old,
368 void *freelist_new, unsigned long counters_new,
369 const char *n)
370{
371 VM_BUG_ON(!irqs_disabled());
2565409f
HC
372#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
373 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 374 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 375 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
376 freelist_old, counters_old,
377 freelist_new, counters_new))
6f6528a1 378 return true;
1d07171c
CL
379 } else
380#endif
381 {
382 slab_lock(page);
d0e0ac97
CG
383 if (page->freelist == freelist_old &&
384 page->counters == counters_old) {
1d07171c 385 page->freelist = freelist_new;
7d27a04b 386 page->counters = counters_new;
1d07171c 387 slab_unlock(page);
6f6528a1 388 return true;
1d07171c
CL
389 }
390 slab_unlock(page);
391 }
392
393 cpu_relax();
394 stat(s, CMPXCHG_DOUBLE_FAIL);
395
396#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 397 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
398#endif
399
6f6528a1 400 return false;
1d07171c
CL
401}
402
b789ef51
CL
403static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
404 void *freelist_old, unsigned long counters_old,
405 void *freelist_new, unsigned long counters_new,
406 const char *n)
407{
2565409f
HC
408#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
409 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 410 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 411 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
412 freelist_old, counters_old,
413 freelist_new, counters_new))
6f6528a1 414 return true;
b789ef51
CL
415 } else
416#endif
417 {
1d07171c
CL
418 unsigned long flags;
419
420 local_irq_save(flags);
881db7fb 421 slab_lock(page);
d0e0ac97
CG
422 if (page->freelist == freelist_old &&
423 page->counters == counters_old) {
b789ef51 424 page->freelist = freelist_new;
7d27a04b 425 page->counters = counters_new;
881db7fb 426 slab_unlock(page);
1d07171c 427 local_irq_restore(flags);
6f6528a1 428 return true;
b789ef51 429 }
881db7fb 430 slab_unlock(page);
1d07171c 431 local_irq_restore(flags);
b789ef51
CL
432 }
433
434 cpu_relax();
435 stat(s, CMPXCHG_DOUBLE_FAIL);
436
437#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 438 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
439#endif
440
6f6528a1 441 return false;
b789ef51
CL
442}
443
41ecc55b 444#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
445/*
446 * Determine a map of object in use on a page.
447 *
881db7fb 448 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
449 * not vanish from under us.
450 */
451static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
452{
453 void *p;
454 void *addr = page_address(page);
455
456 for (p = page->freelist; p; p = get_freepointer(s, p))
457 set_bit(slab_index(p, s, addr), map);
458}
459
870b1fbb 460static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
461{
462 if (s->flags & SLAB_RED_ZONE)
463 return s->size - s->red_left_pad;
464
465 return s->size;
466}
467
468static inline void *restore_red_left(struct kmem_cache *s, void *p)
469{
470 if (s->flags & SLAB_RED_ZONE)
471 p -= s->red_left_pad;
472
473 return p;
474}
475
41ecc55b
CL
476/*
477 * Debug settings:
478 */
89d3c87e 479#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 480static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 481#else
d50112ed 482static slab_flags_t slub_debug;
f0630fff 483#endif
41ecc55b
CL
484
485static char *slub_debug_slabs;
fa5ec8a1 486static int disable_higher_order_debug;
41ecc55b 487
a79316c6
AR
488/*
489 * slub is about to manipulate internal object metadata. This memory lies
490 * outside the range of the allocated object, so accessing it would normally
491 * be reported by kasan as a bounds error. metadata_access_enable() is used
492 * to tell kasan that these accesses are OK.
493 */
494static inline void metadata_access_enable(void)
495{
496 kasan_disable_current();
497}
498
499static inline void metadata_access_disable(void)
500{
501 kasan_enable_current();
502}
503
81819f0f
CL
504/*
505 * Object debugging
506 */
d86bd1be
JK
507
508/* Verify that a pointer has an address that is valid within a slab page */
509static inline int check_valid_pointer(struct kmem_cache *s,
510 struct page *page, void *object)
511{
512 void *base;
513
514 if (!object)
515 return 1;
516
517 base = page_address(page);
338cfaad 518 object = kasan_reset_tag(object);
d86bd1be
JK
519 object = restore_red_left(s, object);
520 if (object < base || object >= base + page->objects * s->size ||
521 (object - base) % s->size) {
522 return 0;
523 }
524
525 return 1;
526}
527
aa2efd5e
DT
528static void print_section(char *level, char *text, u8 *addr,
529 unsigned int length)
81819f0f 530{
a79316c6 531 metadata_access_enable();
aa2efd5e 532 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 533 length, 1);
a79316c6 534 metadata_access_disable();
81819f0f
CL
535}
536
76b22022
WL
537/*
538 * See comment in calculate_sizes().
539 */
540static inline bool freeptr_outside_object(struct kmem_cache *s)
541{
542 return s->offset >= s->inuse;
543}
544
545/*
546 * Return offset of the end of info block which is inuse + free pointer if
547 * not overlapping with object.
548 */
549static inline unsigned int get_info_end(struct kmem_cache *s)
550{
551 if (freeptr_outside_object(s))
552 return s->inuse + sizeof(void *);
553 else
554 return s->inuse;
555}
556
81819f0f
CL
557static struct track *get_track(struct kmem_cache *s, void *object,
558 enum track_item alloc)
559{
560 struct track *p;
561
76b22022 562 p = object + get_info_end(s);
81819f0f
CL
563
564 return p + alloc;
565}
566
567static void set_track(struct kmem_cache *s, void *object,
ce71e27c 568 enum track_item alloc, unsigned long addr)
81819f0f 569{
1a00df4a 570 struct track *p = get_track(s, object, alloc);
81819f0f 571
81819f0f 572 if (addr) {
d6543e39 573#ifdef CONFIG_STACKTRACE
79716799 574 unsigned int nr_entries;
d6543e39 575
a79316c6 576 metadata_access_enable();
79716799 577 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
a79316c6 578 metadata_access_disable();
d6543e39 579
79716799
TG
580 if (nr_entries < TRACK_ADDRS_COUNT)
581 p->addrs[nr_entries] = 0;
d6543e39 582#endif
81819f0f
CL
583 p->addr = addr;
584 p->cpu = smp_processor_id();
88e4ccf2 585 p->pid = current->pid;
81819f0f 586 p->when = jiffies;
b8ca7ff7 587 } else {
81819f0f 588 memset(p, 0, sizeof(struct track));
b8ca7ff7 589 }
81819f0f
CL
590}
591
81819f0f
CL
592static void init_tracking(struct kmem_cache *s, void *object)
593{
24922684
CL
594 if (!(s->flags & SLAB_STORE_USER))
595 return;
596
ce71e27c
EGM
597 set_track(s, object, TRACK_FREE, 0UL);
598 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
599}
600
86609d33 601static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
602{
603 if (!t->addr)
604 return;
605
f9f58285 606 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 607 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
d6543e39
BG
608#ifdef CONFIG_STACKTRACE
609 {
610 int i;
611 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
612 if (t->addrs[i])
f9f58285 613 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
614 else
615 break;
616 }
617#endif
24922684
CL
618}
619
620static void print_tracking(struct kmem_cache *s, void *object)
621{
86609d33 622 unsigned long pr_time = jiffies;
24922684
CL
623 if (!(s->flags & SLAB_STORE_USER))
624 return;
625
86609d33
CP
626 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
627 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
628}
629
630static void print_page_info(struct page *page)
631{
f9f58285 632 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 633 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
634
635}
636
637static void slab_bug(struct kmem_cache *s, char *fmt, ...)
638{
ecc42fbe 639 struct va_format vaf;
24922684 640 va_list args;
24922684
CL
641
642 va_start(args, fmt);
ecc42fbe
FF
643 vaf.fmt = fmt;
644 vaf.va = &args;
f9f58285 645 pr_err("=============================================================================\n");
ecc42fbe 646 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 647 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 648
373d4d09 649 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 650 va_end(args);
81819f0f
CL
651}
652
24922684
CL
653static void slab_fix(struct kmem_cache *s, char *fmt, ...)
654{
ecc42fbe 655 struct va_format vaf;
24922684 656 va_list args;
24922684
CL
657
658 va_start(args, fmt);
ecc42fbe
FF
659 vaf.fmt = fmt;
660 vaf.va = &args;
661 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 662 va_end(args);
24922684
CL
663}
664
47a5566f 665static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
0d89eb77 666 void **freelist, void *nextfree)
47a5566f
DZ
667{
668 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
0d89eb77
ER
669 !check_valid_pointer(s, page, nextfree) && freelist) {
670 object_err(s, page, *freelist, "Freechain corrupt");
671 *freelist = NULL;
47a5566f
DZ
672 slab_fix(s, "Isolate corrupted freechain");
673 return true;
674 }
675
676 return false;
677}
678
24922684 679static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
680{
681 unsigned int off; /* Offset of last byte */
a973e9dd 682 u8 *addr = page_address(page);
24922684
CL
683
684 print_tracking(s, p);
685
686 print_page_info(page);
687
f9f58285
FF
688 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
689 p, p - addr, get_freepointer(s, p));
24922684 690
d86bd1be 691 if (s->flags & SLAB_RED_ZONE)
07590535 692 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
aa2efd5e 693 s->red_left_pad);
d86bd1be 694 else if (p > addr + 16)
aa2efd5e 695 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 696
07590535 697 print_section(KERN_ERR, "Object ", p,
1b473f29 698 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 699 if (s->flags & SLAB_RED_ZONE)
07590535 700 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 701 s->inuse - s->object_size);
81819f0f 702
76b22022 703 off = get_info_end(s);
81819f0f 704
24922684 705 if (s->flags & SLAB_STORE_USER)
81819f0f 706 off += 2 * sizeof(struct track);
81819f0f 707
80a9201a
AP
708 off += kasan_metadata_size(s);
709
d86bd1be 710 if (off != size_from_object(s))
81819f0f 711 /* Beginning of the filler is the free pointer */
07590535 712 print_section(KERN_ERR, "Padding ", p + off,
aa2efd5e 713 size_from_object(s) - off);
24922684
CL
714
715 dump_stack();
81819f0f
CL
716}
717
75c66def 718void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
719 u8 *object, char *reason)
720{
3dc50637 721 slab_bug(s, "%s", reason);
24922684 722 print_trailer(s, page, object);
81819f0f
CL
723}
724
a38965bf 725static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 726 const char *fmt, ...)
81819f0f
CL
727{
728 va_list args;
729 char buf[100];
730
24922684
CL
731 va_start(args, fmt);
732 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 733 va_end(args);
3dc50637 734 slab_bug(s, "%s", buf);
24922684 735 print_page_info(page);
81819f0f
CL
736 dump_stack();
737}
738
f7cb1933 739static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
740{
741 u8 *p = object;
742
d86bd1be
JK
743 if (s->flags & SLAB_RED_ZONE)
744 memset(p - s->red_left_pad, val, s->red_left_pad);
745
81819f0f 746 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
747 memset(p, POISON_FREE, s->object_size - 1);
748 p[s->object_size - 1] = POISON_END;
81819f0f
CL
749 }
750
751 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 752 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
753}
754
24922684
CL
755static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
756 void *from, void *to)
757{
758 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
759 memset(from, data, to - from);
760}
761
762static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
763 u8 *object, char *what,
06428780 764 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
765{
766 u8 *fault;
767 u8 *end;
768
a79316c6 769 metadata_access_enable();
79824820 770 fault = memchr_inv(start, value, bytes);
a79316c6 771 metadata_access_disable();
24922684
CL
772 if (!fault)
773 return 1;
774
775 end = start + bytes;
776 while (end > fault && end[-1] == value)
777 end--;
778
779 slab_bug(s, "%s overwritten", what);
f9f58285 780 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
781 fault, end - 1, fault[0], value);
782 print_trailer(s, page, object);
783
784 restore_bytes(s, what, value, fault, end);
785 return 0;
81819f0f
CL
786}
787
81819f0f
CL
788/*
789 * Object layout:
790 *
791 * object address
792 * Bytes of the object to be managed.
793 * If the freepointer may overlay the object then the free
76b22022 794 * pointer is at the middle of the object.
672bba3a 795 *
81819f0f
CL
796 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
797 * 0xa5 (POISON_END)
798 *
3b0efdfa 799 * object + s->object_size
81819f0f 800 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 801 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 802 * object_size == inuse.
672bba3a 803 *
81819f0f
CL
804 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
805 * 0xcc (RED_ACTIVE) for objects in use.
806 *
807 * object + s->inuse
672bba3a
CL
808 * Meta data starts here.
809 *
81819f0f
CL
810 * A. Free pointer (if we cannot overwrite object on free)
811 * B. Tracking data for SLAB_STORE_USER
672bba3a 812 * C. Padding to reach required alignment boundary or at mininum
6446faa2 813 * one word if debugging is on to be able to detect writes
672bba3a
CL
814 * before the word boundary.
815 *
816 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
817 *
818 * object + s->size
672bba3a 819 * Nothing is used beyond s->size.
81819f0f 820 *
3b0efdfa 821 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 822 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
823 * may be used with merged slabcaches.
824 */
825
81819f0f
CL
826static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
827{
76b22022 828 unsigned long off = get_info_end(s); /* The end of info */
81819f0f
CL
829
830 if (s->flags & SLAB_STORE_USER)
831 /* We also have user information there */
832 off += 2 * sizeof(struct track);
833
80a9201a
AP
834 off += kasan_metadata_size(s);
835
d86bd1be 836 if (size_from_object(s) == off)
81819f0f
CL
837 return 1;
838
24922684 839 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 840 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
841}
842
39b26464 843/* Check the pad bytes at the end of a slab page */
81819f0f
CL
844static int slab_pad_check(struct kmem_cache *s, struct page *page)
845{
24922684
CL
846 u8 *start;
847 u8 *fault;
848 u8 *end;
5d682681 849 u8 *pad;
24922684
CL
850 int length;
851 int remainder;
81819f0f
CL
852
853 if (!(s->flags & SLAB_POISON))
854 return 1;
855
a973e9dd 856 start = page_address(page);
a50b854e 857 length = page_size(page);
39b26464
CL
858 end = start + length;
859 remainder = length % s->size;
81819f0f
CL
860 if (!remainder)
861 return 1;
862
5d682681 863 pad = end - remainder;
a79316c6 864 metadata_access_enable();
5d682681 865 fault = memchr_inv(pad, POISON_INUSE, remainder);
a79316c6 866 metadata_access_disable();
24922684
CL
867 if (!fault)
868 return 1;
869 while (end > fault && end[-1] == POISON_INUSE)
870 end--;
871
872 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
5d682681 873 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 874
5d682681 875 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 876 return 0;
81819f0f
CL
877}
878
879static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 880 void *object, u8 val)
81819f0f
CL
881{
882 u8 *p = object;
3b0efdfa 883 u8 *endobject = object + s->object_size;
81819f0f
CL
884
885 if (s->flags & SLAB_RED_ZONE) {
07590535 886 if (!check_bytes_and_report(s, page, object, "Left Redzone",
d86bd1be
JK
887 object - s->red_left_pad, val, s->red_left_pad))
888 return 0;
889
07590535 890 if (!check_bytes_and_report(s, page, object, "Right Redzone",
3b0efdfa 891 endobject, val, s->inuse - s->object_size))
81819f0f 892 return 0;
81819f0f 893 } else {
3b0efdfa 894 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 895 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
896 endobject, POISON_INUSE,
897 s->inuse - s->object_size);
3adbefee 898 }
81819f0f
CL
899 }
900
901 if (s->flags & SLAB_POISON) {
f7cb1933 902 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 903 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 904 POISON_FREE, s->object_size - 1) ||
07590535 905 !check_bytes_and_report(s, page, p, "End Poison",
3b0efdfa 906 p + s->object_size - 1, POISON_END, 1)))
81819f0f 907 return 0;
81819f0f
CL
908 /*
909 * check_pad_bytes cleans up on its own.
910 */
911 check_pad_bytes(s, page, p);
912 }
913
76b22022 914 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
915 /*
916 * Object and freepointer overlap. Cannot check
917 * freepointer while object is allocated.
918 */
919 return 1;
920
921 /* Check free pointer validity */
922 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
923 object_err(s, page, p, "Freepointer corrupt");
924 /*
9f6c708e 925 * No choice but to zap it and thus lose the remainder
81819f0f 926 * of the free objects in this slab. May cause
672bba3a 927 * another error because the object count is now wrong.
81819f0f 928 */
a973e9dd 929 set_freepointer(s, p, NULL);
81819f0f
CL
930 return 0;
931 }
932 return 1;
933}
934
935static int check_slab(struct kmem_cache *s, struct page *page)
936{
39b26464
CL
937 int maxobj;
938
81819f0f
CL
939 VM_BUG_ON(!irqs_disabled());
940
941 if (!PageSlab(page)) {
24922684 942 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
943 return 0;
944 }
39b26464 945
9736d2a9 946 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
947 if (page->objects > maxobj) {
948 slab_err(s, page, "objects %u > max %u",
f6edde9c 949 page->objects, maxobj);
39b26464
CL
950 return 0;
951 }
952 if (page->inuse > page->objects) {
24922684 953 slab_err(s, page, "inuse %u > max %u",
f6edde9c 954 page->inuse, page->objects);
81819f0f
CL
955 return 0;
956 }
957 /* Slab_pad_check fixes things up after itself */
958 slab_pad_check(s, page);
959 return 1;
960}
961
962/*
672bba3a
CL
963 * Determine if a certain object on a page is on the freelist. Must hold the
964 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
965 */
966static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
967{
968 int nr = 0;
881db7fb 969 void *fp;
81819f0f 970 void *object = NULL;
f6edde9c 971 int max_objects;
81819f0f 972
881db7fb 973 fp = page->freelist;
39b26464 974 while (fp && nr <= page->objects) {
81819f0f
CL
975 if (fp == search)
976 return 1;
977 if (!check_valid_pointer(s, page, fp)) {
978 if (object) {
979 object_err(s, page, object,
980 "Freechain corrupt");
a973e9dd 981 set_freepointer(s, object, NULL);
81819f0f 982 } else {
24922684 983 slab_err(s, page, "Freepointer corrupt");
a973e9dd 984 page->freelist = NULL;
39b26464 985 page->inuse = page->objects;
24922684 986 slab_fix(s, "Freelist cleared");
81819f0f
CL
987 return 0;
988 }
989 break;
990 }
991 object = fp;
992 fp = get_freepointer(s, object);
993 nr++;
994 }
995
9736d2a9 996 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
997 if (max_objects > MAX_OBJS_PER_PAGE)
998 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
999
1000 if (page->objects != max_objects) {
756a025f
JP
1001 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1002 page->objects, max_objects);
224a88be
CL
1003 page->objects = max_objects;
1004 slab_fix(s, "Number of objects adjusted.");
1005 }
39b26464 1006 if (page->inuse != page->objects - nr) {
756a025f
JP
1007 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1008 page->inuse, page->objects - nr);
39b26464 1009 page->inuse = page->objects - nr;
24922684 1010 slab_fix(s, "Object count adjusted.");
81819f0f
CL
1011 }
1012 return search == NULL;
1013}
1014
0121c619
CL
1015static void trace(struct kmem_cache *s, struct page *page, void *object,
1016 int alloc)
3ec09742
CL
1017{
1018 if (s->flags & SLAB_TRACE) {
f9f58285 1019 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1020 s->name,
1021 alloc ? "alloc" : "free",
1022 object, page->inuse,
1023 page->freelist);
1024
1025 if (!alloc)
aa2efd5e 1026 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1027 s->object_size);
3ec09742
CL
1028
1029 dump_stack();
1030 }
1031}
1032
643b1138 1033/*
672bba3a 1034 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1035 */
5cc6eee8
CL
1036static void add_full(struct kmem_cache *s,
1037 struct kmem_cache_node *n, struct page *page)
643b1138 1038{
5cc6eee8
CL
1039 if (!(s->flags & SLAB_STORE_USER))
1040 return;
1041
255d0884 1042 lockdep_assert_held(&n->list_lock);
916ac052 1043 list_add(&page->slab_list, &n->full);
643b1138
CL
1044}
1045
c65c1877 1046static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1047{
643b1138
CL
1048 if (!(s->flags & SLAB_STORE_USER))
1049 return;
1050
255d0884 1051 lockdep_assert_held(&n->list_lock);
916ac052 1052 list_del(&page->slab_list);
643b1138
CL
1053}
1054
0f389ec6
CL
1055/* Tracking of the number of slabs for debugging purposes */
1056static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1057{
1058 struct kmem_cache_node *n = get_node(s, node);
1059
1060 return atomic_long_read(&n->nr_slabs);
1061}
1062
26c02cf0
AB
1063static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1064{
1065 return atomic_long_read(&n->nr_slabs);
1066}
1067
205ab99d 1068static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1069{
1070 struct kmem_cache_node *n = get_node(s, node);
1071
1072 /*
1073 * May be called early in order to allocate a slab for the
1074 * kmem_cache_node structure. Solve the chicken-egg
1075 * dilemma by deferring the increment of the count during
1076 * bootstrap (see early_kmem_cache_node_alloc).
1077 */
338b2642 1078 if (likely(n)) {
0f389ec6 1079 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1080 atomic_long_add(objects, &n->total_objects);
1081 }
0f389ec6 1082}
205ab99d 1083static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1084{
1085 struct kmem_cache_node *n = get_node(s, node);
1086
1087 atomic_long_dec(&n->nr_slabs);
205ab99d 1088 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1089}
1090
1091/* Object debug checks for alloc/free paths */
3ec09742
CL
1092static void setup_object_debug(struct kmem_cache *s, struct page *page,
1093 void *object)
1094{
1095 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1096 return;
1097
f7cb1933 1098 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1099 init_tracking(s, object);
1100}
1101
a50b854e
MWO
1102static
1103void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
a7101224
AK
1104{
1105 if (!(s->flags & SLAB_POISON))
1106 return;
1107
1108 metadata_access_enable();
a50b854e 1109 memset(addr, POISON_INUSE, page_size(page));
a7101224
AK
1110 metadata_access_disable();
1111}
1112
becfda68 1113static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1114 struct page *page, void *object)
81819f0f
CL
1115{
1116 if (!check_slab(s, page))
becfda68 1117 return 0;
81819f0f 1118
81819f0f
CL
1119 if (!check_valid_pointer(s, page, object)) {
1120 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1121 return 0;
81819f0f
CL
1122 }
1123
f7cb1933 1124 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1125 return 0;
1126
1127 return 1;
1128}
1129
1130static noinline int alloc_debug_processing(struct kmem_cache *s,
1131 struct page *page,
1132 void *object, unsigned long addr)
1133{
1134 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1135 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1136 goto bad;
1137 }
81819f0f 1138
3ec09742
CL
1139 /* Success perform special debug activities for allocs */
1140 if (s->flags & SLAB_STORE_USER)
1141 set_track(s, object, TRACK_ALLOC, addr);
1142 trace(s, page, object, 1);
f7cb1933 1143 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1144 return 1;
3ec09742 1145
81819f0f
CL
1146bad:
1147 if (PageSlab(page)) {
1148 /*
1149 * If this is a slab page then lets do the best we can
1150 * to avoid issues in the future. Marking all objects
672bba3a 1151 * as used avoids touching the remaining objects.
81819f0f 1152 */
24922684 1153 slab_fix(s, "Marking all objects used");
39b26464 1154 page->inuse = page->objects;
a973e9dd 1155 page->freelist = NULL;
81819f0f
CL
1156 }
1157 return 0;
1158}
1159
becfda68
LA
1160static inline int free_consistency_checks(struct kmem_cache *s,
1161 struct page *page, void *object, unsigned long addr)
81819f0f 1162{
81819f0f 1163 if (!check_valid_pointer(s, page, object)) {
70d71228 1164 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1165 return 0;
81819f0f
CL
1166 }
1167
1168 if (on_freelist(s, page, object)) {
24922684 1169 object_err(s, page, object, "Object already free");
becfda68 1170 return 0;
81819f0f
CL
1171 }
1172
f7cb1933 1173 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1174 return 0;
81819f0f 1175
1b4f59e3 1176 if (unlikely(s != page->slab_cache)) {
3adbefee 1177 if (!PageSlab(page)) {
756a025f
JP
1178 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1179 object);
1b4f59e3 1180 } else if (!page->slab_cache) {
f9f58285
FF
1181 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1182 object);
70d71228 1183 dump_stack();
06428780 1184 } else
24922684
CL
1185 object_err(s, page, object,
1186 "page slab pointer corrupt.");
becfda68
LA
1187 return 0;
1188 }
1189 return 1;
1190}
1191
1192/* Supports checking bulk free of a constructed freelist */
1193static noinline int free_debug_processing(
1194 struct kmem_cache *s, struct page *page,
1195 void *head, void *tail, int bulk_cnt,
1196 unsigned long addr)
1197{
1198 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1199 void *object = head;
1200 int cnt = 0;
1201 unsigned long uninitialized_var(flags);
1202 int ret = 0;
1203
1204 spin_lock_irqsave(&n->list_lock, flags);
1205 slab_lock(page);
1206
1207 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1208 if (!check_slab(s, page))
1209 goto out;
1210 }
1211
1212next_object:
1213 cnt++;
1214
1215 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1216 if (!free_consistency_checks(s, page, object, addr))
1217 goto out;
81819f0f 1218 }
3ec09742 1219
3ec09742
CL
1220 if (s->flags & SLAB_STORE_USER)
1221 set_track(s, object, TRACK_FREE, addr);
1222 trace(s, page, object, 0);
81084651 1223 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1224 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1225
1226 /* Reached end of constructed freelist yet? */
1227 if (object != tail) {
1228 object = get_freepointer(s, object);
1229 goto next_object;
1230 }
804aa132
LA
1231 ret = 1;
1232
5c2e4bbb 1233out:
81084651
JDB
1234 if (cnt != bulk_cnt)
1235 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1236 bulk_cnt, cnt);
1237
881db7fb 1238 slab_unlock(page);
282acb43 1239 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1240 if (!ret)
1241 slab_fix(s, "Object at 0x%p not freed", object);
1242 return ret;
81819f0f
CL
1243}
1244
41ecc55b
CL
1245static int __init setup_slub_debug(char *str)
1246{
f0630fff
CL
1247 slub_debug = DEBUG_DEFAULT_FLAGS;
1248 if (*str++ != '=' || !*str)
1249 /*
1250 * No options specified. Switch on full debugging.
1251 */
1252 goto out;
1253
1254 if (*str == ',')
1255 /*
1256 * No options but restriction on slabs. This means full
1257 * debugging for slabs matching a pattern.
1258 */
1259 goto check_slabs;
1260
1261 slub_debug = 0;
1262 if (*str == '-')
1263 /*
1264 * Switch off all debugging measures.
1265 */
1266 goto out;
1267
1268 /*
1269 * Determine which debug features should be switched on
1270 */
06428780 1271 for (; *str && *str != ','; str++) {
f0630fff
CL
1272 switch (tolower(*str)) {
1273 case 'f':
becfda68 1274 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1275 break;
1276 case 'z':
1277 slub_debug |= SLAB_RED_ZONE;
1278 break;
1279 case 'p':
1280 slub_debug |= SLAB_POISON;
1281 break;
1282 case 'u':
1283 slub_debug |= SLAB_STORE_USER;
1284 break;
1285 case 't':
1286 slub_debug |= SLAB_TRACE;
1287 break;
4c13dd3b
DM
1288 case 'a':
1289 slub_debug |= SLAB_FAILSLAB;
1290 break;
08303a73
CA
1291 case 'o':
1292 /*
1293 * Avoid enabling debugging on caches if its minimum
1294 * order would increase as a result.
1295 */
1296 disable_higher_order_debug = 1;
1297 break;
f0630fff 1298 default:
f9f58285
FF
1299 pr_err("slub_debug option '%c' unknown. skipped\n",
1300 *str);
f0630fff 1301 }
41ecc55b
CL
1302 }
1303
f0630fff 1304check_slabs:
41ecc55b
CL
1305 if (*str == ',')
1306 slub_debug_slabs = str + 1;
f0630fff 1307out:
6471384a
AP
1308 if ((static_branch_unlikely(&init_on_alloc) ||
1309 static_branch_unlikely(&init_on_free)) &&
1310 (slub_debug & SLAB_POISON))
1311 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1312 return 1;
1313}
1314
1315__setup("slub_debug", setup_slub_debug);
1316
c5fd3ca0
AT
1317/*
1318 * kmem_cache_flags - apply debugging options to the cache
1319 * @object_size: the size of an object without meta data
1320 * @flags: flags to set
1321 * @name: name of the cache
1322 * @ctor: constructor function
1323 *
1324 * Debug option(s) are applied to @flags. In addition to the debug
1325 * option(s), if a slab name (or multiple) is specified i.e.
1326 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1327 * then only the select slabs will receive the debug option(s).
1328 */
0293d1fd 1329slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1330 slab_flags_t flags, const char *name,
51cc5068 1331 void (*ctor)(void *))
41ecc55b 1332{
c5fd3ca0
AT
1333 char *iter;
1334 size_t len;
1335
1336 /* If slub_debug = 0, it folds into the if conditional. */
1337 if (!slub_debug_slabs)
1338 return flags | slub_debug;
1339
1340 len = strlen(name);
1341 iter = slub_debug_slabs;
1342 while (*iter) {
1343 char *end, *glob;
1344 size_t cmplen;
1345
9cf3a8d8 1346 end = strchrnul(iter, ',');
c5fd3ca0
AT
1347
1348 glob = strnchr(iter, end - iter, '*');
1349 if (glob)
1350 cmplen = glob - iter;
1351 else
1352 cmplen = max_t(size_t, len, (end - iter));
1353
1354 if (!strncmp(name, iter, cmplen)) {
1355 flags |= slub_debug;
1356 break;
1357 }
1358
1359 if (!*end)
1360 break;
1361 iter = end + 1;
1362 }
ba0268a8
CL
1363
1364 return flags;
41ecc55b 1365}
b4a64718 1366#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1367static inline void setup_object_debug(struct kmem_cache *s,
1368 struct page *page, void *object) {}
a50b854e
MWO
1369static inline
1370void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
41ecc55b 1371
3ec09742 1372static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1373 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1374
282acb43 1375static inline int free_debug_processing(
81084651
JDB
1376 struct kmem_cache *s, struct page *page,
1377 void *head, void *tail, int bulk_cnt,
282acb43 1378 unsigned long addr) { return 0; }
41ecc55b 1379
41ecc55b
CL
1380static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1381 { return 1; }
1382static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1383 void *object, u8 val) { return 1; }
5cc6eee8
CL
1384static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1385 struct page *page) {}
c65c1877
PZ
1386static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1387 struct page *page) {}
0293d1fd 1388slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1389 slab_flags_t flags, const char *name,
51cc5068 1390 void (*ctor)(void *))
ba0268a8
CL
1391{
1392 return flags;
1393}
41ecc55b 1394#define slub_debug 0
0f389ec6 1395
fdaa45e9
IM
1396#define disable_higher_order_debug 0
1397
0f389ec6
CL
1398static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1399 { return 0; }
26c02cf0
AB
1400static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1401 { return 0; }
205ab99d
CL
1402static inline void inc_slabs_node(struct kmem_cache *s, int node,
1403 int objects) {}
1404static inline void dec_slabs_node(struct kmem_cache *s, int node,
1405 int objects) {}
7d550c56 1406
47a5566f 1407static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
0d89eb77 1408 void **freelist, void *nextfree)
47a5566f
DZ
1409{
1410 return false;
1411}
02e72cc6
AR
1412#endif /* CONFIG_SLUB_DEBUG */
1413
1414/*
1415 * Hooks for other subsystems that check memory allocations. In a typical
1416 * production configuration these hooks all should produce no code at all.
1417 */
0116523c 1418static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1419{
53128245 1420 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1421 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1422 kmemleak_alloc(ptr, size, 1, flags);
53128245 1423 return ptr;
d56791b3
RB
1424}
1425
ee3ce779 1426static __always_inline void kfree_hook(void *x)
d56791b3
RB
1427{
1428 kmemleak_free(x);
ee3ce779 1429 kasan_kfree_large(x, _RET_IP_);
d56791b3
RB
1430}
1431
c3895391 1432static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
d56791b3
RB
1433{
1434 kmemleak_free_recursive(x, s->flags);
7d550c56 1435
02e72cc6
AR
1436 /*
1437 * Trouble is that we may no longer disable interrupts in the fast path
1438 * So in order to make the debug calls that expect irqs to be
1439 * disabled we need to disable interrupts temporarily.
1440 */
4675ff05 1441#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1442 {
1443 unsigned long flags;
1444
1445 local_irq_save(flags);
02e72cc6
AR
1446 debug_check_no_locks_freed(x, s->object_size);
1447 local_irq_restore(flags);
1448 }
1449#endif
1450 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1451 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1452
c3895391
AK
1453 /* KASAN might put x into memory quarantine, delaying its reuse */
1454 return kasan_slab_free(s, x, _RET_IP_);
02e72cc6 1455}
205ab99d 1456
c3895391 1457static inline bool slab_free_freelist_hook(struct kmem_cache *s,
20aca3c6
ML
1458 void **head, void **tail,
1459 int *cnt)
81084651 1460{
6471384a
AP
1461
1462 void *object;
1463 void *next = *head;
1464 void *old_tail = *tail ? *tail : *head;
1465 int rsize;
1466
aea4df4c
LA
1467 /* Head and tail of the reconstructed freelist */
1468 *head = NULL;
1469 *tail = NULL;
1b7e816f 1470
aea4df4c
LA
1471 do {
1472 object = next;
1473 next = get_freepointer(s, object);
1474
1475 if (slab_want_init_on_free(s)) {
6471384a
AP
1476 /*
1477 * Clear the object and the metadata, but don't touch
1478 * the redzone.
1479 */
1480 memset(object, 0, s->object_size);
1481 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1482 : 0;
1483 memset((char *)object + s->inuse, 0,
1484 s->size - s->inuse - rsize);
81084651 1485
aea4df4c 1486 }
c3895391
AK
1487 /* If object's reuse doesn't have to be delayed */
1488 if (!slab_free_hook(s, object)) {
1489 /* Move object to the new freelist */
1490 set_freepointer(s, object, *head);
1491 *head = object;
1492 if (!*tail)
1493 *tail = object;
20aca3c6
ML
1494 } else {
1495 /*
1496 * Adjust the reconstructed freelist depth
1497 * accordingly if object's reuse is delayed.
1498 */
1499 --(*cnt);
c3895391
AK
1500 }
1501 } while (object != old_tail);
1502
1503 if (*head == *tail)
1504 *tail = NULL;
1505
1506 return *head != NULL;
81084651
JDB
1507}
1508
4d176711 1509static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1510 void *object)
1511{
1512 setup_object_debug(s, page, object);
4d176711 1513 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1514 if (unlikely(s->ctor)) {
1515 kasan_unpoison_object_data(s, object);
1516 s->ctor(object);
1517 kasan_poison_object_data(s, object);
1518 }
4d176711 1519 return object;
588f8ba9
TG
1520}
1521
81819f0f
CL
1522/*
1523 * Slab allocation and freeing
1524 */
5dfb4175
VD
1525static inline struct page *alloc_slab_page(struct kmem_cache *s,
1526 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1527{
5dfb4175 1528 struct page *page;
19af27af 1529 unsigned int order = oo_order(oo);
65c3376a 1530
2154a336 1531 if (node == NUMA_NO_NODE)
5dfb4175 1532 page = alloc_pages(flags, order);
65c3376a 1533 else
96db800f 1534 page = __alloc_pages_node(node, flags, order);
5dfb4175 1535
6cea1d56 1536 if (page && charge_slab_page(page, flags, order, s)) {
f3ccb2c4
VD
1537 __free_pages(page, order);
1538 page = NULL;
1539 }
5dfb4175
VD
1540
1541 return page;
65c3376a
CL
1542}
1543
210e7a43
TG
1544#ifdef CONFIG_SLAB_FREELIST_RANDOM
1545/* Pre-initialize the random sequence cache */
1546static int init_cache_random_seq(struct kmem_cache *s)
1547{
19af27af 1548 unsigned int count = oo_objects(s->oo);
210e7a43 1549 int err;
210e7a43 1550
a810007a
SR
1551 /* Bailout if already initialised */
1552 if (s->random_seq)
1553 return 0;
1554
210e7a43
TG
1555 err = cache_random_seq_create(s, count, GFP_KERNEL);
1556 if (err) {
1557 pr_err("SLUB: Unable to initialize free list for %s\n",
1558 s->name);
1559 return err;
1560 }
1561
1562 /* Transform to an offset on the set of pages */
1563 if (s->random_seq) {
19af27af
AD
1564 unsigned int i;
1565
210e7a43
TG
1566 for (i = 0; i < count; i++)
1567 s->random_seq[i] *= s->size;
1568 }
1569 return 0;
1570}
1571
1572/* Initialize each random sequence freelist per cache */
1573static void __init init_freelist_randomization(void)
1574{
1575 struct kmem_cache *s;
1576
1577 mutex_lock(&slab_mutex);
1578
1579 list_for_each_entry(s, &slab_caches, list)
1580 init_cache_random_seq(s);
1581
1582 mutex_unlock(&slab_mutex);
1583}
1584
1585/* Get the next entry on the pre-computed freelist randomized */
1586static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1587 unsigned long *pos, void *start,
1588 unsigned long page_limit,
1589 unsigned long freelist_count)
1590{
1591 unsigned int idx;
1592
1593 /*
1594 * If the target page allocation failed, the number of objects on the
1595 * page might be smaller than the usual size defined by the cache.
1596 */
1597 do {
1598 idx = s->random_seq[*pos];
1599 *pos += 1;
1600 if (*pos >= freelist_count)
1601 *pos = 0;
1602 } while (unlikely(idx >= page_limit));
1603
1604 return (char *)start + idx;
1605}
1606
1607/* Shuffle the single linked freelist based on a random pre-computed sequence */
1608static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1609{
1610 void *start;
1611 void *cur;
1612 void *next;
1613 unsigned long idx, pos, page_limit, freelist_count;
1614
1615 if (page->objects < 2 || !s->random_seq)
1616 return false;
1617
1618 freelist_count = oo_objects(s->oo);
1619 pos = get_random_int() % freelist_count;
1620
1621 page_limit = page->objects * s->size;
1622 start = fixup_red_left(s, page_address(page));
1623
1624 /* First entry is used as the base of the freelist */
1625 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1626 freelist_count);
4d176711 1627 cur = setup_object(s, page, cur);
210e7a43
TG
1628 page->freelist = cur;
1629
1630 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1631 next = next_freelist_entry(s, page, &pos, start, page_limit,
1632 freelist_count);
4d176711 1633 next = setup_object(s, page, next);
210e7a43
TG
1634 set_freepointer(s, cur, next);
1635 cur = next;
1636 }
210e7a43
TG
1637 set_freepointer(s, cur, NULL);
1638
1639 return true;
1640}
1641#else
1642static inline int init_cache_random_seq(struct kmem_cache *s)
1643{
1644 return 0;
1645}
1646static inline void init_freelist_randomization(void) { }
1647static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1648{
1649 return false;
1650}
1651#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1652
81819f0f
CL
1653static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1654{
06428780 1655 struct page *page;
834f3d11 1656 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1657 gfp_t alloc_gfp;
4d176711 1658 void *start, *p, *next;
a50b854e 1659 int idx;
210e7a43 1660 bool shuffle;
81819f0f 1661
7e0528da
CL
1662 flags &= gfp_allowed_mask;
1663
d0164adc 1664 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1665 local_irq_enable();
1666
b7a49f0d 1667 flags |= s->allocflags;
e12ba74d 1668
ba52270d
PE
1669 /*
1670 * Let the initial higher-order allocation fail under memory pressure
1671 * so we fall-back to the minimum order allocation.
1672 */
1673 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1674 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1675 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1676
5dfb4175 1677 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1678 if (unlikely(!page)) {
1679 oo = s->min;
80c3a998 1680 alloc_gfp = flags;
65c3376a
CL
1681 /*
1682 * Allocation may have failed due to fragmentation.
1683 * Try a lower order alloc if possible
1684 */
5dfb4175 1685 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1686 if (unlikely(!page))
1687 goto out;
1688 stat(s, ORDER_FALLBACK);
65c3376a 1689 }
5a896d9e 1690
834f3d11 1691 page->objects = oo_objects(oo);
81819f0f 1692
1b4f59e3 1693 page->slab_cache = s;
c03f94cc 1694 __SetPageSlab(page);
2f064f34 1695 if (page_is_pfmemalloc(page))
072bb0aa 1696 SetPageSlabPfmemalloc(page);
81819f0f 1697
a7101224 1698 kasan_poison_slab(page);
81819f0f 1699
a7101224 1700 start = page_address(page);
81819f0f 1701
a50b854e 1702 setup_page_debug(s, page, start);
0316bec2 1703
210e7a43
TG
1704 shuffle = shuffle_freelist(s, page);
1705
1706 if (!shuffle) {
4d176711
AK
1707 start = fixup_red_left(s, start);
1708 start = setup_object(s, page, start);
1709 page->freelist = start;
18e50661
AK
1710 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1711 next = p + s->size;
1712 next = setup_object(s, page, next);
1713 set_freepointer(s, p, next);
1714 p = next;
1715 }
1716 set_freepointer(s, p, NULL);
81819f0f 1717 }
81819f0f 1718
e6e82ea1 1719 page->inuse = page->objects;
8cb0a506 1720 page->frozen = 1;
588f8ba9 1721
81819f0f 1722out:
d0164adc 1723 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1724 local_irq_disable();
1725 if (!page)
1726 return NULL;
1727
588f8ba9
TG
1728 inc_slabs_node(s, page_to_nid(page), page->objects);
1729
81819f0f
CL
1730 return page;
1731}
1732
588f8ba9
TG
1733static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1734{
1735 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 1736 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
1737 flags &= ~GFP_SLAB_BUG_MASK;
1738 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1739 invalid_mask, &invalid_mask, flags, &flags);
65b9de75 1740 dump_stack();
588f8ba9
TG
1741 }
1742
1743 return allocate_slab(s,
1744 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1745}
1746
81819f0f
CL
1747static void __free_slab(struct kmem_cache *s, struct page *page)
1748{
834f3d11
CL
1749 int order = compound_order(page);
1750 int pages = 1 << order;
81819f0f 1751
becfda68 1752 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1753 void *p;
1754
1755 slab_pad_check(s, page);
224a88be
CL
1756 for_each_object(p, s, page_address(page),
1757 page->objects)
f7cb1933 1758 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1759 }
1760
072bb0aa 1761 __ClearPageSlabPfmemalloc(page);
49bd5221 1762 __ClearPageSlab(page);
1f458cbf 1763
d4fc5069 1764 page->mapping = NULL;
1eb5ac64
NP
1765 if (current->reclaim_state)
1766 current->reclaim_state->reclaimed_slab += pages;
6cea1d56 1767 uncharge_slab_page(page, order, s);
27ee57c9 1768 __free_pages(page, order);
81819f0f
CL
1769}
1770
1771static void rcu_free_slab(struct rcu_head *h)
1772{
bf68c214 1773 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1774
1b4f59e3 1775 __free_slab(page->slab_cache, page);
81819f0f
CL
1776}
1777
1778static void free_slab(struct kmem_cache *s, struct page *page)
1779{
5f0d5a3a 1780 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1781 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1782 } else
1783 __free_slab(s, page);
1784}
1785
1786static void discard_slab(struct kmem_cache *s, struct page *page)
1787{
205ab99d 1788 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1789 free_slab(s, page);
1790}
1791
1792/*
5cc6eee8 1793 * Management of partially allocated slabs.
81819f0f 1794 */
1e4dd946
SR
1795static inline void
1796__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1797{
e95eed57 1798 n->nr_partial++;
136333d1 1799 if (tail == DEACTIVATE_TO_TAIL)
916ac052 1800 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 1801 else
916ac052 1802 list_add(&page->slab_list, &n->partial);
81819f0f
CL
1803}
1804
1e4dd946
SR
1805static inline void add_partial(struct kmem_cache_node *n,
1806 struct page *page, int tail)
62e346a8 1807{
c65c1877 1808 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1809 __add_partial(n, page, tail);
1810}
c65c1877 1811
1e4dd946
SR
1812static inline void remove_partial(struct kmem_cache_node *n,
1813 struct page *page)
1814{
1815 lockdep_assert_held(&n->list_lock);
916ac052 1816 list_del(&page->slab_list);
52b4b950 1817 n->nr_partial--;
1e4dd946
SR
1818}
1819
81819f0f 1820/*
7ced3719
CL
1821 * Remove slab from the partial list, freeze it and
1822 * return the pointer to the freelist.
81819f0f 1823 *
497b66f2 1824 * Returns a list of objects or NULL if it fails.
81819f0f 1825 */
497b66f2 1826static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1827 struct kmem_cache_node *n, struct page *page,
633b0764 1828 int mode, int *objects)
81819f0f 1829{
2cfb7455
CL
1830 void *freelist;
1831 unsigned long counters;
1832 struct page new;
1833
c65c1877
PZ
1834 lockdep_assert_held(&n->list_lock);
1835
2cfb7455
CL
1836 /*
1837 * Zap the freelist and set the frozen bit.
1838 * The old freelist is the list of objects for the
1839 * per cpu allocation list.
1840 */
7ced3719
CL
1841 freelist = page->freelist;
1842 counters = page->counters;
1843 new.counters = counters;
633b0764 1844 *objects = new.objects - new.inuse;
23910c50 1845 if (mode) {
7ced3719 1846 new.inuse = page->objects;
23910c50
PE
1847 new.freelist = NULL;
1848 } else {
1849 new.freelist = freelist;
1850 }
2cfb7455 1851
a0132ac0 1852 VM_BUG_ON(new.frozen);
7ced3719 1853 new.frozen = 1;
2cfb7455 1854
7ced3719 1855 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1856 freelist, counters,
02d7633f 1857 new.freelist, new.counters,
7ced3719 1858 "acquire_slab"))
7ced3719 1859 return NULL;
2cfb7455
CL
1860
1861 remove_partial(n, page);
7ced3719 1862 WARN_ON(!freelist);
49e22585 1863 return freelist;
81819f0f
CL
1864}
1865
633b0764 1866static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1867static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1868
81819f0f 1869/*
672bba3a 1870 * Try to allocate a partial slab from a specific node.
81819f0f 1871 */
8ba00bb6
JK
1872static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1873 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1874{
49e22585
CL
1875 struct page *page, *page2;
1876 void *object = NULL;
e5d9998f 1877 unsigned int available = 0;
633b0764 1878 int objects;
81819f0f
CL
1879
1880 /*
1881 * Racy check. If we mistakenly see no partial slabs then we
1882 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1883 * partial slab and there is none available then get_partials()
1884 * will return NULL.
81819f0f
CL
1885 */
1886 if (!n || !n->nr_partial)
1887 return NULL;
1888
1889 spin_lock(&n->list_lock);
916ac052 1890 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 1891 void *t;
49e22585 1892
8ba00bb6
JK
1893 if (!pfmemalloc_match(page, flags))
1894 continue;
1895
633b0764 1896 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585 1897 if (!t)
a0b12520 1898 break;
49e22585 1899
633b0764 1900 available += objects;
12d79634 1901 if (!object) {
49e22585 1902 c->page = page;
49e22585 1903 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1904 object = t;
49e22585 1905 } else {
633b0764 1906 put_cpu_partial(s, page, 0);
8028dcea 1907 stat(s, CPU_PARTIAL_NODE);
49e22585 1908 }
345c905d 1909 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 1910 || available > slub_cpu_partial(s) / 2)
49e22585
CL
1911 break;
1912
497b66f2 1913 }
81819f0f 1914 spin_unlock(&n->list_lock);
497b66f2 1915 return object;
81819f0f
CL
1916}
1917
1918/*
672bba3a 1919 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1920 */
de3ec035 1921static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1922 struct kmem_cache_cpu *c)
81819f0f
CL
1923{
1924#ifdef CONFIG_NUMA
1925 struct zonelist *zonelist;
dd1a239f 1926 struct zoneref *z;
54a6eb5c
MG
1927 struct zone *zone;
1928 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1929 void *object;
cc9a6c87 1930 unsigned int cpuset_mems_cookie;
81819f0f
CL
1931
1932 /*
672bba3a
CL
1933 * The defrag ratio allows a configuration of the tradeoffs between
1934 * inter node defragmentation and node local allocations. A lower
1935 * defrag_ratio increases the tendency to do local allocations
1936 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1937 *
672bba3a
CL
1938 * If the defrag_ratio is set to 0 then kmalloc() always
1939 * returns node local objects. If the ratio is higher then kmalloc()
1940 * may return off node objects because partial slabs are obtained
1941 * from other nodes and filled up.
81819f0f 1942 *
43efd3ea
LP
1943 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1944 * (which makes defrag_ratio = 1000) then every (well almost)
1945 * allocation will first attempt to defrag slab caches on other nodes.
1946 * This means scanning over all nodes to look for partial slabs which
1947 * may be expensive if we do it every time we are trying to find a slab
672bba3a 1948 * with available objects.
81819f0f 1949 */
9824601e
CL
1950 if (!s->remote_node_defrag_ratio ||
1951 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1952 return NULL;
1953
cc9a6c87 1954 do {
d26914d1 1955 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1956 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1957 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1958 struct kmem_cache_node *n;
1959
1960 n = get_node(s, zone_to_nid(zone));
1961
dee2f8aa 1962 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1963 n->nr_partial > s->min_partial) {
8ba00bb6 1964 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1965 if (object) {
1966 /*
d26914d1
MG
1967 * Don't check read_mems_allowed_retry()
1968 * here - if mems_allowed was updated in
1969 * parallel, that was a harmless race
1970 * between allocation and the cpuset
1971 * update
cc9a6c87 1972 */
cc9a6c87
MG
1973 return object;
1974 }
c0ff7453 1975 }
81819f0f 1976 }
d26914d1 1977 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 1978#endif /* CONFIG_NUMA */
81819f0f
CL
1979 return NULL;
1980}
1981
1982/*
1983 * Get a partial page, lock it and return it.
1984 */
497b66f2 1985static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1986 struct kmem_cache_cpu *c)
81819f0f 1987{
497b66f2 1988 void *object;
a561ce00
JK
1989 int searchnode = node;
1990
1991 if (node == NUMA_NO_NODE)
1992 searchnode = numa_mem_id();
81819f0f 1993
8ba00bb6 1994 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1995 if (object || node != NUMA_NO_NODE)
1996 return object;
81819f0f 1997
acd19fd1 1998 return get_any_partial(s, flags, c);
81819f0f
CL
1999}
2000
8a5ec0ba
CL
2001#ifdef CONFIG_PREEMPT
2002/*
2003 * Calculate the next globally unique transaction for disambiguiation
2004 * during cmpxchg. The transactions start with the cpu number and are then
2005 * incremented by CONFIG_NR_CPUS.
2006 */
2007#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2008#else
2009/*
2010 * No preemption supported therefore also no need to check for
2011 * different cpus.
2012 */
2013#define TID_STEP 1
2014#endif
2015
2016static inline unsigned long next_tid(unsigned long tid)
2017{
2018 return tid + TID_STEP;
2019}
2020
9d5f0be0 2021#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2022static inline unsigned int tid_to_cpu(unsigned long tid)
2023{
2024 return tid % TID_STEP;
2025}
2026
2027static inline unsigned long tid_to_event(unsigned long tid)
2028{
2029 return tid / TID_STEP;
2030}
9d5f0be0 2031#endif
8a5ec0ba
CL
2032
2033static inline unsigned int init_tid(int cpu)
2034{
2035 return cpu;
2036}
2037
2038static inline void note_cmpxchg_failure(const char *n,
2039 const struct kmem_cache *s, unsigned long tid)
2040{
2041#ifdef SLUB_DEBUG_CMPXCHG
2042 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2043
f9f58285 2044 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
2045
2046#ifdef CONFIG_PREEMPT
2047 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2048 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2049 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2050 else
2051#endif
2052 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2053 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2054 tid_to_event(tid), tid_to_event(actual_tid));
2055 else
f9f58285 2056 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2057 actual_tid, tid, next_tid(tid));
2058#endif
4fdccdfb 2059 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2060}
2061
788e1aad 2062static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2063{
8a5ec0ba
CL
2064 int cpu;
2065
2066 for_each_possible_cpu(cpu)
2067 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2068}
2cfb7455 2069
81819f0f
CL
2070/*
2071 * Remove the cpu slab
2072 */
d0e0ac97 2073static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2074 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2075{
2cfb7455 2076 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
2077 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2078 int lock = 0;
2079 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2080 void *nextfree;
136333d1 2081 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2082 struct page new;
2083 struct page old;
2084
2085 if (page->freelist) {
84e554e6 2086 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2087 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2088 }
2089
894b8788 2090 /*
2cfb7455
CL
2091 * Stage one: Free all available per cpu objects back
2092 * to the page freelist while it is still frozen. Leave the
2093 * last one.
2094 *
2095 * There is no need to take the list->lock because the page
2096 * is still frozen.
2097 */
2098 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2099 void *prior;
2100 unsigned long counters;
2101
47a5566f
DZ
2102 /*
2103 * If 'nextfree' is invalid, it is possible that the object at
2104 * 'freelist' is already corrupted. So isolate all objects
2105 * starting at 'freelist'.
2106 */
0d89eb77 2107 if (freelist_corrupted(s, page, &freelist, nextfree))
47a5566f
DZ
2108 break;
2109
2cfb7455
CL
2110 do {
2111 prior = page->freelist;
2112 counters = page->counters;
2113 set_freepointer(s, freelist, prior);
2114 new.counters = counters;
2115 new.inuse--;
a0132ac0 2116 VM_BUG_ON(!new.frozen);
2cfb7455 2117
1d07171c 2118 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2119 prior, counters,
2120 freelist, new.counters,
2121 "drain percpu freelist"));
2122
2123 freelist = nextfree;
2124 }
2125
894b8788 2126 /*
2cfb7455
CL
2127 * Stage two: Ensure that the page is unfrozen while the
2128 * list presence reflects the actual number of objects
2129 * during unfreeze.
2130 *
2131 * We setup the list membership and then perform a cmpxchg
2132 * with the count. If there is a mismatch then the page
2133 * is not unfrozen but the page is on the wrong list.
2134 *
2135 * Then we restart the process which may have to remove
2136 * the page from the list that we just put it on again
2137 * because the number of objects in the slab may have
2138 * changed.
894b8788 2139 */
2cfb7455 2140redo:
894b8788 2141
2cfb7455
CL
2142 old.freelist = page->freelist;
2143 old.counters = page->counters;
a0132ac0 2144 VM_BUG_ON(!old.frozen);
7c2e132c 2145
2cfb7455
CL
2146 /* Determine target state of the slab */
2147 new.counters = old.counters;
2148 if (freelist) {
2149 new.inuse--;
2150 set_freepointer(s, freelist, old.freelist);
2151 new.freelist = freelist;
2152 } else
2153 new.freelist = old.freelist;
2154
2155 new.frozen = 0;
2156
8a5b20ae 2157 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2158 m = M_FREE;
2159 else if (new.freelist) {
2160 m = M_PARTIAL;
2161 if (!lock) {
2162 lock = 1;
2163 /*
8bb4e7a2 2164 * Taking the spinlock removes the possibility
2cfb7455
CL
2165 * that acquire_slab() will see a slab page that
2166 * is frozen
2167 */
2168 spin_lock(&n->list_lock);
2169 }
2170 } else {
2171 m = M_FULL;
2172 if (kmem_cache_debug(s) && !lock) {
2173 lock = 1;
2174 /*
2175 * This also ensures that the scanning of full
2176 * slabs from diagnostic functions will not see
2177 * any frozen slabs.
2178 */
2179 spin_lock(&n->list_lock);
2180 }
2181 }
2182
2183 if (l != m) {
2cfb7455 2184 if (l == M_PARTIAL)
2cfb7455 2185 remove_partial(n, page);
2cfb7455 2186 else if (l == M_FULL)
c65c1877 2187 remove_full(s, n, page);
2cfb7455 2188
88349a28 2189 if (m == M_PARTIAL)
2cfb7455 2190 add_partial(n, page, tail);
88349a28 2191 else if (m == M_FULL)
2cfb7455 2192 add_full(s, n, page);
2cfb7455
CL
2193 }
2194
2195 l = m;
1d07171c 2196 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2197 old.freelist, old.counters,
2198 new.freelist, new.counters,
2199 "unfreezing slab"))
2200 goto redo;
2201
2cfb7455
CL
2202 if (lock)
2203 spin_unlock(&n->list_lock);
2204
88349a28
WY
2205 if (m == M_PARTIAL)
2206 stat(s, tail);
2207 else if (m == M_FULL)
2208 stat(s, DEACTIVATE_FULL);
2209 else if (m == M_FREE) {
2cfb7455
CL
2210 stat(s, DEACTIVATE_EMPTY);
2211 discard_slab(s, page);
2212 stat(s, FREE_SLAB);
894b8788 2213 }
d4ff6d35
WY
2214
2215 c->page = NULL;
2216 c->freelist = NULL;
81819f0f
CL
2217}
2218
d24ac77f
JK
2219/*
2220 * Unfreeze all the cpu partial slabs.
2221 *
59a09917
CL
2222 * This function must be called with interrupts disabled
2223 * for the cpu using c (or some other guarantee must be there
2224 * to guarantee no concurrent accesses).
d24ac77f 2225 */
59a09917
CL
2226static void unfreeze_partials(struct kmem_cache *s,
2227 struct kmem_cache_cpu *c)
49e22585 2228{
345c905d 2229#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2230 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2231 struct page *page, *discard_page = NULL;
49e22585
CL
2232
2233 while ((page = c->partial)) {
49e22585
CL
2234 struct page new;
2235 struct page old;
2236
2237 c->partial = page->next;
43d77867
JK
2238
2239 n2 = get_node(s, page_to_nid(page));
2240 if (n != n2) {
2241 if (n)
2242 spin_unlock(&n->list_lock);
2243
2244 n = n2;
2245 spin_lock(&n->list_lock);
2246 }
49e22585
CL
2247
2248 do {
2249
2250 old.freelist = page->freelist;
2251 old.counters = page->counters;
a0132ac0 2252 VM_BUG_ON(!old.frozen);
49e22585
CL
2253
2254 new.counters = old.counters;
2255 new.freelist = old.freelist;
2256
2257 new.frozen = 0;
2258
d24ac77f 2259 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2260 old.freelist, old.counters,
2261 new.freelist, new.counters,
2262 "unfreezing slab"));
2263
8a5b20ae 2264 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2265 page->next = discard_page;
2266 discard_page = page;
43d77867
JK
2267 } else {
2268 add_partial(n, page, DEACTIVATE_TO_TAIL);
2269 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2270 }
2271 }
2272
2273 if (n)
2274 spin_unlock(&n->list_lock);
9ada1934
SL
2275
2276 while (discard_page) {
2277 page = discard_page;
2278 discard_page = discard_page->next;
2279
2280 stat(s, DEACTIVATE_EMPTY);
2281 discard_slab(s, page);
2282 stat(s, FREE_SLAB);
2283 }
6dfd1b65 2284#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2285}
2286
2287/*
9234bae9
WY
2288 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2289 * partial page slot if available.
49e22585
CL
2290 *
2291 * If we did not find a slot then simply move all the partials to the
2292 * per node partial list.
2293 */
633b0764 2294static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2295{
345c905d 2296#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2297 struct page *oldpage;
2298 int pages;
2299 int pobjects;
2300
d6e0b7fa 2301 preempt_disable();
49e22585
CL
2302 do {
2303 pages = 0;
2304 pobjects = 0;
2305 oldpage = this_cpu_read(s->cpu_slab->partial);
2306
2307 if (oldpage) {
2308 pobjects = oldpage->pobjects;
2309 pages = oldpage->pages;
2310 if (drain && pobjects > s->cpu_partial) {
2311 unsigned long flags;
2312 /*
2313 * partial array is full. Move the existing
2314 * set to the per node partial list.
2315 */
2316 local_irq_save(flags);
59a09917 2317 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2318 local_irq_restore(flags);
e24fc410 2319 oldpage = NULL;
49e22585
CL
2320 pobjects = 0;
2321 pages = 0;
8028dcea 2322 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2323 }
2324 }
2325
2326 pages++;
2327 pobjects += page->objects - page->inuse;
2328
2329 page->pages = pages;
2330 page->pobjects = pobjects;
2331 page->next = oldpage;
2332
d0e0ac97
CG
2333 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2334 != oldpage);
d6e0b7fa
VD
2335 if (unlikely(!s->cpu_partial)) {
2336 unsigned long flags;
2337
2338 local_irq_save(flags);
2339 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2340 local_irq_restore(flags);
2341 }
2342 preempt_enable();
6dfd1b65 2343#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2344}
2345
dfb4f096 2346static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2347{
84e554e6 2348 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2349 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2350
2351 c->tid = next_tid(c->tid);
81819f0f
CL
2352}
2353
2354/*
2355 * Flush cpu slab.
6446faa2 2356 *
81819f0f
CL
2357 * Called from IPI handler with interrupts disabled.
2358 */
0c710013 2359static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2360{
9dfc6e68 2361 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2362
1265ef2d
WY
2363 if (c->page)
2364 flush_slab(s, c);
49e22585 2365
1265ef2d 2366 unfreeze_partials(s, c);
81819f0f
CL
2367}
2368
2369static void flush_cpu_slab(void *d)
2370{
2371 struct kmem_cache *s = d;
81819f0f 2372
dfb4f096 2373 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2374}
2375
a8364d55
GBY
2376static bool has_cpu_slab(int cpu, void *info)
2377{
2378 struct kmem_cache *s = info;
2379 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2380
a93cf07b 2381 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2382}
2383
81819f0f
CL
2384static void flush_all(struct kmem_cache *s)
2385{
a8364d55 2386 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2387}
2388
a96a87bf
SAS
2389/*
2390 * Use the cpu notifier to insure that the cpu slabs are flushed when
2391 * necessary.
2392 */
2393static int slub_cpu_dead(unsigned int cpu)
2394{
2395 struct kmem_cache *s;
2396 unsigned long flags;
2397
2398 mutex_lock(&slab_mutex);
2399 list_for_each_entry(s, &slab_caches, list) {
2400 local_irq_save(flags);
2401 __flush_cpu_slab(s, cpu);
2402 local_irq_restore(flags);
2403 }
2404 mutex_unlock(&slab_mutex);
2405 return 0;
2406}
2407
dfb4f096
CL
2408/*
2409 * Check if the objects in a per cpu structure fit numa
2410 * locality expectations.
2411 */
57d437d2 2412static inline int node_match(struct page *page, int node)
dfb4f096
CL
2413{
2414#ifdef CONFIG_NUMA
6159d0f5 2415 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2416 return 0;
2417#endif
2418 return 1;
2419}
2420
9a02d699 2421#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2422static int count_free(struct page *page)
2423{
2424 return page->objects - page->inuse;
2425}
2426
9a02d699
DR
2427static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2428{
2429 return atomic_long_read(&n->total_objects);
2430}
2431#endif /* CONFIG_SLUB_DEBUG */
2432
2433#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2434static unsigned long count_partial(struct kmem_cache_node *n,
2435 int (*get_count)(struct page *))
2436{
2437 unsigned long flags;
2438 unsigned long x = 0;
2439 struct page *page;
2440
2441 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2442 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2443 x += get_count(page);
2444 spin_unlock_irqrestore(&n->list_lock, flags);
2445 return x;
2446}
9a02d699 2447#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2448
781b2ba6
PE
2449static noinline void
2450slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2451{
9a02d699
DR
2452#ifdef CONFIG_SLUB_DEBUG
2453 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2454 DEFAULT_RATELIMIT_BURST);
781b2ba6 2455 int node;
fa45dc25 2456 struct kmem_cache_node *n;
781b2ba6 2457
9a02d699
DR
2458 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2459 return;
2460
5b3810e5
VB
2461 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2462 nid, gfpflags, &gfpflags);
19af27af 2463 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2464 s->name, s->object_size, s->size, oo_order(s->oo),
2465 oo_order(s->min));
781b2ba6 2466
3b0efdfa 2467 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2468 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2469 s->name);
fa5ec8a1 2470
fa45dc25 2471 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2472 unsigned long nr_slabs;
2473 unsigned long nr_objs;
2474 unsigned long nr_free;
2475
26c02cf0
AB
2476 nr_free = count_partial(n, count_free);
2477 nr_slabs = node_nr_slabs(n);
2478 nr_objs = node_nr_objs(n);
781b2ba6 2479
f9f58285 2480 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2481 node, nr_slabs, nr_objs, nr_free);
2482 }
9a02d699 2483#endif
781b2ba6
PE
2484}
2485
497b66f2
CL
2486static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2487 int node, struct kmem_cache_cpu **pc)
2488{
6faa6833 2489 void *freelist;
188fd063
CL
2490 struct kmem_cache_cpu *c = *pc;
2491 struct page *page;
497b66f2 2492
128227e7
MW
2493 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2494
188fd063 2495 freelist = get_partial(s, flags, node, c);
497b66f2 2496
188fd063
CL
2497 if (freelist)
2498 return freelist;
2499
2500 page = new_slab(s, flags, node);
497b66f2 2501 if (page) {
7c8e0181 2502 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2503 if (c->page)
2504 flush_slab(s, c);
2505
2506 /*
2507 * No other reference to the page yet so we can
2508 * muck around with it freely without cmpxchg
2509 */
6faa6833 2510 freelist = page->freelist;
497b66f2
CL
2511 page->freelist = NULL;
2512
2513 stat(s, ALLOC_SLAB);
497b66f2
CL
2514 c->page = page;
2515 *pc = c;
edde82b6 2516 }
497b66f2 2517
6faa6833 2518 return freelist;
497b66f2
CL
2519}
2520
072bb0aa
MG
2521static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2522{
2523 if (unlikely(PageSlabPfmemalloc(page)))
2524 return gfp_pfmemalloc_allowed(gfpflags);
2525
2526 return true;
2527}
2528
213eeb9f 2529/*
d0e0ac97
CG
2530 * Check the page->freelist of a page and either transfer the freelist to the
2531 * per cpu freelist or deactivate the page.
213eeb9f
CL
2532 *
2533 * The page is still frozen if the return value is not NULL.
2534 *
2535 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2536 *
2537 * This function must be called with interrupt disabled.
213eeb9f
CL
2538 */
2539static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2540{
2541 struct page new;
2542 unsigned long counters;
2543 void *freelist;
2544
2545 do {
2546 freelist = page->freelist;
2547 counters = page->counters;
6faa6833 2548
213eeb9f 2549 new.counters = counters;
a0132ac0 2550 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2551
2552 new.inuse = page->objects;
2553 new.frozen = freelist != NULL;
2554
d24ac77f 2555 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2556 freelist, counters,
2557 NULL, new.counters,
2558 "get_freelist"));
2559
2560 return freelist;
2561}
2562
81819f0f 2563/*
894b8788
CL
2564 * Slow path. The lockless freelist is empty or we need to perform
2565 * debugging duties.
2566 *
894b8788
CL
2567 * Processing is still very fast if new objects have been freed to the
2568 * regular freelist. In that case we simply take over the regular freelist
2569 * as the lockless freelist and zap the regular freelist.
81819f0f 2570 *
894b8788
CL
2571 * If that is not working then we fall back to the partial lists. We take the
2572 * first element of the freelist as the object to allocate now and move the
2573 * rest of the freelist to the lockless freelist.
81819f0f 2574 *
894b8788 2575 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2576 * we need to allocate a new slab. This is the slowest path since it involves
2577 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2578 *
2579 * Version of __slab_alloc to use when we know that interrupts are
2580 * already disabled (which is the case for bulk allocation).
81819f0f 2581 */
a380a3c7 2582static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2583 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2584{
6faa6833 2585 void *freelist;
f6e7def7 2586 struct page *page;
81819f0f 2587
f6e7def7 2588 page = c->page;
30a6def8
VB
2589 if (!page) {
2590 /*
2591 * if the node is not online or has no normal memory, just
2592 * ignore the node constraint
2593 */
2594 if (unlikely(node != NUMA_NO_NODE &&
2595 !node_state(node, N_NORMAL_MEMORY)))
2596 node = NUMA_NO_NODE;
81819f0f 2597 goto new_slab;
30a6def8 2598 }
49e22585 2599redo:
6faa6833 2600
57d437d2 2601 if (unlikely(!node_match(page, node))) {
30a6def8
VB
2602 /*
2603 * same as above but node_match() being false already
2604 * implies node != NUMA_NO_NODE
2605 */
2606 if (!node_state(node, N_NORMAL_MEMORY)) {
2607 node = NUMA_NO_NODE;
2608 goto redo;
2609 } else {
a561ce00 2610 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2611 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2612 goto new_slab;
2613 }
fc59c053 2614 }
6446faa2 2615
072bb0aa
MG
2616 /*
2617 * By rights, we should be searching for a slab page that was
2618 * PFMEMALLOC but right now, we are losing the pfmemalloc
2619 * information when the page leaves the per-cpu allocator
2620 */
2621 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2622 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2623 goto new_slab;
2624 }
2625
73736e03 2626 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2627 freelist = c->freelist;
2628 if (freelist)
73736e03 2629 goto load_freelist;
03e404af 2630
f6e7def7 2631 freelist = get_freelist(s, page);
6446faa2 2632
6faa6833 2633 if (!freelist) {
03e404af
CL
2634 c->page = NULL;
2635 stat(s, DEACTIVATE_BYPASS);
fc59c053 2636 goto new_slab;
03e404af 2637 }
6446faa2 2638
84e554e6 2639 stat(s, ALLOC_REFILL);
6446faa2 2640
894b8788 2641load_freelist:
507effea
CL
2642 /*
2643 * freelist is pointing to the list of objects to be used.
2644 * page is pointing to the page from which the objects are obtained.
2645 * That page must be frozen for per cpu allocations to work.
2646 */
a0132ac0 2647 VM_BUG_ON(!c->page->frozen);
6faa6833 2648 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2649 c->tid = next_tid(c->tid);
6faa6833 2650 return freelist;
81819f0f 2651
81819f0f 2652new_slab:
2cfb7455 2653
a93cf07b
WY
2654 if (slub_percpu_partial(c)) {
2655 page = c->page = slub_percpu_partial(c);
2656 slub_set_percpu_partial(c, page);
49e22585 2657 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2658 goto redo;
81819f0f
CL
2659 }
2660
188fd063 2661 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2662
f4697436 2663 if (unlikely(!freelist)) {
9a02d699 2664 slab_out_of_memory(s, gfpflags, node);
f4697436 2665 return NULL;
81819f0f 2666 }
2cfb7455 2667
f6e7def7 2668 page = c->page;
5091b74a 2669 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2670 goto load_freelist;
2cfb7455 2671
497b66f2 2672 /* Only entered in the debug case */
d0e0ac97
CG
2673 if (kmem_cache_debug(s) &&
2674 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2675 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2676
d4ff6d35 2677 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2678 return freelist;
894b8788
CL
2679}
2680
a380a3c7
CL
2681/*
2682 * Another one that disabled interrupt and compensates for possible
2683 * cpu changes by refetching the per cpu area pointer.
2684 */
2685static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2686 unsigned long addr, struct kmem_cache_cpu *c)
2687{
2688 void *p;
2689 unsigned long flags;
2690
2691 local_irq_save(flags);
2692#ifdef CONFIG_PREEMPT
2693 /*
2694 * We may have been preempted and rescheduled on a different
2695 * cpu before disabling interrupts. Need to reload cpu area
2696 * pointer.
2697 */
2698 c = this_cpu_ptr(s->cpu_slab);
2699#endif
2700
2701 p = ___slab_alloc(s, gfpflags, node, addr, c);
2702 local_irq_restore(flags);
2703 return p;
2704}
2705
0f181f9f
AP
2706/*
2707 * If the object has been wiped upon free, make sure it's fully initialized by
2708 * zeroing out freelist pointer.
2709 */
2710static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2711 void *obj)
2712{
2713 if (unlikely(slab_want_init_on_free(s)) && obj)
2714 memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2715}
2716
894b8788
CL
2717/*
2718 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2719 * have the fastpath folded into their functions. So no function call
2720 * overhead for requests that can be satisfied on the fastpath.
2721 *
2722 * The fastpath works by first checking if the lockless freelist can be used.
2723 * If not then __slab_alloc is called for slow processing.
2724 *
2725 * Otherwise we can simply pick the next object from the lockless free list.
2726 */
2b847c3c 2727static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2728 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2729{
03ec0ed5 2730 void *object;
dfb4f096 2731 struct kmem_cache_cpu *c;
57d437d2 2732 struct page *page;
8a5ec0ba 2733 unsigned long tid;
1f84260c 2734
8135be5a
VD
2735 s = slab_pre_alloc_hook(s, gfpflags);
2736 if (!s)
773ff60e 2737 return NULL;
8a5ec0ba 2738redo:
8a5ec0ba
CL
2739 /*
2740 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2741 * enabled. We may switch back and forth between cpus while
2742 * reading from one cpu area. That does not matter as long
2743 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2744 *
9aabf810
JK
2745 * We should guarantee that tid and kmem_cache are retrieved on
2746 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2747 * to check if it is matched or not.
8a5ec0ba 2748 */
9aabf810
JK
2749 do {
2750 tid = this_cpu_read(s->cpu_slab->tid);
2751 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2752 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2753 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2754
2755 /*
2756 * Irqless object alloc/free algorithm used here depends on sequence
2757 * of fetching cpu_slab's data. tid should be fetched before anything
2758 * on c to guarantee that object and page associated with previous tid
2759 * won't be used with current tid. If we fetch tid first, object and
2760 * page could be one associated with next tid and our alloc/free
2761 * request will be failed. In this case, we will retry. So, no problem.
2762 */
2763 barrier();
8a5ec0ba 2764
8a5ec0ba
CL
2765 /*
2766 * The transaction ids are globally unique per cpu and per operation on
2767 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2768 * occurs on the right processor and that there was no operation on the
2769 * linked list in between.
2770 */
8a5ec0ba 2771
9dfc6e68 2772 object = c->freelist;
57d437d2 2773 page = c->page;
b4f98322 2774 if (unlikely(!object || !page || !node_match(page, node))) {
dfb4f096 2775 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2776 stat(s, ALLOC_SLOWPATH);
2777 } else {
0ad9500e
ED
2778 void *next_object = get_freepointer_safe(s, object);
2779
8a5ec0ba 2780 /*
25985edc 2781 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2782 * operation and if we are on the right processor.
2783 *
d0e0ac97
CG
2784 * The cmpxchg does the following atomically (without lock
2785 * semantics!)
8a5ec0ba
CL
2786 * 1. Relocate first pointer to the current per cpu area.
2787 * 2. Verify that tid and freelist have not been changed
2788 * 3. If they were not changed replace tid and freelist
2789 *
d0e0ac97
CG
2790 * Since this is without lock semantics the protection is only
2791 * against code executing on this cpu *not* from access by
2792 * other cpus.
8a5ec0ba 2793 */
933393f5 2794 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2795 s->cpu_slab->freelist, s->cpu_slab->tid,
2796 object, tid,
0ad9500e 2797 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2798
2799 note_cmpxchg_failure("slab_alloc", s, tid);
2800 goto redo;
2801 }
0ad9500e 2802 prefetch_freepointer(s, next_object);
84e554e6 2803 stat(s, ALLOC_FASTPATH);
894b8788 2804 }
0f181f9f
AP
2805
2806 maybe_wipe_obj_freeptr(s, object);
8a5ec0ba 2807
6471384a 2808 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
3b0efdfa 2809 memset(object, 0, s->object_size);
d07dbea4 2810
03ec0ed5 2811 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2812
894b8788 2813 return object;
81819f0f
CL
2814}
2815
2b847c3c
EG
2816static __always_inline void *slab_alloc(struct kmem_cache *s,
2817 gfp_t gfpflags, unsigned long addr)
2818{
2819 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2820}
2821
81819f0f
CL
2822void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2823{
2b847c3c 2824 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2825
d0e0ac97
CG
2826 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2827 s->size, gfpflags);
5b882be4
EGM
2828
2829 return ret;
81819f0f
CL
2830}
2831EXPORT_SYMBOL(kmem_cache_alloc);
2832
0f24f128 2833#ifdef CONFIG_TRACING
4a92379b
RK
2834void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2835{
2b847c3c 2836 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2837 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 2838 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2839 return ret;
2840}
2841EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2842#endif
2843
81819f0f
CL
2844#ifdef CONFIG_NUMA
2845void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2846{
2b847c3c 2847 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2848
ca2b84cb 2849 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2850 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2851
2852 return ret;
81819f0f
CL
2853}
2854EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2855
0f24f128 2856#ifdef CONFIG_TRACING
4a92379b 2857void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2858 gfp_t gfpflags,
4a92379b 2859 int node, size_t size)
5b882be4 2860{
2b847c3c 2861 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2862
2863 trace_kmalloc_node(_RET_IP_, ret,
2864 size, s->size, gfpflags, node);
0316bec2 2865
0116523c 2866 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2867 return ret;
5b882be4 2868}
4a92379b 2869EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2870#endif
6dfd1b65 2871#endif /* CONFIG_NUMA */
5b882be4 2872
81819f0f 2873/*
94e4d712 2874 * Slow path handling. This may still be called frequently since objects
894b8788 2875 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2876 *
894b8788
CL
2877 * So we still attempt to reduce cache line usage. Just take the slab
2878 * lock and free the item. If there is no additional partial page
2879 * handling required then we can return immediately.
81819f0f 2880 */
894b8788 2881static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2882 void *head, void *tail, int cnt,
2883 unsigned long addr)
2884
81819f0f
CL
2885{
2886 void *prior;
2cfb7455 2887 int was_frozen;
2cfb7455
CL
2888 struct page new;
2889 unsigned long counters;
2890 struct kmem_cache_node *n = NULL;
61728d1e 2891 unsigned long uninitialized_var(flags);
81819f0f 2892
8a5ec0ba 2893 stat(s, FREE_SLOWPATH);
81819f0f 2894
19c7ff9e 2895 if (kmem_cache_debug(s) &&
282acb43 2896 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2897 return;
6446faa2 2898
2cfb7455 2899 do {
837d678d
JK
2900 if (unlikely(n)) {
2901 spin_unlock_irqrestore(&n->list_lock, flags);
2902 n = NULL;
2903 }
2cfb7455
CL
2904 prior = page->freelist;
2905 counters = page->counters;
81084651 2906 set_freepointer(s, tail, prior);
2cfb7455
CL
2907 new.counters = counters;
2908 was_frozen = new.frozen;
81084651 2909 new.inuse -= cnt;
837d678d 2910 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2911
c65c1877 2912 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2913
2914 /*
d0e0ac97
CG
2915 * Slab was on no list before and will be
2916 * partially empty
2917 * We can defer the list move and instead
2918 * freeze it.
49e22585
CL
2919 */
2920 new.frozen = 1;
2921
c65c1877 2922 } else { /* Needs to be taken off a list */
49e22585 2923
b455def2 2924 n = get_node(s, page_to_nid(page));
49e22585
CL
2925 /*
2926 * Speculatively acquire the list_lock.
2927 * If the cmpxchg does not succeed then we may
2928 * drop the list_lock without any processing.
2929 *
2930 * Otherwise the list_lock will synchronize with
2931 * other processors updating the list of slabs.
2932 */
2933 spin_lock_irqsave(&n->list_lock, flags);
2934
2935 }
2cfb7455 2936 }
81819f0f 2937
2cfb7455
CL
2938 } while (!cmpxchg_double_slab(s, page,
2939 prior, counters,
81084651 2940 head, new.counters,
2cfb7455 2941 "__slab_free"));
81819f0f 2942
2cfb7455 2943 if (likely(!n)) {
49e22585
CL
2944
2945 /*
2946 * If we just froze the page then put it onto the
2947 * per cpu partial list.
2948 */
8028dcea 2949 if (new.frozen && !was_frozen) {
49e22585 2950 put_cpu_partial(s, page, 1);
8028dcea
AS
2951 stat(s, CPU_PARTIAL_FREE);
2952 }
49e22585 2953 /*
2cfb7455
CL
2954 * The list lock was not taken therefore no list
2955 * activity can be necessary.
2956 */
b455def2
L
2957 if (was_frozen)
2958 stat(s, FREE_FROZEN);
2959 return;
2960 }
81819f0f 2961
8a5b20ae 2962 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2963 goto slab_empty;
2964
81819f0f 2965 /*
837d678d
JK
2966 * Objects left in the slab. If it was not on the partial list before
2967 * then add it.
81819f0f 2968 */
345c905d 2969 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 2970 remove_full(s, n, page);
837d678d
JK
2971 add_partial(n, page, DEACTIVATE_TO_TAIL);
2972 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2973 }
80f08c19 2974 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2975 return;
2976
2977slab_empty:
a973e9dd 2978 if (prior) {
81819f0f 2979 /*
6fbabb20 2980 * Slab on the partial list.
81819f0f 2981 */
5cc6eee8 2982 remove_partial(n, page);
84e554e6 2983 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2984 } else {
6fbabb20 2985 /* Slab must be on the full list */
c65c1877
PZ
2986 remove_full(s, n, page);
2987 }
2cfb7455 2988
80f08c19 2989 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2990 stat(s, FREE_SLAB);
81819f0f 2991 discard_slab(s, page);
81819f0f
CL
2992}
2993
894b8788
CL
2994/*
2995 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2996 * can perform fastpath freeing without additional function calls.
2997 *
2998 * The fastpath is only possible if we are freeing to the current cpu slab
2999 * of this processor. This typically the case if we have just allocated
3000 * the item before.
3001 *
3002 * If fastpath is not possible then fall back to __slab_free where we deal
3003 * with all sorts of special processing.
81084651
JDB
3004 *
3005 * Bulk free of a freelist with several objects (all pointing to the
3006 * same page) possible by specifying head and tail ptr, plus objects
3007 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 3008 */
80a9201a
AP
3009static __always_inline void do_slab_free(struct kmem_cache *s,
3010 struct page *page, void *head, void *tail,
3011 int cnt, unsigned long addr)
894b8788 3012{
81084651 3013 void *tail_obj = tail ? : head;
dfb4f096 3014 struct kmem_cache_cpu *c;
8a5ec0ba 3015 unsigned long tid;
8a5ec0ba
CL
3016redo:
3017 /*
3018 * Determine the currently cpus per cpu slab.
3019 * The cpu may change afterward. However that does not matter since
3020 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3021 * during the cmpxchg then the free will succeed.
8a5ec0ba 3022 */
9aabf810
JK
3023 do {
3024 tid = this_cpu_read(s->cpu_slab->tid);
3025 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
3026 } while (IS_ENABLED(CONFIG_PREEMPT) &&
3027 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 3028
9aabf810
JK
3029 /* Same with comment on barrier() in slab_alloc_node() */
3030 barrier();
c016b0bd 3031
442b06bc 3032 if (likely(page == c->page)) {
05490a5d
LT
3033 void **freelist = READ_ONCE(c->freelist);
3034
3035 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3036
933393f5 3037 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba 3038 s->cpu_slab->freelist, s->cpu_slab->tid,
05490a5d 3039 freelist, tid,
81084651 3040 head, next_tid(tid)))) {
8a5ec0ba
CL
3041
3042 note_cmpxchg_failure("slab_free", s, tid);
3043 goto redo;
3044 }
84e554e6 3045 stat(s, FREE_FASTPATH);
894b8788 3046 } else
81084651 3047 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 3048
894b8788
CL
3049}
3050
80a9201a
AP
3051static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3052 void *head, void *tail, int cnt,
3053 unsigned long addr)
3054{
80a9201a 3055 /*
c3895391
AK
3056 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3057 * to remove objects, whose reuse must be delayed.
80a9201a 3058 */
20aca3c6 3059 if (slab_free_freelist_hook(s, &head, &tail, &cnt))
c3895391 3060 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3061}
3062
2bd926b4 3063#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3064void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3065{
3066 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3067}
3068#endif
3069
81819f0f
CL
3070void kmem_cache_free(struct kmem_cache *s, void *x)
3071{
b9ce5ef4
GC
3072 s = cache_from_obj(s, x);
3073 if (!s)
79576102 3074 return;
81084651 3075 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 3076 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
3077}
3078EXPORT_SYMBOL(kmem_cache_free);
3079
d0ecd894 3080struct detached_freelist {
fbd02630 3081 struct page *page;
d0ecd894
JDB
3082 void *tail;
3083 void *freelist;
3084 int cnt;
376bf125 3085 struct kmem_cache *s;
d0ecd894 3086};
fbd02630 3087
d0ecd894
JDB
3088/*
3089 * This function progressively scans the array with free objects (with
3090 * a limited look ahead) and extract objects belonging to the same
3091 * page. It builds a detached freelist directly within the given
3092 * page/objects. This can happen without any need for
3093 * synchronization, because the objects are owned by running process.
3094 * The freelist is build up as a single linked list in the objects.
3095 * The idea is, that this detached freelist can then be bulk
3096 * transferred to the real freelist(s), but only requiring a single
3097 * synchronization primitive. Look ahead in the array is limited due
3098 * to performance reasons.
3099 */
376bf125
JDB
3100static inline
3101int build_detached_freelist(struct kmem_cache *s, size_t size,
3102 void **p, struct detached_freelist *df)
d0ecd894
JDB
3103{
3104 size_t first_skipped_index = 0;
3105 int lookahead = 3;
3106 void *object;
ca257195 3107 struct page *page;
fbd02630 3108
d0ecd894
JDB
3109 /* Always re-init detached_freelist */
3110 df->page = NULL;
fbd02630 3111
d0ecd894
JDB
3112 do {
3113 object = p[--size];
ca257195 3114 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3115 } while (!object && size);
3eed034d 3116
d0ecd894
JDB
3117 if (!object)
3118 return 0;
fbd02630 3119
ca257195
JDB
3120 page = virt_to_head_page(object);
3121 if (!s) {
3122 /* Handle kalloc'ed objects */
3123 if (unlikely(!PageSlab(page))) {
3124 BUG_ON(!PageCompound(page));
3125 kfree_hook(object);
4949148a 3126 __free_pages(page, compound_order(page));
ca257195
JDB
3127 p[size] = NULL; /* mark object processed */
3128 return size;
3129 }
3130 /* Derive kmem_cache from object */
3131 df->s = page->slab_cache;
3132 } else {
3133 df->s = cache_from_obj(s, object); /* Support for memcg */
3134 }
376bf125 3135
d0ecd894 3136 /* Start new detached freelist */
ca257195 3137 df->page = page;
376bf125 3138 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3139 df->tail = object;
3140 df->freelist = object;
3141 p[size] = NULL; /* mark object processed */
3142 df->cnt = 1;
3143
3144 while (size) {
3145 object = p[--size];
3146 if (!object)
3147 continue; /* Skip processed objects */
3148
3149 /* df->page is always set at this point */
3150 if (df->page == virt_to_head_page(object)) {
3151 /* Opportunity build freelist */
376bf125 3152 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3153 df->freelist = object;
3154 df->cnt++;
3155 p[size] = NULL; /* mark object processed */
3156
3157 continue;
fbd02630 3158 }
d0ecd894
JDB
3159
3160 /* Limit look ahead search */
3161 if (!--lookahead)
3162 break;
3163
3164 if (!first_skipped_index)
3165 first_skipped_index = size + 1;
fbd02630 3166 }
d0ecd894
JDB
3167
3168 return first_skipped_index;
3169}
3170
d0ecd894 3171/* Note that interrupts must be enabled when calling this function. */
376bf125 3172void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3173{
3174 if (WARN_ON(!size))
3175 return;
3176
3177 do {
3178 struct detached_freelist df;
3179
3180 size = build_detached_freelist(s, size, p, &df);
84582c8a 3181 if (!df.page)
d0ecd894
JDB
3182 continue;
3183
376bf125 3184 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3185 } while (likely(size));
484748f0
CL
3186}
3187EXPORT_SYMBOL(kmem_cache_free_bulk);
3188
994eb764 3189/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3190int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3191 void **p)
484748f0 3192{
994eb764
JDB
3193 struct kmem_cache_cpu *c;
3194 int i;
3195
03ec0ed5
JDB
3196 /* memcg and kmem_cache debug support */
3197 s = slab_pre_alloc_hook(s, flags);
3198 if (unlikely(!s))
3199 return false;
994eb764
JDB
3200 /*
3201 * Drain objects in the per cpu slab, while disabling local
3202 * IRQs, which protects against PREEMPT and interrupts
3203 * handlers invoking normal fastpath.
3204 */
3205 local_irq_disable();
3206 c = this_cpu_ptr(s->cpu_slab);
3207
3208 for (i = 0; i < size; i++) {
3209 void *object = c->freelist;
3210
ebe909e0 3211 if (unlikely(!object)) {
688e06d6
JH
3212 /*
3213 * We may have removed an object from c->freelist using
3214 * the fastpath in the previous iteration; in that case,
3215 * c->tid has not been bumped yet.
3216 * Since ___slab_alloc() may reenable interrupts while
3217 * allocating memory, we should bump c->tid now.
3218 */
3219 c->tid = next_tid(c->tid);
3220
ebe909e0
JDB
3221 /*
3222 * Invoking slow path likely have side-effect
3223 * of re-populating per CPU c->freelist
3224 */
87098373 3225 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3226 _RET_IP_, c);
87098373
CL
3227 if (unlikely(!p[i]))
3228 goto error;
3229
ebe909e0 3230 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3231 maybe_wipe_obj_freeptr(s, p[i]);
3232
ebe909e0
JDB
3233 continue; /* goto for-loop */
3234 }
994eb764
JDB
3235 c->freelist = get_freepointer(s, object);
3236 p[i] = object;
0f181f9f 3237 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3238 }
3239 c->tid = next_tid(c->tid);
3240 local_irq_enable();
3241
3242 /* Clear memory outside IRQ disabled fastpath loop */
6471384a 3243 if (unlikely(slab_want_init_on_alloc(flags, s))) {
994eb764
JDB
3244 int j;
3245
3246 for (j = 0; j < i; j++)
3247 memset(p[j], 0, s->object_size);
3248 }
3249
03ec0ed5
JDB
3250 /* memcg and kmem_cache debug support */
3251 slab_post_alloc_hook(s, flags, size, p);
865762a8 3252 return i;
87098373 3253error:
87098373 3254 local_irq_enable();
03ec0ed5
JDB
3255 slab_post_alloc_hook(s, flags, i, p);
3256 __kmem_cache_free_bulk(s, i, p);
865762a8 3257 return 0;
484748f0
CL
3258}
3259EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3260
3261
81819f0f 3262/*
672bba3a
CL
3263 * Object placement in a slab is made very easy because we always start at
3264 * offset 0. If we tune the size of the object to the alignment then we can
3265 * get the required alignment by putting one properly sized object after
3266 * another.
81819f0f
CL
3267 *
3268 * Notice that the allocation order determines the sizes of the per cpu
3269 * caches. Each processor has always one slab available for allocations.
3270 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3271 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3272 * locking overhead.
81819f0f
CL
3273 */
3274
3275/*
3276 * Mininum / Maximum order of slab pages. This influences locking overhead
3277 * and slab fragmentation. A higher order reduces the number of partial slabs
3278 * and increases the number of allocations possible without having to
3279 * take the list_lock.
3280 */
19af27af
AD
3281static unsigned int slub_min_order;
3282static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3283static unsigned int slub_min_objects;
81819f0f 3284
81819f0f
CL
3285/*
3286 * Calculate the order of allocation given an slab object size.
3287 *
672bba3a
CL
3288 * The order of allocation has significant impact on performance and other
3289 * system components. Generally order 0 allocations should be preferred since
3290 * order 0 does not cause fragmentation in the page allocator. Larger objects
3291 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3292 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3293 * would be wasted.
3294 *
3295 * In order to reach satisfactory performance we must ensure that a minimum
3296 * number of objects is in one slab. Otherwise we may generate too much
3297 * activity on the partial lists which requires taking the list_lock. This is
3298 * less a concern for large slabs though which are rarely used.
81819f0f 3299 *
672bba3a
CL
3300 * slub_max_order specifies the order where we begin to stop considering the
3301 * number of objects in a slab as critical. If we reach slub_max_order then
3302 * we try to keep the page order as low as possible. So we accept more waste
3303 * of space in favor of a small page order.
81819f0f 3304 *
672bba3a
CL
3305 * Higher order allocations also allow the placement of more objects in a
3306 * slab and thereby reduce object handling overhead. If the user has
3307 * requested a higher mininum order then we start with that one instead of
3308 * the smallest order which will fit the object.
81819f0f 3309 */
19af27af
AD
3310static inline unsigned int slab_order(unsigned int size,
3311 unsigned int min_objects, unsigned int max_order,
9736d2a9 3312 unsigned int fract_leftover)
81819f0f 3313{
19af27af
AD
3314 unsigned int min_order = slub_min_order;
3315 unsigned int order;
81819f0f 3316
9736d2a9 3317 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3318 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3319
9736d2a9 3320 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3321 order <= max_order; order++) {
81819f0f 3322
19af27af
AD
3323 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3324 unsigned int rem;
81819f0f 3325
9736d2a9 3326 rem = slab_size % size;
81819f0f 3327
5e6d444e 3328 if (rem <= slab_size / fract_leftover)
81819f0f 3329 break;
81819f0f 3330 }
672bba3a 3331
81819f0f
CL
3332 return order;
3333}
3334
9736d2a9 3335static inline int calculate_order(unsigned int size)
5e6d444e 3336{
19af27af
AD
3337 unsigned int order;
3338 unsigned int min_objects;
3339 unsigned int max_objects;
5e6d444e
CL
3340
3341 /*
3342 * Attempt to find best configuration for a slab. This
3343 * works by first attempting to generate a layout with
3344 * the best configuration and backing off gradually.
3345 *
422ff4d7 3346 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3347 * we reduce the minimum objects required in a slab.
3348 */
3349 min_objects = slub_min_objects;
9b2cd506
CL
3350 if (!min_objects)
3351 min_objects = 4 * (fls(nr_cpu_ids) + 1);
9736d2a9 3352 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3353 min_objects = min(min_objects, max_objects);
3354
5e6d444e 3355 while (min_objects > 1) {
19af27af
AD
3356 unsigned int fraction;
3357
c124f5b5 3358 fraction = 16;
5e6d444e
CL
3359 while (fraction >= 4) {
3360 order = slab_order(size, min_objects,
9736d2a9 3361 slub_max_order, fraction);
5e6d444e
CL
3362 if (order <= slub_max_order)
3363 return order;
3364 fraction /= 2;
3365 }
5086c389 3366 min_objects--;
5e6d444e
CL
3367 }
3368
3369 /*
3370 * We were unable to place multiple objects in a slab. Now
3371 * lets see if we can place a single object there.
3372 */
9736d2a9 3373 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3374 if (order <= slub_max_order)
3375 return order;
3376
3377 /*
3378 * Doh this slab cannot be placed using slub_max_order.
3379 */
9736d2a9 3380 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3381 if (order < MAX_ORDER)
5e6d444e
CL
3382 return order;
3383 return -ENOSYS;
3384}
3385
5595cffc 3386static void
4053497d 3387init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3388{
3389 n->nr_partial = 0;
81819f0f
CL
3390 spin_lock_init(&n->list_lock);
3391 INIT_LIST_HEAD(&n->partial);
8ab1372f 3392#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3393 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3394 atomic_long_set(&n->total_objects, 0);
643b1138 3395 INIT_LIST_HEAD(&n->full);
8ab1372f 3396#endif
81819f0f
CL
3397}
3398
55136592 3399static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3400{
6c182dc0 3401 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3402 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3403
8a5ec0ba 3404 /*
d4d84fef
CM
3405 * Must align to double word boundary for the double cmpxchg
3406 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3407 */
d4d84fef
CM
3408 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3409 2 * sizeof(void *));
8a5ec0ba
CL
3410
3411 if (!s->cpu_slab)
3412 return 0;
3413
3414 init_kmem_cache_cpus(s);
4c93c355 3415
8a5ec0ba 3416 return 1;
4c93c355 3417}
4c93c355 3418
51df1142
CL
3419static struct kmem_cache *kmem_cache_node;
3420
81819f0f
CL
3421/*
3422 * No kmalloc_node yet so do it by hand. We know that this is the first
3423 * slab on the node for this slabcache. There are no concurrent accesses
3424 * possible.
3425 *
721ae22a
ZYW
3426 * Note that this function only works on the kmem_cache_node
3427 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3428 * memory on a fresh node that has no slab structures yet.
81819f0f 3429 */
55136592 3430static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3431{
3432 struct page *page;
3433 struct kmem_cache_node *n;
3434
51df1142 3435 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3436
51df1142 3437 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3438
3439 BUG_ON(!page);
a2f92ee7 3440 if (page_to_nid(page) != node) {
f9f58285
FF
3441 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3442 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3443 }
3444
81819f0f
CL
3445 n = page->freelist;
3446 BUG_ON(!n);
8ab1372f 3447#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3448 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3449 init_tracking(kmem_cache_node, n);
8ab1372f 3450#endif
12b22386 3451 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
505f5dcb 3452 GFP_KERNEL);
12b22386
AK
3453 page->freelist = get_freepointer(kmem_cache_node, n);
3454 page->inuse = 1;
3455 page->frozen = 0;
3456 kmem_cache_node->node[node] = n;
4053497d 3457 init_kmem_cache_node(n);
51df1142 3458 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3459
67b6c900 3460 /*
1e4dd946
SR
3461 * No locks need to be taken here as it has just been
3462 * initialized and there is no concurrent access.
67b6c900 3463 */
1e4dd946 3464 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3465}
3466
3467static void free_kmem_cache_nodes(struct kmem_cache *s)
3468{
3469 int node;
fa45dc25 3470 struct kmem_cache_node *n;
81819f0f 3471
fa45dc25 3472 for_each_kmem_cache_node(s, node, n) {
81819f0f 3473 s->node[node] = NULL;
ea37df54 3474 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3475 }
3476}
3477
52b4b950
DS
3478void __kmem_cache_release(struct kmem_cache *s)
3479{
210e7a43 3480 cache_random_seq_destroy(s);
52b4b950
DS
3481 free_percpu(s->cpu_slab);
3482 free_kmem_cache_nodes(s);
3483}
3484
55136592 3485static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3486{
3487 int node;
81819f0f 3488
f64dc58c 3489 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3490 struct kmem_cache_node *n;
3491
73367bd8 3492 if (slab_state == DOWN) {
55136592 3493 early_kmem_cache_node_alloc(node);
73367bd8
AD
3494 continue;
3495 }
51df1142 3496 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3497 GFP_KERNEL, node);
81819f0f 3498
73367bd8
AD
3499 if (!n) {
3500 free_kmem_cache_nodes(s);
3501 return 0;
81819f0f 3502 }
73367bd8 3503
4053497d 3504 init_kmem_cache_node(n);
ea37df54 3505 s->node[node] = n;
81819f0f
CL
3506 }
3507 return 1;
3508}
81819f0f 3509
c0bdb232 3510static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3511{
3512 if (min < MIN_PARTIAL)
3513 min = MIN_PARTIAL;
3514 else if (min > MAX_PARTIAL)
3515 min = MAX_PARTIAL;
3516 s->min_partial = min;
3517}
3518
e6d0e1dc
WY
3519static void set_cpu_partial(struct kmem_cache *s)
3520{
3521#ifdef CONFIG_SLUB_CPU_PARTIAL
3522 /*
3523 * cpu_partial determined the maximum number of objects kept in the
3524 * per cpu partial lists of a processor.
3525 *
3526 * Per cpu partial lists mainly contain slabs that just have one
3527 * object freed. If they are used for allocation then they can be
3528 * filled up again with minimal effort. The slab will never hit the
3529 * per node partial lists and therefore no locking will be required.
3530 *
3531 * This setting also determines
3532 *
3533 * A) The number of objects from per cpu partial slabs dumped to the
3534 * per node list when we reach the limit.
3535 * B) The number of objects in cpu partial slabs to extract from the
3536 * per node list when we run out of per cpu objects. We only fetch
3537 * 50% to keep some capacity around for frees.
3538 */
3539 if (!kmem_cache_has_cpu_partial(s))
3540 s->cpu_partial = 0;
3541 else if (s->size >= PAGE_SIZE)
3542 s->cpu_partial = 2;
3543 else if (s->size >= 1024)
3544 s->cpu_partial = 6;
3545 else if (s->size >= 256)
3546 s->cpu_partial = 13;
3547 else
3548 s->cpu_partial = 30;
3549#endif
3550}
3551
81819f0f
CL
3552/*
3553 * calculate_sizes() determines the order and the distribution of data within
3554 * a slab object.
3555 */
06b285dc 3556static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3557{
d50112ed 3558 slab_flags_t flags = s->flags;
be4a7988 3559 unsigned int size = s->object_size;
19af27af 3560 unsigned int order;
81819f0f 3561
d8b42bf5
CL
3562 /*
3563 * Round up object size to the next word boundary. We can only
3564 * place the free pointer at word boundaries and this determines
3565 * the possible location of the free pointer.
3566 */
3567 size = ALIGN(size, sizeof(void *));
3568
3569#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3570 /*
3571 * Determine if we can poison the object itself. If the user of
3572 * the slab may touch the object after free or before allocation
3573 * then we should never poison the object itself.
3574 */
5f0d5a3a 3575 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3576 !s->ctor)
81819f0f
CL
3577 s->flags |= __OBJECT_POISON;
3578 else
3579 s->flags &= ~__OBJECT_POISON;
3580
81819f0f
CL
3581
3582 /*
672bba3a 3583 * If we are Redzoning then check if there is some space between the
81819f0f 3584 * end of the object and the free pointer. If not then add an
672bba3a 3585 * additional word to have some bytes to store Redzone information.
81819f0f 3586 */
3b0efdfa 3587 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3588 size += sizeof(void *);
41ecc55b 3589#endif
81819f0f
CL
3590
3591 /*
672bba3a
CL
3592 * With that we have determined the number of bytes in actual use
3593 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3594 */
3595 s->inuse = size;
3596
43e74032
KC
3597 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3598 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
3599 s->ctor) {
81819f0f
CL
3600 /*
3601 * Relocate free pointer after the object if it is not
3602 * permitted to overwrite the first word of the object on
3603 * kmem_cache_free.
3604 *
3605 * This is the case if we do RCU, have a constructor or
43e74032
KC
3606 * destructor, are poisoning the objects, or are
3607 * redzoning an object smaller than sizeof(void *).
76b22022
WL
3608 *
3609 * The assumption that s->offset >= s->inuse means free
3610 * pointer is outside of the object is used in the
3611 * freeptr_outside_object() function. If that is no
3612 * longer true, the function needs to be modified.
81819f0f
CL
3613 */
3614 s->offset = size;
3615 size += sizeof(void *);
3616 }
3617
c12b3c62 3618#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3619 if (flags & SLAB_STORE_USER)
3620 /*
3621 * Need to store information about allocs and frees after
3622 * the object.
3623 */
3624 size += 2 * sizeof(struct track);
80a9201a 3625#endif
81819f0f 3626
80a9201a
AP
3627 kasan_cache_create(s, &size, &s->flags);
3628#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3629 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3630 /*
3631 * Add some empty padding so that we can catch
3632 * overwrites from earlier objects rather than let
3633 * tracking information or the free pointer be
0211a9c8 3634 * corrupted if a user writes before the start
81819f0f
CL
3635 * of the object.
3636 */
3637 size += sizeof(void *);
d86bd1be
JK
3638
3639 s->red_left_pad = sizeof(void *);
3640 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3641 size += s->red_left_pad;
3642 }
41ecc55b 3643#endif
672bba3a 3644
81819f0f
CL
3645 /*
3646 * SLUB stores one object immediately after another beginning from
3647 * offset 0. In order to align the objects we have to simply size
3648 * each object to conform to the alignment.
3649 */
45906855 3650 size = ALIGN(size, s->align);
81819f0f 3651 s->size = size;
06b285dc
CL
3652 if (forced_order >= 0)
3653 order = forced_order;
3654 else
9736d2a9 3655 order = calculate_order(size);
81819f0f 3656
19af27af 3657 if ((int)order < 0)
81819f0f
CL
3658 return 0;
3659
b7a49f0d 3660 s->allocflags = 0;
834f3d11 3661 if (order)
b7a49f0d
CL
3662 s->allocflags |= __GFP_COMP;
3663
3664 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3665 s->allocflags |= GFP_DMA;
b7a49f0d 3666
6d6ea1e9
NB
3667 if (s->flags & SLAB_CACHE_DMA32)
3668 s->allocflags |= GFP_DMA32;
3669
b7a49f0d
CL
3670 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3671 s->allocflags |= __GFP_RECLAIMABLE;
3672
81819f0f
CL
3673 /*
3674 * Determine the number of objects per slab
3675 */
9736d2a9
MW
3676 s->oo = oo_make(order, size);
3677 s->min = oo_make(get_order(size), size);
205ab99d
CL
3678 if (oo_objects(s->oo) > oo_objects(s->max))
3679 s->max = s->oo;
81819f0f 3680
834f3d11 3681 return !!oo_objects(s->oo);
81819f0f
CL
3682}
3683
d50112ed 3684static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3685{
8a13a4cc 3686 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
2482ddec
KC
3687#ifdef CONFIG_SLAB_FREELIST_HARDENED
3688 s->random = get_random_long();
3689#endif
81819f0f 3690
06b285dc 3691 if (!calculate_sizes(s, -1))
81819f0f 3692 goto error;
3de47213
DR
3693 if (disable_higher_order_debug) {
3694 /*
3695 * Disable debugging flags that store metadata if the min slab
3696 * order increased.
3697 */
3b0efdfa 3698 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3699 s->flags &= ~DEBUG_METADATA_FLAGS;
3700 s->offset = 0;
3701 if (!calculate_sizes(s, -1))
3702 goto error;
3703 }
3704 }
81819f0f 3705
2565409f
HC
3706#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3707 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3708 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3709 /* Enable fast mode */
3710 s->flags |= __CMPXCHG_DOUBLE;
3711#endif
3712
3b89d7d8
DR
3713 /*
3714 * The larger the object size is, the more pages we want on the partial
3715 * list to avoid pounding the page allocator excessively.
3716 */
49e22585
CL
3717 set_min_partial(s, ilog2(s->size) / 2);
3718
e6d0e1dc 3719 set_cpu_partial(s);
49e22585 3720
81819f0f 3721#ifdef CONFIG_NUMA
e2cb96b7 3722 s->remote_node_defrag_ratio = 1000;
81819f0f 3723#endif
210e7a43
TG
3724
3725 /* Initialize the pre-computed randomized freelist if slab is up */
3726 if (slab_state >= UP) {
3727 if (init_cache_random_seq(s))
3728 goto error;
3729 }
3730
55136592 3731 if (!init_kmem_cache_nodes(s))
dfb4f096 3732 goto error;
81819f0f 3733
55136592 3734 if (alloc_kmem_cache_cpus(s))
278b1bb1 3735 return 0;
ff12059e 3736
81819f0f 3737error:
eb753450 3738 __kmem_cache_release(s);
278b1bb1 3739 return -EINVAL;
81819f0f 3740}
81819f0f 3741
33b12c38
CL
3742static void list_slab_objects(struct kmem_cache *s, struct page *page,
3743 const char *text)
3744{
3745#ifdef CONFIG_SLUB_DEBUG
3746 void *addr = page_address(page);
3747 void *p;
0684e652 3748 unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC);
bbd7d57b
ED
3749 if (!map)
3750 return;
945cf2b6 3751 slab_err(s, page, text, s->name);
33b12c38 3752 slab_lock(page);
33b12c38 3753
5f80b13a 3754 get_map(s, page, map);
33b12c38
CL
3755 for_each_object(p, s, addr, page->objects) {
3756
3757 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3758 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3759 print_tracking(s, p);
3760 }
3761 }
3762 slab_unlock(page);
0684e652 3763 bitmap_free(map);
33b12c38
CL
3764#endif
3765}
3766
81819f0f 3767/*
599870b1 3768 * Attempt to free all partial slabs on a node.
52b4b950
DS
3769 * This is called from __kmem_cache_shutdown(). We must take list_lock
3770 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3771 */
599870b1 3772static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3773{
60398923 3774 LIST_HEAD(discard);
81819f0f
CL
3775 struct page *page, *h;
3776
52b4b950
DS
3777 BUG_ON(irqs_disabled());
3778 spin_lock_irq(&n->list_lock);
916ac052 3779 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 3780 if (!page->inuse) {
52b4b950 3781 remove_partial(n, page);
916ac052 3782 list_add(&page->slab_list, &discard);
33b12c38
CL
3783 } else {
3784 list_slab_objects(s, page,
52b4b950 3785 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3786 }
33b12c38 3787 }
52b4b950 3788 spin_unlock_irq(&n->list_lock);
60398923 3789
916ac052 3790 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 3791 discard_slab(s, page);
81819f0f
CL
3792}
3793
f9e13c0a
SB
3794bool __kmem_cache_empty(struct kmem_cache *s)
3795{
3796 int node;
3797 struct kmem_cache_node *n;
3798
3799 for_each_kmem_cache_node(s, node, n)
3800 if (n->nr_partial || slabs_node(s, node))
3801 return false;
3802 return true;
3803}
3804
81819f0f 3805/*
672bba3a 3806 * Release all resources used by a slab cache.
81819f0f 3807 */
52b4b950 3808int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3809{
3810 int node;
fa45dc25 3811 struct kmem_cache_node *n;
81819f0f
CL
3812
3813 flush_all(s);
81819f0f 3814 /* Attempt to free all objects */
fa45dc25 3815 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3816 free_partial(s, n);
3817 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3818 return 1;
3819 }
bf5eb3de 3820 sysfs_slab_remove(s);
81819f0f
CL
3821 return 0;
3822}
3823
81819f0f
CL
3824/********************************************************************
3825 * Kmalloc subsystem
3826 *******************************************************************/
3827
81819f0f
CL
3828static int __init setup_slub_min_order(char *str)
3829{
19af27af 3830 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
3831
3832 return 1;
3833}
3834
3835__setup("slub_min_order=", setup_slub_min_order);
3836
3837static int __init setup_slub_max_order(char *str)
3838{
19af27af
AD
3839 get_option(&str, (int *)&slub_max_order);
3840 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
3841
3842 return 1;
3843}
3844
3845__setup("slub_max_order=", setup_slub_max_order);
3846
3847static int __init setup_slub_min_objects(char *str)
3848{
19af27af 3849 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
3850
3851 return 1;
3852}
3853
3854__setup("slub_min_objects=", setup_slub_min_objects);
3855
81819f0f
CL
3856void *__kmalloc(size_t size, gfp_t flags)
3857{
aadb4bc4 3858 struct kmem_cache *s;
5b882be4 3859 void *ret;
81819f0f 3860
95a05b42 3861 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3862 return kmalloc_large(size, flags);
aadb4bc4 3863
2c59dd65 3864 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3865
3866 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3867 return s;
3868
2b847c3c 3869 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3870
ca2b84cb 3871 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3872
0116523c 3873 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3874
5b882be4 3875 return ret;
81819f0f
CL
3876}
3877EXPORT_SYMBOL(__kmalloc);
3878
5d1f57e4 3879#ifdef CONFIG_NUMA
f619cfe1
CL
3880static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3881{
b1eeab67 3882 struct page *page;
e4f7c0b4 3883 void *ptr = NULL;
6a486c0a 3884 unsigned int order = get_order(size);
f619cfe1 3885
75f296d9 3886 flags |= __GFP_COMP;
6a486c0a
VB
3887 page = alloc_pages_node(node, flags, order);
3888 if (page) {
e4f7c0b4 3889 ptr = page_address(page);
6a486c0a
VB
3890 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3891 1 << order);
3892 }
e4f7c0b4 3893
0116523c 3894 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
3895}
3896
81819f0f
CL
3897void *__kmalloc_node(size_t size, gfp_t flags, int node)
3898{
aadb4bc4 3899 struct kmem_cache *s;
5b882be4 3900 void *ret;
81819f0f 3901
95a05b42 3902 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3903 ret = kmalloc_large_node(size, flags, node);
3904
ca2b84cb
EGM
3905 trace_kmalloc_node(_RET_IP_, ret,
3906 size, PAGE_SIZE << get_order(size),
3907 flags, node);
5b882be4
EGM
3908
3909 return ret;
3910 }
aadb4bc4 3911
2c59dd65 3912 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3913
3914 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3915 return s;
3916
2b847c3c 3917 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3918
ca2b84cb 3919 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3920
0116523c 3921 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3922
5b882be4 3923 return ret;
81819f0f
CL
3924}
3925EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 3926#endif /* CONFIG_NUMA */
81819f0f 3927
ed18adc1
KC
3928#ifdef CONFIG_HARDENED_USERCOPY
3929/*
afcc90f8
KC
3930 * Rejects incorrectly sized objects and objects that are to be copied
3931 * to/from userspace but do not fall entirely within the containing slab
3932 * cache's usercopy region.
ed18adc1
KC
3933 *
3934 * Returns NULL if check passes, otherwise const char * to name of cache
3935 * to indicate an error.
3936 */
f4e6e289
KC
3937void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3938 bool to_user)
ed18adc1
KC
3939{
3940 struct kmem_cache *s;
44065b2e 3941 unsigned int offset;
ed18adc1
KC
3942 size_t object_size;
3943
96fedce2
AK
3944 ptr = kasan_reset_tag(ptr);
3945
ed18adc1
KC
3946 /* Find object and usable object size. */
3947 s = page->slab_cache;
ed18adc1
KC
3948
3949 /* Reject impossible pointers. */
3950 if (ptr < page_address(page))
f4e6e289
KC
3951 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3952 to_user, 0, n);
ed18adc1
KC
3953
3954 /* Find offset within object. */
3955 offset = (ptr - page_address(page)) % s->size;
3956
3957 /* Adjust for redzone and reject if within the redzone. */
3958 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3959 if (offset < s->red_left_pad)
f4e6e289
KC
3960 usercopy_abort("SLUB object in left red zone",
3961 s->name, to_user, offset, n);
ed18adc1
KC
3962 offset -= s->red_left_pad;
3963 }
3964
afcc90f8
KC
3965 /* Allow address range falling entirely within usercopy region. */
3966 if (offset >= s->useroffset &&
3967 offset - s->useroffset <= s->usersize &&
3968 n <= s->useroffset - offset + s->usersize)
f4e6e289 3969 return;
ed18adc1 3970
afcc90f8
KC
3971 /*
3972 * If the copy is still within the allocated object, produce
3973 * a warning instead of rejecting the copy. This is intended
3974 * to be a temporary method to find any missing usercopy
3975 * whitelists.
3976 */
3977 object_size = slab_ksize(s);
2d891fbc
KC
3978 if (usercopy_fallback &&
3979 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
3980 usercopy_warn("SLUB object", s->name, to_user, offset, n);
3981 return;
3982 }
ed18adc1 3983
f4e6e289 3984 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
3985}
3986#endif /* CONFIG_HARDENED_USERCOPY */
3987
10d1f8cb 3988size_t __ksize(const void *object)
81819f0f 3989{
272c1d21 3990 struct page *page;
81819f0f 3991
ef8b4520 3992 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3993 return 0;
3994
294a80a8 3995 page = virt_to_head_page(object);
294a80a8 3996
76994412
PE
3997 if (unlikely(!PageSlab(page))) {
3998 WARN_ON(!PageCompound(page));
a50b854e 3999 return page_size(page);
76994412 4000 }
81819f0f 4001
1b4f59e3 4002 return slab_ksize(page->slab_cache);
81819f0f 4003}
10d1f8cb 4004EXPORT_SYMBOL(__ksize);
81819f0f
CL
4005
4006void kfree(const void *x)
4007{
81819f0f 4008 struct page *page;
5bb983b0 4009 void *object = (void *)x;
81819f0f 4010
2121db74
PE
4011 trace_kfree(_RET_IP_, x);
4012
2408c550 4013 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
4014 return;
4015
b49af68f 4016 page = virt_to_head_page(x);
aadb4bc4 4017 if (unlikely(!PageSlab(page))) {
6a486c0a
VB
4018 unsigned int order = compound_order(page);
4019
0937502a 4020 BUG_ON(!PageCompound(page));
47adccce 4021 kfree_hook(object);
6a486c0a
VB
4022 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
4023 -(1 << order));
4024 __free_pages(page, order);
aadb4bc4
CL
4025 return;
4026 }
81084651 4027 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
4028}
4029EXPORT_SYMBOL(kfree);
4030
832f37f5
VD
4031#define SHRINK_PROMOTE_MAX 32
4032
2086d26a 4033/*
832f37f5
VD
4034 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4035 * up most to the head of the partial lists. New allocations will then
4036 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4037 *
4038 * The slabs with the least items are placed last. This results in them
4039 * being allocated from last increasing the chance that the last objects
4040 * are freed in them.
2086d26a 4041 */
c9fc5864 4042int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
4043{
4044 int node;
4045 int i;
4046 struct kmem_cache_node *n;
4047 struct page *page;
4048 struct page *t;
832f37f5
VD
4049 struct list_head discard;
4050 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4051 unsigned long flags;
ce3712d7 4052 int ret = 0;
2086d26a 4053
2086d26a 4054 flush_all(s);
fa45dc25 4055 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4056 INIT_LIST_HEAD(&discard);
4057 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4058 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4059
4060 spin_lock_irqsave(&n->list_lock, flags);
4061
4062 /*
832f37f5 4063 * Build lists of slabs to discard or promote.
2086d26a 4064 *
672bba3a
CL
4065 * Note that concurrent frees may occur while we hold the
4066 * list_lock. page->inuse here is the upper limit.
2086d26a 4067 */
916ac052 4068 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
4069 int free = page->objects - page->inuse;
4070
4071 /* Do not reread page->inuse */
4072 barrier();
4073
4074 /* We do not keep full slabs on the list */
4075 BUG_ON(free <= 0);
4076
4077 if (free == page->objects) {
916ac052 4078 list_move(&page->slab_list, &discard);
69cb8e6b 4079 n->nr_partial--;
832f37f5 4080 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4081 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4082 }
4083
2086d26a 4084 /*
832f37f5
VD
4085 * Promote the slabs filled up most to the head of the
4086 * partial list.
2086d26a 4087 */
832f37f5
VD
4088 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4089 list_splice(promote + i, &n->partial);
2086d26a 4090
2086d26a 4091 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4092
4093 /* Release empty slabs */
916ac052 4094 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4095 discard_slab(s, page);
ce3712d7
VD
4096
4097 if (slabs_node(s, node))
4098 ret = 1;
2086d26a
CL
4099 }
4100
ce3712d7 4101 return ret;
2086d26a 4102}
2086d26a 4103
c9fc5864 4104#ifdef CONFIG_MEMCG
43486694 4105void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
01fb58bc 4106{
50862ce7
TH
4107 /*
4108 * Called with all the locks held after a sched RCU grace period.
4109 * Even if @s becomes empty after shrinking, we can't know that @s
4110 * doesn't have allocations already in-flight and thus can't
4111 * destroy @s until the associated memcg is released.
4112 *
4113 * However, let's remove the sysfs files for empty caches here.
4114 * Each cache has a lot of interface files which aren't
4115 * particularly useful for empty draining caches; otherwise, we can
4116 * easily end up with millions of unnecessary sysfs files on
4117 * systems which have a lot of memory and transient cgroups.
4118 */
4119 if (!__kmem_cache_shrink(s))
4120 sysfs_slab_remove(s);
01fb58bc
TH
4121}
4122
c9fc5864
TH
4123void __kmemcg_cache_deactivate(struct kmem_cache *s)
4124{
4125 /*
4126 * Disable empty slabs caching. Used to avoid pinning offline
4127 * memory cgroups by kmem pages that can be freed.
4128 */
e6d0e1dc 4129 slub_set_cpu_partial(s, 0);
c9fc5864 4130 s->min_partial = 0;
c9fc5864 4131}
6dfd1b65 4132#endif /* CONFIG_MEMCG */
c9fc5864 4133
b9049e23
YG
4134static int slab_mem_going_offline_callback(void *arg)
4135{
4136 struct kmem_cache *s;
4137
18004c5d 4138 mutex_lock(&slab_mutex);
b9049e23 4139 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4140 __kmem_cache_shrink(s);
18004c5d 4141 mutex_unlock(&slab_mutex);
b9049e23
YG
4142
4143 return 0;
4144}
4145
4146static void slab_mem_offline_callback(void *arg)
4147{
4148 struct kmem_cache_node *n;
4149 struct kmem_cache *s;
4150 struct memory_notify *marg = arg;
4151 int offline_node;
4152
b9d5ab25 4153 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4154
4155 /*
4156 * If the node still has available memory. we need kmem_cache_node
4157 * for it yet.
4158 */
4159 if (offline_node < 0)
4160 return;
4161
18004c5d 4162 mutex_lock(&slab_mutex);
b9049e23
YG
4163 list_for_each_entry(s, &slab_caches, list) {
4164 n = get_node(s, offline_node);
4165 if (n) {
4166 /*
4167 * if n->nr_slabs > 0, slabs still exist on the node
4168 * that is going down. We were unable to free them,
c9404c9c 4169 * and offline_pages() function shouldn't call this
b9049e23
YG
4170 * callback. So, we must fail.
4171 */
0f389ec6 4172 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4173
4174 s->node[offline_node] = NULL;
8de66a0c 4175 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4176 }
4177 }
18004c5d 4178 mutex_unlock(&slab_mutex);
b9049e23
YG
4179}
4180
4181static int slab_mem_going_online_callback(void *arg)
4182{
4183 struct kmem_cache_node *n;
4184 struct kmem_cache *s;
4185 struct memory_notify *marg = arg;
b9d5ab25 4186 int nid = marg->status_change_nid_normal;
b9049e23
YG
4187 int ret = 0;
4188
4189 /*
4190 * If the node's memory is already available, then kmem_cache_node is
4191 * already created. Nothing to do.
4192 */
4193 if (nid < 0)
4194 return 0;
4195
4196 /*
0121c619 4197 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4198 * allocate a kmem_cache_node structure in order to bring the node
4199 * online.
4200 */
18004c5d 4201 mutex_lock(&slab_mutex);
b9049e23
YG
4202 list_for_each_entry(s, &slab_caches, list) {
4203 /*
4204 * XXX: kmem_cache_alloc_node will fallback to other nodes
4205 * since memory is not yet available from the node that
4206 * is brought up.
4207 */
8de66a0c 4208 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4209 if (!n) {
4210 ret = -ENOMEM;
4211 goto out;
4212 }
4053497d 4213 init_kmem_cache_node(n);
b9049e23
YG
4214 s->node[nid] = n;
4215 }
4216out:
18004c5d 4217 mutex_unlock(&slab_mutex);
b9049e23
YG
4218 return ret;
4219}
4220
4221static int slab_memory_callback(struct notifier_block *self,
4222 unsigned long action, void *arg)
4223{
4224 int ret = 0;
4225
4226 switch (action) {
4227 case MEM_GOING_ONLINE:
4228 ret = slab_mem_going_online_callback(arg);
4229 break;
4230 case MEM_GOING_OFFLINE:
4231 ret = slab_mem_going_offline_callback(arg);
4232 break;
4233 case MEM_OFFLINE:
4234 case MEM_CANCEL_ONLINE:
4235 slab_mem_offline_callback(arg);
4236 break;
4237 case MEM_ONLINE:
4238 case MEM_CANCEL_OFFLINE:
4239 break;
4240 }
dc19f9db
KH
4241 if (ret)
4242 ret = notifier_from_errno(ret);
4243 else
4244 ret = NOTIFY_OK;
b9049e23
YG
4245 return ret;
4246}
4247
3ac38faa
AM
4248static struct notifier_block slab_memory_callback_nb = {
4249 .notifier_call = slab_memory_callback,
4250 .priority = SLAB_CALLBACK_PRI,
4251};
b9049e23 4252
81819f0f
CL
4253/********************************************************************
4254 * Basic setup of slabs
4255 *******************************************************************/
4256
51df1142
CL
4257/*
4258 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4259 * the page allocator. Allocate them properly then fix up the pointers
4260 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4261 */
4262
dffb4d60 4263static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4264{
4265 int node;
dffb4d60 4266 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4267 struct kmem_cache_node *n;
51df1142 4268
dffb4d60 4269 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4270
7d557b3c
GC
4271 /*
4272 * This runs very early, and only the boot processor is supposed to be
4273 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4274 * IPIs around.
4275 */
4276 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4277 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4278 struct page *p;
4279
916ac052 4280 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4281 p->slab_cache = s;
51df1142 4282
607bf324 4283#ifdef CONFIG_SLUB_DEBUG
916ac052 4284 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4285 p->slab_cache = s;
51df1142 4286#endif
51df1142 4287 }
f7ce3190 4288 slab_init_memcg_params(s);
dffb4d60 4289 list_add(&s->list, &slab_caches);
c03914b7 4290 memcg_link_cache(s, NULL);
dffb4d60 4291 return s;
51df1142
CL
4292}
4293
81819f0f
CL
4294void __init kmem_cache_init(void)
4295{
dffb4d60
CL
4296 static __initdata struct kmem_cache boot_kmem_cache,
4297 boot_kmem_cache_node;
51df1142 4298
fc8d8620
SG
4299 if (debug_guardpage_minorder())
4300 slub_max_order = 0;
4301
dffb4d60
CL
4302 kmem_cache_node = &boot_kmem_cache_node;
4303 kmem_cache = &boot_kmem_cache;
51df1142 4304
dffb4d60 4305 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4306 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4307
3ac38faa 4308 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4309
4310 /* Able to allocate the per node structures */
4311 slab_state = PARTIAL;
4312
dffb4d60
CL
4313 create_boot_cache(kmem_cache, "kmem_cache",
4314 offsetof(struct kmem_cache, node) +
4315 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4316 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4317
dffb4d60 4318 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4319 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4320
4321 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4322 setup_kmalloc_cache_index_table();
f97d5f63 4323 create_kmalloc_caches(0);
81819f0f 4324
210e7a43
TG
4325 /* Setup random freelists for each cache */
4326 init_freelist_randomization();
4327
a96a87bf
SAS
4328 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4329 slub_cpu_dead);
81819f0f 4330
b9726c26 4331 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4332 cache_line_size(),
81819f0f
CL
4333 slub_min_order, slub_max_order, slub_min_objects,
4334 nr_cpu_ids, nr_node_ids);
4335}
4336
7e85ee0c
PE
4337void __init kmem_cache_init_late(void)
4338{
7e85ee0c
PE
4339}
4340
2633d7a0 4341struct kmem_cache *
f4957d5b 4342__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4343 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4344{
426589f5 4345 struct kmem_cache *s, *c;
81819f0f 4346
a44cb944 4347 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4348 if (s) {
4349 s->refcount++;
84d0ddd6 4350
81819f0f
CL
4351 /*
4352 * Adjust the object sizes so that we clear
4353 * the complete object on kzalloc.
4354 */
1b473f29 4355 s->object_size = max(s->object_size, size);
52ee6d74 4356 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4357
426589f5 4358 for_each_memcg_cache(c, s) {
84d0ddd6 4359 c->object_size = s->object_size;
52ee6d74 4360 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
84d0ddd6
VD
4361 }
4362
7b8f3b66 4363 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4364 s->refcount--;
cbb79694 4365 s = NULL;
7b8f3b66 4366 }
a0e1d1be 4367 }
6446faa2 4368
cbb79694
CL
4369 return s;
4370}
84c1cf62 4371
d50112ed 4372int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4373{
aac3a166
PE
4374 int err;
4375
4376 err = kmem_cache_open(s, flags);
4377 if (err)
4378 return err;
20cea968 4379
45530c44
CL
4380 /* Mutex is not taken during early boot */
4381 if (slab_state <= UP)
4382 return 0;
4383
107dab5c 4384 memcg_propagate_slab_attrs(s);
aac3a166 4385 err = sysfs_slab_add(s);
aac3a166 4386 if (err)
52b4b950 4387 __kmem_cache_release(s);
20cea968 4388
aac3a166 4389 return err;
81819f0f 4390}
81819f0f 4391
ce71e27c 4392void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4393{
aadb4bc4 4394 struct kmem_cache *s;
94b528d0 4395 void *ret;
aadb4bc4 4396
95a05b42 4397 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4398 return kmalloc_large(size, gfpflags);
4399
2c59dd65 4400 s = kmalloc_slab(size, gfpflags);
81819f0f 4401
2408c550 4402 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4403 return s;
81819f0f 4404
2b847c3c 4405 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4406
25985edc 4407 /* Honor the call site pointer we received. */
ca2b84cb 4408 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4409
4410 return ret;
81819f0f
CL
4411}
4412
5d1f57e4 4413#ifdef CONFIG_NUMA
81819f0f 4414void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4415 int node, unsigned long caller)
81819f0f 4416{
aadb4bc4 4417 struct kmem_cache *s;
94b528d0 4418 void *ret;
aadb4bc4 4419
95a05b42 4420 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4421 ret = kmalloc_large_node(size, gfpflags, node);
4422
4423 trace_kmalloc_node(caller, ret,
4424 size, PAGE_SIZE << get_order(size),
4425 gfpflags, node);
4426
4427 return ret;
4428 }
eada35ef 4429
2c59dd65 4430 s = kmalloc_slab(size, gfpflags);
81819f0f 4431
2408c550 4432 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4433 return s;
81819f0f 4434
2b847c3c 4435 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4436
25985edc 4437 /* Honor the call site pointer we received. */
ca2b84cb 4438 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4439
4440 return ret;
81819f0f 4441}
5d1f57e4 4442#endif
81819f0f 4443
ab4d5ed5 4444#ifdef CONFIG_SYSFS
205ab99d
CL
4445static int count_inuse(struct page *page)
4446{
4447 return page->inuse;
4448}
4449
4450static int count_total(struct page *page)
4451{
4452 return page->objects;
4453}
ab4d5ed5 4454#endif
205ab99d 4455
ab4d5ed5 4456#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4457static int validate_slab(struct kmem_cache *s, struct page *page,
4458 unsigned long *map)
53e15af0
CL
4459{
4460 void *p;
a973e9dd 4461 void *addr = page_address(page);
53e15af0
CL
4462
4463 if (!check_slab(s, page) ||
4464 !on_freelist(s, page, NULL))
4465 return 0;
4466
4467 /* Now we know that a valid freelist exists */
39b26464 4468 bitmap_zero(map, page->objects);
53e15af0 4469
5f80b13a
CL
4470 get_map(s, page, map);
4471 for_each_object(p, s, addr, page->objects) {
4472 if (test_bit(slab_index(p, s, addr), map))
4473 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4474 return 0;
53e15af0
CL
4475 }
4476
224a88be 4477 for_each_object(p, s, addr, page->objects)
7656c72b 4478 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4479 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4480 return 0;
4481 return 1;
4482}
4483
434e245d
CL
4484static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4485 unsigned long *map)
53e15af0 4486{
881db7fb
CL
4487 slab_lock(page);
4488 validate_slab(s, page, map);
4489 slab_unlock(page);
53e15af0
CL
4490}
4491
434e245d
CL
4492static int validate_slab_node(struct kmem_cache *s,
4493 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4494{
4495 unsigned long count = 0;
4496 struct page *page;
4497 unsigned long flags;
4498
4499 spin_lock_irqsave(&n->list_lock, flags);
4500
916ac052 4501 list_for_each_entry(page, &n->partial, slab_list) {
434e245d 4502 validate_slab_slab(s, page, map);
53e15af0
CL
4503 count++;
4504 }
4505 if (count != n->nr_partial)
f9f58285
FF
4506 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4507 s->name, count, n->nr_partial);
53e15af0
CL
4508
4509 if (!(s->flags & SLAB_STORE_USER))
4510 goto out;
4511
916ac052 4512 list_for_each_entry(page, &n->full, slab_list) {
434e245d 4513 validate_slab_slab(s, page, map);
53e15af0
CL
4514 count++;
4515 }
4516 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4517 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4518 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4519
4520out:
4521 spin_unlock_irqrestore(&n->list_lock, flags);
4522 return count;
4523}
4524
434e245d 4525static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4526{
4527 int node;
4528 unsigned long count = 0;
fa45dc25 4529 struct kmem_cache_node *n;
0684e652 4530 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
434e245d
CL
4531
4532 if (!map)
4533 return -ENOMEM;
53e15af0
CL
4534
4535 flush_all(s);
fa45dc25 4536 for_each_kmem_cache_node(s, node, n)
434e245d 4537 count += validate_slab_node(s, n, map);
0684e652 4538 bitmap_free(map);
53e15af0
CL
4539 return count;
4540}
88a420e4 4541/*
672bba3a 4542 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4543 * and freed.
4544 */
4545
4546struct location {
4547 unsigned long count;
ce71e27c 4548 unsigned long addr;
45edfa58
CL
4549 long long sum_time;
4550 long min_time;
4551 long max_time;
4552 long min_pid;
4553 long max_pid;
174596a0 4554 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4555 nodemask_t nodes;
88a420e4
CL
4556};
4557
4558struct loc_track {
4559 unsigned long max;
4560 unsigned long count;
4561 struct location *loc;
4562};
4563
4564static void free_loc_track(struct loc_track *t)
4565{
4566 if (t->max)
4567 free_pages((unsigned long)t->loc,
4568 get_order(sizeof(struct location) * t->max));
4569}
4570
68dff6a9 4571static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4572{
4573 struct location *l;
4574 int order;
4575
88a420e4
CL
4576 order = get_order(sizeof(struct location) * max);
4577
68dff6a9 4578 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4579 if (!l)
4580 return 0;
4581
4582 if (t->count) {
4583 memcpy(l, t->loc, sizeof(struct location) * t->count);
4584 free_loc_track(t);
4585 }
4586 t->max = max;
4587 t->loc = l;
4588 return 1;
4589}
4590
4591static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4592 const struct track *track)
88a420e4
CL
4593{
4594 long start, end, pos;
4595 struct location *l;
ce71e27c 4596 unsigned long caddr;
45edfa58 4597 unsigned long age = jiffies - track->when;
88a420e4
CL
4598
4599 start = -1;
4600 end = t->count;
4601
4602 for ( ; ; ) {
4603 pos = start + (end - start + 1) / 2;
4604
4605 /*
4606 * There is nothing at "end". If we end up there
4607 * we need to add something to before end.
4608 */
4609 if (pos == end)
4610 break;
4611
4612 caddr = t->loc[pos].addr;
45edfa58
CL
4613 if (track->addr == caddr) {
4614
4615 l = &t->loc[pos];
4616 l->count++;
4617 if (track->when) {
4618 l->sum_time += age;
4619 if (age < l->min_time)
4620 l->min_time = age;
4621 if (age > l->max_time)
4622 l->max_time = age;
4623
4624 if (track->pid < l->min_pid)
4625 l->min_pid = track->pid;
4626 if (track->pid > l->max_pid)
4627 l->max_pid = track->pid;
4628
174596a0
RR
4629 cpumask_set_cpu(track->cpu,
4630 to_cpumask(l->cpus));
45edfa58
CL
4631 }
4632 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4633 return 1;
4634 }
4635
45edfa58 4636 if (track->addr < caddr)
88a420e4
CL
4637 end = pos;
4638 else
4639 start = pos;
4640 }
4641
4642 /*
672bba3a 4643 * Not found. Insert new tracking element.
88a420e4 4644 */
68dff6a9 4645 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4646 return 0;
4647
4648 l = t->loc + pos;
4649 if (pos < t->count)
4650 memmove(l + 1, l,
4651 (t->count - pos) * sizeof(struct location));
4652 t->count++;
4653 l->count = 1;
45edfa58
CL
4654 l->addr = track->addr;
4655 l->sum_time = age;
4656 l->min_time = age;
4657 l->max_time = age;
4658 l->min_pid = track->pid;
4659 l->max_pid = track->pid;
174596a0
RR
4660 cpumask_clear(to_cpumask(l->cpus));
4661 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4662 nodes_clear(l->nodes);
4663 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4664 return 1;
4665}
4666
4667static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4668 struct page *page, enum track_item alloc,
a5dd5c11 4669 unsigned long *map)
88a420e4 4670{
a973e9dd 4671 void *addr = page_address(page);
88a420e4
CL
4672 void *p;
4673
39b26464 4674 bitmap_zero(map, page->objects);
5f80b13a 4675 get_map(s, page, map);
88a420e4 4676
224a88be 4677 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4678 if (!test_bit(slab_index(p, s, addr), map))
4679 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4680}
4681
4682static int list_locations(struct kmem_cache *s, char *buf,
4683 enum track_item alloc)
4684{
e374d483 4685 int len = 0;
88a420e4 4686 unsigned long i;
68dff6a9 4687 struct loc_track t = { 0, 0, NULL };
88a420e4 4688 int node;
fa45dc25 4689 struct kmem_cache_node *n;
0684e652 4690 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
88a420e4 4691
bbd7d57b 4692 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
0ee931c4 4693 GFP_KERNEL)) {
0684e652 4694 bitmap_free(map);
68dff6a9 4695 return sprintf(buf, "Out of memory\n");
bbd7d57b 4696 }
88a420e4
CL
4697 /* Push back cpu slabs */
4698 flush_all(s);
4699
fa45dc25 4700 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4701 unsigned long flags;
4702 struct page *page;
4703
9e86943b 4704 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4705 continue;
4706
4707 spin_lock_irqsave(&n->list_lock, flags);
916ac052 4708 list_for_each_entry(page, &n->partial, slab_list)
bbd7d57b 4709 process_slab(&t, s, page, alloc, map);
916ac052 4710 list_for_each_entry(page, &n->full, slab_list)
bbd7d57b 4711 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4712 spin_unlock_irqrestore(&n->list_lock, flags);
4713 }
4714
4715 for (i = 0; i < t.count; i++) {
45edfa58 4716 struct location *l = &t.loc[i];
88a420e4 4717
9c246247 4718 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4719 break;
e374d483 4720 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4721
4722 if (l->addr)
62c70bce 4723 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4724 else
e374d483 4725 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4726
4727 if (l->sum_time != l->min_time) {
e374d483 4728 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4729 l->min_time,
4730 (long)div_u64(l->sum_time, l->count),
4731 l->max_time);
45edfa58 4732 } else
e374d483 4733 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4734 l->min_time);
4735
4736 if (l->min_pid != l->max_pid)
e374d483 4737 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4738 l->min_pid, l->max_pid);
4739 else
e374d483 4740 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4741 l->min_pid);
4742
174596a0
RR
4743 if (num_online_cpus() > 1 &&
4744 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4745 len < PAGE_SIZE - 60)
4746 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4747 " cpus=%*pbl",
4748 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4749
62bc62a8 4750 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4751 len < PAGE_SIZE - 60)
4752 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4753 " nodes=%*pbl",
4754 nodemask_pr_args(&l->nodes));
45edfa58 4755
e374d483 4756 len += sprintf(buf + len, "\n");
88a420e4
CL
4757 }
4758
4759 free_loc_track(&t);
0684e652 4760 bitmap_free(map);
88a420e4 4761 if (!t.count)
e374d483
HH
4762 len += sprintf(buf, "No data\n");
4763 return len;
88a420e4 4764}
6dfd1b65 4765#endif /* CONFIG_SLUB_DEBUG */
88a420e4 4766
a5a84755 4767#ifdef SLUB_RESILIENCY_TEST
c07b8183 4768static void __init resiliency_test(void)
a5a84755
CL
4769{
4770 u8 *p;
cc252eae 4771 int type = KMALLOC_NORMAL;
a5a84755 4772
95a05b42 4773 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4774
f9f58285
FF
4775 pr_err("SLUB resiliency testing\n");
4776 pr_err("-----------------------\n");
4777 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4778
4779 p = kzalloc(16, GFP_KERNEL);
4780 p[16] = 0x12;
f9f58285
FF
4781 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4782 p + 16);
a5a84755 4783
cc252eae 4784 validate_slab_cache(kmalloc_caches[type][4]);
a5a84755
CL
4785
4786 /* Hmmm... The next two are dangerous */
4787 p = kzalloc(32, GFP_KERNEL);
4788 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4789 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4790 p);
4791 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755 4792
cc252eae 4793 validate_slab_cache(kmalloc_caches[type][5]);
a5a84755
CL
4794 p = kzalloc(64, GFP_KERNEL);
4795 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4796 *p = 0x56;
f9f58285
FF
4797 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4798 p);
4799 pr_err("If allocated object is overwritten then not detectable\n\n");
cc252eae 4800 validate_slab_cache(kmalloc_caches[type][6]);
a5a84755 4801
f9f58285 4802 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4803 p = kzalloc(128, GFP_KERNEL);
4804 kfree(p);
4805 *p = 0x78;
f9f58285 4806 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
cc252eae 4807 validate_slab_cache(kmalloc_caches[type][7]);
a5a84755
CL
4808
4809 p = kzalloc(256, GFP_KERNEL);
4810 kfree(p);
4811 p[50] = 0x9a;
f9f58285 4812 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
cc252eae 4813 validate_slab_cache(kmalloc_caches[type][8]);
a5a84755
CL
4814
4815 p = kzalloc(512, GFP_KERNEL);
4816 kfree(p);
4817 p[512] = 0xab;
f9f58285 4818 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
cc252eae 4819 validate_slab_cache(kmalloc_caches[type][9]);
a5a84755
CL
4820}
4821#else
4822#ifdef CONFIG_SYSFS
4823static void resiliency_test(void) {};
4824#endif
6dfd1b65 4825#endif /* SLUB_RESILIENCY_TEST */
a5a84755 4826
ab4d5ed5 4827#ifdef CONFIG_SYSFS
81819f0f 4828enum slab_stat_type {
205ab99d
CL
4829 SL_ALL, /* All slabs */
4830 SL_PARTIAL, /* Only partially allocated slabs */
4831 SL_CPU, /* Only slabs used for cpu caches */
4832 SL_OBJECTS, /* Determine allocated objects not slabs */
4833 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4834};
4835
205ab99d 4836#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4837#define SO_PARTIAL (1 << SL_PARTIAL)
4838#define SO_CPU (1 << SL_CPU)
4839#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4840#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4841
1663f26d
TH
4842#ifdef CONFIG_MEMCG
4843static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4844
4845static int __init setup_slub_memcg_sysfs(char *str)
4846{
4847 int v;
4848
4849 if (get_option(&str, &v) > 0)
4850 memcg_sysfs_enabled = v;
4851
4852 return 1;
4853}
4854
4855__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4856#endif
4857
62e5c4b4
CG
4858static ssize_t show_slab_objects(struct kmem_cache *s,
4859 char *buf, unsigned long flags)
81819f0f
CL
4860{
4861 unsigned long total = 0;
81819f0f
CL
4862 int node;
4863 int x;
4864 unsigned long *nodes;
81819f0f 4865
6396bb22 4866 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
4867 if (!nodes)
4868 return -ENOMEM;
81819f0f 4869
205ab99d
CL
4870 if (flags & SO_CPU) {
4871 int cpu;
81819f0f 4872
205ab99d 4873 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4874 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4875 cpu);
ec3ab083 4876 int node;
49e22585 4877 struct page *page;
dfb4f096 4878
4db0c3c2 4879 page = READ_ONCE(c->page);
ec3ab083
CL
4880 if (!page)
4881 continue;
205ab99d 4882
ec3ab083
CL
4883 node = page_to_nid(page);
4884 if (flags & SO_TOTAL)
4885 x = page->objects;
4886 else if (flags & SO_OBJECTS)
4887 x = page->inuse;
4888 else
4889 x = 1;
49e22585 4890
ec3ab083
CL
4891 total += x;
4892 nodes[node] += x;
4893
a93cf07b 4894 page = slub_percpu_partial_read_once(c);
49e22585 4895 if (page) {
8afb1474
LZ
4896 node = page_to_nid(page);
4897 if (flags & SO_TOTAL)
4898 WARN_ON_ONCE(1);
4899 else if (flags & SO_OBJECTS)
4900 WARN_ON_ONCE(1);
4901 else
4902 x = page->pages;
bc6697d8
ED
4903 total += x;
4904 nodes[node] += x;
49e22585 4905 }
81819f0f
CL
4906 }
4907 }
4908
e4f8e513
QC
4909 /*
4910 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4911 * already held which will conflict with an existing lock order:
4912 *
4913 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4914 *
4915 * We don't really need mem_hotplug_lock (to hold off
4916 * slab_mem_going_offline_callback) here because slab's memory hot
4917 * unplug code doesn't destroy the kmem_cache->node[] data.
4918 */
4919
ab4d5ed5 4920#ifdef CONFIG_SLUB_DEBUG
205ab99d 4921 if (flags & SO_ALL) {
fa45dc25
CL
4922 struct kmem_cache_node *n;
4923
4924 for_each_kmem_cache_node(s, node, n) {
205ab99d 4925
d0e0ac97
CG
4926 if (flags & SO_TOTAL)
4927 x = atomic_long_read(&n->total_objects);
4928 else if (flags & SO_OBJECTS)
4929 x = atomic_long_read(&n->total_objects) -
4930 count_partial(n, count_free);
81819f0f 4931 else
205ab99d 4932 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4933 total += x;
4934 nodes[node] += x;
4935 }
4936
ab4d5ed5
CL
4937 } else
4938#endif
4939 if (flags & SO_PARTIAL) {
fa45dc25 4940 struct kmem_cache_node *n;
81819f0f 4941
fa45dc25 4942 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4943 if (flags & SO_TOTAL)
4944 x = count_partial(n, count_total);
4945 else if (flags & SO_OBJECTS)
4946 x = count_partial(n, count_inuse);
81819f0f 4947 else
205ab99d 4948 x = n->nr_partial;
81819f0f
CL
4949 total += x;
4950 nodes[node] += x;
4951 }
4952 }
81819f0f
CL
4953 x = sprintf(buf, "%lu", total);
4954#ifdef CONFIG_NUMA
fa45dc25 4955 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4956 if (nodes[node])
4957 x += sprintf(buf + x, " N%d=%lu",
4958 node, nodes[node]);
4959#endif
4960 kfree(nodes);
4961 return x + sprintf(buf + x, "\n");
4962}
4963
ab4d5ed5 4964#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4965static int any_slab_objects(struct kmem_cache *s)
4966{
4967 int node;
fa45dc25 4968 struct kmem_cache_node *n;
81819f0f 4969
fa45dc25 4970 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4971 if (atomic_long_read(&n->total_objects))
81819f0f 4972 return 1;
fa45dc25 4973
81819f0f
CL
4974 return 0;
4975}
ab4d5ed5 4976#endif
81819f0f
CL
4977
4978#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4979#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4980
4981struct slab_attribute {
4982 struct attribute attr;
4983 ssize_t (*show)(struct kmem_cache *s, char *buf);
4984 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4985};
4986
4987#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4988 static struct slab_attribute _name##_attr = \
4989 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4990
4991#define SLAB_ATTR(_name) \
4992 static struct slab_attribute _name##_attr = \
ab067e99 4993 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4994
81819f0f
CL
4995static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4996{
44065b2e 4997 return sprintf(buf, "%u\n", s->size);
81819f0f
CL
4998}
4999SLAB_ATTR_RO(slab_size);
5000
5001static ssize_t align_show(struct kmem_cache *s, char *buf)
5002{
3a3791ec 5003 return sprintf(buf, "%u\n", s->align);
81819f0f
CL
5004}
5005SLAB_ATTR_RO(align);
5006
5007static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5008{
1b473f29 5009 return sprintf(buf, "%u\n", s->object_size);
81819f0f
CL
5010}
5011SLAB_ATTR_RO(object_size);
5012
5013static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5014{
19af27af 5015 return sprintf(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
5016}
5017SLAB_ATTR_RO(objs_per_slab);
5018
06b285dc
CL
5019static ssize_t order_store(struct kmem_cache *s,
5020 const char *buf, size_t length)
5021{
19af27af 5022 unsigned int order;
0121c619
CL
5023 int err;
5024
19af27af 5025 err = kstrtouint(buf, 10, &order);
0121c619
CL
5026 if (err)
5027 return err;
06b285dc
CL
5028
5029 if (order > slub_max_order || order < slub_min_order)
5030 return -EINVAL;
5031
5032 calculate_sizes(s, order);
5033 return length;
5034}
5035
81819f0f
CL
5036static ssize_t order_show(struct kmem_cache *s, char *buf)
5037{
19af27af 5038 return sprintf(buf, "%u\n", oo_order(s->oo));
81819f0f 5039}
06b285dc 5040SLAB_ATTR(order);
81819f0f 5041
73d342b1
DR
5042static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5043{
5044 return sprintf(buf, "%lu\n", s->min_partial);
5045}
5046
5047static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5048 size_t length)
5049{
5050 unsigned long min;
5051 int err;
5052
3dbb95f7 5053 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5054 if (err)
5055 return err;
5056
c0bdb232 5057 set_min_partial(s, min);
73d342b1
DR
5058 return length;
5059}
5060SLAB_ATTR(min_partial);
5061
49e22585
CL
5062static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5063{
e6d0e1dc 5064 return sprintf(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
5065}
5066
5067static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5068 size_t length)
5069{
e5d9998f 5070 unsigned int objects;
49e22585
CL
5071 int err;
5072
e5d9998f 5073 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5074 if (err)
5075 return err;
345c905d 5076 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5077 return -EINVAL;
49e22585 5078
e6d0e1dc 5079 slub_set_cpu_partial(s, objects);
49e22585
CL
5080 flush_all(s);
5081 return length;
5082}
5083SLAB_ATTR(cpu_partial);
5084
81819f0f
CL
5085static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5086{
62c70bce
JP
5087 if (!s->ctor)
5088 return 0;
5089 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
5090}
5091SLAB_ATTR_RO(ctor);
5092
81819f0f
CL
5093static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5094{
4307c14f 5095 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5096}
5097SLAB_ATTR_RO(aliases);
5098
81819f0f
CL
5099static ssize_t partial_show(struct kmem_cache *s, char *buf)
5100{
d9acf4b7 5101 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5102}
5103SLAB_ATTR_RO(partial);
5104
5105static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5106{
d9acf4b7 5107 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5108}
5109SLAB_ATTR_RO(cpu_slabs);
5110
5111static ssize_t objects_show(struct kmem_cache *s, char *buf)
5112{
205ab99d 5113 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5114}
5115SLAB_ATTR_RO(objects);
5116
205ab99d
CL
5117static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5118{
5119 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5120}
5121SLAB_ATTR_RO(objects_partial);
5122
49e22585
CL
5123static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5124{
5125 int objects = 0;
5126 int pages = 0;
5127 int cpu;
5128 int len;
5129
5130 for_each_online_cpu(cpu) {
a93cf07b
WY
5131 struct page *page;
5132
5133 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5134
5135 if (page) {
5136 pages += page->pages;
5137 objects += page->pobjects;
5138 }
5139 }
5140
5141 len = sprintf(buf, "%d(%d)", objects, pages);
5142
5143#ifdef CONFIG_SMP
5144 for_each_online_cpu(cpu) {
a93cf07b
WY
5145 struct page *page;
5146
5147 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5148
5149 if (page && len < PAGE_SIZE - 20)
5150 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5151 page->pobjects, page->pages);
5152 }
5153#endif
5154 return len + sprintf(buf + len, "\n");
5155}
5156SLAB_ATTR_RO(slabs_cpu_partial);
5157
a5a84755
CL
5158static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5159{
5160 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5161}
5162
5163static ssize_t reclaim_account_store(struct kmem_cache *s,
5164 const char *buf, size_t length)
5165{
5166 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5167 if (buf[0] == '1')
5168 s->flags |= SLAB_RECLAIM_ACCOUNT;
5169 return length;
5170}
5171SLAB_ATTR(reclaim_account);
5172
5173static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5174{
5175 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5176}
5177SLAB_ATTR_RO(hwcache_align);
5178
5179#ifdef CONFIG_ZONE_DMA
5180static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5181{
5182 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5183}
5184SLAB_ATTR_RO(cache_dma);
5185#endif
5186
8eb8284b
DW
5187static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5188{
7bbdb81e 5189 return sprintf(buf, "%u\n", s->usersize);
8eb8284b
DW
5190}
5191SLAB_ATTR_RO(usersize);
5192
a5a84755
CL
5193static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5194{
5f0d5a3a 5195 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5196}
5197SLAB_ATTR_RO(destroy_by_rcu);
5198
ab4d5ed5 5199#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5200static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5201{
5202 return show_slab_objects(s, buf, SO_ALL);
5203}
5204SLAB_ATTR_RO(slabs);
5205
205ab99d
CL
5206static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5207{
5208 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5209}
5210SLAB_ATTR_RO(total_objects);
5211
81819f0f
CL
5212static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5213{
becfda68 5214 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
5215}
5216
5217static ssize_t sanity_checks_store(struct kmem_cache *s,
5218 const char *buf, size_t length)
5219{
becfda68 5220 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
5221 if (buf[0] == '1') {
5222 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 5223 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 5224 }
81819f0f
CL
5225 return length;
5226}
5227SLAB_ATTR(sanity_checks);
5228
5229static ssize_t trace_show(struct kmem_cache *s, char *buf)
5230{
5231 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5232}
5233
5234static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5235 size_t length)
5236{
c9e16131
CL
5237 /*
5238 * Tracing a merged cache is going to give confusing results
5239 * as well as cause other issues like converting a mergeable
5240 * cache into an umergeable one.
5241 */
5242 if (s->refcount > 1)
5243 return -EINVAL;
5244
81819f0f 5245 s->flags &= ~SLAB_TRACE;
b789ef51
CL
5246 if (buf[0] == '1') {
5247 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5248 s->flags |= SLAB_TRACE;
b789ef51 5249 }
81819f0f
CL
5250 return length;
5251}
5252SLAB_ATTR(trace);
5253
81819f0f
CL
5254static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5255{
5256 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5257}
5258
5259static ssize_t red_zone_store(struct kmem_cache *s,
5260 const char *buf, size_t length)
5261{
5262 if (any_slab_objects(s))
5263 return -EBUSY;
5264
5265 s->flags &= ~SLAB_RED_ZONE;
b789ef51 5266 if (buf[0] == '1') {
81819f0f 5267 s->flags |= SLAB_RED_ZONE;
b789ef51 5268 }
06b285dc 5269 calculate_sizes(s, -1);
81819f0f
CL
5270 return length;
5271}
5272SLAB_ATTR(red_zone);
5273
5274static ssize_t poison_show(struct kmem_cache *s, char *buf)
5275{
5276 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5277}
5278
5279static ssize_t poison_store(struct kmem_cache *s,
5280 const char *buf, size_t length)
5281{
5282 if (any_slab_objects(s))
5283 return -EBUSY;
5284
5285 s->flags &= ~SLAB_POISON;
b789ef51 5286 if (buf[0] == '1') {
81819f0f 5287 s->flags |= SLAB_POISON;
b789ef51 5288 }
06b285dc 5289 calculate_sizes(s, -1);
81819f0f
CL
5290 return length;
5291}
5292SLAB_ATTR(poison);
5293
5294static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5295{
5296 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5297}
5298
5299static ssize_t store_user_store(struct kmem_cache *s,
5300 const char *buf, size_t length)
5301{
5302 if (any_slab_objects(s))
5303 return -EBUSY;
5304
5305 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
5306 if (buf[0] == '1') {
5307 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5308 s->flags |= SLAB_STORE_USER;
b789ef51 5309 }
06b285dc 5310 calculate_sizes(s, -1);
81819f0f
CL
5311 return length;
5312}
5313SLAB_ATTR(store_user);
5314
53e15af0
CL
5315static ssize_t validate_show(struct kmem_cache *s, char *buf)
5316{
5317 return 0;
5318}
5319
5320static ssize_t validate_store(struct kmem_cache *s,
5321 const char *buf, size_t length)
5322{
434e245d
CL
5323 int ret = -EINVAL;
5324
5325 if (buf[0] == '1') {
5326 ret = validate_slab_cache(s);
5327 if (ret >= 0)
5328 ret = length;
5329 }
5330 return ret;
53e15af0
CL
5331}
5332SLAB_ATTR(validate);
a5a84755
CL
5333
5334static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5335{
5336 if (!(s->flags & SLAB_STORE_USER))
5337 return -ENOSYS;
5338 return list_locations(s, buf, TRACK_ALLOC);
5339}
5340SLAB_ATTR_RO(alloc_calls);
5341
5342static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5343{
5344 if (!(s->flags & SLAB_STORE_USER))
5345 return -ENOSYS;
5346 return list_locations(s, buf, TRACK_FREE);
5347}
5348SLAB_ATTR_RO(free_calls);
5349#endif /* CONFIG_SLUB_DEBUG */
5350
5351#ifdef CONFIG_FAILSLAB
5352static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5353{
5354 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5355}
5356
5357static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5358 size_t length)
5359{
c9e16131
CL
5360 if (s->refcount > 1)
5361 return -EINVAL;
5362
a5a84755
CL
5363 s->flags &= ~SLAB_FAILSLAB;
5364 if (buf[0] == '1')
5365 s->flags |= SLAB_FAILSLAB;
5366 return length;
5367}
5368SLAB_ATTR(failslab);
ab4d5ed5 5369#endif
53e15af0 5370
2086d26a
CL
5371static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5372{
5373 return 0;
5374}
5375
5376static ssize_t shrink_store(struct kmem_cache *s,
5377 const char *buf, size_t length)
5378{
832f37f5 5379 if (buf[0] == '1')
04f768a3 5380 kmem_cache_shrink_all(s);
832f37f5 5381 else
2086d26a
CL
5382 return -EINVAL;
5383 return length;
5384}
5385SLAB_ATTR(shrink);
5386
81819f0f 5387#ifdef CONFIG_NUMA
9824601e 5388static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5389{
eb7235eb 5390 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5391}
5392
9824601e 5393static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5394 const char *buf, size_t length)
5395{
eb7235eb 5396 unsigned int ratio;
0121c619
CL
5397 int err;
5398
eb7235eb 5399 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5400 if (err)
5401 return err;
eb7235eb
AD
5402 if (ratio > 100)
5403 return -ERANGE;
0121c619 5404
eb7235eb 5405 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5406
81819f0f
CL
5407 return length;
5408}
9824601e 5409SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5410#endif
5411
8ff12cfc 5412#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5413static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5414{
5415 unsigned long sum = 0;
5416 int cpu;
5417 int len;
6da2ec56 5418 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5419
5420 if (!data)
5421 return -ENOMEM;
5422
5423 for_each_online_cpu(cpu) {
9dfc6e68 5424 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5425
5426 data[cpu] = x;
5427 sum += x;
5428 }
5429
5430 len = sprintf(buf, "%lu", sum);
5431
50ef37b9 5432#ifdef CONFIG_SMP
8ff12cfc
CL
5433 for_each_online_cpu(cpu) {
5434 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5435 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5436 }
50ef37b9 5437#endif
8ff12cfc
CL
5438 kfree(data);
5439 return len + sprintf(buf + len, "\n");
5440}
5441
78eb00cc
DR
5442static void clear_stat(struct kmem_cache *s, enum stat_item si)
5443{
5444 int cpu;
5445
5446 for_each_online_cpu(cpu)
9dfc6e68 5447 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5448}
5449
8ff12cfc
CL
5450#define STAT_ATTR(si, text) \
5451static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5452{ \
5453 return show_stat(s, buf, si); \
5454} \
78eb00cc
DR
5455static ssize_t text##_store(struct kmem_cache *s, \
5456 const char *buf, size_t length) \
5457{ \
5458 if (buf[0] != '0') \
5459 return -EINVAL; \
5460 clear_stat(s, si); \
5461 return length; \
5462} \
5463SLAB_ATTR(text); \
8ff12cfc
CL
5464
5465STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5466STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5467STAT_ATTR(FREE_FASTPATH, free_fastpath);
5468STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5469STAT_ATTR(FREE_FROZEN, free_frozen);
5470STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5471STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5472STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5473STAT_ATTR(ALLOC_SLAB, alloc_slab);
5474STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5475STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5476STAT_ATTR(FREE_SLAB, free_slab);
5477STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5478STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5479STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5480STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5481STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5482STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5483STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5484STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5485STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5486STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5487STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5488STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5489STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5490STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5491#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5492
06428780 5493static struct attribute *slab_attrs[] = {
81819f0f
CL
5494 &slab_size_attr.attr,
5495 &object_size_attr.attr,
5496 &objs_per_slab_attr.attr,
5497 &order_attr.attr,
73d342b1 5498 &min_partial_attr.attr,
49e22585 5499 &cpu_partial_attr.attr,
81819f0f 5500 &objects_attr.attr,
205ab99d 5501 &objects_partial_attr.attr,
81819f0f
CL
5502 &partial_attr.attr,
5503 &cpu_slabs_attr.attr,
5504 &ctor_attr.attr,
81819f0f
CL
5505 &aliases_attr.attr,
5506 &align_attr.attr,
81819f0f
CL
5507 &hwcache_align_attr.attr,
5508 &reclaim_account_attr.attr,
5509 &destroy_by_rcu_attr.attr,
a5a84755 5510 &shrink_attr.attr,
49e22585 5511 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5512#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5513 &total_objects_attr.attr,
5514 &slabs_attr.attr,
5515 &sanity_checks_attr.attr,
5516 &trace_attr.attr,
81819f0f
CL
5517 &red_zone_attr.attr,
5518 &poison_attr.attr,
5519 &store_user_attr.attr,
53e15af0 5520 &validate_attr.attr,
88a420e4
CL
5521 &alloc_calls_attr.attr,
5522 &free_calls_attr.attr,
ab4d5ed5 5523#endif
81819f0f
CL
5524#ifdef CONFIG_ZONE_DMA
5525 &cache_dma_attr.attr,
5526#endif
5527#ifdef CONFIG_NUMA
9824601e 5528 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5529#endif
5530#ifdef CONFIG_SLUB_STATS
5531 &alloc_fastpath_attr.attr,
5532 &alloc_slowpath_attr.attr,
5533 &free_fastpath_attr.attr,
5534 &free_slowpath_attr.attr,
5535 &free_frozen_attr.attr,
5536 &free_add_partial_attr.attr,
5537 &free_remove_partial_attr.attr,
5538 &alloc_from_partial_attr.attr,
5539 &alloc_slab_attr.attr,
5540 &alloc_refill_attr.attr,
e36a2652 5541 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5542 &free_slab_attr.attr,
5543 &cpuslab_flush_attr.attr,
5544 &deactivate_full_attr.attr,
5545 &deactivate_empty_attr.attr,
5546 &deactivate_to_head_attr.attr,
5547 &deactivate_to_tail_attr.attr,
5548 &deactivate_remote_frees_attr.attr,
03e404af 5549 &deactivate_bypass_attr.attr,
65c3376a 5550 &order_fallback_attr.attr,
b789ef51
CL
5551 &cmpxchg_double_fail_attr.attr,
5552 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5553 &cpu_partial_alloc_attr.attr,
5554 &cpu_partial_free_attr.attr,
8028dcea
AS
5555 &cpu_partial_node_attr.attr,
5556 &cpu_partial_drain_attr.attr,
81819f0f 5557#endif
4c13dd3b
DM
5558#ifdef CONFIG_FAILSLAB
5559 &failslab_attr.attr,
5560#endif
8eb8284b 5561 &usersize_attr.attr,
4c13dd3b 5562
81819f0f
CL
5563 NULL
5564};
5565
1fdaaa23 5566static const struct attribute_group slab_attr_group = {
81819f0f
CL
5567 .attrs = slab_attrs,
5568};
5569
5570static ssize_t slab_attr_show(struct kobject *kobj,
5571 struct attribute *attr,
5572 char *buf)
5573{
5574 struct slab_attribute *attribute;
5575 struct kmem_cache *s;
5576 int err;
5577
5578 attribute = to_slab_attr(attr);
5579 s = to_slab(kobj);
5580
5581 if (!attribute->show)
5582 return -EIO;
5583
5584 err = attribute->show(s, buf);
5585
5586 return err;
5587}
5588
5589static ssize_t slab_attr_store(struct kobject *kobj,
5590 struct attribute *attr,
5591 const char *buf, size_t len)
5592{
5593 struct slab_attribute *attribute;
5594 struct kmem_cache *s;
5595 int err;
5596
5597 attribute = to_slab_attr(attr);
5598 s = to_slab(kobj);
5599
5600 if (!attribute->store)
5601 return -EIO;
5602
5603 err = attribute->store(s, buf, len);
127424c8 5604#ifdef CONFIG_MEMCG
107dab5c 5605 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5606 struct kmem_cache *c;
81819f0f 5607
107dab5c
GC
5608 mutex_lock(&slab_mutex);
5609 if (s->max_attr_size < len)
5610 s->max_attr_size = len;
5611
ebe945c2
GC
5612 /*
5613 * This is a best effort propagation, so this function's return
5614 * value will be determined by the parent cache only. This is
5615 * basically because not all attributes will have a well
5616 * defined semantics for rollbacks - most of the actions will
5617 * have permanent effects.
5618 *
5619 * Returning the error value of any of the children that fail
5620 * is not 100 % defined, in the sense that users seeing the
5621 * error code won't be able to know anything about the state of
5622 * the cache.
5623 *
5624 * Only returning the error code for the parent cache at least
5625 * has well defined semantics. The cache being written to
5626 * directly either failed or succeeded, in which case we loop
5627 * through the descendants with best-effort propagation.
5628 */
426589f5
VD
5629 for_each_memcg_cache(c, s)
5630 attribute->store(c, buf, len);
107dab5c
GC
5631 mutex_unlock(&slab_mutex);
5632 }
5633#endif
81819f0f
CL
5634 return err;
5635}
5636
107dab5c
GC
5637static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5638{
127424c8 5639#ifdef CONFIG_MEMCG
107dab5c
GC
5640 int i;
5641 char *buffer = NULL;
93030d83 5642 struct kmem_cache *root_cache;
107dab5c 5643
93030d83 5644 if (is_root_cache(s))
107dab5c
GC
5645 return;
5646
f7ce3190 5647 root_cache = s->memcg_params.root_cache;
93030d83 5648
107dab5c
GC
5649 /*
5650 * This mean this cache had no attribute written. Therefore, no point
5651 * in copying default values around
5652 */
93030d83 5653 if (!root_cache->max_attr_size)
107dab5c
GC
5654 return;
5655
5656 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5657 char mbuf[64];
5658 char *buf;
5659 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
478fe303 5660 ssize_t len;
107dab5c
GC
5661
5662 if (!attr || !attr->store || !attr->show)
5663 continue;
5664
5665 /*
5666 * It is really bad that we have to allocate here, so we will
5667 * do it only as a fallback. If we actually allocate, though,
5668 * we can just use the allocated buffer until the end.
5669 *
5670 * Most of the slub attributes will tend to be very small in
5671 * size, but sysfs allows buffers up to a page, so they can
5672 * theoretically happen.
5673 */
5674 if (buffer)
5675 buf = buffer;
62706218
QC
5676 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf) &&
5677 !IS_ENABLED(CONFIG_SLUB_STATS))
107dab5c
GC
5678 buf = mbuf;
5679 else {
5680 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5681 if (WARN_ON(!buffer))
5682 continue;
5683 buf = buffer;
5684 }
5685
478fe303
TG
5686 len = attr->show(root_cache, buf);
5687 if (len > 0)
5688 attr->store(s, buf, len);
107dab5c
GC
5689 }
5690
5691 if (buffer)
5692 free_page((unsigned long)buffer);
6dfd1b65 5693#endif /* CONFIG_MEMCG */
107dab5c
GC
5694}
5695
41a21285
CL
5696static void kmem_cache_release(struct kobject *k)
5697{
5698 slab_kmem_cache_release(to_slab(k));
5699}
5700
52cf25d0 5701static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5702 .show = slab_attr_show,
5703 .store = slab_attr_store,
5704};
5705
5706static struct kobj_type slab_ktype = {
5707 .sysfs_ops = &slab_sysfs_ops,
41a21285 5708 .release = kmem_cache_release,
81819f0f
CL
5709};
5710
5711static int uevent_filter(struct kset *kset, struct kobject *kobj)
5712{
5713 struct kobj_type *ktype = get_ktype(kobj);
5714
5715 if (ktype == &slab_ktype)
5716 return 1;
5717 return 0;
5718}
5719
9cd43611 5720static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5721 .filter = uevent_filter,
5722};
5723
27c3a314 5724static struct kset *slab_kset;
81819f0f 5725
9a41707b
VD
5726static inline struct kset *cache_kset(struct kmem_cache *s)
5727{
127424c8 5728#ifdef CONFIG_MEMCG
9a41707b 5729 if (!is_root_cache(s))
f7ce3190 5730 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5731#endif
5732 return slab_kset;
5733}
5734
81819f0f
CL
5735#define ID_STR_LENGTH 64
5736
5737/* Create a unique string id for a slab cache:
6446faa2
CL
5738 *
5739 * Format :[flags-]size
81819f0f
CL
5740 */
5741static char *create_unique_id(struct kmem_cache *s)
5742{
5743 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5744 char *p = name;
5745
5746 BUG_ON(!name);
5747
5748 *p++ = ':';
5749 /*
5750 * First flags affecting slabcache operations. We will only
5751 * get here for aliasable slabs so we do not need to support
5752 * too many flags. The flags here must cover all flags that
5753 * are matched during merging to guarantee that the id is
5754 * unique.
5755 */
5756 if (s->flags & SLAB_CACHE_DMA)
5757 *p++ = 'd';
6d6ea1e9
NB
5758 if (s->flags & SLAB_CACHE_DMA32)
5759 *p++ = 'D';
81819f0f
CL
5760 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5761 *p++ = 'a';
becfda68 5762 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5763 *p++ = 'F';
230e9fc2
VD
5764 if (s->flags & SLAB_ACCOUNT)
5765 *p++ = 'A';
81819f0f
CL
5766 if (p != name + 1)
5767 *p++ = '-';
44065b2e 5768 p += sprintf(p, "%07u", s->size);
2633d7a0 5769
81819f0f
CL
5770 BUG_ON(p > name + ID_STR_LENGTH - 1);
5771 return name;
5772}
5773
3b7b3140
TH
5774static void sysfs_slab_remove_workfn(struct work_struct *work)
5775{
5776 struct kmem_cache *s =
5777 container_of(work, struct kmem_cache, kobj_remove_work);
5778
5779 if (!s->kobj.state_in_sysfs)
5780 /*
5781 * For a memcg cache, this may be called during
5782 * deactivation and again on shutdown. Remove only once.
5783 * A cache is never shut down before deactivation is
5784 * complete, so no need to worry about synchronization.
5785 */
f6ba4880 5786 goto out;
3b7b3140
TH
5787
5788#ifdef CONFIG_MEMCG
5789 kset_unregister(s->memcg_kset);
5790#endif
5791 kobject_uevent(&s->kobj, KOBJ_REMOVE);
f6ba4880 5792out:
3b7b3140
TH
5793 kobject_put(&s->kobj);
5794}
5795
81819f0f
CL
5796static int sysfs_slab_add(struct kmem_cache *s)
5797{
5798 int err;
5799 const char *name;
1663f26d 5800 struct kset *kset = cache_kset(s);
45530c44 5801 int unmergeable = slab_unmergeable(s);
81819f0f 5802
3b7b3140
TH
5803 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5804
1663f26d
TH
5805 if (!kset) {
5806 kobject_init(&s->kobj, &slab_ktype);
5807 return 0;
5808 }
5809
11066386
MC
5810 if (!unmergeable && disable_higher_order_debug &&
5811 (slub_debug & DEBUG_METADATA_FLAGS))
5812 unmergeable = 1;
5813
81819f0f
CL
5814 if (unmergeable) {
5815 /*
5816 * Slabcache can never be merged so we can use the name proper.
5817 * This is typically the case for debug situations. In that
5818 * case we can catch duplicate names easily.
5819 */
27c3a314 5820 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5821 name = s->name;
5822 } else {
5823 /*
5824 * Create a unique name for the slab as a target
5825 * for the symlinks.
5826 */
5827 name = create_unique_id(s);
5828 }
5829
1663f26d 5830 s->kobj.kset = kset;
26e4f205 5831 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
698bde82 5832 if (err)
80da026a 5833 goto out;
81819f0f
CL
5834
5835 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5836 if (err)
5837 goto out_del_kobj;
9a41707b 5838
127424c8 5839#ifdef CONFIG_MEMCG
1663f26d 5840 if (is_root_cache(s) && memcg_sysfs_enabled) {
9a41707b
VD
5841 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5842 if (!s->memcg_kset) {
54b6a731
DJ
5843 err = -ENOMEM;
5844 goto out_del_kobj;
9a41707b
VD
5845 }
5846 }
5847#endif
5848
81819f0f
CL
5849 kobject_uevent(&s->kobj, KOBJ_ADD);
5850 if (!unmergeable) {
5851 /* Setup first alias */
5852 sysfs_slab_alias(s, s->name);
81819f0f 5853 }
54b6a731
DJ
5854out:
5855 if (!unmergeable)
5856 kfree(name);
5857 return err;
5858out_del_kobj:
5859 kobject_del(&s->kobj);
54b6a731 5860 goto out;
81819f0f
CL
5861}
5862
bf5eb3de 5863static void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5864{
97d06609 5865 if (slab_state < FULL)
2bce6485
CL
5866 /*
5867 * Sysfs has not been setup yet so no need to remove the
5868 * cache from sysfs.
5869 */
5870 return;
5871
3b7b3140
TH
5872 kobject_get(&s->kobj);
5873 schedule_work(&s->kobj_remove_work);
bf5eb3de
TH
5874}
5875
d50d82fa
MP
5876void sysfs_slab_unlink(struct kmem_cache *s)
5877{
5878 if (slab_state >= FULL)
5879 kobject_del(&s->kobj);
5880}
5881
bf5eb3de
TH
5882void sysfs_slab_release(struct kmem_cache *s)
5883{
5884 if (slab_state >= FULL)
5885 kobject_put(&s->kobj);
81819f0f
CL
5886}
5887
5888/*
5889 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5890 * available lest we lose that information.
81819f0f
CL
5891 */
5892struct saved_alias {
5893 struct kmem_cache *s;
5894 const char *name;
5895 struct saved_alias *next;
5896};
5897
5af328a5 5898static struct saved_alias *alias_list;
81819f0f
CL
5899
5900static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5901{
5902 struct saved_alias *al;
5903
97d06609 5904 if (slab_state == FULL) {
81819f0f
CL
5905 /*
5906 * If we have a leftover link then remove it.
5907 */
27c3a314
GKH
5908 sysfs_remove_link(&slab_kset->kobj, name);
5909 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5910 }
5911
5912 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5913 if (!al)
5914 return -ENOMEM;
5915
5916 al->s = s;
5917 al->name = name;
5918 al->next = alias_list;
5919 alias_list = al;
5920 return 0;
5921}
5922
5923static int __init slab_sysfs_init(void)
5924{
5b95a4ac 5925 struct kmem_cache *s;
81819f0f
CL
5926 int err;
5927
18004c5d 5928 mutex_lock(&slab_mutex);
2bce6485 5929
0ff21e46 5930 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5931 if (!slab_kset) {
18004c5d 5932 mutex_unlock(&slab_mutex);
f9f58285 5933 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5934 return -ENOSYS;
5935 }
5936
97d06609 5937 slab_state = FULL;
26a7bd03 5938
5b95a4ac 5939 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5940 err = sysfs_slab_add(s);
5d540fb7 5941 if (err)
f9f58285
FF
5942 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5943 s->name);
26a7bd03 5944 }
81819f0f
CL
5945
5946 while (alias_list) {
5947 struct saved_alias *al = alias_list;
5948
5949 alias_list = alias_list->next;
5950 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5951 if (err)
f9f58285
FF
5952 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5953 al->name);
81819f0f
CL
5954 kfree(al);
5955 }
5956
18004c5d 5957 mutex_unlock(&slab_mutex);
81819f0f
CL
5958 resiliency_test();
5959 return 0;
5960}
5961
5962__initcall(slab_sysfs_init);
ab4d5ed5 5963#endif /* CONFIG_SYSFS */
57ed3eda
PE
5964
5965/*
5966 * The /proc/slabinfo ABI
5967 */
5b365771 5968#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5969void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5970{
57ed3eda 5971 unsigned long nr_slabs = 0;
205ab99d
CL
5972 unsigned long nr_objs = 0;
5973 unsigned long nr_free = 0;
57ed3eda 5974 int node;
fa45dc25 5975 struct kmem_cache_node *n;
57ed3eda 5976
fa45dc25 5977 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5978 nr_slabs += node_nr_slabs(n);
5979 nr_objs += node_nr_objs(n);
205ab99d 5980 nr_free += count_partial(n, count_free);
57ed3eda
PE
5981 }
5982
0d7561c6
GC
5983 sinfo->active_objs = nr_objs - nr_free;
5984 sinfo->num_objs = nr_objs;
5985 sinfo->active_slabs = nr_slabs;
5986 sinfo->num_slabs = nr_slabs;
5987 sinfo->objects_per_slab = oo_objects(s->oo);
5988 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5989}
5990
0d7561c6 5991void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5992{
7b3c3a50
AD
5993}
5994
b7454ad3
GC
5995ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5996 size_t count, loff_t *ppos)
7b3c3a50 5997{
b7454ad3 5998 return -EIO;
7b3c3a50 5999}
5b365771 6000#endif /* CONFIG_SLUB_DEBUG */