]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/slub.c
mm/page_alloc: remove nr_free_pagecache_pages()
[mirror_ubuntu-jammy-kernel.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
881db7fb
CL
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
2482ddec 36#include <linux/random.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 54 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 55 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
881db7fb
CL
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
65 * page's freelist.
81819f0f
CL
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
81819f0f
CL
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
672bba3a
CL
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 88 * freed then the slab will show up again on the partial lists.
672bba3a
CL
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
81819f0f
CL
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
aed68148 96 * page->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f 111 *
aed68148 112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
ca0cab65
VB
117#ifdef CONFIG_SLUB_DEBUG
118#ifdef CONFIG_SLUB_DEBUG_ON
119DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
120#else
121DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
122#endif
123#endif
124
59052e89
VB
125static inline bool kmem_cache_debug(struct kmem_cache *s)
126{
127 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 128}
5577bd8a 129
117d54df 130void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 131{
59052e89 132 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
133 p += s->red_left_pad;
134
135 return p;
136}
137
345c905d
JK
138static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
139{
140#ifdef CONFIG_SLUB_CPU_PARTIAL
141 return !kmem_cache_debug(s);
142#else
143 return false;
144#endif
145}
146
81819f0f
CL
147/*
148 * Issues still to be resolved:
149 *
81819f0f
CL
150 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
151 *
81819f0f
CL
152 * - Variable sizing of the per node arrays
153 */
154
155/* Enable to test recovery from slab corruption on boot */
156#undef SLUB_RESILIENCY_TEST
157
b789ef51
CL
158/* Enable to log cmpxchg failures */
159#undef SLUB_DEBUG_CMPXCHG
160
2086d26a
CL
161/*
162 * Mininum number of partial slabs. These will be left on the partial
163 * lists even if they are empty. kmem_cache_shrink may reclaim them.
164 */
76be8950 165#define MIN_PARTIAL 5
e95eed57 166
2086d26a
CL
167/*
168 * Maximum number of desirable partial slabs.
169 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 170 * sort the partial list by the number of objects in use.
2086d26a
CL
171 */
172#define MAX_PARTIAL 10
173
becfda68 174#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 175 SLAB_POISON | SLAB_STORE_USER)
672bba3a 176
149daaf3
LA
177/*
178 * These debug flags cannot use CMPXCHG because there might be consistency
179 * issues when checking or reading debug information
180 */
181#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
182 SLAB_TRACE)
183
184
fa5ec8a1 185/*
3de47213
DR
186 * Debugging flags that require metadata to be stored in the slab. These get
187 * disabled when slub_debug=O is used and a cache's min order increases with
188 * metadata.
fa5ec8a1 189 */
3de47213 190#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 191
210b5c06
CG
192#define OO_SHIFT 16
193#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 194#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 195
81819f0f 196/* Internal SLUB flags */
d50112ed 197/* Poison object */
4fd0b46e 198#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 199/* Use cmpxchg_double */
4fd0b46e 200#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 201
02cbc874
CL
202/*
203 * Tracking user of a slab.
204 */
d6543e39 205#define TRACK_ADDRS_COUNT 16
02cbc874 206struct track {
ce71e27c 207 unsigned long addr; /* Called from address */
d6543e39
BG
208#ifdef CONFIG_STACKTRACE
209 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
210#endif
02cbc874
CL
211 int cpu; /* Was running on cpu */
212 int pid; /* Pid context */
213 unsigned long when; /* When did the operation occur */
214};
215
216enum track_item { TRACK_ALLOC, TRACK_FREE };
217
ab4d5ed5 218#ifdef CONFIG_SYSFS
81819f0f
CL
219static int sysfs_slab_add(struct kmem_cache *);
220static int sysfs_slab_alias(struct kmem_cache *, const char *);
81819f0f 221#else
0c710013
CL
222static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
81819f0f
CL
225#endif
226
4fdccdfb 227static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
228{
229#ifdef CONFIG_SLUB_STATS
88da03a6
CL
230 /*
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
233 */
234 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
235#endif
236}
237
81819f0f
CL
238/********************************************************************
239 * Core slab cache functions
240 *******************************************************************/
241
2482ddec
KC
242/*
243 * Returns freelist pointer (ptr). With hardening, this is obfuscated
244 * with an XOR of the address where the pointer is held and a per-cache
245 * random number.
246 */
247static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 unsigned long ptr_addr)
249{
250#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9
AK
251 /*
252 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
253 * Normally, this doesn't cause any issues, as both set_freepointer()
254 * and get_freepointer() are called with a pointer with the same tag.
255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 * example, when __free_slub() iterates over objects in a cache, it
257 * passes untagged pointers to check_object(). check_object() in turns
258 * calls get_freepointer() with an untagged pointer, which causes the
259 * freepointer to be restored incorrectly.
260 */
261 return (void *)((unsigned long)ptr ^ s->random ^
1ad53d9f 262 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
263#else
264 return ptr;
265#endif
266}
267
268/* Returns the freelist pointer recorded at location ptr_addr. */
269static inline void *freelist_dereference(const struct kmem_cache *s,
270 void *ptr_addr)
271{
272 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
273 (unsigned long)ptr_addr);
274}
275
7656c72b
CL
276static inline void *get_freepointer(struct kmem_cache *s, void *object)
277{
2482ddec 278 return freelist_dereference(s, object + s->offset);
7656c72b
CL
279}
280
0ad9500e
ED
281static void prefetch_freepointer(const struct kmem_cache *s, void *object)
282{
0882ff91 283 prefetch(object + s->offset);
0ad9500e
ED
284}
285
1393d9a1
CL
286static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
287{
2482ddec 288 unsigned long freepointer_addr;
1393d9a1
CL
289 void *p;
290
8e57f8ac 291 if (!debug_pagealloc_enabled_static())
922d566c
JK
292 return get_freepointer(s, object);
293
2482ddec 294 freepointer_addr = (unsigned long)object + s->offset;
fe557319 295 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
2482ddec 296 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
297}
298
7656c72b
CL
299static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
300{
2482ddec
KC
301 unsigned long freeptr_addr = (unsigned long)object + s->offset;
302
ce6fa91b
AP
303#ifdef CONFIG_SLAB_FREELIST_HARDENED
304 BUG_ON(object == fp); /* naive detection of double free or corruption */
305#endif
306
2482ddec 307 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
308}
309
310/* Loop over all objects in a slab */
224a88be 311#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
312 for (__p = fixup_red_left(__s, __addr); \
313 __p < (__addr) + (__objects) * (__s)->size; \
314 __p += (__s)->size)
7656c72b 315
9736d2a9 316static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 317{
9736d2a9 318 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
319}
320
19af27af 321static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 322 unsigned int size)
834f3d11
CL
323{
324 struct kmem_cache_order_objects x = {
9736d2a9 325 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
326 };
327
328 return x;
329}
330
19af27af 331static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 332{
210b5c06 333 return x.x >> OO_SHIFT;
834f3d11
CL
334}
335
19af27af 336static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 337{
210b5c06 338 return x.x & OO_MASK;
834f3d11
CL
339}
340
881db7fb
CL
341/*
342 * Per slab locking using the pagelock
343 */
344static __always_inline void slab_lock(struct page *page)
345{
48c935ad 346 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
347 bit_spin_lock(PG_locked, &page->flags);
348}
349
350static __always_inline void slab_unlock(struct page *page)
351{
48c935ad 352 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
353 __bit_spin_unlock(PG_locked, &page->flags);
354}
355
1d07171c
CL
356/* Interrupts must be disabled (for the fallback code to work right) */
357static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
358 void *freelist_old, unsigned long counters_old,
359 void *freelist_new, unsigned long counters_new,
360 const char *n)
361{
362 VM_BUG_ON(!irqs_disabled());
2565409f
HC
363#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
364 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 365 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 366 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
367 freelist_old, counters_old,
368 freelist_new, counters_new))
6f6528a1 369 return true;
1d07171c
CL
370 } else
371#endif
372 {
373 slab_lock(page);
d0e0ac97
CG
374 if (page->freelist == freelist_old &&
375 page->counters == counters_old) {
1d07171c 376 page->freelist = freelist_new;
7d27a04b 377 page->counters = counters_new;
1d07171c 378 slab_unlock(page);
6f6528a1 379 return true;
1d07171c
CL
380 }
381 slab_unlock(page);
382 }
383
384 cpu_relax();
385 stat(s, CMPXCHG_DOUBLE_FAIL);
386
387#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 388 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
389#endif
390
6f6528a1 391 return false;
1d07171c
CL
392}
393
b789ef51
CL
394static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
395 void *freelist_old, unsigned long counters_old,
396 void *freelist_new, unsigned long counters_new,
397 const char *n)
398{
2565409f
HC
399#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
400 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 401 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 402 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
403 freelist_old, counters_old,
404 freelist_new, counters_new))
6f6528a1 405 return true;
b789ef51
CL
406 } else
407#endif
408 {
1d07171c
CL
409 unsigned long flags;
410
411 local_irq_save(flags);
881db7fb 412 slab_lock(page);
d0e0ac97
CG
413 if (page->freelist == freelist_old &&
414 page->counters == counters_old) {
b789ef51 415 page->freelist = freelist_new;
7d27a04b 416 page->counters = counters_new;
881db7fb 417 slab_unlock(page);
1d07171c 418 local_irq_restore(flags);
6f6528a1 419 return true;
b789ef51 420 }
881db7fb 421 slab_unlock(page);
1d07171c 422 local_irq_restore(flags);
b789ef51
CL
423 }
424
425 cpu_relax();
426 stat(s, CMPXCHG_DOUBLE_FAIL);
427
428#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 429 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
430#endif
431
6f6528a1 432 return false;
b789ef51
CL
433}
434
41ecc55b 435#ifdef CONFIG_SLUB_DEBUG
90e9f6a6
YZ
436static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
437static DEFINE_SPINLOCK(object_map_lock);
438
5f80b13a
CL
439/*
440 * Determine a map of object in use on a page.
441 *
881db7fb 442 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
443 * not vanish from under us.
444 */
90e9f6a6 445static unsigned long *get_map(struct kmem_cache *s, struct page *page)
31364c2e 446 __acquires(&object_map_lock)
5f80b13a
CL
447{
448 void *p;
449 void *addr = page_address(page);
450
90e9f6a6
YZ
451 VM_BUG_ON(!irqs_disabled());
452
453 spin_lock(&object_map_lock);
454
455 bitmap_zero(object_map, page->objects);
456
5f80b13a 457 for (p = page->freelist; p; p = get_freepointer(s, p))
4138fdfc 458 set_bit(__obj_to_index(s, addr, p), object_map);
90e9f6a6
YZ
459
460 return object_map;
461}
462
81aba9e0 463static void put_map(unsigned long *map) __releases(&object_map_lock)
90e9f6a6
YZ
464{
465 VM_BUG_ON(map != object_map);
90e9f6a6 466 spin_unlock(&object_map_lock);
5f80b13a
CL
467}
468
870b1fbb 469static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
470{
471 if (s->flags & SLAB_RED_ZONE)
472 return s->size - s->red_left_pad;
473
474 return s->size;
475}
476
477static inline void *restore_red_left(struct kmem_cache *s, void *p)
478{
479 if (s->flags & SLAB_RED_ZONE)
480 p -= s->red_left_pad;
481
482 return p;
483}
484
41ecc55b
CL
485/*
486 * Debug settings:
487 */
89d3c87e 488#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 489static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 490#else
d50112ed 491static slab_flags_t slub_debug;
f0630fff 492#endif
41ecc55b 493
e17f1dfb 494static char *slub_debug_string;
fa5ec8a1 495static int disable_higher_order_debug;
41ecc55b 496
a79316c6
AR
497/*
498 * slub is about to manipulate internal object metadata. This memory lies
499 * outside the range of the allocated object, so accessing it would normally
500 * be reported by kasan as a bounds error. metadata_access_enable() is used
501 * to tell kasan that these accesses are OK.
502 */
503static inline void metadata_access_enable(void)
504{
505 kasan_disable_current();
506}
507
508static inline void metadata_access_disable(void)
509{
510 kasan_enable_current();
511}
512
81819f0f
CL
513/*
514 * Object debugging
515 */
d86bd1be
JK
516
517/* Verify that a pointer has an address that is valid within a slab page */
518static inline int check_valid_pointer(struct kmem_cache *s,
519 struct page *page, void *object)
520{
521 void *base;
522
523 if (!object)
524 return 1;
525
526 base = page_address(page);
338cfaad 527 object = kasan_reset_tag(object);
d86bd1be
JK
528 object = restore_red_left(s, object);
529 if (object < base || object >= base + page->objects * s->size ||
530 (object - base) % s->size) {
531 return 0;
532 }
533
534 return 1;
535}
536
aa2efd5e
DT
537static void print_section(char *level, char *text, u8 *addr,
538 unsigned int length)
81819f0f 539{
a79316c6 540 metadata_access_enable();
aa2efd5e 541 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 542 length, 1);
a79316c6 543 metadata_access_disable();
81819f0f
CL
544}
545
cbfc35a4
WL
546/*
547 * See comment in calculate_sizes().
548 */
549static inline bool freeptr_outside_object(struct kmem_cache *s)
550{
551 return s->offset >= s->inuse;
552}
553
554/*
555 * Return offset of the end of info block which is inuse + free pointer if
556 * not overlapping with object.
557 */
558static inline unsigned int get_info_end(struct kmem_cache *s)
559{
560 if (freeptr_outside_object(s))
561 return s->inuse + sizeof(void *);
562 else
563 return s->inuse;
564}
565
81819f0f
CL
566static struct track *get_track(struct kmem_cache *s, void *object,
567 enum track_item alloc)
568{
569 struct track *p;
570
cbfc35a4 571 p = object + get_info_end(s);
81819f0f
CL
572
573 return p + alloc;
574}
575
576static void set_track(struct kmem_cache *s, void *object,
ce71e27c 577 enum track_item alloc, unsigned long addr)
81819f0f 578{
1a00df4a 579 struct track *p = get_track(s, object, alloc);
81819f0f 580
81819f0f 581 if (addr) {
d6543e39 582#ifdef CONFIG_STACKTRACE
79716799 583 unsigned int nr_entries;
d6543e39 584
a79316c6 585 metadata_access_enable();
79716799 586 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
a79316c6 587 metadata_access_disable();
d6543e39 588
79716799
TG
589 if (nr_entries < TRACK_ADDRS_COUNT)
590 p->addrs[nr_entries] = 0;
d6543e39 591#endif
81819f0f
CL
592 p->addr = addr;
593 p->cpu = smp_processor_id();
88e4ccf2 594 p->pid = current->pid;
81819f0f 595 p->when = jiffies;
b8ca7ff7 596 } else {
81819f0f 597 memset(p, 0, sizeof(struct track));
b8ca7ff7 598 }
81819f0f
CL
599}
600
81819f0f
CL
601static void init_tracking(struct kmem_cache *s, void *object)
602{
24922684
CL
603 if (!(s->flags & SLAB_STORE_USER))
604 return;
605
ce71e27c
EGM
606 set_track(s, object, TRACK_FREE, 0UL);
607 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
608}
609
86609d33 610static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
611{
612 if (!t->addr)
613 return;
614
f9f58285 615 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 616 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
d6543e39
BG
617#ifdef CONFIG_STACKTRACE
618 {
619 int i;
620 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
621 if (t->addrs[i])
f9f58285 622 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
623 else
624 break;
625 }
626#endif
24922684
CL
627}
628
e42f174e 629void print_tracking(struct kmem_cache *s, void *object)
24922684 630{
86609d33 631 unsigned long pr_time = jiffies;
24922684
CL
632 if (!(s->flags & SLAB_STORE_USER))
633 return;
634
86609d33
CP
635 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
636 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
637}
638
639static void print_page_info(struct page *page)
640{
f9f58285 641 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 642 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
643
644}
645
646static void slab_bug(struct kmem_cache *s, char *fmt, ...)
647{
ecc42fbe 648 struct va_format vaf;
24922684 649 va_list args;
24922684
CL
650
651 va_start(args, fmt);
ecc42fbe
FF
652 vaf.fmt = fmt;
653 vaf.va = &args;
f9f58285 654 pr_err("=============================================================================\n");
ecc42fbe 655 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 656 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 657
373d4d09 658 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 659 va_end(args);
81819f0f
CL
660}
661
24922684
CL
662static void slab_fix(struct kmem_cache *s, char *fmt, ...)
663{
ecc42fbe 664 struct va_format vaf;
24922684 665 va_list args;
24922684
CL
666
667 va_start(args, fmt);
ecc42fbe
FF
668 vaf.fmt = fmt;
669 vaf.va = &args;
670 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 671 va_end(args);
24922684
CL
672}
673
52f23478
DZ
674static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
675 void *freelist, void *nextfree)
676{
677 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
678 !check_valid_pointer(s, page, nextfree)) {
679 object_err(s, page, freelist, "Freechain corrupt");
680 freelist = NULL;
681 slab_fix(s, "Isolate corrupted freechain");
682 return true;
683 }
684
685 return false;
686}
687
24922684 688static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
689{
690 unsigned int off; /* Offset of last byte */
a973e9dd 691 u8 *addr = page_address(page);
24922684
CL
692
693 print_tracking(s, p);
694
695 print_page_info(page);
696
f9f58285
FF
697 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
698 p, p - addr, get_freepointer(s, p));
24922684 699
d86bd1be 700 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
701 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
702 s->red_left_pad);
d86bd1be 703 else if (p > addr + 16)
aa2efd5e 704 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 705
aa2efd5e 706 print_section(KERN_ERR, "Object ", p,
1b473f29 707 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 708 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 709 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 710 s->inuse - s->object_size);
81819f0f 711
cbfc35a4 712 off = get_info_end(s);
81819f0f 713
24922684 714 if (s->flags & SLAB_STORE_USER)
81819f0f 715 off += 2 * sizeof(struct track);
81819f0f 716
80a9201a
AP
717 off += kasan_metadata_size(s);
718
d86bd1be 719 if (off != size_from_object(s))
81819f0f 720 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
721 print_section(KERN_ERR, "Padding ", p + off,
722 size_from_object(s) - off);
24922684
CL
723
724 dump_stack();
81819f0f
CL
725}
726
75c66def 727void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
728 u8 *object, char *reason)
729{
3dc50637 730 slab_bug(s, "%s", reason);
24922684 731 print_trailer(s, page, object);
81819f0f
CL
732}
733
a38965bf 734static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 735 const char *fmt, ...)
81819f0f
CL
736{
737 va_list args;
738 char buf[100];
739
24922684
CL
740 va_start(args, fmt);
741 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 742 va_end(args);
3dc50637 743 slab_bug(s, "%s", buf);
24922684 744 print_page_info(page);
81819f0f
CL
745 dump_stack();
746}
747
f7cb1933 748static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
749{
750 u8 *p = object;
751
d86bd1be
JK
752 if (s->flags & SLAB_RED_ZONE)
753 memset(p - s->red_left_pad, val, s->red_left_pad);
754
81819f0f 755 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
756 memset(p, POISON_FREE, s->object_size - 1);
757 p[s->object_size - 1] = POISON_END;
81819f0f
CL
758 }
759
760 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 761 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
762}
763
24922684
CL
764static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
765 void *from, void *to)
766{
767 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
768 memset(from, data, to - from);
769}
770
771static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
772 u8 *object, char *what,
06428780 773 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
774{
775 u8 *fault;
776 u8 *end;
e1b70dd1 777 u8 *addr = page_address(page);
24922684 778
a79316c6 779 metadata_access_enable();
79824820 780 fault = memchr_inv(start, value, bytes);
a79316c6 781 metadata_access_disable();
24922684
CL
782 if (!fault)
783 return 1;
784
785 end = start + bytes;
786 while (end > fault && end[-1] == value)
787 end--;
788
789 slab_bug(s, "%s overwritten", what);
e1b70dd1
MC
790 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
791 fault, end - 1, fault - addr,
792 fault[0], value);
24922684
CL
793 print_trailer(s, page, object);
794
795 restore_bytes(s, what, value, fault, end);
796 return 0;
81819f0f
CL
797}
798
81819f0f
CL
799/*
800 * Object layout:
801 *
802 * object address
803 * Bytes of the object to be managed.
804 * If the freepointer may overlay the object then the free
cbfc35a4 805 * pointer is at the middle of the object.
672bba3a 806 *
81819f0f
CL
807 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
808 * 0xa5 (POISON_END)
809 *
3b0efdfa 810 * object + s->object_size
81819f0f 811 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 812 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 813 * object_size == inuse.
672bba3a 814 *
81819f0f
CL
815 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
816 * 0xcc (RED_ACTIVE) for objects in use.
817 *
818 * object + s->inuse
672bba3a
CL
819 * Meta data starts here.
820 *
81819f0f
CL
821 * A. Free pointer (if we cannot overwrite object on free)
822 * B. Tracking data for SLAB_STORE_USER
672bba3a 823 * C. Padding to reach required alignment boundary or at mininum
6446faa2 824 * one word if debugging is on to be able to detect writes
672bba3a
CL
825 * before the word boundary.
826 *
827 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
828 *
829 * object + s->size
672bba3a 830 * Nothing is used beyond s->size.
81819f0f 831 *
3b0efdfa 832 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 833 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
834 * may be used with merged slabcaches.
835 */
836
81819f0f
CL
837static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
838{
cbfc35a4 839 unsigned long off = get_info_end(s); /* The end of info */
81819f0f
CL
840
841 if (s->flags & SLAB_STORE_USER)
842 /* We also have user information there */
843 off += 2 * sizeof(struct track);
844
80a9201a
AP
845 off += kasan_metadata_size(s);
846
d86bd1be 847 if (size_from_object(s) == off)
81819f0f
CL
848 return 1;
849
24922684 850 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 851 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
852}
853
39b26464 854/* Check the pad bytes at the end of a slab page */
81819f0f
CL
855static int slab_pad_check(struct kmem_cache *s, struct page *page)
856{
24922684
CL
857 u8 *start;
858 u8 *fault;
859 u8 *end;
5d682681 860 u8 *pad;
24922684
CL
861 int length;
862 int remainder;
81819f0f
CL
863
864 if (!(s->flags & SLAB_POISON))
865 return 1;
866
a973e9dd 867 start = page_address(page);
a50b854e 868 length = page_size(page);
39b26464
CL
869 end = start + length;
870 remainder = length % s->size;
81819f0f
CL
871 if (!remainder)
872 return 1;
873
5d682681 874 pad = end - remainder;
a79316c6 875 metadata_access_enable();
5d682681 876 fault = memchr_inv(pad, POISON_INUSE, remainder);
a79316c6 877 metadata_access_disable();
24922684
CL
878 if (!fault)
879 return 1;
880 while (end > fault && end[-1] == POISON_INUSE)
881 end--;
882
e1b70dd1
MC
883 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
884 fault, end - 1, fault - start);
5d682681 885 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 886
5d682681 887 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 888 return 0;
81819f0f
CL
889}
890
891static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 892 void *object, u8 val)
81819f0f
CL
893{
894 u8 *p = object;
3b0efdfa 895 u8 *endobject = object + s->object_size;
81819f0f
CL
896
897 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
898 if (!check_bytes_and_report(s, page, object, "Redzone",
899 object - s->red_left_pad, val, s->red_left_pad))
900 return 0;
901
24922684 902 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 903 endobject, val, s->inuse - s->object_size))
81819f0f 904 return 0;
81819f0f 905 } else {
3b0efdfa 906 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 907 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
908 endobject, POISON_INUSE,
909 s->inuse - s->object_size);
3adbefee 910 }
81819f0f
CL
911 }
912
913 if (s->flags & SLAB_POISON) {
f7cb1933 914 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 915 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 916 POISON_FREE, s->object_size - 1) ||
24922684 917 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 918 p + s->object_size - 1, POISON_END, 1)))
81819f0f 919 return 0;
81819f0f
CL
920 /*
921 * check_pad_bytes cleans up on its own.
922 */
923 check_pad_bytes(s, page, p);
924 }
925
cbfc35a4 926 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
927 /*
928 * Object and freepointer overlap. Cannot check
929 * freepointer while object is allocated.
930 */
931 return 1;
932
933 /* Check free pointer validity */
934 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
935 object_err(s, page, p, "Freepointer corrupt");
936 /*
9f6c708e 937 * No choice but to zap it and thus lose the remainder
81819f0f 938 * of the free objects in this slab. May cause
672bba3a 939 * another error because the object count is now wrong.
81819f0f 940 */
a973e9dd 941 set_freepointer(s, p, NULL);
81819f0f
CL
942 return 0;
943 }
944 return 1;
945}
946
947static int check_slab(struct kmem_cache *s, struct page *page)
948{
39b26464
CL
949 int maxobj;
950
81819f0f
CL
951 VM_BUG_ON(!irqs_disabled());
952
953 if (!PageSlab(page)) {
24922684 954 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
955 return 0;
956 }
39b26464 957
9736d2a9 958 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
959 if (page->objects > maxobj) {
960 slab_err(s, page, "objects %u > max %u",
f6edde9c 961 page->objects, maxobj);
39b26464
CL
962 return 0;
963 }
964 if (page->inuse > page->objects) {
24922684 965 slab_err(s, page, "inuse %u > max %u",
f6edde9c 966 page->inuse, page->objects);
81819f0f
CL
967 return 0;
968 }
969 /* Slab_pad_check fixes things up after itself */
970 slab_pad_check(s, page);
971 return 1;
972}
973
974/*
672bba3a
CL
975 * Determine if a certain object on a page is on the freelist. Must hold the
976 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
977 */
978static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
979{
980 int nr = 0;
881db7fb 981 void *fp;
81819f0f 982 void *object = NULL;
f6edde9c 983 int max_objects;
81819f0f 984
881db7fb 985 fp = page->freelist;
39b26464 986 while (fp && nr <= page->objects) {
81819f0f
CL
987 if (fp == search)
988 return 1;
989 if (!check_valid_pointer(s, page, fp)) {
990 if (object) {
991 object_err(s, page, object,
992 "Freechain corrupt");
a973e9dd 993 set_freepointer(s, object, NULL);
81819f0f 994 } else {
24922684 995 slab_err(s, page, "Freepointer corrupt");
a973e9dd 996 page->freelist = NULL;
39b26464 997 page->inuse = page->objects;
24922684 998 slab_fix(s, "Freelist cleared");
81819f0f
CL
999 return 0;
1000 }
1001 break;
1002 }
1003 object = fp;
1004 fp = get_freepointer(s, object);
1005 nr++;
1006 }
1007
9736d2a9 1008 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
1009 if (max_objects > MAX_OBJS_PER_PAGE)
1010 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
1011
1012 if (page->objects != max_objects) {
756a025f
JP
1013 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1014 page->objects, max_objects);
224a88be
CL
1015 page->objects = max_objects;
1016 slab_fix(s, "Number of objects adjusted.");
1017 }
39b26464 1018 if (page->inuse != page->objects - nr) {
756a025f
JP
1019 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1020 page->inuse, page->objects - nr);
39b26464 1021 page->inuse = page->objects - nr;
24922684 1022 slab_fix(s, "Object count adjusted.");
81819f0f
CL
1023 }
1024 return search == NULL;
1025}
1026
0121c619
CL
1027static void trace(struct kmem_cache *s, struct page *page, void *object,
1028 int alloc)
3ec09742
CL
1029{
1030 if (s->flags & SLAB_TRACE) {
f9f58285 1031 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1032 s->name,
1033 alloc ? "alloc" : "free",
1034 object, page->inuse,
1035 page->freelist);
1036
1037 if (!alloc)
aa2efd5e 1038 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1039 s->object_size);
3ec09742
CL
1040
1041 dump_stack();
1042 }
1043}
1044
643b1138 1045/*
672bba3a 1046 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1047 */
5cc6eee8
CL
1048static void add_full(struct kmem_cache *s,
1049 struct kmem_cache_node *n, struct page *page)
643b1138 1050{
5cc6eee8
CL
1051 if (!(s->flags & SLAB_STORE_USER))
1052 return;
1053
255d0884 1054 lockdep_assert_held(&n->list_lock);
916ac052 1055 list_add(&page->slab_list, &n->full);
643b1138
CL
1056}
1057
c65c1877 1058static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1059{
643b1138
CL
1060 if (!(s->flags & SLAB_STORE_USER))
1061 return;
1062
255d0884 1063 lockdep_assert_held(&n->list_lock);
916ac052 1064 list_del(&page->slab_list);
643b1138
CL
1065}
1066
0f389ec6
CL
1067/* Tracking of the number of slabs for debugging purposes */
1068static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1069{
1070 struct kmem_cache_node *n = get_node(s, node);
1071
1072 return atomic_long_read(&n->nr_slabs);
1073}
1074
26c02cf0
AB
1075static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1076{
1077 return atomic_long_read(&n->nr_slabs);
1078}
1079
205ab99d 1080static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1081{
1082 struct kmem_cache_node *n = get_node(s, node);
1083
1084 /*
1085 * May be called early in order to allocate a slab for the
1086 * kmem_cache_node structure. Solve the chicken-egg
1087 * dilemma by deferring the increment of the count during
1088 * bootstrap (see early_kmem_cache_node_alloc).
1089 */
338b2642 1090 if (likely(n)) {
0f389ec6 1091 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1092 atomic_long_add(objects, &n->total_objects);
1093 }
0f389ec6 1094}
205ab99d 1095static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1096{
1097 struct kmem_cache_node *n = get_node(s, node);
1098
1099 atomic_long_dec(&n->nr_slabs);
205ab99d 1100 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1101}
1102
1103/* Object debug checks for alloc/free paths */
3ec09742
CL
1104static void setup_object_debug(struct kmem_cache *s, struct page *page,
1105 void *object)
1106{
8fc8d666 1107 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1108 return;
1109
f7cb1933 1110 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1111 init_tracking(s, object);
1112}
1113
a50b854e
MWO
1114static
1115void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
a7101224 1116{
8fc8d666 1117 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1118 return;
1119
1120 metadata_access_enable();
a50b854e 1121 memset(addr, POISON_INUSE, page_size(page));
a7101224
AK
1122 metadata_access_disable();
1123}
1124
becfda68 1125static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1126 struct page *page, void *object)
81819f0f
CL
1127{
1128 if (!check_slab(s, page))
becfda68 1129 return 0;
81819f0f 1130
81819f0f
CL
1131 if (!check_valid_pointer(s, page, object)) {
1132 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1133 return 0;
81819f0f
CL
1134 }
1135
f7cb1933 1136 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1137 return 0;
1138
1139 return 1;
1140}
1141
1142static noinline int alloc_debug_processing(struct kmem_cache *s,
1143 struct page *page,
1144 void *object, unsigned long addr)
1145{
1146 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1147 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1148 goto bad;
1149 }
81819f0f 1150
3ec09742
CL
1151 /* Success perform special debug activities for allocs */
1152 if (s->flags & SLAB_STORE_USER)
1153 set_track(s, object, TRACK_ALLOC, addr);
1154 trace(s, page, object, 1);
f7cb1933 1155 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1156 return 1;
3ec09742 1157
81819f0f
CL
1158bad:
1159 if (PageSlab(page)) {
1160 /*
1161 * If this is a slab page then lets do the best we can
1162 * to avoid issues in the future. Marking all objects
672bba3a 1163 * as used avoids touching the remaining objects.
81819f0f 1164 */
24922684 1165 slab_fix(s, "Marking all objects used");
39b26464 1166 page->inuse = page->objects;
a973e9dd 1167 page->freelist = NULL;
81819f0f
CL
1168 }
1169 return 0;
1170}
1171
becfda68
LA
1172static inline int free_consistency_checks(struct kmem_cache *s,
1173 struct page *page, void *object, unsigned long addr)
81819f0f 1174{
81819f0f 1175 if (!check_valid_pointer(s, page, object)) {
70d71228 1176 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1177 return 0;
81819f0f
CL
1178 }
1179
1180 if (on_freelist(s, page, object)) {
24922684 1181 object_err(s, page, object, "Object already free");
becfda68 1182 return 0;
81819f0f
CL
1183 }
1184
f7cb1933 1185 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1186 return 0;
81819f0f 1187
1b4f59e3 1188 if (unlikely(s != page->slab_cache)) {
3adbefee 1189 if (!PageSlab(page)) {
756a025f
JP
1190 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1191 object);
1b4f59e3 1192 } else if (!page->slab_cache) {
f9f58285
FF
1193 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1194 object);
70d71228 1195 dump_stack();
06428780 1196 } else
24922684
CL
1197 object_err(s, page, object,
1198 "page slab pointer corrupt.");
becfda68
LA
1199 return 0;
1200 }
1201 return 1;
1202}
1203
1204/* Supports checking bulk free of a constructed freelist */
1205static noinline int free_debug_processing(
1206 struct kmem_cache *s, struct page *page,
1207 void *head, void *tail, int bulk_cnt,
1208 unsigned long addr)
1209{
1210 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1211 void *object = head;
1212 int cnt = 0;
3f649ab7 1213 unsigned long flags;
becfda68
LA
1214 int ret = 0;
1215
1216 spin_lock_irqsave(&n->list_lock, flags);
1217 slab_lock(page);
1218
1219 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1220 if (!check_slab(s, page))
1221 goto out;
1222 }
1223
1224next_object:
1225 cnt++;
1226
1227 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1228 if (!free_consistency_checks(s, page, object, addr))
1229 goto out;
81819f0f 1230 }
3ec09742 1231
3ec09742
CL
1232 if (s->flags & SLAB_STORE_USER)
1233 set_track(s, object, TRACK_FREE, addr);
1234 trace(s, page, object, 0);
81084651 1235 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1236 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1237
1238 /* Reached end of constructed freelist yet? */
1239 if (object != tail) {
1240 object = get_freepointer(s, object);
1241 goto next_object;
1242 }
804aa132
LA
1243 ret = 1;
1244
5c2e4bbb 1245out:
81084651
JDB
1246 if (cnt != bulk_cnt)
1247 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1248 bulk_cnt, cnt);
1249
881db7fb 1250 slab_unlock(page);
282acb43 1251 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1252 if (!ret)
1253 slab_fix(s, "Object at 0x%p not freed", object);
1254 return ret;
81819f0f
CL
1255}
1256
e17f1dfb
VB
1257/*
1258 * Parse a block of slub_debug options. Blocks are delimited by ';'
1259 *
1260 * @str: start of block
1261 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1262 * @slabs: return start of list of slabs, or NULL when there's no list
1263 * @init: assume this is initial parsing and not per-kmem-create parsing
1264 *
1265 * returns the start of next block if there's any, or NULL
1266 */
1267static char *
1268parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1269{
e17f1dfb 1270 bool higher_order_disable = false;
f0630fff 1271
e17f1dfb
VB
1272 /* Skip any completely empty blocks */
1273 while (*str && *str == ';')
1274 str++;
1275
1276 if (*str == ',') {
f0630fff
CL
1277 /*
1278 * No options but restriction on slabs. This means full
1279 * debugging for slabs matching a pattern.
1280 */
e17f1dfb 1281 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1282 goto check_slabs;
e17f1dfb
VB
1283 }
1284 *flags = 0;
f0630fff 1285
e17f1dfb
VB
1286 /* Determine which debug features should be switched on */
1287 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1288 switch (tolower(*str)) {
e17f1dfb
VB
1289 case '-':
1290 *flags = 0;
1291 break;
f0630fff 1292 case 'f':
e17f1dfb 1293 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1294 break;
1295 case 'z':
e17f1dfb 1296 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1297 break;
1298 case 'p':
e17f1dfb 1299 *flags |= SLAB_POISON;
f0630fff
CL
1300 break;
1301 case 'u':
e17f1dfb 1302 *flags |= SLAB_STORE_USER;
f0630fff
CL
1303 break;
1304 case 't':
e17f1dfb 1305 *flags |= SLAB_TRACE;
f0630fff 1306 break;
4c13dd3b 1307 case 'a':
e17f1dfb 1308 *flags |= SLAB_FAILSLAB;
4c13dd3b 1309 break;
08303a73
CA
1310 case 'o':
1311 /*
1312 * Avoid enabling debugging on caches if its minimum
1313 * order would increase as a result.
1314 */
e17f1dfb 1315 higher_order_disable = true;
08303a73 1316 break;
f0630fff 1317 default:
e17f1dfb
VB
1318 if (init)
1319 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
f0630fff 1320 }
41ecc55b 1321 }
f0630fff 1322check_slabs:
41ecc55b 1323 if (*str == ',')
e17f1dfb
VB
1324 *slabs = ++str;
1325 else
1326 *slabs = NULL;
1327
1328 /* Skip over the slab list */
1329 while (*str && *str != ';')
1330 str++;
1331
1332 /* Skip any completely empty blocks */
1333 while (*str && *str == ';')
1334 str++;
1335
1336 if (init && higher_order_disable)
1337 disable_higher_order_debug = 1;
1338
1339 if (*str)
1340 return str;
1341 else
1342 return NULL;
1343}
1344
1345static int __init setup_slub_debug(char *str)
1346{
1347 slab_flags_t flags;
1348 char *saved_str;
1349 char *slab_list;
1350 bool global_slub_debug_changed = false;
1351 bool slab_list_specified = false;
1352
1353 slub_debug = DEBUG_DEFAULT_FLAGS;
1354 if (*str++ != '=' || !*str)
1355 /*
1356 * No options specified. Switch on full debugging.
1357 */
1358 goto out;
1359
1360 saved_str = str;
1361 while (str) {
1362 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1363
1364 if (!slab_list) {
1365 slub_debug = flags;
1366 global_slub_debug_changed = true;
1367 } else {
1368 slab_list_specified = true;
1369 }
1370 }
1371
1372 /*
1373 * For backwards compatibility, a single list of flags with list of
1374 * slabs means debugging is only enabled for those slabs, so the global
1375 * slub_debug should be 0. We can extended that to multiple lists as
1376 * long as there is no option specifying flags without a slab list.
1377 */
1378 if (slab_list_specified) {
1379 if (!global_slub_debug_changed)
1380 slub_debug = 0;
1381 slub_debug_string = saved_str;
1382 }
f0630fff 1383out:
ca0cab65
VB
1384 if (slub_debug != 0 || slub_debug_string)
1385 static_branch_enable(&slub_debug_enabled);
6471384a
AP
1386 if ((static_branch_unlikely(&init_on_alloc) ||
1387 static_branch_unlikely(&init_on_free)) &&
1388 (slub_debug & SLAB_POISON))
1389 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1390 return 1;
1391}
1392
1393__setup("slub_debug", setup_slub_debug);
1394
c5fd3ca0
AT
1395/*
1396 * kmem_cache_flags - apply debugging options to the cache
1397 * @object_size: the size of an object without meta data
1398 * @flags: flags to set
1399 * @name: name of the cache
1400 * @ctor: constructor function
1401 *
1402 * Debug option(s) are applied to @flags. In addition to the debug
1403 * option(s), if a slab name (or multiple) is specified i.e.
1404 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1405 * then only the select slabs will receive the debug option(s).
1406 */
0293d1fd 1407slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1408 slab_flags_t flags, const char *name,
51cc5068 1409 void (*ctor)(void *))
41ecc55b 1410{
c5fd3ca0
AT
1411 char *iter;
1412 size_t len;
e17f1dfb
VB
1413 char *next_block;
1414 slab_flags_t block_flags;
c5fd3ca0
AT
1415
1416 /* If slub_debug = 0, it folds into the if conditional. */
e17f1dfb 1417 if (!slub_debug_string)
c5fd3ca0
AT
1418 return flags | slub_debug;
1419
1420 len = strlen(name);
e17f1dfb
VB
1421 next_block = slub_debug_string;
1422 /* Go through all blocks of debug options, see if any matches our slab's name */
1423 while (next_block) {
1424 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1425 if (!iter)
1426 continue;
1427 /* Found a block that has a slab list, search it */
1428 while (*iter) {
1429 char *end, *glob;
1430 size_t cmplen;
1431
1432 end = strchrnul(iter, ',');
1433 if (next_block && next_block < end)
1434 end = next_block - 1;
1435
1436 glob = strnchr(iter, end - iter, '*');
1437 if (glob)
1438 cmplen = glob - iter;
1439 else
1440 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1441
e17f1dfb
VB
1442 if (!strncmp(name, iter, cmplen)) {
1443 flags |= block_flags;
1444 return flags;
1445 }
c5fd3ca0 1446
e17f1dfb
VB
1447 if (!*end || *end == ';')
1448 break;
1449 iter = end + 1;
c5fd3ca0 1450 }
c5fd3ca0 1451 }
ba0268a8 1452
e17f1dfb 1453 return slub_debug;
41ecc55b 1454}
b4a64718 1455#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1456static inline void setup_object_debug(struct kmem_cache *s,
1457 struct page *page, void *object) {}
a50b854e
MWO
1458static inline
1459void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
41ecc55b 1460
3ec09742 1461static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1462 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1463
282acb43 1464static inline int free_debug_processing(
81084651
JDB
1465 struct kmem_cache *s, struct page *page,
1466 void *head, void *tail, int bulk_cnt,
282acb43 1467 unsigned long addr) { return 0; }
41ecc55b 1468
41ecc55b
CL
1469static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1470 { return 1; }
1471static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1472 void *object, u8 val) { return 1; }
5cc6eee8
CL
1473static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1474 struct page *page) {}
c65c1877
PZ
1475static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1476 struct page *page) {}
0293d1fd 1477slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1478 slab_flags_t flags, const char *name,
51cc5068 1479 void (*ctor)(void *))
ba0268a8
CL
1480{
1481 return flags;
1482}
41ecc55b 1483#define slub_debug 0
0f389ec6 1484
fdaa45e9
IM
1485#define disable_higher_order_debug 0
1486
0f389ec6
CL
1487static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1488 { return 0; }
26c02cf0
AB
1489static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1490 { return 0; }
205ab99d
CL
1491static inline void inc_slabs_node(struct kmem_cache *s, int node,
1492 int objects) {}
1493static inline void dec_slabs_node(struct kmem_cache *s, int node,
1494 int objects) {}
7d550c56 1495
52f23478
DZ
1496static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1497 void *freelist, void *nextfree)
1498{
1499 return false;
1500}
02e72cc6
AR
1501#endif /* CONFIG_SLUB_DEBUG */
1502
1503/*
1504 * Hooks for other subsystems that check memory allocations. In a typical
1505 * production configuration these hooks all should produce no code at all.
1506 */
0116523c 1507static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1508{
53128245 1509 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1510 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1511 kmemleak_alloc(ptr, size, 1, flags);
53128245 1512 return ptr;
d56791b3
RB
1513}
1514
ee3ce779 1515static __always_inline void kfree_hook(void *x)
d56791b3
RB
1516{
1517 kmemleak_free(x);
ee3ce779 1518 kasan_kfree_large(x, _RET_IP_);
d56791b3
RB
1519}
1520
c3895391 1521static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
d56791b3
RB
1522{
1523 kmemleak_free_recursive(x, s->flags);
7d550c56 1524
02e72cc6
AR
1525 /*
1526 * Trouble is that we may no longer disable interrupts in the fast path
1527 * So in order to make the debug calls that expect irqs to be
1528 * disabled we need to disable interrupts temporarily.
1529 */
4675ff05 1530#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1531 {
1532 unsigned long flags;
1533
1534 local_irq_save(flags);
02e72cc6
AR
1535 debug_check_no_locks_freed(x, s->object_size);
1536 local_irq_restore(flags);
1537 }
1538#endif
1539 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1540 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1541
cfbe1636
ME
1542 /* Use KCSAN to help debug racy use-after-free. */
1543 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1544 __kcsan_check_access(x, s->object_size,
1545 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1546
c3895391
AK
1547 /* KASAN might put x into memory quarantine, delaying its reuse */
1548 return kasan_slab_free(s, x, _RET_IP_);
02e72cc6 1549}
205ab99d 1550
c3895391
AK
1551static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1552 void **head, void **tail)
81084651 1553{
6471384a
AP
1554
1555 void *object;
1556 void *next = *head;
1557 void *old_tail = *tail ? *tail : *head;
1558 int rsize;
1559
aea4df4c
LA
1560 /* Head and tail of the reconstructed freelist */
1561 *head = NULL;
1562 *tail = NULL;
1b7e816f 1563
aea4df4c
LA
1564 do {
1565 object = next;
1566 next = get_freepointer(s, object);
1567
1568 if (slab_want_init_on_free(s)) {
6471384a
AP
1569 /*
1570 * Clear the object and the metadata, but don't touch
1571 * the redzone.
1572 */
1573 memset(object, 0, s->object_size);
1574 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1575 : 0;
1576 memset((char *)object + s->inuse, 0,
1577 s->size - s->inuse - rsize);
81084651 1578
aea4df4c 1579 }
c3895391
AK
1580 /* If object's reuse doesn't have to be delayed */
1581 if (!slab_free_hook(s, object)) {
1582 /* Move object to the new freelist */
1583 set_freepointer(s, object, *head);
1584 *head = object;
1585 if (!*tail)
1586 *tail = object;
1587 }
1588 } while (object != old_tail);
1589
1590 if (*head == *tail)
1591 *tail = NULL;
1592
1593 return *head != NULL;
81084651
JDB
1594}
1595
4d176711 1596static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1597 void *object)
1598{
1599 setup_object_debug(s, page, object);
4d176711 1600 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1601 if (unlikely(s->ctor)) {
1602 kasan_unpoison_object_data(s, object);
1603 s->ctor(object);
1604 kasan_poison_object_data(s, object);
1605 }
4d176711 1606 return object;
588f8ba9
TG
1607}
1608
81819f0f
CL
1609/*
1610 * Slab allocation and freeing
1611 */
5dfb4175
VD
1612static inline struct page *alloc_slab_page(struct kmem_cache *s,
1613 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1614{
5dfb4175 1615 struct page *page;
19af27af 1616 unsigned int order = oo_order(oo);
65c3376a 1617
2154a336 1618 if (node == NUMA_NO_NODE)
5dfb4175 1619 page = alloc_pages(flags, order);
65c3376a 1620 else
96db800f 1621 page = __alloc_pages_node(node, flags, order);
5dfb4175 1622
10befea9 1623 if (page)
74d555be 1624 account_slab_page(page, order, s);
5dfb4175
VD
1625
1626 return page;
65c3376a
CL
1627}
1628
210e7a43
TG
1629#ifdef CONFIG_SLAB_FREELIST_RANDOM
1630/* Pre-initialize the random sequence cache */
1631static int init_cache_random_seq(struct kmem_cache *s)
1632{
19af27af 1633 unsigned int count = oo_objects(s->oo);
210e7a43 1634 int err;
210e7a43 1635
a810007a
SR
1636 /* Bailout if already initialised */
1637 if (s->random_seq)
1638 return 0;
1639
210e7a43
TG
1640 err = cache_random_seq_create(s, count, GFP_KERNEL);
1641 if (err) {
1642 pr_err("SLUB: Unable to initialize free list for %s\n",
1643 s->name);
1644 return err;
1645 }
1646
1647 /* Transform to an offset on the set of pages */
1648 if (s->random_seq) {
19af27af
AD
1649 unsigned int i;
1650
210e7a43
TG
1651 for (i = 0; i < count; i++)
1652 s->random_seq[i] *= s->size;
1653 }
1654 return 0;
1655}
1656
1657/* Initialize each random sequence freelist per cache */
1658static void __init init_freelist_randomization(void)
1659{
1660 struct kmem_cache *s;
1661
1662 mutex_lock(&slab_mutex);
1663
1664 list_for_each_entry(s, &slab_caches, list)
1665 init_cache_random_seq(s);
1666
1667 mutex_unlock(&slab_mutex);
1668}
1669
1670/* Get the next entry on the pre-computed freelist randomized */
1671static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1672 unsigned long *pos, void *start,
1673 unsigned long page_limit,
1674 unsigned long freelist_count)
1675{
1676 unsigned int idx;
1677
1678 /*
1679 * If the target page allocation failed, the number of objects on the
1680 * page might be smaller than the usual size defined by the cache.
1681 */
1682 do {
1683 idx = s->random_seq[*pos];
1684 *pos += 1;
1685 if (*pos >= freelist_count)
1686 *pos = 0;
1687 } while (unlikely(idx >= page_limit));
1688
1689 return (char *)start + idx;
1690}
1691
1692/* Shuffle the single linked freelist based on a random pre-computed sequence */
1693static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1694{
1695 void *start;
1696 void *cur;
1697 void *next;
1698 unsigned long idx, pos, page_limit, freelist_count;
1699
1700 if (page->objects < 2 || !s->random_seq)
1701 return false;
1702
1703 freelist_count = oo_objects(s->oo);
1704 pos = get_random_int() % freelist_count;
1705
1706 page_limit = page->objects * s->size;
1707 start = fixup_red_left(s, page_address(page));
1708
1709 /* First entry is used as the base of the freelist */
1710 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1711 freelist_count);
4d176711 1712 cur = setup_object(s, page, cur);
210e7a43
TG
1713 page->freelist = cur;
1714
1715 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1716 next = next_freelist_entry(s, page, &pos, start, page_limit,
1717 freelist_count);
4d176711 1718 next = setup_object(s, page, next);
210e7a43
TG
1719 set_freepointer(s, cur, next);
1720 cur = next;
1721 }
210e7a43
TG
1722 set_freepointer(s, cur, NULL);
1723
1724 return true;
1725}
1726#else
1727static inline int init_cache_random_seq(struct kmem_cache *s)
1728{
1729 return 0;
1730}
1731static inline void init_freelist_randomization(void) { }
1732static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1733{
1734 return false;
1735}
1736#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1737
81819f0f
CL
1738static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1739{
06428780 1740 struct page *page;
834f3d11 1741 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1742 gfp_t alloc_gfp;
4d176711 1743 void *start, *p, *next;
a50b854e 1744 int idx;
210e7a43 1745 bool shuffle;
81819f0f 1746
7e0528da
CL
1747 flags &= gfp_allowed_mask;
1748
d0164adc 1749 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1750 local_irq_enable();
1751
b7a49f0d 1752 flags |= s->allocflags;
e12ba74d 1753
ba52270d
PE
1754 /*
1755 * Let the initial higher-order allocation fail under memory pressure
1756 * so we fall-back to the minimum order allocation.
1757 */
1758 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1759 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1760 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1761
5dfb4175 1762 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1763 if (unlikely(!page)) {
1764 oo = s->min;
80c3a998 1765 alloc_gfp = flags;
65c3376a
CL
1766 /*
1767 * Allocation may have failed due to fragmentation.
1768 * Try a lower order alloc if possible
1769 */
5dfb4175 1770 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1771 if (unlikely(!page))
1772 goto out;
1773 stat(s, ORDER_FALLBACK);
65c3376a 1774 }
5a896d9e 1775
834f3d11 1776 page->objects = oo_objects(oo);
81819f0f 1777
1b4f59e3 1778 page->slab_cache = s;
c03f94cc 1779 __SetPageSlab(page);
2f064f34 1780 if (page_is_pfmemalloc(page))
072bb0aa 1781 SetPageSlabPfmemalloc(page);
81819f0f 1782
a7101224 1783 kasan_poison_slab(page);
81819f0f 1784
a7101224 1785 start = page_address(page);
81819f0f 1786
a50b854e 1787 setup_page_debug(s, page, start);
0316bec2 1788
210e7a43
TG
1789 shuffle = shuffle_freelist(s, page);
1790
1791 if (!shuffle) {
4d176711
AK
1792 start = fixup_red_left(s, start);
1793 start = setup_object(s, page, start);
1794 page->freelist = start;
18e50661
AK
1795 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1796 next = p + s->size;
1797 next = setup_object(s, page, next);
1798 set_freepointer(s, p, next);
1799 p = next;
1800 }
1801 set_freepointer(s, p, NULL);
81819f0f 1802 }
81819f0f 1803
e6e82ea1 1804 page->inuse = page->objects;
8cb0a506 1805 page->frozen = 1;
588f8ba9 1806
81819f0f 1807out:
d0164adc 1808 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1809 local_irq_disable();
1810 if (!page)
1811 return NULL;
1812
588f8ba9
TG
1813 inc_slabs_node(s, page_to_nid(page), page->objects);
1814
81819f0f
CL
1815 return page;
1816}
1817
588f8ba9
TG
1818static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1819{
44405099
LL
1820 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1821 flags = kmalloc_fix_flags(flags);
588f8ba9
TG
1822
1823 return allocate_slab(s,
1824 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1825}
1826
81819f0f
CL
1827static void __free_slab(struct kmem_cache *s, struct page *page)
1828{
834f3d11
CL
1829 int order = compound_order(page);
1830 int pages = 1 << order;
81819f0f 1831
8fc8d666 1832 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
81819f0f
CL
1833 void *p;
1834
1835 slab_pad_check(s, page);
224a88be
CL
1836 for_each_object(p, s, page_address(page),
1837 page->objects)
f7cb1933 1838 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1839 }
1840
072bb0aa 1841 __ClearPageSlabPfmemalloc(page);
49bd5221 1842 __ClearPageSlab(page);
1f458cbf 1843
d4fc5069 1844 page->mapping = NULL;
1eb5ac64
NP
1845 if (current->reclaim_state)
1846 current->reclaim_state->reclaimed_slab += pages;
74d555be 1847 unaccount_slab_page(page, order, s);
27ee57c9 1848 __free_pages(page, order);
81819f0f
CL
1849}
1850
1851static void rcu_free_slab(struct rcu_head *h)
1852{
bf68c214 1853 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1854
1b4f59e3 1855 __free_slab(page->slab_cache, page);
81819f0f
CL
1856}
1857
1858static void free_slab(struct kmem_cache *s, struct page *page)
1859{
5f0d5a3a 1860 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1861 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1862 } else
1863 __free_slab(s, page);
1864}
1865
1866static void discard_slab(struct kmem_cache *s, struct page *page)
1867{
205ab99d 1868 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1869 free_slab(s, page);
1870}
1871
1872/*
5cc6eee8 1873 * Management of partially allocated slabs.
81819f0f 1874 */
1e4dd946
SR
1875static inline void
1876__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1877{
e95eed57 1878 n->nr_partial++;
136333d1 1879 if (tail == DEACTIVATE_TO_TAIL)
916ac052 1880 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 1881 else
916ac052 1882 list_add(&page->slab_list, &n->partial);
81819f0f
CL
1883}
1884
1e4dd946
SR
1885static inline void add_partial(struct kmem_cache_node *n,
1886 struct page *page, int tail)
62e346a8 1887{
c65c1877 1888 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1889 __add_partial(n, page, tail);
1890}
c65c1877 1891
1e4dd946
SR
1892static inline void remove_partial(struct kmem_cache_node *n,
1893 struct page *page)
1894{
1895 lockdep_assert_held(&n->list_lock);
916ac052 1896 list_del(&page->slab_list);
52b4b950 1897 n->nr_partial--;
1e4dd946
SR
1898}
1899
81819f0f 1900/*
7ced3719
CL
1901 * Remove slab from the partial list, freeze it and
1902 * return the pointer to the freelist.
81819f0f 1903 *
497b66f2 1904 * Returns a list of objects or NULL if it fails.
81819f0f 1905 */
497b66f2 1906static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1907 struct kmem_cache_node *n, struct page *page,
633b0764 1908 int mode, int *objects)
81819f0f 1909{
2cfb7455
CL
1910 void *freelist;
1911 unsigned long counters;
1912 struct page new;
1913
c65c1877
PZ
1914 lockdep_assert_held(&n->list_lock);
1915
2cfb7455
CL
1916 /*
1917 * Zap the freelist and set the frozen bit.
1918 * The old freelist is the list of objects for the
1919 * per cpu allocation list.
1920 */
7ced3719
CL
1921 freelist = page->freelist;
1922 counters = page->counters;
1923 new.counters = counters;
633b0764 1924 *objects = new.objects - new.inuse;
23910c50 1925 if (mode) {
7ced3719 1926 new.inuse = page->objects;
23910c50
PE
1927 new.freelist = NULL;
1928 } else {
1929 new.freelist = freelist;
1930 }
2cfb7455 1931
a0132ac0 1932 VM_BUG_ON(new.frozen);
7ced3719 1933 new.frozen = 1;
2cfb7455 1934
7ced3719 1935 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1936 freelist, counters,
02d7633f 1937 new.freelist, new.counters,
7ced3719 1938 "acquire_slab"))
7ced3719 1939 return NULL;
2cfb7455
CL
1940
1941 remove_partial(n, page);
7ced3719 1942 WARN_ON(!freelist);
49e22585 1943 return freelist;
81819f0f
CL
1944}
1945
633b0764 1946static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1947static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1948
81819f0f 1949/*
672bba3a 1950 * Try to allocate a partial slab from a specific node.
81819f0f 1951 */
8ba00bb6
JK
1952static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1953 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1954{
49e22585
CL
1955 struct page *page, *page2;
1956 void *object = NULL;
e5d9998f 1957 unsigned int available = 0;
633b0764 1958 int objects;
81819f0f
CL
1959
1960 /*
1961 * Racy check. If we mistakenly see no partial slabs then we
1962 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1963 * partial slab and there is none available then get_partials()
1964 * will return NULL.
81819f0f
CL
1965 */
1966 if (!n || !n->nr_partial)
1967 return NULL;
1968
1969 spin_lock(&n->list_lock);
916ac052 1970 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 1971 void *t;
49e22585 1972
8ba00bb6
JK
1973 if (!pfmemalloc_match(page, flags))
1974 continue;
1975
633b0764 1976 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1977 if (!t)
1978 break;
1979
633b0764 1980 available += objects;
12d79634 1981 if (!object) {
49e22585 1982 c->page = page;
49e22585 1983 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1984 object = t;
49e22585 1985 } else {
633b0764 1986 put_cpu_partial(s, page, 0);
8028dcea 1987 stat(s, CPU_PARTIAL_NODE);
49e22585 1988 }
345c905d 1989 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 1990 || available > slub_cpu_partial(s) / 2)
49e22585
CL
1991 break;
1992
497b66f2 1993 }
81819f0f 1994 spin_unlock(&n->list_lock);
497b66f2 1995 return object;
81819f0f
CL
1996}
1997
1998/*
672bba3a 1999 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 2000 */
de3ec035 2001static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 2002 struct kmem_cache_cpu *c)
81819f0f
CL
2003{
2004#ifdef CONFIG_NUMA
2005 struct zonelist *zonelist;
dd1a239f 2006 struct zoneref *z;
54a6eb5c 2007 struct zone *zone;
97a225e6 2008 enum zone_type highest_zoneidx = gfp_zone(flags);
497b66f2 2009 void *object;
cc9a6c87 2010 unsigned int cpuset_mems_cookie;
81819f0f
CL
2011
2012 /*
672bba3a
CL
2013 * The defrag ratio allows a configuration of the tradeoffs between
2014 * inter node defragmentation and node local allocations. A lower
2015 * defrag_ratio increases the tendency to do local allocations
2016 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2017 *
672bba3a
CL
2018 * If the defrag_ratio is set to 0 then kmalloc() always
2019 * returns node local objects. If the ratio is higher then kmalloc()
2020 * may return off node objects because partial slabs are obtained
2021 * from other nodes and filled up.
81819f0f 2022 *
43efd3ea
LP
2023 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2024 * (which makes defrag_ratio = 1000) then every (well almost)
2025 * allocation will first attempt to defrag slab caches on other nodes.
2026 * This means scanning over all nodes to look for partial slabs which
2027 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2028 * with available objects.
81819f0f 2029 */
9824601e
CL
2030 if (!s->remote_node_defrag_ratio ||
2031 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2032 return NULL;
2033
cc9a6c87 2034 do {
d26914d1 2035 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 2036 zonelist = node_zonelist(mempolicy_slab_node(), flags);
97a225e6 2037 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2038 struct kmem_cache_node *n;
2039
2040 n = get_node(s, zone_to_nid(zone));
2041
dee2f8aa 2042 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 2043 n->nr_partial > s->min_partial) {
8ba00bb6 2044 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
2045 if (object) {
2046 /*
d26914d1
MG
2047 * Don't check read_mems_allowed_retry()
2048 * here - if mems_allowed was updated in
2049 * parallel, that was a harmless race
2050 * between allocation and the cpuset
2051 * update
cc9a6c87 2052 */
cc9a6c87
MG
2053 return object;
2054 }
c0ff7453 2055 }
81819f0f 2056 }
d26914d1 2057 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2058#endif /* CONFIG_NUMA */
81819f0f
CL
2059 return NULL;
2060}
2061
2062/*
2063 * Get a partial page, lock it and return it.
2064 */
497b66f2 2065static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 2066 struct kmem_cache_cpu *c)
81819f0f 2067{
497b66f2 2068 void *object;
a561ce00
JK
2069 int searchnode = node;
2070
2071 if (node == NUMA_NO_NODE)
2072 searchnode = numa_mem_id();
81819f0f 2073
8ba00bb6 2074 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
2075 if (object || node != NUMA_NO_NODE)
2076 return object;
81819f0f 2077
acd19fd1 2078 return get_any_partial(s, flags, c);
81819f0f
CL
2079}
2080
923717cb 2081#ifdef CONFIG_PREEMPTION
8a5ec0ba 2082/*
0d645ed1 2083 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2084 * during cmpxchg. The transactions start with the cpu number and are then
2085 * incremented by CONFIG_NR_CPUS.
2086 */
2087#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2088#else
2089/*
2090 * No preemption supported therefore also no need to check for
2091 * different cpus.
2092 */
2093#define TID_STEP 1
2094#endif
2095
2096static inline unsigned long next_tid(unsigned long tid)
2097{
2098 return tid + TID_STEP;
2099}
2100
9d5f0be0 2101#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2102static inline unsigned int tid_to_cpu(unsigned long tid)
2103{
2104 return tid % TID_STEP;
2105}
2106
2107static inline unsigned long tid_to_event(unsigned long tid)
2108{
2109 return tid / TID_STEP;
2110}
9d5f0be0 2111#endif
8a5ec0ba
CL
2112
2113static inline unsigned int init_tid(int cpu)
2114{
2115 return cpu;
2116}
2117
2118static inline void note_cmpxchg_failure(const char *n,
2119 const struct kmem_cache *s, unsigned long tid)
2120{
2121#ifdef SLUB_DEBUG_CMPXCHG
2122 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2123
f9f58285 2124 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2125
923717cb 2126#ifdef CONFIG_PREEMPTION
8a5ec0ba 2127 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2128 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2129 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2130 else
2131#endif
2132 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2133 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2134 tid_to_event(tid), tid_to_event(actual_tid));
2135 else
f9f58285 2136 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2137 actual_tid, tid, next_tid(tid));
2138#endif
4fdccdfb 2139 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2140}
2141
788e1aad 2142static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2143{
8a5ec0ba
CL
2144 int cpu;
2145
2146 for_each_possible_cpu(cpu)
2147 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2148}
2cfb7455 2149
81819f0f
CL
2150/*
2151 * Remove the cpu slab
2152 */
d0e0ac97 2153static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2154 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2155{
2cfb7455 2156 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
2157 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2158 int lock = 0;
2159 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2160 void *nextfree;
136333d1 2161 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2162 struct page new;
2163 struct page old;
2164
2165 if (page->freelist) {
84e554e6 2166 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2167 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2168 }
2169
894b8788 2170 /*
2cfb7455
CL
2171 * Stage one: Free all available per cpu objects back
2172 * to the page freelist while it is still frozen. Leave the
2173 * last one.
2174 *
2175 * There is no need to take the list->lock because the page
2176 * is still frozen.
2177 */
2178 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2179 void *prior;
2180 unsigned long counters;
2181
52f23478
DZ
2182 /*
2183 * If 'nextfree' is invalid, it is possible that the object at
2184 * 'freelist' is already corrupted. So isolate all objects
2185 * starting at 'freelist'.
2186 */
2187 if (freelist_corrupted(s, page, freelist, nextfree))
2188 break;
2189
2cfb7455
CL
2190 do {
2191 prior = page->freelist;
2192 counters = page->counters;
2193 set_freepointer(s, freelist, prior);
2194 new.counters = counters;
2195 new.inuse--;
a0132ac0 2196 VM_BUG_ON(!new.frozen);
2cfb7455 2197
1d07171c 2198 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2199 prior, counters,
2200 freelist, new.counters,
2201 "drain percpu freelist"));
2202
2203 freelist = nextfree;
2204 }
2205
894b8788 2206 /*
2cfb7455
CL
2207 * Stage two: Ensure that the page is unfrozen while the
2208 * list presence reflects the actual number of objects
2209 * during unfreeze.
2210 *
2211 * We setup the list membership and then perform a cmpxchg
2212 * with the count. If there is a mismatch then the page
2213 * is not unfrozen but the page is on the wrong list.
2214 *
2215 * Then we restart the process which may have to remove
2216 * the page from the list that we just put it on again
2217 * because the number of objects in the slab may have
2218 * changed.
894b8788 2219 */
2cfb7455 2220redo:
894b8788 2221
2cfb7455
CL
2222 old.freelist = page->freelist;
2223 old.counters = page->counters;
a0132ac0 2224 VM_BUG_ON(!old.frozen);
7c2e132c 2225
2cfb7455
CL
2226 /* Determine target state of the slab */
2227 new.counters = old.counters;
2228 if (freelist) {
2229 new.inuse--;
2230 set_freepointer(s, freelist, old.freelist);
2231 new.freelist = freelist;
2232 } else
2233 new.freelist = old.freelist;
2234
2235 new.frozen = 0;
2236
8a5b20ae 2237 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2238 m = M_FREE;
2239 else if (new.freelist) {
2240 m = M_PARTIAL;
2241 if (!lock) {
2242 lock = 1;
2243 /*
8bb4e7a2 2244 * Taking the spinlock removes the possibility
2cfb7455
CL
2245 * that acquire_slab() will see a slab page that
2246 * is frozen
2247 */
2248 spin_lock(&n->list_lock);
2249 }
2250 } else {
2251 m = M_FULL;
2252 if (kmem_cache_debug(s) && !lock) {
2253 lock = 1;
2254 /*
2255 * This also ensures that the scanning of full
2256 * slabs from diagnostic functions will not see
2257 * any frozen slabs.
2258 */
2259 spin_lock(&n->list_lock);
2260 }
2261 }
2262
2263 if (l != m) {
2cfb7455 2264 if (l == M_PARTIAL)
2cfb7455 2265 remove_partial(n, page);
2cfb7455 2266 else if (l == M_FULL)
c65c1877 2267 remove_full(s, n, page);
2cfb7455 2268
88349a28 2269 if (m == M_PARTIAL)
2cfb7455 2270 add_partial(n, page, tail);
88349a28 2271 else if (m == M_FULL)
2cfb7455 2272 add_full(s, n, page);
2cfb7455
CL
2273 }
2274
2275 l = m;
1d07171c 2276 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2277 old.freelist, old.counters,
2278 new.freelist, new.counters,
2279 "unfreezing slab"))
2280 goto redo;
2281
2cfb7455
CL
2282 if (lock)
2283 spin_unlock(&n->list_lock);
2284
88349a28
WY
2285 if (m == M_PARTIAL)
2286 stat(s, tail);
2287 else if (m == M_FULL)
2288 stat(s, DEACTIVATE_FULL);
2289 else if (m == M_FREE) {
2cfb7455
CL
2290 stat(s, DEACTIVATE_EMPTY);
2291 discard_slab(s, page);
2292 stat(s, FREE_SLAB);
894b8788 2293 }
d4ff6d35
WY
2294
2295 c->page = NULL;
2296 c->freelist = NULL;
81819f0f
CL
2297}
2298
d24ac77f
JK
2299/*
2300 * Unfreeze all the cpu partial slabs.
2301 *
59a09917
CL
2302 * This function must be called with interrupts disabled
2303 * for the cpu using c (or some other guarantee must be there
2304 * to guarantee no concurrent accesses).
d24ac77f 2305 */
59a09917
CL
2306static void unfreeze_partials(struct kmem_cache *s,
2307 struct kmem_cache_cpu *c)
49e22585 2308{
345c905d 2309#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2310 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2311 struct page *page, *discard_page = NULL;
49e22585 2312
4c7ba22e 2313 while ((page = slub_percpu_partial(c))) {
49e22585
CL
2314 struct page new;
2315 struct page old;
2316
4c7ba22e 2317 slub_set_percpu_partial(c, page);
43d77867
JK
2318
2319 n2 = get_node(s, page_to_nid(page));
2320 if (n != n2) {
2321 if (n)
2322 spin_unlock(&n->list_lock);
2323
2324 n = n2;
2325 spin_lock(&n->list_lock);
2326 }
49e22585
CL
2327
2328 do {
2329
2330 old.freelist = page->freelist;
2331 old.counters = page->counters;
a0132ac0 2332 VM_BUG_ON(!old.frozen);
49e22585
CL
2333
2334 new.counters = old.counters;
2335 new.freelist = old.freelist;
2336
2337 new.frozen = 0;
2338
d24ac77f 2339 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2340 old.freelist, old.counters,
2341 new.freelist, new.counters,
2342 "unfreezing slab"));
2343
8a5b20ae 2344 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2345 page->next = discard_page;
2346 discard_page = page;
43d77867
JK
2347 } else {
2348 add_partial(n, page, DEACTIVATE_TO_TAIL);
2349 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2350 }
2351 }
2352
2353 if (n)
2354 spin_unlock(&n->list_lock);
9ada1934
SL
2355
2356 while (discard_page) {
2357 page = discard_page;
2358 discard_page = discard_page->next;
2359
2360 stat(s, DEACTIVATE_EMPTY);
2361 discard_slab(s, page);
2362 stat(s, FREE_SLAB);
2363 }
6dfd1b65 2364#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2365}
2366
2367/*
9234bae9
WY
2368 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2369 * partial page slot if available.
49e22585
CL
2370 *
2371 * If we did not find a slot then simply move all the partials to the
2372 * per node partial list.
2373 */
633b0764 2374static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2375{
345c905d 2376#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2377 struct page *oldpage;
2378 int pages;
2379 int pobjects;
2380
d6e0b7fa 2381 preempt_disable();
49e22585
CL
2382 do {
2383 pages = 0;
2384 pobjects = 0;
2385 oldpage = this_cpu_read(s->cpu_slab->partial);
2386
2387 if (oldpage) {
2388 pobjects = oldpage->pobjects;
2389 pages = oldpage->pages;
bbd4e305 2390 if (drain && pobjects > slub_cpu_partial(s)) {
49e22585
CL
2391 unsigned long flags;
2392 /*
2393 * partial array is full. Move the existing
2394 * set to the per node partial list.
2395 */
2396 local_irq_save(flags);
59a09917 2397 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2398 local_irq_restore(flags);
e24fc410 2399 oldpage = NULL;
49e22585
CL
2400 pobjects = 0;
2401 pages = 0;
8028dcea 2402 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2403 }
2404 }
2405
2406 pages++;
2407 pobjects += page->objects - page->inuse;
2408
2409 page->pages = pages;
2410 page->pobjects = pobjects;
2411 page->next = oldpage;
2412
d0e0ac97
CG
2413 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2414 != oldpage);
bbd4e305 2415 if (unlikely(!slub_cpu_partial(s))) {
d6e0b7fa
VD
2416 unsigned long flags;
2417
2418 local_irq_save(flags);
2419 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2420 local_irq_restore(flags);
2421 }
2422 preempt_enable();
6dfd1b65 2423#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2424}
2425
dfb4f096 2426static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2427{
84e554e6 2428 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2429 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2430
2431 c->tid = next_tid(c->tid);
81819f0f
CL
2432}
2433
2434/*
2435 * Flush cpu slab.
6446faa2 2436 *
81819f0f
CL
2437 * Called from IPI handler with interrupts disabled.
2438 */
0c710013 2439static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2440{
9dfc6e68 2441 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2442
1265ef2d
WY
2443 if (c->page)
2444 flush_slab(s, c);
49e22585 2445
1265ef2d 2446 unfreeze_partials(s, c);
81819f0f
CL
2447}
2448
2449static void flush_cpu_slab(void *d)
2450{
2451 struct kmem_cache *s = d;
81819f0f 2452
dfb4f096 2453 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2454}
2455
a8364d55
GBY
2456static bool has_cpu_slab(int cpu, void *info)
2457{
2458 struct kmem_cache *s = info;
2459 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2460
a93cf07b 2461 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2462}
2463
81819f0f
CL
2464static void flush_all(struct kmem_cache *s)
2465{
cb923159 2466 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
81819f0f
CL
2467}
2468
a96a87bf
SAS
2469/*
2470 * Use the cpu notifier to insure that the cpu slabs are flushed when
2471 * necessary.
2472 */
2473static int slub_cpu_dead(unsigned int cpu)
2474{
2475 struct kmem_cache *s;
2476 unsigned long flags;
2477
2478 mutex_lock(&slab_mutex);
2479 list_for_each_entry(s, &slab_caches, list) {
2480 local_irq_save(flags);
2481 __flush_cpu_slab(s, cpu);
2482 local_irq_restore(flags);
2483 }
2484 mutex_unlock(&slab_mutex);
2485 return 0;
2486}
2487
dfb4f096
CL
2488/*
2489 * Check if the objects in a per cpu structure fit numa
2490 * locality expectations.
2491 */
57d437d2 2492static inline int node_match(struct page *page, int node)
dfb4f096
CL
2493{
2494#ifdef CONFIG_NUMA
6159d0f5 2495 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2496 return 0;
2497#endif
2498 return 1;
2499}
2500
9a02d699 2501#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2502static int count_free(struct page *page)
2503{
2504 return page->objects - page->inuse;
2505}
2506
9a02d699
DR
2507static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2508{
2509 return atomic_long_read(&n->total_objects);
2510}
2511#endif /* CONFIG_SLUB_DEBUG */
2512
2513#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2514static unsigned long count_partial(struct kmem_cache_node *n,
2515 int (*get_count)(struct page *))
2516{
2517 unsigned long flags;
2518 unsigned long x = 0;
2519 struct page *page;
2520
2521 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2522 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2523 x += get_count(page);
2524 spin_unlock_irqrestore(&n->list_lock, flags);
2525 return x;
2526}
9a02d699 2527#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2528
781b2ba6
PE
2529static noinline void
2530slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2531{
9a02d699
DR
2532#ifdef CONFIG_SLUB_DEBUG
2533 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2534 DEFAULT_RATELIMIT_BURST);
781b2ba6 2535 int node;
fa45dc25 2536 struct kmem_cache_node *n;
781b2ba6 2537
9a02d699
DR
2538 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2539 return;
2540
5b3810e5
VB
2541 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2542 nid, gfpflags, &gfpflags);
19af27af 2543 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2544 s->name, s->object_size, s->size, oo_order(s->oo),
2545 oo_order(s->min));
781b2ba6 2546
3b0efdfa 2547 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2548 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2549 s->name);
fa5ec8a1 2550
fa45dc25 2551 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2552 unsigned long nr_slabs;
2553 unsigned long nr_objs;
2554 unsigned long nr_free;
2555
26c02cf0
AB
2556 nr_free = count_partial(n, count_free);
2557 nr_slabs = node_nr_slabs(n);
2558 nr_objs = node_nr_objs(n);
781b2ba6 2559
f9f58285 2560 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2561 node, nr_slabs, nr_objs, nr_free);
2562 }
9a02d699 2563#endif
781b2ba6
PE
2564}
2565
497b66f2
CL
2566static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2567 int node, struct kmem_cache_cpu **pc)
2568{
6faa6833 2569 void *freelist;
188fd063
CL
2570 struct kmem_cache_cpu *c = *pc;
2571 struct page *page;
497b66f2 2572
128227e7
MW
2573 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2574
188fd063 2575 freelist = get_partial(s, flags, node, c);
497b66f2 2576
188fd063
CL
2577 if (freelist)
2578 return freelist;
2579
2580 page = new_slab(s, flags, node);
497b66f2 2581 if (page) {
7c8e0181 2582 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2583 if (c->page)
2584 flush_slab(s, c);
2585
2586 /*
2587 * No other reference to the page yet so we can
2588 * muck around with it freely without cmpxchg
2589 */
6faa6833 2590 freelist = page->freelist;
497b66f2
CL
2591 page->freelist = NULL;
2592
2593 stat(s, ALLOC_SLAB);
497b66f2
CL
2594 c->page = page;
2595 *pc = c;
edde82b6 2596 }
497b66f2 2597
6faa6833 2598 return freelist;
497b66f2
CL
2599}
2600
072bb0aa
MG
2601static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2602{
2603 if (unlikely(PageSlabPfmemalloc(page)))
2604 return gfp_pfmemalloc_allowed(gfpflags);
2605
2606 return true;
2607}
2608
213eeb9f 2609/*
d0e0ac97
CG
2610 * Check the page->freelist of a page and either transfer the freelist to the
2611 * per cpu freelist or deactivate the page.
213eeb9f
CL
2612 *
2613 * The page is still frozen if the return value is not NULL.
2614 *
2615 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2616 *
2617 * This function must be called with interrupt disabled.
213eeb9f
CL
2618 */
2619static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2620{
2621 struct page new;
2622 unsigned long counters;
2623 void *freelist;
2624
2625 do {
2626 freelist = page->freelist;
2627 counters = page->counters;
6faa6833 2628
213eeb9f 2629 new.counters = counters;
a0132ac0 2630 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2631
2632 new.inuse = page->objects;
2633 new.frozen = freelist != NULL;
2634
d24ac77f 2635 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2636 freelist, counters,
2637 NULL, new.counters,
2638 "get_freelist"));
2639
2640 return freelist;
2641}
2642
81819f0f 2643/*
894b8788
CL
2644 * Slow path. The lockless freelist is empty or we need to perform
2645 * debugging duties.
2646 *
894b8788
CL
2647 * Processing is still very fast if new objects have been freed to the
2648 * regular freelist. In that case we simply take over the regular freelist
2649 * as the lockless freelist and zap the regular freelist.
81819f0f 2650 *
894b8788
CL
2651 * If that is not working then we fall back to the partial lists. We take the
2652 * first element of the freelist as the object to allocate now and move the
2653 * rest of the freelist to the lockless freelist.
81819f0f 2654 *
894b8788 2655 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2656 * we need to allocate a new slab. This is the slowest path since it involves
2657 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2658 *
2659 * Version of __slab_alloc to use when we know that interrupts are
2660 * already disabled (which is the case for bulk allocation).
81819f0f 2661 */
a380a3c7 2662static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2663 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2664{
6faa6833 2665 void *freelist;
f6e7def7 2666 struct page *page;
81819f0f 2667
f6e7def7 2668 page = c->page;
0715e6c5
VB
2669 if (!page) {
2670 /*
2671 * if the node is not online or has no normal memory, just
2672 * ignore the node constraint
2673 */
2674 if (unlikely(node != NUMA_NO_NODE &&
2675 !node_state(node, N_NORMAL_MEMORY)))
2676 node = NUMA_NO_NODE;
81819f0f 2677 goto new_slab;
0715e6c5 2678 }
49e22585 2679redo:
6faa6833 2680
57d437d2 2681 if (unlikely(!node_match(page, node))) {
0715e6c5
VB
2682 /*
2683 * same as above but node_match() being false already
2684 * implies node != NUMA_NO_NODE
2685 */
2686 if (!node_state(node, N_NORMAL_MEMORY)) {
2687 node = NUMA_NO_NODE;
2688 goto redo;
2689 } else {
a561ce00 2690 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2691 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2692 goto new_slab;
2693 }
fc59c053 2694 }
6446faa2 2695
072bb0aa
MG
2696 /*
2697 * By rights, we should be searching for a slab page that was
2698 * PFMEMALLOC but right now, we are losing the pfmemalloc
2699 * information when the page leaves the per-cpu allocator
2700 */
2701 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2702 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2703 goto new_slab;
2704 }
2705
73736e03 2706 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2707 freelist = c->freelist;
2708 if (freelist)
73736e03 2709 goto load_freelist;
03e404af 2710
f6e7def7 2711 freelist = get_freelist(s, page);
6446faa2 2712
6faa6833 2713 if (!freelist) {
03e404af
CL
2714 c->page = NULL;
2715 stat(s, DEACTIVATE_BYPASS);
fc59c053 2716 goto new_slab;
03e404af 2717 }
6446faa2 2718
84e554e6 2719 stat(s, ALLOC_REFILL);
6446faa2 2720
894b8788 2721load_freelist:
507effea
CL
2722 /*
2723 * freelist is pointing to the list of objects to be used.
2724 * page is pointing to the page from which the objects are obtained.
2725 * That page must be frozen for per cpu allocations to work.
2726 */
a0132ac0 2727 VM_BUG_ON(!c->page->frozen);
6faa6833 2728 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2729 c->tid = next_tid(c->tid);
6faa6833 2730 return freelist;
81819f0f 2731
81819f0f 2732new_slab:
2cfb7455 2733
a93cf07b
WY
2734 if (slub_percpu_partial(c)) {
2735 page = c->page = slub_percpu_partial(c);
2736 slub_set_percpu_partial(c, page);
49e22585 2737 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2738 goto redo;
81819f0f
CL
2739 }
2740
188fd063 2741 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2742
f4697436 2743 if (unlikely(!freelist)) {
9a02d699 2744 slab_out_of_memory(s, gfpflags, node);
f4697436 2745 return NULL;
81819f0f 2746 }
2cfb7455 2747
f6e7def7 2748 page = c->page;
5091b74a 2749 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2750 goto load_freelist;
2cfb7455 2751
497b66f2 2752 /* Only entered in the debug case */
d0e0ac97
CG
2753 if (kmem_cache_debug(s) &&
2754 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2755 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2756
d4ff6d35 2757 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2758 return freelist;
894b8788
CL
2759}
2760
a380a3c7
CL
2761/*
2762 * Another one that disabled interrupt and compensates for possible
2763 * cpu changes by refetching the per cpu area pointer.
2764 */
2765static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2766 unsigned long addr, struct kmem_cache_cpu *c)
2767{
2768 void *p;
2769 unsigned long flags;
2770
2771 local_irq_save(flags);
923717cb 2772#ifdef CONFIG_PREEMPTION
a380a3c7
CL
2773 /*
2774 * We may have been preempted and rescheduled on a different
2775 * cpu before disabling interrupts. Need to reload cpu area
2776 * pointer.
2777 */
2778 c = this_cpu_ptr(s->cpu_slab);
2779#endif
2780
2781 p = ___slab_alloc(s, gfpflags, node, addr, c);
2782 local_irq_restore(flags);
2783 return p;
2784}
2785
0f181f9f
AP
2786/*
2787 * If the object has been wiped upon free, make sure it's fully initialized by
2788 * zeroing out freelist pointer.
2789 */
2790static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2791 void *obj)
2792{
2793 if (unlikely(slab_want_init_on_free(s)) && obj)
2794 memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2795}
2796
894b8788
CL
2797/*
2798 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2799 * have the fastpath folded into their functions. So no function call
2800 * overhead for requests that can be satisfied on the fastpath.
2801 *
2802 * The fastpath works by first checking if the lockless freelist can be used.
2803 * If not then __slab_alloc is called for slow processing.
2804 *
2805 * Otherwise we can simply pick the next object from the lockless free list.
2806 */
2b847c3c 2807static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2808 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2809{
03ec0ed5 2810 void *object;
dfb4f096 2811 struct kmem_cache_cpu *c;
57d437d2 2812 struct page *page;
8a5ec0ba 2813 unsigned long tid;
964d4bd3 2814 struct obj_cgroup *objcg = NULL;
1f84260c 2815
964d4bd3 2816 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
8135be5a 2817 if (!s)
773ff60e 2818 return NULL;
8a5ec0ba 2819redo:
8a5ec0ba
CL
2820 /*
2821 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2822 * enabled. We may switch back and forth between cpus while
2823 * reading from one cpu area. That does not matter as long
2824 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2825 *
9aabf810 2826 * We should guarantee that tid and kmem_cache are retrieved on
923717cb 2827 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
9aabf810 2828 * to check if it is matched or not.
8a5ec0ba 2829 */
9aabf810
JK
2830 do {
2831 tid = this_cpu_read(s->cpu_slab->tid);
2832 c = raw_cpu_ptr(s->cpu_slab);
923717cb 2833 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 2834 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2835
2836 /*
2837 * Irqless object alloc/free algorithm used here depends on sequence
2838 * of fetching cpu_slab's data. tid should be fetched before anything
2839 * on c to guarantee that object and page associated with previous tid
2840 * won't be used with current tid. If we fetch tid first, object and
2841 * page could be one associated with next tid and our alloc/free
2842 * request will be failed. In this case, we will retry. So, no problem.
2843 */
2844 barrier();
8a5ec0ba 2845
8a5ec0ba
CL
2846 /*
2847 * The transaction ids are globally unique per cpu and per operation on
2848 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2849 * occurs on the right processor and that there was no operation on the
2850 * linked list in between.
2851 */
8a5ec0ba 2852
9dfc6e68 2853 object = c->freelist;
57d437d2 2854 page = c->page;
8eae1492 2855 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2856 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2857 stat(s, ALLOC_SLOWPATH);
2858 } else {
0ad9500e
ED
2859 void *next_object = get_freepointer_safe(s, object);
2860
8a5ec0ba 2861 /*
25985edc 2862 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2863 * operation and if we are on the right processor.
2864 *
d0e0ac97
CG
2865 * The cmpxchg does the following atomically (without lock
2866 * semantics!)
8a5ec0ba
CL
2867 * 1. Relocate first pointer to the current per cpu area.
2868 * 2. Verify that tid and freelist have not been changed
2869 * 3. If they were not changed replace tid and freelist
2870 *
d0e0ac97
CG
2871 * Since this is without lock semantics the protection is only
2872 * against code executing on this cpu *not* from access by
2873 * other cpus.
8a5ec0ba 2874 */
933393f5 2875 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2876 s->cpu_slab->freelist, s->cpu_slab->tid,
2877 object, tid,
0ad9500e 2878 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2879
2880 note_cmpxchg_failure("slab_alloc", s, tid);
2881 goto redo;
2882 }
0ad9500e 2883 prefetch_freepointer(s, next_object);
84e554e6 2884 stat(s, ALLOC_FASTPATH);
894b8788 2885 }
0f181f9f
AP
2886
2887 maybe_wipe_obj_freeptr(s, object);
8a5ec0ba 2888
6471384a 2889 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
3b0efdfa 2890 memset(object, 0, s->object_size);
d07dbea4 2891
964d4bd3 2892 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object);
5a896d9e 2893
894b8788 2894 return object;
81819f0f
CL
2895}
2896
2b847c3c
EG
2897static __always_inline void *slab_alloc(struct kmem_cache *s,
2898 gfp_t gfpflags, unsigned long addr)
2899{
2900 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2901}
2902
81819f0f
CL
2903void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2904{
2b847c3c 2905 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2906
d0e0ac97
CG
2907 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2908 s->size, gfpflags);
5b882be4
EGM
2909
2910 return ret;
81819f0f
CL
2911}
2912EXPORT_SYMBOL(kmem_cache_alloc);
2913
0f24f128 2914#ifdef CONFIG_TRACING
4a92379b
RK
2915void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2916{
2b847c3c 2917 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2918 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 2919 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2920 return ret;
2921}
2922EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2923#endif
2924
81819f0f
CL
2925#ifdef CONFIG_NUMA
2926void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2927{
2b847c3c 2928 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2929
ca2b84cb 2930 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2931 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2932
2933 return ret;
81819f0f
CL
2934}
2935EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2936
0f24f128 2937#ifdef CONFIG_TRACING
4a92379b 2938void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2939 gfp_t gfpflags,
4a92379b 2940 int node, size_t size)
5b882be4 2941{
2b847c3c 2942 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2943
2944 trace_kmalloc_node(_RET_IP_, ret,
2945 size, s->size, gfpflags, node);
0316bec2 2946
0116523c 2947 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2948 return ret;
5b882be4 2949}
4a92379b 2950EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2951#endif
6dfd1b65 2952#endif /* CONFIG_NUMA */
5b882be4 2953
81819f0f 2954/*
94e4d712 2955 * Slow path handling. This may still be called frequently since objects
894b8788 2956 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2957 *
894b8788
CL
2958 * So we still attempt to reduce cache line usage. Just take the slab
2959 * lock and free the item. If there is no additional partial page
2960 * handling required then we can return immediately.
81819f0f 2961 */
894b8788 2962static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2963 void *head, void *tail, int cnt,
2964 unsigned long addr)
2965
81819f0f
CL
2966{
2967 void *prior;
2cfb7455 2968 int was_frozen;
2cfb7455
CL
2969 struct page new;
2970 unsigned long counters;
2971 struct kmem_cache_node *n = NULL;
3f649ab7 2972 unsigned long flags;
81819f0f 2973
8a5ec0ba 2974 stat(s, FREE_SLOWPATH);
81819f0f 2975
19c7ff9e 2976 if (kmem_cache_debug(s) &&
282acb43 2977 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2978 return;
6446faa2 2979
2cfb7455 2980 do {
837d678d
JK
2981 if (unlikely(n)) {
2982 spin_unlock_irqrestore(&n->list_lock, flags);
2983 n = NULL;
2984 }
2cfb7455
CL
2985 prior = page->freelist;
2986 counters = page->counters;
81084651 2987 set_freepointer(s, tail, prior);
2cfb7455
CL
2988 new.counters = counters;
2989 was_frozen = new.frozen;
81084651 2990 new.inuse -= cnt;
837d678d 2991 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2992
c65c1877 2993 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2994
2995 /*
d0e0ac97
CG
2996 * Slab was on no list before and will be
2997 * partially empty
2998 * We can defer the list move and instead
2999 * freeze it.
49e22585
CL
3000 */
3001 new.frozen = 1;
3002
c65c1877 3003 } else { /* Needs to be taken off a list */
49e22585 3004
b455def2 3005 n = get_node(s, page_to_nid(page));
49e22585
CL
3006 /*
3007 * Speculatively acquire the list_lock.
3008 * If the cmpxchg does not succeed then we may
3009 * drop the list_lock without any processing.
3010 *
3011 * Otherwise the list_lock will synchronize with
3012 * other processors updating the list of slabs.
3013 */
3014 spin_lock_irqsave(&n->list_lock, flags);
3015
3016 }
2cfb7455 3017 }
81819f0f 3018
2cfb7455
CL
3019 } while (!cmpxchg_double_slab(s, page,
3020 prior, counters,
81084651 3021 head, new.counters,
2cfb7455 3022 "__slab_free"));
81819f0f 3023
2cfb7455 3024 if (likely(!n)) {
49e22585
CL
3025
3026 /*
3027 * If we just froze the page then put it onto the
3028 * per cpu partial list.
3029 */
8028dcea 3030 if (new.frozen && !was_frozen) {
49e22585 3031 put_cpu_partial(s, page, 1);
8028dcea
AS
3032 stat(s, CPU_PARTIAL_FREE);
3033 }
49e22585 3034 /*
2cfb7455
CL
3035 * The list lock was not taken therefore no list
3036 * activity can be necessary.
3037 */
b455def2
L
3038 if (was_frozen)
3039 stat(s, FREE_FROZEN);
3040 return;
3041 }
81819f0f 3042
8a5b20ae 3043 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
3044 goto slab_empty;
3045
81819f0f 3046 /*
837d678d
JK
3047 * Objects left in the slab. If it was not on the partial list before
3048 * then add it.
81819f0f 3049 */
345c905d 3050 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 3051 remove_full(s, n, page);
837d678d
JK
3052 add_partial(n, page, DEACTIVATE_TO_TAIL);
3053 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 3054 }
80f08c19 3055 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
3056 return;
3057
3058slab_empty:
a973e9dd 3059 if (prior) {
81819f0f 3060 /*
6fbabb20 3061 * Slab on the partial list.
81819f0f 3062 */
5cc6eee8 3063 remove_partial(n, page);
84e554e6 3064 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 3065 } else {
6fbabb20 3066 /* Slab must be on the full list */
c65c1877
PZ
3067 remove_full(s, n, page);
3068 }
2cfb7455 3069
80f08c19 3070 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 3071 stat(s, FREE_SLAB);
81819f0f 3072 discard_slab(s, page);
81819f0f
CL
3073}
3074
894b8788
CL
3075/*
3076 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3077 * can perform fastpath freeing without additional function calls.
3078 *
3079 * The fastpath is only possible if we are freeing to the current cpu slab
3080 * of this processor. This typically the case if we have just allocated
3081 * the item before.
3082 *
3083 * If fastpath is not possible then fall back to __slab_free where we deal
3084 * with all sorts of special processing.
81084651
JDB
3085 *
3086 * Bulk free of a freelist with several objects (all pointing to the
3087 * same page) possible by specifying head and tail ptr, plus objects
3088 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 3089 */
80a9201a
AP
3090static __always_inline void do_slab_free(struct kmem_cache *s,
3091 struct page *page, void *head, void *tail,
3092 int cnt, unsigned long addr)
894b8788 3093{
81084651 3094 void *tail_obj = tail ? : head;
dfb4f096 3095 struct kmem_cache_cpu *c;
8a5ec0ba 3096 unsigned long tid;
964d4bd3
RG
3097
3098 memcg_slab_free_hook(s, page, head);
8a5ec0ba
CL
3099redo:
3100 /*
3101 * Determine the currently cpus per cpu slab.
3102 * The cpu may change afterward. However that does not matter since
3103 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3104 * during the cmpxchg then the free will succeed.
8a5ec0ba 3105 */
9aabf810
JK
3106 do {
3107 tid = this_cpu_read(s->cpu_slab->tid);
3108 c = raw_cpu_ptr(s->cpu_slab);
923717cb 3109 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 3110 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 3111
9aabf810
JK
3112 /* Same with comment on barrier() in slab_alloc_node() */
3113 barrier();
c016b0bd 3114
442b06bc 3115 if (likely(page == c->page)) {
5076190d
LT
3116 void **freelist = READ_ONCE(c->freelist);
3117
3118 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3119
933393f5 3120 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba 3121 s->cpu_slab->freelist, s->cpu_slab->tid,
5076190d 3122 freelist, tid,
81084651 3123 head, next_tid(tid)))) {
8a5ec0ba
CL
3124
3125 note_cmpxchg_failure("slab_free", s, tid);
3126 goto redo;
3127 }
84e554e6 3128 stat(s, FREE_FASTPATH);
894b8788 3129 } else
81084651 3130 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 3131
894b8788
CL
3132}
3133
80a9201a
AP
3134static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3135 void *head, void *tail, int cnt,
3136 unsigned long addr)
3137{
80a9201a 3138 /*
c3895391
AK
3139 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3140 * to remove objects, whose reuse must be delayed.
80a9201a 3141 */
c3895391
AK
3142 if (slab_free_freelist_hook(s, &head, &tail))
3143 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3144}
3145
2bd926b4 3146#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3147void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3148{
3149 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3150}
3151#endif
3152
81819f0f
CL
3153void kmem_cache_free(struct kmem_cache *s, void *x)
3154{
b9ce5ef4
GC
3155 s = cache_from_obj(s, x);
3156 if (!s)
79576102 3157 return;
81084651 3158 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 3159 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
3160}
3161EXPORT_SYMBOL(kmem_cache_free);
3162
d0ecd894 3163struct detached_freelist {
fbd02630 3164 struct page *page;
d0ecd894
JDB
3165 void *tail;
3166 void *freelist;
3167 int cnt;
376bf125 3168 struct kmem_cache *s;
d0ecd894 3169};
fbd02630 3170
d0ecd894
JDB
3171/*
3172 * This function progressively scans the array with free objects (with
3173 * a limited look ahead) and extract objects belonging to the same
3174 * page. It builds a detached freelist directly within the given
3175 * page/objects. This can happen without any need for
3176 * synchronization, because the objects are owned by running process.
3177 * The freelist is build up as a single linked list in the objects.
3178 * The idea is, that this detached freelist can then be bulk
3179 * transferred to the real freelist(s), but only requiring a single
3180 * synchronization primitive. Look ahead in the array is limited due
3181 * to performance reasons.
3182 */
376bf125
JDB
3183static inline
3184int build_detached_freelist(struct kmem_cache *s, size_t size,
3185 void **p, struct detached_freelist *df)
d0ecd894
JDB
3186{
3187 size_t first_skipped_index = 0;
3188 int lookahead = 3;
3189 void *object;
ca257195 3190 struct page *page;
fbd02630 3191
d0ecd894
JDB
3192 /* Always re-init detached_freelist */
3193 df->page = NULL;
fbd02630 3194
d0ecd894
JDB
3195 do {
3196 object = p[--size];
ca257195 3197 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3198 } while (!object && size);
3eed034d 3199
d0ecd894
JDB
3200 if (!object)
3201 return 0;
fbd02630 3202
ca257195
JDB
3203 page = virt_to_head_page(object);
3204 if (!s) {
3205 /* Handle kalloc'ed objects */
3206 if (unlikely(!PageSlab(page))) {
3207 BUG_ON(!PageCompound(page));
3208 kfree_hook(object);
4949148a 3209 __free_pages(page, compound_order(page));
ca257195
JDB
3210 p[size] = NULL; /* mark object processed */
3211 return size;
3212 }
3213 /* Derive kmem_cache from object */
3214 df->s = page->slab_cache;
3215 } else {
3216 df->s = cache_from_obj(s, object); /* Support for memcg */
3217 }
376bf125 3218
d0ecd894 3219 /* Start new detached freelist */
ca257195 3220 df->page = page;
376bf125 3221 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3222 df->tail = object;
3223 df->freelist = object;
3224 p[size] = NULL; /* mark object processed */
3225 df->cnt = 1;
3226
3227 while (size) {
3228 object = p[--size];
3229 if (!object)
3230 continue; /* Skip processed objects */
3231
3232 /* df->page is always set at this point */
3233 if (df->page == virt_to_head_page(object)) {
3234 /* Opportunity build freelist */
376bf125 3235 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3236 df->freelist = object;
3237 df->cnt++;
3238 p[size] = NULL; /* mark object processed */
3239
3240 continue;
fbd02630 3241 }
d0ecd894
JDB
3242
3243 /* Limit look ahead search */
3244 if (!--lookahead)
3245 break;
3246
3247 if (!first_skipped_index)
3248 first_skipped_index = size + 1;
fbd02630 3249 }
d0ecd894
JDB
3250
3251 return first_skipped_index;
3252}
3253
d0ecd894 3254/* Note that interrupts must be enabled when calling this function. */
376bf125 3255void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3256{
3257 if (WARN_ON(!size))
3258 return;
3259
3260 do {
3261 struct detached_freelist df;
3262
3263 size = build_detached_freelist(s, size, p, &df);
84582c8a 3264 if (!df.page)
d0ecd894
JDB
3265 continue;
3266
376bf125 3267 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3268 } while (likely(size));
484748f0
CL
3269}
3270EXPORT_SYMBOL(kmem_cache_free_bulk);
3271
994eb764 3272/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3273int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3274 void **p)
484748f0 3275{
994eb764
JDB
3276 struct kmem_cache_cpu *c;
3277 int i;
964d4bd3 3278 struct obj_cgroup *objcg = NULL;
994eb764 3279
03ec0ed5 3280 /* memcg and kmem_cache debug support */
964d4bd3 3281 s = slab_pre_alloc_hook(s, &objcg, size, flags);
03ec0ed5
JDB
3282 if (unlikely(!s))
3283 return false;
994eb764
JDB
3284 /*
3285 * Drain objects in the per cpu slab, while disabling local
3286 * IRQs, which protects against PREEMPT and interrupts
3287 * handlers invoking normal fastpath.
3288 */
3289 local_irq_disable();
3290 c = this_cpu_ptr(s->cpu_slab);
3291
3292 for (i = 0; i < size; i++) {
3293 void *object = c->freelist;
3294
ebe909e0 3295 if (unlikely(!object)) {
fd4d9c7d
JH
3296 /*
3297 * We may have removed an object from c->freelist using
3298 * the fastpath in the previous iteration; in that case,
3299 * c->tid has not been bumped yet.
3300 * Since ___slab_alloc() may reenable interrupts while
3301 * allocating memory, we should bump c->tid now.
3302 */
3303 c->tid = next_tid(c->tid);
3304
ebe909e0
JDB
3305 /*
3306 * Invoking slow path likely have side-effect
3307 * of re-populating per CPU c->freelist
3308 */
87098373 3309 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3310 _RET_IP_, c);
87098373
CL
3311 if (unlikely(!p[i]))
3312 goto error;
3313
ebe909e0 3314 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3315 maybe_wipe_obj_freeptr(s, p[i]);
3316
ebe909e0
JDB
3317 continue; /* goto for-loop */
3318 }
994eb764
JDB
3319 c->freelist = get_freepointer(s, object);
3320 p[i] = object;
0f181f9f 3321 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3322 }
3323 c->tid = next_tid(c->tid);
3324 local_irq_enable();
3325
3326 /* Clear memory outside IRQ disabled fastpath loop */
6471384a 3327 if (unlikely(slab_want_init_on_alloc(flags, s))) {
994eb764
JDB
3328 int j;
3329
3330 for (j = 0; j < i; j++)
3331 memset(p[j], 0, s->object_size);
3332 }
3333
03ec0ed5 3334 /* memcg and kmem_cache debug support */
964d4bd3 3335 slab_post_alloc_hook(s, objcg, flags, size, p);
865762a8 3336 return i;
87098373 3337error:
87098373 3338 local_irq_enable();
964d4bd3 3339 slab_post_alloc_hook(s, objcg, flags, i, p);
03ec0ed5 3340 __kmem_cache_free_bulk(s, i, p);
865762a8 3341 return 0;
484748f0
CL
3342}
3343EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3344
3345
81819f0f 3346/*
672bba3a
CL
3347 * Object placement in a slab is made very easy because we always start at
3348 * offset 0. If we tune the size of the object to the alignment then we can
3349 * get the required alignment by putting one properly sized object after
3350 * another.
81819f0f
CL
3351 *
3352 * Notice that the allocation order determines the sizes of the per cpu
3353 * caches. Each processor has always one slab available for allocations.
3354 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3355 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3356 * locking overhead.
81819f0f
CL
3357 */
3358
3359/*
3360 * Mininum / Maximum order of slab pages. This influences locking overhead
3361 * and slab fragmentation. A higher order reduces the number of partial slabs
3362 * and increases the number of allocations possible without having to
3363 * take the list_lock.
3364 */
19af27af
AD
3365static unsigned int slub_min_order;
3366static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3367static unsigned int slub_min_objects;
81819f0f 3368
81819f0f
CL
3369/*
3370 * Calculate the order of allocation given an slab object size.
3371 *
672bba3a
CL
3372 * The order of allocation has significant impact on performance and other
3373 * system components. Generally order 0 allocations should be preferred since
3374 * order 0 does not cause fragmentation in the page allocator. Larger objects
3375 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3376 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3377 * would be wasted.
3378 *
3379 * In order to reach satisfactory performance we must ensure that a minimum
3380 * number of objects is in one slab. Otherwise we may generate too much
3381 * activity on the partial lists which requires taking the list_lock. This is
3382 * less a concern for large slabs though which are rarely used.
81819f0f 3383 *
672bba3a
CL
3384 * slub_max_order specifies the order where we begin to stop considering the
3385 * number of objects in a slab as critical. If we reach slub_max_order then
3386 * we try to keep the page order as low as possible. So we accept more waste
3387 * of space in favor of a small page order.
81819f0f 3388 *
672bba3a
CL
3389 * Higher order allocations also allow the placement of more objects in a
3390 * slab and thereby reduce object handling overhead. If the user has
3391 * requested a higher mininum order then we start with that one instead of
3392 * the smallest order which will fit the object.
81819f0f 3393 */
19af27af
AD
3394static inline unsigned int slab_order(unsigned int size,
3395 unsigned int min_objects, unsigned int max_order,
9736d2a9 3396 unsigned int fract_leftover)
81819f0f 3397{
19af27af
AD
3398 unsigned int min_order = slub_min_order;
3399 unsigned int order;
81819f0f 3400
9736d2a9 3401 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3402 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3403
9736d2a9 3404 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3405 order <= max_order; order++) {
81819f0f 3406
19af27af
AD
3407 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3408 unsigned int rem;
81819f0f 3409
9736d2a9 3410 rem = slab_size % size;
81819f0f 3411
5e6d444e 3412 if (rem <= slab_size / fract_leftover)
81819f0f 3413 break;
81819f0f 3414 }
672bba3a 3415
81819f0f
CL
3416 return order;
3417}
3418
9736d2a9 3419static inline int calculate_order(unsigned int size)
5e6d444e 3420{
19af27af
AD
3421 unsigned int order;
3422 unsigned int min_objects;
3423 unsigned int max_objects;
5e6d444e
CL
3424
3425 /*
3426 * Attempt to find best configuration for a slab. This
3427 * works by first attempting to generate a layout with
3428 * the best configuration and backing off gradually.
3429 *
422ff4d7 3430 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3431 * we reduce the minimum objects required in a slab.
3432 */
3433 min_objects = slub_min_objects;
9b2cd506
CL
3434 if (!min_objects)
3435 min_objects = 4 * (fls(nr_cpu_ids) + 1);
9736d2a9 3436 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3437 min_objects = min(min_objects, max_objects);
3438
5e6d444e 3439 while (min_objects > 1) {
19af27af
AD
3440 unsigned int fraction;
3441
c124f5b5 3442 fraction = 16;
5e6d444e
CL
3443 while (fraction >= 4) {
3444 order = slab_order(size, min_objects,
9736d2a9 3445 slub_max_order, fraction);
5e6d444e
CL
3446 if (order <= slub_max_order)
3447 return order;
3448 fraction /= 2;
3449 }
5086c389 3450 min_objects--;
5e6d444e
CL
3451 }
3452
3453 /*
3454 * We were unable to place multiple objects in a slab. Now
3455 * lets see if we can place a single object there.
3456 */
9736d2a9 3457 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3458 if (order <= slub_max_order)
3459 return order;
3460
3461 /*
3462 * Doh this slab cannot be placed using slub_max_order.
3463 */
9736d2a9 3464 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3465 if (order < MAX_ORDER)
5e6d444e
CL
3466 return order;
3467 return -ENOSYS;
3468}
3469
5595cffc 3470static void
4053497d 3471init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3472{
3473 n->nr_partial = 0;
81819f0f
CL
3474 spin_lock_init(&n->list_lock);
3475 INIT_LIST_HEAD(&n->partial);
8ab1372f 3476#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3477 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3478 atomic_long_set(&n->total_objects, 0);
643b1138 3479 INIT_LIST_HEAD(&n->full);
8ab1372f 3480#endif
81819f0f
CL
3481}
3482
55136592 3483static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3484{
6c182dc0 3485 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3486 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3487
8a5ec0ba 3488 /*
d4d84fef
CM
3489 * Must align to double word boundary for the double cmpxchg
3490 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3491 */
d4d84fef
CM
3492 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3493 2 * sizeof(void *));
8a5ec0ba
CL
3494
3495 if (!s->cpu_slab)
3496 return 0;
3497
3498 init_kmem_cache_cpus(s);
4c93c355 3499
8a5ec0ba 3500 return 1;
4c93c355 3501}
4c93c355 3502
51df1142
CL
3503static struct kmem_cache *kmem_cache_node;
3504
81819f0f
CL
3505/*
3506 * No kmalloc_node yet so do it by hand. We know that this is the first
3507 * slab on the node for this slabcache. There are no concurrent accesses
3508 * possible.
3509 *
721ae22a
ZYW
3510 * Note that this function only works on the kmem_cache_node
3511 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3512 * memory on a fresh node that has no slab structures yet.
81819f0f 3513 */
55136592 3514static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3515{
3516 struct page *page;
3517 struct kmem_cache_node *n;
3518
51df1142 3519 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3520
51df1142 3521 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3522
3523 BUG_ON(!page);
a2f92ee7 3524 if (page_to_nid(page) != node) {
f9f58285
FF
3525 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3526 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3527 }
3528
81819f0f
CL
3529 n = page->freelist;
3530 BUG_ON(!n);
8ab1372f 3531#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3532 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3533 init_tracking(kmem_cache_node, n);
8ab1372f 3534#endif
12b22386 3535 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
505f5dcb 3536 GFP_KERNEL);
12b22386
AK
3537 page->freelist = get_freepointer(kmem_cache_node, n);
3538 page->inuse = 1;
3539 page->frozen = 0;
3540 kmem_cache_node->node[node] = n;
4053497d 3541 init_kmem_cache_node(n);
51df1142 3542 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3543
67b6c900 3544 /*
1e4dd946
SR
3545 * No locks need to be taken here as it has just been
3546 * initialized and there is no concurrent access.
67b6c900 3547 */
1e4dd946 3548 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3549}
3550
3551static void free_kmem_cache_nodes(struct kmem_cache *s)
3552{
3553 int node;
fa45dc25 3554 struct kmem_cache_node *n;
81819f0f 3555
fa45dc25 3556 for_each_kmem_cache_node(s, node, n) {
81819f0f 3557 s->node[node] = NULL;
ea37df54 3558 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3559 }
3560}
3561
52b4b950
DS
3562void __kmem_cache_release(struct kmem_cache *s)
3563{
210e7a43 3564 cache_random_seq_destroy(s);
52b4b950
DS
3565 free_percpu(s->cpu_slab);
3566 free_kmem_cache_nodes(s);
3567}
3568
55136592 3569static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3570{
3571 int node;
81819f0f 3572
f64dc58c 3573 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3574 struct kmem_cache_node *n;
3575
73367bd8 3576 if (slab_state == DOWN) {
55136592 3577 early_kmem_cache_node_alloc(node);
73367bd8
AD
3578 continue;
3579 }
51df1142 3580 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3581 GFP_KERNEL, node);
81819f0f 3582
73367bd8
AD
3583 if (!n) {
3584 free_kmem_cache_nodes(s);
3585 return 0;
81819f0f 3586 }
73367bd8 3587
4053497d 3588 init_kmem_cache_node(n);
ea37df54 3589 s->node[node] = n;
81819f0f
CL
3590 }
3591 return 1;
3592}
81819f0f 3593
c0bdb232 3594static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3595{
3596 if (min < MIN_PARTIAL)
3597 min = MIN_PARTIAL;
3598 else if (min > MAX_PARTIAL)
3599 min = MAX_PARTIAL;
3600 s->min_partial = min;
3601}
3602
e6d0e1dc
WY
3603static void set_cpu_partial(struct kmem_cache *s)
3604{
3605#ifdef CONFIG_SLUB_CPU_PARTIAL
3606 /*
3607 * cpu_partial determined the maximum number of objects kept in the
3608 * per cpu partial lists of a processor.
3609 *
3610 * Per cpu partial lists mainly contain slabs that just have one
3611 * object freed. If they are used for allocation then they can be
3612 * filled up again with minimal effort. The slab will never hit the
3613 * per node partial lists and therefore no locking will be required.
3614 *
3615 * This setting also determines
3616 *
3617 * A) The number of objects from per cpu partial slabs dumped to the
3618 * per node list when we reach the limit.
3619 * B) The number of objects in cpu partial slabs to extract from the
3620 * per node list when we run out of per cpu objects. We only fetch
3621 * 50% to keep some capacity around for frees.
3622 */
3623 if (!kmem_cache_has_cpu_partial(s))
bbd4e305 3624 slub_set_cpu_partial(s, 0);
e6d0e1dc 3625 else if (s->size >= PAGE_SIZE)
bbd4e305 3626 slub_set_cpu_partial(s, 2);
e6d0e1dc 3627 else if (s->size >= 1024)
bbd4e305 3628 slub_set_cpu_partial(s, 6);
e6d0e1dc 3629 else if (s->size >= 256)
bbd4e305 3630 slub_set_cpu_partial(s, 13);
e6d0e1dc 3631 else
bbd4e305 3632 slub_set_cpu_partial(s, 30);
e6d0e1dc
WY
3633#endif
3634}
3635
81819f0f
CL
3636/*
3637 * calculate_sizes() determines the order and the distribution of data within
3638 * a slab object.
3639 */
06b285dc 3640static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3641{
d50112ed 3642 slab_flags_t flags = s->flags;
be4a7988 3643 unsigned int size = s->object_size;
89b83f28 3644 unsigned int freepointer_area;
19af27af 3645 unsigned int order;
81819f0f 3646
d8b42bf5
CL
3647 /*
3648 * Round up object size to the next word boundary. We can only
3649 * place the free pointer at word boundaries and this determines
3650 * the possible location of the free pointer.
3651 */
3652 size = ALIGN(size, sizeof(void *));
89b83f28
KC
3653 /*
3654 * This is the area of the object where a freepointer can be
3655 * safely written. If redzoning adds more to the inuse size, we
3656 * can't use that portion for writing the freepointer, so
3657 * s->offset must be limited within this for the general case.
3658 */
3659 freepointer_area = size;
d8b42bf5
CL
3660
3661#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3662 /*
3663 * Determine if we can poison the object itself. If the user of
3664 * the slab may touch the object after free or before allocation
3665 * then we should never poison the object itself.
3666 */
5f0d5a3a 3667 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3668 !s->ctor)
81819f0f
CL
3669 s->flags |= __OBJECT_POISON;
3670 else
3671 s->flags &= ~__OBJECT_POISON;
3672
81819f0f
CL
3673
3674 /*
672bba3a 3675 * If we are Redzoning then check if there is some space between the
81819f0f 3676 * end of the object and the free pointer. If not then add an
672bba3a 3677 * additional word to have some bytes to store Redzone information.
81819f0f 3678 */
3b0efdfa 3679 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3680 size += sizeof(void *);
41ecc55b 3681#endif
81819f0f
CL
3682
3683 /*
672bba3a
CL
3684 * With that we have determined the number of bytes in actual use
3685 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3686 */
3687 s->inuse = size;
3688
5f0d5a3a 3689 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3690 s->ctor)) {
81819f0f
CL
3691 /*
3692 * Relocate free pointer after the object if it is not
3693 * permitted to overwrite the first word of the object on
3694 * kmem_cache_free.
3695 *
3696 * This is the case if we do RCU, have a constructor or
3697 * destructor or are poisoning the objects.
cbfc35a4
WL
3698 *
3699 * The assumption that s->offset >= s->inuse means free
3700 * pointer is outside of the object is used in the
3701 * freeptr_outside_object() function. If that is no
3702 * longer true, the function needs to be modified.
81819f0f
CL
3703 */
3704 s->offset = size;
3705 size += sizeof(void *);
89b83f28 3706 } else if (freepointer_area > sizeof(void *)) {
3202fa62
KC
3707 /*
3708 * Store freelist pointer near middle of object to keep
3709 * it away from the edges of the object to avoid small
3710 * sized over/underflows from neighboring allocations.
3711 */
89b83f28 3712 s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
81819f0f
CL
3713 }
3714
c12b3c62 3715#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3716 if (flags & SLAB_STORE_USER)
3717 /*
3718 * Need to store information about allocs and frees after
3719 * the object.
3720 */
3721 size += 2 * sizeof(struct track);
80a9201a 3722#endif
81819f0f 3723
80a9201a
AP
3724 kasan_cache_create(s, &size, &s->flags);
3725#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3726 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3727 /*
3728 * Add some empty padding so that we can catch
3729 * overwrites from earlier objects rather than let
3730 * tracking information or the free pointer be
0211a9c8 3731 * corrupted if a user writes before the start
81819f0f
CL
3732 * of the object.
3733 */
3734 size += sizeof(void *);
d86bd1be
JK
3735
3736 s->red_left_pad = sizeof(void *);
3737 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3738 size += s->red_left_pad;
3739 }
41ecc55b 3740#endif
672bba3a 3741
81819f0f
CL
3742 /*
3743 * SLUB stores one object immediately after another beginning from
3744 * offset 0. In order to align the objects we have to simply size
3745 * each object to conform to the alignment.
3746 */
45906855 3747 size = ALIGN(size, s->align);
81819f0f 3748 s->size = size;
4138fdfc 3749 s->reciprocal_size = reciprocal_value(size);
06b285dc
CL
3750 if (forced_order >= 0)
3751 order = forced_order;
3752 else
9736d2a9 3753 order = calculate_order(size);
81819f0f 3754
19af27af 3755 if ((int)order < 0)
81819f0f
CL
3756 return 0;
3757
b7a49f0d 3758 s->allocflags = 0;
834f3d11 3759 if (order)
b7a49f0d
CL
3760 s->allocflags |= __GFP_COMP;
3761
3762 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3763 s->allocflags |= GFP_DMA;
b7a49f0d 3764
6d6ea1e9
NB
3765 if (s->flags & SLAB_CACHE_DMA32)
3766 s->allocflags |= GFP_DMA32;
3767
b7a49f0d
CL
3768 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3769 s->allocflags |= __GFP_RECLAIMABLE;
3770
81819f0f
CL
3771 /*
3772 * Determine the number of objects per slab
3773 */
9736d2a9
MW
3774 s->oo = oo_make(order, size);
3775 s->min = oo_make(get_order(size), size);
205ab99d
CL
3776 if (oo_objects(s->oo) > oo_objects(s->max))
3777 s->max = s->oo;
81819f0f 3778
834f3d11 3779 return !!oo_objects(s->oo);
81819f0f
CL
3780}
3781
d50112ed 3782static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3783{
8a13a4cc 3784 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
2482ddec
KC
3785#ifdef CONFIG_SLAB_FREELIST_HARDENED
3786 s->random = get_random_long();
3787#endif
81819f0f 3788
06b285dc 3789 if (!calculate_sizes(s, -1))
81819f0f 3790 goto error;
3de47213
DR
3791 if (disable_higher_order_debug) {
3792 /*
3793 * Disable debugging flags that store metadata if the min slab
3794 * order increased.
3795 */
3b0efdfa 3796 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3797 s->flags &= ~DEBUG_METADATA_FLAGS;
3798 s->offset = 0;
3799 if (!calculate_sizes(s, -1))
3800 goto error;
3801 }
3802 }
81819f0f 3803
2565409f
HC
3804#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3805 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3806 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3807 /* Enable fast mode */
3808 s->flags |= __CMPXCHG_DOUBLE;
3809#endif
3810
3b89d7d8
DR
3811 /*
3812 * The larger the object size is, the more pages we want on the partial
3813 * list to avoid pounding the page allocator excessively.
3814 */
49e22585
CL
3815 set_min_partial(s, ilog2(s->size) / 2);
3816
e6d0e1dc 3817 set_cpu_partial(s);
49e22585 3818
81819f0f 3819#ifdef CONFIG_NUMA
e2cb96b7 3820 s->remote_node_defrag_ratio = 1000;
81819f0f 3821#endif
210e7a43
TG
3822
3823 /* Initialize the pre-computed randomized freelist if slab is up */
3824 if (slab_state >= UP) {
3825 if (init_cache_random_seq(s))
3826 goto error;
3827 }
3828
55136592 3829 if (!init_kmem_cache_nodes(s))
dfb4f096 3830 goto error;
81819f0f 3831
55136592 3832 if (alloc_kmem_cache_cpus(s))
278b1bb1 3833 return 0;
ff12059e 3834
4c93c355 3835 free_kmem_cache_nodes(s);
81819f0f 3836error:
278b1bb1 3837 return -EINVAL;
81819f0f 3838}
81819f0f 3839
33b12c38 3840static void list_slab_objects(struct kmem_cache *s, struct page *page,
55860d96 3841 const char *text)
33b12c38
CL
3842{
3843#ifdef CONFIG_SLUB_DEBUG
3844 void *addr = page_address(page);
55860d96 3845 unsigned long *map;
33b12c38 3846 void *p;
aa456c7a 3847
945cf2b6 3848 slab_err(s, page, text, s->name);
33b12c38 3849 slab_lock(page);
33b12c38 3850
90e9f6a6 3851 map = get_map(s, page);
33b12c38
CL
3852 for_each_object(p, s, addr, page->objects) {
3853
4138fdfc 3854 if (!test_bit(__obj_to_index(s, addr, p), map)) {
f9f58285 3855 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3856 print_tracking(s, p);
3857 }
3858 }
55860d96 3859 put_map(map);
33b12c38
CL
3860 slab_unlock(page);
3861#endif
3862}
3863
81819f0f 3864/*
599870b1 3865 * Attempt to free all partial slabs on a node.
52b4b950
DS
3866 * This is called from __kmem_cache_shutdown(). We must take list_lock
3867 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3868 */
599870b1 3869static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3870{
60398923 3871 LIST_HEAD(discard);
81819f0f
CL
3872 struct page *page, *h;
3873
52b4b950
DS
3874 BUG_ON(irqs_disabled());
3875 spin_lock_irq(&n->list_lock);
916ac052 3876 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 3877 if (!page->inuse) {
52b4b950 3878 remove_partial(n, page);
916ac052 3879 list_add(&page->slab_list, &discard);
33b12c38
CL
3880 } else {
3881 list_slab_objects(s, page,
55860d96 3882 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3883 }
33b12c38 3884 }
52b4b950 3885 spin_unlock_irq(&n->list_lock);
60398923 3886
916ac052 3887 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 3888 discard_slab(s, page);
81819f0f
CL
3889}
3890
f9e13c0a
SB
3891bool __kmem_cache_empty(struct kmem_cache *s)
3892{
3893 int node;
3894 struct kmem_cache_node *n;
3895
3896 for_each_kmem_cache_node(s, node, n)
3897 if (n->nr_partial || slabs_node(s, node))
3898 return false;
3899 return true;
3900}
3901
81819f0f 3902/*
672bba3a 3903 * Release all resources used by a slab cache.
81819f0f 3904 */
52b4b950 3905int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3906{
3907 int node;
fa45dc25 3908 struct kmem_cache_node *n;
81819f0f
CL
3909
3910 flush_all(s);
81819f0f 3911 /* Attempt to free all objects */
fa45dc25 3912 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3913 free_partial(s, n);
3914 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3915 return 1;
3916 }
81819f0f
CL
3917 return 0;
3918}
3919
81819f0f
CL
3920/********************************************************************
3921 * Kmalloc subsystem
3922 *******************************************************************/
3923
81819f0f
CL
3924static int __init setup_slub_min_order(char *str)
3925{
19af27af 3926 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
3927
3928 return 1;
3929}
3930
3931__setup("slub_min_order=", setup_slub_min_order);
3932
3933static int __init setup_slub_max_order(char *str)
3934{
19af27af
AD
3935 get_option(&str, (int *)&slub_max_order);
3936 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
3937
3938 return 1;
3939}
3940
3941__setup("slub_max_order=", setup_slub_max_order);
3942
3943static int __init setup_slub_min_objects(char *str)
3944{
19af27af 3945 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
3946
3947 return 1;
3948}
3949
3950__setup("slub_min_objects=", setup_slub_min_objects);
3951
81819f0f
CL
3952void *__kmalloc(size_t size, gfp_t flags)
3953{
aadb4bc4 3954 struct kmem_cache *s;
5b882be4 3955 void *ret;
81819f0f 3956
95a05b42 3957 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3958 return kmalloc_large(size, flags);
aadb4bc4 3959
2c59dd65 3960 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3961
3962 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3963 return s;
3964
2b847c3c 3965 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3966
ca2b84cb 3967 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3968
0116523c 3969 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3970
5b882be4 3971 return ret;
81819f0f
CL
3972}
3973EXPORT_SYMBOL(__kmalloc);
3974
5d1f57e4 3975#ifdef CONFIG_NUMA
f619cfe1
CL
3976static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3977{
b1eeab67 3978 struct page *page;
e4f7c0b4 3979 void *ptr = NULL;
6a486c0a 3980 unsigned int order = get_order(size);
f619cfe1 3981
75f296d9 3982 flags |= __GFP_COMP;
6a486c0a
VB
3983 page = alloc_pages_node(node, flags, order);
3984 if (page) {
e4f7c0b4 3985 ptr = page_address(page);
d42f3245
RG
3986 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
3987 PAGE_SIZE << order);
6a486c0a 3988 }
e4f7c0b4 3989
0116523c 3990 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
3991}
3992
81819f0f
CL
3993void *__kmalloc_node(size_t size, gfp_t flags, int node)
3994{
aadb4bc4 3995 struct kmem_cache *s;
5b882be4 3996 void *ret;
81819f0f 3997
95a05b42 3998 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3999 ret = kmalloc_large_node(size, flags, node);
4000
ca2b84cb
EGM
4001 trace_kmalloc_node(_RET_IP_, ret,
4002 size, PAGE_SIZE << get_order(size),
4003 flags, node);
5b882be4
EGM
4004
4005 return ret;
4006 }
aadb4bc4 4007
2c59dd65 4008 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4009
4010 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4011 return s;
4012
2b847c3c 4013 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 4014
ca2b84cb 4015 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 4016
0116523c 4017 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4018
5b882be4 4019 return ret;
81819f0f
CL
4020}
4021EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 4022#endif /* CONFIG_NUMA */
81819f0f 4023
ed18adc1
KC
4024#ifdef CONFIG_HARDENED_USERCOPY
4025/*
afcc90f8
KC
4026 * Rejects incorrectly sized objects and objects that are to be copied
4027 * to/from userspace but do not fall entirely within the containing slab
4028 * cache's usercopy region.
ed18adc1
KC
4029 *
4030 * Returns NULL if check passes, otherwise const char * to name of cache
4031 * to indicate an error.
4032 */
f4e6e289
KC
4033void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4034 bool to_user)
ed18adc1
KC
4035{
4036 struct kmem_cache *s;
44065b2e 4037 unsigned int offset;
ed18adc1
KC
4038 size_t object_size;
4039
96fedce2
AK
4040 ptr = kasan_reset_tag(ptr);
4041
ed18adc1
KC
4042 /* Find object and usable object size. */
4043 s = page->slab_cache;
ed18adc1
KC
4044
4045 /* Reject impossible pointers. */
4046 if (ptr < page_address(page))
f4e6e289
KC
4047 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4048 to_user, 0, n);
ed18adc1
KC
4049
4050 /* Find offset within object. */
4051 offset = (ptr - page_address(page)) % s->size;
4052
4053 /* Adjust for redzone and reject if within the redzone. */
59052e89 4054 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 4055 if (offset < s->red_left_pad)
f4e6e289
KC
4056 usercopy_abort("SLUB object in left red zone",
4057 s->name, to_user, offset, n);
ed18adc1
KC
4058 offset -= s->red_left_pad;
4059 }
4060
afcc90f8
KC
4061 /* Allow address range falling entirely within usercopy region. */
4062 if (offset >= s->useroffset &&
4063 offset - s->useroffset <= s->usersize &&
4064 n <= s->useroffset - offset + s->usersize)
f4e6e289 4065 return;
ed18adc1 4066
afcc90f8
KC
4067 /*
4068 * If the copy is still within the allocated object, produce
4069 * a warning instead of rejecting the copy. This is intended
4070 * to be a temporary method to find any missing usercopy
4071 * whitelists.
4072 */
4073 object_size = slab_ksize(s);
2d891fbc
KC
4074 if (usercopy_fallback &&
4075 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
4076 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4077 return;
4078 }
ed18adc1 4079
f4e6e289 4080 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
4081}
4082#endif /* CONFIG_HARDENED_USERCOPY */
4083
10d1f8cb 4084size_t __ksize(const void *object)
81819f0f 4085{
272c1d21 4086 struct page *page;
81819f0f 4087
ef8b4520 4088 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
4089 return 0;
4090
294a80a8 4091 page = virt_to_head_page(object);
294a80a8 4092
76994412
PE
4093 if (unlikely(!PageSlab(page))) {
4094 WARN_ON(!PageCompound(page));
a50b854e 4095 return page_size(page);
76994412 4096 }
81819f0f 4097
1b4f59e3 4098 return slab_ksize(page->slab_cache);
81819f0f 4099}
10d1f8cb 4100EXPORT_SYMBOL(__ksize);
81819f0f
CL
4101
4102void kfree(const void *x)
4103{
81819f0f 4104 struct page *page;
5bb983b0 4105 void *object = (void *)x;
81819f0f 4106
2121db74
PE
4107 trace_kfree(_RET_IP_, x);
4108
2408c550 4109 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
4110 return;
4111
b49af68f 4112 page = virt_to_head_page(x);
aadb4bc4 4113 if (unlikely(!PageSlab(page))) {
6a486c0a
VB
4114 unsigned int order = compound_order(page);
4115
0937502a 4116 BUG_ON(!PageCompound(page));
47adccce 4117 kfree_hook(object);
d42f3245
RG
4118 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
4119 -(PAGE_SIZE << order));
6a486c0a 4120 __free_pages(page, order);
aadb4bc4
CL
4121 return;
4122 }
81084651 4123 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
4124}
4125EXPORT_SYMBOL(kfree);
4126
832f37f5
VD
4127#define SHRINK_PROMOTE_MAX 32
4128
2086d26a 4129/*
832f37f5
VD
4130 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4131 * up most to the head of the partial lists. New allocations will then
4132 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4133 *
4134 * The slabs with the least items are placed last. This results in them
4135 * being allocated from last increasing the chance that the last objects
4136 * are freed in them.
2086d26a 4137 */
c9fc5864 4138int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
4139{
4140 int node;
4141 int i;
4142 struct kmem_cache_node *n;
4143 struct page *page;
4144 struct page *t;
832f37f5
VD
4145 struct list_head discard;
4146 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4147 unsigned long flags;
ce3712d7 4148 int ret = 0;
2086d26a 4149
2086d26a 4150 flush_all(s);
fa45dc25 4151 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4152 INIT_LIST_HEAD(&discard);
4153 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4154 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4155
4156 spin_lock_irqsave(&n->list_lock, flags);
4157
4158 /*
832f37f5 4159 * Build lists of slabs to discard or promote.
2086d26a 4160 *
672bba3a
CL
4161 * Note that concurrent frees may occur while we hold the
4162 * list_lock. page->inuse here is the upper limit.
2086d26a 4163 */
916ac052 4164 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
4165 int free = page->objects - page->inuse;
4166
4167 /* Do not reread page->inuse */
4168 barrier();
4169
4170 /* We do not keep full slabs on the list */
4171 BUG_ON(free <= 0);
4172
4173 if (free == page->objects) {
916ac052 4174 list_move(&page->slab_list, &discard);
69cb8e6b 4175 n->nr_partial--;
832f37f5 4176 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4177 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4178 }
4179
2086d26a 4180 /*
832f37f5
VD
4181 * Promote the slabs filled up most to the head of the
4182 * partial list.
2086d26a 4183 */
832f37f5
VD
4184 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4185 list_splice(promote + i, &n->partial);
2086d26a 4186
2086d26a 4187 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4188
4189 /* Release empty slabs */
916ac052 4190 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4191 discard_slab(s, page);
ce3712d7
VD
4192
4193 if (slabs_node(s, node))
4194 ret = 1;
2086d26a
CL
4195 }
4196
ce3712d7 4197 return ret;
2086d26a 4198}
2086d26a 4199
b9049e23
YG
4200static int slab_mem_going_offline_callback(void *arg)
4201{
4202 struct kmem_cache *s;
4203
18004c5d 4204 mutex_lock(&slab_mutex);
b9049e23 4205 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4206 __kmem_cache_shrink(s);
18004c5d 4207 mutex_unlock(&slab_mutex);
b9049e23
YG
4208
4209 return 0;
4210}
4211
4212static void slab_mem_offline_callback(void *arg)
4213{
4214 struct kmem_cache_node *n;
4215 struct kmem_cache *s;
4216 struct memory_notify *marg = arg;
4217 int offline_node;
4218
b9d5ab25 4219 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4220
4221 /*
4222 * If the node still has available memory. we need kmem_cache_node
4223 * for it yet.
4224 */
4225 if (offline_node < 0)
4226 return;
4227
18004c5d 4228 mutex_lock(&slab_mutex);
b9049e23
YG
4229 list_for_each_entry(s, &slab_caches, list) {
4230 n = get_node(s, offline_node);
4231 if (n) {
4232 /*
4233 * if n->nr_slabs > 0, slabs still exist on the node
4234 * that is going down. We were unable to free them,
c9404c9c 4235 * and offline_pages() function shouldn't call this
b9049e23
YG
4236 * callback. So, we must fail.
4237 */
0f389ec6 4238 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4239
4240 s->node[offline_node] = NULL;
8de66a0c 4241 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4242 }
4243 }
18004c5d 4244 mutex_unlock(&slab_mutex);
b9049e23
YG
4245}
4246
4247static int slab_mem_going_online_callback(void *arg)
4248{
4249 struct kmem_cache_node *n;
4250 struct kmem_cache *s;
4251 struct memory_notify *marg = arg;
b9d5ab25 4252 int nid = marg->status_change_nid_normal;
b9049e23
YG
4253 int ret = 0;
4254
4255 /*
4256 * If the node's memory is already available, then kmem_cache_node is
4257 * already created. Nothing to do.
4258 */
4259 if (nid < 0)
4260 return 0;
4261
4262 /*
0121c619 4263 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4264 * allocate a kmem_cache_node structure in order to bring the node
4265 * online.
4266 */
18004c5d 4267 mutex_lock(&slab_mutex);
b9049e23
YG
4268 list_for_each_entry(s, &slab_caches, list) {
4269 /*
4270 * XXX: kmem_cache_alloc_node will fallback to other nodes
4271 * since memory is not yet available from the node that
4272 * is brought up.
4273 */
8de66a0c 4274 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4275 if (!n) {
4276 ret = -ENOMEM;
4277 goto out;
4278 }
4053497d 4279 init_kmem_cache_node(n);
b9049e23
YG
4280 s->node[nid] = n;
4281 }
4282out:
18004c5d 4283 mutex_unlock(&slab_mutex);
b9049e23
YG
4284 return ret;
4285}
4286
4287static int slab_memory_callback(struct notifier_block *self,
4288 unsigned long action, void *arg)
4289{
4290 int ret = 0;
4291
4292 switch (action) {
4293 case MEM_GOING_ONLINE:
4294 ret = slab_mem_going_online_callback(arg);
4295 break;
4296 case MEM_GOING_OFFLINE:
4297 ret = slab_mem_going_offline_callback(arg);
4298 break;
4299 case MEM_OFFLINE:
4300 case MEM_CANCEL_ONLINE:
4301 slab_mem_offline_callback(arg);
4302 break;
4303 case MEM_ONLINE:
4304 case MEM_CANCEL_OFFLINE:
4305 break;
4306 }
dc19f9db
KH
4307 if (ret)
4308 ret = notifier_from_errno(ret);
4309 else
4310 ret = NOTIFY_OK;
b9049e23
YG
4311 return ret;
4312}
4313
3ac38faa
AM
4314static struct notifier_block slab_memory_callback_nb = {
4315 .notifier_call = slab_memory_callback,
4316 .priority = SLAB_CALLBACK_PRI,
4317};
b9049e23 4318
81819f0f
CL
4319/********************************************************************
4320 * Basic setup of slabs
4321 *******************************************************************/
4322
51df1142
CL
4323/*
4324 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4325 * the page allocator. Allocate them properly then fix up the pointers
4326 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4327 */
4328
dffb4d60 4329static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4330{
4331 int node;
dffb4d60 4332 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4333 struct kmem_cache_node *n;
51df1142 4334
dffb4d60 4335 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4336
7d557b3c
GC
4337 /*
4338 * This runs very early, and only the boot processor is supposed to be
4339 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4340 * IPIs around.
4341 */
4342 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4343 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4344 struct page *p;
4345
916ac052 4346 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4347 p->slab_cache = s;
51df1142 4348
607bf324 4349#ifdef CONFIG_SLUB_DEBUG
916ac052 4350 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4351 p->slab_cache = s;
51df1142 4352#endif
51df1142 4353 }
dffb4d60
CL
4354 list_add(&s->list, &slab_caches);
4355 return s;
51df1142
CL
4356}
4357
81819f0f
CL
4358void __init kmem_cache_init(void)
4359{
dffb4d60
CL
4360 static __initdata struct kmem_cache boot_kmem_cache,
4361 boot_kmem_cache_node;
51df1142 4362
fc8d8620
SG
4363 if (debug_guardpage_minorder())
4364 slub_max_order = 0;
4365
dffb4d60
CL
4366 kmem_cache_node = &boot_kmem_cache_node;
4367 kmem_cache = &boot_kmem_cache;
51df1142 4368
dffb4d60 4369 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4370 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4371
3ac38faa 4372 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4373
4374 /* Able to allocate the per node structures */
4375 slab_state = PARTIAL;
4376
dffb4d60
CL
4377 create_boot_cache(kmem_cache, "kmem_cache",
4378 offsetof(struct kmem_cache, node) +
4379 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4380 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4381
dffb4d60 4382 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4383 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4384
4385 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4386 setup_kmalloc_cache_index_table();
f97d5f63 4387 create_kmalloc_caches(0);
81819f0f 4388
210e7a43
TG
4389 /* Setup random freelists for each cache */
4390 init_freelist_randomization();
4391
a96a87bf
SAS
4392 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4393 slub_cpu_dead);
81819f0f 4394
b9726c26 4395 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4396 cache_line_size(),
81819f0f
CL
4397 slub_min_order, slub_max_order, slub_min_objects,
4398 nr_cpu_ids, nr_node_ids);
4399}
4400
7e85ee0c
PE
4401void __init kmem_cache_init_late(void)
4402{
7e85ee0c
PE
4403}
4404
2633d7a0 4405struct kmem_cache *
f4957d5b 4406__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4407 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4408{
10befea9 4409 struct kmem_cache *s;
81819f0f 4410
a44cb944 4411 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4412 if (s) {
4413 s->refcount++;
84d0ddd6 4414
81819f0f
CL
4415 /*
4416 * Adjust the object sizes so that we clear
4417 * the complete object on kzalloc.
4418 */
1b473f29 4419 s->object_size = max(s->object_size, size);
52ee6d74 4420 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4421
7b8f3b66 4422 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4423 s->refcount--;
cbb79694 4424 s = NULL;
7b8f3b66 4425 }
a0e1d1be 4426 }
6446faa2 4427
cbb79694
CL
4428 return s;
4429}
84c1cf62 4430
d50112ed 4431int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4432{
aac3a166
PE
4433 int err;
4434
4435 err = kmem_cache_open(s, flags);
4436 if (err)
4437 return err;
20cea968 4438
45530c44
CL
4439 /* Mutex is not taken during early boot */
4440 if (slab_state <= UP)
4441 return 0;
4442
aac3a166 4443 err = sysfs_slab_add(s);
aac3a166 4444 if (err)
52b4b950 4445 __kmem_cache_release(s);
20cea968 4446
aac3a166 4447 return err;
81819f0f 4448}
81819f0f 4449
ce71e27c 4450void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4451{
aadb4bc4 4452 struct kmem_cache *s;
94b528d0 4453 void *ret;
aadb4bc4 4454
95a05b42 4455 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4456 return kmalloc_large(size, gfpflags);
4457
2c59dd65 4458 s = kmalloc_slab(size, gfpflags);
81819f0f 4459
2408c550 4460 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4461 return s;
81819f0f 4462
2b847c3c 4463 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4464
25985edc 4465 /* Honor the call site pointer we received. */
ca2b84cb 4466 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4467
4468 return ret;
81819f0f 4469}
fd7cb575 4470EXPORT_SYMBOL(__kmalloc_track_caller);
81819f0f 4471
5d1f57e4 4472#ifdef CONFIG_NUMA
81819f0f 4473void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4474 int node, unsigned long caller)
81819f0f 4475{
aadb4bc4 4476 struct kmem_cache *s;
94b528d0 4477 void *ret;
aadb4bc4 4478
95a05b42 4479 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4480 ret = kmalloc_large_node(size, gfpflags, node);
4481
4482 trace_kmalloc_node(caller, ret,
4483 size, PAGE_SIZE << get_order(size),
4484 gfpflags, node);
4485
4486 return ret;
4487 }
eada35ef 4488
2c59dd65 4489 s = kmalloc_slab(size, gfpflags);
81819f0f 4490
2408c550 4491 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4492 return s;
81819f0f 4493
2b847c3c 4494 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4495
25985edc 4496 /* Honor the call site pointer we received. */
ca2b84cb 4497 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4498
4499 return ret;
81819f0f 4500}
fd7cb575 4501EXPORT_SYMBOL(__kmalloc_node_track_caller);
5d1f57e4 4502#endif
81819f0f 4503
ab4d5ed5 4504#ifdef CONFIG_SYSFS
205ab99d
CL
4505static int count_inuse(struct page *page)
4506{
4507 return page->inuse;
4508}
4509
4510static int count_total(struct page *page)
4511{
4512 return page->objects;
4513}
ab4d5ed5 4514#endif
205ab99d 4515
ab4d5ed5 4516#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 4517static void validate_slab(struct kmem_cache *s, struct page *page)
53e15af0
CL
4518{
4519 void *p;
a973e9dd 4520 void *addr = page_address(page);
90e9f6a6
YZ
4521 unsigned long *map;
4522
4523 slab_lock(page);
53e15af0 4524
dd98afd4 4525 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
90e9f6a6 4526 goto unlock;
53e15af0
CL
4527
4528 /* Now we know that a valid freelist exists */
90e9f6a6 4529 map = get_map(s, page);
5f80b13a 4530 for_each_object(p, s, addr, page->objects) {
4138fdfc 4531 u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
dd98afd4 4532 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 4533
dd98afd4
YZ
4534 if (!check_object(s, page, p, val))
4535 break;
4536 }
90e9f6a6
YZ
4537 put_map(map);
4538unlock:
881db7fb 4539 slab_unlock(page);
53e15af0
CL
4540}
4541
434e245d 4542static int validate_slab_node(struct kmem_cache *s,
90e9f6a6 4543 struct kmem_cache_node *n)
53e15af0
CL
4544{
4545 unsigned long count = 0;
4546 struct page *page;
4547 unsigned long flags;
4548
4549 spin_lock_irqsave(&n->list_lock, flags);
4550
916ac052 4551 list_for_each_entry(page, &n->partial, slab_list) {
90e9f6a6 4552 validate_slab(s, page);
53e15af0
CL
4553 count++;
4554 }
4555 if (count != n->nr_partial)
f9f58285
FF
4556 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4557 s->name, count, n->nr_partial);
53e15af0
CL
4558
4559 if (!(s->flags & SLAB_STORE_USER))
4560 goto out;
4561
916ac052 4562 list_for_each_entry(page, &n->full, slab_list) {
90e9f6a6 4563 validate_slab(s, page);
53e15af0
CL
4564 count++;
4565 }
4566 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4567 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4568 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4569
4570out:
4571 spin_unlock_irqrestore(&n->list_lock, flags);
4572 return count;
4573}
4574
434e245d 4575static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4576{
4577 int node;
4578 unsigned long count = 0;
fa45dc25 4579 struct kmem_cache_node *n;
53e15af0
CL
4580
4581 flush_all(s);
fa45dc25 4582 for_each_kmem_cache_node(s, node, n)
90e9f6a6
YZ
4583 count += validate_slab_node(s, n);
4584
53e15af0
CL
4585 return count;
4586}
88a420e4 4587/*
672bba3a 4588 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4589 * and freed.
4590 */
4591
4592struct location {
4593 unsigned long count;
ce71e27c 4594 unsigned long addr;
45edfa58
CL
4595 long long sum_time;
4596 long min_time;
4597 long max_time;
4598 long min_pid;
4599 long max_pid;
174596a0 4600 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4601 nodemask_t nodes;
88a420e4
CL
4602};
4603
4604struct loc_track {
4605 unsigned long max;
4606 unsigned long count;
4607 struct location *loc;
4608};
4609
4610static void free_loc_track(struct loc_track *t)
4611{
4612 if (t->max)
4613 free_pages((unsigned long)t->loc,
4614 get_order(sizeof(struct location) * t->max));
4615}
4616
68dff6a9 4617static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4618{
4619 struct location *l;
4620 int order;
4621
88a420e4
CL
4622 order = get_order(sizeof(struct location) * max);
4623
68dff6a9 4624 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4625 if (!l)
4626 return 0;
4627
4628 if (t->count) {
4629 memcpy(l, t->loc, sizeof(struct location) * t->count);
4630 free_loc_track(t);
4631 }
4632 t->max = max;
4633 t->loc = l;
4634 return 1;
4635}
4636
4637static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4638 const struct track *track)
88a420e4
CL
4639{
4640 long start, end, pos;
4641 struct location *l;
ce71e27c 4642 unsigned long caddr;
45edfa58 4643 unsigned long age = jiffies - track->when;
88a420e4
CL
4644
4645 start = -1;
4646 end = t->count;
4647
4648 for ( ; ; ) {
4649 pos = start + (end - start + 1) / 2;
4650
4651 /*
4652 * There is nothing at "end". If we end up there
4653 * we need to add something to before end.
4654 */
4655 if (pos == end)
4656 break;
4657
4658 caddr = t->loc[pos].addr;
45edfa58
CL
4659 if (track->addr == caddr) {
4660
4661 l = &t->loc[pos];
4662 l->count++;
4663 if (track->when) {
4664 l->sum_time += age;
4665 if (age < l->min_time)
4666 l->min_time = age;
4667 if (age > l->max_time)
4668 l->max_time = age;
4669
4670 if (track->pid < l->min_pid)
4671 l->min_pid = track->pid;
4672 if (track->pid > l->max_pid)
4673 l->max_pid = track->pid;
4674
174596a0
RR
4675 cpumask_set_cpu(track->cpu,
4676 to_cpumask(l->cpus));
45edfa58
CL
4677 }
4678 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4679 return 1;
4680 }
4681
45edfa58 4682 if (track->addr < caddr)
88a420e4
CL
4683 end = pos;
4684 else
4685 start = pos;
4686 }
4687
4688 /*
672bba3a 4689 * Not found. Insert new tracking element.
88a420e4 4690 */
68dff6a9 4691 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4692 return 0;
4693
4694 l = t->loc + pos;
4695 if (pos < t->count)
4696 memmove(l + 1, l,
4697 (t->count - pos) * sizeof(struct location));
4698 t->count++;
4699 l->count = 1;
45edfa58
CL
4700 l->addr = track->addr;
4701 l->sum_time = age;
4702 l->min_time = age;
4703 l->max_time = age;
4704 l->min_pid = track->pid;
4705 l->max_pid = track->pid;
174596a0
RR
4706 cpumask_clear(to_cpumask(l->cpus));
4707 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4708 nodes_clear(l->nodes);
4709 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4710 return 1;
4711}
4712
4713static void process_slab(struct loc_track *t, struct kmem_cache *s,
90e9f6a6 4714 struct page *page, enum track_item alloc)
88a420e4 4715{
a973e9dd 4716 void *addr = page_address(page);
88a420e4 4717 void *p;
90e9f6a6 4718 unsigned long *map;
88a420e4 4719
90e9f6a6 4720 map = get_map(s, page);
224a88be 4721 for_each_object(p, s, addr, page->objects)
4138fdfc 4722 if (!test_bit(__obj_to_index(s, addr, p), map))
45edfa58 4723 add_location(t, s, get_track(s, p, alloc));
90e9f6a6 4724 put_map(map);
88a420e4
CL
4725}
4726
4727static int list_locations(struct kmem_cache *s, char *buf,
4728 enum track_item alloc)
4729{
e374d483 4730 int len = 0;
88a420e4 4731 unsigned long i;
68dff6a9 4732 struct loc_track t = { 0, 0, NULL };
88a420e4 4733 int node;
fa45dc25 4734 struct kmem_cache_node *n;
88a420e4 4735
90e9f6a6
YZ
4736 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4737 GFP_KERNEL)) {
68dff6a9 4738 return sprintf(buf, "Out of memory\n");
bbd7d57b 4739 }
88a420e4
CL
4740 /* Push back cpu slabs */
4741 flush_all(s);
4742
fa45dc25 4743 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4744 unsigned long flags;
4745 struct page *page;
4746
9e86943b 4747 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4748 continue;
4749
4750 spin_lock_irqsave(&n->list_lock, flags);
916ac052 4751 list_for_each_entry(page, &n->partial, slab_list)
90e9f6a6 4752 process_slab(&t, s, page, alloc);
916ac052 4753 list_for_each_entry(page, &n->full, slab_list)
90e9f6a6 4754 process_slab(&t, s, page, alloc);
88a420e4
CL
4755 spin_unlock_irqrestore(&n->list_lock, flags);
4756 }
4757
4758 for (i = 0; i < t.count; i++) {
45edfa58 4759 struct location *l = &t.loc[i];
88a420e4 4760
9c246247 4761 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4762 break;
e374d483 4763 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4764
4765 if (l->addr)
62c70bce 4766 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4767 else
e374d483 4768 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4769
4770 if (l->sum_time != l->min_time) {
e374d483 4771 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4772 l->min_time,
4773 (long)div_u64(l->sum_time, l->count),
4774 l->max_time);
45edfa58 4775 } else
e374d483 4776 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4777 l->min_time);
4778
4779 if (l->min_pid != l->max_pid)
e374d483 4780 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4781 l->min_pid, l->max_pid);
4782 else
e374d483 4783 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4784 l->min_pid);
4785
174596a0
RR
4786 if (num_online_cpus() > 1 &&
4787 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4788 len < PAGE_SIZE - 60)
4789 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4790 " cpus=%*pbl",
4791 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4792
62bc62a8 4793 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4794 len < PAGE_SIZE - 60)
4795 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4796 " nodes=%*pbl",
4797 nodemask_pr_args(&l->nodes));
45edfa58 4798
e374d483 4799 len += sprintf(buf + len, "\n");
88a420e4
CL
4800 }
4801
4802 free_loc_track(&t);
4803 if (!t.count)
e374d483
HH
4804 len += sprintf(buf, "No data\n");
4805 return len;
88a420e4 4806}
6dfd1b65 4807#endif /* CONFIG_SLUB_DEBUG */
88a420e4 4808
a5a84755 4809#ifdef SLUB_RESILIENCY_TEST
c07b8183 4810static void __init resiliency_test(void)
a5a84755
CL
4811{
4812 u8 *p;
cc252eae 4813 int type = KMALLOC_NORMAL;
a5a84755 4814
95a05b42 4815 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4816
f9f58285
FF
4817 pr_err("SLUB resiliency testing\n");
4818 pr_err("-----------------------\n");
4819 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4820
4821 p = kzalloc(16, GFP_KERNEL);
4822 p[16] = 0x12;
f9f58285
FF
4823 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4824 p + 16);
a5a84755 4825
cc252eae 4826 validate_slab_cache(kmalloc_caches[type][4]);
a5a84755
CL
4827
4828 /* Hmmm... The next two are dangerous */
4829 p = kzalloc(32, GFP_KERNEL);
4830 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4831 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4832 p);
4833 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755 4834
cc252eae 4835 validate_slab_cache(kmalloc_caches[type][5]);
a5a84755
CL
4836 p = kzalloc(64, GFP_KERNEL);
4837 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4838 *p = 0x56;
f9f58285
FF
4839 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4840 p);
4841 pr_err("If allocated object is overwritten then not detectable\n\n");
cc252eae 4842 validate_slab_cache(kmalloc_caches[type][6]);
a5a84755 4843
f9f58285 4844 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4845 p = kzalloc(128, GFP_KERNEL);
4846 kfree(p);
4847 *p = 0x78;
f9f58285 4848 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
cc252eae 4849 validate_slab_cache(kmalloc_caches[type][7]);
a5a84755
CL
4850
4851 p = kzalloc(256, GFP_KERNEL);
4852 kfree(p);
4853 p[50] = 0x9a;
f9f58285 4854 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
cc252eae 4855 validate_slab_cache(kmalloc_caches[type][8]);
a5a84755
CL
4856
4857 p = kzalloc(512, GFP_KERNEL);
4858 kfree(p);
4859 p[512] = 0xab;
f9f58285 4860 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
cc252eae 4861 validate_slab_cache(kmalloc_caches[type][9]);
a5a84755
CL
4862}
4863#else
4864#ifdef CONFIG_SYSFS
4865static void resiliency_test(void) {};
4866#endif
6dfd1b65 4867#endif /* SLUB_RESILIENCY_TEST */
a5a84755 4868
ab4d5ed5 4869#ifdef CONFIG_SYSFS
81819f0f 4870enum slab_stat_type {
205ab99d
CL
4871 SL_ALL, /* All slabs */
4872 SL_PARTIAL, /* Only partially allocated slabs */
4873 SL_CPU, /* Only slabs used for cpu caches */
4874 SL_OBJECTS, /* Determine allocated objects not slabs */
4875 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4876};
4877
205ab99d 4878#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4879#define SO_PARTIAL (1 << SL_PARTIAL)
4880#define SO_CPU (1 << SL_CPU)
4881#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4882#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4883
1663f26d
TH
4884#ifdef CONFIG_MEMCG
4885static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4886
4887static int __init setup_slub_memcg_sysfs(char *str)
4888{
4889 int v;
4890
4891 if (get_option(&str, &v) > 0)
4892 memcg_sysfs_enabled = v;
4893
4894 return 1;
4895}
4896
4897__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4898#endif
4899
62e5c4b4
CG
4900static ssize_t show_slab_objects(struct kmem_cache *s,
4901 char *buf, unsigned long flags)
81819f0f
CL
4902{
4903 unsigned long total = 0;
81819f0f
CL
4904 int node;
4905 int x;
4906 unsigned long *nodes;
81819f0f 4907
6396bb22 4908 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
4909 if (!nodes)
4910 return -ENOMEM;
81819f0f 4911
205ab99d
CL
4912 if (flags & SO_CPU) {
4913 int cpu;
81819f0f 4914
205ab99d 4915 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4916 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4917 cpu);
ec3ab083 4918 int node;
49e22585 4919 struct page *page;
dfb4f096 4920
4db0c3c2 4921 page = READ_ONCE(c->page);
ec3ab083
CL
4922 if (!page)
4923 continue;
205ab99d 4924
ec3ab083
CL
4925 node = page_to_nid(page);
4926 if (flags & SO_TOTAL)
4927 x = page->objects;
4928 else if (flags & SO_OBJECTS)
4929 x = page->inuse;
4930 else
4931 x = 1;
49e22585 4932
ec3ab083
CL
4933 total += x;
4934 nodes[node] += x;
4935
a93cf07b 4936 page = slub_percpu_partial_read_once(c);
49e22585 4937 if (page) {
8afb1474
LZ
4938 node = page_to_nid(page);
4939 if (flags & SO_TOTAL)
4940 WARN_ON_ONCE(1);
4941 else if (flags & SO_OBJECTS)
4942 WARN_ON_ONCE(1);
4943 else
4944 x = page->pages;
bc6697d8
ED
4945 total += x;
4946 nodes[node] += x;
49e22585 4947 }
81819f0f
CL
4948 }
4949 }
4950
e4f8e513
QC
4951 /*
4952 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4953 * already held which will conflict with an existing lock order:
4954 *
4955 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4956 *
4957 * We don't really need mem_hotplug_lock (to hold off
4958 * slab_mem_going_offline_callback) here because slab's memory hot
4959 * unplug code doesn't destroy the kmem_cache->node[] data.
4960 */
4961
ab4d5ed5 4962#ifdef CONFIG_SLUB_DEBUG
205ab99d 4963 if (flags & SO_ALL) {
fa45dc25
CL
4964 struct kmem_cache_node *n;
4965
4966 for_each_kmem_cache_node(s, node, n) {
205ab99d 4967
d0e0ac97
CG
4968 if (flags & SO_TOTAL)
4969 x = atomic_long_read(&n->total_objects);
4970 else if (flags & SO_OBJECTS)
4971 x = atomic_long_read(&n->total_objects) -
4972 count_partial(n, count_free);
81819f0f 4973 else
205ab99d 4974 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4975 total += x;
4976 nodes[node] += x;
4977 }
4978
ab4d5ed5
CL
4979 } else
4980#endif
4981 if (flags & SO_PARTIAL) {
fa45dc25 4982 struct kmem_cache_node *n;
81819f0f 4983
fa45dc25 4984 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4985 if (flags & SO_TOTAL)
4986 x = count_partial(n, count_total);
4987 else if (flags & SO_OBJECTS)
4988 x = count_partial(n, count_inuse);
81819f0f 4989 else
205ab99d 4990 x = n->nr_partial;
81819f0f
CL
4991 total += x;
4992 nodes[node] += x;
4993 }
4994 }
81819f0f
CL
4995 x = sprintf(buf, "%lu", total);
4996#ifdef CONFIG_NUMA
fa45dc25 4997 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4998 if (nodes[node])
4999 x += sprintf(buf + x, " N%d=%lu",
5000 node, nodes[node]);
5001#endif
5002 kfree(nodes);
5003 return x + sprintf(buf + x, "\n");
5004}
5005
81819f0f 5006#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 5007#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
5008
5009struct slab_attribute {
5010 struct attribute attr;
5011 ssize_t (*show)(struct kmem_cache *s, char *buf);
5012 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5013};
5014
5015#define SLAB_ATTR_RO(_name) \
ab067e99
VK
5016 static struct slab_attribute _name##_attr = \
5017 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
5018
5019#define SLAB_ATTR(_name) \
5020 static struct slab_attribute _name##_attr = \
ab067e99 5021 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 5022
81819f0f
CL
5023static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5024{
44065b2e 5025 return sprintf(buf, "%u\n", s->size);
81819f0f
CL
5026}
5027SLAB_ATTR_RO(slab_size);
5028
5029static ssize_t align_show(struct kmem_cache *s, char *buf)
5030{
3a3791ec 5031 return sprintf(buf, "%u\n", s->align);
81819f0f
CL
5032}
5033SLAB_ATTR_RO(align);
5034
5035static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5036{
1b473f29 5037 return sprintf(buf, "%u\n", s->object_size);
81819f0f
CL
5038}
5039SLAB_ATTR_RO(object_size);
5040
5041static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5042{
19af27af 5043 return sprintf(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
5044}
5045SLAB_ATTR_RO(objs_per_slab);
5046
5047static ssize_t order_show(struct kmem_cache *s, char *buf)
5048{
19af27af 5049 return sprintf(buf, "%u\n", oo_order(s->oo));
81819f0f 5050}
32a6f409 5051SLAB_ATTR_RO(order);
81819f0f 5052
73d342b1
DR
5053static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5054{
5055 return sprintf(buf, "%lu\n", s->min_partial);
5056}
5057
5058static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5059 size_t length)
5060{
5061 unsigned long min;
5062 int err;
5063
3dbb95f7 5064 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5065 if (err)
5066 return err;
5067
c0bdb232 5068 set_min_partial(s, min);
73d342b1
DR
5069 return length;
5070}
5071SLAB_ATTR(min_partial);
5072
49e22585
CL
5073static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5074{
e6d0e1dc 5075 return sprintf(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
5076}
5077
5078static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5079 size_t length)
5080{
e5d9998f 5081 unsigned int objects;
49e22585
CL
5082 int err;
5083
e5d9998f 5084 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5085 if (err)
5086 return err;
345c905d 5087 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5088 return -EINVAL;
49e22585 5089
e6d0e1dc 5090 slub_set_cpu_partial(s, objects);
49e22585
CL
5091 flush_all(s);
5092 return length;
5093}
5094SLAB_ATTR(cpu_partial);
5095
81819f0f
CL
5096static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5097{
62c70bce
JP
5098 if (!s->ctor)
5099 return 0;
5100 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
5101}
5102SLAB_ATTR_RO(ctor);
5103
81819f0f
CL
5104static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5105{
4307c14f 5106 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5107}
5108SLAB_ATTR_RO(aliases);
5109
81819f0f
CL
5110static ssize_t partial_show(struct kmem_cache *s, char *buf)
5111{
d9acf4b7 5112 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5113}
5114SLAB_ATTR_RO(partial);
5115
5116static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5117{
d9acf4b7 5118 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5119}
5120SLAB_ATTR_RO(cpu_slabs);
5121
5122static ssize_t objects_show(struct kmem_cache *s, char *buf)
5123{
205ab99d 5124 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5125}
5126SLAB_ATTR_RO(objects);
5127
205ab99d
CL
5128static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5129{
5130 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5131}
5132SLAB_ATTR_RO(objects_partial);
5133
49e22585
CL
5134static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5135{
5136 int objects = 0;
5137 int pages = 0;
5138 int cpu;
5139 int len;
5140
5141 for_each_online_cpu(cpu) {
a93cf07b
WY
5142 struct page *page;
5143
5144 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5145
5146 if (page) {
5147 pages += page->pages;
5148 objects += page->pobjects;
5149 }
5150 }
5151
5152 len = sprintf(buf, "%d(%d)", objects, pages);
5153
5154#ifdef CONFIG_SMP
5155 for_each_online_cpu(cpu) {
a93cf07b
WY
5156 struct page *page;
5157
5158 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5159
5160 if (page && len < PAGE_SIZE - 20)
5161 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5162 page->pobjects, page->pages);
5163 }
5164#endif
5165 return len + sprintf(buf + len, "\n");
5166}
5167SLAB_ATTR_RO(slabs_cpu_partial);
5168
a5a84755
CL
5169static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5170{
5171 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5172}
8f58119a 5173SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
5174
5175static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5176{
5177 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5178}
5179SLAB_ATTR_RO(hwcache_align);
5180
5181#ifdef CONFIG_ZONE_DMA
5182static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5183{
5184 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5185}
5186SLAB_ATTR_RO(cache_dma);
5187#endif
5188
8eb8284b
DW
5189static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5190{
7bbdb81e 5191 return sprintf(buf, "%u\n", s->usersize);
8eb8284b
DW
5192}
5193SLAB_ATTR_RO(usersize);
5194
a5a84755
CL
5195static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5196{
5f0d5a3a 5197 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5198}
5199SLAB_ATTR_RO(destroy_by_rcu);
5200
ab4d5ed5 5201#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5202static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5203{
5204 return show_slab_objects(s, buf, SO_ALL);
5205}
5206SLAB_ATTR_RO(slabs);
5207
205ab99d
CL
5208static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5209{
5210 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5211}
5212SLAB_ATTR_RO(total_objects);
5213
81819f0f
CL
5214static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5215{
becfda68 5216 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 5217}
060807f8 5218SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
5219
5220static ssize_t trace_show(struct kmem_cache *s, char *buf)
5221{
5222 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5223}
060807f8 5224SLAB_ATTR_RO(trace);
81819f0f 5225
81819f0f
CL
5226static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5227{
5228 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5229}
5230
ad38b5b1 5231SLAB_ATTR_RO(red_zone);
81819f0f
CL
5232
5233static ssize_t poison_show(struct kmem_cache *s, char *buf)
5234{
5235 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5236}
5237
ad38b5b1 5238SLAB_ATTR_RO(poison);
81819f0f
CL
5239
5240static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5241{
5242 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5243}
5244
ad38b5b1 5245SLAB_ATTR_RO(store_user);
81819f0f 5246
53e15af0
CL
5247static ssize_t validate_show(struct kmem_cache *s, char *buf)
5248{
5249 return 0;
5250}
5251
5252static ssize_t validate_store(struct kmem_cache *s,
5253 const char *buf, size_t length)
5254{
434e245d
CL
5255 int ret = -EINVAL;
5256
5257 if (buf[0] == '1') {
5258 ret = validate_slab_cache(s);
5259 if (ret >= 0)
5260 ret = length;
5261 }
5262 return ret;
53e15af0
CL
5263}
5264SLAB_ATTR(validate);
a5a84755
CL
5265
5266static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5267{
5268 if (!(s->flags & SLAB_STORE_USER))
5269 return -ENOSYS;
5270 return list_locations(s, buf, TRACK_ALLOC);
5271}
5272SLAB_ATTR_RO(alloc_calls);
5273
5274static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5275{
5276 if (!(s->flags & SLAB_STORE_USER))
5277 return -ENOSYS;
5278 return list_locations(s, buf, TRACK_FREE);
5279}
5280SLAB_ATTR_RO(free_calls);
5281#endif /* CONFIG_SLUB_DEBUG */
5282
5283#ifdef CONFIG_FAILSLAB
5284static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5285{
5286 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5287}
060807f8 5288SLAB_ATTR_RO(failslab);
ab4d5ed5 5289#endif
53e15af0 5290
2086d26a
CL
5291static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5292{
5293 return 0;
5294}
5295
5296static ssize_t shrink_store(struct kmem_cache *s,
5297 const char *buf, size_t length)
5298{
832f37f5 5299 if (buf[0] == '1')
10befea9 5300 kmem_cache_shrink(s);
832f37f5 5301 else
2086d26a
CL
5302 return -EINVAL;
5303 return length;
5304}
5305SLAB_ATTR(shrink);
5306
81819f0f 5307#ifdef CONFIG_NUMA
9824601e 5308static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5309{
eb7235eb 5310 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5311}
5312
9824601e 5313static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5314 const char *buf, size_t length)
5315{
eb7235eb 5316 unsigned int ratio;
0121c619
CL
5317 int err;
5318
eb7235eb 5319 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5320 if (err)
5321 return err;
eb7235eb
AD
5322 if (ratio > 100)
5323 return -ERANGE;
0121c619 5324
eb7235eb 5325 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5326
81819f0f
CL
5327 return length;
5328}
9824601e 5329SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5330#endif
5331
8ff12cfc 5332#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5333static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5334{
5335 unsigned long sum = 0;
5336 int cpu;
5337 int len;
6da2ec56 5338 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5339
5340 if (!data)
5341 return -ENOMEM;
5342
5343 for_each_online_cpu(cpu) {
9dfc6e68 5344 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5345
5346 data[cpu] = x;
5347 sum += x;
5348 }
5349
5350 len = sprintf(buf, "%lu", sum);
5351
50ef37b9 5352#ifdef CONFIG_SMP
8ff12cfc
CL
5353 for_each_online_cpu(cpu) {
5354 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5355 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5356 }
50ef37b9 5357#endif
8ff12cfc
CL
5358 kfree(data);
5359 return len + sprintf(buf + len, "\n");
5360}
5361
78eb00cc
DR
5362static void clear_stat(struct kmem_cache *s, enum stat_item si)
5363{
5364 int cpu;
5365
5366 for_each_online_cpu(cpu)
9dfc6e68 5367 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5368}
5369
8ff12cfc
CL
5370#define STAT_ATTR(si, text) \
5371static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5372{ \
5373 return show_stat(s, buf, si); \
5374} \
78eb00cc
DR
5375static ssize_t text##_store(struct kmem_cache *s, \
5376 const char *buf, size_t length) \
5377{ \
5378 if (buf[0] != '0') \
5379 return -EINVAL; \
5380 clear_stat(s, si); \
5381 return length; \
5382} \
5383SLAB_ATTR(text); \
8ff12cfc
CL
5384
5385STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5386STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5387STAT_ATTR(FREE_FASTPATH, free_fastpath);
5388STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5389STAT_ATTR(FREE_FROZEN, free_frozen);
5390STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5391STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5392STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5393STAT_ATTR(ALLOC_SLAB, alloc_slab);
5394STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5395STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5396STAT_ATTR(FREE_SLAB, free_slab);
5397STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5398STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5399STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5400STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5401STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5402STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5403STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5404STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5405STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5406STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5407STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5408STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5409STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5410STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5411#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5412
06428780 5413static struct attribute *slab_attrs[] = {
81819f0f
CL
5414 &slab_size_attr.attr,
5415 &object_size_attr.attr,
5416 &objs_per_slab_attr.attr,
5417 &order_attr.attr,
73d342b1 5418 &min_partial_attr.attr,
49e22585 5419 &cpu_partial_attr.attr,
81819f0f 5420 &objects_attr.attr,
205ab99d 5421 &objects_partial_attr.attr,
81819f0f
CL
5422 &partial_attr.attr,
5423 &cpu_slabs_attr.attr,
5424 &ctor_attr.attr,
81819f0f
CL
5425 &aliases_attr.attr,
5426 &align_attr.attr,
81819f0f
CL
5427 &hwcache_align_attr.attr,
5428 &reclaim_account_attr.attr,
5429 &destroy_by_rcu_attr.attr,
a5a84755 5430 &shrink_attr.attr,
49e22585 5431 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5432#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5433 &total_objects_attr.attr,
5434 &slabs_attr.attr,
5435 &sanity_checks_attr.attr,
5436 &trace_attr.attr,
81819f0f
CL
5437 &red_zone_attr.attr,
5438 &poison_attr.attr,
5439 &store_user_attr.attr,
53e15af0 5440 &validate_attr.attr,
88a420e4
CL
5441 &alloc_calls_attr.attr,
5442 &free_calls_attr.attr,
ab4d5ed5 5443#endif
81819f0f
CL
5444#ifdef CONFIG_ZONE_DMA
5445 &cache_dma_attr.attr,
5446#endif
5447#ifdef CONFIG_NUMA
9824601e 5448 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5449#endif
5450#ifdef CONFIG_SLUB_STATS
5451 &alloc_fastpath_attr.attr,
5452 &alloc_slowpath_attr.attr,
5453 &free_fastpath_attr.attr,
5454 &free_slowpath_attr.attr,
5455 &free_frozen_attr.attr,
5456 &free_add_partial_attr.attr,
5457 &free_remove_partial_attr.attr,
5458 &alloc_from_partial_attr.attr,
5459 &alloc_slab_attr.attr,
5460 &alloc_refill_attr.attr,
e36a2652 5461 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5462 &free_slab_attr.attr,
5463 &cpuslab_flush_attr.attr,
5464 &deactivate_full_attr.attr,
5465 &deactivate_empty_attr.attr,
5466 &deactivate_to_head_attr.attr,
5467 &deactivate_to_tail_attr.attr,
5468 &deactivate_remote_frees_attr.attr,
03e404af 5469 &deactivate_bypass_attr.attr,
65c3376a 5470 &order_fallback_attr.attr,
b789ef51
CL
5471 &cmpxchg_double_fail_attr.attr,
5472 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5473 &cpu_partial_alloc_attr.attr,
5474 &cpu_partial_free_attr.attr,
8028dcea
AS
5475 &cpu_partial_node_attr.attr,
5476 &cpu_partial_drain_attr.attr,
81819f0f 5477#endif
4c13dd3b
DM
5478#ifdef CONFIG_FAILSLAB
5479 &failslab_attr.attr,
5480#endif
8eb8284b 5481 &usersize_attr.attr,
4c13dd3b 5482
81819f0f
CL
5483 NULL
5484};
5485
1fdaaa23 5486static const struct attribute_group slab_attr_group = {
81819f0f
CL
5487 .attrs = slab_attrs,
5488};
5489
5490static ssize_t slab_attr_show(struct kobject *kobj,
5491 struct attribute *attr,
5492 char *buf)
5493{
5494 struct slab_attribute *attribute;
5495 struct kmem_cache *s;
5496 int err;
5497
5498 attribute = to_slab_attr(attr);
5499 s = to_slab(kobj);
5500
5501 if (!attribute->show)
5502 return -EIO;
5503
5504 err = attribute->show(s, buf);
5505
5506 return err;
5507}
5508
5509static ssize_t slab_attr_store(struct kobject *kobj,
5510 struct attribute *attr,
5511 const char *buf, size_t len)
5512{
5513 struct slab_attribute *attribute;
5514 struct kmem_cache *s;
5515 int err;
5516
5517 attribute = to_slab_attr(attr);
5518 s = to_slab(kobj);
5519
5520 if (!attribute->store)
5521 return -EIO;
5522
5523 err = attribute->store(s, buf, len);
81819f0f
CL
5524 return err;
5525}
5526
41a21285
CL
5527static void kmem_cache_release(struct kobject *k)
5528{
5529 slab_kmem_cache_release(to_slab(k));
5530}
5531
52cf25d0 5532static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5533 .show = slab_attr_show,
5534 .store = slab_attr_store,
5535};
5536
5537static struct kobj_type slab_ktype = {
5538 .sysfs_ops = &slab_sysfs_ops,
41a21285 5539 .release = kmem_cache_release,
81819f0f
CL
5540};
5541
27c3a314 5542static struct kset *slab_kset;
81819f0f 5543
9a41707b
VD
5544static inline struct kset *cache_kset(struct kmem_cache *s)
5545{
9a41707b
VD
5546 return slab_kset;
5547}
5548
81819f0f
CL
5549#define ID_STR_LENGTH 64
5550
5551/* Create a unique string id for a slab cache:
6446faa2
CL
5552 *
5553 * Format :[flags-]size
81819f0f
CL
5554 */
5555static char *create_unique_id(struct kmem_cache *s)
5556{
5557 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5558 char *p = name;
5559
5560 BUG_ON(!name);
5561
5562 *p++ = ':';
5563 /*
5564 * First flags affecting slabcache operations. We will only
5565 * get here for aliasable slabs so we do not need to support
5566 * too many flags. The flags here must cover all flags that
5567 * are matched during merging to guarantee that the id is
5568 * unique.
5569 */
5570 if (s->flags & SLAB_CACHE_DMA)
5571 *p++ = 'd';
6d6ea1e9
NB
5572 if (s->flags & SLAB_CACHE_DMA32)
5573 *p++ = 'D';
81819f0f
CL
5574 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5575 *p++ = 'a';
becfda68 5576 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5577 *p++ = 'F';
230e9fc2
VD
5578 if (s->flags & SLAB_ACCOUNT)
5579 *p++ = 'A';
81819f0f
CL
5580 if (p != name + 1)
5581 *p++ = '-';
44065b2e 5582 p += sprintf(p, "%07u", s->size);
2633d7a0 5583
81819f0f
CL
5584 BUG_ON(p > name + ID_STR_LENGTH - 1);
5585 return name;
5586}
5587
5588static int sysfs_slab_add(struct kmem_cache *s)
5589{
5590 int err;
5591 const char *name;
1663f26d 5592 struct kset *kset = cache_kset(s);
45530c44 5593 int unmergeable = slab_unmergeable(s);
81819f0f 5594
1663f26d
TH
5595 if (!kset) {
5596 kobject_init(&s->kobj, &slab_ktype);
5597 return 0;
5598 }
5599
11066386
MC
5600 if (!unmergeable && disable_higher_order_debug &&
5601 (slub_debug & DEBUG_METADATA_FLAGS))
5602 unmergeable = 1;
5603
81819f0f
CL
5604 if (unmergeable) {
5605 /*
5606 * Slabcache can never be merged so we can use the name proper.
5607 * This is typically the case for debug situations. In that
5608 * case we can catch duplicate names easily.
5609 */
27c3a314 5610 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5611 name = s->name;
5612 } else {
5613 /*
5614 * Create a unique name for the slab as a target
5615 * for the symlinks.
5616 */
5617 name = create_unique_id(s);
5618 }
5619
1663f26d 5620 s->kobj.kset = kset;
26e4f205 5621 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
dde3c6b7
WH
5622 if (err) {
5623 kobject_put(&s->kobj);
80da026a 5624 goto out;
dde3c6b7 5625 }
81819f0f
CL
5626
5627 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5628 if (err)
5629 goto out_del_kobj;
9a41707b 5630
81819f0f
CL
5631 if (!unmergeable) {
5632 /* Setup first alias */
5633 sysfs_slab_alias(s, s->name);
81819f0f 5634 }
54b6a731
DJ
5635out:
5636 if (!unmergeable)
5637 kfree(name);
5638 return err;
5639out_del_kobj:
5640 kobject_del(&s->kobj);
54b6a731 5641 goto out;
81819f0f
CL
5642}
5643
d50d82fa
MP
5644void sysfs_slab_unlink(struct kmem_cache *s)
5645{
5646 if (slab_state >= FULL)
5647 kobject_del(&s->kobj);
5648}
5649
bf5eb3de
TH
5650void sysfs_slab_release(struct kmem_cache *s)
5651{
5652 if (slab_state >= FULL)
5653 kobject_put(&s->kobj);
81819f0f
CL
5654}
5655
5656/*
5657 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5658 * available lest we lose that information.
81819f0f
CL
5659 */
5660struct saved_alias {
5661 struct kmem_cache *s;
5662 const char *name;
5663 struct saved_alias *next;
5664};
5665
5af328a5 5666static struct saved_alias *alias_list;
81819f0f
CL
5667
5668static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5669{
5670 struct saved_alias *al;
5671
97d06609 5672 if (slab_state == FULL) {
81819f0f
CL
5673 /*
5674 * If we have a leftover link then remove it.
5675 */
27c3a314
GKH
5676 sysfs_remove_link(&slab_kset->kobj, name);
5677 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5678 }
5679
5680 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5681 if (!al)
5682 return -ENOMEM;
5683
5684 al->s = s;
5685 al->name = name;
5686 al->next = alias_list;
5687 alias_list = al;
5688 return 0;
5689}
5690
5691static int __init slab_sysfs_init(void)
5692{
5b95a4ac 5693 struct kmem_cache *s;
81819f0f
CL
5694 int err;
5695
18004c5d 5696 mutex_lock(&slab_mutex);
2bce6485 5697
d7660ce5 5698 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 5699 if (!slab_kset) {
18004c5d 5700 mutex_unlock(&slab_mutex);
f9f58285 5701 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5702 return -ENOSYS;
5703 }
5704
97d06609 5705 slab_state = FULL;
26a7bd03 5706
5b95a4ac 5707 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5708 err = sysfs_slab_add(s);
5d540fb7 5709 if (err)
f9f58285
FF
5710 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5711 s->name);
26a7bd03 5712 }
81819f0f
CL
5713
5714 while (alias_list) {
5715 struct saved_alias *al = alias_list;
5716
5717 alias_list = alias_list->next;
5718 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5719 if (err)
f9f58285
FF
5720 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5721 al->name);
81819f0f
CL
5722 kfree(al);
5723 }
5724
18004c5d 5725 mutex_unlock(&slab_mutex);
81819f0f
CL
5726 resiliency_test();
5727 return 0;
5728}
5729
5730__initcall(slab_sysfs_init);
ab4d5ed5 5731#endif /* CONFIG_SYSFS */
57ed3eda
PE
5732
5733/*
5734 * The /proc/slabinfo ABI
5735 */
5b365771 5736#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5737void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5738{
57ed3eda 5739 unsigned long nr_slabs = 0;
205ab99d
CL
5740 unsigned long nr_objs = 0;
5741 unsigned long nr_free = 0;
57ed3eda 5742 int node;
fa45dc25 5743 struct kmem_cache_node *n;
57ed3eda 5744
fa45dc25 5745 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5746 nr_slabs += node_nr_slabs(n);
5747 nr_objs += node_nr_objs(n);
205ab99d 5748 nr_free += count_partial(n, count_free);
57ed3eda
PE
5749 }
5750
0d7561c6
GC
5751 sinfo->active_objs = nr_objs - nr_free;
5752 sinfo->num_objs = nr_objs;
5753 sinfo->active_slabs = nr_slabs;
5754 sinfo->num_slabs = nr_slabs;
5755 sinfo->objects_per_slab = oo_objects(s->oo);
5756 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5757}
5758
0d7561c6 5759void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5760{
7b3c3a50
AD
5761}
5762
b7454ad3
GC
5763ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5764 size_t count, loff_t *ppos)
7b3c3a50 5765{
b7454ad3 5766 return -EIO;
7b3c3a50 5767}
5b365771 5768#endif /* CONFIG_SLUB_DEBUG */