]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/slub.c
netfilter: use skb_to_full_sk in ip_route_me_harder
[mirror_ubuntu-artful-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
5a896d9e 24#include <linux/kmemcheck.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
81819f0f
CL
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
672bba3a
CL
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 87 * freed then the slab will show up again on the partial lists.
672bba3a
CL
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
81819f0f
CL
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
4b6f0750
CL
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
dfb4f096 109 * freelist that allows lockless access to
894b8788
CL
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
81819f0f
CL
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
894b8788 115 * the fast path and disables lockless freelists.
81819f0f
CL
116 */
117
af537b0a
CL
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
117d54df 127void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be
JK
128{
129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 p += s->red_left_pad;
131
132 return p;
133}
134
345c905d
JK
135static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
136{
137#ifdef CONFIG_SLUB_CPU_PARTIAL
138 return !kmem_cache_debug(s);
139#else
140 return false;
141#endif
142}
143
81819f0f
CL
144/*
145 * Issues still to be resolved:
146 *
81819f0f
CL
147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148 *
81819f0f
CL
149 * - Variable sizing of the per node arrays
150 */
151
152/* Enable to test recovery from slab corruption on boot */
153#undef SLUB_RESILIENCY_TEST
154
b789ef51
CL
155/* Enable to log cmpxchg failures */
156#undef SLUB_DEBUG_CMPXCHG
157
2086d26a
CL
158/*
159 * Mininum number of partial slabs. These will be left on the partial
160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
161 */
76be8950 162#define MIN_PARTIAL 5
e95eed57 163
2086d26a
CL
164/*
165 * Maximum number of desirable partial slabs.
166 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 167 * sort the partial list by the number of objects in use.
2086d26a
CL
168 */
169#define MAX_PARTIAL 10
170
becfda68 171#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 172 SLAB_POISON | SLAB_STORE_USER)
672bba3a 173
149daaf3
LA
174/*
175 * These debug flags cannot use CMPXCHG because there might be consistency
176 * issues when checking or reading debug information
177 */
178#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
179 SLAB_TRACE)
180
181
fa5ec8a1 182/*
3de47213
DR
183 * Debugging flags that require metadata to be stored in the slab. These get
184 * disabled when slub_debug=O is used and a cache's min order increases with
185 * metadata.
fa5ec8a1 186 */
3de47213 187#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 188
210b5c06
CG
189#define OO_SHIFT 16
190#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 191#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 192
81819f0f 193/* Internal SLUB flags */
f90ec390 194#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 195#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 196
02cbc874
CL
197/*
198 * Tracking user of a slab.
199 */
d6543e39 200#define TRACK_ADDRS_COUNT 16
02cbc874 201struct track {
ce71e27c 202 unsigned long addr; /* Called from address */
d6543e39
BG
203#ifdef CONFIG_STACKTRACE
204 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
205#endif
02cbc874
CL
206 int cpu; /* Was running on cpu */
207 int pid; /* Pid context */
208 unsigned long when; /* When did the operation occur */
209};
210
211enum track_item { TRACK_ALLOC, TRACK_FREE };
212
ab4d5ed5 213#ifdef CONFIG_SYSFS
81819f0f
CL
214static int sysfs_slab_add(struct kmem_cache *);
215static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 216static void memcg_propagate_slab_attrs(struct kmem_cache *s);
bf5eb3de 217static void sysfs_slab_remove(struct kmem_cache *s);
81819f0f 218#else
0c710013
CL
219static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
220static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
221 { return 0; }
107dab5c 222static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
bf5eb3de 223static inline void sysfs_slab_remove(struct kmem_cache *s) { }
81819f0f
CL
224#endif
225
4fdccdfb 226static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
227{
228#ifdef CONFIG_SLUB_STATS
88da03a6
CL
229 /*
230 * The rmw is racy on a preemptible kernel but this is acceptable, so
231 * avoid this_cpu_add()'s irq-disable overhead.
232 */
233 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
234#endif
235}
236
81819f0f
CL
237/********************************************************************
238 * Core slab cache functions
239 *******************************************************************/
240
7656c72b
CL
241static inline void *get_freepointer(struct kmem_cache *s, void *object)
242{
243 return *(void **)(object + s->offset);
244}
245
0ad9500e
ED
246static void prefetch_freepointer(const struct kmem_cache *s, void *object)
247{
248 prefetch(object + s->offset);
249}
250
1393d9a1
CL
251static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
252{
253 void *p;
254
922d566c
JK
255 if (!debug_pagealloc_enabled())
256 return get_freepointer(s, object);
257
1393d9a1 258 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
1393d9a1
CL
259 return p;
260}
261
7656c72b
CL
262static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
263{
264 *(void **)(object + s->offset) = fp;
265}
266
267/* Loop over all objects in a slab */
224a88be 268#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
269 for (__p = fixup_red_left(__s, __addr); \
270 __p < (__addr) + (__objects) * (__s)->size; \
271 __p += (__s)->size)
7656c72b 272
54266640 273#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
d86bd1be
JK
274 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
275 __idx <= __objects; \
276 __p += (__s)->size, __idx++)
54266640 277
7656c72b
CL
278/* Determine object index from a given position */
279static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
280{
281 return (p - addr) / s->size;
282}
283
ab9a0f19
LJ
284static inline int order_objects(int order, unsigned long size, int reserved)
285{
286 return ((PAGE_SIZE << order) - reserved) / size;
287}
288
834f3d11 289static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 290 unsigned long size, int reserved)
834f3d11
CL
291{
292 struct kmem_cache_order_objects x = {
ab9a0f19 293 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
294 };
295
296 return x;
297}
298
299static inline int oo_order(struct kmem_cache_order_objects x)
300{
210b5c06 301 return x.x >> OO_SHIFT;
834f3d11
CL
302}
303
304static inline int oo_objects(struct kmem_cache_order_objects x)
305{
210b5c06 306 return x.x & OO_MASK;
834f3d11
CL
307}
308
881db7fb
CL
309/*
310 * Per slab locking using the pagelock
311 */
312static __always_inline void slab_lock(struct page *page)
313{
48c935ad 314 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
315 bit_spin_lock(PG_locked, &page->flags);
316}
317
318static __always_inline void slab_unlock(struct page *page)
319{
48c935ad 320 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
321 __bit_spin_unlock(PG_locked, &page->flags);
322}
323
a0320865
DH
324static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
325{
326 struct page tmp;
327 tmp.counters = counters_new;
328 /*
329 * page->counters can cover frozen/inuse/objects as well
0139aa7b
JK
330 * as page->_refcount. If we assign to ->counters directly
331 * we run the risk of losing updates to page->_refcount, so
a0320865
DH
332 * be careful and only assign to the fields we need.
333 */
334 page->frozen = tmp.frozen;
335 page->inuse = tmp.inuse;
336 page->objects = tmp.objects;
337}
338
1d07171c
CL
339/* Interrupts must be disabled (for the fallback code to work right) */
340static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
341 void *freelist_old, unsigned long counters_old,
342 void *freelist_new, unsigned long counters_new,
343 const char *n)
344{
345 VM_BUG_ON(!irqs_disabled());
2565409f
HC
346#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
347 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 348 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 349 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
350 freelist_old, counters_old,
351 freelist_new, counters_new))
6f6528a1 352 return true;
1d07171c
CL
353 } else
354#endif
355 {
356 slab_lock(page);
d0e0ac97
CG
357 if (page->freelist == freelist_old &&
358 page->counters == counters_old) {
1d07171c 359 page->freelist = freelist_new;
a0320865 360 set_page_slub_counters(page, counters_new);
1d07171c 361 slab_unlock(page);
6f6528a1 362 return true;
1d07171c
CL
363 }
364 slab_unlock(page);
365 }
366
367 cpu_relax();
368 stat(s, CMPXCHG_DOUBLE_FAIL);
369
370#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 371 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
372#endif
373
6f6528a1 374 return false;
1d07171c
CL
375}
376
b789ef51
CL
377static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
378 void *freelist_old, unsigned long counters_old,
379 void *freelist_new, unsigned long counters_new,
380 const char *n)
381{
2565409f
HC
382#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
383 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 384 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 385 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
386 freelist_old, counters_old,
387 freelist_new, counters_new))
6f6528a1 388 return true;
b789ef51
CL
389 } else
390#endif
391 {
1d07171c
CL
392 unsigned long flags;
393
394 local_irq_save(flags);
881db7fb 395 slab_lock(page);
d0e0ac97
CG
396 if (page->freelist == freelist_old &&
397 page->counters == counters_old) {
b789ef51 398 page->freelist = freelist_new;
a0320865 399 set_page_slub_counters(page, counters_new);
881db7fb 400 slab_unlock(page);
1d07171c 401 local_irq_restore(flags);
6f6528a1 402 return true;
b789ef51 403 }
881db7fb 404 slab_unlock(page);
1d07171c 405 local_irq_restore(flags);
b789ef51
CL
406 }
407
408 cpu_relax();
409 stat(s, CMPXCHG_DOUBLE_FAIL);
410
411#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 412 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
413#endif
414
6f6528a1 415 return false;
b789ef51
CL
416}
417
41ecc55b 418#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
419/*
420 * Determine a map of object in use on a page.
421 *
881db7fb 422 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
423 * not vanish from under us.
424 */
425static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
426{
427 void *p;
428 void *addr = page_address(page);
429
430 for (p = page->freelist; p; p = get_freepointer(s, p))
431 set_bit(slab_index(p, s, addr), map);
432}
433
d86bd1be
JK
434static inline int size_from_object(struct kmem_cache *s)
435{
436 if (s->flags & SLAB_RED_ZONE)
437 return s->size - s->red_left_pad;
438
439 return s->size;
440}
441
442static inline void *restore_red_left(struct kmem_cache *s, void *p)
443{
444 if (s->flags & SLAB_RED_ZONE)
445 p -= s->red_left_pad;
446
447 return p;
448}
449
41ecc55b
CL
450/*
451 * Debug settings:
452 */
89d3c87e 453#if defined(CONFIG_SLUB_DEBUG_ON)
f0630fff
CL
454static int slub_debug = DEBUG_DEFAULT_FLAGS;
455#else
41ecc55b 456static int slub_debug;
f0630fff 457#endif
41ecc55b
CL
458
459static char *slub_debug_slabs;
fa5ec8a1 460static int disable_higher_order_debug;
41ecc55b 461
a79316c6
AR
462/*
463 * slub is about to manipulate internal object metadata. This memory lies
464 * outside the range of the allocated object, so accessing it would normally
465 * be reported by kasan as a bounds error. metadata_access_enable() is used
466 * to tell kasan that these accesses are OK.
467 */
468static inline void metadata_access_enable(void)
469{
470 kasan_disable_current();
471}
472
473static inline void metadata_access_disable(void)
474{
475 kasan_enable_current();
476}
477
81819f0f
CL
478/*
479 * Object debugging
480 */
d86bd1be
JK
481
482/* Verify that a pointer has an address that is valid within a slab page */
483static inline int check_valid_pointer(struct kmem_cache *s,
484 struct page *page, void *object)
485{
486 void *base;
487
488 if (!object)
489 return 1;
490
491 base = page_address(page);
492 object = restore_red_left(s, object);
493 if (object < base || object >= base + page->objects * s->size ||
494 (object - base) % s->size) {
495 return 0;
496 }
497
498 return 1;
499}
500
aa2efd5e
DT
501static void print_section(char *level, char *text, u8 *addr,
502 unsigned int length)
81819f0f 503{
a79316c6 504 metadata_access_enable();
aa2efd5e 505 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 506 length, 1);
a79316c6 507 metadata_access_disable();
81819f0f
CL
508}
509
81819f0f
CL
510static struct track *get_track(struct kmem_cache *s, void *object,
511 enum track_item alloc)
512{
513 struct track *p;
514
515 if (s->offset)
516 p = object + s->offset + sizeof(void *);
517 else
518 p = object + s->inuse;
519
520 return p + alloc;
521}
522
523static void set_track(struct kmem_cache *s, void *object,
ce71e27c 524 enum track_item alloc, unsigned long addr)
81819f0f 525{
1a00df4a 526 struct track *p = get_track(s, object, alloc);
81819f0f 527
81819f0f 528 if (addr) {
d6543e39
BG
529#ifdef CONFIG_STACKTRACE
530 struct stack_trace trace;
531 int i;
532
533 trace.nr_entries = 0;
534 trace.max_entries = TRACK_ADDRS_COUNT;
535 trace.entries = p->addrs;
536 trace.skip = 3;
a79316c6 537 metadata_access_enable();
d6543e39 538 save_stack_trace(&trace);
a79316c6 539 metadata_access_disable();
d6543e39
BG
540
541 /* See rant in lockdep.c */
542 if (trace.nr_entries != 0 &&
543 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
544 trace.nr_entries--;
545
546 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
547 p->addrs[i] = 0;
548#endif
81819f0f
CL
549 p->addr = addr;
550 p->cpu = smp_processor_id();
88e4ccf2 551 p->pid = current->pid;
81819f0f
CL
552 p->when = jiffies;
553 } else
554 memset(p, 0, sizeof(struct track));
555}
556
81819f0f
CL
557static void init_tracking(struct kmem_cache *s, void *object)
558{
24922684
CL
559 if (!(s->flags & SLAB_STORE_USER))
560 return;
561
ce71e27c
EGM
562 set_track(s, object, TRACK_FREE, 0UL);
563 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
564}
565
566static void print_track(const char *s, struct track *t)
567{
568 if (!t->addr)
569 return;
570
f9f58285
FF
571 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
572 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
573#ifdef CONFIG_STACKTRACE
574 {
575 int i;
576 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
577 if (t->addrs[i])
f9f58285 578 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
579 else
580 break;
581 }
582#endif
24922684
CL
583}
584
585static void print_tracking(struct kmem_cache *s, void *object)
586{
587 if (!(s->flags & SLAB_STORE_USER))
588 return;
589
590 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
591 print_track("Freed", get_track(s, object, TRACK_FREE));
592}
593
594static void print_page_info(struct page *page)
595{
f9f58285 596 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 597 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
598
599}
600
601static void slab_bug(struct kmem_cache *s, char *fmt, ...)
602{
ecc42fbe 603 struct va_format vaf;
24922684 604 va_list args;
24922684
CL
605
606 va_start(args, fmt);
ecc42fbe
FF
607 vaf.fmt = fmt;
608 vaf.va = &args;
f9f58285 609 pr_err("=============================================================================\n");
ecc42fbe 610 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 611 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 612
373d4d09 613 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 614 va_end(args);
81819f0f
CL
615}
616
24922684
CL
617static void slab_fix(struct kmem_cache *s, char *fmt, ...)
618{
ecc42fbe 619 struct va_format vaf;
24922684 620 va_list args;
24922684
CL
621
622 va_start(args, fmt);
ecc42fbe
FF
623 vaf.fmt = fmt;
624 vaf.va = &args;
625 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 626 va_end(args);
24922684
CL
627}
628
629static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
630{
631 unsigned int off; /* Offset of last byte */
a973e9dd 632 u8 *addr = page_address(page);
24922684
CL
633
634 print_tracking(s, p);
635
636 print_page_info(page);
637
f9f58285
FF
638 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
639 p, p - addr, get_freepointer(s, p));
24922684 640
d86bd1be 641 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
642 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
643 s->red_left_pad);
d86bd1be 644 else if (p > addr + 16)
aa2efd5e 645 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 646
aa2efd5e
DT
647 print_section(KERN_ERR, "Object ", p,
648 min_t(unsigned long, s->object_size, PAGE_SIZE));
81819f0f 649 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 650 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 651 s->inuse - s->object_size);
81819f0f 652
81819f0f
CL
653 if (s->offset)
654 off = s->offset + sizeof(void *);
655 else
656 off = s->inuse;
657
24922684 658 if (s->flags & SLAB_STORE_USER)
81819f0f 659 off += 2 * sizeof(struct track);
81819f0f 660
80a9201a
AP
661 off += kasan_metadata_size(s);
662
d86bd1be 663 if (off != size_from_object(s))
81819f0f 664 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
665 print_section(KERN_ERR, "Padding ", p + off,
666 size_from_object(s) - off);
24922684
CL
667
668 dump_stack();
81819f0f
CL
669}
670
75c66def 671void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
672 u8 *object, char *reason)
673{
3dc50637 674 slab_bug(s, "%s", reason);
24922684 675 print_trailer(s, page, object);
81819f0f
CL
676}
677
d0e0ac97
CG
678static void slab_err(struct kmem_cache *s, struct page *page,
679 const char *fmt, ...)
81819f0f
CL
680{
681 va_list args;
682 char buf[100];
683
24922684
CL
684 va_start(args, fmt);
685 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 686 va_end(args);
3dc50637 687 slab_bug(s, "%s", buf);
24922684 688 print_page_info(page);
81819f0f
CL
689 dump_stack();
690}
691
f7cb1933 692static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
693{
694 u8 *p = object;
695
d86bd1be
JK
696 if (s->flags & SLAB_RED_ZONE)
697 memset(p - s->red_left_pad, val, s->red_left_pad);
698
81819f0f 699 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
700 memset(p, POISON_FREE, s->object_size - 1);
701 p[s->object_size - 1] = POISON_END;
81819f0f
CL
702 }
703
704 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 705 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
706}
707
24922684
CL
708static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
709 void *from, void *to)
710{
711 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
712 memset(from, data, to - from);
713}
714
715static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
716 u8 *object, char *what,
06428780 717 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
718{
719 u8 *fault;
720 u8 *end;
721
a79316c6 722 metadata_access_enable();
79824820 723 fault = memchr_inv(start, value, bytes);
a79316c6 724 metadata_access_disable();
24922684
CL
725 if (!fault)
726 return 1;
727
728 end = start + bytes;
729 while (end > fault && end[-1] == value)
730 end--;
731
732 slab_bug(s, "%s overwritten", what);
f9f58285 733 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
734 fault, end - 1, fault[0], value);
735 print_trailer(s, page, object);
736
737 restore_bytes(s, what, value, fault, end);
738 return 0;
81819f0f
CL
739}
740
81819f0f
CL
741/*
742 * Object layout:
743 *
744 * object address
745 * Bytes of the object to be managed.
746 * If the freepointer may overlay the object then the free
747 * pointer is the first word of the object.
672bba3a 748 *
81819f0f
CL
749 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
750 * 0xa5 (POISON_END)
751 *
3b0efdfa 752 * object + s->object_size
81819f0f 753 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 754 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 755 * object_size == inuse.
672bba3a 756 *
81819f0f
CL
757 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
758 * 0xcc (RED_ACTIVE) for objects in use.
759 *
760 * object + s->inuse
672bba3a
CL
761 * Meta data starts here.
762 *
81819f0f
CL
763 * A. Free pointer (if we cannot overwrite object on free)
764 * B. Tracking data for SLAB_STORE_USER
672bba3a 765 * C. Padding to reach required alignment boundary or at mininum
6446faa2 766 * one word if debugging is on to be able to detect writes
672bba3a
CL
767 * before the word boundary.
768 *
769 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
770 *
771 * object + s->size
672bba3a 772 * Nothing is used beyond s->size.
81819f0f 773 *
3b0efdfa 774 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 775 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
776 * may be used with merged slabcaches.
777 */
778
81819f0f
CL
779static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
780{
781 unsigned long off = s->inuse; /* The end of info */
782
783 if (s->offset)
784 /* Freepointer is placed after the object. */
785 off += sizeof(void *);
786
787 if (s->flags & SLAB_STORE_USER)
788 /* We also have user information there */
789 off += 2 * sizeof(struct track);
790
80a9201a
AP
791 off += kasan_metadata_size(s);
792
d86bd1be 793 if (size_from_object(s) == off)
81819f0f
CL
794 return 1;
795
24922684 796 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 797 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
798}
799
39b26464 800/* Check the pad bytes at the end of a slab page */
81819f0f
CL
801static int slab_pad_check(struct kmem_cache *s, struct page *page)
802{
24922684
CL
803 u8 *start;
804 u8 *fault;
805 u8 *end;
806 int length;
807 int remainder;
81819f0f
CL
808
809 if (!(s->flags & SLAB_POISON))
810 return 1;
811
a973e9dd 812 start = page_address(page);
ab9a0f19 813 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
814 end = start + length;
815 remainder = length % s->size;
81819f0f
CL
816 if (!remainder)
817 return 1;
818
a79316c6 819 metadata_access_enable();
79824820 820 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
a79316c6 821 metadata_access_disable();
24922684
CL
822 if (!fault)
823 return 1;
824 while (end > fault && end[-1] == POISON_INUSE)
825 end--;
826
827 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
aa2efd5e 828 print_section(KERN_ERR, "Padding ", end - remainder, remainder);
24922684 829
8a3d271d 830 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 831 return 0;
81819f0f
CL
832}
833
834static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 835 void *object, u8 val)
81819f0f
CL
836{
837 u8 *p = object;
3b0efdfa 838 u8 *endobject = object + s->object_size;
81819f0f
CL
839
840 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
841 if (!check_bytes_and_report(s, page, object, "Redzone",
842 object - s->red_left_pad, val, s->red_left_pad))
843 return 0;
844
24922684 845 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 846 endobject, val, s->inuse - s->object_size))
81819f0f 847 return 0;
81819f0f 848 } else {
3b0efdfa 849 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 850 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
851 endobject, POISON_INUSE,
852 s->inuse - s->object_size);
3adbefee 853 }
81819f0f
CL
854 }
855
856 if (s->flags & SLAB_POISON) {
f7cb1933 857 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 858 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 859 POISON_FREE, s->object_size - 1) ||
24922684 860 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 861 p + s->object_size - 1, POISON_END, 1)))
81819f0f 862 return 0;
81819f0f
CL
863 /*
864 * check_pad_bytes cleans up on its own.
865 */
866 check_pad_bytes(s, page, p);
867 }
868
f7cb1933 869 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
870 /*
871 * Object and freepointer overlap. Cannot check
872 * freepointer while object is allocated.
873 */
874 return 1;
875
876 /* Check free pointer validity */
877 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
878 object_err(s, page, p, "Freepointer corrupt");
879 /*
9f6c708e 880 * No choice but to zap it and thus lose the remainder
81819f0f 881 * of the free objects in this slab. May cause
672bba3a 882 * another error because the object count is now wrong.
81819f0f 883 */
a973e9dd 884 set_freepointer(s, p, NULL);
81819f0f
CL
885 return 0;
886 }
887 return 1;
888}
889
890static int check_slab(struct kmem_cache *s, struct page *page)
891{
39b26464
CL
892 int maxobj;
893
81819f0f
CL
894 VM_BUG_ON(!irqs_disabled());
895
896 if (!PageSlab(page)) {
24922684 897 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
898 return 0;
899 }
39b26464 900
ab9a0f19 901 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
902 if (page->objects > maxobj) {
903 slab_err(s, page, "objects %u > max %u",
f6edde9c 904 page->objects, maxobj);
39b26464
CL
905 return 0;
906 }
907 if (page->inuse > page->objects) {
24922684 908 slab_err(s, page, "inuse %u > max %u",
f6edde9c 909 page->inuse, page->objects);
81819f0f
CL
910 return 0;
911 }
912 /* Slab_pad_check fixes things up after itself */
913 slab_pad_check(s, page);
914 return 1;
915}
916
917/*
672bba3a
CL
918 * Determine if a certain object on a page is on the freelist. Must hold the
919 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
920 */
921static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
922{
923 int nr = 0;
881db7fb 924 void *fp;
81819f0f 925 void *object = NULL;
f6edde9c 926 int max_objects;
81819f0f 927
881db7fb 928 fp = page->freelist;
39b26464 929 while (fp && nr <= page->objects) {
81819f0f
CL
930 if (fp == search)
931 return 1;
932 if (!check_valid_pointer(s, page, fp)) {
933 if (object) {
934 object_err(s, page, object,
935 "Freechain corrupt");
a973e9dd 936 set_freepointer(s, object, NULL);
81819f0f 937 } else {
24922684 938 slab_err(s, page, "Freepointer corrupt");
a973e9dd 939 page->freelist = NULL;
39b26464 940 page->inuse = page->objects;
24922684 941 slab_fix(s, "Freelist cleared");
81819f0f
CL
942 return 0;
943 }
944 break;
945 }
946 object = fp;
947 fp = get_freepointer(s, object);
948 nr++;
949 }
950
ab9a0f19 951 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
952 if (max_objects > MAX_OBJS_PER_PAGE)
953 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
954
955 if (page->objects != max_objects) {
756a025f
JP
956 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
957 page->objects, max_objects);
224a88be
CL
958 page->objects = max_objects;
959 slab_fix(s, "Number of objects adjusted.");
960 }
39b26464 961 if (page->inuse != page->objects - nr) {
756a025f
JP
962 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
963 page->inuse, page->objects - nr);
39b26464 964 page->inuse = page->objects - nr;
24922684 965 slab_fix(s, "Object count adjusted.");
81819f0f
CL
966 }
967 return search == NULL;
968}
969
0121c619
CL
970static void trace(struct kmem_cache *s, struct page *page, void *object,
971 int alloc)
3ec09742
CL
972{
973 if (s->flags & SLAB_TRACE) {
f9f58285 974 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
975 s->name,
976 alloc ? "alloc" : "free",
977 object, page->inuse,
978 page->freelist);
979
980 if (!alloc)
aa2efd5e 981 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 982 s->object_size);
3ec09742
CL
983
984 dump_stack();
985 }
986}
987
643b1138 988/*
672bba3a 989 * Tracking of fully allocated slabs for debugging purposes.
643b1138 990 */
5cc6eee8
CL
991static void add_full(struct kmem_cache *s,
992 struct kmem_cache_node *n, struct page *page)
643b1138 993{
5cc6eee8
CL
994 if (!(s->flags & SLAB_STORE_USER))
995 return;
996
255d0884 997 lockdep_assert_held(&n->list_lock);
643b1138 998 list_add(&page->lru, &n->full);
643b1138
CL
999}
1000
c65c1877 1001static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1002{
643b1138
CL
1003 if (!(s->flags & SLAB_STORE_USER))
1004 return;
1005
255d0884 1006 lockdep_assert_held(&n->list_lock);
643b1138 1007 list_del(&page->lru);
643b1138
CL
1008}
1009
0f389ec6
CL
1010/* Tracking of the number of slabs for debugging purposes */
1011static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1012{
1013 struct kmem_cache_node *n = get_node(s, node);
1014
1015 return atomic_long_read(&n->nr_slabs);
1016}
1017
26c02cf0
AB
1018static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1019{
1020 return atomic_long_read(&n->nr_slabs);
1021}
1022
205ab99d 1023static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1024{
1025 struct kmem_cache_node *n = get_node(s, node);
1026
1027 /*
1028 * May be called early in order to allocate a slab for the
1029 * kmem_cache_node structure. Solve the chicken-egg
1030 * dilemma by deferring the increment of the count during
1031 * bootstrap (see early_kmem_cache_node_alloc).
1032 */
338b2642 1033 if (likely(n)) {
0f389ec6 1034 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1035 atomic_long_add(objects, &n->total_objects);
1036 }
0f389ec6 1037}
205ab99d 1038static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1039{
1040 struct kmem_cache_node *n = get_node(s, node);
1041
1042 atomic_long_dec(&n->nr_slabs);
205ab99d 1043 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1044}
1045
1046/* Object debug checks for alloc/free paths */
3ec09742
CL
1047static void setup_object_debug(struct kmem_cache *s, struct page *page,
1048 void *object)
1049{
1050 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1051 return;
1052
f7cb1933 1053 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1054 init_tracking(s, object);
1055}
1056
becfda68 1057static inline int alloc_consistency_checks(struct kmem_cache *s,
d0e0ac97 1058 struct page *page,
ce71e27c 1059 void *object, unsigned long addr)
81819f0f
CL
1060{
1061 if (!check_slab(s, page))
becfda68 1062 return 0;
81819f0f 1063
81819f0f
CL
1064 if (!check_valid_pointer(s, page, object)) {
1065 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1066 return 0;
81819f0f
CL
1067 }
1068
f7cb1933 1069 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1070 return 0;
1071
1072 return 1;
1073}
1074
1075static noinline int alloc_debug_processing(struct kmem_cache *s,
1076 struct page *page,
1077 void *object, unsigned long addr)
1078{
1079 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1080 if (!alloc_consistency_checks(s, page, object, addr))
1081 goto bad;
1082 }
81819f0f 1083
3ec09742
CL
1084 /* Success perform special debug activities for allocs */
1085 if (s->flags & SLAB_STORE_USER)
1086 set_track(s, object, TRACK_ALLOC, addr);
1087 trace(s, page, object, 1);
f7cb1933 1088 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1089 return 1;
3ec09742 1090
81819f0f
CL
1091bad:
1092 if (PageSlab(page)) {
1093 /*
1094 * If this is a slab page then lets do the best we can
1095 * to avoid issues in the future. Marking all objects
672bba3a 1096 * as used avoids touching the remaining objects.
81819f0f 1097 */
24922684 1098 slab_fix(s, "Marking all objects used");
39b26464 1099 page->inuse = page->objects;
a973e9dd 1100 page->freelist = NULL;
81819f0f
CL
1101 }
1102 return 0;
1103}
1104
becfda68
LA
1105static inline int free_consistency_checks(struct kmem_cache *s,
1106 struct page *page, void *object, unsigned long addr)
81819f0f 1107{
81819f0f 1108 if (!check_valid_pointer(s, page, object)) {
70d71228 1109 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1110 return 0;
81819f0f
CL
1111 }
1112
1113 if (on_freelist(s, page, object)) {
24922684 1114 object_err(s, page, object, "Object already free");
becfda68 1115 return 0;
81819f0f
CL
1116 }
1117
f7cb1933 1118 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1119 return 0;
81819f0f 1120
1b4f59e3 1121 if (unlikely(s != page->slab_cache)) {
3adbefee 1122 if (!PageSlab(page)) {
756a025f
JP
1123 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1124 object);
1b4f59e3 1125 } else if (!page->slab_cache) {
f9f58285
FF
1126 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1127 object);
70d71228 1128 dump_stack();
06428780 1129 } else
24922684
CL
1130 object_err(s, page, object,
1131 "page slab pointer corrupt.");
becfda68
LA
1132 return 0;
1133 }
1134 return 1;
1135}
1136
1137/* Supports checking bulk free of a constructed freelist */
1138static noinline int free_debug_processing(
1139 struct kmem_cache *s, struct page *page,
1140 void *head, void *tail, int bulk_cnt,
1141 unsigned long addr)
1142{
1143 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1144 void *object = head;
1145 int cnt = 0;
1146 unsigned long uninitialized_var(flags);
1147 int ret = 0;
1148
1149 spin_lock_irqsave(&n->list_lock, flags);
1150 slab_lock(page);
1151
1152 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1153 if (!check_slab(s, page))
1154 goto out;
1155 }
1156
1157next_object:
1158 cnt++;
1159
1160 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1161 if (!free_consistency_checks(s, page, object, addr))
1162 goto out;
81819f0f 1163 }
3ec09742 1164
3ec09742
CL
1165 if (s->flags & SLAB_STORE_USER)
1166 set_track(s, object, TRACK_FREE, addr);
1167 trace(s, page, object, 0);
81084651 1168 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1169 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1170
1171 /* Reached end of constructed freelist yet? */
1172 if (object != tail) {
1173 object = get_freepointer(s, object);
1174 goto next_object;
1175 }
804aa132
LA
1176 ret = 1;
1177
5c2e4bbb 1178out:
81084651
JDB
1179 if (cnt != bulk_cnt)
1180 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1181 bulk_cnt, cnt);
1182
881db7fb 1183 slab_unlock(page);
282acb43 1184 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1185 if (!ret)
1186 slab_fix(s, "Object at 0x%p not freed", object);
1187 return ret;
81819f0f
CL
1188}
1189
41ecc55b
CL
1190static int __init setup_slub_debug(char *str)
1191{
f0630fff
CL
1192 slub_debug = DEBUG_DEFAULT_FLAGS;
1193 if (*str++ != '=' || !*str)
1194 /*
1195 * No options specified. Switch on full debugging.
1196 */
1197 goto out;
1198
1199 if (*str == ',')
1200 /*
1201 * No options but restriction on slabs. This means full
1202 * debugging for slabs matching a pattern.
1203 */
1204 goto check_slabs;
1205
1206 slub_debug = 0;
1207 if (*str == '-')
1208 /*
1209 * Switch off all debugging measures.
1210 */
1211 goto out;
1212
1213 /*
1214 * Determine which debug features should be switched on
1215 */
06428780 1216 for (; *str && *str != ','; str++) {
f0630fff
CL
1217 switch (tolower(*str)) {
1218 case 'f':
becfda68 1219 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1220 break;
1221 case 'z':
1222 slub_debug |= SLAB_RED_ZONE;
1223 break;
1224 case 'p':
1225 slub_debug |= SLAB_POISON;
1226 break;
1227 case 'u':
1228 slub_debug |= SLAB_STORE_USER;
1229 break;
1230 case 't':
1231 slub_debug |= SLAB_TRACE;
1232 break;
4c13dd3b
DM
1233 case 'a':
1234 slub_debug |= SLAB_FAILSLAB;
1235 break;
08303a73
CA
1236 case 'o':
1237 /*
1238 * Avoid enabling debugging on caches if its minimum
1239 * order would increase as a result.
1240 */
1241 disable_higher_order_debug = 1;
1242 break;
f0630fff 1243 default:
f9f58285
FF
1244 pr_err("slub_debug option '%c' unknown. skipped\n",
1245 *str);
f0630fff 1246 }
41ecc55b
CL
1247 }
1248
f0630fff 1249check_slabs:
41ecc55b
CL
1250 if (*str == ',')
1251 slub_debug_slabs = str + 1;
f0630fff 1252out:
41ecc55b
CL
1253 return 1;
1254}
1255
1256__setup("slub_debug", setup_slub_debug);
1257
423c929c 1258unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1259 unsigned long flags, const char *name,
51cc5068 1260 void (*ctor)(void *))
41ecc55b
CL
1261{
1262 /*
e153362a 1263 * Enable debugging if selected on the kernel commandline.
41ecc55b 1264 */
c6f58d9b
CL
1265 if (slub_debug && (!slub_debug_slabs || (name &&
1266 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1267 flags |= slub_debug;
ba0268a8
CL
1268
1269 return flags;
41ecc55b 1270}
b4a64718 1271#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1272static inline void setup_object_debug(struct kmem_cache *s,
1273 struct page *page, void *object) {}
41ecc55b 1274
3ec09742 1275static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1276 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1277
282acb43 1278static inline int free_debug_processing(
81084651
JDB
1279 struct kmem_cache *s, struct page *page,
1280 void *head, void *tail, int bulk_cnt,
282acb43 1281 unsigned long addr) { return 0; }
41ecc55b 1282
41ecc55b
CL
1283static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1284 { return 1; }
1285static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1286 void *object, u8 val) { return 1; }
5cc6eee8
CL
1287static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1288 struct page *page) {}
c65c1877
PZ
1289static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1290 struct page *page) {}
423c929c 1291unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1292 unsigned long flags, const char *name,
51cc5068 1293 void (*ctor)(void *))
ba0268a8
CL
1294{
1295 return flags;
1296}
41ecc55b 1297#define slub_debug 0
0f389ec6 1298
fdaa45e9
IM
1299#define disable_higher_order_debug 0
1300
0f389ec6
CL
1301static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1302 { return 0; }
26c02cf0
AB
1303static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1304 { return 0; }
205ab99d
CL
1305static inline void inc_slabs_node(struct kmem_cache *s, int node,
1306 int objects) {}
1307static inline void dec_slabs_node(struct kmem_cache *s, int node,
1308 int objects) {}
7d550c56 1309
02e72cc6
AR
1310#endif /* CONFIG_SLUB_DEBUG */
1311
1312/*
1313 * Hooks for other subsystems that check memory allocations. In a typical
1314 * production configuration these hooks all should produce no code at all.
1315 */
d56791b3
RB
1316static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1317{
1318 kmemleak_alloc(ptr, size, 1, flags);
505f5dcb 1319 kasan_kmalloc_large(ptr, size, flags);
d56791b3
RB
1320}
1321
1322static inline void kfree_hook(const void *x)
1323{
1324 kmemleak_free(x);
0316bec2 1325 kasan_kfree_large(x);
d56791b3
RB
1326}
1327
80a9201a 1328static inline void *slab_free_hook(struct kmem_cache *s, void *x)
d56791b3 1329{
80a9201a
AP
1330 void *freeptr;
1331
d56791b3 1332 kmemleak_free_recursive(x, s->flags);
7d550c56 1333
02e72cc6
AR
1334 /*
1335 * Trouble is that we may no longer disable interrupts in the fast path
1336 * So in order to make the debug calls that expect irqs to be
1337 * disabled we need to disable interrupts temporarily.
1338 */
1339#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1340 {
1341 unsigned long flags;
1342
1343 local_irq_save(flags);
1344 kmemcheck_slab_free(s, x, s->object_size);
1345 debug_check_no_locks_freed(x, s->object_size);
1346 local_irq_restore(flags);
1347 }
1348#endif
1349 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1350 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1351
80a9201a
AP
1352 freeptr = get_freepointer(s, x);
1353 /*
1354 * kasan_slab_free() may put x into memory quarantine, delaying its
1355 * reuse. In this case the object's freelist pointer is changed.
1356 */
0316bec2 1357 kasan_slab_free(s, x);
80a9201a 1358 return freeptr;
02e72cc6 1359}
205ab99d 1360
81084651
JDB
1361static inline void slab_free_freelist_hook(struct kmem_cache *s,
1362 void *head, void *tail)
1363{
1364/*
1365 * Compiler cannot detect this function can be removed if slab_free_hook()
1366 * evaluates to nothing. Thus, catch all relevant config debug options here.
1367 */
1368#if defined(CONFIG_KMEMCHECK) || \
1369 defined(CONFIG_LOCKDEP) || \
1370 defined(CONFIG_DEBUG_KMEMLEAK) || \
1371 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1372 defined(CONFIG_KASAN)
1373
1374 void *object = head;
1375 void *tail_obj = tail ? : head;
80a9201a 1376 void *freeptr;
81084651
JDB
1377
1378 do {
80a9201a
AP
1379 freeptr = slab_free_hook(s, object);
1380 } while ((object != tail_obj) && (object = freeptr));
81084651
JDB
1381#endif
1382}
1383
588f8ba9
TG
1384static void setup_object(struct kmem_cache *s, struct page *page,
1385 void *object)
1386{
1387 setup_object_debug(s, page, object);
b3cbd9bf 1388 kasan_init_slab_obj(s, object);
588f8ba9
TG
1389 if (unlikely(s->ctor)) {
1390 kasan_unpoison_object_data(s, object);
1391 s->ctor(object);
1392 kasan_poison_object_data(s, object);
1393 }
1394}
1395
81819f0f
CL
1396/*
1397 * Slab allocation and freeing
1398 */
5dfb4175
VD
1399static inline struct page *alloc_slab_page(struct kmem_cache *s,
1400 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1401{
5dfb4175 1402 struct page *page;
65c3376a
CL
1403 int order = oo_order(oo);
1404
b1eeab67
VN
1405 flags |= __GFP_NOTRACK;
1406
2154a336 1407 if (node == NUMA_NO_NODE)
5dfb4175 1408 page = alloc_pages(flags, order);
65c3376a 1409 else
96db800f 1410 page = __alloc_pages_node(node, flags, order);
5dfb4175 1411
f3ccb2c4
VD
1412 if (page && memcg_charge_slab(page, flags, order, s)) {
1413 __free_pages(page, order);
1414 page = NULL;
1415 }
5dfb4175
VD
1416
1417 return page;
65c3376a
CL
1418}
1419
210e7a43
TG
1420#ifdef CONFIG_SLAB_FREELIST_RANDOM
1421/* Pre-initialize the random sequence cache */
1422static int init_cache_random_seq(struct kmem_cache *s)
1423{
1424 int err;
1425 unsigned long i, count = oo_objects(s->oo);
1426
a810007a
SR
1427 /* Bailout if already initialised */
1428 if (s->random_seq)
1429 return 0;
1430
210e7a43
TG
1431 err = cache_random_seq_create(s, count, GFP_KERNEL);
1432 if (err) {
1433 pr_err("SLUB: Unable to initialize free list for %s\n",
1434 s->name);
1435 return err;
1436 }
1437
1438 /* Transform to an offset on the set of pages */
1439 if (s->random_seq) {
1440 for (i = 0; i < count; i++)
1441 s->random_seq[i] *= s->size;
1442 }
1443 return 0;
1444}
1445
1446/* Initialize each random sequence freelist per cache */
1447static void __init init_freelist_randomization(void)
1448{
1449 struct kmem_cache *s;
1450
1451 mutex_lock(&slab_mutex);
1452
1453 list_for_each_entry(s, &slab_caches, list)
1454 init_cache_random_seq(s);
1455
1456 mutex_unlock(&slab_mutex);
1457}
1458
1459/* Get the next entry on the pre-computed freelist randomized */
1460static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1461 unsigned long *pos, void *start,
1462 unsigned long page_limit,
1463 unsigned long freelist_count)
1464{
1465 unsigned int idx;
1466
1467 /*
1468 * If the target page allocation failed, the number of objects on the
1469 * page might be smaller than the usual size defined by the cache.
1470 */
1471 do {
1472 idx = s->random_seq[*pos];
1473 *pos += 1;
1474 if (*pos >= freelist_count)
1475 *pos = 0;
1476 } while (unlikely(idx >= page_limit));
1477
1478 return (char *)start + idx;
1479}
1480
1481/* Shuffle the single linked freelist based on a random pre-computed sequence */
1482static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1483{
1484 void *start;
1485 void *cur;
1486 void *next;
1487 unsigned long idx, pos, page_limit, freelist_count;
1488
1489 if (page->objects < 2 || !s->random_seq)
1490 return false;
1491
1492 freelist_count = oo_objects(s->oo);
1493 pos = get_random_int() % freelist_count;
1494
1495 page_limit = page->objects * s->size;
1496 start = fixup_red_left(s, page_address(page));
1497
1498 /* First entry is used as the base of the freelist */
1499 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1500 freelist_count);
1501 page->freelist = cur;
1502
1503 for (idx = 1; idx < page->objects; idx++) {
1504 setup_object(s, page, cur);
1505 next = next_freelist_entry(s, page, &pos, start, page_limit,
1506 freelist_count);
1507 set_freepointer(s, cur, next);
1508 cur = next;
1509 }
1510 setup_object(s, page, cur);
1511 set_freepointer(s, cur, NULL);
1512
1513 return true;
1514}
1515#else
1516static inline int init_cache_random_seq(struct kmem_cache *s)
1517{
1518 return 0;
1519}
1520static inline void init_freelist_randomization(void) { }
1521static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1522{
1523 return false;
1524}
1525#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1526
81819f0f
CL
1527static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1528{
06428780 1529 struct page *page;
834f3d11 1530 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1531 gfp_t alloc_gfp;
588f8ba9
TG
1532 void *start, *p;
1533 int idx, order;
210e7a43 1534 bool shuffle;
81819f0f 1535
7e0528da
CL
1536 flags &= gfp_allowed_mask;
1537
d0164adc 1538 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1539 local_irq_enable();
1540
b7a49f0d 1541 flags |= s->allocflags;
e12ba74d 1542
ba52270d
PE
1543 /*
1544 * Let the initial higher-order allocation fail under memory pressure
1545 * so we fall-back to the minimum order allocation.
1546 */
1547 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1548 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1549 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1550
5dfb4175 1551 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1552 if (unlikely(!page)) {
1553 oo = s->min;
80c3a998 1554 alloc_gfp = flags;
65c3376a
CL
1555 /*
1556 * Allocation may have failed due to fragmentation.
1557 * Try a lower order alloc if possible
1558 */
5dfb4175 1559 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1560 if (unlikely(!page))
1561 goto out;
1562 stat(s, ORDER_FALLBACK);
65c3376a 1563 }
5a896d9e 1564
588f8ba9
TG
1565 if (kmemcheck_enabled &&
1566 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1567 int pages = 1 << oo_order(oo);
1568
80c3a998 1569 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1570
1571 /*
1572 * Objects from caches that have a constructor don't get
1573 * cleared when they're allocated, so we need to do it here.
1574 */
1575 if (s->ctor)
1576 kmemcheck_mark_uninitialized_pages(page, pages);
1577 else
1578 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1579 }
1580
834f3d11 1581 page->objects = oo_objects(oo);
81819f0f 1582
1f458cbf 1583 order = compound_order(page);
1b4f59e3 1584 page->slab_cache = s;
c03f94cc 1585 __SetPageSlab(page);
2f064f34 1586 if (page_is_pfmemalloc(page))
072bb0aa 1587 SetPageSlabPfmemalloc(page);
81819f0f
CL
1588
1589 start = page_address(page);
81819f0f
CL
1590
1591 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1592 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1593
0316bec2
AR
1594 kasan_poison_slab(page);
1595
210e7a43
TG
1596 shuffle = shuffle_freelist(s, page);
1597
1598 if (!shuffle) {
1599 for_each_object_idx(p, idx, s, start, page->objects) {
1600 setup_object(s, page, p);
1601 if (likely(idx < page->objects))
1602 set_freepointer(s, p, p + s->size);
1603 else
1604 set_freepointer(s, p, NULL);
1605 }
1606 page->freelist = fixup_red_left(s, start);
81819f0f 1607 }
81819f0f 1608
e6e82ea1 1609 page->inuse = page->objects;
8cb0a506 1610 page->frozen = 1;
588f8ba9 1611
81819f0f 1612out:
d0164adc 1613 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1614 local_irq_disable();
1615 if (!page)
1616 return NULL;
1617
1618 mod_zone_page_state(page_zone(page),
1619 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1620 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1621 1 << oo_order(oo));
1622
1623 inc_slabs_node(s, page_to_nid(page), page->objects);
1624
81819f0f
CL
1625 return page;
1626}
1627
588f8ba9
TG
1628static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1629{
1630 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 1631 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
1632 flags &= ~GFP_SLAB_BUG_MASK;
1633 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1634 invalid_mask, &invalid_mask, flags, &flags);
65b9de75 1635 dump_stack();
588f8ba9
TG
1636 }
1637
1638 return allocate_slab(s,
1639 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1640}
1641
81819f0f
CL
1642static void __free_slab(struct kmem_cache *s, struct page *page)
1643{
834f3d11
CL
1644 int order = compound_order(page);
1645 int pages = 1 << order;
81819f0f 1646
becfda68 1647 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1648 void *p;
1649
1650 slab_pad_check(s, page);
224a88be
CL
1651 for_each_object(p, s, page_address(page),
1652 page->objects)
f7cb1933 1653 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1654 }
1655
b1eeab67 1656 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1657
81819f0f
CL
1658 mod_zone_page_state(page_zone(page),
1659 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1660 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1661 -pages);
81819f0f 1662
072bb0aa 1663 __ClearPageSlabPfmemalloc(page);
49bd5221 1664 __ClearPageSlab(page);
1f458cbf 1665
22b751c3 1666 page_mapcount_reset(page);
1eb5ac64
NP
1667 if (current->reclaim_state)
1668 current->reclaim_state->reclaimed_slab += pages;
27ee57c9
VD
1669 memcg_uncharge_slab(page, order, s);
1670 __free_pages(page, order);
81819f0f
CL
1671}
1672
da9a638c
LJ
1673#define need_reserve_slab_rcu \
1674 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1675
81819f0f
CL
1676static void rcu_free_slab(struct rcu_head *h)
1677{
1678 struct page *page;
1679
da9a638c
LJ
1680 if (need_reserve_slab_rcu)
1681 page = virt_to_head_page(h);
1682 else
1683 page = container_of((struct list_head *)h, struct page, lru);
1684
1b4f59e3 1685 __free_slab(page->slab_cache, page);
81819f0f
CL
1686}
1687
1688static void free_slab(struct kmem_cache *s, struct page *page)
1689{
1690 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1691 struct rcu_head *head;
1692
1693 if (need_reserve_slab_rcu) {
1694 int order = compound_order(page);
1695 int offset = (PAGE_SIZE << order) - s->reserved;
1696
1697 VM_BUG_ON(s->reserved != sizeof(*head));
1698 head = page_address(page) + offset;
1699 } else {
bc4f610d 1700 head = &page->rcu_head;
da9a638c 1701 }
81819f0f
CL
1702
1703 call_rcu(head, rcu_free_slab);
1704 } else
1705 __free_slab(s, page);
1706}
1707
1708static void discard_slab(struct kmem_cache *s, struct page *page)
1709{
205ab99d 1710 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1711 free_slab(s, page);
1712}
1713
1714/*
5cc6eee8 1715 * Management of partially allocated slabs.
81819f0f 1716 */
1e4dd946
SR
1717static inline void
1718__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1719{
e95eed57 1720 n->nr_partial++;
136333d1 1721 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1722 list_add_tail(&page->lru, &n->partial);
1723 else
1724 list_add(&page->lru, &n->partial);
81819f0f
CL
1725}
1726
1e4dd946
SR
1727static inline void add_partial(struct kmem_cache_node *n,
1728 struct page *page, int tail)
62e346a8 1729{
c65c1877 1730 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1731 __add_partial(n, page, tail);
1732}
c65c1877 1733
1e4dd946
SR
1734static inline void remove_partial(struct kmem_cache_node *n,
1735 struct page *page)
1736{
1737 lockdep_assert_held(&n->list_lock);
52b4b950
DS
1738 list_del(&page->lru);
1739 n->nr_partial--;
1e4dd946
SR
1740}
1741
81819f0f 1742/*
7ced3719
CL
1743 * Remove slab from the partial list, freeze it and
1744 * return the pointer to the freelist.
81819f0f 1745 *
497b66f2 1746 * Returns a list of objects or NULL if it fails.
81819f0f 1747 */
497b66f2 1748static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1749 struct kmem_cache_node *n, struct page *page,
633b0764 1750 int mode, int *objects)
81819f0f 1751{
2cfb7455
CL
1752 void *freelist;
1753 unsigned long counters;
1754 struct page new;
1755
c65c1877
PZ
1756 lockdep_assert_held(&n->list_lock);
1757
2cfb7455
CL
1758 /*
1759 * Zap the freelist and set the frozen bit.
1760 * The old freelist is the list of objects for the
1761 * per cpu allocation list.
1762 */
7ced3719
CL
1763 freelist = page->freelist;
1764 counters = page->counters;
1765 new.counters = counters;
633b0764 1766 *objects = new.objects - new.inuse;
23910c50 1767 if (mode) {
7ced3719 1768 new.inuse = page->objects;
23910c50
PE
1769 new.freelist = NULL;
1770 } else {
1771 new.freelist = freelist;
1772 }
2cfb7455 1773
a0132ac0 1774 VM_BUG_ON(new.frozen);
7ced3719 1775 new.frozen = 1;
2cfb7455 1776
7ced3719 1777 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1778 freelist, counters,
02d7633f 1779 new.freelist, new.counters,
7ced3719 1780 "acquire_slab"))
7ced3719 1781 return NULL;
2cfb7455
CL
1782
1783 remove_partial(n, page);
7ced3719 1784 WARN_ON(!freelist);
49e22585 1785 return freelist;
81819f0f
CL
1786}
1787
633b0764 1788static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1789static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1790
81819f0f 1791/*
672bba3a 1792 * Try to allocate a partial slab from a specific node.
81819f0f 1793 */
8ba00bb6
JK
1794static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1795 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1796{
49e22585
CL
1797 struct page *page, *page2;
1798 void *object = NULL;
633b0764
JK
1799 int available = 0;
1800 int objects;
81819f0f
CL
1801
1802 /*
1803 * Racy check. If we mistakenly see no partial slabs then we
1804 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1805 * partial slab and there is none available then get_partials()
1806 * will return NULL.
81819f0f
CL
1807 */
1808 if (!n || !n->nr_partial)
1809 return NULL;
1810
1811 spin_lock(&n->list_lock);
49e22585 1812 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1813 void *t;
49e22585 1814
8ba00bb6
JK
1815 if (!pfmemalloc_match(page, flags))
1816 continue;
1817
633b0764 1818 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1819 if (!t)
1820 break;
1821
633b0764 1822 available += objects;
12d79634 1823 if (!object) {
49e22585 1824 c->page = page;
49e22585 1825 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1826 object = t;
49e22585 1827 } else {
633b0764 1828 put_cpu_partial(s, page, 0);
8028dcea 1829 stat(s, CPU_PARTIAL_NODE);
49e22585 1830 }
345c905d
JK
1831 if (!kmem_cache_has_cpu_partial(s)
1832 || available > s->cpu_partial / 2)
49e22585
CL
1833 break;
1834
497b66f2 1835 }
81819f0f 1836 spin_unlock(&n->list_lock);
497b66f2 1837 return object;
81819f0f
CL
1838}
1839
1840/*
672bba3a 1841 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1842 */
de3ec035 1843static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1844 struct kmem_cache_cpu *c)
81819f0f
CL
1845{
1846#ifdef CONFIG_NUMA
1847 struct zonelist *zonelist;
dd1a239f 1848 struct zoneref *z;
54a6eb5c
MG
1849 struct zone *zone;
1850 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1851 void *object;
cc9a6c87 1852 unsigned int cpuset_mems_cookie;
81819f0f
CL
1853
1854 /*
672bba3a
CL
1855 * The defrag ratio allows a configuration of the tradeoffs between
1856 * inter node defragmentation and node local allocations. A lower
1857 * defrag_ratio increases the tendency to do local allocations
1858 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1859 *
672bba3a
CL
1860 * If the defrag_ratio is set to 0 then kmalloc() always
1861 * returns node local objects. If the ratio is higher then kmalloc()
1862 * may return off node objects because partial slabs are obtained
1863 * from other nodes and filled up.
81819f0f 1864 *
43efd3ea
LP
1865 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1866 * (which makes defrag_ratio = 1000) then every (well almost)
1867 * allocation will first attempt to defrag slab caches on other nodes.
1868 * This means scanning over all nodes to look for partial slabs which
1869 * may be expensive if we do it every time we are trying to find a slab
672bba3a 1870 * with available objects.
81819f0f 1871 */
9824601e
CL
1872 if (!s->remote_node_defrag_ratio ||
1873 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1874 return NULL;
1875
cc9a6c87 1876 do {
d26914d1 1877 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1878 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1879 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1880 struct kmem_cache_node *n;
1881
1882 n = get_node(s, zone_to_nid(zone));
1883
dee2f8aa 1884 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1885 n->nr_partial > s->min_partial) {
8ba00bb6 1886 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1887 if (object) {
1888 /*
d26914d1
MG
1889 * Don't check read_mems_allowed_retry()
1890 * here - if mems_allowed was updated in
1891 * parallel, that was a harmless race
1892 * between allocation and the cpuset
1893 * update
cc9a6c87 1894 */
cc9a6c87
MG
1895 return object;
1896 }
c0ff7453 1897 }
81819f0f 1898 }
d26914d1 1899 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1900#endif
1901 return NULL;
1902}
1903
1904/*
1905 * Get a partial page, lock it and return it.
1906 */
497b66f2 1907static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1908 struct kmem_cache_cpu *c)
81819f0f 1909{
497b66f2 1910 void *object;
a561ce00
JK
1911 int searchnode = node;
1912
1913 if (node == NUMA_NO_NODE)
1914 searchnode = numa_mem_id();
1915 else if (!node_present_pages(node))
1916 searchnode = node_to_mem_node(node);
81819f0f 1917
8ba00bb6 1918 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1919 if (object || node != NUMA_NO_NODE)
1920 return object;
81819f0f 1921
acd19fd1 1922 return get_any_partial(s, flags, c);
81819f0f
CL
1923}
1924
8a5ec0ba
CL
1925#ifdef CONFIG_PREEMPT
1926/*
1927 * Calculate the next globally unique transaction for disambiguiation
1928 * during cmpxchg. The transactions start with the cpu number and are then
1929 * incremented by CONFIG_NR_CPUS.
1930 */
1931#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1932#else
1933/*
1934 * No preemption supported therefore also no need to check for
1935 * different cpus.
1936 */
1937#define TID_STEP 1
1938#endif
1939
1940static inline unsigned long next_tid(unsigned long tid)
1941{
1942 return tid + TID_STEP;
1943}
1944
1945static inline unsigned int tid_to_cpu(unsigned long tid)
1946{
1947 return tid % TID_STEP;
1948}
1949
1950static inline unsigned long tid_to_event(unsigned long tid)
1951{
1952 return tid / TID_STEP;
1953}
1954
1955static inline unsigned int init_tid(int cpu)
1956{
1957 return cpu;
1958}
1959
1960static inline void note_cmpxchg_failure(const char *n,
1961 const struct kmem_cache *s, unsigned long tid)
1962{
1963#ifdef SLUB_DEBUG_CMPXCHG
1964 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1965
f9f58285 1966 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1967
1968#ifdef CONFIG_PREEMPT
1969 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1970 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1971 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1972 else
1973#endif
1974 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1975 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1976 tid_to_event(tid), tid_to_event(actual_tid));
1977 else
f9f58285 1978 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1979 actual_tid, tid, next_tid(tid));
1980#endif
4fdccdfb 1981 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1982}
1983
788e1aad 1984static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1985{
8a5ec0ba
CL
1986 int cpu;
1987
1988 for_each_possible_cpu(cpu)
1989 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1990}
2cfb7455 1991
81819f0f
CL
1992/*
1993 * Remove the cpu slab
1994 */
d0e0ac97
CG
1995static void deactivate_slab(struct kmem_cache *s, struct page *page,
1996 void *freelist)
81819f0f 1997{
2cfb7455 1998 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1999 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2000 int lock = 0;
2001 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2002 void *nextfree;
136333d1 2003 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2004 struct page new;
2005 struct page old;
2006
2007 if (page->freelist) {
84e554e6 2008 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2009 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2010 }
2011
894b8788 2012 /*
2cfb7455
CL
2013 * Stage one: Free all available per cpu objects back
2014 * to the page freelist while it is still frozen. Leave the
2015 * last one.
2016 *
2017 * There is no need to take the list->lock because the page
2018 * is still frozen.
2019 */
2020 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2021 void *prior;
2022 unsigned long counters;
2023
2024 do {
2025 prior = page->freelist;
2026 counters = page->counters;
2027 set_freepointer(s, freelist, prior);
2028 new.counters = counters;
2029 new.inuse--;
a0132ac0 2030 VM_BUG_ON(!new.frozen);
2cfb7455 2031
1d07171c 2032 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2033 prior, counters,
2034 freelist, new.counters,
2035 "drain percpu freelist"));
2036
2037 freelist = nextfree;
2038 }
2039
894b8788 2040 /*
2cfb7455
CL
2041 * Stage two: Ensure that the page is unfrozen while the
2042 * list presence reflects the actual number of objects
2043 * during unfreeze.
2044 *
2045 * We setup the list membership and then perform a cmpxchg
2046 * with the count. If there is a mismatch then the page
2047 * is not unfrozen but the page is on the wrong list.
2048 *
2049 * Then we restart the process which may have to remove
2050 * the page from the list that we just put it on again
2051 * because the number of objects in the slab may have
2052 * changed.
894b8788 2053 */
2cfb7455 2054redo:
894b8788 2055
2cfb7455
CL
2056 old.freelist = page->freelist;
2057 old.counters = page->counters;
a0132ac0 2058 VM_BUG_ON(!old.frozen);
7c2e132c 2059
2cfb7455
CL
2060 /* Determine target state of the slab */
2061 new.counters = old.counters;
2062 if (freelist) {
2063 new.inuse--;
2064 set_freepointer(s, freelist, old.freelist);
2065 new.freelist = freelist;
2066 } else
2067 new.freelist = old.freelist;
2068
2069 new.frozen = 0;
2070
8a5b20ae 2071 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2072 m = M_FREE;
2073 else if (new.freelist) {
2074 m = M_PARTIAL;
2075 if (!lock) {
2076 lock = 1;
2077 /*
2078 * Taking the spinlock removes the possiblity
2079 * that acquire_slab() will see a slab page that
2080 * is frozen
2081 */
2082 spin_lock(&n->list_lock);
2083 }
2084 } else {
2085 m = M_FULL;
2086 if (kmem_cache_debug(s) && !lock) {
2087 lock = 1;
2088 /*
2089 * This also ensures that the scanning of full
2090 * slabs from diagnostic functions will not see
2091 * any frozen slabs.
2092 */
2093 spin_lock(&n->list_lock);
2094 }
2095 }
2096
2097 if (l != m) {
2098
2099 if (l == M_PARTIAL)
2100
2101 remove_partial(n, page);
2102
2103 else if (l == M_FULL)
894b8788 2104
c65c1877 2105 remove_full(s, n, page);
2cfb7455
CL
2106
2107 if (m == M_PARTIAL) {
2108
2109 add_partial(n, page, tail);
136333d1 2110 stat(s, tail);
2cfb7455
CL
2111
2112 } else if (m == M_FULL) {
894b8788 2113
2cfb7455
CL
2114 stat(s, DEACTIVATE_FULL);
2115 add_full(s, n, page);
2116
2117 }
2118 }
2119
2120 l = m;
1d07171c 2121 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2122 old.freelist, old.counters,
2123 new.freelist, new.counters,
2124 "unfreezing slab"))
2125 goto redo;
2126
2cfb7455
CL
2127 if (lock)
2128 spin_unlock(&n->list_lock);
2129
2130 if (m == M_FREE) {
2131 stat(s, DEACTIVATE_EMPTY);
2132 discard_slab(s, page);
2133 stat(s, FREE_SLAB);
894b8788 2134 }
81819f0f
CL
2135}
2136
d24ac77f
JK
2137/*
2138 * Unfreeze all the cpu partial slabs.
2139 *
59a09917
CL
2140 * This function must be called with interrupts disabled
2141 * for the cpu using c (or some other guarantee must be there
2142 * to guarantee no concurrent accesses).
d24ac77f 2143 */
59a09917
CL
2144static void unfreeze_partials(struct kmem_cache *s,
2145 struct kmem_cache_cpu *c)
49e22585 2146{
345c905d 2147#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2148 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2149 struct page *page, *discard_page = NULL;
49e22585
CL
2150
2151 while ((page = c->partial)) {
49e22585
CL
2152 struct page new;
2153 struct page old;
2154
2155 c->partial = page->next;
43d77867
JK
2156
2157 n2 = get_node(s, page_to_nid(page));
2158 if (n != n2) {
2159 if (n)
2160 spin_unlock(&n->list_lock);
2161
2162 n = n2;
2163 spin_lock(&n->list_lock);
2164 }
49e22585
CL
2165
2166 do {
2167
2168 old.freelist = page->freelist;
2169 old.counters = page->counters;
a0132ac0 2170 VM_BUG_ON(!old.frozen);
49e22585
CL
2171
2172 new.counters = old.counters;
2173 new.freelist = old.freelist;
2174
2175 new.frozen = 0;
2176
d24ac77f 2177 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2178 old.freelist, old.counters,
2179 new.freelist, new.counters,
2180 "unfreezing slab"));
2181
8a5b20ae 2182 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2183 page->next = discard_page;
2184 discard_page = page;
43d77867
JK
2185 } else {
2186 add_partial(n, page, DEACTIVATE_TO_TAIL);
2187 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2188 }
2189 }
2190
2191 if (n)
2192 spin_unlock(&n->list_lock);
9ada1934
SL
2193
2194 while (discard_page) {
2195 page = discard_page;
2196 discard_page = discard_page->next;
2197
2198 stat(s, DEACTIVATE_EMPTY);
2199 discard_slab(s, page);
2200 stat(s, FREE_SLAB);
2201 }
345c905d 2202#endif
49e22585
CL
2203}
2204
2205/*
2206 * Put a page that was just frozen (in __slab_free) into a partial page
2207 * slot if available. This is done without interrupts disabled and without
2208 * preemption disabled. The cmpxchg is racy and may put the partial page
2209 * onto a random cpus partial slot.
2210 *
2211 * If we did not find a slot then simply move all the partials to the
2212 * per node partial list.
2213 */
633b0764 2214static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2215{
345c905d 2216#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2217 struct page *oldpage;
2218 int pages;
2219 int pobjects;
2220
d6e0b7fa 2221 preempt_disable();
49e22585
CL
2222 do {
2223 pages = 0;
2224 pobjects = 0;
2225 oldpage = this_cpu_read(s->cpu_slab->partial);
2226
2227 if (oldpage) {
2228 pobjects = oldpage->pobjects;
2229 pages = oldpage->pages;
2230 if (drain && pobjects > s->cpu_partial) {
2231 unsigned long flags;
2232 /*
2233 * partial array is full. Move the existing
2234 * set to the per node partial list.
2235 */
2236 local_irq_save(flags);
59a09917 2237 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2238 local_irq_restore(flags);
e24fc410 2239 oldpage = NULL;
49e22585
CL
2240 pobjects = 0;
2241 pages = 0;
8028dcea 2242 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2243 }
2244 }
2245
2246 pages++;
2247 pobjects += page->objects - page->inuse;
2248
2249 page->pages = pages;
2250 page->pobjects = pobjects;
2251 page->next = oldpage;
2252
d0e0ac97
CG
2253 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2254 != oldpage);
d6e0b7fa
VD
2255 if (unlikely(!s->cpu_partial)) {
2256 unsigned long flags;
2257
2258 local_irq_save(flags);
2259 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2260 local_irq_restore(flags);
2261 }
2262 preempt_enable();
345c905d 2263#endif
49e22585
CL
2264}
2265
dfb4f096 2266static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2267{
84e554e6 2268 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2269 deactivate_slab(s, c->page, c->freelist);
2270
2271 c->tid = next_tid(c->tid);
2272 c->page = NULL;
2273 c->freelist = NULL;
81819f0f
CL
2274}
2275
2276/*
2277 * Flush cpu slab.
6446faa2 2278 *
81819f0f
CL
2279 * Called from IPI handler with interrupts disabled.
2280 */
0c710013 2281static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2282{
9dfc6e68 2283 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2284
49e22585
CL
2285 if (likely(c)) {
2286 if (c->page)
2287 flush_slab(s, c);
2288
59a09917 2289 unfreeze_partials(s, c);
49e22585 2290 }
81819f0f
CL
2291}
2292
2293static void flush_cpu_slab(void *d)
2294{
2295 struct kmem_cache *s = d;
81819f0f 2296
dfb4f096 2297 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2298}
2299
a8364d55
GBY
2300static bool has_cpu_slab(int cpu, void *info)
2301{
2302 struct kmem_cache *s = info;
2303 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2304
02e1a9cd 2305 return c->page || c->partial;
a8364d55
GBY
2306}
2307
81819f0f
CL
2308static void flush_all(struct kmem_cache *s)
2309{
a8364d55 2310 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2311}
2312
a96a87bf
SAS
2313/*
2314 * Use the cpu notifier to insure that the cpu slabs are flushed when
2315 * necessary.
2316 */
2317static int slub_cpu_dead(unsigned int cpu)
2318{
2319 struct kmem_cache *s;
2320 unsigned long flags;
2321
2322 mutex_lock(&slab_mutex);
2323 list_for_each_entry(s, &slab_caches, list) {
2324 local_irq_save(flags);
2325 __flush_cpu_slab(s, cpu);
2326 local_irq_restore(flags);
2327 }
2328 mutex_unlock(&slab_mutex);
2329 return 0;
2330}
2331
dfb4f096
CL
2332/*
2333 * Check if the objects in a per cpu structure fit numa
2334 * locality expectations.
2335 */
57d437d2 2336static inline int node_match(struct page *page, int node)
dfb4f096
CL
2337{
2338#ifdef CONFIG_NUMA
4d7868e6 2339 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2340 return 0;
2341#endif
2342 return 1;
2343}
2344
9a02d699 2345#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2346static int count_free(struct page *page)
2347{
2348 return page->objects - page->inuse;
2349}
2350
9a02d699
DR
2351static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2352{
2353 return atomic_long_read(&n->total_objects);
2354}
2355#endif /* CONFIG_SLUB_DEBUG */
2356
2357#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2358static unsigned long count_partial(struct kmem_cache_node *n,
2359 int (*get_count)(struct page *))
2360{
2361 unsigned long flags;
2362 unsigned long x = 0;
2363 struct page *page;
2364
2365 spin_lock_irqsave(&n->list_lock, flags);
2366 list_for_each_entry(page, &n->partial, lru)
2367 x += get_count(page);
2368 spin_unlock_irqrestore(&n->list_lock, flags);
2369 return x;
2370}
9a02d699 2371#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2372
781b2ba6
PE
2373static noinline void
2374slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2375{
9a02d699
DR
2376#ifdef CONFIG_SLUB_DEBUG
2377 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2378 DEFAULT_RATELIMIT_BURST);
781b2ba6 2379 int node;
fa45dc25 2380 struct kmem_cache_node *n;
781b2ba6 2381
9a02d699
DR
2382 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2383 return;
2384
5b3810e5
VB
2385 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2386 nid, gfpflags, &gfpflags);
f9f58285
FF
2387 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2388 s->name, s->object_size, s->size, oo_order(s->oo),
2389 oo_order(s->min));
781b2ba6 2390
3b0efdfa 2391 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2392 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2393 s->name);
fa5ec8a1 2394
fa45dc25 2395 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2396 unsigned long nr_slabs;
2397 unsigned long nr_objs;
2398 unsigned long nr_free;
2399
26c02cf0
AB
2400 nr_free = count_partial(n, count_free);
2401 nr_slabs = node_nr_slabs(n);
2402 nr_objs = node_nr_objs(n);
781b2ba6 2403
f9f58285 2404 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2405 node, nr_slabs, nr_objs, nr_free);
2406 }
9a02d699 2407#endif
781b2ba6
PE
2408}
2409
497b66f2
CL
2410static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2411 int node, struct kmem_cache_cpu **pc)
2412{
6faa6833 2413 void *freelist;
188fd063
CL
2414 struct kmem_cache_cpu *c = *pc;
2415 struct page *page;
497b66f2 2416
188fd063 2417 freelist = get_partial(s, flags, node, c);
497b66f2 2418
188fd063
CL
2419 if (freelist)
2420 return freelist;
2421
2422 page = new_slab(s, flags, node);
497b66f2 2423 if (page) {
7c8e0181 2424 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2425 if (c->page)
2426 flush_slab(s, c);
2427
2428 /*
2429 * No other reference to the page yet so we can
2430 * muck around with it freely without cmpxchg
2431 */
6faa6833 2432 freelist = page->freelist;
497b66f2
CL
2433 page->freelist = NULL;
2434
2435 stat(s, ALLOC_SLAB);
497b66f2
CL
2436 c->page = page;
2437 *pc = c;
2438 } else
6faa6833 2439 freelist = NULL;
497b66f2 2440
6faa6833 2441 return freelist;
497b66f2
CL
2442}
2443
072bb0aa
MG
2444static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2445{
2446 if (unlikely(PageSlabPfmemalloc(page)))
2447 return gfp_pfmemalloc_allowed(gfpflags);
2448
2449 return true;
2450}
2451
213eeb9f 2452/*
d0e0ac97
CG
2453 * Check the page->freelist of a page and either transfer the freelist to the
2454 * per cpu freelist or deactivate the page.
213eeb9f
CL
2455 *
2456 * The page is still frozen if the return value is not NULL.
2457 *
2458 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2459 *
2460 * This function must be called with interrupt disabled.
213eeb9f
CL
2461 */
2462static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2463{
2464 struct page new;
2465 unsigned long counters;
2466 void *freelist;
2467
2468 do {
2469 freelist = page->freelist;
2470 counters = page->counters;
6faa6833 2471
213eeb9f 2472 new.counters = counters;
a0132ac0 2473 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2474
2475 new.inuse = page->objects;
2476 new.frozen = freelist != NULL;
2477
d24ac77f 2478 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2479 freelist, counters,
2480 NULL, new.counters,
2481 "get_freelist"));
2482
2483 return freelist;
2484}
2485
81819f0f 2486/*
894b8788
CL
2487 * Slow path. The lockless freelist is empty or we need to perform
2488 * debugging duties.
2489 *
894b8788
CL
2490 * Processing is still very fast if new objects have been freed to the
2491 * regular freelist. In that case we simply take over the regular freelist
2492 * as the lockless freelist and zap the regular freelist.
81819f0f 2493 *
894b8788
CL
2494 * If that is not working then we fall back to the partial lists. We take the
2495 * first element of the freelist as the object to allocate now and move the
2496 * rest of the freelist to the lockless freelist.
81819f0f 2497 *
894b8788 2498 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2499 * we need to allocate a new slab. This is the slowest path since it involves
2500 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2501 *
2502 * Version of __slab_alloc to use when we know that interrupts are
2503 * already disabled (which is the case for bulk allocation).
81819f0f 2504 */
a380a3c7 2505static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2506 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2507{
6faa6833 2508 void *freelist;
f6e7def7 2509 struct page *page;
81819f0f 2510
f6e7def7
CL
2511 page = c->page;
2512 if (!page)
81819f0f 2513 goto new_slab;
49e22585 2514redo:
6faa6833 2515
57d437d2 2516 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2517 int searchnode = node;
2518
2519 if (node != NUMA_NO_NODE && !node_present_pages(node))
2520 searchnode = node_to_mem_node(node);
2521
2522 if (unlikely(!node_match(page, searchnode))) {
2523 stat(s, ALLOC_NODE_MISMATCH);
2524 deactivate_slab(s, page, c->freelist);
2525 c->page = NULL;
2526 c->freelist = NULL;
2527 goto new_slab;
2528 }
fc59c053 2529 }
6446faa2 2530
072bb0aa
MG
2531 /*
2532 * By rights, we should be searching for a slab page that was
2533 * PFMEMALLOC but right now, we are losing the pfmemalloc
2534 * information when the page leaves the per-cpu allocator
2535 */
2536 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2537 deactivate_slab(s, page, c->freelist);
2538 c->page = NULL;
2539 c->freelist = NULL;
2540 goto new_slab;
2541 }
2542
73736e03 2543 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2544 freelist = c->freelist;
2545 if (freelist)
73736e03 2546 goto load_freelist;
03e404af 2547
f6e7def7 2548 freelist = get_freelist(s, page);
6446faa2 2549
6faa6833 2550 if (!freelist) {
03e404af
CL
2551 c->page = NULL;
2552 stat(s, DEACTIVATE_BYPASS);
fc59c053 2553 goto new_slab;
03e404af 2554 }
6446faa2 2555
84e554e6 2556 stat(s, ALLOC_REFILL);
6446faa2 2557
894b8788 2558load_freelist:
507effea
CL
2559 /*
2560 * freelist is pointing to the list of objects to be used.
2561 * page is pointing to the page from which the objects are obtained.
2562 * That page must be frozen for per cpu allocations to work.
2563 */
a0132ac0 2564 VM_BUG_ON(!c->page->frozen);
6faa6833 2565 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2566 c->tid = next_tid(c->tid);
6faa6833 2567 return freelist;
81819f0f 2568
81819f0f 2569new_slab:
2cfb7455 2570
49e22585 2571 if (c->partial) {
f6e7def7
CL
2572 page = c->page = c->partial;
2573 c->partial = page->next;
49e22585
CL
2574 stat(s, CPU_PARTIAL_ALLOC);
2575 c->freelist = NULL;
2576 goto redo;
81819f0f
CL
2577 }
2578
188fd063 2579 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2580
f4697436 2581 if (unlikely(!freelist)) {
9a02d699 2582 slab_out_of_memory(s, gfpflags, node);
f4697436 2583 return NULL;
81819f0f 2584 }
2cfb7455 2585
f6e7def7 2586 page = c->page;
5091b74a 2587 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2588 goto load_freelist;
2cfb7455 2589
497b66f2 2590 /* Only entered in the debug case */
d0e0ac97
CG
2591 if (kmem_cache_debug(s) &&
2592 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2593 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2594
f6e7def7 2595 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2596 c->page = NULL;
2597 c->freelist = NULL;
6faa6833 2598 return freelist;
894b8788
CL
2599}
2600
a380a3c7
CL
2601/*
2602 * Another one that disabled interrupt and compensates for possible
2603 * cpu changes by refetching the per cpu area pointer.
2604 */
2605static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2606 unsigned long addr, struct kmem_cache_cpu *c)
2607{
2608 void *p;
2609 unsigned long flags;
2610
2611 local_irq_save(flags);
2612#ifdef CONFIG_PREEMPT
2613 /*
2614 * We may have been preempted and rescheduled on a different
2615 * cpu before disabling interrupts. Need to reload cpu area
2616 * pointer.
2617 */
2618 c = this_cpu_ptr(s->cpu_slab);
2619#endif
2620
2621 p = ___slab_alloc(s, gfpflags, node, addr, c);
2622 local_irq_restore(flags);
2623 return p;
2624}
2625
894b8788
CL
2626/*
2627 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2628 * have the fastpath folded into their functions. So no function call
2629 * overhead for requests that can be satisfied on the fastpath.
2630 *
2631 * The fastpath works by first checking if the lockless freelist can be used.
2632 * If not then __slab_alloc is called for slow processing.
2633 *
2634 * Otherwise we can simply pick the next object from the lockless free list.
2635 */
2b847c3c 2636static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2637 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2638{
03ec0ed5 2639 void *object;
dfb4f096 2640 struct kmem_cache_cpu *c;
57d437d2 2641 struct page *page;
8a5ec0ba 2642 unsigned long tid;
1f84260c 2643
8135be5a
VD
2644 s = slab_pre_alloc_hook(s, gfpflags);
2645 if (!s)
773ff60e 2646 return NULL;
8a5ec0ba 2647redo:
8a5ec0ba
CL
2648 /*
2649 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2650 * enabled. We may switch back and forth between cpus while
2651 * reading from one cpu area. That does not matter as long
2652 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2653 *
9aabf810
JK
2654 * We should guarantee that tid and kmem_cache are retrieved on
2655 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2656 * to check if it is matched or not.
8a5ec0ba 2657 */
9aabf810
JK
2658 do {
2659 tid = this_cpu_read(s->cpu_slab->tid);
2660 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2661 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2662 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2663
2664 /*
2665 * Irqless object alloc/free algorithm used here depends on sequence
2666 * of fetching cpu_slab's data. tid should be fetched before anything
2667 * on c to guarantee that object and page associated with previous tid
2668 * won't be used with current tid. If we fetch tid first, object and
2669 * page could be one associated with next tid and our alloc/free
2670 * request will be failed. In this case, we will retry. So, no problem.
2671 */
2672 barrier();
8a5ec0ba 2673
8a5ec0ba
CL
2674 /*
2675 * The transaction ids are globally unique per cpu and per operation on
2676 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2677 * occurs on the right processor and that there was no operation on the
2678 * linked list in between.
2679 */
8a5ec0ba 2680
9dfc6e68 2681 object = c->freelist;
57d437d2 2682 page = c->page;
8eae1492 2683 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2684 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2685 stat(s, ALLOC_SLOWPATH);
2686 } else {
0ad9500e
ED
2687 void *next_object = get_freepointer_safe(s, object);
2688
8a5ec0ba 2689 /*
25985edc 2690 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2691 * operation and if we are on the right processor.
2692 *
d0e0ac97
CG
2693 * The cmpxchg does the following atomically (without lock
2694 * semantics!)
8a5ec0ba
CL
2695 * 1. Relocate first pointer to the current per cpu area.
2696 * 2. Verify that tid and freelist have not been changed
2697 * 3. If they were not changed replace tid and freelist
2698 *
d0e0ac97
CG
2699 * Since this is without lock semantics the protection is only
2700 * against code executing on this cpu *not* from access by
2701 * other cpus.
8a5ec0ba 2702 */
933393f5 2703 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2704 s->cpu_slab->freelist, s->cpu_slab->tid,
2705 object, tid,
0ad9500e 2706 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2707
2708 note_cmpxchg_failure("slab_alloc", s, tid);
2709 goto redo;
2710 }
0ad9500e 2711 prefetch_freepointer(s, next_object);
84e554e6 2712 stat(s, ALLOC_FASTPATH);
894b8788 2713 }
8a5ec0ba 2714
74e2134f 2715 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2716 memset(object, 0, s->object_size);
d07dbea4 2717
03ec0ed5 2718 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2719
894b8788 2720 return object;
81819f0f
CL
2721}
2722
2b847c3c
EG
2723static __always_inline void *slab_alloc(struct kmem_cache *s,
2724 gfp_t gfpflags, unsigned long addr)
2725{
2726 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2727}
2728
81819f0f
CL
2729void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2730{
2b847c3c 2731 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2732
d0e0ac97
CG
2733 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2734 s->size, gfpflags);
5b882be4
EGM
2735
2736 return ret;
81819f0f
CL
2737}
2738EXPORT_SYMBOL(kmem_cache_alloc);
2739
0f24f128 2740#ifdef CONFIG_TRACING
4a92379b
RK
2741void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2742{
2b847c3c 2743 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2744 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
505f5dcb 2745 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2746 return ret;
2747}
2748EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2749#endif
2750
81819f0f
CL
2751#ifdef CONFIG_NUMA
2752void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2753{
2b847c3c 2754 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2755
ca2b84cb 2756 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2757 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2758
2759 return ret;
81819f0f
CL
2760}
2761EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2762
0f24f128 2763#ifdef CONFIG_TRACING
4a92379b 2764void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2765 gfp_t gfpflags,
4a92379b 2766 int node, size_t size)
5b882be4 2767{
2b847c3c 2768 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2769
2770 trace_kmalloc_node(_RET_IP_, ret,
2771 size, s->size, gfpflags, node);
0316bec2 2772
505f5dcb 2773 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2774 return ret;
5b882be4 2775}
4a92379b 2776EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2777#endif
5d1f57e4 2778#endif
5b882be4 2779
81819f0f 2780/*
94e4d712 2781 * Slow path handling. This may still be called frequently since objects
894b8788 2782 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2783 *
894b8788
CL
2784 * So we still attempt to reduce cache line usage. Just take the slab
2785 * lock and free the item. If there is no additional partial page
2786 * handling required then we can return immediately.
81819f0f 2787 */
894b8788 2788static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2789 void *head, void *tail, int cnt,
2790 unsigned long addr)
2791
81819f0f
CL
2792{
2793 void *prior;
2cfb7455 2794 int was_frozen;
2cfb7455
CL
2795 struct page new;
2796 unsigned long counters;
2797 struct kmem_cache_node *n = NULL;
61728d1e 2798 unsigned long uninitialized_var(flags);
81819f0f 2799
8a5ec0ba 2800 stat(s, FREE_SLOWPATH);
81819f0f 2801
19c7ff9e 2802 if (kmem_cache_debug(s) &&
282acb43 2803 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2804 return;
6446faa2 2805
2cfb7455 2806 do {
837d678d
JK
2807 if (unlikely(n)) {
2808 spin_unlock_irqrestore(&n->list_lock, flags);
2809 n = NULL;
2810 }
2cfb7455
CL
2811 prior = page->freelist;
2812 counters = page->counters;
81084651 2813 set_freepointer(s, tail, prior);
2cfb7455
CL
2814 new.counters = counters;
2815 was_frozen = new.frozen;
81084651 2816 new.inuse -= cnt;
837d678d 2817 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2818
c65c1877 2819 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2820
2821 /*
d0e0ac97
CG
2822 * Slab was on no list before and will be
2823 * partially empty
2824 * We can defer the list move and instead
2825 * freeze it.
49e22585
CL
2826 */
2827 new.frozen = 1;
2828
c65c1877 2829 } else { /* Needs to be taken off a list */
49e22585 2830
b455def2 2831 n = get_node(s, page_to_nid(page));
49e22585
CL
2832 /*
2833 * Speculatively acquire the list_lock.
2834 * If the cmpxchg does not succeed then we may
2835 * drop the list_lock without any processing.
2836 *
2837 * Otherwise the list_lock will synchronize with
2838 * other processors updating the list of slabs.
2839 */
2840 spin_lock_irqsave(&n->list_lock, flags);
2841
2842 }
2cfb7455 2843 }
81819f0f 2844
2cfb7455
CL
2845 } while (!cmpxchg_double_slab(s, page,
2846 prior, counters,
81084651 2847 head, new.counters,
2cfb7455 2848 "__slab_free"));
81819f0f 2849
2cfb7455 2850 if (likely(!n)) {
49e22585
CL
2851
2852 /*
2853 * If we just froze the page then put it onto the
2854 * per cpu partial list.
2855 */
8028dcea 2856 if (new.frozen && !was_frozen) {
49e22585 2857 put_cpu_partial(s, page, 1);
8028dcea
AS
2858 stat(s, CPU_PARTIAL_FREE);
2859 }
49e22585 2860 /*
2cfb7455
CL
2861 * The list lock was not taken therefore no list
2862 * activity can be necessary.
2863 */
b455def2
L
2864 if (was_frozen)
2865 stat(s, FREE_FROZEN);
2866 return;
2867 }
81819f0f 2868
8a5b20ae 2869 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2870 goto slab_empty;
2871
81819f0f 2872 /*
837d678d
JK
2873 * Objects left in the slab. If it was not on the partial list before
2874 * then add it.
81819f0f 2875 */
345c905d
JK
2876 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2877 if (kmem_cache_debug(s))
c65c1877 2878 remove_full(s, n, page);
837d678d
JK
2879 add_partial(n, page, DEACTIVATE_TO_TAIL);
2880 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2881 }
80f08c19 2882 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2883 return;
2884
2885slab_empty:
a973e9dd 2886 if (prior) {
81819f0f 2887 /*
6fbabb20 2888 * Slab on the partial list.
81819f0f 2889 */
5cc6eee8 2890 remove_partial(n, page);
84e554e6 2891 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2892 } else {
6fbabb20 2893 /* Slab must be on the full list */
c65c1877
PZ
2894 remove_full(s, n, page);
2895 }
2cfb7455 2896
80f08c19 2897 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2898 stat(s, FREE_SLAB);
81819f0f 2899 discard_slab(s, page);
81819f0f
CL
2900}
2901
894b8788
CL
2902/*
2903 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2904 * can perform fastpath freeing without additional function calls.
2905 *
2906 * The fastpath is only possible if we are freeing to the current cpu slab
2907 * of this processor. This typically the case if we have just allocated
2908 * the item before.
2909 *
2910 * If fastpath is not possible then fall back to __slab_free where we deal
2911 * with all sorts of special processing.
81084651
JDB
2912 *
2913 * Bulk free of a freelist with several objects (all pointing to the
2914 * same page) possible by specifying head and tail ptr, plus objects
2915 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2916 */
80a9201a
AP
2917static __always_inline void do_slab_free(struct kmem_cache *s,
2918 struct page *page, void *head, void *tail,
2919 int cnt, unsigned long addr)
894b8788 2920{
81084651 2921 void *tail_obj = tail ? : head;
dfb4f096 2922 struct kmem_cache_cpu *c;
8a5ec0ba 2923 unsigned long tid;
8a5ec0ba
CL
2924redo:
2925 /*
2926 * Determine the currently cpus per cpu slab.
2927 * The cpu may change afterward. However that does not matter since
2928 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2929 * during the cmpxchg then the free will succeed.
8a5ec0ba 2930 */
9aabf810
JK
2931 do {
2932 tid = this_cpu_read(s->cpu_slab->tid);
2933 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2934 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2935 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2936
9aabf810
JK
2937 /* Same with comment on barrier() in slab_alloc_node() */
2938 barrier();
c016b0bd 2939
442b06bc 2940 if (likely(page == c->page)) {
81084651 2941 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2942
933393f5 2943 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2944 s->cpu_slab->freelist, s->cpu_slab->tid,
2945 c->freelist, tid,
81084651 2946 head, next_tid(tid)))) {
8a5ec0ba
CL
2947
2948 note_cmpxchg_failure("slab_free", s, tid);
2949 goto redo;
2950 }
84e554e6 2951 stat(s, FREE_FASTPATH);
894b8788 2952 } else
81084651 2953 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 2954
894b8788
CL
2955}
2956
80a9201a
AP
2957static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2958 void *head, void *tail, int cnt,
2959 unsigned long addr)
2960{
2961 slab_free_freelist_hook(s, head, tail);
2962 /*
2963 * slab_free_freelist_hook() could have put the items into quarantine.
2964 * If so, no need to free them.
2965 */
2966 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_DESTROY_BY_RCU))
2967 return;
2968 do_slab_free(s, page, head, tail, cnt, addr);
2969}
2970
2971#ifdef CONFIG_KASAN
2972void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2973{
2974 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2975}
2976#endif
2977
81819f0f
CL
2978void kmem_cache_free(struct kmem_cache *s, void *x)
2979{
b9ce5ef4
GC
2980 s = cache_from_obj(s, x);
2981 if (!s)
79576102 2982 return;
81084651 2983 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 2984 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2985}
2986EXPORT_SYMBOL(kmem_cache_free);
2987
d0ecd894 2988struct detached_freelist {
fbd02630 2989 struct page *page;
d0ecd894
JDB
2990 void *tail;
2991 void *freelist;
2992 int cnt;
376bf125 2993 struct kmem_cache *s;
d0ecd894 2994};
fbd02630 2995
d0ecd894
JDB
2996/*
2997 * This function progressively scans the array with free objects (with
2998 * a limited look ahead) and extract objects belonging to the same
2999 * page. It builds a detached freelist directly within the given
3000 * page/objects. This can happen without any need for
3001 * synchronization, because the objects are owned by running process.
3002 * The freelist is build up as a single linked list in the objects.
3003 * The idea is, that this detached freelist can then be bulk
3004 * transferred to the real freelist(s), but only requiring a single
3005 * synchronization primitive. Look ahead in the array is limited due
3006 * to performance reasons.
3007 */
376bf125
JDB
3008static inline
3009int build_detached_freelist(struct kmem_cache *s, size_t size,
3010 void **p, struct detached_freelist *df)
d0ecd894
JDB
3011{
3012 size_t first_skipped_index = 0;
3013 int lookahead = 3;
3014 void *object;
ca257195 3015 struct page *page;
fbd02630 3016
d0ecd894
JDB
3017 /* Always re-init detached_freelist */
3018 df->page = NULL;
fbd02630 3019
d0ecd894
JDB
3020 do {
3021 object = p[--size];
ca257195 3022 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3023 } while (!object && size);
3eed034d 3024
d0ecd894
JDB
3025 if (!object)
3026 return 0;
fbd02630 3027
ca257195
JDB
3028 page = virt_to_head_page(object);
3029 if (!s) {
3030 /* Handle kalloc'ed objects */
3031 if (unlikely(!PageSlab(page))) {
3032 BUG_ON(!PageCompound(page));
3033 kfree_hook(object);
4949148a 3034 __free_pages(page, compound_order(page));
ca257195
JDB
3035 p[size] = NULL; /* mark object processed */
3036 return size;
3037 }
3038 /* Derive kmem_cache from object */
3039 df->s = page->slab_cache;
3040 } else {
3041 df->s = cache_from_obj(s, object); /* Support for memcg */
3042 }
376bf125 3043
d0ecd894 3044 /* Start new detached freelist */
ca257195 3045 df->page = page;
376bf125 3046 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3047 df->tail = object;
3048 df->freelist = object;
3049 p[size] = NULL; /* mark object processed */
3050 df->cnt = 1;
3051
3052 while (size) {
3053 object = p[--size];
3054 if (!object)
3055 continue; /* Skip processed objects */
3056
3057 /* df->page is always set at this point */
3058 if (df->page == virt_to_head_page(object)) {
3059 /* Opportunity build freelist */
376bf125 3060 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3061 df->freelist = object;
3062 df->cnt++;
3063 p[size] = NULL; /* mark object processed */
3064
3065 continue;
fbd02630 3066 }
d0ecd894
JDB
3067
3068 /* Limit look ahead search */
3069 if (!--lookahead)
3070 break;
3071
3072 if (!first_skipped_index)
3073 first_skipped_index = size + 1;
fbd02630 3074 }
d0ecd894
JDB
3075
3076 return first_skipped_index;
3077}
3078
d0ecd894 3079/* Note that interrupts must be enabled when calling this function. */
376bf125 3080void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3081{
3082 if (WARN_ON(!size))
3083 return;
3084
3085 do {
3086 struct detached_freelist df;
3087
3088 size = build_detached_freelist(s, size, p, &df);
84582c8a 3089 if (!df.page)
d0ecd894
JDB
3090 continue;
3091
376bf125 3092 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3093 } while (likely(size));
484748f0
CL
3094}
3095EXPORT_SYMBOL(kmem_cache_free_bulk);
3096
994eb764 3097/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3098int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3099 void **p)
484748f0 3100{
994eb764
JDB
3101 struct kmem_cache_cpu *c;
3102 int i;
3103
03ec0ed5
JDB
3104 /* memcg and kmem_cache debug support */
3105 s = slab_pre_alloc_hook(s, flags);
3106 if (unlikely(!s))
3107 return false;
994eb764
JDB
3108 /*
3109 * Drain objects in the per cpu slab, while disabling local
3110 * IRQs, which protects against PREEMPT and interrupts
3111 * handlers invoking normal fastpath.
3112 */
3113 local_irq_disable();
3114 c = this_cpu_ptr(s->cpu_slab);
3115
3116 for (i = 0; i < size; i++) {
3117 void *object = c->freelist;
3118
ebe909e0 3119 if (unlikely(!object)) {
ebe909e0
JDB
3120 /*
3121 * Invoking slow path likely have side-effect
3122 * of re-populating per CPU c->freelist
3123 */
87098373 3124 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3125 _RET_IP_, c);
87098373
CL
3126 if (unlikely(!p[i]))
3127 goto error;
3128
ebe909e0
JDB
3129 c = this_cpu_ptr(s->cpu_slab);
3130 continue; /* goto for-loop */
3131 }
994eb764
JDB
3132 c->freelist = get_freepointer(s, object);
3133 p[i] = object;
3134 }
3135 c->tid = next_tid(c->tid);
3136 local_irq_enable();
3137
3138 /* Clear memory outside IRQ disabled fastpath loop */
3139 if (unlikely(flags & __GFP_ZERO)) {
3140 int j;
3141
3142 for (j = 0; j < i; j++)
3143 memset(p[j], 0, s->object_size);
3144 }
3145
03ec0ed5
JDB
3146 /* memcg and kmem_cache debug support */
3147 slab_post_alloc_hook(s, flags, size, p);
865762a8 3148 return i;
87098373 3149error:
87098373 3150 local_irq_enable();
03ec0ed5
JDB
3151 slab_post_alloc_hook(s, flags, i, p);
3152 __kmem_cache_free_bulk(s, i, p);
865762a8 3153 return 0;
484748f0
CL
3154}
3155EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3156
3157
81819f0f 3158/*
672bba3a
CL
3159 * Object placement in a slab is made very easy because we always start at
3160 * offset 0. If we tune the size of the object to the alignment then we can
3161 * get the required alignment by putting one properly sized object after
3162 * another.
81819f0f
CL
3163 *
3164 * Notice that the allocation order determines the sizes of the per cpu
3165 * caches. Each processor has always one slab available for allocations.
3166 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3167 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3168 * locking overhead.
81819f0f
CL
3169 */
3170
3171/*
3172 * Mininum / Maximum order of slab pages. This influences locking overhead
3173 * and slab fragmentation. A higher order reduces the number of partial slabs
3174 * and increases the number of allocations possible without having to
3175 * take the list_lock.
3176 */
3177static int slub_min_order;
114e9e89 3178static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 3179static int slub_min_objects;
81819f0f 3180
81819f0f
CL
3181/*
3182 * Calculate the order of allocation given an slab object size.
3183 *
672bba3a
CL
3184 * The order of allocation has significant impact on performance and other
3185 * system components. Generally order 0 allocations should be preferred since
3186 * order 0 does not cause fragmentation in the page allocator. Larger objects
3187 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3188 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3189 * would be wasted.
3190 *
3191 * In order to reach satisfactory performance we must ensure that a minimum
3192 * number of objects is in one slab. Otherwise we may generate too much
3193 * activity on the partial lists which requires taking the list_lock. This is
3194 * less a concern for large slabs though which are rarely used.
81819f0f 3195 *
672bba3a
CL
3196 * slub_max_order specifies the order where we begin to stop considering the
3197 * number of objects in a slab as critical. If we reach slub_max_order then
3198 * we try to keep the page order as low as possible. So we accept more waste
3199 * of space in favor of a small page order.
81819f0f 3200 *
672bba3a
CL
3201 * Higher order allocations also allow the placement of more objects in a
3202 * slab and thereby reduce object handling overhead. If the user has
3203 * requested a higher mininum order then we start with that one instead of
3204 * the smallest order which will fit the object.
81819f0f 3205 */
5e6d444e 3206static inline int slab_order(int size, int min_objects,
ab9a0f19 3207 int max_order, int fract_leftover, int reserved)
81819f0f
CL
3208{
3209 int order;
3210 int rem;
6300ea75 3211 int min_order = slub_min_order;
81819f0f 3212
ab9a0f19 3213 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 3214 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3215
9f835703 3216 for (order = max(min_order, get_order(min_objects * size + reserved));
5e6d444e 3217 order <= max_order; order++) {
81819f0f 3218
5e6d444e 3219 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 3220
ab9a0f19 3221 rem = (slab_size - reserved) % size;
81819f0f 3222
5e6d444e 3223 if (rem <= slab_size / fract_leftover)
81819f0f 3224 break;
81819f0f 3225 }
672bba3a 3226
81819f0f
CL
3227 return order;
3228}
3229
ab9a0f19 3230static inline int calculate_order(int size, int reserved)
5e6d444e
CL
3231{
3232 int order;
3233 int min_objects;
3234 int fraction;
e8120ff1 3235 int max_objects;
5e6d444e
CL
3236
3237 /*
3238 * Attempt to find best configuration for a slab. This
3239 * works by first attempting to generate a layout with
3240 * the best configuration and backing off gradually.
3241 *
422ff4d7 3242 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3243 * we reduce the minimum objects required in a slab.
3244 */
3245 min_objects = slub_min_objects;
9b2cd506
CL
3246 if (!min_objects)
3247 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 3248 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
3249 min_objects = min(min_objects, max_objects);
3250
5e6d444e 3251 while (min_objects > 1) {
c124f5b5 3252 fraction = 16;
5e6d444e
CL
3253 while (fraction >= 4) {
3254 order = slab_order(size, min_objects,
ab9a0f19 3255 slub_max_order, fraction, reserved);
5e6d444e
CL
3256 if (order <= slub_max_order)
3257 return order;
3258 fraction /= 2;
3259 }
5086c389 3260 min_objects--;
5e6d444e
CL
3261 }
3262
3263 /*
3264 * We were unable to place multiple objects in a slab. Now
3265 * lets see if we can place a single object there.
3266 */
ab9a0f19 3267 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
3268 if (order <= slub_max_order)
3269 return order;
3270
3271 /*
3272 * Doh this slab cannot be placed using slub_max_order.
3273 */
ab9a0f19 3274 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 3275 if (order < MAX_ORDER)
5e6d444e
CL
3276 return order;
3277 return -ENOSYS;
3278}
3279
5595cffc 3280static void
4053497d 3281init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3282{
3283 n->nr_partial = 0;
81819f0f
CL
3284 spin_lock_init(&n->list_lock);
3285 INIT_LIST_HEAD(&n->partial);
8ab1372f 3286#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3287 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3288 atomic_long_set(&n->total_objects, 0);
643b1138 3289 INIT_LIST_HEAD(&n->full);
8ab1372f 3290#endif
81819f0f
CL
3291}
3292
55136592 3293static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3294{
6c182dc0 3295 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3296 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3297
8a5ec0ba 3298 /*
d4d84fef
CM
3299 * Must align to double word boundary for the double cmpxchg
3300 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3301 */
d4d84fef
CM
3302 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3303 2 * sizeof(void *));
8a5ec0ba
CL
3304
3305 if (!s->cpu_slab)
3306 return 0;
3307
3308 init_kmem_cache_cpus(s);
4c93c355 3309
8a5ec0ba 3310 return 1;
4c93c355 3311}
4c93c355 3312
51df1142
CL
3313static struct kmem_cache *kmem_cache_node;
3314
81819f0f
CL
3315/*
3316 * No kmalloc_node yet so do it by hand. We know that this is the first
3317 * slab on the node for this slabcache. There are no concurrent accesses
3318 * possible.
3319 *
721ae22a
ZYW
3320 * Note that this function only works on the kmem_cache_node
3321 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3322 * memory on a fresh node that has no slab structures yet.
81819f0f 3323 */
55136592 3324static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3325{
3326 struct page *page;
3327 struct kmem_cache_node *n;
3328
51df1142 3329 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3330
51df1142 3331 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3332
3333 BUG_ON(!page);
a2f92ee7 3334 if (page_to_nid(page) != node) {
f9f58285
FF
3335 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3336 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3337 }
3338
81819f0f
CL
3339 n = page->freelist;
3340 BUG_ON(!n);
51df1142 3341 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 3342 page->inuse = 1;
8cb0a506 3343 page->frozen = 0;
51df1142 3344 kmem_cache_node->node[node] = n;
8ab1372f 3345#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3346 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3347 init_tracking(kmem_cache_node, n);
8ab1372f 3348#endif
505f5dcb
AP
3349 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3350 GFP_KERNEL);
4053497d 3351 init_kmem_cache_node(n);
51df1142 3352 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3353
67b6c900 3354 /*
1e4dd946
SR
3355 * No locks need to be taken here as it has just been
3356 * initialized and there is no concurrent access.
67b6c900 3357 */
1e4dd946 3358 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3359}
3360
3361static void free_kmem_cache_nodes(struct kmem_cache *s)
3362{
3363 int node;
fa45dc25 3364 struct kmem_cache_node *n;
81819f0f 3365
fa45dc25
CL
3366 for_each_kmem_cache_node(s, node, n) {
3367 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3368 s->node[node] = NULL;
3369 }
3370}
3371
52b4b950
DS
3372void __kmem_cache_release(struct kmem_cache *s)
3373{
210e7a43 3374 cache_random_seq_destroy(s);
52b4b950
DS
3375 free_percpu(s->cpu_slab);
3376 free_kmem_cache_nodes(s);
3377}
3378
55136592 3379static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3380{
3381 int node;
81819f0f 3382
f64dc58c 3383 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3384 struct kmem_cache_node *n;
3385
73367bd8 3386 if (slab_state == DOWN) {
55136592 3387 early_kmem_cache_node_alloc(node);
73367bd8
AD
3388 continue;
3389 }
51df1142 3390 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3391 GFP_KERNEL, node);
81819f0f 3392
73367bd8
AD
3393 if (!n) {
3394 free_kmem_cache_nodes(s);
3395 return 0;
81819f0f 3396 }
73367bd8 3397
81819f0f 3398 s->node[node] = n;
4053497d 3399 init_kmem_cache_node(n);
81819f0f
CL
3400 }
3401 return 1;
3402}
81819f0f 3403
c0bdb232 3404static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3405{
3406 if (min < MIN_PARTIAL)
3407 min = MIN_PARTIAL;
3408 else if (min > MAX_PARTIAL)
3409 min = MAX_PARTIAL;
3410 s->min_partial = min;
3411}
3412
81819f0f
CL
3413/*
3414 * calculate_sizes() determines the order and the distribution of data within
3415 * a slab object.
3416 */
06b285dc 3417static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
3418{
3419 unsigned long flags = s->flags;
80a9201a 3420 size_t size = s->object_size;
834f3d11 3421 int order;
81819f0f 3422
d8b42bf5
CL
3423 /*
3424 * Round up object size to the next word boundary. We can only
3425 * place the free pointer at word boundaries and this determines
3426 * the possible location of the free pointer.
3427 */
3428 size = ALIGN(size, sizeof(void *));
3429
3430#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3431 /*
3432 * Determine if we can poison the object itself. If the user of
3433 * the slab may touch the object after free or before allocation
3434 * then we should never poison the object itself.
3435 */
3436 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 3437 !s->ctor)
81819f0f
CL
3438 s->flags |= __OBJECT_POISON;
3439 else
3440 s->flags &= ~__OBJECT_POISON;
3441
81819f0f
CL
3442
3443 /*
672bba3a 3444 * If we are Redzoning then check if there is some space between the
81819f0f 3445 * end of the object and the free pointer. If not then add an
672bba3a 3446 * additional word to have some bytes to store Redzone information.
81819f0f 3447 */
3b0efdfa 3448 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3449 size += sizeof(void *);
41ecc55b 3450#endif
81819f0f
CL
3451
3452 /*
672bba3a
CL
3453 * With that we have determined the number of bytes in actual use
3454 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3455 */
3456 s->inuse = size;
3457
3458 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 3459 s->ctor)) {
81819f0f
CL
3460 /*
3461 * Relocate free pointer after the object if it is not
3462 * permitted to overwrite the first word of the object on
3463 * kmem_cache_free.
3464 *
3465 * This is the case if we do RCU, have a constructor or
3466 * destructor or are poisoning the objects.
3467 */
3468 s->offset = size;
3469 size += sizeof(void *);
3470 }
3471
c12b3c62 3472#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3473 if (flags & SLAB_STORE_USER)
3474 /*
3475 * Need to store information about allocs and frees after
3476 * the object.
3477 */
3478 size += 2 * sizeof(struct track);
80a9201a 3479#endif
81819f0f 3480
80a9201a
AP
3481 kasan_cache_create(s, &size, &s->flags);
3482#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3483 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3484 /*
3485 * Add some empty padding so that we can catch
3486 * overwrites from earlier objects rather than let
3487 * tracking information or the free pointer be
0211a9c8 3488 * corrupted if a user writes before the start
81819f0f
CL
3489 * of the object.
3490 */
3491 size += sizeof(void *);
d86bd1be
JK
3492
3493 s->red_left_pad = sizeof(void *);
3494 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3495 size += s->red_left_pad;
3496 }
41ecc55b 3497#endif
672bba3a 3498
81819f0f
CL
3499 /*
3500 * SLUB stores one object immediately after another beginning from
3501 * offset 0. In order to align the objects we have to simply size
3502 * each object to conform to the alignment.
3503 */
45906855 3504 size = ALIGN(size, s->align);
81819f0f 3505 s->size = size;
06b285dc
CL
3506 if (forced_order >= 0)
3507 order = forced_order;
3508 else
ab9a0f19 3509 order = calculate_order(size, s->reserved);
81819f0f 3510
834f3d11 3511 if (order < 0)
81819f0f
CL
3512 return 0;
3513
b7a49f0d 3514 s->allocflags = 0;
834f3d11 3515 if (order)
b7a49f0d
CL
3516 s->allocflags |= __GFP_COMP;
3517
3518 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3519 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3520
3521 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3522 s->allocflags |= __GFP_RECLAIMABLE;
3523
81819f0f
CL
3524 /*
3525 * Determine the number of objects per slab
3526 */
ab9a0f19
LJ
3527 s->oo = oo_make(order, size, s->reserved);
3528 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3529 if (oo_objects(s->oo) > oo_objects(s->max))
3530 s->max = s->oo;
81819f0f 3531
834f3d11 3532 return !!oo_objects(s->oo);
81819f0f
CL
3533}
3534
8a13a4cc 3535static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3536{
8a13a4cc 3537 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3538 s->reserved = 0;
81819f0f 3539
da9a638c
LJ
3540 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3541 s->reserved = sizeof(struct rcu_head);
81819f0f 3542
06b285dc 3543 if (!calculate_sizes(s, -1))
81819f0f 3544 goto error;
3de47213
DR
3545 if (disable_higher_order_debug) {
3546 /*
3547 * Disable debugging flags that store metadata if the min slab
3548 * order increased.
3549 */
3b0efdfa 3550 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3551 s->flags &= ~DEBUG_METADATA_FLAGS;
3552 s->offset = 0;
3553 if (!calculate_sizes(s, -1))
3554 goto error;
3555 }
3556 }
81819f0f 3557
2565409f
HC
3558#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3559 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3560 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3561 /* Enable fast mode */
3562 s->flags |= __CMPXCHG_DOUBLE;
3563#endif
3564
3b89d7d8
DR
3565 /*
3566 * The larger the object size is, the more pages we want on the partial
3567 * list to avoid pounding the page allocator excessively.
3568 */
49e22585
CL
3569 set_min_partial(s, ilog2(s->size) / 2);
3570
3571 /*
3572 * cpu_partial determined the maximum number of objects kept in the
3573 * per cpu partial lists of a processor.
3574 *
3575 * Per cpu partial lists mainly contain slabs that just have one
3576 * object freed. If they are used for allocation then they can be
3577 * filled up again with minimal effort. The slab will never hit the
3578 * per node partial lists and therefore no locking will be required.
3579 *
3580 * This setting also determines
3581 *
3582 * A) The number of objects from per cpu partial slabs dumped to the
3583 * per node list when we reach the limit.
9f264904 3584 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3585 * per node list when we run out of per cpu objects. We only fetch
3586 * 50% to keep some capacity around for frees.
49e22585 3587 */
345c905d 3588 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3589 s->cpu_partial = 0;
3590 else if (s->size >= PAGE_SIZE)
49e22585
CL
3591 s->cpu_partial = 2;
3592 else if (s->size >= 1024)
3593 s->cpu_partial = 6;
3594 else if (s->size >= 256)
3595 s->cpu_partial = 13;
3596 else
3597 s->cpu_partial = 30;
3598
81819f0f 3599#ifdef CONFIG_NUMA
e2cb96b7 3600 s->remote_node_defrag_ratio = 1000;
81819f0f 3601#endif
210e7a43
TG
3602
3603 /* Initialize the pre-computed randomized freelist if slab is up */
3604 if (slab_state >= UP) {
3605 if (init_cache_random_seq(s))
3606 goto error;
3607 }
3608
55136592 3609 if (!init_kmem_cache_nodes(s))
dfb4f096 3610 goto error;
81819f0f 3611
55136592 3612 if (alloc_kmem_cache_cpus(s))
278b1bb1 3613 return 0;
ff12059e 3614
4c93c355 3615 free_kmem_cache_nodes(s);
81819f0f
CL
3616error:
3617 if (flags & SLAB_PANIC)
756a025f
JP
3618 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3619 s->name, (unsigned long)s->size, s->size,
3620 oo_order(s->oo), s->offset, flags);
278b1bb1 3621 return -EINVAL;
81819f0f 3622}
81819f0f 3623
33b12c38
CL
3624static void list_slab_objects(struct kmem_cache *s, struct page *page,
3625 const char *text)
3626{
3627#ifdef CONFIG_SLUB_DEBUG
3628 void *addr = page_address(page);
3629 void *p;
a5dd5c11
NK
3630 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3631 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3632 if (!map)
3633 return;
945cf2b6 3634 slab_err(s, page, text, s->name);
33b12c38 3635 slab_lock(page);
33b12c38 3636
5f80b13a 3637 get_map(s, page, map);
33b12c38
CL
3638 for_each_object(p, s, addr, page->objects) {
3639
3640 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3641 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3642 print_tracking(s, p);
3643 }
3644 }
3645 slab_unlock(page);
bbd7d57b 3646 kfree(map);
33b12c38
CL
3647#endif
3648}
3649
81819f0f 3650/*
599870b1 3651 * Attempt to free all partial slabs on a node.
52b4b950
DS
3652 * This is called from __kmem_cache_shutdown(). We must take list_lock
3653 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3654 */
599870b1 3655static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3656{
60398923 3657 LIST_HEAD(discard);
81819f0f
CL
3658 struct page *page, *h;
3659
52b4b950
DS
3660 BUG_ON(irqs_disabled());
3661 spin_lock_irq(&n->list_lock);
33b12c38 3662 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3663 if (!page->inuse) {
52b4b950 3664 remove_partial(n, page);
60398923 3665 list_add(&page->lru, &discard);
33b12c38
CL
3666 } else {
3667 list_slab_objects(s, page,
52b4b950 3668 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3669 }
33b12c38 3670 }
52b4b950 3671 spin_unlock_irq(&n->list_lock);
60398923
CW
3672
3673 list_for_each_entry_safe(page, h, &discard, lru)
3674 discard_slab(s, page);
81819f0f
CL
3675}
3676
3677/*
672bba3a 3678 * Release all resources used by a slab cache.
81819f0f 3679 */
52b4b950 3680int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3681{
3682 int node;
fa45dc25 3683 struct kmem_cache_node *n;
81819f0f
CL
3684
3685 flush_all(s);
81819f0f 3686 /* Attempt to free all objects */
fa45dc25 3687 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3688 free_partial(s, n);
3689 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3690 return 1;
3691 }
bf5eb3de 3692 sysfs_slab_remove(s);
81819f0f
CL
3693 return 0;
3694}
3695
81819f0f
CL
3696/********************************************************************
3697 * Kmalloc subsystem
3698 *******************************************************************/
3699
81819f0f
CL
3700static int __init setup_slub_min_order(char *str)
3701{
06428780 3702 get_option(&str, &slub_min_order);
81819f0f
CL
3703
3704 return 1;
3705}
3706
3707__setup("slub_min_order=", setup_slub_min_order);
3708
3709static int __init setup_slub_max_order(char *str)
3710{
06428780 3711 get_option(&str, &slub_max_order);
818cf590 3712 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3713
3714 return 1;
3715}
3716
3717__setup("slub_max_order=", setup_slub_max_order);
3718
3719static int __init setup_slub_min_objects(char *str)
3720{
06428780 3721 get_option(&str, &slub_min_objects);
81819f0f
CL
3722
3723 return 1;
3724}
3725
3726__setup("slub_min_objects=", setup_slub_min_objects);
3727
81819f0f
CL
3728void *__kmalloc(size_t size, gfp_t flags)
3729{
aadb4bc4 3730 struct kmem_cache *s;
5b882be4 3731 void *ret;
81819f0f 3732
95a05b42 3733 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3734 return kmalloc_large(size, flags);
aadb4bc4 3735
2c59dd65 3736 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3737
3738 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3739 return s;
3740
2b847c3c 3741 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3742
ca2b84cb 3743 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3744
505f5dcb 3745 kasan_kmalloc(s, ret, size, flags);
0316bec2 3746
5b882be4 3747 return ret;
81819f0f
CL
3748}
3749EXPORT_SYMBOL(__kmalloc);
3750
5d1f57e4 3751#ifdef CONFIG_NUMA
f619cfe1
CL
3752static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3753{
b1eeab67 3754 struct page *page;
e4f7c0b4 3755 void *ptr = NULL;
f619cfe1 3756
52383431 3757 flags |= __GFP_COMP | __GFP_NOTRACK;
4949148a 3758 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3759 if (page)
e4f7c0b4
CM
3760 ptr = page_address(page);
3761
d56791b3 3762 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3763 return ptr;
f619cfe1
CL
3764}
3765
81819f0f
CL
3766void *__kmalloc_node(size_t size, gfp_t flags, int node)
3767{
aadb4bc4 3768 struct kmem_cache *s;
5b882be4 3769 void *ret;
81819f0f 3770
95a05b42 3771 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3772 ret = kmalloc_large_node(size, flags, node);
3773
ca2b84cb
EGM
3774 trace_kmalloc_node(_RET_IP_, ret,
3775 size, PAGE_SIZE << get_order(size),
3776 flags, node);
5b882be4
EGM
3777
3778 return ret;
3779 }
aadb4bc4 3780
2c59dd65 3781 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3782
3783 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3784 return s;
3785
2b847c3c 3786 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3787
ca2b84cb 3788 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3789
505f5dcb 3790 kasan_kmalloc(s, ret, size, flags);
0316bec2 3791
5b882be4 3792 return ret;
81819f0f
CL
3793}
3794EXPORT_SYMBOL(__kmalloc_node);
3795#endif
3796
ed18adc1
KC
3797#ifdef CONFIG_HARDENED_USERCOPY
3798/*
3799 * Rejects objects that are incorrectly sized.
3800 *
3801 * Returns NULL if check passes, otherwise const char * to name of cache
3802 * to indicate an error.
3803 */
3804const char *__check_heap_object(const void *ptr, unsigned long n,
3805 struct page *page)
3806{
3807 struct kmem_cache *s;
3808 unsigned long offset;
3809 size_t object_size;
3810
3811 /* Find object and usable object size. */
3812 s = page->slab_cache;
3813 object_size = slab_ksize(s);
3814
3815 /* Reject impossible pointers. */
3816 if (ptr < page_address(page))
3817 return s->name;
3818
3819 /* Find offset within object. */
3820 offset = (ptr - page_address(page)) % s->size;
3821
3822 /* Adjust for redzone and reject if within the redzone. */
3823 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3824 if (offset < s->red_left_pad)
3825 return s->name;
3826 offset -= s->red_left_pad;
3827 }
3828
3829 /* Allow address range falling entirely within object size. */
3830 if (offset <= object_size && n <= object_size - offset)
3831 return NULL;
3832
3833 return s->name;
3834}
3835#endif /* CONFIG_HARDENED_USERCOPY */
3836
0316bec2 3837static size_t __ksize(const void *object)
81819f0f 3838{
272c1d21 3839 struct page *page;
81819f0f 3840
ef8b4520 3841 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3842 return 0;
3843
294a80a8 3844 page = virt_to_head_page(object);
294a80a8 3845
76994412
PE
3846 if (unlikely(!PageSlab(page))) {
3847 WARN_ON(!PageCompound(page));
294a80a8 3848 return PAGE_SIZE << compound_order(page);
76994412 3849 }
81819f0f 3850
1b4f59e3 3851 return slab_ksize(page->slab_cache);
81819f0f 3852}
0316bec2
AR
3853
3854size_t ksize(const void *object)
3855{
3856 size_t size = __ksize(object);
3857 /* We assume that ksize callers could use whole allocated area,
4ebb31a4
AP
3858 * so we need to unpoison this area.
3859 */
3860 kasan_unpoison_shadow(object, size);
0316bec2
AR
3861 return size;
3862}
b1aabecd 3863EXPORT_SYMBOL(ksize);
81819f0f
CL
3864
3865void kfree(const void *x)
3866{
81819f0f 3867 struct page *page;
5bb983b0 3868 void *object = (void *)x;
81819f0f 3869
2121db74
PE
3870 trace_kfree(_RET_IP_, x);
3871
2408c550 3872 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3873 return;
3874
b49af68f 3875 page = virt_to_head_page(x);
aadb4bc4 3876 if (unlikely(!PageSlab(page))) {
0937502a 3877 BUG_ON(!PageCompound(page));
d56791b3 3878 kfree_hook(x);
4949148a 3879 __free_pages(page, compound_order(page));
aadb4bc4
CL
3880 return;
3881 }
81084651 3882 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3883}
3884EXPORT_SYMBOL(kfree);
3885
832f37f5
VD
3886#define SHRINK_PROMOTE_MAX 32
3887
2086d26a 3888/*
832f37f5
VD
3889 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3890 * up most to the head of the partial lists. New allocations will then
3891 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3892 *
3893 * The slabs with the least items are placed last. This results in them
3894 * being allocated from last increasing the chance that the last objects
3895 * are freed in them.
2086d26a 3896 */
c9fc5864 3897int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
3898{
3899 int node;
3900 int i;
3901 struct kmem_cache_node *n;
3902 struct page *page;
3903 struct page *t;
832f37f5
VD
3904 struct list_head discard;
3905 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3906 unsigned long flags;
ce3712d7 3907 int ret = 0;
2086d26a 3908
2086d26a 3909 flush_all(s);
fa45dc25 3910 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3911 INIT_LIST_HEAD(&discard);
3912 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3913 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3914
3915 spin_lock_irqsave(&n->list_lock, flags);
3916
3917 /*
832f37f5 3918 * Build lists of slabs to discard or promote.
2086d26a 3919 *
672bba3a
CL
3920 * Note that concurrent frees may occur while we hold the
3921 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3922 */
3923 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3924 int free = page->objects - page->inuse;
3925
3926 /* Do not reread page->inuse */
3927 barrier();
3928
3929 /* We do not keep full slabs on the list */
3930 BUG_ON(free <= 0);
3931
3932 if (free == page->objects) {
3933 list_move(&page->lru, &discard);
69cb8e6b 3934 n->nr_partial--;
832f37f5
VD
3935 } else if (free <= SHRINK_PROMOTE_MAX)
3936 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3937 }
3938
2086d26a 3939 /*
832f37f5
VD
3940 * Promote the slabs filled up most to the head of the
3941 * partial list.
2086d26a 3942 */
832f37f5
VD
3943 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3944 list_splice(promote + i, &n->partial);
2086d26a 3945
2086d26a 3946 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3947
3948 /* Release empty slabs */
832f37f5 3949 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 3950 discard_slab(s, page);
ce3712d7
VD
3951
3952 if (slabs_node(s, node))
3953 ret = 1;
2086d26a
CL
3954 }
3955
ce3712d7 3956 return ret;
2086d26a 3957}
2086d26a 3958
c9fc5864 3959#ifdef CONFIG_MEMCG
01fb58bc
TH
3960static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
3961{
50862ce7
TH
3962 /*
3963 * Called with all the locks held after a sched RCU grace period.
3964 * Even if @s becomes empty after shrinking, we can't know that @s
3965 * doesn't have allocations already in-flight and thus can't
3966 * destroy @s until the associated memcg is released.
3967 *
3968 * However, let's remove the sysfs files for empty caches here.
3969 * Each cache has a lot of interface files which aren't
3970 * particularly useful for empty draining caches; otherwise, we can
3971 * easily end up with millions of unnecessary sysfs files on
3972 * systems which have a lot of memory and transient cgroups.
3973 */
3974 if (!__kmem_cache_shrink(s))
3975 sysfs_slab_remove(s);
01fb58bc
TH
3976}
3977
c9fc5864
TH
3978void __kmemcg_cache_deactivate(struct kmem_cache *s)
3979{
3980 /*
3981 * Disable empty slabs caching. Used to avoid pinning offline
3982 * memory cgroups by kmem pages that can be freed.
3983 */
3984 s->cpu_partial = 0;
3985 s->min_partial = 0;
3986
3987 /*
3988 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
01fb58bc 3989 * we have to make sure the change is visible before shrinking.
c9fc5864 3990 */
01fb58bc 3991 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
c9fc5864
TH
3992}
3993#endif
3994
b9049e23
YG
3995static int slab_mem_going_offline_callback(void *arg)
3996{
3997 struct kmem_cache *s;
3998
18004c5d 3999 mutex_lock(&slab_mutex);
b9049e23 4000 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4001 __kmem_cache_shrink(s);
18004c5d 4002 mutex_unlock(&slab_mutex);
b9049e23
YG
4003
4004 return 0;
4005}
4006
4007static void slab_mem_offline_callback(void *arg)
4008{
4009 struct kmem_cache_node *n;
4010 struct kmem_cache *s;
4011 struct memory_notify *marg = arg;
4012 int offline_node;
4013
b9d5ab25 4014 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4015
4016 /*
4017 * If the node still has available memory. we need kmem_cache_node
4018 * for it yet.
4019 */
4020 if (offline_node < 0)
4021 return;
4022
18004c5d 4023 mutex_lock(&slab_mutex);
b9049e23
YG
4024 list_for_each_entry(s, &slab_caches, list) {
4025 n = get_node(s, offline_node);
4026 if (n) {
4027 /*
4028 * if n->nr_slabs > 0, slabs still exist on the node
4029 * that is going down. We were unable to free them,
c9404c9c 4030 * and offline_pages() function shouldn't call this
b9049e23
YG
4031 * callback. So, we must fail.
4032 */
0f389ec6 4033 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4034
4035 s->node[offline_node] = NULL;
8de66a0c 4036 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4037 }
4038 }
18004c5d 4039 mutex_unlock(&slab_mutex);
b9049e23
YG
4040}
4041
4042static int slab_mem_going_online_callback(void *arg)
4043{
4044 struct kmem_cache_node *n;
4045 struct kmem_cache *s;
4046 struct memory_notify *marg = arg;
b9d5ab25 4047 int nid = marg->status_change_nid_normal;
b9049e23
YG
4048 int ret = 0;
4049
4050 /*
4051 * If the node's memory is already available, then kmem_cache_node is
4052 * already created. Nothing to do.
4053 */
4054 if (nid < 0)
4055 return 0;
4056
4057 /*
0121c619 4058 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4059 * allocate a kmem_cache_node structure in order to bring the node
4060 * online.
4061 */
18004c5d 4062 mutex_lock(&slab_mutex);
b9049e23
YG
4063 list_for_each_entry(s, &slab_caches, list) {
4064 /*
4065 * XXX: kmem_cache_alloc_node will fallback to other nodes
4066 * since memory is not yet available from the node that
4067 * is brought up.
4068 */
8de66a0c 4069 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4070 if (!n) {
4071 ret = -ENOMEM;
4072 goto out;
4073 }
4053497d 4074 init_kmem_cache_node(n);
b9049e23
YG
4075 s->node[nid] = n;
4076 }
4077out:
18004c5d 4078 mutex_unlock(&slab_mutex);
b9049e23
YG
4079 return ret;
4080}
4081
4082static int slab_memory_callback(struct notifier_block *self,
4083 unsigned long action, void *arg)
4084{
4085 int ret = 0;
4086
4087 switch (action) {
4088 case MEM_GOING_ONLINE:
4089 ret = slab_mem_going_online_callback(arg);
4090 break;
4091 case MEM_GOING_OFFLINE:
4092 ret = slab_mem_going_offline_callback(arg);
4093 break;
4094 case MEM_OFFLINE:
4095 case MEM_CANCEL_ONLINE:
4096 slab_mem_offline_callback(arg);
4097 break;
4098 case MEM_ONLINE:
4099 case MEM_CANCEL_OFFLINE:
4100 break;
4101 }
dc19f9db
KH
4102 if (ret)
4103 ret = notifier_from_errno(ret);
4104 else
4105 ret = NOTIFY_OK;
b9049e23
YG
4106 return ret;
4107}
4108
3ac38faa
AM
4109static struct notifier_block slab_memory_callback_nb = {
4110 .notifier_call = slab_memory_callback,
4111 .priority = SLAB_CALLBACK_PRI,
4112};
b9049e23 4113
81819f0f
CL
4114/********************************************************************
4115 * Basic setup of slabs
4116 *******************************************************************/
4117
51df1142
CL
4118/*
4119 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4120 * the page allocator. Allocate them properly then fix up the pointers
4121 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4122 */
4123
dffb4d60 4124static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4125{
4126 int node;
dffb4d60 4127 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4128 struct kmem_cache_node *n;
51df1142 4129
dffb4d60 4130 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4131
7d557b3c
GC
4132 /*
4133 * This runs very early, and only the boot processor is supposed to be
4134 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4135 * IPIs around.
4136 */
4137 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4138 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4139 struct page *p;
4140
fa45dc25
CL
4141 list_for_each_entry(p, &n->partial, lru)
4142 p->slab_cache = s;
51df1142 4143
607bf324 4144#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
4145 list_for_each_entry(p, &n->full, lru)
4146 p->slab_cache = s;
51df1142 4147#endif
51df1142 4148 }
f7ce3190 4149 slab_init_memcg_params(s);
dffb4d60 4150 list_add(&s->list, &slab_caches);
510ded33 4151 memcg_link_cache(s);
dffb4d60 4152 return s;
51df1142
CL
4153}
4154
81819f0f
CL
4155void __init kmem_cache_init(void)
4156{
dffb4d60
CL
4157 static __initdata struct kmem_cache boot_kmem_cache,
4158 boot_kmem_cache_node;
51df1142 4159
fc8d8620
SG
4160 if (debug_guardpage_minorder())
4161 slub_max_order = 0;
4162
dffb4d60
CL
4163 kmem_cache_node = &boot_kmem_cache_node;
4164 kmem_cache = &boot_kmem_cache;
51df1142 4165
dffb4d60
CL
4166 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4167 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 4168
3ac38faa 4169 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4170
4171 /* Able to allocate the per node structures */
4172 slab_state = PARTIAL;
4173
dffb4d60
CL
4174 create_boot_cache(kmem_cache, "kmem_cache",
4175 offsetof(struct kmem_cache, node) +
4176 nr_node_ids * sizeof(struct kmem_cache_node *),
4177 SLAB_HWCACHE_ALIGN);
8a13a4cc 4178
dffb4d60 4179 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 4180
51df1142
CL
4181 /*
4182 * Allocate kmem_cache_node properly from the kmem_cache slab.
4183 * kmem_cache_node is separately allocated so no need to
4184 * update any list pointers.
4185 */
dffb4d60 4186 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4187
4188 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4189 setup_kmalloc_cache_index_table();
f97d5f63 4190 create_kmalloc_caches(0);
81819f0f 4191
210e7a43
TG
4192 /* Setup random freelists for each cache */
4193 init_freelist_randomization();
4194
a96a87bf
SAS
4195 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4196 slub_cpu_dead);
81819f0f 4197
f9f58285 4198 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 4199 cache_line_size(),
81819f0f
CL
4200 slub_min_order, slub_max_order, slub_min_objects,
4201 nr_cpu_ids, nr_node_ids);
4202}
4203
7e85ee0c
PE
4204void __init kmem_cache_init_late(void)
4205{
7e85ee0c
PE
4206}
4207
2633d7a0 4208struct kmem_cache *
a44cb944
VD
4209__kmem_cache_alias(const char *name, size_t size, size_t align,
4210 unsigned long flags, void (*ctor)(void *))
81819f0f 4211{
426589f5 4212 struct kmem_cache *s, *c;
81819f0f 4213
a44cb944 4214 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4215 if (s) {
4216 s->refcount++;
84d0ddd6 4217
81819f0f
CL
4218 /*
4219 * Adjust the object sizes so that we clear
4220 * the complete object on kzalloc.
4221 */
3b0efdfa 4222 s->object_size = max(s->object_size, (int)size);
81819f0f 4223 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4224
426589f5 4225 for_each_memcg_cache(c, s) {
84d0ddd6
VD
4226 c->object_size = s->object_size;
4227 c->inuse = max_t(int, c->inuse,
4228 ALIGN(size, sizeof(void *)));
4229 }
4230
7b8f3b66 4231 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4232 s->refcount--;
cbb79694 4233 s = NULL;
7b8f3b66 4234 }
a0e1d1be 4235 }
6446faa2 4236
cbb79694
CL
4237 return s;
4238}
84c1cf62 4239
8a13a4cc 4240int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 4241{
aac3a166
PE
4242 int err;
4243
4244 err = kmem_cache_open(s, flags);
4245 if (err)
4246 return err;
20cea968 4247
45530c44
CL
4248 /* Mutex is not taken during early boot */
4249 if (slab_state <= UP)
4250 return 0;
4251
107dab5c 4252 memcg_propagate_slab_attrs(s);
aac3a166 4253 err = sysfs_slab_add(s);
aac3a166 4254 if (err)
52b4b950 4255 __kmem_cache_release(s);
20cea968 4256
aac3a166 4257 return err;
81819f0f 4258}
81819f0f 4259
ce71e27c 4260void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4261{
aadb4bc4 4262 struct kmem_cache *s;
94b528d0 4263 void *ret;
aadb4bc4 4264
95a05b42 4265 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4266 return kmalloc_large(size, gfpflags);
4267
2c59dd65 4268 s = kmalloc_slab(size, gfpflags);
81819f0f 4269
2408c550 4270 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4271 return s;
81819f0f 4272
2b847c3c 4273 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4274
25985edc 4275 /* Honor the call site pointer we received. */
ca2b84cb 4276 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4277
4278 return ret;
81819f0f
CL
4279}
4280
5d1f57e4 4281#ifdef CONFIG_NUMA
81819f0f 4282void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4283 int node, unsigned long caller)
81819f0f 4284{
aadb4bc4 4285 struct kmem_cache *s;
94b528d0 4286 void *ret;
aadb4bc4 4287
95a05b42 4288 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4289 ret = kmalloc_large_node(size, gfpflags, node);
4290
4291 trace_kmalloc_node(caller, ret,
4292 size, PAGE_SIZE << get_order(size),
4293 gfpflags, node);
4294
4295 return ret;
4296 }
eada35ef 4297
2c59dd65 4298 s = kmalloc_slab(size, gfpflags);
81819f0f 4299
2408c550 4300 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4301 return s;
81819f0f 4302
2b847c3c 4303 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4304
25985edc 4305 /* Honor the call site pointer we received. */
ca2b84cb 4306 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4307
4308 return ret;
81819f0f 4309}
5d1f57e4 4310#endif
81819f0f 4311
ab4d5ed5 4312#ifdef CONFIG_SYSFS
205ab99d
CL
4313static int count_inuse(struct page *page)
4314{
4315 return page->inuse;
4316}
4317
4318static int count_total(struct page *page)
4319{
4320 return page->objects;
4321}
ab4d5ed5 4322#endif
205ab99d 4323
ab4d5ed5 4324#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4325static int validate_slab(struct kmem_cache *s, struct page *page,
4326 unsigned long *map)
53e15af0
CL
4327{
4328 void *p;
a973e9dd 4329 void *addr = page_address(page);
53e15af0
CL
4330
4331 if (!check_slab(s, page) ||
4332 !on_freelist(s, page, NULL))
4333 return 0;
4334
4335 /* Now we know that a valid freelist exists */
39b26464 4336 bitmap_zero(map, page->objects);
53e15af0 4337
5f80b13a
CL
4338 get_map(s, page, map);
4339 for_each_object(p, s, addr, page->objects) {
4340 if (test_bit(slab_index(p, s, addr), map))
4341 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4342 return 0;
53e15af0
CL
4343 }
4344
224a88be 4345 for_each_object(p, s, addr, page->objects)
7656c72b 4346 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4347 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4348 return 0;
4349 return 1;
4350}
4351
434e245d
CL
4352static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4353 unsigned long *map)
53e15af0 4354{
881db7fb
CL
4355 slab_lock(page);
4356 validate_slab(s, page, map);
4357 slab_unlock(page);
53e15af0
CL
4358}
4359
434e245d
CL
4360static int validate_slab_node(struct kmem_cache *s,
4361 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4362{
4363 unsigned long count = 0;
4364 struct page *page;
4365 unsigned long flags;
4366
4367 spin_lock_irqsave(&n->list_lock, flags);
4368
4369 list_for_each_entry(page, &n->partial, lru) {
434e245d 4370 validate_slab_slab(s, page, map);
53e15af0
CL
4371 count++;
4372 }
4373 if (count != n->nr_partial)
f9f58285
FF
4374 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4375 s->name, count, n->nr_partial);
53e15af0
CL
4376
4377 if (!(s->flags & SLAB_STORE_USER))
4378 goto out;
4379
4380 list_for_each_entry(page, &n->full, lru) {
434e245d 4381 validate_slab_slab(s, page, map);
53e15af0
CL
4382 count++;
4383 }
4384 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4385 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4386 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4387
4388out:
4389 spin_unlock_irqrestore(&n->list_lock, flags);
4390 return count;
4391}
4392
434e245d 4393static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4394{
4395 int node;
4396 unsigned long count = 0;
205ab99d 4397 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 4398 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4399 struct kmem_cache_node *n;
434e245d
CL
4400
4401 if (!map)
4402 return -ENOMEM;
53e15af0
CL
4403
4404 flush_all(s);
fa45dc25 4405 for_each_kmem_cache_node(s, node, n)
434e245d 4406 count += validate_slab_node(s, n, map);
434e245d 4407 kfree(map);
53e15af0
CL
4408 return count;
4409}
88a420e4 4410/*
672bba3a 4411 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4412 * and freed.
4413 */
4414
4415struct location {
4416 unsigned long count;
ce71e27c 4417 unsigned long addr;
45edfa58
CL
4418 long long sum_time;
4419 long min_time;
4420 long max_time;
4421 long min_pid;
4422 long max_pid;
174596a0 4423 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4424 nodemask_t nodes;
88a420e4
CL
4425};
4426
4427struct loc_track {
4428 unsigned long max;
4429 unsigned long count;
4430 struct location *loc;
4431};
4432
4433static void free_loc_track(struct loc_track *t)
4434{
4435 if (t->max)
4436 free_pages((unsigned long)t->loc,
4437 get_order(sizeof(struct location) * t->max));
4438}
4439
68dff6a9 4440static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4441{
4442 struct location *l;
4443 int order;
4444
88a420e4
CL
4445 order = get_order(sizeof(struct location) * max);
4446
68dff6a9 4447 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4448 if (!l)
4449 return 0;
4450
4451 if (t->count) {
4452 memcpy(l, t->loc, sizeof(struct location) * t->count);
4453 free_loc_track(t);
4454 }
4455 t->max = max;
4456 t->loc = l;
4457 return 1;
4458}
4459
4460static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4461 const struct track *track)
88a420e4
CL
4462{
4463 long start, end, pos;
4464 struct location *l;
ce71e27c 4465 unsigned long caddr;
45edfa58 4466 unsigned long age = jiffies - track->when;
88a420e4
CL
4467
4468 start = -1;
4469 end = t->count;
4470
4471 for ( ; ; ) {
4472 pos = start + (end - start + 1) / 2;
4473
4474 /*
4475 * There is nothing at "end". If we end up there
4476 * we need to add something to before end.
4477 */
4478 if (pos == end)
4479 break;
4480
4481 caddr = t->loc[pos].addr;
45edfa58
CL
4482 if (track->addr == caddr) {
4483
4484 l = &t->loc[pos];
4485 l->count++;
4486 if (track->when) {
4487 l->sum_time += age;
4488 if (age < l->min_time)
4489 l->min_time = age;
4490 if (age > l->max_time)
4491 l->max_time = age;
4492
4493 if (track->pid < l->min_pid)
4494 l->min_pid = track->pid;
4495 if (track->pid > l->max_pid)
4496 l->max_pid = track->pid;
4497
174596a0
RR
4498 cpumask_set_cpu(track->cpu,
4499 to_cpumask(l->cpus));
45edfa58
CL
4500 }
4501 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4502 return 1;
4503 }
4504
45edfa58 4505 if (track->addr < caddr)
88a420e4
CL
4506 end = pos;
4507 else
4508 start = pos;
4509 }
4510
4511 /*
672bba3a 4512 * Not found. Insert new tracking element.
88a420e4 4513 */
68dff6a9 4514 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4515 return 0;
4516
4517 l = t->loc + pos;
4518 if (pos < t->count)
4519 memmove(l + 1, l,
4520 (t->count - pos) * sizeof(struct location));
4521 t->count++;
4522 l->count = 1;
45edfa58
CL
4523 l->addr = track->addr;
4524 l->sum_time = age;
4525 l->min_time = age;
4526 l->max_time = age;
4527 l->min_pid = track->pid;
4528 l->max_pid = track->pid;
174596a0
RR
4529 cpumask_clear(to_cpumask(l->cpus));
4530 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4531 nodes_clear(l->nodes);
4532 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4533 return 1;
4534}
4535
4536static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4537 struct page *page, enum track_item alloc,
a5dd5c11 4538 unsigned long *map)
88a420e4 4539{
a973e9dd 4540 void *addr = page_address(page);
88a420e4
CL
4541 void *p;
4542
39b26464 4543 bitmap_zero(map, page->objects);
5f80b13a 4544 get_map(s, page, map);
88a420e4 4545
224a88be 4546 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4547 if (!test_bit(slab_index(p, s, addr), map))
4548 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4549}
4550
4551static int list_locations(struct kmem_cache *s, char *buf,
4552 enum track_item alloc)
4553{
e374d483 4554 int len = 0;
88a420e4 4555 unsigned long i;
68dff6a9 4556 struct loc_track t = { 0, 0, NULL };
88a420e4 4557 int node;
bbd7d57b
ED
4558 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4559 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4560 struct kmem_cache_node *n;
88a420e4 4561
bbd7d57b
ED
4562 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4563 GFP_TEMPORARY)) {
4564 kfree(map);
68dff6a9 4565 return sprintf(buf, "Out of memory\n");
bbd7d57b 4566 }
88a420e4
CL
4567 /* Push back cpu slabs */
4568 flush_all(s);
4569
fa45dc25 4570 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4571 unsigned long flags;
4572 struct page *page;
4573
9e86943b 4574 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4575 continue;
4576
4577 spin_lock_irqsave(&n->list_lock, flags);
4578 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4579 process_slab(&t, s, page, alloc, map);
88a420e4 4580 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4581 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4582 spin_unlock_irqrestore(&n->list_lock, flags);
4583 }
4584
4585 for (i = 0; i < t.count; i++) {
45edfa58 4586 struct location *l = &t.loc[i];
88a420e4 4587
9c246247 4588 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4589 break;
e374d483 4590 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4591
4592 if (l->addr)
62c70bce 4593 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4594 else
e374d483 4595 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4596
4597 if (l->sum_time != l->min_time) {
e374d483 4598 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4599 l->min_time,
4600 (long)div_u64(l->sum_time, l->count),
4601 l->max_time);
45edfa58 4602 } else
e374d483 4603 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4604 l->min_time);
4605
4606 if (l->min_pid != l->max_pid)
e374d483 4607 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4608 l->min_pid, l->max_pid);
4609 else
e374d483 4610 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4611 l->min_pid);
4612
174596a0
RR
4613 if (num_online_cpus() > 1 &&
4614 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4615 len < PAGE_SIZE - 60)
4616 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4617 " cpus=%*pbl",
4618 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4619
62bc62a8 4620 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4621 len < PAGE_SIZE - 60)
4622 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4623 " nodes=%*pbl",
4624 nodemask_pr_args(&l->nodes));
45edfa58 4625
e374d483 4626 len += sprintf(buf + len, "\n");
88a420e4
CL
4627 }
4628
4629 free_loc_track(&t);
bbd7d57b 4630 kfree(map);
88a420e4 4631 if (!t.count)
e374d483
HH
4632 len += sprintf(buf, "No data\n");
4633 return len;
88a420e4 4634}
ab4d5ed5 4635#endif
88a420e4 4636
a5a84755 4637#ifdef SLUB_RESILIENCY_TEST
c07b8183 4638static void __init resiliency_test(void)
a5a84755
CL
4639{
4640 u8 *p;
4641
95a05b42 4642 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4643
f9f58285
FF
4644 pr_err("SLUB resiliency testing\n");
4645 pr_err("-----------------------\n");
4646 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4647
4648 p = kzalloc(16, GFP_KERNEL);
4649 p[16] = 0x12;
f9f58285
FF
4650 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4651 p + 16);
a5a84755
CL
4652
4653 validate_slab_cache(kmalloc_caches[4]);
4654
4655 /* Hmmm... The next two are dangerous */
4656 p = kzalloc(32, GFP_KERNEL);
4657 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4658 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4659 p);
4660 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4661
4662 validate_slab_cache(kmalloc_caches[5]);
4663 p = kzalloc(64, GFP_KERNEL);
4664 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4665 *p = 0x56;
f9f58285
FF
4666 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4667 p);
4668 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4669 validate_slab_cache(kmalloc_caches[6]);
4670
f9f58285 4671 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4672 p = kzalloc(128, GFP_KERNEL);
4673 kfree(p);
4674 *p = 0x78;
f9f58285 4675 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4676 validate_slab_cache(kmalloc_caches[7]);
4677
4678 p = kzalloc(256, GFP_KERNEL);
4679 kfree(p);
4680 p[50] = 0x9a;
f9f58285 4681 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4682 validate_slab_cache(kmalloc_caches[8]);
4683
4684 p = kzalloc(512, GFP_KERNEL);
4685 kfree(p);
4686 p[512] = 0xab;
f9f58285 4687 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4688 validate_slab_cache(kmalloc_caches[9]);
4689}
4690#else
4691#ifdef CONFIG_SYSFS
4692static void resiliency_test(void) {};
4693#endif
4694#endif
4695
ab4d5ed5 4696#ifdef CONFIG_SYSFS
81819f0f 4697enum slab_stat_type {
205ab99d
CL
4698 SL_ALL, /* All slabs */
4699 SL_PARTIAL, /* Only partially allocated slabs */
4700 SL_CPU, /* Only slabs used for cpu caches */
4701 SL_OBJECTS, /* Determine allocated objects not slabs */
4702 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4703};
4704
205ab99d 4705#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4706#define SO_PARTIAL (1 << SL_PARTIAL)
4707#define SO_CPU (1 << SL_CPU)
4708#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4709#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4710
1663f26d
TH
4711#ifdef CONFIG_MEMCG
4712static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4713
4714static int __init setup_slub_memcg_sysfs(char *str)
4715{
4716 int v;
4717
4718 if (get_option(&str, &v) > 0)
4719 memcg_sysfs_enabled = v;
4720
4721 return 1;
4722}
4723
4724__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4725#endif
4726
62e5c4b4
CG
4727static ssize_t show_slab_objects(struct kmem_cache *s,
4728 char *buf, unsigned long flags)
81819f0f
CL
4729{
4730 unsigned long total = 0;
81819f0f
CL
4731 int node;
4732 int x;
4733 unsigned long *nodes;
81819f0f 4734
e35e1a97 4735 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4736 if (!nodes)
4737 return -ENOMEM;
81819f0f 4738
205ab99d
CL
4739 if (flags & SO_CPU) {
4740 int cpu;
81819f0f 4741
205ab99d 4742 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4743 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4744 cpu);
ec3ab083 4745 int node;
49e22585 4746 struct page *page;
dfb4f096 4747
4db0c3c2 4748 page = READ_ONCE(c->page);
ec3ab083
CL
4749 if (!page)
4750 continue;
205ab99d 4751
ec3ab083
CL
4752 node = page_to_nid(page);
4753 if (flags & SO_TOTAL)
4754 x = page->objects;
4755 else if (flags & SO_OBJECTS)
4756 x = page->inuse;
4757 else
4758 x = 1;
49e22585 4759
ec3ab083
CL
4760 total += x;
4761 nodes[node] += x;
4762
4db0c3c2 4763 page = READ_ONCE(c->partial);
49e22585 4764 if (page) {
8afb1474
LZ
4765 node = page_to_nid(page);
4766 if (flags & SO_TOTAL)
4767 WARN_ON_ONCE(1);
4768 else if (flags & SO_OBJECTS)
4769 WARN_ON_ONCE(1);
4770 else
4771 x = page->pages;
bc6697d8
ED
4772 total += x;
4773 nodes[node] += x;
49e22585 4774 }
81819f0f
CL
4775 }
4776 }
4777
bfc8c901 4778 get_online_mems();
ab4d5ed5 4779#ifdef CONFIG_SLUB_DEBUG
205ab99d 4780 if (flags & SO_ALL) {
fa45dc25
CL
4781 struct kmem_cache_node *n;
4782
4783 for_each_kmem_cache_node(s, node, n) {
205ab99d 4784
d0e0ac97
CG
4785 if (flags & SO_TOTAL)
4786 x = atomic_long_read(&n->total_objects);
4787 else if (flags & SO_OBJECTS)
4788 x = atomic_long_read(&n->total_objects) -
4789 count_partial(n, count_free);
81819f0f 4790 else
205ab99d 4791 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4792 total += x;
4793 nodes[node] += x;
4794 }
4795
ab4d5ed5
CL
4796 } else
4797#endif
4798 if (flags & SO_PARTIAL) {
fa45dc25 4799 struct kmem_cache_node *n;
81819f0f 4800
fa45dc25 4801 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4802 if (flags & SO_TOTAL)
4803 x = count_partial(n, count_total);
4804 else if (flags & SO_OBJECTS)
4805 x = count_partial(n, count_inuse);
81819f0f 4806 else
205ab99d 4807 x = n->nr_partial;
81819f0f
CL
4808 total += x;
4809 nodes[node] += x;
4810 }
4811 }
81819f0f
CL
4812 x = sprintf(buf, "%lu", total);
4813#ifdef CONFIG_NUMA
fa45dc25 4814 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4815 if (nodes[node])
4816 x += sprintf(buf + x, " N%d=%lu",
4817 node, nodes[node]);
4818#endif
bfc8c901 4819 put_online_mems();
81819f0f
CL
4820 kfree(nodes);
4821 return x + sprintf(buf + x, "\n");
4822}
4823
ab4d5ed5 4824#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4825static int any_slab_objects(struct kmem_cache *s)
4826{
4827 int node;
fa45dc25 4828 struct kmem_cache_node *n;
81819f0f 4829
fa45dc25 4830 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4831 if (atomic_long_read(&n->total_objects))
81819f0f 4832 return 1;
fa45dc25 4833
81819f0f
CL
4834 return 0;
4835}
ab4d5ed5 4836#endif
81819f0f
CL
4837
4838#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4839#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4840
4841struct slab_attribute {
4842 struct attribute attr;
4843 ssize_t (*show)(struct kmem_cache *s, char *buf);
4844 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4845};
4846
4847#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4848 static struct slab_attribute _name##_attr = \
4849 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4850
4851#define SLAB_ATTR(_name) \
4852 static struct slab_attribute _name##_attr = \
ab067e99 4853 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4854
81819f0f
CL
4855static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4856{
4857 return sprintf(buf, "%d\n", s->size);
4858}
4859SLAB_ATTR_RO(slab_size);
4860
4861static ssize_t align_show(struct kmem_cache *s, char *buf)
4862{
4863 return sprintf(buf, "%d\n", s->align);
4864}
4865SLAB_ATTR_RO(align);
4866
4867static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4868{
3b0efdfa 4869 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4870}
4871SLAB_ATTR_RO(object_size);
4872
4873static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4874{
834f3d11 4875 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4876}
4877SLAB_ATTR_RO(objs_per_slab);
4878
06b285dc
CL
4879static ssize_t order_store(struct kmem_cache *s,
4880 const char *buf, size_t length)
4881{
0121c619
CL
4882 unsigned long order;
4883 int err;
4884
3dbb95f7 4885 err = kstrtoul(buf, 10, &order);
0121c619
CL
4886 if (err)
4887 return err;
06b285dc
CL
4888
4889 if (order > slub_max_order || order < slub_min_order)
4890 return -EINVAL;
4891
4892 calculate_sizes(s, order);
4893 return length;
4894}
4895
81819f0f
CL
4896static ssize_t order_show(struct kmem_cache *s, char *buf)
4897{
834f3d11 4898 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4899}
06b285dc 4900SLAB_ATTR(order);
81819f0f 4901
73d342b1
DR
4902static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4903{
4904 return sprintf(buf, "%lu\n", s->min_partial);
4905}
4906
4907static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4908 size_t length)
4909{
4910 unsigned long min;
4911 int err;
4912
3dbb95f7 4913 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4914 if (err)
4915 return err;
4916
c0bdb232 4917 set_min_partial(s, min);
73d342b1
DR
4918 return length;
4919}
4920SLAB_ATTR(min_partial);
4921
49e22585
CL
4922static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4923{
4924 return sprintf(buf, "%u\n", s->cpu_partial);
4925}
4926
4927static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4928 size_t length)
4929{
4930 unsigned long objects;
4931 int err;
4932
3dbb95f7 4933 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4934 if (err)
4935 return err;
345c905d 4936 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4937 return -EINVAL;
49e22585
CL
4938
4939 s->cpu_partial = objects;
4940 flush_all(s);
4941 return length;
4942}
4943SLAB_ATTR(cpu_partial);
4944
81819f0f
CL
4945static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4946{
62c70bce
JP
4947 if (!s->ctor)
4948 return 0;
4949 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4950}
4951SLAB_ATTR_RO(ctor);
4952
81819f0f
CL
4953static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4954{
4307c14f 4955 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4956}
4957SLAB_ATTR_RO(aliases);
4958
81819f0f
CL
4959static ssize_t partial_show(struct kmem_cache *s, char *buf)
4960{
d9acf4b7 4961 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4962}
4963SLAB_ATTR_RO(partial);
4964
4965static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4966{
d9acf4b7 4967 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4968}
4969SLAB_ATTR_RO(cpu_slabs);
4970
4971static ssize_t objects_show(struct kmem_cache *s, char *buf)
4972{
205ab99d 4973 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4974}
4975SLAB_ATTR_RO(objects);
4976
205ab99d
CL
4977static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4978{
4979 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4980}
4981SLAB_ATTR_RO(objects_partial);
4982
49e22585
CL
4983static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4984{
4985 int objects = 0;
4986 int pages = 0;
4987 int cpu;
4988 int len;
4989
4990 for_each_online_cpu(cpu) {
4991 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4992
4993 if (page) {
4994 pages += page->pages;
4995 objects += page->pobjects;
4996 }
4997 }
4998
4999 len = sprintf(buf, "%d(%d)", objects, pages);
5000
5001#ifdef CONFIG_SMP
5002 for_each_online_cpu(cpu) {
5003 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
5004
5005 if (page && len < PAGE_SIZE - 20)
5006 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5007 page->pobjects, page->pages);
5008 }
5009#endif
5010 return len + sprintf(buf + len, "\n");
5011}
5012SLAB_ATTR_RO(slabs_cpu_partial);
5013
a5a84755
CL
5014static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5015{
5016 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5017}
5018
5019static ssize_t reclaim_account_store(struct kmem_cache *s,
5020 const char *buf, size_t length)
5021{
5022 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5023 if (buf[0] == '1')
5024 s->flags |= SLAB_RECLAIM_ACCOUNT;
5025 return length;
5026}
5027SLAB_ATTR(reclaim_account);
5028
5029static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5030{
5031 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5032}
5033SLAB_ATTR_RO(hwcache_align);
5034
5035#ifdef CONFIG_ZONE_DMA
5036static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5037{
5038 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5039}
5040SLAB_ATTR_RO(cache_dma);
5041#endif
5042
5043static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5044{
5045 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
5046}
5047SLAB_ATTR_RO(destroy_by_rcu);
5048
ab9a0f19
LJ
5049static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5050{
5051 return sprintf(buf, "%d\n", s->reserved);
5052}
5053SLAB_ATTR_RO(reserved);
5054
ab4d5ed5 5055#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5056static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5057{
5058 return show_slab_objects(s, buf, SO_ALL);
5059}
5060SLAB_ATTR_RO(slabs);
5061
205ab99d
CL
5062static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5063{
5064 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5065}
5066SLAB_ATTR_RO(total_objects);
5067
81819f0f
CL
5068static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5069{
becfda68 5070 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
5071}
5072
5073static ssize_t sanity_checks_store(struct kmem_cache *s,
5074 const char *buf, size_t length)
5075{
becfda68 5076 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
5077 if (buf[0] == '1') {
5078 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 5079 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 5080 }
81819f0f
CL
5081 return length;
5082}
5083SLAB_ATTR(sanity_checks);
5084
5085static ssize_t trace_show(struct kmem_cache *s, char *buf)
5086{
5087 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5088}
5089
5090static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5091 size_t length)
5092{
c9e16131
CL
5093 /*
5094 * Tracing a merged cache is going to give confusing results
5095 * as well as cause other issues like converting a mergeable
5096 * cache into an umergeable one.
5097 */
5098 if (s->refcount > 1)
5099 return -EINVAL;
5100
81819f0f 5101 s->flags &= ~SLAB_TRACE;
b789ef51
CL
5102 if (buf[0] == '1') {
5103 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5104 s->flags |= SLAB_TRACE;
b789ef51 5105 }
81819f0f
CL
5106 return length;
5107}
5108SLAB_ATTR(trace);
5109
81819f0f
CL
5110static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5111{
5112 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5113}
5114
5115static ssize_t red_zone_store(struct kmem_cache *s,
5116 const char *buf, size_t length)
5117{
5118 if (any_slab_objects(s))
5119 return -EBUSY;
5120
5121 s->flags &= ~SLAB_RED_ZONE;
b789ef51 5122 if (buf[0] == '1') {
81819f0f 5123 s->flags |= SLAB_RED_ZONE;
b789ef51 5124 }
06b285dc 5125 calculate_sizes(s, -1);
81819f0f
CL
5126 return length;
5127}
5128SLAB_ATTR(red_zone);
5129
5130static ssize_t poison_show(struct kmem_cache *s, char *buf)
5131{
5132 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5133}
5134
5135static ssize_t poison_store(struct kmem_cache *s,
5136 const char *buf, size_t length)
5137{
5138 if (any_slab_objects(s))
5139 return -EBUSY;
5140
5141 s->flags &= ~SLAB_POISON;
b789ef51 5142 if (buf[0] == '1') {
81819f0f 5143 s->flags |= SLAB_POISON;
b789ef51 5144 }
06b285dc 5145 calculate_sizes(s, -1);
81819f0f
CL
5146 return length;
5147}
5148SLAB_ATTR(poison);
5149
5150static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5151{
5152 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5153}
5154
5155static ssize_t store_user_store(struct kmem_cache *s,
5156 const char *buf, size_t length)
5157{
5158 if (any_slab_objects(s))
5159 return -EBUSY;
5160
5161 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
5162 if (buf[0] == '1') {
5163 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5164 s->flags |= SLAB_STORE_USER;
b789ef51 5165 }
06b285dc 5166 calculate_sizes(s, -1);
81819f0f
CL
5167 return length;
5168}
5169SLAB_ATTR(store_user);
5170
53e15af0
CL
5171static ssize_t validate_show(struct kmem_cache *s, char *buf)
5172{
5173 return 0;
5174}
5175
5176static ssize_t validate_store(struct kmem_cache *s,
5177 const char *buf, size_t length)
5178{
434e245d
CL
5179 int ret = -EINVAL;
5180
5181 if (buf[0] == '1') {
5182 ret = validate_slab_cache(s);
5183 if (ret >= 0)
5184 ret = length;
5185 }
5186 return ret;
53e15af0
CL
5187}
5188SLAB_ATTR(validate);
a5a84755
CL
5189
5190static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5191{
5192 if (!(s->flags & SLAB_STORE_USER))
5193 return -ENOSYS;
5194 return list_locations(s, buf, TRACK_ALLOC);
5195}
5196SLAB_ATTR_RO(alloc_calls);
5197
5198static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5199{
5200 if (!(s->flags & SLAB_STORE_USER))
5201 return -ENOSYS;
5202 return list_locations(s, buf, TRACK_FREE);
5203}
5204SLAB_ATTR_RO(free_calls);
5205#endif /* CONFIG_SLUB_DEBUG */
5206
5207#ifdef CONFIG_FAILSLAB
5208static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5209{
5210 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5211}
5212
5213static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5214 size_t length)
5215{
c9e16131
CL
5216 if (s->refcount > 1)
5217 return -EINVAL;
5218
a5a84755
CL
5219 s->flags &= ~SLAB_FAILSLAB;
5220 if (buf[0] == '1')
5221 s->flags |= SLAB_FAILSLAB;
5222 return length;
5223}
5224SLAB_ATTR(failslab);
ab4d5ed5 5225#endif
53e15af0 5226
2086d26a
CL
5227static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5228{
5229 return 0;
5230}
5231
5232static ssize_t shrink_store(struct kmem_cache *s,
5233 const char *buf, size_t length)
5234{
832f37f5
VD
5235 if (buf[0] == '1')
5236 kmem_cache_shrink(s);
5237 else
2086d26a
CL
5238 return -EINVAL;
5239 return length;
5240}
5241SLAB_ATTR(shrink);
5242
81819f0f 5243#ifdef CONFIG_NUMA
9824601e 5244static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5245{
9824601e 5246 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5247}
5248
9824601e 5249static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5250 const char *buf, size_t length)
5251{
0121c619
CL
5252 unsigned long ratio;
5253 int err;
5254
3dbb95f7 5255 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
5256 if (err)
5257 return err;
5258
e2cb96b7 5259 if (ratio <= 100)
0121c619 5260 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5261
81819f0f
CL
5262 return length;
5263}
9824601e 5264SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5265#endif
5266
8ff12cfc 5267#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5268static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5269{
5270 unsigned long sum = 0;
5271 int cpu;
5272 int len;
5273 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5274
5275 if (!data)
5276 return -ENOMEM;
5277
5278 for_each_online_cpu(cpu) {
9dfc6e68 5279 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5280
5281 data[cpu] = x;
5282 sum += x;
5283 }
5284
5285 len = sprintf(buf, "%lu", sum);
5286
50ef37b9 5287#ifdef CONFIG_SMP
8ff12cfc
CL
5288 for_each_online_cpu(cpu) {
5289 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5290 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5291 }
50ef37b9 5292#endif
8ff12cfc
CL
5293 kfree(data);
5294 return len + sprintf(buf + len, "\n");
5295}
5296
78eb00cc
DR
5297static void clear_stat(struct kmem_cache *s, enum stat_item si)
5298{
5299 int cpu;
5300
5301 for_each_online_cpu(cpu)
9dfc6e68 5302 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5303}
5304
8ff12cfc
CL
5305#define STAT_ATTR(si, text) \
5306static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5307{ \
5308 return show_stat(s, buf, si); \
5309} \
78eb00cc
DR
5310static ssize_t text##_store(struct kmem_cache *s, \
5311 const char *buf, size_t length) \
5312{ \
5313 if (buf[0] != '0') \
5314 return -EINVAL; \
5315 clear_stat(s, si); \
5316 return length; \
5317} \
5318SLAB_ATTR(text); \
8ff12cfc
CL
5319
5320STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5321STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5322STAT_ATTR(FREE_FASTPATH, free_fastpath);
5323STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5324STAT_ATTR(FREE_FROZEN, free_frozen);
5325STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5326STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5327STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5328STAT_ATTR(ALLOC_SLAB, alloc_slab);
5329STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5330STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5331STAT_ATTR(FREE_SLAB, free_slab);
5332STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5333STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5334STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5335STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5336STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5337STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5338STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5339STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5340STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5341STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5342STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5343STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5344STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5345STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5346#endif
5347
06428780 5348static struct attribute *slab_attrs[] = {
81819f0f
CL
5349 &slab_size_attr.attr,
5350 &object_size_attr.attr,
5351 &objs_per_slab_attr.attr,
5352 &order_attr.attr,
73d342b1 5353 &min_partial_attr.attr,
49e22585 5354 &cpu_partial_attr.attr,
81819f0f 5355 &objects_attr.attr,
205ab99d 5356 &objects_partial_attr.attr,
81819f0f
CL
5357 &partial_attr.attr,
5358 &cpu_slabs_attr.attr,
5359 &ctor_attr.attr,
81819f0f
CL
5360 &aliases_attr.attr,
5361 &align_attr.attr,
81819f0f
CL
5362 &hwcache_align_attr.attr,
5363 &reclaim_account_attr.attr,
5364 &destroy_by_rcu_attr.attr,
a5a84755 5365 &shrink_attr.attr,
ab9a0f19 5366 &reserved_attr.attr,
49e22585 5367 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5368#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5369 &total_objects_attr.attr,
5370 &slabs_attr.attr,
5371 &sanity_checks_attr.attr,
5372 &trace_attr.attr,
81819f0f
CL
5373 &red_zone_attr.attr,
5374 &poison_attr.attr,
5375 &store_user_attr.attr,
53e15af0 5376 &validate_attr.attr,
88a420e4
CL
5377 &alloc_calls_attr.attr,
5378 &free_calls_attr.attr,
ab4d5ed5 5379#endif
81819f0f
CL
5380#ifdef CONFIG_ZONE_DMA
5381 &cache_dma_attr.attr,
5382#endif
5383#ifdef CONFIG_NUMA
9824601e 5384 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5385#endif
5386#ifdef CONFIG_SLUB_STATS
5387 &alloc_fastpath_attr.attr,
5388 &alloc_slowpath_attr.attr,
5389 &free_fastpath_attr.attr,
5390 &free_slowpath_attr.attr,
5391 &free_frozen_attr.attr,
5392 &free_add_partial_attr.attr,
5393 &free_remove_partial_attr.attr,
5394 &alloc_from_partial_attr.attr,
5395 &alloc_slab_attr.attr,
5396 &alloc_refill_attr.attr,
e36a2652 5397 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5398 &free_slab_attr.attr,
5399 &cpuslab_flush_attr.attr,
5400 &deactivate_full_attr.attr,
5401 &deactivate_empty_attr.attr,
5402 &deactivate_to_head_attr.attr,
5403 &deactivate_to_tail_attr.attr,
5404 &deactivate_remote_frees_attr.attr,
03e404af 5405 &deactivate_bypass_attr.attr,
65c3376a 5406 &order_fallback_attr.attr,
b789ef51
CL
5407 &cmpxchg_double_fail_attr.attr,
5408 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5409 &cpu_partial_alloc_attr.attr,
5410 &cpu_partial_free_attr.attr,
8028dcea
AS
5411 &cpu_partial_node_attr.attr,
5412 &cpu_partial_drain_attr.attr,
81819f0f 5413#endif
4c13dd3b
DM
5414#ifdef CONFIG_FAILSLAB
5415 &failslab_attr.attr,
5416#endif
5417
81819f0f
CL
5418 NULL
5419};
5420
5421static struct attribute_group slab_attr_group = {
5422 .attrs = slab_attrs,
5423};
5424
5425static ssize_t slab_attr_show(struct kobject *kobj,
5426 struct attribute *attr,
5427 char *buf)
5428{
5429 struct slab_attribute *attribute;
5430 struct kmem_cache *s;
5431 int err;
5432
5433 attribute = to_slab_attr(attr);
5434 s = to_slab(kobj);
5435
5436 if (!attribute->show)
5437 return -EIO;
5438
5439 err = attribute->show(s, buf);
5440
5441 return err;
5442}
5443
5444static ssize_t slab_attr_store(struct kobject *kobj,
5445 struct attribute *attr,
5446 const char *buf, size_t len)
5447{
5448 struct slab_attribute *attribute;
5449 struct kmem_cache *s;
5450 int err;
5451
5452 attribute = to_slab_attr(attr);
5453 s = to_slab(kobj);
5454
5455 if (!attribute->store)
5456 return -EIO;
5457
5458 err = attribute->store(s, buf, len);
127424c8 5459#ifdef CONFIG_MEMCG
107dab5c 5460 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5461 struct kmem_cache *c;
81819f0f 5462
107dab5c
GC
5463 mutex_lock(&slab_mutex);
5464 if (s->max_attr_size < len)
5465 s->max_attr_size = len;
5466
ebe945c2
GC
5467 /*
5468 * This is a best effort propagation, so this function's return
5469 * value will be determined by the parent cache only. This is
5470 * basically because not all attributes will have a well
5471 * defined semantics for rollbacks - most of the actions will
5472 * have permanent effects.
5473 *
5474 * Returning the error value of any of the children that fail
5475 * is not 100 % defined, in the sense that users seeing the
5476 * error code won't be able to know anything about the state of
5477 * the cache.
5478 *
5479 * Only returning the error code for the parent cache at least
5480 * has well defined semantics. The cache being written to
5481 * directly either failed or succeeded, in which case we loop
5482 * through the descendants with best-effort propagation.
5483 */
426589f5
VD
5484 for_each_memcg_cache(c, s)
5485 attribute->store(c, buf, len);
107dab5c
GC
5486 mutex_unlock(&slab_mutex);
5487 }
5488#endif
81819f0f
CL
5489 return err;
5490}
5491
107dab5c
GC
5492static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5493{
127424c8 5494#ifdef CONFIG_MEMCG
107dab5c
GC
5495 int i;
5496 char *buffer = NULL;
93030d83 5497 struct kmem_cache *root_cache;
107dab5c 5498
93030d83 5499 if (is_root_cache(s))
107dab5c
GC
5500 return;
5501
f7ce3190 5502 root_cache = s->memcg_params.root_cache;
93030d83 5503
107dab5c
GC
5504 /*
5505 * This mean this cache had no attribute written. Therefore, no point
5506 * in copying default values around
5507 */
93030d83 5508 if (!root_cache->max_attr_size)
107dab5c
GC
5509 return;
5510
5511 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5512 char mbuf[64];
5513 char *buf;
5514 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5515
5516 if (!attr || !attr->store || !attr->show)
5517 continue;
5518
5519 /*
5520 * It is really bad that we have to allocate here, so we will
5521 * do it only as a fallback. If we actually allocate, though,
5522 * we can just use the allocated buffer until the end.
5523 *
5524 * Most of the slub attributes will tend to be very small in
5525 * size, but sysfs allows buffers up to a page, so they can
5526 * theoretically happen.
5527 */
5528 if (buffer)
5529 buf = buffer;
93030d83 5530 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5531 buf = mbuf;
5532 else {
5533 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5534 if (WARN_ON(!buffer))
5535 continue;
5536 buf = buffer;
5537 }
5538
93030d83 5539 attr->show(root_cache, buf);
107dab5c
GC
5540 attr->store(s, buf, strlen(buf));
5541 }
5542
5543 if (buffer)
5544 free_page((unsigned long)buffer);
5545#endif
5546}
5547
41a21285
CL
5548static void kmem_cache_release(struct kobject *k)
5549{
5550 slab_kmem_cache_release(to_slab(k));
5551}
5552
52cf25d0 5553static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5554 .show = slab_attr_show,
5555 .store = slab_attr_store,
5556};
5557
5558static struct kobj_type slab_ktype = {
5559 .sysfs_ops = &slab_sysfs_ops,
41a21285 5560 .release = kmem_cache_release,
81819f0f
CL
5561};
5562
5563static int uevent_filter(struct kset *kset, struct kobject *kobj)
5564{
5565 struct kobj_type *ktype = get_ktype(kobj);
5566
5567 if (ktype == &slab_ktype)
5568 return 1;
5569 return 0;
5570}
5571
9cd43611 5572static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5573 .filter = uevent_filter,
5574};
5575
27c3a314 5576static struct kset *slab_kset;
81819f0f 5577
9a41707b
VD
5578static inline struct kset *cache_kset(struct kmem_cache *s)
5579{
127424c8 5580#ifdef CONFIG_MEMCG
9a41707b 5581 if (!is_root_cache(s))
f7ce3190 5582 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5583#endif
5584 return slab_kset;
5585}
5586
81819f0f
CL
5587#define ID_STR_LENGTH 64
5588
5589/* Create a unique string id for a slab cache:
6446faa2
CL
5590 *
5591 * Format :[flags-]size
81819f0f
CL
5592 */
5593static char *create_unique_id(struct kmem_cache *s)
5594{
5595 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5596 char *p = name;
5597
5598 BUG_ON(!name);
5599
5600 *p++ = ':';
5601 /*
5602 * First flags affecting slabcache operations. We will only
5603 * get here for aliasable slabs so we do not need to support
5604 * too many flags. The flags here must cover all flags that
5605 * are matched during merging to guarantee that the id is
5606 * unique.
5607 */
5608 if (s->flags & SLAB_CACHE_DMA)
5609 *p++ = 'd';
5610 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5611 *p++ = 'a';
becfda68 5612 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5613 *p++ = 'F';
5a896d9e
VN
5614 if (!(s->flags & SLAB_NOTRACK))
5615 *p++ = 't';
230e9fc2
VD
5616 if (s->flags & SLAB_ACCOUNT)
5617 *p++ = 'A';
81819f0f
CL
5618 if (p != name + 1)
5619 *p++ = '-';
5620 p += sprintf(p, "%07d", s->size);
2633d7a0 5621
81819f0f
CL
5622 BUG_ON(p > name + ID_STR_LENGTH - 1);
5623 return name;
5624}
5625
5626static int sysfs_slab_add(struct kmem_cache *s)
5627{
5628 int err;
5629 const char *name;
1663f26d 5630 struct kset *kset = cache_kset(s);
45530c44 5631 int unmergeable = slab_unmergeable(s);
81819f0f 5632
1663f26d
TH
5633 if (!kset) {
5634 kobject_init(&s->kobj, &slab_ktype);
5635 return 0;
5636 }
5637
81819f0f
CL
5638 if (unmergeable) {
5639 /*
5640 * Slabcache can never be merged so we can use the name proper.
5641 * This is typically the case for debug situations. In that
5642 * case we can catch duplicate names easily.
5643 */
27c3a314 5644 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5645 name = s->name;
5646 } else {
5647 /*
5648 * Create a unique name for the slab as a target
5649 * for the symlinks.
5650 */
5651 name = create_unique_id(s);
5652 }
5653
1663f26d 5654 s->kobj.kset = kset;
26e4f205 5655 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5656 if (err)
80da026a 5657 goto out;
81819f0f
CL
5658
5659 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5660 if (err)
5661 goto out_del_kobj;
9a41707b 5662
127424c8 5663#ifdef CONFIG_MEMCG
1663f26d 5664 if (is_root_cache(s) && memcg_sysfs_enabled) {
9a41707b
VD
5665 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5666 if (!s->memcg_kset) {
54b6a731
DJ
5667 err = -ENOMEM;
5668 goto out_del_kobj;
9a41707b
VD
5669 }
5670 }
5671#endif
5672
81819f0f
CL
5673 kobject_uevent(&s->kobj, KOBJ_ADD);
5674 if (!unmergeable) {
5675 /* Setup first alias */
5676 sysfs_slab_alias(s, s->name);
81819f0f 5677 }
54b6a731
DJ
5678out:
5679 if (!unmergeable)
5680 kfree(name);
5681 return err;
5682out_del_kobj:
5683 kobject_del(&s->kobj);
54b6a731 5684 goto out;
81819f0f
CL
5685}
5686
bf5eb3de 5687static void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5688{
97d06609 5689 if (slab_state < FULL)
2bce6485
CL
5690 /*
5691 * Sysfs has not been setup yet so no need to remove the
5692 * cache from sysfs.
5693 */
5694 return;
5695
50862ce7
TH
5696 if (!s->kobj.state_in_sysfs)
5697 /*
5698 * For a memcg cache, this may be called during
5699 * deactivation and again on shutdown. Remove only once.
5700 * A cache is never shut down before deactivation is
5701 * complete, so no need to worry about synchronization.
5702 */
5703 return;
5704
127424c8 5705#ifdef CONFIG_MEMCG
9a41707b
VD
5706 kset_unregister(s->memcg_kset);
5707#endif
81819f0f
CL
5708 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5709 kobject_del(&s->kobj);
bf5eb3de
TH
5710}
5711
5712void sysfs_slab_release(struct kmem_cache *s)
5713{
5714 if (slab_state >= FULL)
5715 kobject_put(&s->kobj);
81819f0f
CL
5716}
5717
5718/*
5719 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5720 * available lest we lose that information.
81819f0f
CL
5721 */
5722struct saved_alias {
5723 struct kmem_cache *s;
5724 const char *name;
5725 struct saved_alias *next;
5726};
5727
5af328a5 5728static struct saved_alias *alias_list;
81819f0f
CL
5729
5730static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5731{
5732 struct saved_alias *al;
5733
97d06609 5734 if (slab_state == FULL) {
81819f0f
CL
5735 /*
5736 * If we have a leftover link then remove it.
5737 */
27c3a314
GKH
5738 sysfs_remove_link(&slab_kset->kobj, name);
5739 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5740 }
5741
5742 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5743 if (!al)
5744 return -ENOMEM;
5745
5746 al->s = s;
5747 al->name = name;
5748 al->next = alias_list;
5749 alias_list = al;
5750 return 0;
5751}
5752
5753static int __init slab_sysfs_init(void)
5754{
5b95a4ac 5755 struct kmem_cache *s;
81819f0f
CL
5756 int err;
5757
18004c5d 5758 mutex_lock(&slab_mutex);
2bce6485 5759
0ff21e46 5760 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5761 if (!slab_kset) {
18004c5d 5762 mutex_unlock(&slab_mutex);
f9f58285 5763 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5764 return -ENOSYS;
5765 }
5766
97d06609 5767 slab_state = FULL;
26a7bd03 5768
5b95a4ac 5769 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5770 err = sysfs_slab_add(s);
5d540fb7 5771 if (err)
f9f58285
FF
5772 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5773 s->name);
26a7bd03 5774 }
81819f0f
CL
5775
5776 while (alias_list) {
5777 struct saved_alias *al = alias_list;
5778
5779 alias_list = alias_list->next;
5780 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5781 if (err)
f9f58285
FF
5782 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5783 al->name);
81819f0f
CL
5784 kfree(al);
5785 }
5786
18004c5d 5787 mutex_unlock(&slab_mutex);
81819f0f
CL
5788 resiliency_test();
5789 return 0;
5790}
5791
5792__initcall(slab_sysfs_init);
ab4d5ed5 5793#endif /* CONFIG_SYSFS */
57ed3eda
PE
5794
5795/*
5796 * The /proc/slabinfo ABI
5797 */
158a9624 5798#ifdef CONFIG_SLABINFO
0d7561c6 5799void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5800{
57ed3eda 5801 unsigned long nr_slabs = 0;
205ab99d
CL
5802 unsigned long nr_objs = 0;
5803 unsigned long nr_free = 0;
57ed3eda 5804 int node;
fa45dc25 5805 struct kmem_cache_node *n;
57ed3eda 5806
fa45dc25 5807 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5808 nr_slabs += node_nr_slabs(n);
5809 nr_objs += node_nr_objs(n);
205ab99d 5810 nr_free += count_partial(n, count_free);
57ed3eda
PE
5811 }
5812
0d7561c6
GC
5813 sinfo->active_objs = nr_objs - nr_free;
5814 sinfo->num_objs = nr_objs;
5815 sinfo->active_slabs = nr_slabs;
5816 sinfo->num_slabs = nr_slabs;
5817 sinfo->objects_per_slab = oo_objects(s->oo);
5818 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5819}
5820
0d7561c6 5821void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5822{
7b3c3a50
AD
5823}
5824
b7454ad3
GC
5825ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5826 size_t count, loff_t *ppos)
7b3c3a50 5827{
b7454ad3 5828 return -EIO;
7b3c3a50 5829}
158a9624 5830#endif /* CONFIG_SLABINFO */