]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/slub.c
Merge tag 'usb-serial-5.10-rc3' of https://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-hirsute-kernel.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
881db7fb
CL
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
2482ddec 36#include <linux/random.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 54 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 55 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
881db7fb
CL
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
65 * page's freelist.
81819f0f
CL
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
81819f0f
CL
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
672bba3a
CL
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 88 * freed then the slab will show up again on the partial lists.
672bba3a
CL
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
81819f0f
CL
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
aed68148 96 * page->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f 111 *
aed68148 112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
ca0cab65
VB
117#ifdef CONFIG_SLUB_DEBUG
118#ifdef CONFIG_SLUB_DEBUG_ON
119DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
120#else
121DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
122#endif
123#endif
124
59052e89
VB
125static inline bool kmem_cache_debug(struct kmem_cache *s)
126{
127 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 128}
5577bd8a 129
117d54df 130void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 131{
59052e89 132 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
133 p += s->red_left_pad;
134
135 return p;
136}
137
345c905d
JK
138static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
139{
140#ifdef CONFIG_SLUB_CPU_PARTIAL
141 return !kmem_cache_debug(s);
142#else
143 return false;
144#endif
145}
146
81819f0f
CL
147/*
148 * Issues still to be resolved:
149 *
81819f0f
CL
150 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
151 *
81819f0f
CL
152 * - Variable sizing of the per node arrays
153 */
154
155/* Enable to test recovery from slab corruption on boot */
156#undef SLUB_RESILIENCY_TEST
157
b789ef51
CL
158/* Enable to log cmpxchg failures */
159#undef SLUB_DEBUG_CMPXCHG
160
2086d26a
CL
161/*
162 * Mininum number of partial slabs. These will be left on the partial
163 * lists even if they are empty. kmem_cache_shrink may reclaim them.
164 */
76be8950 165#define MIN_PARTIAL 5
e95eed57 166
2086d26a
CL
167/*
168 * Maximum number of desirable partial slabs.
169 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 170 * sort the partial list by the number of objects in use.
2086d26a
CL
171 */
172#define MAX_PARTIAL 10
173
becfda68 174#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 175 SLAB_POISON | SLAB_STORE_USER)
672bba3a 176
149daaf3
LA
177/*
178 * These debug flags cannot use CMPXCHG because there might be consistency
179 * issues when checking or reading debug information
180 */
181#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
182 SLAB_TRACE)
183
184
fa5ec8a1 185/*
3de47213
DR
186 * Debugging flags that require metadata to be stored in the slab. These get
187 * disabled when slub_debug=O is used and a cache's min order increases with
188 * metadata.
fa5ec8a1 189 */
3de47213 190#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 191
210b5c06
CG
192#define OO_SHIFT 16
193#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 194#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 195
81819f0f 196/* Internal SLUB flags */
d50112ed 197/* Poison object */
4fd0b46e 198#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 199/* Use cmpxchg_double */
4fd0b46e 200#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 201
02cbc874
CL
202/*
203 * Tracking user of a slab.
204 */
d6543e39 205#define TRACK_ADDRS_COUNT 16
02cbc874 206struct track {
ce71e27c 207 unsigned long addr; /* Called from address */
d6543e39
BG
208#ifdef CONFIG_STACKTRACE
209 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
210#endif
02cbc874
CL
211 int cpu; /* Was running on cpu */
212 int pid; /* Pid context */
213 unsigned long when; /* When did the operation occur */
214};
215
216enum track_item { TRACK_ALLOC, TRACK_FREE };
217
ab4d5ed5 218#ifdef CONFIG_SYSFS
81819f0f
CL
219static int sysfs_slab_add(struct kmem_cache *);
220static int sysfs_slab_alias(struct kmem_cache *, const char *);
81819f0f 221#else
0c710013
CL
222static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
81819f0f
CL
225#endif
226
4fdccdfb 227static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
228{
229#ifdef CONFIG_SLUB_STATS
88da03a6
CL
230 /*
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
233 */
234 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
235#endif
236}
237
81819f0f
CL
238/********************************************************************
239 * Core slab cache functions
240 *******************************************************************/
241
2482ddec
KC
242/*
243 * Returns freelist pointer (ptr). With hardening, this is obfuscated
244 * with an XOR of the address where the pointer is held and a per-cache
245 * random number.
246 */
247static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 unsigned long ptr_addr)
249{
250#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9
AK
251 /*
252 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
253 * Normally, this doesn't cause any issues, as both set_freepointer()
254 * and get_freepointer() are called with a pointer with the same tag.
255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 * example, when __free_slub() iterates over objects in a cache, it
257 * passes untagged pointers to check_object(). check_object() in turns
258 * calls get_freepointer() with an untagged pointer, which causes the
259 * freepointer to be restored incorrectly.
260 */
261 return (void *)((unsigned long)ptr ^ s->random ^
1ad53d9f 262 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
263#else
264 return ptr;
265#endif
266}
267
268/* Returns the freelist pointer recorded at location ptr_addr. */
269static inline void *freelist_dereference(const struct kmem_cache *s,
270 void *ptr_addr)
271{
272 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
273 (unsigned long)ptr_addr);
274}
275
7656c72b
CL
276static inline void *get_freepointer(struct kmem_cache *s, void *object)
277{
2482ddec 278 return freelist_dereference(s, object + s->offset);
7656c72b
CL
279}
280
0ad9500e
ED
281static void prefetch_freepointer(const struct kmem_cache *s, void *object)
282{
0882ff91 283 prefetch(object + s->offset);
0ad9500e
ED
284}
285
1393d9a1
CL
286static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
287{
2482ddec 288 unsigned long freepointer_addr;
1393d9a1
CL
289 void *p;
290
8e57f8ac 291 if (!debug_pagealloc_enabled_static())
922d566c
JK
292 return get_freepointer(s, object);
293
2482ddec 294 freepointer_addr = (unsigned long)object + s->offset;
fe557319 295 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
2482ddec 296 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
297}
298
7656c72b
CL
299static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
300{
2482ddec
KC
301 unsigned long freeptr_addr = (unsigned long)object + s->offset;
302
ce6fa91b
AP
303#ifdef CONFIG_SLAB_FREELIST_HARDENED
304 BUG_ON(object == fp); /* naive detection of double free or corruption */
305#endif
306
2482ddec 307 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
308}
309
310/* Loop over all objects in a slab */
224a88be 311#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
312 for (__p = fixup_red_left(__s, __addr); \
313 __p < (__addr) + (__objects) * (__s)->size; \
314 __p += (__s)->size)
7656c72b 315
9736d2a9 316static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 317{
9736d2a9 318 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
319}
320
19af27af 321static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 322 unsigned int size)
834f3d11
CL
323{
324 struct kmem_cache_order_objects x = {
9736d2a9 325 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
326 };
327
328 return x;
329}
330
19af27af 331static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 332{
210b5c06 333 return x.x >> OO_SHIFT;
834f3d11
CL
334}
335
19af27af 336static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 337{
210b5c06 338 return x.x & OO_MASK;
834f3d11
CL
339}
340
881db7fb
CL
341/*
342 * Per slab locking using the pagelock
343 */
344static __always_inline void slab_lock(struct page *page)
345{
48c935ad 346 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
347 bit_spin_lock(PG_locked, &page->flags);
348}
349
350static __always_inline void slab_unlock(struct page *page)
351{
48c935ad 352 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
353 __bit_spin_unlock(PG_locked, &page->flags);
354}
355
1d07171c
CL
356/* Interrupts must be disabled (for the fallback code to work right) */
357static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
358 void *freelist_old, unsigned long counters_old,
359 void *freelist_new, unsigned long counters_new,
360 const char *n)
361{
362 VM_BUG_ON(!irqs_disabled());
2565409f
HC
363#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
364 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 365 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 366 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
367 freelist_old, counters_old,
368 freelist_new, counters_new))
6f6528a1 369 return true;
1d07171c
CL
370 } else
371#endif
372 {
373 slab_lock(page);
d0e0ac97
CG
374 if (page->freelist == freelist_old &&
375 page->counters == counters_old) {
1d07171c 376 page->freelist = freelist_new;
7d27a04b 377 page->counters = counters_new;
1d07171c 378 slab_unlock(page);
6f6528a1 379 return true;
1d07171c
CL
380 }
381 slab_unlock(page);
382 }
383
384 cpu_relax();
385 stat(s, CMPXCHG_DOUBLE_FAIL);
386
387#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 388 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
389#endif
390
6f6528a1 391 return false;
1d07171c
CL
392}
393
b789ef51
CL
394static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
395 void *freelist_old, unsigned long counters_old,
396 void *freelist_new, unsigned long counters_new,
397 const char *n)
398{
2565409f
HC
399#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
400 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 401 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 402 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
403 freelist_old, counters_old,
404 freelist_new, counters_new))
6f6528a1 405 return true;
b789ef51
CL
406 } else
407#endif
408 {
1d07171c
CL
409 unsigned long flags;
410
411 local_irq_save(flags);
881db7fb 412 slab_lock(page);
d0e0ac97
CG
413 if (page->freelist == freelist_old &&
414 page->counters == counters_old) {
b789ef51 415 page->freelist = freelist_new;
7d27a04b 416 page->counters = counters_new;
881db7fb 417 slab_unlock(page);
1d07171c 418 local_irq_restore(flags);
6f6528a1 419 return true;
b789ef51 420 }
881db7fb 421 slab_unlock(page);
1d07171c 422 local_irq_restore(flags);
b789ef51
CL
423 }
424
425 cpu_relax();
426 stat(s, CMPXCHG_DOUBLE_FAIL);
427
428#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 429 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
430#endif
431
6f6528a1 432 return false;
b789ef51
CL
433}
434
41ecc55b 435#ifdef CONFIG_SLUB_DEBUG
90e9f6a6
YZ
436static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
437static DEFINE_SPINLOCK(object_map_lock);
438
5f80b13a
CL
439/*
440 * Determine a map of object in use on a page.
441 *
881db7fb 442 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
443 * not vanish from under us.
444 */
90e9f6a6 445static unsigned long *get_map(struct kmem_cache *s, struct page *page)
31364c2e 446 __acquires(&object_map_lock)
5f80b13a
CL
447{
448 void *p;
449 void *addr = page_address(page);
450
90e9f6a6
YZ
451 VM_BUG_ON(!irqs_disabled());
452
453 spin_lock(&object_map_lock);
454
455 bitmap_zero(object_map, page->objects);
456
5f80b13a 457 for (p = page->freelist; p; p = get_freepointer(s, p))
4138fdfc 458 set_bit(__obj_to_index(s, addr, p), object_map);
90e9f6a6
YZ
459
460 return object_map;
461}
462
81aba9e0 463static void put_map(unsigned long *map) __releases(&object_map_lock)
90e9f6a6
YZ
464{
465 VM_BUG_ON(map != object_map);
90e9f6a6 466 spin_unlock(&object_map_lock);
5f80b13a
CL
467}
468
870b1fbb 469static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
470{
471 if (s->flags & SLAB_RED_ZONE)
472 return s->size - s->red_left_pad;
473
474 return s->size;
475}
476
477static inline void *restore_red_left(struct kmem_cache *s, void *p)
478{
479 if (s->flags & SLAB_RED_ZONE)
480 p -= s->red_left_pad;
481
482 return p;
483}
484
41ecc55b
CL
485/*
486 * Debug settings:
487 */
89d3c87e 488#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 489static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 490#else
d50112ed 491static slab_flags_t slub_debug;
f0630fff 492#endif
41ecc55b 493
e17f1dfb 494static char *slub_debug_string;
fa5ec8a1 495static int disable_higher_order_debug;
41ecc55b 496
a79316c6
AR
497/*
498 * slub is about to manipulate internal object metadata. This memory lies
499 * outside the range of the allocated object, so accessing it would normally
500 * be reported by kasan as a bounds error. metadata_access_enable() is used
501 * to tell kasan that these accesses are OK.
502 */
503static inline void metadata_access_enable(void)
504{
505 kasan_disable_current();
506}
507
508static inline void metadata_access_disable(void)
509{
510 kasan_enable_current();
511}
512
81819f0f
CL
513/*
514 * Object debugging
515 */
d86bd1be
JK
516
517/* Verify that a pointer has an address that is valid within a slab page */
518static inline int check_valid_pointer(struct kmem_cache *s,
519 struct page *page, void *object)
520{
521 void *base;
522
523 if (!object)
524 return 1;
525
526 base = page_address(page);
338cfaad 527 object = kasan_reset_tag(object);
d86bd1be
JK
528 object = restore_red_left(s, object);
529 if (object < base || object >= base + page->objects * s->size ||
530 (object - base) % s->size) {
531 return 0;
532 }
533
534 return 1;
535}
536
aa2efd5e
DT
537static void print_section(char *level, char *text, u8 *addr,
538 unsigned int length)
81819f0f 539{
a79316c6 540 metadata_access_enable();
aa2efd5e 541 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 542 length, 1);
a79316c6 543 metadata_access_disable();
81819f0f
CL
544}
545
cbfc35a4
WL
546/*
547 * See comment in calculate_sizes().
548 */
549static inline bool freeptr_outside_object(struct kmem_cache *s)
550{
551 return s->offset >= s->inuse;
552}
553
554/*
555 * Return offset of the end of info block which is inuse + free pointer if
556 * not overlapping with object.
557 */
558static inline unsigned int get_info_end(struct kmem_cache *s)
559{
560 if (freeptr_outside_object(s))
561 return s->inuse + sizeof(void *);
562 else
563 return s->inuse;
564}
565
81819f0f
CL
566static struct track *get_track(struct kmem_cache *s, void *object,
567 enum track_item alloc)
568{
569 struct track *p;
570
cbfc35a4 571 p = object + get_info_end(s);
81819f0f
CL
572
573 return p + alloc;
574}
575
576static void set_track(struct kmem_cache *s, void *object,
ce71e27c 577 enum track_item alloc, unsigned long addr)
81819f0f 578{
1a00df4a 579 struct track *p = get_track(s, object, alloc);
81819f0f 580
81819f0f 581 if (addr) {
d6543e39 582#ifdef CONFIG_STACKTRACE
79716799 583 unsigned int nr_entries;
d6543e39 584
a79316c6 585 metadata_access_enable();
79716799 586 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
a79316c6 587 metadata_access_disable();
d6543e39 588
79716799
TG
589 if (nr_entries < TRACK_ADDRS_COUNT)
590 p->addrs[nr_entries] = 0;
d6543e39 591#endif
81819f0f
CL
592 p->addr = addr;
593 p->cpu = smp_processor_id();
88e4ccf2 594 p->pid = current->pid;
81819f0f 595 p->when = jiffies;
b8ca7ff7 596 } else {
81819f0f 597 memset(p, 0, sizeof(struct track));
b8ca7ff7 598 }
81819f0f
CL
599}
600
81819f0f
CL
601static void init_tracking(struct kmem_cache *s, void *object)
602{
24922684
CL
603 if (!(s->flags & SLAB_STORE_USER))
604 return;
605
ce71e27c
EGM
606 set_track(s, object, TRACK_FREE, 0UL);
607 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
608}
609
86609d33 610static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
611{
612 if (!t->addr)
613 return;
614
f9f58285 615 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 616 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
d6543e39
BG
617#ifdef CONFIG_STACKTRACE
618 {
619 int i;
620 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
621 if (t->addrs[i])
f9f58285 622 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
623 else
624 break;
625 }
626#endif
24922684
CL
627}
628
e42f174e 629void print_tracking(struct kmem_cache *s, void *object)
24922684 630{
86609d33 631 unsigned long pr_time = jiffies;
24922684
CL
632 if (!(s->flags & SLAB_STORE_USER))
633 return;
634
86609d33
CP
635 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
636 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
637}
638
639static void print_page_info(struct page *page)
640{
f9f58285 641 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 642 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
643
644}
645
646static void slab_bug(struct kmem_cache *s, char *fmt, ...)
647{
ecc42fbe 648 struct va_format vaf;
24922684 649 va_list args;
24922684
CL
650
651 va_start(args, fmt);
ecc42fbe
FF
652 vaf.fmt = fmt;
653 vaf.va = &args;
f9f58285 654 pr_err("=============================================================================\n");
ecc42fbe 655 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 656 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 657
373d4d09 658 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 659 va_end(args);
81819f0f
CL
660}
661
24922684
CL
662static void slab_fix(struct kmem_cache *s, char *fmt, ...)
663{
ecc42fbe 664 struct va_format vaf;
24922684 665 va_list args;
24922684
CL
666
667 va_start(args, fmt);
ecc42fbe
FF
668 vaf.fmt = fmt;
669 vaf.va = &args;
670 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 671 va_end(args);
24922684
CL
672}
673
52f23478 674static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 675 void **freelist, void *nextfree)
52f23478
DZ
676{
677 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
dc07a728
ER
678 !check_valid_pointer(s, page, nextfree) && freelist) {
679 object_err(s, page, *freelist, "Freechain corrupt");
680 *freelist = NULL;
52f23478
DZ
681 slab_fix(s, "Isolate corrupted freechain");
682 return true;
683 }
684
685 return false;
686}
687
24922684 688static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
689{
690 unsigned int off; /* Offset of last byte */
a973e9dd 691 u8 *addr = page_address(page);
24922684
CL
692
693 print_tracking(s, p);
694
695 print_page_info(page);
696
f9f58285
FF
697 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
698 p, p - addr, get_freepointer(s, p));
24922684 699
d86bd1be 700 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
701 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
702 s->red_left_pad);
d86bd1be 703 else if (p > addr + 16)
aa2efd5e 704 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 705
aa2efd5e 706 print_section(KERN_ERR, "Object ", p,
1b473f29 707 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 708 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 709 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 710 s->inuse - s->object_size);
81819f0f 711
cbfc35a4 712 off = get_info_end(s);
81819f0f 713
24922684 714 if (s->flags & SLAB_STORE_USER)
81819f0f 715 off += 2 * sizeof(struct track);
81819f0f 716
80a9201a
AP
717 off += kasan_metadata_size(s);
718
d86bd1be 719 if (off != size_from_object(s))
81819f0f 720 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
721 print_section(KERN_ERR, "Padding ", p + off,
722 size_from_object(s) - off);
24922684
CL
723
724 dump_stack();
81819f0f
CL
725}
726
75c66def 727void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
728 u8 *object, char *reason)
729{
3dc50637 730 slab_bug(s, "%s", reason);
24922684 731 print_trailer(s, page, object);
81819f0f
CL
732}
733
a38965bf 734static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 735 const char *fmt, ...)
81819f0f
CL
736{
737 va_list args;
738 char buf[100];
739
24922684
CL
740 va_start(args, fmt);
741 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 742 va_end(args);
3dc50637 743 slab_bug(s, "%s", buf);
24922684 744 print_page_info(page);
81819f0f
CL
745 dump_stack();
746}
747
f7cb1933 748static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
749{
750 u8 *p = object;
751
d86bd1be
JK
752 if (s->flags & SLAB_RED_ZONE)
753 memset(p - s->red_left_pad, val, s->red_left_pad);
754
81819f0f 755 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
756 memset(p, POISON_FREE, s->object_size - 1);
757 p[s->object_size - 1] = POISON_END;
81819f0f
CL
758 }
759
760 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 761 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
762}
763
24922684
CL
764static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
765 void *from, void *to)
766{
767 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
768 memset(from, data, to - from);
769}
770
771static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
772 u8 *object, char *what,
06428780 773 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
774{
775 u8 *fault;
776 u8 *end;
e1b70dd1 777 u8 *addr = page_address(page);
24922684 778
a79316c6 779 metadata_access_enable();
79824820 780 fault = memchr_inv(start, value, bytes);
a79316c6 781 metadata_access_disable();
24922684
CL
782 if (!fault)
783 return 1;
784
785 end = start + bytes;
786 while (end > fault && end[-1] == value)
787 end--;
788
789 slab_bug(s, "%s overwritten", what);
e1b70dd1
MC
790 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
791 fault, end - 1, fault - addr,
792 fault[0], value);
24922684
CL
793 print_trailer(s, page, object);
794
795 restore_bytes(s, what, value, fault, end);
796 return 0;
81819f0f
CL
797}
798
81819f0f
CL
799/*
800 * Object layout:
801 *
802 * object address
803 * Bytes of the object to be managed.
804 * If the freepointer may overlay the object then the free
cbfc35a4 805 * pointer is at the middle of the object.
672bba3a 806 *
81819f0f
CL
807 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
808 * 0xa5 (POISON_END)
809 *
3b0efdfa 810 * object + s->object_size
81819f0f 811 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 812 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 813 * object_size == inuse.
672bba3a 814 *
81819f0f
CL
815 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
816 * 0xcc (RED_ACTIVE) for objects in use.
817 *
818 * object + s->inuse
672bba3a
CL
819 * Meta data starts here.
820 *
81819f0f
CL
821 * A. Free pointer (if we cannot overwrite object on free)
822 * B. Tracking data for SLAB_STORE_USER
672bba3a 823 * C. Padding to reach required alignment boundary or at mininum
6446faa2 824 * one word if debugging is on to be able to detect writes
672bba3a
CL
825 * before the word boundary.
826 *
827 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
828 *
829 * object + s->size
672bba3a 830 * Nothing is used beyond s->size.
81819f0f 831 *
3b0efdfa 832 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 833 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
834 * may be used with merged slabcaches.
835 */
836
81819f0f
CL
837static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
838{
cbfc35a4 839 unsigned long off = get_info_end(s); /* The end of info */
81819f0f
CL
840
841 if (s->flags & SLAB_STORE_USER)
842 /* We also have user information there */
843 off += 2 * sizeof(struct track);
844
80a9201a
AP
845 off += kasan_metadata_size(s);
846
d86bd1be 847 if (size_from_object(s) == off)
81819f0f
CL
848 return 1;
849
24922684 850 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 851 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
852}
853
39b26464 854/* Check the pad bytes at the end of a slab page */
81819f0f
CL
855static int slab_pad_check(struct kmem_cache *s, struct page *page)
856{
24922684
CL
857 u8 *start;
858 u8 *fault;
859 u8 *end;
5d682681 860 u8 *pad;
24922684
CL
861 int length;
862 int remainder;
81819f0f
CL
863
864 if (!(s->flags & SLAB_POISON))
865 return 1;
866
a973e9dd 867 start = page_address(page);
a50b854e 868 length = page_size(page);
39b26464
CL
869 end = start + length;
870 remainder = length % s->size;
81819f0f
CL
871 if (!remainder)
872 return 1;
873
5d682681 874 pad = end - remainder;
a79316c6 875 metadata_access_enable();
5d682681 876 fault = memchr_inv(pad, POISON_INUSE, remainder);
a79316c6 877 metadata_access_disable();
24922684
CL
878 if (!fault)
879 return 1;
880 while (end > fault && end[-1] == POISON_INUSE)
881 end--;
882
e1b70dd1
MC
883 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
884 fault, end - 1, fault - start);
5d682681 885 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 886
5d682681 887 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 888 return 0;
81819f0f
CL
889}
890
891static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 892 void *object, u8 val)
81819f0f
CL
893{
894 u8 *p = object;
3b0efdfa 895 u8 *endobject = object + s->object_size;
81819f0f
CL
896
897 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
898 if (!check_bytes_and_report(s, page, object, "Redzone",
899 object - s->red_left_pad, val, s->red_left_pad))
900 return 0;
901
24922684 902 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 903 endobject, val, s->inuse - s->object_size))
81819f0f 904 return 0;
81819f0f 905 } else {
3b0efdfa 906 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 907 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
908 endobject, POISON_INUSE,
909 s->inuse - s->object_size);
3adbefee 910 }
81819f0f
CL
911 }
912
913 if (s->flags & SLAB_POISON) {
f7cb1933 914 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 915 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 916 POISON_FREE, s->object_size - 1) ||
24922684 917 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 918 p + s->object_size - 1, POISON_END, 1)))
81819f0f 919 return 0;
81819f0f
CL
920 /*
921 * check_pad_bytes cleans up on its own.
922 */
923 check_pad_bytes(s, page, p);
924 }
925
cbfc35a4 926 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
927 /*
928 * Object and freepointer overlap. Cannot check
929 * freepointer while object is allocated.
930 */
931 return 1;
932
933 /* Check free pointer validity */
934 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
935 object_err(s, page, p, "Freepointer corrupt");
936 /*
9f6c708e 937 * No choice but to zap it and thus lose the remainder
81819f0f 938 * of the free objects in this slab. May cause
672bba3a 939 * another error because the object count is now wrong.
81819f0f 940 */
a973e9dd 941 set_freepointer(s, p, NULL);
81819f0f
CL
942 return 0;
943 }
944 return 1;
945}
946
947static int check_slab(struct kmem_cache *s, struct page *page)
948{
39b26464
CL
949 int maxobj;
950
81819f0f
CL
951 VM_BUG_ON(!irqs_disabled());
952
953 if (!PageSlab(page)) {
24922684 954 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
955 return 0;
956 }
39b26464 957
9736d2a9 958 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
959 if (page->objects > maxobj) {
960 slab_err(s, page, "objects %u > max %u",
f6edde9c 961 page->objects, maxobj);
39b26464
CL
962 return 0;
963 }
964 if (page->inuse > page->objects) {
24922684 965 slab_err(s, page, "inuse %u > max %u",
f6edde9c 966 page->inuse, page->objects);
81819f0f
CL
967 return 0;
968 }
969 /* Slab_pad_check fixes things up after itself */
970 slab_pad_check(s, page);
971 return 1;
972}
973
974/*
672bba3a
CL
975 * Determine if a certain object on a page is on the freelist. Must hold the
976 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
977 */
978static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
979{
980 int nr = 0;
881db7fb 981 void *fp;
81819f0f 982 void *object = NULL;
f6edde9c 983 int max_objects;
81819f0f 984
881db7fb 985 fp = page->freelist;
39b26464 986 while (fp && nr <= page->objects) {
81819f0f
CL
987 if (fp == search)
988 return 1;
989 if (!check_valid_pointer(s, page, fp)) {
990 if (object) {
991 object_err(s, page, object,
992 "Freechain corrupt");
a973e9dd 993 set_freepointer(s, object, NULL);
81819f0f 994 } else {
24922684 995 slab_err(s, page, "Freepointer corrupt");
a973e9dd 996 page->freelist = NULL;
39b26464 997 page->inuse = page->objects;
24922684 998 slab_fix(s, "Freelist cleared");
81819f0f
CL
999 return 0;
1000 }
1001 break;
1002 }
1003 object = fp;
1004 fp = get_freepointer(s, object);
1005 nr++;
1006 }
1007
9736d2a9 1008 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
1009 if (max_objects > MAX_OBJS_PER_PAGE)
1010 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
1011
1012 if (page->objects != max_objects) {
756a025f
JP
1013 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1014 page->objects, max_objects);
224a88be
CL
1015 page->objects = max_objects;
1016 slab_fix(s, "Number of objects adjusted.");
1017 }
39b26464 1018 if (page->inuse != page->objects - nr) {
756a025f
JP
1019 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1020 page->inuse, page->objects - nr);
39b26464 1021 page->inuse = page->objects - nr;
24922684 1022 slab_fix(s, "Object count adjusted.");
81819f0f
CL
1023 }
1024 return search == NULL;
1025}
1026
0121c619
CL
1027static void trace(struct kmem_cache *s, struct page *page, void *object,
1028 int alloc)
3ec09742
CL
1029{
1030 if (s->flags & SLAB_TRACE) {
f9f58285 1031 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1032 s->name,
1033 alloc ? "alloc" : "free",
1034 object, page->inuse,
1035 page->freelist);
1036
1037 if (!alloc)
aa2efd5e 1038 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1039 s->object_size);
3ec09742
CL
1040
1041 dump_stack();
1042 }
1043}
1044
643b1138 1045/*
672bba3a 1046 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1047 */
5cc6eee8
CL
1048static void add_full(struct kmem_cache *s,
1049 struct kmem_cache_node *n, struct page *page)
643b1138 1050{
5cc6eee8
CL
1051 if (!(s->flags & SLAB_STORE_USER))
1052 return;
1053
255d0884 1054 lockdep_assert_held(&n->list_lock);
916ac052 1055 list_add(&page->slab_list, &n->full);
643b1138
CL
1056}
1057
c65c1877 1058static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1059{
643b1138
CL
1060 if (!(s->flags & SLAB_STORE_USER))
1061 return;
1062
255d0884 1063 lockdep_assert_held(&n->list_lock);
916ac052 1064 list_del(&page->slab_list);
643b1138
CL
1065}
1066
0f389ec6
CL
1067/* Tracking of the number of slabs for debugging purposes */
1068static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1069{
1070 struct kmem_cache_node *n = get_node(s, node);
1071
1072 return atomic_long_read(&n->nr_slabs);
1073}
1074
26c02cf0
AB
1075static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1076{
1077 return atomic_long_read(&n->nr_slabs);
1078}
1079
205ab99d 1080static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1081{
1082 struct kmem_cache_node *n = get_node(s, node);
1083
1084 /*
1085 * May be called early in order to allocate a slab for the
1086 * kmem_cache_node structure. Solve the chicken-egg
1087 * dilemma by deferring the increment of the count during
1088 * bootstrap (see early_kmem_cache_node_alloc).
1089 */
338b2642 1090 if (likely(n)) {
0f389ec6 1091 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1092 atomic_long_add(objects, &n->total_objects);
1093 }
0f389ec6 1094}
205ab99d 1095static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1096{
1097 struct kmem_cache_node *n = get_node(s, node);
1098
1099 atomic_long_dec(&n->nr_slabs);
205ab99d 1100 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1101}
1102
1103/* Object debug checks for alloc/free paths */
3ec09742
CL
1104static void setup_object_debug(struct kmem_cache *s, struct page *page,
1105 void *object)
1106{
8fc8d666 1107 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1108 return;
1109
f7cb1933 1110 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1111 init_tracking(s, object);
1112}
1113
a50b854e
MWO
1114static
1115void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
a7101224 1116{
8fc8d666 1117 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1118 return;
1119
1120 metadata_access_enable();
a50b854e 1121 memset(addr, POISON_INUSE, page_size(page));
a7101224
AK
1122 metadata_access_disable();
1123}
1124
becfda68 1125static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1126 struct page *page, void *object)
81819f0f
CL
1127{
1128 if (!check_slab(s, page))
becfda68 1129 return 0;
81819f0f 1130
81819f0f
CL
1131 if (!check_valid_pointer(s, page, object)) {
1132 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1133 return 0;
81819f0f
CL
1134 }
1135
f7cb1933 1136 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1137 return 0;
1138
1139 return 1;
1140}
1141
1142static noinline int alloc_debug_processing(struct kmem_cache *s,
1143 struct page *page,
1144 void *object, unsigned long addr)
1145{
1146 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1147 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1148 goto bad;
1149 }
81819f0f 1150
3ec09742
CL
1151 /* Success perform special debug activities for allocs */
1152 if (s->flags & SLAB_STORE_USER)
1153 set_track(s, object, TRACK_ALLOC, addr);
1154 trace(s, page, object, 1);
f7cb1933 1155 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1156 return 1;
3ec09742 1157
81819f0f
CL
1158bad:
1159 if (PageSlab(page)) {
1160 /*
1161 * If this is a slab page then lets do the best we can
1162 * to avoid issues in the future. Marking all objects
672bba3a 1163 * as used avoids touching the remaining objects.
81819f0f 1164 */
24922684 1165 slab_fix(s, "Marking all objects used");
39b26464 1166 page->inuse = page->objects;
a973e9dd 1167 page->freelist = NULL;
81819f0f
CL
1168 }
1169 return 0;
1170}
1171
becfda68
LA
1172static inline int free_consistency_checks(struct kmem_cache *s,
1173 struct page *page, void *object, unsigned long addr)
81819f0f 1174{
81819f0f 1175 if (!check_valid_pointer(s, page, object)) {
70d71228 1176 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1177 return 0;
81819f0f
CL
1178 }
1179
1180 if (on_freelist(s, page, object)) {
24922684 1181 object_err(s, page, object, "Object already free");
becfda68 1182 return 0;
81819f0f
CL
1183 }
1184
f7cb1933 1185 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1186 return 0;
81819f0f 1187
1b4f59e3 1188 if (unlikely(s != page->slab_cache)) {
3adbefee 1189 if (!PageSlab(page)) {
756a025f
JP
1190 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1191 object);
1b4f59e3 1192 } else if (!page->slab_cache) {
f9f58285
FF
1193 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1194 object);
70d71228 1195 dump_stack();
06428780 1196 } else
24922684
CL
1197 object_err(s, page, object,
1198 "page slab pointer corrupt.");
becfda68
LA
1199 return 0;
1200 }
1201 return 1;
1202}
1203
1204/* Supports checking bulk free of a constructed freelist */
1205static noinline int free_debug_processing(
1206 struct kmem_cache *s, struct page *page,
1207 void *head, void *tail, int bulk_cnt,
1208 unsigned long addr)
1209{
1210 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1211 void *object = head;
1212 int cnt = 0;
3f649ab7 1213 unsigned long flags;
becfda68
LA
1214 int ret = 0;
1215
1216 spin_lock_irqsave(&n->list_lock, flags);
1217 slab_lock(page);
1218
1219 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1220 if (!check_slab(s, page))
1221 goto out;
1222 }
1223
1224next_object:
1225 cnt++;
1226
1227 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1228 if (!free_consistency_checks(s, page, object, addr))
1229 goto out;
81819f0f 1230 }
3ec09742 1231
3ec09742
CL
1232 if (s->flags & SLAB_STORE_USER)
1233 set_track(s, object, TRACK_FREE, addr);
1234 trace(s, page, object, 0);
81084651 1235 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1236 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1237
1238 /* Reached end of constructed freelist yet? */
1239 if (object != tail) {
1240 object = get_freepointer(s, object);
1241 goto next_object;
1242 }
804aa132
LA
1243 ret = 1;
1244
5c2e4bbb 1245out:
81084651
JDB
1246 if (cnt != bulk_cnt)
1247 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1248 bulk_cnt, cnt);
1249
881db7fb 1250 slab_unlock(page);
282acb43 1251 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1252 if (!ret)
1253 slab_fix(s, "Object at 0x%p not freed", object);
1254 return ret;
81819f0f
CL
1255}
1256
e17f1dfb
VB
1257/*
1258 * Parse a block of slub_debug options. Blocks are delimited by ';'
1259 *
1260 * @str: start of block
1261 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1262 * @slabs: return start of list of slabs, or NULL when there's no list
1263 * @init: assume this is initial parsing and not per-kmem-create parsing
1264 *
1265 * returns the start of next block if there's any, or NULL
1266 */
1267static char *
1268parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1269{
e17f1dfb 1270 bool higher_order_disable = false;
f0630fff 1271
e17f1dfb
VB
1272 /* Skip any completely empty blocks */
1273 while (*str && *str == ';')
1274 str++;
1275
1276 if (*str == ',') {
f0630fff
CL
1277 /*
1278 * No options but restriction on slabs. This means full
1279 * debugging for slabs matching a pattern.
1280 */
e17f1dfb 1281 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1282 goto check_slabs;
e17f1dfb
VB
1283 }
1284 *flags = 0;
f0630fff 1285
e17f1dfb
VB
1286 /* Determine which debug features should be switched on */
1287 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1288 switch (tolower(*str)) {
e17f1dfb
VB
1289 case '-':
1290 *flags = 0;
1291 break;
f0630fff 1292 case 'f':
e17f1dfb 1293 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1294 break;
1295 case 'z':
e17f1dfb 1296 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1297 break;
1298 case 'p':
e17f1dfb 1299 *flags |= SLAB_POISON;
f0630fff
CL
1300 break;
1301 case 'u':
e17f1dfb 1302 *flags |= SLAB_STORE_USER;
f0630fff
CL
1303 break;
1304 case 't':
e17f1dfb 1305 *flags |= SLAB_TRACE;
f0630fff 1306 break;
4c13dd3b 1307 case 'a':
e17f1dfb 1308 *flags |= SLAB_FAILSLAB;
4c13dd3b 1309 break;
08303a73
CA
1310 case 'o':
1311 /*
1312 * Avoid enabling debugging on caches if its minimum
1313 * order would increase as a result.
1314 */
e17f1dfb 1315 higher_order_disable = true;
08303a73 1316 break;
f0630fff 1317 default:
e17f1dfb
VB
1318 if (init)
1319 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
f0630fff 1320 }
41ecc55b 1321 }
f0630fff 1322check_slabs:
41ecc55b 1323 if (*str == ',')
e17f1dfb
VB
1324 *slabs = ++str;
1325 else
1326 *slabs = NULL;
1327
1328 /* Skip over the slab list */
1329 while (*str && *str != ';')
1330 str++;
1331
1332 /* Skip any completely empty blocks */
1333 while (*str && *str == ';')
1334 str++;
1335
1336 if (init && higher_order_disable)
1337 disable_higher_order_debug = 1;
1338
1339 if (*str)
1340 return str;
1341 else
1342 return NULL;
1343}
1344
1345static int __init setup_slub_debug(char *str)
1346{
1347 slab_flags_t flags;
1348 char *saved_str;
1349 char *slab_list;
1350 bool global_slub_debug_changed = false;
1351 bool slab_list_specified = false;
1352
1353 slub_debug = DEBUG_DEFAULT_FLAGS;
1354 if (*str++ != '=' || !*str)
1355 /*
1356 * No options specified. Switch on full debugging.
1357 */
1358 goto out;
1359
1360 saved_str = str;
1361 while (str) {
1362 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1363
1364 if (!slab_list) {
1365 slub_debug = flags;
1366 global_slub_debug_changed = true;
1367 } else {
1368 slab_list_specified = true;
1369 }
1370 }
1371
1372 /*
1373 * For backwards compatibility, a single list of flags with list of
1374 * slabs means debugging is only enabled for those slabs, so the global
1375 * slub_debug should be 0. We can extended that to multiple lists as
1376 * long as there is no option specifying flags without a slab list.
1377 */
1378 if (slab_list_specified) {
1379 if (!global_slub_debug_changed)
1380 slub_debug = 0;
1381 slub_debug_string = saved_str;
1382 }
f0630fff 1383out:
ca0cab65
VB
1384 if (slub_debug != 0 || slub_debug_string)
1385 static_branch_enable(&slub_debug_enabled);
6471384a
AP
1386 if ((static_branch_unlikely(&init_on_alloc) ||
1387 static_branch_unlikely(&init_on_free)) &&
1388 (slub_debug & SLAB_POISON))
1389 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1390 return 1;
1391}
1392
1393__setup("slub_debug", setup_slub_debug);
1394
c5fd3ca0
AT
1395/*
1396 * kmem_cache_flags - apply debugging options to the cache
1397 * @object_size: the size of an object without meta data
1398 * @flags: flags to set
1399 * @name: name of the cache
1400 * @ctor: constructor function
1401 *
1402 * Debug option(s) are applied to @flags. In addition to the debug
1403 * option(s), if a slab name (or multiple) is specified i.e.
1404 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1405 * then only the select slabs will receive the debug option(s).
1406 */
0293d1fd 1407slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1408 slab_flags_t flags, const char *name,
51cc5068 1409 void (*ctor)(void *))
41ecc55b 1410{
c5fd3ca0
AT
1411 char *iter;
1412 size_t len;
e17f1dfb
VB
1413 char *next_block;
1414 slab_flags_t block_flags;
c5fd3ca0 1415
c5fd3ca0 1416 len = strlen(name);
e17f1dfb
VB
1417 next_block = slub_debug_string;
1418 /* Go through all blocks of debug options, see if any matches our slab's name */
1419 while (next_block) {
1420 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1421 if (!iter)
1422 continue;
1423 /* Found a block that has a slab list, search it */
1424 while (*iter) {
1425 char *end, *glob;
1426 size_t cmplen;
1427
1428 end = strchrnul(iter, ',');
1429 if (next_block && next_block < end)
1430 end = next_block - 1;
1431
1432 glob = strnchr(iter, end - iter, '*');
1433 if (glob)
1434 cmplen = glob - iter;
1435 else
1436 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1437
e17f1dfb
VB
1438 if (!strncmp(name, iter, cmplen)) {
1439 flags |= block_flags;
1440 return flags;
1441 }
c5fd3ca0 1442
e17f1dfb
VB
1443 if (!*end || *end == ';')
1444 break;
1445 iter = end + 1;
c5fd3ca0 1446 }
c5fd3ca0 1447 }
ba0268a8 1448
484cfaca 1449 return flags | slub_debug;
41ecc55b 1450}
b4a64718 1451#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1452static inline void setup_object_debug(struct kmem_cache *s,
1453 struct page *page, void *object) {}
a50b854e
MWO
1454static inline
1455void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
41ecc55b 1456
3ec09742 1457static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1458 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1459
282acb43 1460static inline int free_debug_processing(
81084651
JDB
1461 struct kmem_cache *s, struct page *page,
1462 void *head, void *tail, int bulk_cnt,
282acb43 1463 unsigned long addr) { return 0; }
41ecc55b 1464
41ecc55b
CL
1465static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1466 { return 1; }
1467static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1468 void *object, u8 val) { return 1; }
5cc6eee8
CL
1469static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1470 struct page *page) {}
c65c1877
PZ
1471static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1472 struct page *page) {}
0293d1fd 1473slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1474 slab_flags_t flags, const char *name,
51cc5068 1475 void (*ctor)(void *))
ba0268a8
CL
1476{
1477 return flags;
1478}
41ecc55b 1479#define slub_debug 0
0f389ec6 1480
fdaa45e9
IM
1481#define disable_higher_order_debug 0
1482
0f389ec6
CL
1483static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1484 { return 0; }
26c02cf0
AB
1485static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1486 { return 0; }
205ab99d
CL
1487static inline void inc_slabs_node(struct kmem_cache *s, int node,
1488 int objects) {}
1489static inline void dec_slabs_node(struct kmem_cache *s, int node,
1490 int objects) {}
7d550c56 1491
52f23478 1492static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 1493 void **freelist, void *nextfree)
52f23478
DZ
1494{
1495 return false;
1496}
02e72cc6
AR
1497#endif /* CONFIG_SLUB_DEBUG */
1498
1499/*
1500 * Hooks for other subsystems that check memory allocations. In a typical
1501 * production configuration these hooks all should produce no code at all.
1502 */
0116523c 1503static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1504{
53128245 1505 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1506 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1507 kmemleak_alloc(ptr, size, 1, flags);
53128245 1508 return ptr;
d56791b3
RB
1509}
1510
ee3ce779 1511static __always_inline void kfree_hook(void *x)
d56791b3
RB
1512{
1513 kmemleak_free(x);
ee3ce779 1514 kasan_kfree_large(x, _RET_IP_);
d56791b3
RB
1515}
1516
c3895391 1517static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
d56791b3
RB
1518{
1519 kmemleak_free_recursive(x, s->flags);
7d550c56 1520
02e72cc6
AR
1521 /*
1522 * Trouble is that we may no longer disable interrupts in the fast path
1523 * So in order to make the debug calls that expect irqs to be
1524 * disabled we need to disable interrupts temporarily.
1525 */
4675ff05 1526#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1527 {
1528 unsigned long flags;
1529
1530 local_irq_save(flags);
02e72cc6
AR
1531 debug_check_no_locks_freed(x, s->object_size);
1532 local_irq_restore(flags);
1533 }
1534#endif
1535 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1536 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1537
cfbe1636
ME
1538 /* Use KCSAN to help debug racy use-after-free. */
1539 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1540 __kcsan_check_access(x, s->object_size,
1541 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1542
c3895391
AK
1543 /* KASAN might put x into memory quarantine, delaying its reuse */
1544 return kasan_slab_free(s, x, _RET_IP_);
02e72cc6 1545}
205ab99d 1546
c3895391
AK
1547static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1548 void **head, void **tail)
81084651 1549{
6471384a
AP
1550
1551 void *object;
1552 void *next = *head;
1553 void *old_tail = *tail ? *tail : *head;
1554 int rsize;
1555
aea4df4c
LA
1556 /* Head and tail of the reconstructed freelist */
1557 *head = NULL;
1558 *tail = NULL;
1b7e816f 1559
aea4df4c
LA
1560 do {
1561 object = next;
1562 next = get_freepointer(s, object);
1563
1564 if (slab_want_init_on_free(s)) {
6471384a
AP
1565 /*
1566 * Clear the object and the metadata, but don't touch
1567 * the redzone.
1568 */
1569 memset(object, 0, s->object_size);
1570 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1571 : 0;
1572 memset((char *)object + s->inuse, 0,
1573 s->size - s->inuse - rsize);
81084651 1574
aea4df4c 1575 }
c3895391
AK
1576 /* If object's reuse doesn't have to be delayed */
1577 if (!slab_free_hook(s, object)) {
1578 /* Move object to the new freelist */
1579 set_freepointer(s, object, *head);
1580 *head = object;
1581 if (!*tail)
1582 *tail = object;
1583 }
1584 } while (object != old_tail);
1585
1586 if (*head == *tail)
1587 *tail = NULL;
1588
1589 return *head != NULL;
81084651
JDB
1590}
1591
4d176711 1592static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1593 void *object)
1594{
1595 setup_object_debug(s, page, object);
4d176711 1596 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1597 if (unlikely(s->ctor)) {
1598 kasan_unpoison_object_data(s, object);
1599 s->ctor(object);
1600 kasan_poison_object_data(s, object);
1601 }
4d176711 1602 return object;
588f8ba9
TG
1603}
1604
81819f0f
CL
1605/*
1606 * Slab allocation and freeing
1607 */
5dfb4175
VD
1608static inline struct page *alloc_slab_page(struct kmem_cache *s,
1609 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1610{
5dfb4175 1611 struct page *page;
19af27af 1612 unsigned int order = oo_order(oo);
65c3376a 1613
2154a336 1614 if (node == NUMA_NO_NODE)
5dfb4175 1615 page = alloc_pages(flags, order);
65c3376a 1616 else
96db800f 1617 page = __alloc_pages_node(node, flags, order);
5dfb4175 1618
10befea9 1619 if (page)
74d555be 1620 account_slab_page(page, order, s);
5dfb4175
VD
1621
1622 return page;
65c3376a
CL
1623}
1624
210e7a43
TG
1625#ifdef CONFIG_SLAB_FREELIST_RANDOM
1626/* Pre-initialize the random sequence cache */
1627static int init_cache_random_seq(struct kmem_cache *s)
1628{
19af27af 1629 unsigned int count = oo_objects(s->oo);
210e7a43 1630 int err;
210e7a43 1631
a810007a
SR
1632 /* Bailout if already initialised */
1633 if (s->random_seq)
1634 return 0;
1635
210e7a43
TG
1636 err = cache_random_seq_create(s, count, GFP_KERNEL);
1637 if (err) {
1638 pr_err("SLUB: Unable to initialize free list for %s\n",
1639 s->name);
1640 return err;
1641 }
1642
1643 /* Transform to an offset on the set of pages */
1644 if (s->random_seq) {
19af27af
AD
1645 unsigned int i;
1646
210e7a43
TG
1647 for (i = 0; i < count; i++)
1648 s->random_seq[i] *= s->size;
1649 }
1650 return 0;
1651}
1652
1653/* Initialize each random sequence freelist per cache */
1654static void __init init_freelist_randomization(void)
1655{
1656 struct kmem_cache *s;
1657
1658 mutex_lock(&slab_mutex);
1659
1660 list_for_each_entry(s, &slab_caches, list)
1661 init_cache_random_seq(s);
1662
1663 mutex_unlock(&slab_mutex);
1664}
1665
1666/* Get the next entry on the pre-computed freelist randomized */
1667static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1668 unsigned long *pos, void *start,
1669 unsigned long page_limit,
1670 unsigned long freelist_count)
1671{
1672 unsigned int idx;
1673
1674 /*
1675 * If the target page allocation failed, the number of objects on the
1676 * page might be smaller than the usual size defined by the cache.
1677 */
1678 do {
1679 idx = s->random_seq[*pos];
1680 *pos += 1;
1681 if (*pos >= freelist_count)
1682 *pos = 0;
1683 } while (unlikely(idx >= page_limit));
1684
1685 return (char *)start + idx;
1686}
1687
1688/* Shuffle the single linked freelist based on a random pre-computed sequence */
1689static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1690{
1691 void *start;
1692 void *cur;
1693 void *next;
1694 unsigned long idx, pos, page_limit, freelist_count;
1695
1696 if (page->objects < 2 || !s->random_seq)
1697 return false;
1698
1699 freelist_count = oo_objects(s->oo);
1700 pos = get_random_int() % freelist_count;
1701
1702 page_limit = page->objects * s->size;
1703 start = fixup_red_left(s, page_address(page));
1704
1705 /* First entry is used as the base of the freelist */
1706 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1707 freelist_count);
4d176711 1708 cur = setup_object(s, page, cur);
210e7a43
TG
1709 page->freelist = cur;
1710
1711 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1712 next = next_freelist_entry(s, page, &pos, start, page_limit,
1713 freelist_count);
4d176711 1714 next = setup_object(s, page, next);
210e7a43
TG
1715 set_freepointer(s, cur, next);
1716 cur = next;
1717 }
210e7a43
TG
1718 set_freepointer(s, cur, NULL);
1719
1720 return true;
1721}
1722#else
1723static inline int init_cache_random_seq(struct kmem_cache *s)
1724{
1725 return 0;
1726}
1727static inline void init_freelist_randomization(void) { }
1728static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1729{
1730 return false;
1731}
1732#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1733
81819f0f
CL
1734static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1735{
06428780 1736 struct page *page;
834f3d11 1737 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1738 gfp_t alloc_gfp;
4d176711 1739 void *start, *p, *next;
a50b854e 1740 int idx;
210e7a43 1741 bool shuffle;
81819f0f 1742
7e0528da
CL
1743 flags &= gfp_allowed_mask;
1744
d0164adc 1745 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1746 local_irq_enable();
1747
b7a49f0d 1748 flags |= s->allocflags;
e12ba74d 1749
ba52270d
PE
1750 /*
1751 * Let the initial higher-order allocation fail under memory pressure
1752 * so we fall-back to the minimum order allocation.
1753 */
1754 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1755 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1756 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1757
5dfb4175 1758 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1759 if (unlikely(!page)) {
1760 oo = s->min;
80c3a998 1761 alloc_gfp = flags;
65c3376a
CL
1762 /*
1763 * Allocation may have failed due to fragmentation.
1764 * Try a lower order alloc if possible
1765 */
5dfb4175 1766 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1767 if (unlikely(!page))
1768 goto out;
1769 stat(s, ORDER_FALLBACK);
65c3376a 1770 }
5a896d9e 1771
834f3d11 1772 page->objects = oo_objects(oo);
81819f0f 1773
1b4f59e3 1774 page->slab_cache = s;
c03f94cc 1775 __SetPageSlab(page);
2f064f34 1776 if (page_is_pfmemalloc(page))
072bb0aa 1777 SetPageSlabPfmemalloc(page);
81819f0f 1778
a7101224 1779 kasan_poison_slab(page);
81819f0f 1780
a7101224 1781 start = page_address(page);
81819f0f 1782
a50b854e 1783 setup_page_debug(s, page, start);
0316bec2 1784
210e7a43
TG
1785 shuffle = shuffle_freelist(s, page);
1786
1787 if (!shuffle) {
4d176711
AK
1788 start = fixup_red_left(s, start);
1789 start = setup_object(s, page, start);
1790 page->freelist = start;
18e50661
AK
1791 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1792 next = p + s->size;
1793 next = setup_object(s, page, next);
1794 set_freepointer(s, p, next);
1795 p = next;
1796 }
1797 set_freepointer(s, p, NULL);
81819f0f 1798 }
81819f0f 1799
e6e82ea1 1800 page->inuse = page->objects;
8cb0a506 1801 page->frozen = 1;
588f8ba9 1802
81819f0f 1803out:
d0164adc 1804 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1805 local_irq_disable();
1806 if (!page)
1807 return NULL;
1808
588f8ba9
TG
1809 inc_slabs_node(s, page_to_nid(page), page->objects);
1810
81819f0f
CL
1811 return page;
1812}
1813
588f8ba9
TG
1814static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1815{
44405099
LL
1816 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1817 flags = kmalloc_fix_flags(flags);
588f8ba9
TG
1818
1819 return allocate_slab(s,
1820 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1821}
1822
81819f0f
CL
1823static void __free_slab(struct kmem_cache *s, struct page *page)
1824{
834f3d11
CL
1825 int order = compound_order(page);
1826 int pages = 1 << order;
81819f0f 1827
8fc8d666 1828 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
81819f0f
CL
1829 void *p;
1830
1831 slab_pad_check(s, page);
224a88be
CL
1832 for_each_object(p, s, page_address(page),
1833 page->objects)
f7cb1933 1834 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1835 }
1836
072bb0aa 1837 __ClearPageSlabPfmemalloc(page);
49bd5221 1838 __ClearPageSlab(page);
1f458cbf 1839
d4fc5069 1840 page->mapping = NULL;
1eb5ac64
NP
1841 if (current->reclaim_state)
1842 current->reclaim_state->reclaimed_slab += pages;
74d555be 1843 unaccount_slab_page(page, order, s);
27ee57c9 1844 __free_pages(page, order);
81819f0f
CL
1845}
1846
1847static void rcu_free_slab(struct rcu_head *h)
1848{
bf68c214 1849 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1850
1b4f59e3 1851 __free_slab(page->slab_cache, page);
81819f0f
CL
1852}
1853
1854static void free_slab(struct kmem_cache *s, struct page *page)
1855{
5f0d5a3a 1856 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1857 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1858 } else
1859 __free_slab(s, page);
1860}
1861
1862static void discard_slab(struct kmem_cache *s, struct page *page)
1863{
205ab99d 1864 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1865 free_slab(s, page);
1866}
1867
1868/*
5cc6eee8 1869 * Management of partially allocated slabs.
81819f0f 1870 */
1e4dd946
SR
1871static inline void
1872__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1873{
e95eed57 1874 n->nr_partial++;
136333d1 1875 if (tail == DEACTIVATE_TO_TAIL)
916ac052 1876 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 1877 else
916ac052 1878 list_add(&page->slab_list, &n->partial);
81819f0f
CL
1879}
1880
1e4dd946
SR
1881static inline void add_partial(struct kmem_cache_node *n,
1882 struct page *page, int tail)
62e346a8 1883{
c65c1877 1884 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1885 __add_partial(n, page, tail);
1886}
c65c1877 1887
1e4dd946
SR
1888static inline void remove_partial(struct kmem_cache_node *n,
1889 struct page *page)
1890{
1891 lockdep_assert_held(&n->list_lock);
916ac052 1892 list_del(&page->slab_list);
52b4b950 1893 n->nr_partial--;
1e4dd946
SR
1894}
1895
81819f0f 1896/*
7ced3719
CL
1897 * Remove slab from the partial list, freeze it and
1898 * return the pointer to the freelist.
81819f0f 1899 *
497b66f2 1900 * Returns a list of objects or NULL if it fails.
81819f0f 1901 */
497b66f2 1902static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1903 struct kmem_cache_node *n, struct page *page,
633b0764 1904 int mode, int *objects)
81819f0f 1905{
2cfb7455
CL
1906 void *freelist;
1907 unsigned long counters;
1908 struct page new;
1909
c65c1877
PZ
1910 lockdep_assert_held(&n->list_lock);
1911
2cfb7455
CL
1912 /*
1913 * Zap the freelist and set the frozen bit.
1914 * The old freelist is the list of objects for the
1915 * per cpu allocation list.
1916 */
7ced3719
CL
1917 freelist = page->freelist;
1918 counters = page->counters;
1919 new.counters = counters;
633b0764 1920 *objects = new.objects - new.inuse;
23910c50 1921 if (mode) {
7ced3719 1922 new.inuse = page->objects;
23910c50
PE
1923 new.freelist = NULL;
1924 } else {
1925 new.freelist = freelist;
1926 }
2cfb7455 1927
a0132ac0 1928 VM_BUG_ON(new.frozen);
7ced3719 1929 new.frozen = 1;
2cfb7455 1930
7ced3719 1931 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1932 freelist, counters,
02d7633f 1933 new.freelist, new.counters,
7ced3719 1934 "acquire_slab"))
7ced3719 1935 return NULL;
2cfb7455
CL
1936
1937 remove_partial(n, page);
7ced3719 1938 WARN_ON(!freelist);
49e22585 1939 return freelist;
81819f0f
CL
1940}
1941
633b0764 1942static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1943static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1944
81819f0f 1945/*
672bba3a 1946 * Try to allocate a partial slab from a specific node.
81819f0f 1947 */
8ba00bb6
JK
1948static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1949 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1950{
49e22585
CL
1951 struct page *page, *page2;
1952 void *object = NULL;
e5d9998f 1953 unsigned int available = 0;
633b0764 1954 int objects;
81819f0f
CL
1955
1956 /*
1957 * Racy check. If we mistakenly see no partial slabs then we
1958 * just allocate an empty slab. If we mistakenly try to get a
70b6d25e 1959 * partial slab and there is none available then get_partial()
672bba3a 1960 * will return NULL.
81819f0f
CL
1961 */
1962 if (!n || !n->nr_partial)
1963 return NULL;
1964
1965 spin_lock(&n->list_lock);
916ac052 1966 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 1967 void *t;
49e22585 1968
8ba00bb6
JK
1969 if (!pfmemalloc_match(page, flags))
1970 continue;
1971
633b0764 1972 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1973 if (!t)
1974 break;
1975
633b0764 1976 available += objects;
12d79634 1977 if (!object) {
49e22585 1978 c->page = page;
49e22585 1979 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1980 object = t;
49e22585 1981 } else {
633b0764 1982 put_cpu_partial(s, page, 0);
8028dcea 1983 stat(s, CPU_PARTIAL_NODE);
49e22585 1984 }
345c905d 1985 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 1986 || available > slub_cpu_partial(s) / 2)
49e22585
CL
1987 break;
1988
497b66f2 1989 }
81819f0f 1990 spin_unlock(&n->list_lock);
497b66f2 1991 return object;
81819f0f
CL
1992}
1993
1994/*
672bba3a 1995 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1996 */
de3ec035 1997static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1998 struct kmem_cache_cpu *c)
81819f0f
CL
1999{
2000#ifdef CONFIG_NUMA
2001 struct zonelist *zonelist;
dd1a239f 2002 struct zoneref *z;
54a6eb5c 2003 struct zone *zone;
97a225e6 2004 enum zone_type highest_zoneidx = gfp_zone(flags);
497b66f2 2005 void *object;
cc9a6c87 2006 unsigned int cpuset_mems_cookie;
81819f0f
CL
2007
2008 /*
672bba3a
CL
2009 * The defrag ratio allows a configuration of the tradeoffs between
2010 * inter node defragmentation and node local allocations. A lower
2011 * defrag_ratio increases the tendency to do local allocations
2012 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2013 *
672bba3a
CL
2014 * If the defrag_ratio is set to 0 then kmalloc() always
2015 * returns node local objects. If the ratio is higher then kmalloc()
2016 * may return off node objects because partial slabs are obtained
2017 * from other nodes and filled up.
81819f0f 2018 *
43efd3ea
LP
2019 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2020 * (which makes defrag_ratio = 1000) then every (well almost)
2021 * allocation will first attempt to defrag slab caches on other nodes.
2022 * This means scanning over all nodes to look for partial slabs which
2023 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2024 * with available objects.
81819f0f 2025 */
9824601e
CL
2026 if (!s->remote_node_defrag_ratio ||
2027 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2028 return NULL;
2029
cc9a6c87 2030 do {
d26914d1 2031 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 2032 zonelist = node_zonelist(mempolicy_slab_node(), flags);
97a225e6 2033 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2034 struct kmem_cache_node *n;
2035
2036 n = get_node(s, zone_to_nid(zone));
2037
dee2f8aa 2038 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 2039 n->nr_partial > s->min_partial) {
8ba00bb6 2040 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
2041 if (object) {
2042 /*
d26914d1
MG
2043 * Don't check read_mems_allowed_retry()
2044 * here - if mems_allowed was updated in
2045 * parallel, that was a harmless race
2046 * between allocation and the cpuset
2047 * update
cc9a6c87 2048 */
cc9a6c87
MG
2049 return object;
2050 }
c0ff7453 2051 }
81819f0f 2052 }
d26914d1 2053 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2054#endif /* CONFIG_NUMA */
81819f0f
CL
2055 return NULL;
2056}
2057
2058/*
2059 * Get a partial page, lock it and return it.
2060 */
497b66f2 2061static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 2062 struct kmem_cache_cpu *c)
81819f0f 2063{
497b66f2 2064 void *object;
a561ce00
JK
2065 int searchnode = node;
2066
2067 if (node == NUMA_NO_NODE)
2068 searchnode = numa_mem_id();
81819f0f 2069
8ba00bb6 2070 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
2071 if (object || node != NUMA_NO_NODE)
2072 return object;
81819f0f 2073
acd19fd1 2074 return get_any_partial(s, flags, c);
81819f0f
CL
2075}
2076
923717cb 2077#ifdef CONFIG_PREEMPTION
8a5ec0ba 2078/*
0d645ed1 2079 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2080 * during cmpxchg. The transactions start with the cpu number and are then
2081 * incremented by CONFIG_NR_CPUS.
2082 */
2083#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2084#else
2085/*
2086 * No preemption supported therefore also no need to check for
2087 * different cpus.
2088 */
2089#define TID_STEP 1
2090#endif
2091
2092static inline unsigned long next_tid(unsigned long tid)
2093{
2094 return tid + TID_STEP;
2095}
2096
9d5f0be0 2097#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2098static inline unsigned int tid_to_cpu(unsigned long tid)
2099{
2100 return tid % TID_STEP;
2101}
2102
2103static inline unsigned long tid_to_event(unsigned long tid)
2104{
2105 return tid / TID_STEP;
2106}
9d5f0be0 2107#endif
8a5ec0ba
CL
2108
2109static inline unsigned int init_tid(int cpu)
2110{
2111 return cpu;
2112}
2113
2114static inline void note_cmpxchg_failure(const char *n,
2115 const struct kmem_cache *s, unsigned long tid)
2116{
2117#ifdef SLUB_DEBUG_CMPXCHG
2118 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2119
f9f58285 2120 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2121
923717cb 2122#ifdef CONFIG_PREEMPTION
8a5ec0ba 2123 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2124 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2125 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2126 else
2127#endif
2128 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2129 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2130 tid_to_event(tid), tid_to_event(actual_tid));
2131 else
f9f58285 2132 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2133 actual_tid, tid, next_tid(tid));
2134#endif
4fdccdfb 2135 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2136}
2137
788e1aad 2138static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2139{
8a5ec0ba
CL
2140 int cpu;
2141
2142 for_each_possible_cpu(cpu)
2143 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2144}
2cfb7455 2145
81819f0f
CL
2146/*
2147 * Remove the cpu slab
2148 */
d0e0ac97 2149static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2150 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2151{
2cfb7455 2152 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
2153 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2154 int lock = 0;
2155 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2156 void *nextfree;
136333d1 2157 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2158 struct page new;
2159 struct page old;
2160
2161 if (page->freelist) {
84e554e6 2162 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2163 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2164 }
2165
894b8788 2166 /*
2cfb7455
CL
2167 * Stage one: Free all available per cpu objects back
2168 * to the page freelist while it is still frozen. Leave the
2169 * last one.
2170 *
2171 * There is no need to take the list->lock because the page
2172 * is still frozen.
2173 */
2174 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2175 void *prior;
2176 unsigned long counters;
2177
52f23478
DZ
2178 /*
2179 * If 'nextfree' is invalid, it is possible that the object at
2180 * 'freelist' is already corrupted. So isolate all objects
2181 * starting at 'freelist'.
2182 */
dc07a728 2183 if (freelist_corrupted(s, page, &freelist, nextfree))
52f23478
DZ
2184 break;
2185
2cfb7455
CL
2186 do {
2187 prior = page->freelist;
2188 counters = page->counters;
2189 set_freepointer(s, freelist, prior);
2190 new.counters = counters;
2191 new.inuse--;
a0132ac0 2192 VM_BUG_ON(!new.frozen);
2cfb7455 2193
1d07171c 2194 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2195 prior, counters,
2196 freelist, new.counters,
2197 "drain percpu freelist"));
2198
2199 freelist = nextfree;
2200 }
2201
894b8788 2202 /*
2cfb7455
CL
2203 * Stage two: Ensure that the page is unfrozen while the
2204 * list presence reflects the actual number of objects
2205 * during unfreeze.
2206 *
2207 * We setup the list membership and then perform a cmpxchg
2208 * with the count. If there is a mismatch then the page
2209 * is not unfrozen but the page is on the wrong list.
2210 *
2211 * Then we restart the process which may have to remove
2212 * the page from the list that we just put it on again
2213 * because the number of objects in the slab may have
2214 * changed.
894b8788 2215 */
2cfb7455 2216redo:
894b8788 2217
2cfb7455
CL
2218 old.freelist = page->freelist;
2219 old.counters = page->counters;
a0132ac0 2220 VM_BUG_ON(!old.frozen);
7c2e132c 2221
2cfb7455
CL
2222 /* Determine target state of the slab */
2223 new.counters = old.counters;
2224 if (freelist) {
2225 new.inuse--;
2226 set_freepointer(s, freelist, old.freelist);
2227 new.freelist = freelist;
2228 } else
2229 new.freelist = old.freelist;
2230
2231 new.frozen = 0;
2232
8a5b20ae 2233 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2234 m = M_FREE;
2235 else if (new.freelist) {
2236 m = M_PARTIAL;
2237 if (!lock) {
2238 lock = 1;
2239 /*
8bb4e7a2 2240 * Taking the spinlock removes the possibility
2cfb7455
CL
2241 * that acquire_slab() will see a slab page that
2242 * is frozen
2243 */
2244 spin_lock(&n->list_lock);
2245 }
2246 } else {
2247 m = M_FULL;
9cf7a111
AW
2248#ifdef CONFIG_SLUB_DEBUG
2249 if ((s->flags & SLAB_STORE_USER) && !lock) {
2cfb7455
CL
2250 lock = 1;
2251 /*
2252 * This also ensures that the scanning of full
2253 * slabs from diagnostic functions will not see
2254 * any frozen slabs.
2255 */
2256 spin_lock(&n->list_lock);
2257 }
9cf7a111 2258#endif
2cfb7455
CL
2259 }
2260
2261 if (l != m) {
2cfb7455 2262 if (l == M_PARTIAL)
2cfb7455 2263 remove_partial(n, page);
2cfb7455 2264 else if (l == M_FULL)
c65c1877 2265 remove_full(s, n, page);
2cfb7455 2266
88349a28 2267 if (m == M_PARTIAL)
2cfb7455 2268 add_partial(n, page, tail);
88349a28 2269 else if (m == M_FULL)
2cfb7455 2270 add_full(s, n, page);
2cfb7455
CL
2271 }
2272
2273 l = m;
1d07171c 2274 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2275 old.freelist, old.counters,
2276 new.freelist, new.counters,
2277 "unfreezing slab"))
2278 goto redo;
2279
2cfb7455
CL
2280 if (lock)
2281 spin_unlock(&n->list_lock);
2282
88349a28
WY
2283 if (m == M_PARTIAL)
2284 stat(s, tail);
2285 else if (m == M_FULL)
2286 stat(s, DEACTIVATE_FULL);
2287 else if (m == M_FREE) {
2cfb7455
CL
2288 stat(s, DEACTIVATE_EMPTY);
2289 discard_slab(s, page);
2290 stat(s, FREE_SLAB);
894b8788 2291 }
d4ff6d35
WY
2292
2293 c->page = NULL;
2294 c->freelist = NULL;
81819f0f
CL
2295}
2296
d24ac77f
JK
2297/*
2298 * Unfreeze all the cpu partial slabs.
2299 *
59a09917
CL
2300 * This function must be called with interrupts disabled
2301 * for the cpu using c (or some other guarantee must be there
2302 * to guarantee no concurrent accesses).
d24ac77f 2303 */
59a09917
CL
2304static void unfreeze_partials(struct kmem_cache *s,
2305 struct kmem_cache_cpu *c)
49e22585 2306{
345c905d 2307#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2308 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2309 struct page *page, *discard_page = NULL;
49e22585 2310
4c7ba22e 2311 while ((page = slub_percpu_partial(c))) {
49e22585
CL
2312 struct page new;
2313 struct page old;
2314
4c7ba22e 2315 slub_set_percpu_partial(c, page);
43d77867
JK
2316
2317 n2 = get_node(s, page_to_nid(page));
2318 if (n != n2) {
2319 if (n)
2320 spin_unlock(&n->list_lock);
2321
2322 n = n2;
2323 spin_lock(&n->list_lock);
2324 }
49e22585
CL
2325
2326 do {
2327
2328 old.freelist = page->freelist;
2329 old.counters = page->counters;
a0132ac0 2330 VM_BUG_ON(!old.frozen);
49e22585
CL
2331
2332 new.counters = old.counters;
2333 new.freelist = old.freelist;
2334
2335 new.frozen = 0;
2336
d24ac77f 2337 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2338 old.freelist, old.counters,
2339 new.freelist, new.counters,
2340 "unfreezing slab"));
2341
8a5b20ae 2342 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2343 page->next = discard_page;
2344 discard_page = page;
43d77867
JK
2345 } else {
2346 add_partial(n, page, DEACTIVATE_TO_TAIL);
2347 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2348 }
2349 }
2350
2351 if (n)
2352 spin_unlock(&n->list_lock);
9ada1934
SL
2353
2354 while (discard_page) {
2355 page = discard_page;
2356 discard_page = discard_page->next;
2357
2358 stat(s, DEACTIVATE_EMPTY);
2359 discard_slab(s, page);
2360 stat(s, FREE_SLAB);
2361 }
6dfd1b65 2362#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2363}
2364
2365/*
9234bae9
WY
2366 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2367 * partial page slot if available.
49e22585
CL
2368 *
2369 * If we did not find a slot then simply move all the partials to the
2370 * per node partial list.
2371 */
633b0764 2372static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2373{
345c905d 2374#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2375 struct page *oldpage;
2376 int pages;
2377 int pobjects;
2378
d6e0b7fa 2379 preempt_disable();
49e22585
CL
2380 do {
2381 pages = 0;
2382 pobjects = 0;
2383 oldpage = this_cpu_read(s->cpu_slab->partial);
2384
2385 if (oldpage) {
2386 pobjects = oldpage->pobjects;
2387 pages = oldpage->pages;
bbd4e305 2388 if (drain && pobjects > slub_cpu_partial(s)) {
49e22585
CL
2389 unsigned long flags;
2390 /*
2391 * partial array is full. Move the existing
2392 * set to the per node partial list.
2393 */
2394 local_irq_save(flags);
59a09917 2395 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2396 local_irq_restore(flags);
e24fc410 2397 oldpage = NULL;
49e22585
CL
2398 pobjects = 0;
2399 pages = 0;
8028dcea 2400 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2401 }
2402 }
2403
2404 pages++;
2405 pobjects += page->objects - page->inuse;
2406
2407 page->pages = pages;
2408 page->pobjects = pobjects;
2409 page->next = oldpage;
2410
d0e0ac97
CG
2411 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2412 != oldpage);
bbd4e305 2413 if (unlikely(!slub_cpu_partial(s))) {
d6e0b7fa
VD
2414 unsigned long flags;
2415
2416 local_irq_save(flags);
2417 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2418 local_irq_restore(flags);
2419 }
2420 preempt_enable();
6dfd1b65 2421#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2422}
2423
dfb4f096 2424static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2425{
84e554e6 2426 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2427 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2428
2429 c->tid = next_tid(c->tid);
81819f0f
CL
2430}
2431
2432/*
2433 * Flush cpu slab.
6446faa2 2434 *
81819f0f
CL
2435 * Called from IPI handler with interrupts disabled.
2436 */
0c710013 2437static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2438{
9dfc6e68 2439 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2440
1265ef2d
WY
2441 if (c->page)
2442 flush_slab(s, c);
49e22585 2443
1265ef2d 2444 unfreeze_partials(s, c);
81819f0f
CL
2445}
2446
2447static void flush_cpu_slab(void *d)
2448{
2449 struct kmem_cache *s = d;
81819f0f 2450
dfb4f096 2451 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2452}
2453
a8364d55
GBY
2454static bool has_cpu_slab(int cpu, void *info)
2455{
2456 struct kmem_cache *s = info;
2457 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2458
a93cf07b 2459 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2460}
2461
81819f0f
CL
2462static void flush_all(struct kmem_cache *s)
2463{
cb923159 2464 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
81819f0f
CL
2465}
2466
a96a87bf
SAS
2467/*
2468 * Use the cpu notifier to insure that the cpu slabs are flushed when
2469 * necessary.
2470 */
2471static int slub_cpu_dead(unsigned int cpu)
2472{
2473 struct kmem_cache *s;
2474 unsigned long flags;
2475
2476 mutex_lock(&slab_mutex);
2477 list_for_each_entry(s, &slab_caches, list) {
2478 local_irq_save(flags);
2479 __flush_cpu_slab(s, cpu);
2480 local_irq_restore(flags);
2481 }
2482 mutex_unlock(&slab_mutex);
2483 return 0;
2484}
2485
dfb4f096
CL
2486/*
2487 * Check if the objects in a per cpu structure fit numa
2488 * locality expectations.
2489 */
57d437d2 2490static inline int node_match(struct page *page, int node)
dfb4f096
CL
2491{
2492#ifdef CONFIG_NUMA
6159d0f5 2493 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2494 return 0;
2495#endif
2496 return 1;
2497}
2498
9a02d699 2499#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2500static int count_free(struct page *page)
2501{
2502 return page->objects - page->inuse;
2503}
2504
9a02d699
DR
2505static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2506{
2507 return atomic_long_read(&n->total_objects);
2508}
2509#endif /* CONFIG_SLUB_DEBUG */
2510
2511#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2512static unsigned long count_partial(struct kmem_cache_node *n,
2513 int (*get_count)(struct page *))
2514{
2515 unsigned long flags;
2516 unsigned long x = 0;
2517 struct page *page;
2518
2519 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2520 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2521 x += get_count(page);
2522 spin_unlock_irqrestore(&n->list_lock, flags);
2523 return x;
2524}
9a02d699 2525#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2526
781b2ba6
PE
2527static noinline void
2528slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2529{
9a02d699
DR
2530#ifdef CONFIG_SLUB_DEBUG
2531 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2532 DEFAULT_RATELIMIT_BURST);
781b2ba6 2533 int node;
fa45dc25 2534 struct kmem_cache_node *n;
781b2ba6 2535
9a02d699
DR
2536 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2537 return;
2538
5b3810e5
VB
2539 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2540 nid, gfpflags, &gfpflags);
19af27af 2541 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2542 s->name, s->object_size, s->size, oo_order(s->oo),
2543 oo_order(s->min));
781b2ba6 2544
3b0efdfa 2545 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2546 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2547 s->name);
fa5ec8a1 2548
fa45dc25 2549 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2550 unsigned long nr_slabs;
2551 unsigned long nr_objs;
2552 unsigned long nr_free;
2553
26c02cf0
AB
2554 nr_free = count_partial(n, count_free);
2555 nr_slabs = node_nr_slabs(n);
2556 nr_objs = node_nr_objs(n);
781b2ba6 2557
f9f58285 2558 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2559 node, nr_slabs, nr_objs, nr_free);
2560 }
9a02d699 2561#endif
781b2ba6
PE
2562}
2563
497b66f2
CL
2564static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2565 int node, struct kmem_cache_cpu **pc)
2566{
6faa6833 2567 void *freelist;
188fd063
CL
2568 struct kmem_cache_cpu *c = *pc;
2569 struct page *page;
497b66f2 2570
128227e7
MW
2571 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2572
188fd063 2573 freelist = get_partial(s, flags, node, c);
497b66f2 2574
188fd063
CL
2575 if (freelist)
2576 return freelist;
2577
2578 page = new_slab(s, flags, node);
497b66f2 2579 if (page) {
7c8e0181 2580 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2581 if (c->page)
2582 flush_slab(s, c);
2583
2584 /*
2585 * No other reference to the page yet so we can
2586 * muck around with it freely without cmpxchg
2587 */
6faa6833 2588 freelist = page->freelist;
497b66f2
CL
2589 page->freelist = NULL;
2590
2591 stat(s, ALLOC_SLAB);
497b66f2
CL
2592 c->page = page;
2593 *pc = c;
edde82b6 2594 }
497b66f2 2595
6faa6833 2596 return freelist;
497b66f2
CL
2597}
2598
072bb0aa
MG
2599static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2600{
2601 if (unlikely(PageSlabPfmemalloc(page)))
2602 return gfp_pfmemalloc_allowed(gfpflags);
2603
2604 return true;
2605}
2606
213eeb9f 2607/*
d0e0ac97
CG
2608 * Check the page->freelist of a page and either transfer the freelist to the
2609 * per cpu freelist or deactivate the page.
213eeb9f
CL
2610 *
2611 * The page is still frozen if the return value is not NULL.
2612 *
2613 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2614 *
2615 * This function must be called with interrupt disabled.
213eeb9f
CL
2616 */
2617static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2618{
2619 struct page new;
2620 unsigned long counters;
2621 void *freelist;
2622
2623 do {
2624 freelist = page->freelist;
2625 counters = page->counters;
6faa6833 2626
213eeb9f 2627 new.counters = counters;
a0132ac0 2628 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2629
2630 new.inuse = page->objects;
2631 new.frozen = freelist != NULL;
2632
d24ac77f 2633 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2634 freelist, counters,
2635 NULL, new.counters,
2636 "get_freelist"));
2637
2638 return freelist;
2639}
2640
81819f0f 2641/*
894b8788
CL
2642 * Slow path. The lockless freelist is empty or we need to perform
2643 * debugging duties.
2644 *
894b8788
CL
2645 * Processing is still very fast if new objects have been freed to the
2646 * regular freelist. In that case we simply take over the regular freelist
2647 * as the lockless freelist and zap the regular freelist.
81819f0f 2648 *
894b8788
CL
2649 * If that is not working then we fall back to the partial lists. We take the
2650 * first element of the freelist as the object to allocate now and move the
2651 * rest of the freelist to the lockless freelist.
81819f0f 2652 *
894b8788 2653 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2654 * we need to allocate a new slab. This is the slowest path since it involves
2655 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2656 *
2657 * Version of __slab_alloc to use when we know that interrupts are
2658 * already disabled (which is the case for bulk allocation).
81819f0f 2659 */
a380a3c7 2660static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2661 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2662{
6faa6833 2663 void *freelist;
f6e7def7 2664 struct page *page;
81819f0f 2665
9f986d99
AW
2666 stat(s, ALLOC_SLOWPATH);
2667
f6e7def7 2668 page = c->page;
0715e6c5
VB
2669 if (!page) {
2670 /*
2671 * if the node is not online or has no normal memory, just
2672 * ignore the node constraint
2673 */
2674 if (unlikely(node != NUMA_NO_NODE &&
2675 !node_state(node, N_NORMAL_MEMORY)))
2676 node = NUMA_NO_NODE;
81819f0f 2677 goto new_slab;
0715e6c5 2678 }
49e22585 2679redo:
6faa6833 2680
57d437d2 2681 if (unlikely(!node_match(page, node))) {
0715e6c5
VB
2682 /*
2683 * same as above but node_match() being false already
2684 * implies node != NUMA_NO_NODE
2685 */
2686 if (!node_state(node, N_NORMAL_MEMORY)) {
2687 node = NUMA_NO_NODE;
2688 goto redo;
2689 } else {
a561ce00 2690 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2691 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2692 goto new_slab;
2693 }
fc59c053 2694 }
6446faa2 2695
072bb0aa
MG
2696 /*
2697 * By rights, we should be searching for a slab page that was
2698 * PFMEMALLOC but right now, we are losing the pfmemalloc
2699 * information when the page leaves the per-cpu allocator
2700 */
2701 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2702 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2703 goto new_slab;
2704 }
2705
73736e03 2706 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2707 freelist = c->freelist;
2708 if (freelist)
73736e03 2709 goto load_freelist;
03e404af 2710
f6e7def7 2711 freelist = get_freelist(s, page);
6446faa2 2712
6faa6833 2713 if (!freelist) {
03e404af
CL
2714 c->page = NULL;
2715 stat(s, DEACTIVATE_BYPASS);
fc59c053 2716 goto new_slab;
03e404af 2717 }
6446faa2 2718
84e554e6 2719 stat(s, ALLOC_REFILL);
6446faa2 2720
894b8788 2721load_freelist:
507effea
CL
2722 /*
2723 * freelist is pointing to the list of objects to be used.
2724 * page is pointing to the page from which the objects are obtained.
2725 * That page must be frozen for per cpu allocations to work.
2726 */
a0132ac0 2727 VM_BUG_ON(!c->page->frozen);
6faa6833 2728 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2729 c->tid = next_tid(c->tid);
6faa6833 2730 return freelist;
81819f0f 2731
81819f0f 2732new_slab:
2cfb7455 2733
a93cf07b
WY
2734 if (slub_percpu_partial(c)) {
2735 page = c->page = slub_percpu_partial(c);
2736 slub_set_percpu_partial(c, page);
49e22585 2737 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2738 goto redo;
81819f0f
CL
2739 }
2740
188fd063 2741 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2742
f4697436 2743 if (unlikely(!freelist)) {
9a02d699 2744 slab_out_of_memory(s, gfpflags, node);
f4697436 2745 return NULL;
81819f0f 2746 }
2cfb7455 2747
f6e7def7 2748 page = c->page;
5091b74a 2749 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2750 goto load_freelist;
2cfb7455 2751
497b66f2 2752 /* Only entered in the debug case */
d0e0ac97
CG
2753 if (kmem_cache_debug(s) &&
2754 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2755 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2756
d4ff6d35 2757 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2758 return freelist;
894b8788
CL
2759}
2760
a380a3c7
CL
2761/*
2762 * Another one that disabled interrupt and compensates for possible
2763 * cpu changes by refetching the per cpu area pointer.
2764 */
2765static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2766 unsigned long addr, struct kmem_cache_cpu *c)
2767{
2768 void *p;
2769 unsigned long flags;
2770
2771 local_irq_save(flags);
923717cb 2772#ifdef CONFIG_PREEMPTION
a380a3c7
CL
2773 /*
2774 * We may have been preempted and rescheduled on a different
2775 * cpu before disabling interrupts. Need to reload cpu area
2776 * pointer.
2777 */
2778 c = this_cpu_ptr(s->cpu_slab);
2779#endif
2780
2781 p = ___slab_alloc(s, gfpflags, node, addr, c);
2782 local_irq_restore(flags);
2783 return p;
2784}
2785
0f181f9f
AP
2786/*
2787 * If the object has been wiped upon free, make sure it's fully initialized by
2788 * zeroing out freelist pointer.
2789 */
2790static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2791 void *obj)
2792{
2793 if (unlikely(slab_want_init_on_free(s)) && obj)
2794 memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2795}
2796
894b8788
CL
2797/*
2798 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2799 * have the fastpath folded into their functions. So no function call
2800 * overhead for requests that can be satisfied on the fastpath.
2801 *
2802 * The fastpath works by first checking if the lockless freelist can be used.
2803 * If not then __slab_alloc is called for slow processing.
2804 *
2805 * Otherwise we can simply pick the next object from the lockless free list.
2806 */
2b847c3c 2807static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2808 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2809{
03ec0ed5 2810 void *object;
dfb4f096 2811 struct kmem_cache_cpu *c;
57d437d2 2812 struct page *page;
8a5ec0ba 2813 unsigned long tid;
964d4bd3 2814 struct obj_cgroup *objcg = NULL;
1f84260c 2815
964d4bd3 2816 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
8135be5a 2817 if (!s)
773ff60e 2818 return NULL;
8a5ec0ba 2819redo:
8a5ec0ba
CL
2820 /*
2821 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2822 * enabled. We may switch back and forth between cpus while
2823 * reading from one cpu area. That does not matter as long
2824 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2825 *
9aabf810 2826 * We should guarantee that tid and kmem_cache are retrieved on
923717cb 2827 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
9aabf810 2828 * to check if it is matched or not.
8a5ec0ba 2829 */
9aabf810
JK
2830 do {
2831 tid = this_cpu_read(s->cpu_slab->tid);
2832 c = raw_cpu_ptr(s->cpu_slab);
923717cb 2833 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 2834 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2835
2836 /*
2837 * Irqless object alloc/free algorithm used here depends on sequence
2838 * of fetching cpu_slab's data. tid should be fetched before anything
2839 * on c to guarantee that object and page associated with previous tid
2840 * won't be used with current tid. If we fetch tid first, object and
2841 * page could be one associated with next tid and our alloc/free
2842 * request will be failed. In this case, we will retry. So, no problem.
2843 */
2844 barrier();
8a5ec0ba 2845
8a5ec0ba
CL
2846 /*
2847 * The transaction ids are globally unique per cpu and per operation on
2848 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2849 * occurs on the right processor and that there was no operation on the
2850 * linked list in between.
2851 */
8a5ec0ba 2852
9dfc6e68 2853 object = c->freelist;
57d437d2 2854 page = c->page;
8eae1492 2855 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2856 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492 2857 } else {
0ad9500e
ED
2858 void *next_object = get_freepointer_safe(s, object);
2859
8a5ec0ba 2860 /*
25985edc 2861 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2862 * operation and if we are on the right processor.
2863 *
d0e0ac97
CG
2864 * The cmpxchg does the following atomically (without lock
2865 * semantics!)
8a5ec0ba
CL
2866 * 1. Relocate first pointer to the current per cpu area.
2867 * 2. Verify that tid and freelist have not been changed
2868 * 3. If they were not changed replace tid and freelist
2869 *
d0e0ac97
CG
2870 * Since this is without lock semantics the protection is only
2871 * against code executing on this cpu *not* from access by
2872 * other cpus.
8a5ec0ba 2873 */
933393f5 2874 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2875 s->cpu_slab->freelist, s->cpu_slab->tid,
2876 object, tid,
0ad9500e 2877 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2878
2879 note_cmpxchg_failure("slab_alloc", s, tid);
2880 goto redo;
2881 }
0ad9500e 2882 prefetch_freepointer(s, next_object);
84e554e6 2883 stat(s, ALLOC_FASTPATH);
894b8788 2884 }
0f181f9f
AP
2885
2886 maybe_wipe_obj_freeptr(s, object);
8a5ec0ba 2887
6471384a 2888 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
3b0efdfa 2889 memset(object, 0, s->object_size);
d07dbea4 2890
964d4bd3 2891 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object);
5a896d9e 2892
894b8788 2893 return object;
81819f0f
CL
2894}
2895
2b847c3c
EG
2896static __always_inline void *slab_alloc(struct kmem_cache *s,
2897 gfp_t gfpflags, unsigned long addr)
2898{
2899 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2900}
2901
81819f0f
CL
2902void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2903{
2b847c3c 2904 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2905
d0e0ac97
CG
2906 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2907 s->size, gfpflags);
5b882be4
EGM
2908
2909 return ret;
81819f0f
CL
2910}
2911EXPORT_SYMBOL(kmem_cache_alloc);
2912
0f24f128 2913#ifdef CONFIG_TRACING
4a92379b
RK
2914void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2915{
2b847c3c 2916 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2917 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 2918 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2919 return ret;
2920}
2921EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2922#endif
2923
81819f0f
CL
2924#ifdef CONFIG_NUMA
2925void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2926{
2b847c3c 2927 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2928
ca2b84cb 2929 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2930 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2931
2932 return ret;
81819f0f
CL
2933}
2934EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2935
0f24f128 2936#ifdef CONFIG_TRACING
4a92379b 2937void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2938 gfp_t gfpflags,
4a92379b 2939 int node, size_t size)
5b882be4 2940{
2b847c3c 2941 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2942
2943 trace_kmalloc_node(_RET_IP_, ret,
2944 size, s->size, gfpflags, node);
0316bec2 2945
0116523c 2946 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2947 return ret;
5b882be4 2948}
4a92379b 2949EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2950#endif
6dfd1b65 2951#endif /* CONFIG_NUMA */
5b882be4 2952
81819f0f 2953/*
94e4d712 2954 * Slow path handling. This may still be called frequently since objects
894b8788 2955 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2956 *
894b8788
CL
2957 * So we still attempt to reduce cache line usage. Just take the slab
2958 * lock and free the item. If there is no additional partial page
2959 * handling required then we can return immediately.
81819f0f 2960 */
894b8788 2961static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2962 void *head, void *tail, int cnt,
2963 unsigned long addr)
2964
81819f0f
CL
2965{
2966 void *prior;
2cfb7455 2967 int was_frozen;
2cfb7455
CL
2968 struct page new;
2969 unsigned long counters;
2970 struct kmem_cache_node *n = NULL;
3f649ab7 2971 unsigned long flags;
81819f0f 2972
8a5ec0ba 2973 stat(s, FREE_SLOWPATH);
81819f0f 2974
19c7ff9e 2975 if (kmem_cache_debug(s) &&
282acb43 2976 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2977 return;
6446faa2 2978
2cfb7455 2979 do {
837d678d
JK
2980 if (unlikely(n)) {
2981 spin_unlock_irqrestore(&n->list_lock, flags);
2982 n = NULL;
2983 }
2cfb7455
CL
2984 prior = page->freelist;
2985 counters = page->counters;
81084651 2986 set_freepointer(s, tail, prior);
2cfb7455
CL
2987 new.counters = counters;
2988 was_frozen = new.frozen;
81084651 2989 new.inuse -= cnt;
837d678d 2990 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2991
c65c1877 2992 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2993
2994 /*
d0e0ac97
CG
2995 * Slab was on no list before and will be
2996 * partially empty
2997 * We can defer the list move and instead
2998 * freeze it.
49e22585
CL
2999 */
3000 new.frozen = 1;
3001
c65c1877 3002 } else { /* Needs to be taken off a list */
49e22585 3003
b455def2 3004 n = get_node(s, page_to_nid(page));
49e22585
CL
3005 /*
3006 * Speculatively acquire the list_lock.
3007 * If the cmpxchg does not succeed then we may
3008 * drop the list_lock without any processing.
3009 *
3010 * Otherwise the list_lock will synchronize with
3011 * other processors updating the list of slabs.
3012 */
3013 spin_lock_irqsave(&n->list_lock, flags);
3014
3015 }
2cfb7455 3016 }
81819f0f 3017
2cfb7455
CL
3018 } while (!cmpxchg_double_slab(s, page,
3019 prior, counters,
81084651 3020 head, new.counters,
2cfb7455 3021 "__slab_free"));
81819f0f 3022
2cfb7455 3023 if (likely(!n)) {
49e22585 3024
c270cf30
AW
3025 if (likely(was_frozen)) {
3026 /*
3027 * The list lock was not taken therefore no list
3028 * activity can be necessary.
3029 */
3030 stat(s, FREE_FROZEN);
3031 } else if (new.frozen) {
3032 /*
3033 * If we just froze the page then put it onto the
3034 * per cpu partial list.
3035 */
49e22585 3036 put_cpu_partial(s, page, 1);
8028dcea
AS
3037 stat(s, CPU_PARTIAL_FREE);
3038 }
c270cf30 3039
b455def2
L
3040 return;
3041 }
81819f0f 3042
8a5b20ae 3043 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
3044 goto slab_empty;
3045
81819f0f 3046 /*
837d678d
JK
3047 * Objects left in the slab. If it was not on the partial list before
3048 * then add it.
81819f0f 3049 */
345c905d 3050 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 3051 remove_full(s, n, page);
837d678d
JK
3052 add_partial(n, page, DEACTIVATE_TO_TAIL);
3053 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 3054 }
80f08c19 3055 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
3056 return;
3057
3058slab_empty:
a973e9dd 3059 if (prior) {
81819f0f 3060 /*
6fbabb20 3061 * Slab on the partial list.
81819f0f 3062 */
5cc6eee8 3063 remove_partial(n, page);
84e554e6 3064 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 3065 } else {
6fbabb20 3066 /* Slab must be on the full list */
c65c1877
PZ
3067 remove_full(s, n, page);
3068 }
2cfb7455 3069
80f08c19 3070 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 3071 stat(s, FREE_SLAB);
81819f0f 3072 discard_slab(s, page);
81819f0f
CL
3073}
3074
894b8788
CL
3075/*
3076 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3077 * can perform fastpath freeing without additional function calls.
3078 *
3079 * The fastpath is only possible if we are freeing to the current cpu slab
3080 * of this processor. This typically the case if we have just allocated
3081 * the item before.
3082 *
3083 * If fastpath is not possible then fall back to __slab_free where we deal
3084 * with all sorts of special processing.
81084651
JDB
3085 *
3086 * Bulk free of a freelist with several objects (all pointing to the
3087 * same page) possible by specifying head and tail ptr, plus objects
3088 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 3089 */
80a9201a
AP
3090static __always_inline void do_slab_free(struct kmem_cache *s,
3091 struct page *page, void *head, void *tail,
3092 int cnt, unsigned long addr)
894b8788 3093{
81084651 3094 void *tail_obj = tail ? : head;
dfb4f096 3095 struct kmem_cache_cpu *c;
8a5ec0ba 3096 unsigned long tid;
964d4bd3 3097
d1b2cf6c 3098 memcg_slab_free_hook(s, &head, 1);
8a5ec0ba
CL
3099redo:
3100 /*
3101 * Determine the currently cpus per cpu slab.
3102 * The cpu may change afterward. However that does not matter since
3103 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3104 * during the cmpxchg then the free will succeed.
8a5ec0ba 3105 */
9aabf810
JK
3106 do {
3107 tid = this_cpu_read(s->cpu_slab->tid);
3108 c = raw_cpu_ptr(s->cpu_slab);
923717cb 3109 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 3110 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 3111
9aabf810
JK
3112 /* Same with comment on barrier() in slab_alloc_node() */
3113 barrier();
c016b0bd 3114
442b06bc 3115 if (likely(page == c->page)) {
5076190d
LT
3116 void **freelist = READ_ONCE(c->freelist);
3117
3118 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3119
933393f5 3120 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba 3121 s->cpu_slab->freelist, s->cpu_slab->tid,
5076190d 3122 freelist, tid,
81084651 3123 head, next_tid(tid)))) {
8a5ec0ba
CL
3124
3125 note_cmpxchg_failure("slab_free", s, tid);
3126 goto redo;
3127 }
84e554e6 3128 stat(s, FREE_FASTPATH);
894b8788 3129 } else
81084651 3130 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 3131
894b8788
CL
3132}
3133
80a9201a
AP
3134static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3135 void *head, void *tail, int cnt,
3136 unsigned long addr)
3137{
80a9201a 3138 /*
c3895391
AK
3139 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3140 * to remove objects, whose reuse must be delayed.
80a9201a 3141 */
c3895391
AK
3142 if (slab_free_freelist_hook(s, &head, &tail))
3143 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3144}
3145
2bd926b4 3146#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3147void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3148{
3149 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3150}
3151#endif
3152
81819f0f
CL
3153void kmem_cache_free(struct kmem_cache *s, void *x)
3154{
b9ce5ef4
GC
3155 s = cache_from_obj(s, x);
3156 if (!s)
79576102 3157 return;
81084651 3158 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 3159 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
3160}
3161EXPORT_SYMBOL(kmem_cache_free);
3162
d0ecd894 3163struct detached_freelist {
fbd02630 3164 struct page *page;
d0ecd894
JDB
3165 void *tail;
3166 void *freelist;
3167 int cnt;
376bf125 3168 struct kmem_cache *s;
d0ecd894 3169};
fbd02630 3170
d0ecd894
JDB
3171/*
3172 * This function progressively scans the array with free objects (with
3173 * a limited look ahead) and extract objects belonging to the same
3174 * page. It builds a detached freelist directly within the given
3175 * page/objects. This can happen without any need for
3176 * synchronization, because the objects are owned by running process.
3177 * The freelist is build up as a single linked list in the objects.
3178 * The idea is, that this detached freelist can then be bulk
3179 * transferred to the real freelist(s), but only requiring a single
3180 * synchronization primitive. Look ahead in the array is limited due
3181 * to performance reasons.
3182 */
376bf125
JDB
3183static inline
3184int build_detached_freelist(struct kmem_cache *s, size_t size,
3185 void **p, struct detached_freelist *df)
d0ecd894
JDB
3186{
3187 size_t first_skipped_index = 0;
3188 int lookahead = 3;
3189 void *object;
ca257195 3190 struct page *page;
fbd02630 3191
d0ecd894
JDB
3192 /* Always re-init detached_freelist */
3193 df->page = NULL;
fbd02630 3194
d0ecd894
JDB
3195 do {
3196 object = p[--size];
ca257195 3197 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3198 } while (!object && size);
3eed034d 3199
d0ecd894
JDB
3200 if (!object)
3201 return 0;
fbd02630 3202
ca257195
JDB
3203 page = virt_to_head_page(object);
3204 if (!s) {
3205 /* Handle kalloc'ed objects */
3206 if (unlikely(!PageSlab(page))) {
3207 BUG_ON(!PageCompound(page));
3208 kfree_hook(object);
4949148a 3209 __free_pages(page, compound_order(page));
ca257195
JDB
3210 p[size] = NULL; /* mark object processed */
3211 return size;
3212 }
3213 /* Derive kmem_cache from object */
3214 df->s = page->slab_cache;
3215 } else {
3216 df->s = cache_from_obj(s, object); /* Support for memcg */
3217 }
376bf125 3218
d0ecd894 3219 /* Start new detached freelist */
ca257195 3220 df->page = page;
376bf125 3221 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3222 df->tail = object;
3223 df->freelist = object;
3224 p[size] = NULL; /* mark object processed */
3225 df->cnt = 1;
3226
3227 while (size) {
3228 object = p[--size];
3229 if (!object)
3230 continue; /* Skip processed objects */
3231
3232 /* df->page is always set at this point */
3233 if (df->page == virt_to_head_page(object)) {
3234 /* Opportunity build freelist */
376bf125 3235 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3236 df->freelist = object;
3237 df->cnt++;
3238 p[size] = NULL; /* mark object processed */
3239
3240 continue;
fbd02630 3241 }
d0ecd894
JDB
3242
3243 /* Limit look ahead search */
3244 if (!--lookahead)
3245 break;
3246
3247 if (!first_skipped_index)
3248 first_skipped_index = size + 1;
fbd02630 3249 }
d0ecd894
JDB
3250
3251 return first_skipped_index;
3252}
3253
d0ecd894 3254/* Note that interrupts must be enabled when calling this function. */
376bf125 3255void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3256{
3257 if (WARN_ON(!size))
3258 return;
3259
d1b2cf6c 3260 memcg_slab_free_hook(s, p, size);
d0ecd894
JDB
3261 do {
3262 struct detached_freelist df;
3263
3264 size = build_detached_freelist(s, size, p, &df);
84582c8a 3265 if (!df.page)
d0ecd894
JDB
3266 continue;
3267
376bf125 3268 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3269 } while (likely(size));
484748f0
CL
3270}
3271EXPORT_SYMBOL(kmem_cache_free_bulk);
3272
994eb764 3273/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3274int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3275 void **p)
484748f0 3276{
994eb764
JDB
3277 struct kmem_cache_cpu *c;
3278 int i;
964d4bd3 3279 struct obj_cgroup *objcg = NULL;
994eb764 3280
03ec0ed5 3281 /* memcg and kmem_cache debug support */
964d4bd3 3282 s = slab_pre_alloc_hook(s, &objcg, size, flags);
03ec0ed5
JDB
3283 if (unlikely(!s))
3284 return false;
994eb764
JDB
3285 /*
3286 * Drain objects in the per cpu slab, while disabling local
3287 * IRQs, which protects against PREEMPT and interrupts
3288 * handlers invoking normal fastpath.
3289 */
3290 local_irq_disable();
3291 c = this_cpu_ptr(s->cpu_slab);
3292
3293 for (i = 0; i < size; i++) {
3294 void *object = c->freelist;
3295
ebe909e0 3296 if (unlikely(!object)) {
fd4d9c7d
JH
3297 /*
3298 * We may have removed an object from c->freelist using
3299 * the fastpath in the previous iteration; in that case,
3300 * c->tid has not been bumped yet.
3301 * Since ___slab_alloc() may reenable interrupts while
3302 * allocating memory, we should bump c->tid now.
3303 */
3304 c->tid = next_tid(c->tid);
3305
ebe909e0
JDB
3306 /*
3307 * Invoking slow path likely have side-effect
3308 * of re-populating per CPU c->freelist
3309 */
87098373 3310 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3311 _RET_IP_, c);
87098373
CL
3312 if (unlikely(!p[i]))
3313 goto error;
3314
ebe909e0 3315 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3316 maybe_wipe_obj_freeptr(s, p[i]);
3317
ebe909e0
JDB
3318 continue; /* goto for-loop */
3319 }
994eb764
JDB
3320 c->freelist = get_freepointer(s, object);
3321 p[i] = object;
0f181f9f 3322 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3323 }
3324 c->tid = next_tid(c->tid);
3325 local_irq_enable();
3326
3327 /* Clear memory outside IRQ disabled fastpath loop */
6471384a 3328 if (unlikely(slab_want_init_on_alloc(flags, s))) {
994eb764
JDB
3329 int j;
3330
3331 for (j = 0; j < i; j++)
3332 memset(p[j], 0, s->object_size);
3333 }
3334
03ec0ed5 3335 /* memcg and kmem_cache debug support */
964d4bd3 3336 slab_post_alloc_hook(s, objcg, flags, size, p);
865762a8 3337 return i;
87098373 3338error:
87098373 3339 local_irq_enable();
964d4bd3 3340 slab_post_alloc_hook(s, objcg, flags, i, p);
03ec0ed5 3341 __kmem_cache_free_bulk(s, i, p);
865762a8 3342 return 0;
484748f0
CL
3343}
3344EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3345
3346
81819f0f 3347/*
672bba3a
CL
3348 * Object placement in a slab is made very easy because we always start at
3349 * offset 0. If we tune the size of the object to the alignment then we can
3350 * get the required alignment by putting one properly sized object after
3351 * another.
81819f0f
CL
3352 *
3353 * Notice that the allocation order determines the sizes of the per cpu
3354 * caches. Each processor has always one slab available for allocations.
3355 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3356 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3357 * locking overhead.
81819f0f
CL
3358 */
3359
3360/*
3361 * Mininum / Maximum order of slab pages. This influences locking overhead
3362 * and slab fragmentation. A higher order reduces the number of partial slabs
3363 * and increases the number of allocations possible without having to
3364 * take the list_lock.
3365 */
19af27af
AD
3366static unsigned int slub_min_order;
3367static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3368static unsigned int slub_min_objects;
81819f0f 3369
81819f0f
CL
3370/*
3371 * Calculate the order of allocation given an slab object size.
3372 *
672bba3a
CL
3373 * The order of allocation has significant impact on performance and other
3374 * system components. Generally order 0 allocations should be preferred since
3375 * order 0 does not cause fragmentation in the page allocator. Larger objects
3376 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3377 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3378 * would be wasted.
3379 *
3380 * In order to reach satisfactory performance we must ensure that a minimum
3381 * number of objects is in one slab. Otherwise we may generate too much
3382 * activity on the partial lists which requires taking the list_lock. This is
3383 * less a concern for large slabs though which are rarely used.
81819f0f 3384 *
672bba3a
CL
3385 * slub_max_order specifies the order where we begin to stop considering the
3386 * number of objects in a slab as critical. If we reach slub_max_order then
3387 * we try to keep the page order as low as possible. So we accept more waste
3388 * of space in favor of a small page order.
81819f0f 3389 *
672bba3a
CL
3390 * Higher order allocations also allow the placement of more objects in a
3391 * slab and thereby reduce object handling overhead. If the user has
3392 * requested a higher mininum order then we start with that one instead of
3393 * the smallest order which will fit the object.
81819f0f 3394 */
19af27af
AD
3395static inline unsigned int slab_order(unsigned int size,
3396 unsigned int min_objects, unsigned int max_order,
9736d2a9 3397 unsigned int fract_leftover)
81819f0f 3398{
19af27af
AD
3399 unsigned int min_order = slub_min_order;
3400 unsigned int order;
81819f0f 3401
9736d2a9 3402 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3403 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3404
9736d2a9 3405 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3406 order <= max_order; order++) {
81819f0f 3407
19af27af
AD
3408 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3409 unsigned int rem;
81819f0f 3410
9736d2a9 3411 rem = slab_size % size;
81819f0f 3412
5e6d444e 3413 if (rem <= slab_size / fract_leftover)
81819f0f 3414 break;
81819f0f 3415 }
672bba3a 3416
81819f0f
CL
3417 return order;
3418}
3419
9736d2a9 3420static inline int calculate_order(unsigned int size)
5e6d444e 3421{
19af27af
AD
3422 unsigned int order;
3423 unsigned int min_objects;
3424 unsigned int max_objects;
5e6d444e
CL
3425
3426 /*
3427 * Attempt to find best configuration for a slab. This
3428 * works by first attempting to generate a layout with
3429 * the best configuration and backing off gradually.
3430 *
422ff4d7 3431 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3432 * we reduce the minimum objects required in a slab.
3433 */
3434 min_objects = slub_min_objects;
9b2cd506
CL
3435 if (!min_objects)
3436 min_objects = 4 * (fls(nr_cpu_ids) + 1);
9736d2a9 3437 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3438 min_objects = min(min_objects, max_objects);
3439
5e6d444e 3440 while (min_objects > 1) {
19af27af
AD
3441 unsigned int fraction;
3442
c124f5b5 3443 fraction = 16;
5e6d444e
CL
3444 while (fraction >= 4) {
3445 order = slab_order(size, min_objects,
9736d2a9 3446 slub_max_order, fraction);
5e6d444e
CL
3447 if (order <= slub_max_order)
3448 return order;
3449 fraction /= 2;
3450 }
5086c389 3451 min_objects--;
5e6d444e
CL
3452 }
3453
3454 /*
3455 * We were unable to place multiple objects in a slab. Now
3456 * lets see if we can place a single object there.
3457 */
9736d2a9 3458 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3459 if (order <= slub_max_order)
3460 return order;
3461
3462 /*
3463 * Doh this slab cannot be placed using slub_max_order.
3464 */
9736d2a9 3465 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3466 if (order < MAX_ORDER)
5e6d444e
CL
3467 return order;
3468 return -ENOSYS;
3469}
3470
5595cffc 3471static void
4053497d 3472init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3473{
3474 n->nr_partial = 0;
81819f0f
CL
3475 spin_lock_init(&n->list_lock);
3476 INIT_LIST_HEAD(&n->partial);
8ab1372f 3477#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3478 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3479 atomic_long_set(&n->total_objects, 0);
643b1138 3480 INIT_LIST_HEAD(&n->full);
8ab1372f 3481#endif
81819f0f
CL
3482}
3483
55136592 3484static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3485{
6c182dc0 3486 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3487 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3488
8a5ec0ba 3489 /*
d4d84fef
CM
3490 * Must align to double word boundary for the double cmpxchg
3491 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3492 */
d4d84fef
CM
3493 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3494 2 * sizeof(void *));
8a5ec0ba
CL
3495
3496 if (!s->cpu_slab)
3497 return 0;
3498
3499 init_kmem_cache_cpus(s);
4c93c355 3500
8a5ec0ba 3501 return 1;
4c93c355 3502}
4c93c355 3503
51df1142
CL
3504static struct kmem_cache *kmem_cache_node;
3505
81819f0f
CL
3506/*
3507 * No kmalloc_node yet so do it by hand. We know that this is the first
3508 * slab on the node for this slabcache. There are no concurrent accesses
3509 * possible.
3510 *
721ae22a
ZYW
3511 * Note that this function only works on the kmem_cache_node
3512 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3513 * memory on a fresh node that has no slab structures yet.
81819f0f 3514 */
55136592 3515static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3516{
3517 struct page *page;
3518 struct kmem_cache_node *n;
3519
51df1142 3520 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3521
51df1142 3522 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3523
3524 BUG_ON(!page);
a2f92ee7 3525 if (page_to_nid(page) != node) {
f9f58285
FF
3526 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3527 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3528 }
3529
81819f0f
CL
3530 n = page->freelist;
3531 BUG_ON(!n);
8ab1372f 3532#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3533 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3534 init_tracking(kmem_cache_node, n);
8ab1372f 3535#endif
12b22386 3536 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
505f5dcb 3537 GFP_KERNEL);
12b22386
AK
3538 page->freelist = get_freepointer(kmem_cache_node, n);
3539 page->inuse = 1;
3540 page->frozen = 0;
3541 kmem_cache_node->node[node] = n;
4053497d 3542 init_kmem_cache_node(n);
51df1142 3543 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3544
67b6c900 3545 /*
1e4dd946
SR
3546 * No locks need to be taken here as it has just been
3547 * initialized and there is no concurrent access.
67b6c900 3548 */
1e4dd946 3549 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3550}
3551
3552static void free_kmem_cache_nodes(struct kmem_cache *s)
3553{
3554 int node;
fa45dc25 3555 struct kmem_cache_node *n;
81819f0f 3556
fa45dc25 3557 for_each_kmem_cache_node(s, node, n) {
81819f0f 3558 s->node[node] = NULL;
ea37df54 3559 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3560 }
3561}
3562
52b4b950
DS
3563void __kmem_cache_release(struct kmem_cache *s)
3564{
210e7a43 3565 cache_random_seq_destroy(s);
52b4b950
DS
3566 free_percpu(s->cpu_slab);
3567 free_kmem_cache_nodes(s);
3568}
3569
55136592 3570static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3571{
3572 int node;
81819f0f 3573
f64dc58c 3574 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3575 struct kmem_cache_node *n;
3576
73367bd8 3577 if (slab_state == DOWN) {
55136592 3578 early_kmem_cache_node_alloc(node);
73367bd8
AD
3579 continue;
3580 }
51df1142 3581 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3582 GFP_KERNEL, node);
81819f0f 3583
73367bd8
AD
3584 if (!n) {
3585 free_kmem_cache_nodes(s);
3586 return 0;
81819f0f 3587 }
73367bd8 3588
4053497d 3589 init_kmem_cache_node(n);
ea37df54 3590 s->node[node] = n;
81819f0f
CL
3591 }
3592 return 1;
3593}
81819f0f 3594
c0bdb232 3595static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3596{
3597 if (min < MIN_PARTIAL)
3598 min = MIN_PARTIAL;
3599 else if (min > MAX_PARTIAL)
3600 min = MAX_PARTIAL;
3601 s->min_partial = min;
3602}
3603
e6d0e1dc
WY
3604static void set_cpu_partial(struct kmem_cache *s)
3605{
3606#ifdef CONFIG_SLUB_CPU_PARTIAL
3607 /*
3608 * cpu_partial determined the maximum number of objects kept in the
3609 * per cpu partial lists of a processor.
3610 *
3611 * Per cpu partial lists mainly contain slabs that just have one
3612 * object freed. If they are used for allocation then they can be
3613 * filled up again with minimal effort. The slab will never hit the
3614 * per node partial lists and therefore no locking will be required.
3615 *
3616 * This setting also determines
3617 *
3618 * A) The number of objects from per cpu partial slabs dumped to the
3619 * per node list when we reach the limit.
3620 * B) The number of objects in cpu partial slabs to extract from the
3621 * per node list when we run out of per cpu objects. We only fetch
3622 * 50% to keep some capacity around for frees.
3623 */
3624 if (!kmem_cache_has_cpu_partial(s))
bbd4e305 3625 slub_set_cpu_partial(s, 0);
e6d0e1dc 3626 else if (s->size >= PAGE_SIZE)
bbd4e305 3627 slub_set_cpu_partial(s, 2);
e6d0e1dc 3628 else if (s->size >= 1024)
bbd4e305 3629 slub_set_cpu_partial(s, 6);
e6d0e1dc 3630 else if (s->size >= 256)
bbd4e305 3631 slub_set_cpu_partial(s, 13);
e6d0e1dc 3632 else
bbd4e305 3633 slub_set_cpu_partial(s, 30);
e6d0e1dc
WY
3634#endif
3635}
3636
81819f0f
CL
3637/*
3638 * calculate_sizes() determines the order and the distribution of data within
3639 * a slab object.
3640 */
06b285dc 3641static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3642{
d50112ed 3643 slab_flags_t flags = s->flags;
be4a7988 3644 unsigned int size = s->object_size;
89b83f28 3645 unsigned int freepointer_area;
19af27af 3646 unsigned int order;
81819f0f 3647
d8b42bf5
CL
3648 /*
3649 * Round up object size to the next word boundary. We can only
3650 * place the free pointer at word boundaries and this determines
3651 * the possible location of the free pointer.
3652 */
3653 size = ALIGN(size, sizeof(void *));
89b83f28
KC
3654 /*
3655 * This is the area of the object where a freepointer can be
3656 * safely written. If redzoning adds more to the inuse size, we
3657 * can't use that portion for writing the freepointer, so
3658 * s->offset must be limited within this for the general case.
3659 */
3660 freepointer_area = size;
d8b42bf5
CL
3661
3662#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3663 /*
3664 * Determine if we can poison the object itself. If the user of
3665 * the slab may touch the object after free or before allocation
3666 * then we should never poison the object itself.
3667 */
5f0d5a3a 3668 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3669 !s->ctor)
81819f0f
CL
3670 s->flags |= __OBJECT_POISON;
3671 else
3672 s->flags &= ~__OBJECT_POISON;
3673
81819f0f
CL
3674
3675 /*
672bba3a 3676 * If we are Redzoning then check if there is some space between the
81819f0f 3677 * end of the object and the free pointer. If not then add an
672bba3a 3678 * additional word to have some bytes to store Redzone information.
81819f0f 3679 */
3b0efdfa 3680 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3681 size += sizeof(void *);
41ecc55b 3682#endif
81819f0f
CL
3683
3684 /*
672bba3a
CL
3685 * With that we have determined the number of bytes in actual use
3686 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3687 */
3688 s->inuse = size;
3689
5f0d5a3a 3690 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3691 s->ctor)) {
81819f0f
CL
3692 /*
3693 * Relocate free pointer after the object if it is not
3694 * permitted to overwrite the first word of the object on
3695 * kmem_cache_free.
3696 *
3697 * This is the case if we do RCU, have a constructor or
3698 * destructor or are poisoning the objects.
cbfc35a4
WL
3699 *
3700 * The assumption that s->offset >= s->inuse means free
3701 * pointer is outside of the object is used in the
3702 * freeptr_outside_object() function. If that is no
3703 * longer true, the function needs to be modified.
81819f0f
CL
3704 */
3705 s->offset = size;
3706 size += sizeof(void *);
89b83f28 3707 } else if (freepointer_area > sizeof(void *)) {
3202fa62
KC
3708 /*
3709 * Store freelist pointer near middle of object to keep
3710 * it away from the edges of the object to avoid small
3711 * sized over/underflows from neighboring allocations.
3712 */
89b83f28 3713 s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
81819f0f
CL
3714 }
3715
c12b3c62 3716#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3717 if (flags & SLAB_STORE_USER)
3718 /*
3719 * Need to store information about allocs and frees after
3720 * the object.
3721 */
3722 size += 2 * sizeof(struct track);
80a9201a 3723#endif
81819f0f 3724
80a9201a
AP
3725 kasan_cache_create(s, &size, &s->flags);
3726#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3727 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3728 /*
3729 * Add some empty padding so that we can catch
3730 * overwrites from earlier objects rather than let
3731 * tracking information or the free pointer be
0211a9c8 3732 * corrupted if a user writes before the start
81819f0f
CL
3733 * of the object.
3734 */
3735 size += sizeof(void *);
d86bd1be
JK
3736
3737 s->red_left_pad = sizeof(void *);
3738 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3739 size += s->red_left_pad;
3740 }
41ecc55b 3741#endif
672bba3a 3742
81819f0f
CL
3743 /*
3744 * SLUB stores one object immediately after another beginning from
3745 * offset 0. In order to align the objects we have to simply size
3746 * each object to conform to the alignment.
3747 */
45906855 3748 size = ALIGN(size, s->align);
81819f0f 3749 s->size = size;
4138fdfc 3750 s->reciprocal_size = reciprocal_value(size);
06b285dc
CL
3751 if (forced_order >= 0)
3752 order = forced_order;
3753 else
9736d2a9 3754 order = calculate_order(size);
81819f0f 3755
19af27af 3756 if ((int)order < 0)
81819f0f
CL
3757 return 0;
3758
b7a49f0d 3759 s->allocflags = 0;
834f3d11 3760 if (order)
b7a49f0d
CL
3761 s->allocflags |= __GFP_COMP;
3762
3763 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3764 s->allocflags |= GFP_DMA;
b7a49f0d 3765
6d6ea1e9
NB
3766 if (s->flags & SLAB_CACHE_DMA32)
3767 s->allocflags |= GFP_DMA32;
3768
b7a49f0d
CL
3769 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3770 s->allocflags |= __GFP_RECLAIMABLE;
3771
81819f0f
CL
3772 /*
3773 * Determine the number of objects per slab
3774 */
9736d2a9
MW
3775 s->oo = oo_make(order, size);
3776 s->min = oo_make(get_order(size), size);
205ab99d
CL
3777 if (oo_objects(s->oo) > oo_objects(s->max))
3778 s->max = s->oo;
81819f0f 3779
834f3d11 3780 return !!oo_objects(s->oo);
81819f0f
CL
3781}
3782
d50112ed 3783static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3784{
8a13a4cc 3785 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
2482ddec
KC
3786#ifdef CONFIG_SLAB_FREELIST_HARDENED
3787 s->random = get_random_long();
3788#endif
81819f0f 3789
06b285dc 3790 if (!calculate_sizes(s, -1))
81819f0f 3791 goto error;
3de47213
DR
3792 if (disable_higher_order_debug) {
3793 /*
3794 * Disable debugging flags that store metadata if the min slab
3795 * order increased.
3796 */
3b0efdfa 3797 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3798 s->flags &= ~DEBUG_METADATA_FLAGS;
3799 s->offset = 0;
3800 if (!calculate_sizes(s, -1))
3801 goto error;
3802 }
3803 }
81819f0f 3804
2565409f
HC
3805#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3806 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3807 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3808 /* Enable fast mode */
3809 s->flags |= __CMPXCHG_DOUBLE;
3810#endif
3811
3b89d7d8
DR
3812 /*
3813 * The larger the object size is, the more pages we want on the partial
3814 * list to avoid pounding the page allocator excessively.
3815 */
49e22585
CL
3816 set_min_partial(s, ilog2(s->size) / 2);
3817
e6d0e1dc 3818 set_cpu_partial(s);
49e22585 3819
81819f0f 3820#ifdef CONFIG_NUMA
e2cb96b7 3821 s->remote_node_defrag_ratio = 1000;
81819f0f 3822#endif
210e7a43
TG
3823
3824 /* Initialize the pre-computed randomized freelist if slab is up */
3825 if (slab_state >= UP) {
3826 if (init_cache_random_seq(s))
3827 goto error;
3828 }
3829
55136592 3830 if (!init_kmem_cache_nodes(s))
dfb4f096 3831 goto error;
81819f0f 3832
55136592 3833 if (alloc_kmem_cache_cpus(s))
278b1bb1 3834 return 0;
ff12059e 3835
4c93c355 3836 free_kmem_cache_nodes(s);
81819f0f 3837error:
278b1bb1 3838 return -EINVAL;
81819f0f 3839}
81819f0f 3840
33b12c38 3841static void list_slab_objects(struct kmem_cache *s, struct page *page,
55860d96 3842 const char *text)
33b12c38
CL
3843{
3844#ifdef CONFIG_SLUB_DEBUG
3845 void *addr = page_address(page);
55860d96 3846 unsigned long *map;
33b12c38 3847 void *p;
aa456c7a 3848
945cf2b6 3849 slab_err(s, page, text, s->name);
33b12c38 3850 slab_lock(page);
33b12c38 3851
90e9f6a6 3852 map = get_map(s, page);
33b12c38
CL
3853 for_each_object(p, s, addr, page->objects) {
3854
4138fdfc 3855 if (!test_bit(__obj_to_index(s, addr, p), map)) {
f9f58285 3856 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3857 print_tracking(s, p);
3858 }
3859 }
55860d96 3860 put_map(map);
33b12c38
CL
3861 slab_unlock(page);
3862#endif
3863}
3864
81819f0f 3865/*
599870b1 3866 * Attempt to free all partial slabs on a node.
52b4b950
DS
3867 * This is called from __kmem_cache_shutdown(). We must take list_lock
3868 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3869 */
599870b1 3870static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3871{
60398923 3872 LIST_HEAD(discard);
81819f0f
CL
3873 struct page *page, *h;
3874
52b4b950
DS
3875 BUG_ON(irqs_disabled());
3876 spin_lock_irq(&n->list_lock);
916ac052 3877 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 3878 if (!page->inuse) {
52b4b950 3879 remove_partial(n, page);
916ac052 3880 list_add(&page->slab_list, &discard);
33b12c38
CL
3881 } else {
3882 list_slab_objects(s, page,
55860d96 3883 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3884 }
33b12c38 3885 }
52b4b950 3886 spin_unlock_irq(&n->list_lock);
60398923 3887
916ac052 3888 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 3889 discard_slab(s, page);
81819f0f
CL
3890}
3891
f9e13c0a
SB
3892bool __kmem_cache_empty(struct kmem_cache *s)
3893{
3894 int node;
3895 struct kmem_cache_node *n;
3896
3897 for_each_kmem_cache_node(s, node, n)
3898 if (n->nr_partial || slabs_node(s, node))
3899 return false;
3900 return true;
3901}
3902
81819f0f 3903/*
672bba3a 3904 * Release all resources used by a slab cache.
81819f0f 3905 */
52b4b950 3906int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3907{
3908 int node;
fa45dc25 3909 struct kmem_cache_node *n;
81819f0f
CL
3910
3911 flush_all(s);
81819f0f 3912 /* Attempt to free all objects */
fa45dc25 3913 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3914 free_partial(s, n);
3915 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3916 return 1;
3917 }
81819f0f
CL
3918 return 0;
3919}
3920
81819f0f
CL
3921/********************************************************************
3922 * Kmalloc subsystem
3923 *******************************************************************/
3924
81819f0f
CL
3925static int __init setup_slub_min_order(char *str)
3926{
19af27af 3927 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
3928
3929 return 1;
3930}
3931
3932__setup("slub_min_order=", setup_slub_min_order);
3933
3934static int __init setup_slub_max_order(char *str)
3935{
19af27af
AD
3936 get_option(&str, (int *)&slub_max_order);
3937 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
3938
3939 return 1;
3940}
3941
3942__setup("slub_max_order=", setup_slub_max_order);
3943
3944static int __init setup_slub_min_objects(char *str)
3945{
19af27af 3946 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
3947
3948 return 1;
3949}
3950
3951__setup("slub_min_objects=", setup_slub_min_objects);
3952
81819f0f
CL
3953void *__kmalloc(size_t size, gfp_t flags)
3954{
aadb4bc4 3955 struct kmem_cache *s;
5b882be4 3956 void *ret;
81819f0f 3957
95a05b42 3958 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3959 return kmalloc_large(size, flags);
aadb4bc4 3960
2c59dd65 3961 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3962
3963 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3964 return s;
3965
2b847c3c 3966 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3967
ca2b84cb 3968 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3969
0116523c 3970 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3971
5b882be4 3972 return ret;
81819f0f
CL
3973}
3974EXPORT_SYMBOL(__kmalloc);
3975
5d1f57e4 3976#ifdef CONFIG_NUMA
f619cfe1
CL
3977static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3978{
b1eeab67 3979 struct page *page;
e4f7c0b4 3980 void *ptr = NULL;
6a486c0a 3981 unsigned int order = get_order(size);
f619cfe1 3982
75f296d9 3983 flags |= __GFP_COMP;
6a486c0a
VB
3984 page = alloc_pages_node(node, flags, order);
3985 if (page) {
e4f7c0b4 3986 ptr = page_address(page);
d42f3245
RG
3987 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
3988 PAGE_SIZE << order);
6a486c0a 3989 }
e4f7c0b4 3990
0116523c 3991 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
3992}
3993
81819f0f
CL
3994void *__kmalloc_node(size_t size, gfp_t flags, int node)
3995{
aadb4bc4 3996 struct kmem_cache *s;
5b882be4 3997 void *ret;
81819f0f 3998
95a05b42 3999 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
4000 ret = kmalloc_large_node(size, flags, node);
4001
ca2b84cb
EGM
4002 trace_kmalloc_node(_RET_IP_, ret,
4003 size, PAGE_SIZE << get_order(size),
4004 flags, node);
5b882be4
EGM
4005
4006 return ret;
4007 }
aadb4bc4 4008
2c59dd65 4009 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4010
4011 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4012 return s;
4013
2b847c3c 4014 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 4015
ca2b84cb 4016 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 4017
0116523c 4018 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4019
5b882be4 4020 return ret;
81819f0f
CL
4021}
4022EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 4023#endif /* CONFIG_NUMA */
81819f0f 4024
ed18adc1
KC
4025#ifdef CONFIG_HARDENED_USERCOPY
4026/*
afcc90f8
KC
4027 * Rejects incorrectly sized objects and objects that are to be copied
4028 * to/from userspace but do not fall entirely within the containing slab
4029 * cache's usercopy region.
ed18adc1
KC
4030 *
4031 * Returns NULL if check passes, otherwise const char * to name of cache
4032 * to indicate an error.
4033 */
f4e6e289
KC
4034void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4035 bool to_user)
ed18adc1
KC
4036{
4037 struct kmem_cache *s;
44065b2e 4038 unsigned int offset;
ed18adc1
KC
4039 size_t object_size;
4040
96fedce2
AK
4041 ptr = kasan_reset_tag(ptr);
4042
ed18adc1
KC
4043 /* Find object and usable object size. */
4044 s = page->slab_cache;
ed18adc1
KC
4045
4046 /* Reject impossible pointers. */
4047 if (ptr < page_address(page))
f4e6e289
KC
4048 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4049 to_user, 0, n);
ed18adc1
KC
4050
4051 /* Find offset within object. */
4052 offset = (ptr - page_address(page)) % s->size;
4053
4054 /* Adjust for redzone and reject if within the redzone. */
59052e89 4055 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 4056 if (offset < s->red_left_pad)
f4e6e289
KC
4057 usercopy_abort("SLUB object in left red zone",
4058 s->name, to_user, offset, n);
ed18adc1
KC
4059 offset -= s->red_left_pad;
4060 }
4061
afcc90f8
KC
4062 /* Allow address range falling entirely within usercopy region. */
4063 if (offset >= s->useroffset &&
4064 offset - s->useroffset <= s->usersize &&
4065 n <= s->useroffset - offset + s->usersize)
f4e6e289 4066 return;
ed18adc1 4067
afcc90f8
KC
4068 /*
4069 * If the copy is still within the allocated object, produce
4070 * a warning instead of rejecting the copy. This is intended
4071 * to be a temporary method to find any missing usercopy
4072 * whitelists.
4073 */
4074 object_size = slab_ksize(s);
2d891fbc
KC
4075 if (usercopy_fallback &&
4076 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
4077 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4078 return;
4079 }
ed18adc1 4080
f4e6e289 4081 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
4082}
4083#endif /* CONFIG_HARDENED_USERCOPY */
4084
10d1f8cb 4085size_t __ksize(const void *object)
81819f0f 4086{
272c1d21 4087 struct page *page;
81819f0f 4088
ef8b4520 4089 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
4090 return 0;
4091
294a80a8 4092 page = virt_to_head_page(object);
294a80a8 4093
76994412
PE
4094 if (unlikely(!PageSlab(page))) {
4095 WARN_ON(!PageCompound(page));
a50b854e 4096 return page_size(page);
76994412 4097 }
81819f0f 4098
1b4f59e3 4099 return slab_ksize(page->slab_cache);
81819f0f 4100}
10d1f8cb 4101EXPORT_SYMBOL(__ksize);
81819f0f
CL
4102
4103void kfree(const void *x)
4104{
81819f0f 4105 struct page *page;
5bb983b0 4106 void *object = (void *)x;
81819f0f 4107
2121db74
PE
4108 trace_kfree(_RET_IP_, x);
4109
2408c550 4110 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
4111 return;
4112
b49af68f 4113 page = virt_to_head_page(x);
aadb4bc4 4114 if (unlikely(!PageSlab(page))) {
6a486c0a
VB
4115 unsigned int order = compound_order(page);
4116
0937502a 4117 BUG_ON(!PageCompound(page));
47adccce 4118 kfree_hook(object);
d42f3245
RG
4119 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
4120 -(PAGE_SIZE << order));
6a486c0a 4121 __free_pages(page, order);
aadb4bc4
CL
4122 return;
4123 }
81084651 4124 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
4125}
4126EXPORT_SYMBOL(kfree);
4127
832f37f5
VD
4128#define SHRINK_PROMOTE_MAX 32
4129
2086d26a 4130/*
832f37f5
VD
4131 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4132 * up most to the head of the partial lists. New allocations will then
4133 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4134 *
4135 * The slabs with the least items are placed last. This results in them
4136 * being allocated from last increasing the chance that the last objects
4137 * are freed in them.
2086d26a 4138 */
c9fc5864 4139int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
4140{
4141 int node;
4142 int i;
4143 struct kmem_cache_node *n;
4144 struct page *page;
4145 struct page *t;
832f37f5
VD
4146 struct list_head discard;
4147 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4148 unsigned long flags;
ce3712d7 4149 int ret = 0;
2086d26a 4150
2086d26a 4151 flush_all(s);
fa45dc25 4152 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4153 INIT_LIST_HEAD(&discard);
4154 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4155 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4156
4157 spin_lock_irqsave(&n->list_lock, flags);
4158
4159 /*
832f37f5 4160 * Build lists of slabs to discard or promote.
2086d26a 4161 *
672bba3a
CL
4162 * Note that concurrent frees may occur while we hold the
4163 * list_lock. page->inuse here is the upper limit.
2086d26a 4164 */
916ac052 4165 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
4166 int free = page->objects - page->inuse;
4167
4168 /* Do not reread page->inuse */
4169 barrier();
4170
4171 /* We do not keep full slabs on the list */
4172 BUG_ON(free <= 0);
4173
4174 if (free == page->objects) {
916ac052 4175 list_move(&page->slab_list, &discard);
69cb8e6b 4176 n->nr_partial--;
832f37f5 4177 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4178 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4179 }
4180
2086d26a 4181 /*
832f37f5
VD
4182 * Promote the slabs filled up most to the head of the
4183 * partial list.
2086d26a 4184 */
832f37f5
VD
4185 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4186 list_splice(promote + i, &n->partial);
2086d26a 4187
2086d26a 4188 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4189
4190 /* Release empty slabs */
916ac052 4191 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4192 discard_slab(s, page);
ce3712d7
VD
4193
4194 if (slabs_node(s, node))
4195 ret = 1;
2086d26a
CL
4196 }
4197
ce3712d7 4198 return ret;
2086d26a 4199}
2086d26a 4200
b9049e23
YG
4201static int slab_mem_going_offline_callback(void *arg)
4202{
4203 struct kmem_cache *s;
4204
18004c5d 4205 mutex_lock(&slab_mutex);
b9049e23 4206 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4207 __kmem_cache_shrink(s);
18004c5d 4208 mutex_unlock(&slab_mutex);
b9049e23
YG
4209
4210 return 0;
4211}
4212
4213static void slab_mem_offline_callback(void *arg)
4214{
4215 struct kmem_cache_node *n;
4216 struct kmem_cache *s;
4217 struct memory_notify *marg = arg;
4218 int offline_node;
4219
b9d5ab25 4220 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4221
4222 /*
4223 * If the node still has available memory. we need kmem_cache_node
4224 * for it yet.
4225 */
4226 if (offline_node < 0)
4227 return;
4228
18004c5d 4229 mutex_lock(&slab_mutex);
b9049e23
YG
4230 list_for_each_entry(s, &slab_caches, list) {
4231 n = get_node(s, offline_node);
4232 if (n) {
4233 /*
4234 * if n->nr_slabs > 0, slabs still exist on the node
4235 * that is going down. We were unable to free them,
c9404c9c 4236 * and offline_pages() function shouldn't call this
b9049e23
YG
4237 * callback. So, we must fail.
4238 */
0f389ec6 4239 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4240
4241 s->node[offline_node] = NULL;
8de66a0c 4242 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4243 }
4244 }
18004c5d 4245 mutex_unlock(&slab_mutex);
b9049e23
YG
4246}
4247
4248static int slab_mem_going_online_callback(void *arg)
4249{
4250 struct kmem_cache_node *n;
4251 struct kmem_cache *s;
4252 struct memory_notify *marg = arg;
b9d5ab25 4253 int nid = marg->status_change_nid_normal;
b9049e23
YG
4254 int ret = 0;
4255
4256 /*
4257 * If the node's memory is already available, then kmem_cache_node is
4258 * already created. Nothing to do.
4259 */
4260 if (nid < 0)
4261 return 0;
4262
4263 /*
0121c619 4264 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4265 * allocate a kmem_cache_node structure in order to bring the node
4266 * online.
4267 */
18004c5d 4268 mutex_lock(&slab_mutex);
b9049e23
YG
4269 list_for_each_entry(s, &slab_caches, list) {
4270 /*
4271 * XXX: kmem_cache_alloc_node will fallback to other nodes
4272 * since memory is not yet available from the node that
4273 * is brought up.
4274 */
8de66a0c 4275 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4276 if (!n) {
4277 ret = -ENOMEM;
4278 goto out;
4279 }
4053497d 4280 init_kmem_cache_node(n);
b9049e23
YG
4281 s->node[nid] = n;
4282 }
4283out:
18004c5d 4284 mutex_unlock(&slab_mutex);
b9049e23
YG
4285 return ret;
4286}
4287
4288static int slab_memory_callback(struct notifier_block *self,
4289 unsigned long action, void *arg)
4290{
4291 int ret = 0;
4292
4293 switch (action) {
4294 case MEM_GOING_ONLINE:
4295 ret = slab_mem_going_online_callback(arg);
4296 break;
4297 case MEM_GOING_OFFLINE:
4298 ret = slab_mem_going_offline_callback(arg);
4299 break;
4300 case MEM_OFFLINE:
4301 case MEM_CANCEL_ONLINE:
4302 slab_mem_offline_callback(arg);
4303 break;
4304 case MEM_ONLINE:
4305 case MEM_CANCEL_OFFLINE:
4306 break;
4307 }
dc19f9db
KH
4308 if (ret)
4309 ret = notifier_from_errno(ret);
4310 else
4311 ret = NOTIFY_OK;
b9049e23
YG
4312 return ret;
4313}
4314
3ac38faa
AM
4315static struct notifier_block slab_memory_callback_nb = {
4316 .notifier_call = slab_memory_callback,
4317 .priority = SLAB_CALLBACK_PRI,
4318};
b9049e23 4319
81819f0f
CL
4320/********************************************************************
4321 * Basic setup of slabs
4322 *******************************************************************/
4323
51df1142
CL
4324/*
4325 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4326 * the page allocator. Allocate them properly then fix up the pointers
4327 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4328 */
4329
dffb4d60 4330static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4331{
4332 int node;
dffb4d60 4333 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4334 struct kmem_cache_node *n;
51df1142 4335
dffb4d60 4336 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4337
7d557b3c
GC
4338 /*
4339 * This runs very early, and only the boot processor is supposed to be
4340 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4341 * IPIs around.
4342 */
4343 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4344 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4345 struct page *p;
4346
916ac052 4347 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4348 p->slab_cache = s;
51df1142 4349
607bf324 4350#ifdef CONFIG_SLUB_DEBUG
916ac052 4351 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4352 p->slab_cache = s;
51df1142 4353#endif
51df1142 4354 }
dffb4d60
CL
4355 list_add(&s->list, &slab_caches);
4356 return s;
51df1142
CL
4357}
4358
81819f0f
CL
4359void __init kmem_cache_init(void)
4360{
dffb4d60
CL
4361 static __initdata struct kmem_cache boot_kmem_cache,
4362 boot_kmem_cache_node;
51df1142 4363
fc8d8620
SG
4364 if (debug_guardpage_minorder())
4365 slub_max_order = 0;
4366
dffb4d60
CL
4367 kmem_cache_node = &boot_kmem_cache_node;
4368 kmem_cache = &boot_kmem_cache;
51df1142 4369
dffb4d60 4370 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4371 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4372
3ac38faa 4373 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4374
4375 /* Able to allocate the per node structures */
4376 slab_state = PARTIAL;
4377
dffb4d60
CL
4378 create_boot_cache(kmem_cache, "kmem_cache",
4379 offsetof(struct kmem_cache, node) +
4380 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4381 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4382
dffb4d60 4383 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4384 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4385
4386 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4387 setup_kmalloc_cache_index_table();
f97d5f63 4388 create_kmalloc_caches(0);
81819f0f 4389
210e7a43
TG
4390 /* Setup random freelists for each cache */
4391 init_freelist_randomization();
4392
a96a87bf
SAS
4393 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4394 slub_cpu_dead);
81819f0f 4395
b9726c26 4396 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4397 cache_line_size(),
81819f0f
CL
4398 slub_min_order, slub_max_order, slub_min_objects,
4399 nr_cpu_ids, nr_node_ids);
4400}
4401
7e85ee0c
PE
4402void __init kmem_cache_init_late(void)
4403{
7e85ee0c
PE
4404}
4405
2633d7a0 4406struct kmem_cache *
f4957d5b 4407__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4408 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4409{
10befea9 4410 struct kmem_cache *s;
81819f0f 4411
a44cb944 4412 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4413 if (s) {
4414 s->refcount++;
84d0ddd6 4415
81819f0f
CL
4416 /*
4417 * Adjust the object sizes so that we clear
4418 * the complete object on kzalloc.
4419 */
1b473f29 4420 s->object_size = max(s->object_size, size);
52ee6d74 4421 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4422
7b8f3b66 4423 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4424 s->refcount--;
cbb79694 4425 s = NULL;
7b8f3b66 4426 }
a0e1d1be 4427 }
6446faa2 4428
cbb79694
CL
4429 return s;
4430}
84c1cf62 4431
d50112ed 4432int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4433{
aac3a166
PE
4434 int err;
4435
4436 err = kmem_cache_open(s, flags);
4437 if (err)
4438 return err;
20cea968 4439
45530c44
CL
4440 /* Mutex is not taken during early boot */
4441 if (slab_state <= UP)
4442 return 0;
4443
aac3a166 4444 err = sysfs_slab_add(s);
aac3a166 4445 if (err)
52b4b950 4446 __kmem_cache_release(s);
20cea968 4447
aac3a166 4448 return err;
81819f0f 4449}
81819f0f 4450
ce71e27c 4451void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4452{
aadb4bc4 4453 struct kmem_cache *s;
94b528d0 4454 void *ret;
aadb4bc4 4455
95a05b42 4456 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4457 return kmalloc_large(size, gfpflags);
4458
2c59dd65 4459 s = kmalloc_slab(size, gfpflags);
81819f0f 4460
2408c550 4461 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4462 return s;
81819f0f 4463
2b847c3c 4464 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4465
25985edc 4466 /* Honor the call site pointer we received. */
ca2b84cb 4467 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4468
4469 return ret;
81819f0f 4470}
fd7cb575 4471EXPORT_SYMBOL(__kmalloc_track_caller);
81819f0f 4472
5d1f57e4 4473#ifdef CONFIG_NUMA
81819f0f 4474void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4475 int node, unsigned long caller)
81819f0f 4476{
aadb4bc4 4477 struct kmem_cache *s;
94b528d0 4478 void *ret;
aadb4bc4 4479
95a05b42 4480 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4481 ret = kmalloc_large_node(size, gfpflags, node);
4482
4483 trace_kmalloc_node(caller, ret,
4484 size, PAGE_SIZE << get_order(size),
4485 gfpflags, node);
4486
4487 return ret;
4488 }
eada35ef 4489
2c59dd65 4490 s = kmalloc_slab(size, gfpflags);
81819f0f 4491
2408c550 4492 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4493 return s;
81819f0f 4494
2b847c3c 4495 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4496
25985edc 4497 /* Honor the call site pointer we received. */
ca2b84cb 4498 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4499
4500 return ret;
81819f0f 4501}
fd7cb575 4502EXPORT_SYMBOL(__kmalloc_node_track_caller);
5d1f57e4 4503#endif
81819f0f 4504
ab4d5ed5 4505#ifdef CONFIG_SYSFS
205ab99d
CL
4506static int count_inuse(struct page *page)
4507{
4508 return page->inuse;
4509}
4510
4511static int count_total(struct page *page)
4512{
4513 return page->objects;
4514}
ab4d5ed5 4515#endif
205ab99d 4516
ab4d5ed5 4517#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 4518static void validate_slab(struct kmem_cache *s, struct page *page)
53e15af0
CL
4519{
4520 void *p;
a973e9dd 4521 void *addr = page_address(page);
90e9f6a6
YZ
4522 unsigned long *map;
4523
4524 slab_lock(page);
53e15af0 4525
dd98afd4 4526 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
90e9f6a6 4527 goto unlock;
53e15af0
CL
4528
4529 /* Now we know that a valid freelist exists */
90e9f6a6 4530 map = get_map(s, page);
5f80b13a 4531 for_each_object(p, s, addr, page->objects) {
4138fdfc 4532 u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
dd98afd4 4533 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 4534
dd98afd4
YZ
4535 if (!check_object(s, page, p, val))
4536 break;
4537 }
90e9f6a6
YZ
4538 put_map(map);
4539unlock:
881db7fb 4540 slab_unlock(page);
53e15af0
CL
4541}
4542
434e245d 4543static int validate_slab_node(struct kmem_cache *s,
90e9f6a6 4544 struct kmem_cache_node *n)
53e15af0
CL
4545{
4546 unsigned long count = 0;
4547 struct page *page;
4548 unsigned long flags;
4549
4550 spin_lock_irqsave(&n->list_lock, flags);
4551
916ac052 4552 list_for_each_entry(page, &n->partial, slab_list) {
90e9f6a6 4553 validate_slab(s, page);
53e15af0
CL
4554 count++;
4555 }
4556 if (count != n->nr_partial)
f9f58285
FF
4557 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4558 s->name, count, n->nr_partial);
53e15af0
CL
4559
4560 if (!(s->flags & SLAB_STORE_USER))
4561 goto out;
4562
916ac052 4563 list_for_each_entry(page, &n->full, slab_list) {
90e9f6a6 4564 validate_slab(s, page);
53e15af0
CL
4565 count++;
4566 }
4567 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4568 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4569 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4570
4571out:
4572 spin_unlock_irqrestore(&n->list_lock, flags);
4573 return count;
4574}
4575
434e245d 4576static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4577{
4578 int node;
4579 unsigned long count = 0;
fa45dc25 4580 struct kmem_cache_node *n;
53e15af0
CL
4581
4582 flush_all(s);
fa45dc25 4583 for_each_kmem_cache_node(s, node, n)
90e9f6a6
YZ
4584 count += validate_slab_node(s, n);
4585
53e15af0
CL
4586 return count;
4587}
88a420e4 4588/*
672bba3a 4589 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4590 * and freed.
4591 */
4592
4593struct location {
4594 unsigned long count;
ce71e27c 4595 unsigned long addr;
45edfa58
CL
4596 long long sum_time;
4597 long min_time;
4598 long max_time;
4599 long min_pid;
4600 long max_pid;
174596a0 4601 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4602 nodemask_t nodes;
88a420e4
CL
4603};
4604
4605struct loc_track {
4606 unsigned long max;
4607 unsigned long count;
4608 struct location *loc;
4609};
4610
4611static void free_loc_track(struct loc_track *t)
4612{
4613 if (t->max)
4614 free_pages((unsigned long)t->loc,
4615 get_order(sizeof(struct location) * t->max));
4616}
4617
68dff6a9 4618static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4619{
4620 struct location *l;
4621 int order;
4622
88a420e4
CL
4623 order = get_order(sizeof(struct location) * max);
4624
68dff6a9 4625 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4626 if (!l)
4627 return 0;
4628
4629 if (t->count) {
4630 memcpy(l, t->loc, sizeof(struct location) * t->count);
4631 free_loc_track(t);
4632 }
4633 t->max = max;
4634 t->loc = l;
4635 return 1;
4636}
4637
4638static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4639 const struct track *track)
88a420e4
CL
4640{
4641 long start, end, pos;
4642 struct location *l;
ce71e27c 4643 unsigned long caddr;
45edfa58 4644 unsigned long age = jiffies - track->when;
88a420e4
CL
4645
4646 start = -1;
4647 end = t->count;
4648
4649 for ( ; ; ) {
4650 pos = start + (end - start + 1) / 2;
4651
4652 /*
4653 * There is nothing at "end". If we end up there
4654 * we need to add something to before end.
4655 */
4656 if (pos == end)
4657 break;
4658
4659 caddr = t->loc[pos].addr;
45edfa58
CL
4660 if (track->addr == caddr) {
4661
4662 l = &t->loc[pos];
4663 l->count++;
4664 if (track->when) {
4665 l->sum_time += age;
4666 if (age < l->min_time)
4667 l->min_time = age;
4668 if (age > l->max_time)
4669 l->max_time = age;
4670
4671 if (track->pid < l->min_pid)
4672 l->min_pid = track->pid;
4673 if (track->pid > l->max_pid)
4674 l->max_pid = track->pid;
4675
174596a0
RR
4676 cpumask_set_cpu(track->cpu,
4677 to_cpumask(l->cpus));
45edfa58
CL
4678 }
4679 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4680 return 1;
4681 }
4682
45edfa58 4683 if (track->addr < caddr)
88a420e4
CL
4684 end = pos;
4685 else
4686 start = pos;
4687 }
4688
4689 /*
672bba3a 4690 * Not found. Insert new tracking element.
88a420e4 4691 */
68dff6a9 4692 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4693 return 0;
4694
4695 l = t->loc + pos;
4696 if (pos < t->count)
4697 memmove(l + 1, l,
4698 (t->count - pos) * sizeof(struct location));
4699 t->count++;
4700 l->count = 1;
45edfa58
CL
4701 l->addr = track->addr;
4702 l->sum_time = age;
4703 l->min_time = age;
4704 l->max_time = age;
4705 l->min_pid = track->pid;
4706 l->max_pid = track->pid;
174596a0
RR
4707 cpumask_clear(to_cpumask(l->cpus));
4708 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4709 nodes_clear(l->nodes);
4710 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4711 return 1;
4712}
4713
4714static void process_slab(struct loc_track *t, struct kmem_cache *s,
90e9f6a6 4715 struct page *page, enum track_item alloc)
88a420e4 4716{
a973e9dd 4717 void *addr = page_address(page);
88a420e4 4718 void *p;
90e9f6a6 4719 unsigned long *map;
88a420e4 4720
90e9f6a6 4721 map = get_map(s, page);
224a88be 4722 for_each_object(p, s, addr, page->objects)
4138fdfc 4723 if (!test_bit(__obj_to_index(s, addr, p), map))
45edfa58 4724 add_location(t, s, get_track(s, p, alloc));
90e9f6a6 4725 put_map(map);
88a420e4
CL
4726}
4727
4728static int list_locations(struct kmem_cache *s, char *buf,
4729 enum track_item alloc)
4730{
e374d483 4731 int len = 0;
88a420e4 4732 unsigned long i;
68dff6a9 4733 struct loc_track t = { 0, 0, NULL };
88a420e4 4734 int node;
fa45dc25 4735 struct kmem_cache_node *n;
88a420e4 4736
90e9f6a6
YZ
4737 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4738 GFP_KERNEL)) {
68dff6a9 4739 return sprintf(buf, "Out of memory\n");
bbd7d57b 4740 }
88a420e4
CL
4741 /* Push back cpu slabs */
4742 flush_all(s);
4743
fa45dc25 4744 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4745 unsigned long flags;
4746 struct page *page;
4747
9e86943b 4748 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4749 continue;
4750
4751 spin_lock_irqsave(&n->list_lock, flags);
916ac052 4752 list_for_each_entry(page, &n->partial, slab_list)
90e9f6a6 4753 process_slab(&t, s, page, alloc);
916ac052 4754 list_for_each_entry(page, &n->full, slab_list)
90e9f6a6 4755 process_slab(&t, s, page, alloc);
88a420e4
CL
4756 spin_unlock_irqrestore(&n->list_lock, flags);
4757 }
4758
4759 for (i = 0; i < t.count; i++) {
45edfa58 4760 struct location *l = &t.loc[i];
88a420e4 4761
9c246247 4762 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4763 break;
e374d483 4764 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4765
4766 if (l->addr)
62c70bce 4767 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4768 else
e374d483 4769 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4770
4771 if (l->sum_time != l->min_time) {
e374d483 4772 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4773 l->min_time,
4774 (long)div_u64(l->sum_time, l->count),
4775 l->max_time);
45edfa58 4776 } else
e374d483 4777 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4778 l->min_time);
4779
4780 if (l->min_pid != l->max_pid)
e374d483 4781 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4782 l->min_pid, l->max_pid);
4783 else
e374d483 4784 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4785 l->min_pid);
4786
174596a0
RR
4787 if (num_online_cpus() > 1 &&
4788 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4789 len < PAGE_SIZE - 60)
4790 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4791 " cpus=%*pbl",
4792 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4793
62bc62a8 4794 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4795 len < PAGE_SIZE - 60)
4796 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4797 " nodes=%*pbl",
4798 nodemask_pr_args(&l->nodes));
45edfa58 4799
e374d483 4800 len += sprintf(buf + len, "\n");
88a420e4
CL
4801 }
4802
4803 free_loc_track(&t);
4804 if (!t.count)
e374d483
HH
4805 len += sprintf(buf, "No data\n");
4806 return len;
88a420e4 4807}
6dfd1b65 4808#endif /* CONFIG_SLUB_DEBUG */
88a420e4 4809
a5a84755 4810#ifdef SLUB_RESILIENCY_TEST
c07b8183 4811static void __init resiliency_test(void)
a5a84755
CL
4812{
4813 u8 *p;
cc252eae 4814 int type = KMALLOC_NORMAL;
a5a84755 4815
95a05b42 4816 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4817
f9f58285
FF
4818 pr_err("SLUB resiliency testing\n");
4819 pr_err("-----------------------\n");
4820 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4821
4822 p = kzalloc(16, GFP_KERNEL);
4823 p[16] = 0x12;
f9f58285
FF
4824 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4825 p + 16);
a5a84755 4826
cc252eae 4827 validate_slab_cache(kmalloc_caches[type][4]);
a5a84755
CL
4828
4829 /* Hmmm... The next two are dangerous */
4830 p = kzalloc(32, GFP_KERNEL);
4831 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4832 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4833 p);
4834 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755 4835
cc252eae 4836 validate_slab_cache(kmalloc_caches[type][5]);
a5a84755
CL
4837 p = kzalloc(64, GFP_KERNEL);
4838 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4839 *p = 0x56;
f9f58285
FF
4840 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4841 p);
4842 pr_err("If allocated object is overwritten then not detectable\n\n");
cc252eae 4843 validate_slab_cache(kmalloc_caches[type][6]);
a5a84755 4844
f9f58285 4845 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4846 p = kzalloc(128, GFP_KERNEL);
4847 kfree(p);
4848 *p = 0x78;
f9f58285 4849 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
cc252eae 4850 validate_slab_cache(kmalloc_caches[type][7]);
a5a84755
CL
4851
4852 p = kzalloc(256, GFP_KERNEL);
4853 kfree(p);
4854 p[50] = 0x9a;
f9f58285 4855 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
cc252eae 4856 validate_slab_cache(kmalloc_caches[type][8]);
a5a84755
CL
4857
4858 p = kzalloc(512, GFP_KERNEL);
4859 kfree(p);
4860 p[512] = 0xab;
f9f58285 4861 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
cc252eae 4862 validate_slab_cache(kmalloc_caches[type][9]);
a5a84755
CL
4863}
4864#else
4865#ifdef CONFIG_SYSFS
4866static void resiliency_test(void) {};
4867#endif
6dfd1b65 4868#endif /* SLUB_RESILIENCY_TEST */
a5a84755 4869
ab4d5ed5 4870#ifdef CONFIG_SYSFS
81819f0f 4871enum slab_stat_type {
205ab99d
CL
4872 SL_ALL, /* All slabs */
4873 SL_PARTIAL, /* Only partially allocated slabs */
4874 SL_CPU, /* Only slabs used for cpu caches */
4875 SL_OBJECTS, /* Determine allocated objects not slabs */
4876 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4877};
4878
205ab99d 4879#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4880#define SO_PARTIAL (1 << SL_PARTIAL)
4881#define SO_CPU (1 << SL_CPU)
4882#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4883#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4884
1663f26d
TH
4885#ifdef CONFIG_MEMCG
4886static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4887
4888static int __init setup_slub_memcg_sysfs(char *str)
4889{
4890 int v;
4891
4892 if (get_option(&str, &v) > 0)
4893 memcg_sysfs_enabled = v;
4894
4895 return 1;
4896}
4897
4898__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4899#endif
4900
62e5c4b4
CG
4901static ssize_t show_slab_objects(struct kmem_cache *s,
4902 char *buf, unsigned long flags)
81819f0f
CL
4903{
4904 unsigned long total = 0;
81819f0f
CL
4905 int node;
4906 int x;
4907 unsigned long *nodes;
81819f0f 4908
6396bb22 4909 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
4910 if (!nodes)
4911 return -ENOMEM;
81819f0f 4912
205ab99d
CL
4913 if (flags & SO_CPU) {
4914 int cpu;
81819f0f 4915
205ab99d 4916 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4917 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4918 cpu);
ec3ab083 4919 int node;
49e22585 4920 struct page *page;
dfb4f096 4921
4db0c3c2 4922 page = READ_ONCE(c->page);
ec3ab083
CL
4923 if (!page)
4924 continue;
205ab99d 4925
ec3ab083
CL
4926 node = page_to_nid(page);
4927 if (flags & SO_TOTAL)
4928 x = page->objects;
4929 else if (flags & SO_OBJECTS)
4930 x = page->inuse;
4931 else
4932 x = 1;
49e22585 4933
ec3ab083
CL
4934 total += x;
4935 nodes[node] += x;
4936
a93cf07b 4937 page = slub_percpu_partial_read_once(c);
49e22585 4938 if (page) {
8afb1474
LZ
4939 node = page_to_nid(page);
4940 if (flags & SO_TOTAL)
4941 WARN_ON_ONCE(1);
4942 else if (flags & SO_OBJECTS)
4943 WARN_ON_ONCE(1);
4944 else
4945 x = page->pages;
bc6697d8
ED
4946 total += x;
4947 nodes[node] += x;
49e22585 4948 }
81819f0f
CL
4949 }
4950 }
4951
e4f8e513
QC
4952 /*
4953 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4954 * already held which will conflict with an existing lock order:
4955 *
4956 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4957 *
4958 * We don't really need mem_hotplug_lock (to hold off
4959 * slab_mem_going_offline_callback) here because slab's memory hot
4960 * unplug code doesn't destroy the kmem_cache->node[] data.
4961 */
4962
ab4d5ed5 4963#ifdef CONFIG_SLUB_DEBUG
205ab99d 4964 if (flags & SO_ALL) {
fa45dc25
CL
4965 struct kmem_cache_node *n;
4966
4967 for_each_kmem_cache_node(s, node, n) {
205ab99d 4968
d0e0ac97
CG
4969 if (flags & SO_TOTAL)
4970 x = atomic_long_read(&n->total_objects);
4971 else if (flags & SO_OBJECTS)
4972 x = atomic_long_read(&n->total_objects) -
4973 count_partial(n, count_free);
81819f0f 4974 else
205ab99d 4975 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4976 total += x;
4977 nodes[node] += x;
4978 }
4979
ab4d5ed5
CL
4980 } else
4981#endif
4982 if (flags & SO_PARTIAL) {
fa45dc25 4983 struct kmem_cache_node *n;
81819f0f 4984
fa45dc25 4985 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4986 if (flags & SO_TOTAL)
4987 x = count_partial(n, count_total);
4988 else if (flags & SO_OBJECTS)
4989 x = count_partial(n, count_inuse);
81819f0f 4990 else
205ab99d 4991 x = n->nr_partial;
81819f0f
CL
4992 total += x;
4993 nodes[node] += x;
4994 }
4995 }
81819f0f
CL
4996 x = sprintf(buf, "%lu", total);
4997#ifdef CONFIG_NUMA
fa45dc25 4998 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4999 if (nodes[node])
5000 x += sprintf(buf + x, " N%d=%lu",
5001 node, nodes[node]);
5002#endif
5003 kfree(nodes);
5004 return x + sprintf(buf + x, "\n");
5005}
5006
81819f0f 5007#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 5008#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
5009
5010struct slab_attribute {
5011 struct attribute attr;
5012 ssize_t (*show)(struct kmem_cache *s, char *buf);
5013 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5014};
5015
5016#define SLAB_ATTR_RO(_name) \
ab067e99
VK
5017 static struct slab_attribute _name##_attr = \
5018 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
5019
5020#define SLAB_ATTR(_name) \
5021 static struct slab_attribute _name##_attr = \
ab067e99 5022 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 5023
81819f0f
CL
5024static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5025{
44065b2e 5026 return sprintf(buf, "%u\n", s->size);
81819f0f
CL
5027}
5028SLAB_ATTR_RO(slab_size);
5029
5030static ssize_t align_show(struct kmem_cache *s, char *buf)
5031{
3a3791ec 5032 return sprintf(buf, "%u\n", s->align);
81819f0f
CL
5033}
5034SLAB_ATTR_RO(align);
5035
5036static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5037{
1b473f29 5038 return sprintf(buf, "%u\n", s->object_size);
81819f0f
CL
5039}
5040SLAB_ATTR_RO(object_size);
5041
5042static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5043{
19af27af 5044 return sprintf(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
5045}
5046SLAB_ATTR_RO(objs_per_slab);
5047
5048static ssize_t order_show(struct kmem_cache *s, char *buf)
5049{
19af27af 5050 return sprintf(buf, "%u\n", oo_order(s->oo));
81819f0f 5051}
32a6f409 5052SLAB_ATTR_RO(order);
81819f0f 5053
73d342b1
DR
5054static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5055{
5056 return sprintf(buf, "%lu\n", s->min_partial);
5057}
5058
5059static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5060 size_t length)
5061{
5062 unsigned long min;
5063 int err;
5064
3dbb95f7 5065 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5066 if (err)
5067 return err;
5068
c0bdb232 5069 set_min_partial(s, min);
73d342b1
DR
5070 return length;
5071}
5072SLAB_ATTR(min_partial);
5073
49e22585
CL
5074static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5075{
e6d0e1dc 5076 return sprintf(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
5077}
5078
5079static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5080 size_t length)
5081{
e5d9998f 5082 unsigned int objects;
49e22585
CL
5083 int err;
5084
e5d9998f 5085 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5086 if (err)
5087 return err;
345c905d 5088 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5089 return -EINVAL;
49e22585 5090
e6d0e1dc 5091 slub_set_cpu_partial(s, objects);
49e22585
CL
5092 flush_all(s);
5093 return length;
5094}
5095SLAB_ATTR(cpu_partial);
5096
81819f0f
CL
5097static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5098{
62c70bce
JP
5099 if (!s->ctor)
5100 return 0;
5101 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
5102}
5103SLAB_ATTR_RO(ctor);
5104
81819f0f
CL
5105static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5106{
4307c14f 5107 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5108}
5109SLAB_ATTR_RO(aliases);
5110
81819f0f
CL
5111static ssize_t partial_show(struct kmem_cache *s, char *buf)
5112{
d9acf4b7 5113 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5114}
5115SLAB_ATTR_RO(partial);
5116
5117static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5118{
d9acf4b7 5119 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5120}
5121SLAB_ATTR_RO(cpu_slabs);
5122
5123static ssize_t objects_show(struct kmem_cache *s, char *buf)
5124{
205ab99d 5125 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5126}
5127SLAB_ATTR_RO(objects);
5128
205ab99d
CL
5129static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5130{
5131 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5132}
5133SLAB_ATTR_RO(objects_partial);
5134
49e22585
CL
5135static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5136{
5137 int objects = 0;
5138 int pages = 0;
5139 int cpu;
5140 int len;
5141
5142 for_each_online_cpu(cpu) {
a93cf07b
WY
5143 struct page *page;
5144
5145 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5146
5147 if (page) {
5148 pages += page->pages;
5149 objects += page->pobjects;
5150 }
5151 }
5152
5153 len = sprintf(buf, "%d(%d)", objects, pages);
5154
5155#ifdef CONFIG_SMP
5156 for_each_online_cpu(cpu) {
a93cf07b
WY
5157 struct page *page;
5158
5159 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5160
5161 if (page && len < PAGE_SIZE - 20)
5162 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5163 page->pobjects, page->pages);
5164 }
5165#endif
5166 return len + sprintf(buf + len, "\n");
5167}
5168SLAB_ATTR_RO(slabs_cpu_partial);
5169
a5a84755
CL
5170static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5171{
5172 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5173}
8f58119a 5174SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
5175
5176static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5177{
5178 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5179}
5180SLAB_ATTR_RO(hwcache_align);
5181
5182#ifdef CONFIG_ZONE_DMA
5183static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5184{
5185 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5186}
5187SLAB_ATTR_RO(cache_dma);
5188#endif
5189
8eb8284b
DW
5190static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5191{
7bbdb81e 5192 return sprintf(buf, "%u\n", s->usersize);
8eb8284b
DW
5193}
5194SLAB_ATTR_RO(usersize);
5195
a5a84755
CL
5196static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5197{
5f0d5a3a 5198 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5199}
5200SLAB_ATTR_RO(destroy_by_rcu);
5201
ab4d5ed5 5202#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5203static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5204{
5205 return show_slab_objects(s, buf, SO_ALL);
5206}
5207SLAB_ATTR_RO(slabs);
5208
205ab99d
CL
5209static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5210{
5211 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5212}
5213SLAB_ATTR_RO(total_objects);
5214
81819f0f
CL
5215static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5216{
becfda68 5217 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 5218}
060807f8 5219SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
5220
5221static ssize_t trace_show(struct kmem_cache *s, char *buf)
5222{
5223 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5224}
060807f8 5225SLAB_ATTR_RO(trace);
81819f0f 5226
81819f0f
CL
5227static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5228{
5229 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5230}
5231
ad38b5b1 5232SLAB_ATTR_RO(red_zone);
81819f0f
CL
5233
5234static ssize_t poison_show(struct kmem_cache *s, char *buf)
5235{
5236 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5237}
5238
ad38b5b1 5239SLAB_ATTR_RO(poison);
81819f0f
CL
5240
5241static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5242{
5243 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5244}
5245
ad38b5b1 5246SLAB_ATTR_RO(store_user);
81819f0f 5247
53e15af0
CL
5248static ssize_t validate_show(struct kmem_cache *s, char *buf)
5249{
5250 return 0;
5251}
5252
5253static ssize_t validate_store(struct kmem_cache *s,
5254 const char *buf, size_t length)
5255{
434e245d
CL
5256 int ret = -EINVAL;
5257
5258 if (buf[0] == '1') {
5259 ret = validate_slab_cache(s);
5260 if (ret >= 0)
5261 ret = length;
5262 }
5263 return ret;
53e15af0
CL
5264}
5265SLAB_ATTR(validate);
a5a84755
CL
5266
5267static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5268{
5269 if (!(s->flags & SLAB_STORE_USER))
5270 return -ENOSYS;
5271 return list_locations(s, buf, TRACK_ALLOC);
5272}
5273SLAB_ATTR_RO(alloc_calls);
5274
5275static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5276{
5277 if (!(s->flags & SLAB_STORE_USER))
5278 return -ENOSYS;
5279 return list_locations(s, buf, TRACK_FREE);
5280}
5281SLAB_ATTR_RO(free_calls);
5282#endif /* CONFIG_SLUB_DEBUG */
5283
5284#ifdef CONFIG_FAILSLAB
5285static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5286{
5287 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5288}
060807f8 5289SLAB_ATTR_RO(failslab);
ab4d5ed5 5290#endif
53e15af0 5291
2086d26a
CL
5292static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5293{
5294 return 0;
5295}
5296
5297static ssize_t shrink_store(struct kmem_cache *s,
5298 const char *buf, size_t length)
5299{
832f37f5 5300 if (buf[0] == '1')
10befea9 5301 kmem_cache_shrink(s);
832f37f5 5302 else
2086d26a
CL
5303 return -EINVAL;
5304 return length;
5305}
5306SLAB_ATTR(shrink);
5307
81819f0f 5308#ifdef CONFIG_NUMA
9824601e 5309static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5310{
eb7235eb 5311 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5312}
5313
9824601e 5314static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5315 const char *buf, size_t length)
5316{
eb7235eb 5317 unsigned int ratio;
0121c619
CL
5318 int err;
5319
eb7235eb 5320 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5321 if (err)
5322 return err;
eb7235eb
AD
5323 if (ratio > 100)
5324 return -ERANGE;
0121c619 5325
eb7235eb 5326 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5327
81819f0f
CL
5328 return length;
5329}
9824601e 5330SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5331#endif
5332
8ff12cfc 5333#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5334static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5335{
5336 unsigned long sum = 0;
5337 int cpu;
5338 int len;
6da2ec56 5339 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5340
5341 if (!data)
5342 return -ENOMEM;
5343
5344 for_each_online_cpu(cpu) {
9dfc6e68 5345 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5346
5347 data[cpu] = x;
5348 sum += x;
5349 }
5350
5351 len = sprintf(buf, "%lu", sum);
5352
50ef37b9 5353#ifdef CONFIG_SMP
8ff12cfc
CL
5354 for_each_online_cpu(cpu) {
5355 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5356 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5357 }
50ef37b9 5358#endif
8ff12cfc
CL
5359 kfree(data);
5360 return len + sprintf(buf + len, "\n");
5361}
5362
78eb00cc
DR
5363static void clear_stat(struct kmem_cache *s, enum stat_item si)
5364{
5365 int cpu;
5366
5367 for_each_online_cpu(cpu)
9dfc6e68 5368 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5369}
5370
8ff12cfc
CL
5371#define STAT_ATTR(si, text) \
5372static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5373{ \
5374 return show_stat(s, buf, si); \
5375} \
78eb00cc
DR
5376static ssize_t text##_store(struct kmem_cache *s, \
5377 const char *buf, size_t length) \
5378{ \
5379 if (buf[0] != '0') \
5380 return -EINVAL; \
5381 clear_stat(s, si); \
5382 return length; \
5383} \
5384SLAB_ATTR(text); \
8ff12cfc
CL
5385
5386STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5387STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5388STAT_ATTR(FREE_FASTPATH, free_fastpath);
5389STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5390STAT_ATTR(FREE_FROZEN, free_frozen);
5391STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5392STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5393STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5394STAT_ATTR(ALLOC_SLAB, alloc_slab);
5395STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5396STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5397STAT_ATTR(FREE_SLAB, free_slab);
5398STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5399STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5400STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5401STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5402STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5403STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5404STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5405STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5406STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5407STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5408STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5409STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5410STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5411STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5412#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5413
06428780 5414static struct attribute *slab_attrs[] = {
81819f0f
CL
5415 &slab_size_attr.attr,
5416 &object_size_attr.attr,
5417 &objs_per_slab_attr.attr,
5418 &order_attr.attr,
73d342b1 5419 &min_partial_attr.attr,
49e22585 5420 &cpu_partial_attr.attr,
81819f0f 5421 &objects_attr.attr,
205ab99d 5422 &objects_partial_attr.attr,
81819f0f
CL
5423 &partial_attr.attr,
5424 &cpu_slabs_attr.attr,
5425 &ctor_attr.attr,
81819f0f
CL
5426 &aliases_attr.attr,
5427 &align_attr.attr,
81819f0f
CL
5428 &hwcache_align_attr.attr,
5429 &reclaim_account_attr.attr,
5430 &destroy_by_rcu_attr.attr,
a5a84755 5431 &shrink_attr.attr,
49e22585 5432 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5433#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5434 &total_objects_attr.attr,
5435 &slabs_attr.attr,
5436 &sanity_checks_attr.attr,
5437 &trace_attr.attr,
81819f0f
CL
5438 &red_zone_attr.attr,
5439 &poison_attr.attr,
5440 &store_user_attr.attr,
53e15af0 5441 &validate_attr.attr,
88a420e4
CL
5442 &alloc_calls_attr.attr,
5443 &free_calls_attr.attr,
ab4d5ed5 5444#endif
81819f0f
CL
5445#ifdef CONFIG_ZONE_DMA
5446 &cache_dma_attr.attr,
5447#endif
5448#ifdef CONFIG_NUMA
9824601e 5449 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5450#endif
5451#ifdef CONFIG_SLUB_STATS
5452 &alloc_fastpath_attr.attr,
5453 &alloc_slowpath_attr.attr,
5454 &free_fastpath_attr.attr,
5455 &free_slowpath_attr.attr,
5456 &free_frozen_attr.attr,
5457 &free_add_partial_attr.attr,
5458 &free_remove_partial_attr.attr,
5459 &alloc_from_partial_attr.attr,
5460 &alloc_slab_attr.attr,
5461 &alloc_refill_attr.attr,
e36a2652 5462 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5463 &free_slab_attr.attr,
5464 &cpuslab_flush_attr.attr,
5465 &deactivate_full_attr.attr,
5466 &deactivate_empty_attr.attr,
5467 &deactivate_to_head_attr.attr,
5468 &deactivate_to_tail_attr.attr,
5469 &deactivate_remote_frees_attr.attr,
03e404af 5470 &deactivate_bypass_attr.attr,
65c3376a 5471 &order_fallback_attr.attr,
b789ef51
CL
5472 &cmpxchg_double_fail_attr.attr,
5473 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5474 &cpu_partial_alloc_attr.attr,
5475 &cpu_partial_free_attr.attr,
8028dcea
AS
5476 &cpu_partial_node_attr.attr,
5477 &cpu_partial_drain_attr.attr,
81819f0f 5478#endif
4c13dd3b
DM
5479#ifdef CONFIG_FAILSLAB
5480 &failslab_attr.attr,
5481#endif
8eb8284b 5482 &usersize_attr.attr,
4c13dd3b 5483
81819f0f
CL
5484 NULL
5485};
5486
1fdaaa23 5487static const struct attribute_group slab_attr_group = {
81819f0f
CL
5488 .attrs = slab_attrs,
5489};
5490
5491static ssize_t slab_attr_show(struct kobject *kobj,
5492 struct attribute *attr,
5493 char *buf)
5494{
5495 struct slab_attribute *attribute;
5496 struct kmem_cache *s;
5497 int err;
5498
5499 attribute = to_slab_attr(attr);
5500 s = to_slab(kobj);
5501
5502 if (!attribute->show)
5503 return -EIO;
5504
5505 err = attribute->show(s, buf);
5506
5507 return err;
5508}
5509
5510static ssize_t slab_attr_store(struct kobject *kobj,
5511 struct attribute *attr,
5512 const char *buf, size_t len)
5513{
5514 struct slab_attribute *attribute;
5515 struct kmem_cache *s;
5516 int err;
5517
5518 attribute = to_slab_attr(attr);
5519 s = to_slab(kobj);
5520
5521 if (!attribute->store)
5522 return -EIO;
5523
5524 err = attribute->store(s, buf, len);
81819f0f
CL
5525 return err;
5526}
5527
41a21285
CL
5528static void kmem_cache_release(struct kobject *k)
5529{
5530 slab_kmem_cache_release(to_slab(k));
5531}
5532
52cf25d0 5533static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5534 .show = slab_attr_show,
5535 .store = slab_attr_store,
5536};
5537
5538static struct kobj_type slab_ktype = {
5539 .sysfs_ops = &slab_sysfs_ops,
41a21285 5540 .release = kmem_cache_release,
81819f0f
CL
5541};
5542
27c3a314 5543static struct kset *slab_kset;
81819f0f 5544
9a41707b
VD
5545static inline struct kset *cache_kset(struct kmem_cache *s)
5546{
9a41707b
VD
5547 return slab_kset;
5548}
5549
81819f0f
CL
5550#define ID_STR_LENGTH 64
5551
5552/* Create a unique string id for a slab cache:
6446faa2
CL
5553 *
5554 * Format :[flags-]size
81819f0f
CL
5555 */
5556static char *create_unique_id(struct kmem_cache *s)
5557{
5558 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5559 char *p = name;
5560
5561 BUG_ON(!name);
5562
5563 *p++ = ':';
5564 /*
5565 * First flags affecting slabcache operations. We will only
5566 * get here for aliasable slabs so we do not need to support
5567 * too many flags. The flags here must cover all flags that
5568 * are matched during merging to guarantee that the id is
5569 * unique.
5570 */
5571 if (s->flags & SLAB_CACHE_DMA)
5572 *p++ = 'd';
6d6ea1e9
NB
5573 if (s->flags & SLAB_CACHE_DMA32)
5574 *p++ = 'D';
81819f0f
CL
5575 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5576 *p++ = 'a';
becfda68 5577 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5578 *p++ = 'F';
230e9fc2
VD
5579 if (s->flags & SLAB_ACCOUNT)
5580 *p++ = 'A';
81819f0f
CL
5581 if (p != name + 1)
5582 *p++ = '-';
44065b2e 5583 p += sprintf(p, "%07u", s->size);
2633d7a0 5584
81819f0f
CL
5585 BUG_ON(p > name + ID_STR_LENGTH - 1);
5586 return name;
5587}
5588
5589static int sysfs_slab_add(struct kmem_cache *s)
5590{
5591 int err;
5592 const char *name;
1663f26d 5593 struct kset *kset = cache_kset(s);
45530c44 5594 int unmergeable = slab_unmergeable(s);
81819f0f 5595
1663f26d
TH
5596 if (!kset) {
5597 kobject_init(&s->kobj, &slab_ktype);
5598 return 0;
5599 }
5600
11066386
MC
5601 if (!unmergeable && disable_higher_order_debug &&
5602 (slub_debug & DEBUG_METADATA_FLAGS))
5603 unmergeable = 1;
5604
81819f0f
CL
5605 if (unmergeable) {
5606 /*
5607 * Slabcache can never be merged so we can use the name proper.
5608 * This is typically the case for debug situations. In that
5609 * case we can catch duplicate names easily.
5610 */
27c3a314 5611 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5612 name = s->name;
5613 } else {
5614 /*
5615 * Create a unique name for the slab as a target
5616 * for the symlinks.
5617 */
5618 name = create_unique_id(s);
5619 }
5620
1663f26d 5621 s->kobj.kset = kset;
26e4f205 5622 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
dde3c6b7
WH
5623 if (err) {
5624 kobject_put(&s->kobj);
80da026a 5625 goto out;
dde3c6b7 5626 }
81819f0f
CL
5627
5628 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5629 if (err)
5630 goto out_del_kobj;
9a41707b 5631
81819f0f
CL
5632 if (!unmergeable) {
5633 /* Setup first alias */
5634 sysfs_slab_alias(s, s->name);
81819f0f 5635 }
54b6a731
DJ
5636out:
5637 if (!unmergeable)
5638 kfree(name);
5639 return err;
5640out_del_kobj:
5641 kobject_del(&s->kobj);
54b6a731 5642 goto out;
81819f0f
CL
5643}
5644
d50d82fa
MP
5645void sysfs_slab_unlink(struct kmem_cache *s)
5646{
5647 if (slab_state >= FULL)
5648 kobject_del(&s->kobj);
5649}
5650
bf5eb3de
TH
5651void sysfs_slab_release(struct kmem_cache *s)
5652{
5653 if (slab_state >= FULL)
5654 kobject_put(&s->kobj);
81819f0f
CL
5655}
5656
5657/*
5658 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5659 * available lest we lose that information.
81819f0f
CL
5660 */
5661struct saved_alias {
5662 struct kmem_cache *s;
5663 const char *name;
5664 struct saved_alias *next;
5665};
5666
5af328a5 5667static struct saved_alias *alias_list;
81819f0f
CL
5668
5669static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5670{
5671 struct saved_alias *al;
5672
97d06609 5673 if (slab_state == FULL) {
81819f0f
CL
5674 /*
5675 * If we have a leftover link then remove it.
5676 */
27c3a314
GKH
5677 sysfs_remove_link(&slab_kset->kobj, name);
5678 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5679 }
5680
5681 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5682 if (!al)
5683 return -ENOMEM;
5684
5685 al->s = s;
5686 al->name = name;
5687 al->next = alias_list;
5688 alias_list = al;
5689 return 0;
5690}
5691
5692static int __init slab_sysfs_init(void)
5693{
5b95a4ac 5694 struct kmem_cache *s;
81819f0f
CL
5695 int err;
5696
18004c5d 5697 mutex_lock(&slab_mutex);
2bce6485 5698
d7660ce5 5699 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 5700 if (!slab_kset) {
18004c5d 5701 mutex_unlock(&slab_mutex);
f9f58285 5702 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5703 return -ENOSYS;
5704 }
5705
97d06609 5706 slab_state = FULL;
26a7bd03 5707
5b95a4ac 5708 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5709 err = sysfs_slab_add(s);
5d540fb7 5710 if (err)
f9f58285
FF
5711 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5712 s->name);
26a7bd03 5713 }
81819f0f
CL
5714
5715 while (alias_list) {
5716 struct saved_alias *al = alias_list;
5717
5718 alias_list = alias_list->next;
5719 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5720 if (err)
f9f58285
FF
5721 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5722 al->name);
81819f0f
CL
5723 kfree(al);
5724 }
5725
18004c5d 5726 mutex_unlock(&slab_mutex);
81819f0f
CL
5727 resiliency_test();
5728 return 0;
5729}
5730
5731__initcall(slab_sysfs_init);
ab4d5ed5 5732#endif /* CONFIG_SYSFS */
57ed3eda
PE
5733
5734/*
5735 * The /proc/slabinfo ABI
5736 */
5b365771 5737#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5738void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5739{
57ed3eda 5740 unsigned long nr_slabs = 0;
205ab99d
CL
5741 unsigned long nr_objs = 0;
5742 unsigned long nr_free = 0;
57ed3eda 5743 int node;
fa45dc25 5744 struct kmem_cache_node *n;
57ed3eda 5745
fa45dc25 5746 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5747 nr_slabs += node_nr_slabs(n);
5748 nr_objs += node_nr_objs(n);
205ab99d 5749 nr_free += count_partial(n, count_free);
57ed3eda
PE
5750 }
5751
0d7561c6
GC
5752 sinfo->active_objs = nr_objs - nr_free;
5753 sinfo->num_objs = nr_objs;
5754 sinfo->active_slabs = nr_slabs;
5755 sinfo->num_slabs = nr_slabs;
5756 sinfo->objects_per_slab = oo_objects(s->oo);
5757 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5758}
5759
0d7561c6 5760void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5761{
7b3c3a50
AD
5762}
5763
b7454ad3
GC
5764ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5765 size_t count, loff_t *ppos)
7b3c3a50 5766{
b7454ad3 5767 return -EIO;
7b3c3a50 5768}
5b365771 5769#endif /* CONFIG_SLUB_DEBUG */