]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/slub.c
kasan, mm: fix crash with HW_TAGS and DEBUG_PAGEALLOC
[mirror_ubuntu-hirsute-kernel.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
881db7fb
CL
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
2482ddec 36#include <linux/random.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 54 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 55 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
881db7fb
CL
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
65 * page's freelist.
81819f0f
CL
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
81819f0f
CL
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
672bba3a
CL
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 88 * freed then the slab will show up again on the partial lists.
672bba3a
CL
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
81819f0f
CL
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
aed68148 96 * page->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f 111 *
aed68148 112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
ca0cab65
VB
117#ifdef CONFIG_SLUB_DEBUG
118#ifdef CONFIG_SLUB_DEBUG_ON
119DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
120#else
121DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
122#endif
123#endif
124
59052e89
VB
125static inline bool kmem_cache_debug(struct kmem_cache *s)
126{
127 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 128}
5577bd8a 129
117d54df 130void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 131{
59052e89 132 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
133 p += s->red_left_pad;
134
135 return p;
136}
137
345c905d
JK
138static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
139{
140#ifdef CONFIG_SLUB_CPU_PARTIAL
141 return !kmem_cache_debug(s);
142#else
143 return false;
144#endif
145}
146
81819f0f
CL
147/*
148 * Issues still to be resolved:
149 *
81819f0f
CL
150 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
151 *
81819f0f
CL
152 * - Variable sizing of the per node arrays
153 */
154
155/* Enable to test recovery from slab corruption on boot */
156#undef SLUB_RESILIENCY_TEST
157
b789ef51
CL
158/* Enable to log cmpxchg failures */
159#undef SLUB_DEBUG_CMPXCHG
160
2086d26a
CL
161/*
162 * Mininum number of partial slabs. These will be left on the partial
163 * lists even if they are empty. kmem_cache_shrink may reclaim them.
164 */
76be8950 165#define MIN_PARTIAL 5
e95eed57 166
2086d26a
CL
167/*
168 * Maximum number of desirable partial slabs.
169 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 170 * sort the partial list by the number of objects in use.
2086d26a
CL
171 */
172#define MAX_PARTIAL 10
173
becfda68 174#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 175 SLAB_POISON | SLAB_STORE_USER)
672bba3a 176
149daaf3
LA
177/*
178 * These debug flags cannot use CMPXCHG because there might be consistency
179 * issues when checking or reading debug information
180 */
181#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
182 SLAB_TRACE)
183
184
fa5ec8a1 185/*
3de47213
DR
186 * Debugging flags that require metadata to be stored in the slab. These get
187 * disabled when slub_debug=O is used and a cache's min order increases with
188 * metadata.
fa5ec8a1 189 */
3de47213 190#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 191
210b5c06
CG
192#define OO_SHIFT 16
193#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 194#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 195
81819f0f 196/* Internal SLUB flags */
d50112ed 197/* Poison object */
4fd0b46e 198#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 199/* Use cmpxchg_double */
4fd0b46e 200#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 201
02cbc874
CL
202/*
203 * Tracking user of a slab.
204 */
d6543e39 205#define TRACK_ADDRS_COUNT 16
02cbc874 206struct track {
ce71e27c 207 unsigned long addr; /* Called from address */
d6543e39
BG
208#ifdef CONFIG_STACKTRACE
209 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
210#endif
02cbc874
CL
211 int cpu; /* Was running on cpu */
212 int pid; /* Pid context */
213 unsigned long when; /* When did the operation occur */
214};
215
216enum track_item { TRACK_ALLOC, TRACK_FREE };
217
ab4d5ed5 218#ifdef CONFIG_SYSFS
81819f0f
CL
219static int sysfs_slab_add(struct kmem_cache *);
220static int sysfs_slab_alias(struct kmem_cache *, const char *);
81819f0f 221#else
0c710013
CL
222static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
81819f0f
CL
225#endif
226
4fdccdfb 227static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
228{
229#ifdef CONFIG_SLUB_STATS
88da03a6
CL
230 /*
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
233 */
234 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
235#endif
236}
237
81819f0f
CL
238/********************************************************************
239 * Core slab cache functions
240 *******************************************************************/
241
2482ddec
KC
242/*
243 * Returns freelist pointer (ptr). With hardening, this is obfuscated
244 * with an XOR of the address where the pointer is held and a per-cache
245 * random number.
246 */
247static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 unsigned long ptr_addr)
249{
250#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9 251 /*
aa1ef4d7 252 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
d36a63a9
AK
253 * Normally, this doesn't cause any issues, as both set_freepointer()
254 * and get_freepointer() are called with a pointer with the same tag.
255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 * example, when __free_slub() iterates over objects in a cache, it
257 * passes untagged pointers to check_object(). check_object() in turns
258 * calls get_freepointer() with an untagged pointer, which causes the
259 * freepointer to be restored incorrectly.
260 */
261 return (void *)((unsigned long)ptr ^ s->random ^
1ad53d9f 262 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
263#else
264 return ptr;
265#endif
266}
267
268/* Returns the freelist pointer recorded at location ptr_addr. */
269static inline void *freelist_dereference(const struct kmem_cache *s,
270 void *ptr_addr)
271{
272 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
273 (unsigned long)ptr_addr);
274}
275
7656c72b
CL
276static inline void *get_freepointer(struct kmem_cache *s, void *object)
277{
aa1ef4d7 278 object = kasan_reset_tag(object);
2482ddec 279 return freelist_dereference(s, object + s->offset);
7656c72b
CL
280}
281
0ad9500e
ED
282static void prefetch_freepointer(const struct kmem_cache *s, void *object)
283{
0882ff91 284 prefetch(object + s->offset);
0ad9500e
ED
285}
286
1393d9a1
CL
287static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
288{
2482ddec 289 unsigned long freepointer_addr;
1393d9a1
CL
290 void *p;
291
8e57f8ac 292 if (!debug_pagealloc_enabled_static())
922d566c
JK
293 return get_freepointer(s, object);
294
2482ddec 295 freepointer_addr = (unsigned long)object + s->offset;
fe557319 296 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
2482ddec 297 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
298}
299
7656c72b
CL
300static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
301{
2482ddec
KC
302 unsigned long freeptr_addr = (unsigned long)object + s->offset;
303
ce6fa91b
AP
304#ifdef CONFIG_SLAB_FREELIST_HARDENED
305 BUG_ON(object == fp); /* naive detection of double free or corruption */
306#endif
307
aa1ef4d7 308 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
2482ddec 309 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
310}
311
312/* Loop over all objects in a slab */
224a88be 313#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
314 for (__p = fixup_red_left(__s, __addr); \
315 __p < (__addr) + (__objects) * (__s)->size; \
316 __p += (__s)->size)
7656c72b 317
9736d2a9 318static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 319{
9736d2a9 320 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
321}
322
19af27af 323static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 324 unsigned int size)
834f3d11
CL
325{
326 struct kmem_cache_order_objects x = {
9736d2a9 327 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
328 };
329
330 return x;
331}
332
19af27af 333static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 334{
210b5c06 335 return x.x >> OO_SHIFT;
834f3d11
CL
336}
337
19af27af 338static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 339{
210b5c06 340 return x.x & OO_MASK;
834f3d11
CL
341}
342
881db7fb
CL
343/*
344 * Per slab locking using the pagelock
345 */
346static __always_inline void slab_lock(struct page *page)
347{
48c935ad 348 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
349 bit_spin_lock(PG_locked, &page->flags);
350}
351
352static __always_inline void slab_unlock(struct page *page)
353{
48c935ad 354 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
355 __bit_spin_unlock(PG_locked, &page->flags);
356}
357
1d07171c
CL
358/* Interrupts must be disabled (for the fallback code to work right) */
359static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
360 void *freelist_old, unsigned long counters_old,
361 void *freelist_new, unsigned long counters_new,
362 const char *n)
363{
364 VM_BUG_ON(!irqs_disabled());
2565409f
HC
365#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
366 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 367 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 368 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
369 freelist_old, counters_old,
370 freelist_new, counters_new))
6f6528a1 371 return true;
1d07171c
CL
372 } else
373#endif
374 {
375 slab_lock(page);
d0e0ac97
CG
376 if (page->freelist == freelist_old &&
377 page->counters == counters_old) {
1d07171c 378 page->freelist = freelist_new;
7d27a04b 379 page->counters = counters_new;
1d07171c 380 slab_unlock(page);
6f6528a1 381 return true;
1d07171c
CL
382 }
383 slab_unlock(page);
384 }
385
386 cpu_relax();
387 stat(s, CMPXCHG_DOUBLE_FAIL);
388
389#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 390 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
391#endif
392
6f6528a1 393 return false;
1d07171c
CL
394}
395
b789ef51
CL
396static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
397 void *freelist_old, unsigned long counters_old,
398 void *freelist_new, unsigned long counters_new,
399 const char *n)
400{
2565409f
HC
401#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
402 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 403 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 404 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
405 freelist_old, counters_old,
406 freelist_new, counters_new))
6f6528a1 407 return true;
b789ef51
CL
408 } else
409#endif
410 {
1d07171c
CL
411 unsigned long flags;
412
413 local_irq_save(flags);
881db7fb 414 slab_lock(page);
d0e0ac97
CG
415 if (page->freelist == freelist_old &&
416 page->counters == counters_old) {
b789ef51 417 page->freelist = freelist_new;
7d27a04b 418 page->counters = counters_new;
881db7fb 419 slab_unlock(page);
1d07171c 420 local_irq_restore(flags);
6f6528a1 421 return true;
b789ef51 422 }
881db7fb 423 slab_unlock(page);
1d07171c 424 local_irq_restore(flags);
b789ef51
CL
425 }
426
427 cpu_relax();
428 stat(s, CMPXCHG_DOUBLE_FAIL);
429
430#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 431 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
432#endif
433
6f6528a1 434 return false;
b789ef51
CL
435}
436
41ecc55b 437#ifdef CONFIG_SLUB_DEBUG
90e9f6a6
YZ
438static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
439static DEFINE_SPINLOCK(object_map_lock);
440
5f80b13a
CL
441/*
442 * Determine a map of object in use on a page.
443 *
881db7fb 444 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
445 * not vanish from under us.
446 */
90e9f6a6 447static unsigned long *get_map(struct kmem_cache *s, struct page *page)
31364c2e 448 __acquires(&object_map_lock)
5f80b13a
CL
449{
450 void *p;
451 void *addr = page_address(page);
452
90e9f6a6
YZ
453 VM_BUG_ON(!irqs_disabled());
454
455 spin_lock(&object_map_lock);
456
457 bitmap_zero(object_map, page->objects);
458
5f80b13a 459 for (p = page->freelist; p; p = get_freepointer(s, p))
4138fdfc 460 set_bit(__obj_to_index(s, addr, p), object_map);
90e9f6a6
YZ
461
462 return object_map;
463}
464
81aba9e0 465static void put_map(unsigned long *map) __releases(&object_map_lock)
90e9f6a6
YZ
466{
467 VM_BUG_ON(map != object_map);
90e9f6a6 468 spin_unlock(&object_map_lock);
5f80b13a
CL
469}
470
870b1fbb 471static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
472{
473 if (s->flags & SLAB_RED_ZONE)
474 return s->size - s->red_left_pad;
475
476 return s->size;
477}
478
479static inline void *restore_red_left(struct kmem_cache *s, void *p)
480{
481 if (s->flags & SLAB_RED_ZONE)
482 p -= s->red_left_pad;
483
484 return p;
485}
486
41ecc55b
CL
487/*
488 * Debug settings:
489 */
89d3c87e 490#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 491static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 492#else
d50112ed 493static slab_flags_t slub_debug;
f0630fff 494#endif
41ecc55b 495
e17f1dfb 496static char *slub_debug_string;
fa5ec8a1 497static int disable_higher_order_debug;
41ecc55b 498
a79316c6
AR
499/*
500 * slub is about to manipulate internal object metadata. This memory lies
501 * outside the range of the allocated object, so accessing it would normally
502 * be reported by kasan as a bounds error. metadata_access_enable() is used
503 * to tell kasan that these accesses are OK.
504 */
505static inline void metadata_access_enable(void)
506{
507 kasan_disable_current();
508}
509
510static inline void metadata_access_disable(void)
511{
512 kasan_enable_current();
513}
514
81819f0f
CL
515/*
516 * Object debugging
517 */
d86bd1be
JK
518
519/* Verify that a pointer has an address that is valid within a slab page */
520static inline int check_valid_pointer(struct kmem_cache *s,
521 struct page *page, void *object)
522{
523 void *base;
524
525 if (!object)
526 return 1;
527
528 base = page_address(page);
338cfaad 529 object = kasan_reset_tag(object);
d86bd1be
JK
530 object = restore_red_left(s, object);
531 if (object < base || object >= base + page->objects * s->size ||
532 (object - base) % s->size) {
533 return 0;
534 }
535
536 return 1;
537}
538
aa2efd5e
DT
539static void print_section(char *level, char *text, u8 *addr,
540 unsigned int length)
81819f0f 541{
a79316c6 542 metadata_access_enable();
aa1ef4d7
AK
543 print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS,
544 16, 1, addr, length, 1);
a79316c6 545 metadata_access_disable();
81819f0f
CL
546}
547
cbfc35a4
WL
548/*
549 * See comment in calculate_sizes().
550 */
551static inline bool freeptr_outside_object(struct kmem_cache *s)
552{
553 return s->offset >= s->inuse;
554}
555
556/*
557 * Return offset of the end of info block which is inuse + free pointer if
558 * not overlapping with object.
559 */
560static inline unsigned int get_info_end(struct kmem_cache *s)
561{
562 if (freeptr_outside_object(s))
563 return s->inuse + sizeof(void *);
564 else
565 return s->inuse;
566}
567
81819f0f
CL
568static struct track *get_track(struct kmem_cache *s, void *object,
569 enum track_item alloc)
570{
571 struct track *p;
572
cbfc35a4 573 p = object + get_info_end(s);
81819f0f 574
aa1ef4d7 575 return kasan_reset_tag(p + alloc);
81819f0f
CL
576}
577
578static void set_track(struct kmem_cache *s, void *object,
ce71e27c 579 enum track_item alloc, unsigned long addr)
81819f0f 580{
1a00df4a 581 struct track *p = get_track(s, object, alloc);
81819f0f 582
81819f0f 583 if (addr) {
d6543e39 584#ifdef CONFIG_STACKTRACE
79716799 585 unsigned int nr_entries;
d6543e39 586
a79316c6 587 metadata_access_enable();
aa1ef4d7
AK
588 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
589 TRACK_ADDRS_COUNT, 3);
a79316c6 590 metadata_access_disable();
d6543e39 591
79716799
TG
592 if (nr_entries < TRACK_ADDRS_COUNT)
593 p->addrs[nr_entries] = 0;
d6543e39 594#endif
81819f0f
CL
595 p->addr = addr;
596 p->cpu = smp_processor_id();
88e4ccf2 597 p->pid = current->pid;
81819f0f 598 p->when = jiffies;
b8ca7ff7 599 } else {
81819f0f 600 memset(p, 0, sizeof(struct track));
b8ca7ff7 601 }
81819f0f
CL
602}
603
81819f0f
CL
604static void init_tracking(struct kmem_cache *s, void *object)
605{
24922684
CL
606 if (!(s->flags & SLAB_STORE_USER))
607 return;
608
ce71e27c
EGM
609 set_track(s, object, TRACK_FREE, 0UL);
610 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
611}
612
86609d33 613static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
614{
615 if (!t->addr)
616 return;
617
f9f58285 618 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 619 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
d6543e39
BG
620#ifdef CONFIG_STACKTRACE
621 {
622 int i;
623 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
624 if (t->addrs[i])
f9f58285 625 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
626 else
627 break;
628 }
629#endif
24922684
CL
630}
631
e42f174e 632void print_tracking(struct kmem_cache *s, void *object)
24922684 633{
86609d33 634 unsigned long pr_time = jiffies;
24922684
CL
635 if (!(s->flags & SLAB_STORE_USER))
636 return;
637
86609d33
CP
638 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
639 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
640}
641
642static void print_page_info(struct page *page)
643{
f9f58285 644 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 645 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
646
647}
648
649static void slab_bug(struct kmem_cache *s, char *fmt, ...)
650{
ecc42fbe 651 struct va_format vaf;
24922684 652 va_list args;
24922684
CL
653
654 va_start(args, fmt);
ecc42fbe
FF
655 vaf.fmt = fmt;
656 vaf.va = &args;
f9f58285 657 pr_err("=============================================================================\n");
ecc42fbe 658 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 659 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 660
373d4d09 661 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 662 va_end(args);
81819f0f
CL
663}
664
24922684
CL
665static void slab_fix(struct kmem_cache *s, char *fmt, ...)
666{
ecc42fbe 667 struct va_format vaf;
24922684 668 va_list args;
24922684
CL
669
670 va_start(args, fmt);
ecc42fbe
FF
671 vaf.fmt = fmt;
672 vaf.va = &args;
673 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 674 va_end(args);
24922684
CL
675}
676
52f23478 677static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 678 void **freelist, void *nextfree)
52f23478
DZ
679{
680 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
dc07a728
ER
681 !check_valid_pointer(s, page, nextfree) && freelist) {
682 object_err(s, page, *freelist, "Freechain corrupt");
683 *freelist = NULL;
52f23478
DZ
684 slab_fix(s, "Isolate corrupted freechain");
685 return true;
686 }
687
688 return false;
689}
690
24922684 691static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
692{
693 unsigned int off; /* Offset of last byte */
a973e9dd 694 u8 *addr = page_address(page);
24922684
CL
695
696 print_tracking(s, p);
697
698 print_page_info(page);
699
f9f58285
FF
700 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
701 p, p - addr, get_freepointer(s, p));
24922684 702
d86bd1be 703 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
704 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
705 s->red_left_pad);
d86bd1be 706 else if (p > addr + 16)
aa2efd5e 707 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 708
aa2efd5e 709 print_section(KERN_ERR, "Object ", p,
1b473f29 710 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 711 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 712 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 713 s->inuse - s->object_size);
81819f0f 714
cbfc35a4 715 off = get_info_end(s);
81819f0f 716
24922684 717 if (s->flags & SLAB_STORE_USER)
81819f0f 718 off += 2 * sizeof(struct track);
81819f0f 719
80a9201a
AP
720 off += kasan_metadata_size(s);
721
d86bd1be 722 if (off != size_from_object(s))
81819f0f 723 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
724 print_section(KERN_ERR, "Padding ", p + off,
725 size_from_object(s) - off);
24922684
CL
726
727 dump_stack();
81819f0f
CL
728}
729
75c66def 730void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
731 u8 *object, char *reason)
732{
3dc50637 733 slab_bug(s, "%s", reason);
24922684 734 print_trailer(s, page, object);
81819f0f
CL
735}
736
a38965bf 737static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 738 const char *fmt, ...)
81819f0f
CL
739{
740 va_list args;
741 char buf[100];
742
24922684
CL
743 va_start(args, fmt);
744 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 745 va_end(args);
3dc50637 746 slab_bug(s, "%s", buf);
24922684 747 print_page_info(page);
81819f0f
CL
748 dump_stack();
749}
750
f7cb1933 751static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f 752{
aa1ef4d7 753 u8 *p = kasan_reset_tag(object);
81819f0f 754
d86bd1be
JK
755 if (s->flags & SLAB_RED_ZONE)
756 memset(p - s->red_left_pad, val, s->red_left_pad);
757
81819f0f 758 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
759 memset(p, POISON_FREE, s->object_size - 1);
760 p[s->object_size - 1] = POISON_END;
81819f0f
CL
761 }
762
763 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 764 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
765}
766
24922684
CL
767static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
768 void *from, void *to)
769{
770 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
771 memset(from, data, to - from);
772}
773
774static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
775 u8 *object, char *what,
06428780 776 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
777{
778 u8 *fault;
779 u8 *end;
e1b70dd1 780 u8 *addr = page_address(page);
24922684 781
a79316c6 782 metadata_access_enable();
aa1ef4d7 783 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
a79316c6 784 metadata_access_disable();
24922684
CL
785 if (!fault)
786 return 1;
787
788 end = start + bytes;
789 while (end > fault && end[-1] == value)
790 end--;
791
792 slab_bug(s, "%s overwritten", what);
e1b70dd1
MC
793 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
794 fault, end - 1, fault - addr,
795 fault[0], value);
24922684
CL
796 print_trailer(s, page, object);
797
798 restore_bytes(s, what, value, fault, end);
799 return 0;
81819f0f
CL
800}
801
81819f0f
CL
802/*
803 * Object layout:
804 *
805 * object address
806 * Bytes of the object to be managed.
807 * If the freepointer may overlay the object then the free
cbfc35a4 808 * pointer is at the middle of the object.
672bba3a 809 *
81819f0f
CL
810 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
811 * 0xa5 (POISON_END)
812 *
3b0efdfa 813 * object + s->object_size
81819f0f 814 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 815 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 816 * object_size == inuse.
672bba3a 817 *
81819f0f
CL
818 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
819 * 0xcc (RED_ACTIVE) for objects in use.
820 *
821 * object + s->inuse
672bba3a
CL
822 * Meta data starts here.
823 *
81819f0f
CL
824 * A. Free pointer (if we cannot overwrite object on free)
825 * B. Tracking data for SLAB_STORE_USER
672bba3a 826 * C. Padding to reach required alignment boundary or at mininum
6446faa2 827 * one word if debugging is on to be able to detect writes
672bba3a
CL
828 * before the word boundary.
829 *
830 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
831 *
832 * object + s->size
672bba3a 833 * Nothing is used beyond s->size.
81819f0f 834 *
3b0efdfa 835 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 836 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
837 * may be used with merged slabcaches.
838 */
839
81819f0f
CL
840static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
841{
cbfc35a4 842 unsigned long off = get_info_end(s); /* The end of info */
81819f0f
CL
843
844 if (s->flags & SLAB_STORE_USER)
845 /* We also have user information there */
846 off += 2 * sizeof(struct track);
847
80a9201a
AP
848 off += kasan_metadata_size(s);
849
d86bd1be 850 if (size_from_object(s) == off)
81819f0f
CL
851 return 1;
852
24922684 853 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 854 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
855}
856
39b26464 857/* Check the pad bytes at the end of a slab page */
81819f0f
CL
858static int slab_pad_check(struct kmem_cache *s, struct page *page)
859{
24922684
CL
860 u8 *start;
861 u8 *fault;
862 u8 *end;
5d682681 863 u8 *pad;
24922684
CL
864 int length;
865 int remainder;
81819f0f
CL
866
867 if (!(s->flags & SLAB_POISON))
868 return 1;
869
a973e9dd 870 start = page_address(page);
a50b854e 871 length = page_size(page);
39b26464
CL
872 end = start + length;
873 remainder = length % s->size;
81819f0f
CL
874 if (!remainder)
875 return 1;
876
5d682681 877 pad = end - remainder;
a79316c6 878 metadata_access_enable();
aa1ef4d7 879 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
a79316c6 880 metadata_access_disable();
24922684
CL
881 if (!fault)
882 return 1;
883 while (end > fault && end[-1] == POISON_INUSE)
884 end--;
885
e1b70dd1
MC
886 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
887 fault, end - 1, fault - start);
5d682681 888 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 889
5d682681 890 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 891 return 0;
81819f0f
CL
892}
893
894static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 895 void *object, u8 val)
81819f0f
CL
896{
897 u8 *p = object;
3b0efdfa 898 u8 *endobject = object + s->object_size;
81819f0f
CL
899
900 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
901 if (!check_bytes_and_report(s, page, object, "Redzone",
902 object - s->red_left_pad, val, s->red_left_pad))
903 return 0;
904
24922684 905 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 906 endobject, val, s->inuse - s->object_size))
81819f0f 907 return 0;
81819f0f 908 } else {
3b0efdfa 909 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 910 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
911 endobject, POISON_INUSE,
912 s->inuse - s->object_size);
3adbefee 913 }
81819f0f
CL
914 }
915
916 if (s->flags & SLAB_POISON) {
f7cb1933 917 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 918 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 919 POISON_FREE, s->object_size - 1) ||
24922684 920 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 921 p + s->object_size - 1, POISON_END, 1)))
81819f0f 922 return 0;
81819f0f
CL
923 /*
924 * check_pad_bytes cleans up on its own.
925 */
926 check_pad_bytes(s, page, p);
927 }
928
cbfc35a4 929 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
930 /*
931 * Object and freepointer overlap. Cannot check
932 * freepointer while object is allocated.
933 */
934 return 1;
935
936 /* Check free pointer validity */
937 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
938 object_err(s, page, p, "Freepointer corrupt");
939 /*
9f6c708e 940 * No choice but to zap it and thus lose the remainder
81819f0f 941 * of the free objects in this slab. May cause
672bba3a 942 * another error because the object count is now wrong.
81819f0f 943 */
a973e9dd 944 set_freepointer(s, p, NULL);
81819f0f
CL
945 return 0;
946 }
947 return 1;
948}
949
950static int check_slab(struct kmem_cache *s, struct page *page)
951{
39b26464
CL
952 int maxobj;
953
81819f0f
CL
954 VM_BUG_ON(!irqs_disabled());
955
956 if (!PageSlab(page)) {
24922684 957 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
958 return 0;
959 }
39b26464 960
9736d2a9 961 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
962 if (page->objects > maxobj) {
963 slab_err(s, page, "objects %u > max %u",
f6edde9c 964 page->objects, maxobj);
39b26464
CL
965 return 0;
966 }
967 if (page->inuse > page->objects) {
24922684 968 slab_err(s, page, "inuse %u > max %u",
f6edde9c 969 page->inuse, page->objects);
81819f0f
CL
970 return 0;
971 }
972 /* Slab_pad_check fixes things up after itself */
973 slab_pad_check(s, page);
974 return 1;
975}
976
977/*
672bba3a
CL
978 * Determine if a certain object on a page is on the freelist. Must hold the
979 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
980 */
981static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
982{
983 int nr = 0;
881db7fb 984 void *fp;
81819f0f 985 void *object = NULL;
f6edde9c 986 int max_objects;
81819f0f 987
881db7fb 988 fp = page->freelist;
39b26464 989 while (fp && nr <= page->objects) {
81819f0f
CL
990 if (fp == search)
991 return 1;
992 if (!check_valid_pointer(s, page, fp)) {
993 if (object) {
994 object_err(s, page, object,
995 "Freechain corrupt");
a973e9dd 996 set_freepointer(s, object, NULL);
81819f0f 997 } else {
24922684 998 slab_err(s, page, "Freepointer corrupt");
a973e9dd 999 page->freelist = NULL;
39b26464 1000 page->inuse = page->objects;
24922684 1001 slab_fix(s, "Freelist cleared");
81819f0f
CL
1002 return 0;
1003 }
1004 break;
1005 }
1006 object = fp;
1007 fp = get_freepointer(s, object);
1008 nr++;
1009 }
1010
9736d2a9 1011 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
1012 if (max_objects > MAX_OBJS_PER_PAGE)
1013 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
1014
1015 if (page->objects != max_objects) {
756a025f
JP
1016 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1017 page->objects, max_objects);
224a88be
CL
1018 page->objects = max_objects;
1019 slab_fix(s, "Number of objects adjusted.");
1020 }
39b26464 1021 if (page->inuse != page->objects - nr) {
756a025f
JP
1022 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1023 page->inuse, page->objects - nr);
39b26464 1024 page->inuse = page->objects - nr;
24922684 1025 slab_fix(s, "Object count adjusted.");
81819f0f
CL
1026 }
1027 return search == NULL;
1028}
1029
0121c619
CL
1030static void trace(struct kmem_cache *s, struct page *page, void *object,
1031 int alloc)
3ec09742
CL
1032{
1033 if (s->flags & SLAB_TRACE) {
f9f58285 1034 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1035 s->name,
1036 alloc ? "alloc" : "free",
1037 object, page->inuse,
1038 page->freelist);
1039
1040 if (!alloc)
aa2efd5e 1041 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1042 s->object_size);
3ec09742
CL
1043
1044 dump_stack();
1045 }
1046}
1047
643b1138 1048/*
672bba3a 1049 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1050 */
5cc6eee8
CL
1051static void add_full(struct kmem_cache *s,
1052 struct kmem_cache_node *n, struct page *page)
643b1138 1053{
5cc6eee8
CL
1054 if (!(s->flags & SLAB_STORE_USER))
1055 return;
1056
255d0884 1057 lockdep_assert_held(&n->list_lock);
916ac052 1058 list_add(&page->slab_list, &n->full);
643b1138
CL
1059}
1060
c65c1877 1061static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1062{
643b1138
CL
1063 if (!(s->flags & SLAB_STORE_USER))
1064 return;
1065
255d0884 1066 lockdep_assert_held(&n->list_lock);
916ac052 1067 list_del(&page->slab_list);
643b1138
CL
1068}
1069
0f389ec6
CL
1070/* Tracking of the number of slabs for debugging purposes */
1071static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1072{
1073 struct kmem_cache_node *n = get_node(s, node);
1074
1075 return atomic_long_read(&n->nr_slabs);
1076}
1077
26c02cf0
AB
1078static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1079{
1080 return atomic_long_read(&n->nr_slabs);
1081}
1082
205ab99d 1083static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1084{
1085 struct kmem_cache_node *n = get_node(s, node);
1086
1087 /*
1088 * May be called early in order to allocate a slab for the
1089 * kmem_cache_node structure. Solve the chicken-egg
1090 * dilemma by deferring the increment of the count during
1091 * bootstrap (see early_kmem_cache_node_alloc).
1092 */
338b2642 1093 if (likely(n)) {
0f389ec6 1094 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1095 atomic_long_add(objects, &n->total_objects);
1096 }
0f389ec6 1097}
205ab99d 1098static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1099{
1100 struct kmem_cache_node *n = get_node(s, node);
1101
1102 atomic_long_dec(&n->nr_slabs);
205ab99d 1103 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1104}
1105
1106/* Object debug checks for alloc/free paths */
3ec09742
CL
1107static void setup_object_debug(struct kmem_cache *s, struct page *page,
1108 void *object)
1109{
8fc8d666 1110 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1111 return;
1112
f7cb1933 1113 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1114 init_tracking(s, object);
1115}
1116
a50b854e
MWO
1117static
1118void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
a7101224 1119{
8fc8d666 1120 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1121 return;
1122
1123 metadata_access_enable();
aa1ef4d7 1124 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
a7101224
AK
1125 metadata_access_disable();
1126}
1127
becfda68 1128static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1129 struct page *page, void *object)
81819f0f
CL
1130{
1131 if (!check_slab(s, page))
becfda68 1132 return 0;
81819f0f 1133
81819f0f
CL
1134 if (!check_valid_pointer(s, page, object)) {
1135 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1136 return 0;
81819f0f
CL
1137 }
1138
f7cb1933 1139 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1140 return 0;
1141
1142 return 1;
1143}
1144
1145static noinline int alloc_debug_processing(struct kmem_cache *s,
1146 struct page *page,
1147 void *object, unsigned long addr)
1148{
1149 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1150 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1151 goto bad;
1152 }
81819f0f 1153
3ec09742
CL
1154 /* Success perform special debug activities for allocs */
1155 if (s->flags & SLAB_STORE_USER)
1156 set_track(s, object, TRACK_ALLOC, addr);
1157 trace(s, page, object, 1);
f7cb1933 1158 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1159 return 1;
3ec09742 1160
81819f0f
CL
1161bad:
1162 if (PageSlab(page)) {
1163 /*
1164 * If this is a slab page then lets do the best we can
1165 * to avoid issues in the future. Marking all objects
672bba3a 1166 * as used avoids touching the remaining objects.
81819f0f 1167 */
24922684 1168 slab_fix(s, "Marking all objects used");
39b26464 1169 page->inuse = page->objects;
a973e9dd 1170 page->freelist = NULL;
81819f0f
CL
1171 }
1172 return 0;
1173}
1174
becfda68
LA
1175static inline int free_consistency_checks(struct kmem_cache *s,
1176 struct page *page, void *object, unsigned long addr)
81819f0f 1177{
81819f0f 1178 if (!check_valid_pointer(s, page, object)) {
70d71228 1179 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1180 return 0;
81819f0f
CL
1181 }
1182
1183 if (on_freelist(s, page, object)) {
24922684 1184 object_err(s, page, object, "Object already free");
becfda68 1185 return 0;
81819f0f
CL
1186 }
1187
f7cb1933 1188 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1189 return 0;
81819f0f 1190
1b4f59e3 1191 if (unlikely(s != page->slab_cache)) {
3adbefee 1192 if (!PageSlab(page)) {
756a025f
JP
1193 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1194 object);
1b4f59e3 1195 } else if (!page->slab_cache) {
f9f58285
FF
1196 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1197 object);
70d71228 1198 dump_stack();
06428780 1199 } else
24922684
CL
1200 object_err(s, page, object,
1201 "page slab pointer corrupt.");
becfda68
LA
1202 return 0;
1203 }
1204 return 1;
1205}
1206
1207/* Supports checking bulk free of a constructed freelist */
1208static noinline int free_debug_processing(
1209 struct kmem_cache *s, struct page *page,
1210 void *head, void *tail, int bulk_cnt,
1211 unsigned long addr)
1212{
1213 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1214 void *object = head;
1215 int cnt = 0;
3f649ab7 1216 unsigned long flags;
becfda68
LA
1217 int ret = 0;
1218
1219 spin_lock_irqsave(&n->list_lock, flags);
1220 slab_lock(page);
1221
1222 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1223 if (!check_slab(s, page))
1224 goto out;
1225 }
1226
1227next_object:
1228 cnt++;
1229
1230 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1231 if (!free_consistency_checks(s, page, object, addr))
1232 goto out;
81819f0f 1233 }
3ec09742 1234
3ec09742
CL
1235 if (s->flags & SLAB_STORE_USER)
1236 set_track(s, object, TRACK_FREE, addr);
1237 trace(s, page, object, 0);
81084651 1238 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1239 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1240
1241 /* Reached end of constructed freelist yet? */
1242 if (object != tail) {
1243 object = get_freepointer(s, object);
1244 goto next_object;
1245 }
804aa132
LA
1246 ret = 1;
1247
5c2e4bbb 1248out:
81084651
JDB
1249 if (cnt != bulk_cnt)
1250 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1251 bulk_cnt, cnt);
1252
881db7fb 1253 slab_unlock(page);
282acb43 1254 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1255 if (!ret)
1256 slab_fix(s, "Object at 0x%p not freed", object);
1257 return ret;
81819f0f
CL
1258}
1259
e17f1dfb
VB
1260/*
1261 * Parse a block of slub_debug options. Blocks are delimited by ';'
1262 *
1263 * @str: start of block
1264 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1265 * @slabs: return start of list of slabs, or NULL when there's no list
1266 * @init: assume this is initial parsing and not per-kmem-create parsing
1267 *
1268 * returns the start of next block if there's any, or NULL
1269 */
1270static char *
1271parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1272{
e17f1dfb 1273 bool higher_order_disable = false;
f0630fff 1274
e17f1dfb
VB
1275 /* Skip any completely empty blocks */
1276 while (*str && *str == ';')
1277 str++;
1278
1279 if (*str == ',') {
f0630fff
CL
1280 /*
1281 * No options but restriction on slabs. This means full
1282 * debugging for slabs matching a pattern.
1283 */
e17f1dfb 1284 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1285 goto check_slabs;
e17f1dfb
VB
1286 }
1287 *flags = 0;
f0630fff 1288
e17f1dfb
VB
1289 /* Determine which debug features should be switched on */
1290 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1291 switch (tolower(*str)) {
e17f1dfb
VB
1292 case '-':
1293 *flags = 0;
1294 break;
f0630fff 1295 case 'f':
e17f1dfb 1296 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1297 break;
1298 case 'z':
e17f1dfb 1299 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1300 break;
1301 case 'p':
e17f1dfb 1302 *flags |= SLAB_POISON;
f0630fff
CL
1303 break;
1304 case 'u':
e17f1dfb 1305 *flags |= SLAB_STORE_USER;
f0630fff
CL
1306 break;
1307 case 't':
e17f1dfb 1308 *flags |= SLAB_TRACE;
f0630fff 1309 break;
4c13dd3b 1310 case 'a':
e17f1dfb 1311 *flags |= SLAB_FAILSLAB;
4c13dd3b 1312 break;
08303a73
CA
1313 case 'o':
1314 /*
1315 * Avoid enabling debugging on caches if its minimum
1316 * order would increase as a result.
1317 */
e17f1dfb 1318 higher_order_disable = true;
08303a73 1319 break;
f0630fff 1320 default:
e17f1dfb
VB
1321 if (init)
1322 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
f0630fff 1323 }
41ecc55b 1324 }
f0630fff 1325check_slabs:
41ecc55b 1326 if (*str == ',')
e17f1dfb
VB
1327 *slabs = ++str;
1328 else
1329 *slabs = NULL;
1330
1331 /* Skip over the slab list */
1332 while (*str && *str != ';')
1333 str++;
1334
1335 /* Skip any completely empty blocks */
1336 while (*str && *str == ';')
1337 str++;
1338
1339 if (init && higher_order_disable)
1340 disable_higher_order_debug = 1;
1341
1342 if (*str)
1343 return str;
1344 else
1345 return NULL;
1346}
1347
1348static int __init setup_slub_debug(char *str)
1349{
1350 slab_flags_t flags;
1351 char *saved_str;
1352 char *slab_list;
1353 bool global_slub_debug_changed = false;
1354 bool slab_list_specified = false;
1355
1356 slub_debug = DEBUG_DEFAULT_FLAGS;
1357 if (*str++ != '=' || !*str)
1358 /*
1359 * No options specified. Switch on full debugging.
1360 */
1361 goto out;
1362
1363 saved_str = str;
1364 while (str) {
1365 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1366
1367 if (!slab_list) {
1368 slub_debug = flags;
1369 global_slub_debug_changed = true;
1370 } else {
1371 slab_list_specified = true;
1372 }
1373 }
1374
1375 /*
1376 * For backwards compatibility, a single list of flags with list of
1377 * slabs means debugging is only enabled for those slabs, so the global
1378 * slub_debug should be 0. We can extended that to multiple lists as
1379 * long as there is no option specifying flags without a slab list.
1380 */
1381 if (slab_list_specified) {
1382 if (!global_slub_debug_changed)
1383 slub_debug = 0;
1384 slub_debug_string = saved_str;
1385 }
f0630fff 1386out:
ca0cab65
VB
1387 if (slub_debug != 0 || slub_debug_string)
1388 static_branch_enable(&slub_debug_enabled);
6471384a
AP
1389 if ((static_branch_unlikely(&init_on_alloc) ||
1390 static_branch_unlikely(&init_on_free)) &&
1391 (slub_debug & SLAB_POISON))
1392 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1393 return 1;
1394}
1395
1396__setup("slub_debug", setup_slub_debug);
1397
c5fd3ca0
AT
1398/*
1399 * kmem_cache_flags - apply debugging options to the cache
1400 * @object_size: the size of an object without meta data
1401 * @flags: flags to set
1402 * @name: name of the cache
1403 * @ctor: constructor function
1404 *
1405 * Debug option(s) are applied to @flags. In addition to the debug
1406 * option(s), if a slab name (or multiple) is specified i.e.
1407 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1408 * then only the select slabs will receive the debug option(s).
1409 */
0293d1fd 1410slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1411 slab_flags_t flags, const char *name,
51cc5068 1412 void (*ctor)(void *))
41ecc55b 1413{
c5fd3ca0
AT
1414 char *iter;
1415 size_t len;
e17f1dfb
VB
1416 char *next_block;
1417 slab_flags_t block_flags;
c5fd3ca0 1418
c5fd3ca0 1419 len = strlen(name);
e17f1dfb
VB
1420 next_block = slub_debug_string;
1421 /* Go through all blocks of debug options, see if any matches our slab's name */
1422 while (next_block) {
1423 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1424 if (!iter)
1425 continue;
1426 /* Found a block that has a slab list, search it */
1427 while (*iter) {
1428 char *end, *glob;
1429 size_t cmplen;
1430
1431 end = strchrnul(iter, ',');
1432 if (next_block && next_block < end)
1433 end = next_block - 1;
1434
1435 glob = strnchr(iter, end - iter, '*');
1436 if (glob)
1437 cmplen = glob - iter;
1438 else
1439 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1440
e17f1dfb
VB
1441 if (!strncmp(name, iter, cmplen)) {
1442 flags |= block_flags;
1443 return flags;
1444 }
c5fd3ca0 1445
e17f1dfb
VB
1446 if (!*end || *end == ';')
1447 break;
1448 iter = end + 1;
c5fd3ca0 1449 }
c5fd3ca0 1450 }
ba0268a8 1451
484cfaca 1452 return flags | slub_debug;
41ecc55b 1453}
b4a64718 1454#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1455static inline void setup_object_debug(struct kmem_cache *s,
1456 struct page *page, void *object) {}
a50b854e
MWO
1457static inline
1458void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
41ecc55b 1459
3ec09742 1460static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1461 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1462
282acb43 1463static inline int free_debug_processing(
81084651
JDB
1464 struct kmem_cache *s, struct page *page,
1465 void *head, void *tail, int bulk_cnt,
282acb43 1466 unsigned long addr) { return 0; }
41ecc55b 1467
41ecc55b
CL
1468static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1469 { return 1; }
1470static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1471 void *object, u8 val) { return 1; }
5cc6eee8
CL
1472static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1473 struct page *page) {}
c65c1877
PZ
1474static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1475 struct page *page) {}
0293d1fd 1476slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1477 slab_flags_t flags, const char *name,
51cc5068 1478 void (*ctor)(void *))
ba0268a8
CL
1479{
1480 return flags;
1481}
41ecc55b 1482#define slub_debug 0
0f389ec6 1483
fdaa45e9
IM
1484#define disable_higher_order_debug 0
1485
0f389ec6
CL
1486static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1487 { return 0; }
26c02cf0
AB
1488static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1489 { return 0; }
205ab99d
CL
1490static inline void inc_slabs_node(struct kmem_cache *s, int node,
1491 int objects) {}
1492static inline void dec_slabs_node(struct kmem_cache *s, int node,
1493 int objects) {}
7d550c56 1494
52f23478 1495static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 1496 void **freelist, void *nextfree)
52f23478
DZ
1497{
1498 return false;
1499}
02e72cc6
AR
1500#endif /* CONFIG_SLUB_DEBUG */
1501
1502/*
1503 * Hooks for other subsystems that check memory allocations. In a typical
1504 * production configuration these hooks all should produce no code at all.
1505 */
0116523c 1506static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1507{
53128245 1508 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1509 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1510 kmemleak_alloc(ptr, size, 1, flags);
53128245 1511 return ptr;
d56791b3
RB
1512}
1513
ee3ce779 1514static __always_inline void kfree_hook(void *x)
d56791b3
RB
1515{
1516 kmemleak_free(x);
ee3ce779 1517 kasan_kfree_large(x, _RET_IP_);
d56791b3
RB
1518}
1519
c3895391 1520static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
d56791b3
RB
1521{
1522 kmemleak_free_recursive(x, s->flags);
7d550c56 1523
02e72cc6
AR
1524 /*
1525 * Trouble is that we may no longer disable interrupts in the fast path
1526 * So in order to make the debug calls that expect irqs to be
1527 * disabled we need to disable interrupts temporarily.
1528 */
4675ff05 1529#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1530 {
1531 unsigned long flags;
1532
1533 local_irq_save(flags);
02e72cc6
AR
1534 debug_check_no_locks_freed(x, s->object_size);
1535 local_irq_restore(flags);
1536 }
1537#endif
1538 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1539 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1540
cfbe1636
ME
1541 /* Use KCSAN to help debug racy use-after-free. */
1542 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1543 __kcsan_check_access(x, s->object_size,
1544 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1545
c3895391
AK
1546 /* KASAN might put x into memory quarantine, delaying its reuse */
1547 return kasan_slab_free(s, x, _RET_IP_);
02e72cc6 1548}
205ab99d 1549
c3895391
AK
1550static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1551 void **head, void **tail)
81084651 1552{
6471384a
AP
1553
1554 void *object;
1555 void *next = *head;
1556 void *old_tail = *tail ? *tail : *head;
1557 int rsize;
1558
aea4df4c
LA
1559 /* Head and tail of the reconstructed freelist */
1560 *head = NULL;
1561 *tail = NULL;
1b7e816f 1562
aea4df4c
LA
1563 do {
1564 object = next;
1565 next = get_freepointer(s, object);
1566
1567 if (slab_want_init_on_free(s)) {
6471384a
AP
1568 /*
1569 * Clear the object and the metadata, but don't touch
1570 * the redzone.
1571 */
aa1ef4d7 1572 memset(kasan_reset_tag(object), 0, s->object_size);
6471384a
AP
1573 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1574 : 0;
aa1ef4d7 1575 memset((char *)kasan_reset_tag(object) + s->inuse, 0,
6471384a 1576 s->size - s->inuse - rsize);
81084651 1577
aea4df4c 1578 }
c3895391
AK
1579 /* If object's reuse doesn't have to be delayed */
1580 if (!slab_free_hook(s, object)) {
1581 /* Move object to the new freelist */
1582 set_freepointer(s, object, *head);
1583 *head = object;
1584 if (!*tail)
1585 *tail = object;
1586 }
1587 } while (object != old_tail);
1588
1589 if (*head == *tail)
1590 *tail = NULL;
1591
1592 return *head != NULL;
81084651
JDB
1593}
1594
4d176711 1595static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1596 void *object)
1597{
1598 setup_object_debug(s, page, object);
4d176711 1599 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1600 if (unlikely(s->ctor)) {
1601 kasan_unpoison_object_data(s, object);
1602 s->ctor(object);
1603 kasan_poison_object_data(s, object);
1604 }
4d176711 1605 return object;
588f8ba9
TG
1606}
1607
81819f0f
CL
1608/*
1609 * Slab allocation and freeing
1610 */
5dfb4175
VD
1611static inline struct page *alloc_slab_page(struct kmem_cache *s,
1612 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1613{
5dfb4175 1614 struct page *page;
19af27af 1615 unsigned int order = oo_order(oo);
65c3376a 1616
2154a336 1617 if (node == NUMA_NO_NODE)
5dfb4175 1618 page = alloc_pages(flags, order);
65c3376a 1619 else
96db800f 1620 page = __alloc_pages_node(node, flags, order);
5dfb4175 1621
5dfb4175 1622 return page;
65c3376a
CL
1623}
1624
210e7a43
TG
1625#ifdef CONFIG_SLAB_FREELIST_RANDOM
1626/* Pre-initialize the random sequence cache */
1627static int init_cache_random_seq(struct kmem_cache *s)
1628{
19af27af 1629 unsigned int count = oo_objects(s->oo);
210e7a43 1630 int err;
210e7a43 1631
a810007a
SR
1632 /* Bailout if already initialised */
1633 if (s->random_seq)
1634 return 0;
1635
210e7a43
TG
1636 err = cache_random_seq_create(s, count, GFP_KERNEL);
1637 if (err) {
1638 pr_err("SLUB: Unable to initialize free list for %s\n",
1639 s->name);
1640 return err;
1641 }
1642
1643 /* Transform to an offset on the set of pages */
1644 if (s->random_seq) {
19af27af
AD
1645 unsigned int i;
1646
210e7a43
TG
1647 for (i = 0; i < count; i++)
1648 s->random_seq[i] *= s->size;
1649 }
1650 return 0;
1651}
1652
1653/* Initialize each random sequence freelist per cache */
1654static void __init init_freelist_randomization(void)
1655{
1656 struct kmem_cache *s;
1657
1658 mutex_lock(&slab_mutex);
1659
1660 list_for_each_entry(s, &slab_caches, list)
1661 init_cache_random_seq(s);
1662
1663 mutex_unlock(&slab_mutex);
1664}
1665
1666/* Get the next entry on the pre-computed freelist randomized */
1667static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1668 unsigned long *pos, void *start,
1669 unsigned long page_limit,
1670 unsigned long freelist_count)
1671{
1672 unsigned int idx;
1673
1674 /*
1675 * If the target page allocation failed, the number of objects on the
1676 * page might be smaller than the usual size defined by the cache.
1677 */
1678 do {
1679 idx = s->random_seq[*pos];
1680 *pos += 1;
1681 if (*pos >= freelist_count)
1682 *pos = 0;
1683 } while (unlikely(idx >= page_limit));
1684
1685 return (char *)start + idx;
1686}
1687
1688/* Shuffle the single linked freelist based on a random pre-computed sequence */
1689static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1690{
1691 void *start;
1692 void *cur;
1693 void *next;
1694 unsigned long idx, pos, page_limit, freelist_count;
1695
1696 if (page->objects < 2 || !s->random_seq)
1697 return false;
1698
1699 freelist_count = oo_objects(s->oo);
1700 pos = get_random_int() % freelist_count;
1701
1702 page_limit = page->objects * s->size;
1703 start = fixup_red_left(s, page_address(page));
1704
1705 /* First entry is used as the base of the freelist */
1706 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1707 freelist_count);
4d176711 1708 cur = setup_object(s, page, cur);
210e7a43
TG
1709 page->freelist = cur;
1710
1711 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1712 next = next_freelist_entry(s, page, &pos, start, page_limit,
1713 freelist_count);
4d176711 1714 next = setup_object(s, page, next);
210e7a43
TG
1715 set_freepointer(s, cur, next);
1716 cur = next;
1717 }
210e7a43
TG
1718 set_freepointer(s, cur, NULL);
1719
1720 return true;
1721}
1722#else
1723static inline int init_cache_random_seq(struct kmem_cache *s)
1724{
1725 return 0;
1726}
1727static inline void init_freelist_randomization(void) { }
1728static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1729{
1730 return false;
1731}
1732#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1733
81819f0f
CL
1734static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1735{
06428780 1736 struct page *page;
834f3d11 1737 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1738 gfp_t alloc_gfp;
4d176711 1739 void *start, *p, *next;
a50b854e 1740 int idx;
210e7a43 1741 bool shuffle;
81819f0f 1742
7e0528da
CL
1743 flags &= gfp_allowed_mask;
1744
d0164adc 1745 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1746 local_irq_enable();
1747
b7a49f0d 1748 flags |= s->allocflags;
e12ba74d 1749
ba52270d
PE
1750 /*
1751 * Let the initial higher-order allocation fail under memory pressure
1752 * so we fall-back to the minimum order allocation.
1753 */
1754 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1755 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1756 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1757
5dfb4175 1758 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1759 if (unlikely(!page)) {
1760 oo = s->min;
80c3a998 1761 alloc_gfp = flags;
65c3376a
CL
1762 /*
1763 * Allocation may have failed due to fragmentation.
1764 * Try a lower order alloc if possible
1765 */
5dfb4175 1766 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1767 if (unlikely(!page))
1768 goto out;
1769 stat(s, ORDER_FALLBACK);
65c3376a 1770 }
5a896d9e 1771
834f3d11 1772 page->objects = oo_objects(oo);
81819f0f 1773
1f3147b4
RG
1774 account_slab_page(page, oo_order(oo), s);
1775
1b4f59e3 1776 page->slab_cache = s;
c03f94cc 1777 __SetPageSlab(page);
2f064f34 1778 if (page_is_pfmemalloc(page))
072bb0aa 1779 SetPageSlabPfmemalloc(page);
81819f0f 1780
a7101224 1781 kasan_poison_slab(page);
81819f0f 1782
a7101224 1783 start = page_address(page);
81819f0f 1784
a50b854e 1785 setup_page_debug(s, page, start);
0316bec2 1786
210e7a43
TG
1787 shuffle = shuffle_freelist(s, page);
1788
1789 if (!shuffle) {
4d176711
AK
1790 start = fixup_red_left(s, start);
1791 start = setup_object(s, page, start);
1792 page->freelist = start;
18e50661
AK
1793 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1794 next = p + s->size;
1795 next = setup_object(s, page, next);
1796 set_freepointer(s, p, next);
1797 p = next;
1798 }
1799 set_freepointer(s, p, NULL);
81819f0f 1800 }
81819f0f 1801
e6e82ea1 1802 page->inuse = page->objects;
8cb0a506 1803 page->frozen = 1;
588f8ba9 1804
81819f0f 1805out:
d0164adc 1806 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1807 local_irq_disable();
1808 if (!page)
1809 return NULL;
1810
588f8ba9
TG
1811 inc_slabs_node(s, page_to_nid(page), page->objects);
1812
81819f0f
CL
1813 return page;
1814}
1815
588f8ba9
TG
1816static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1817{
44405099
LL
1818 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1819 flags = kmalloc_fix_flags(flags);
588f8ba9
TG
1820
1821 return allocate_slab(s,
1822 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1823}
1824
81819f0f
CL
1825static void __free_slab(struct kmem_cache *s, struct page *page)
1826{
834f3d11
CL
1827 int order = compound_order(page);
1828 int pages = 1 << order;
81819f0f 1829
8fc8d666 1830 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
81819f0f
CL
1831 void *p;
1832
1833 slab_pad_check(s, page);
224a88be
CL
1834 for_each_object(p, s, page_address(page),
1835 page->objects)
f7cb1933 1836 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1837 }
1838
072bb0aa 1839 __ClearPageSlabPfmemalloc(page);
49bd5221 1840 __ClearPageSlab(page);
0c06dd75
VB
1841 /* In union with page->mapping where page allocator expects NULL */
1842 page->slab_cache = NULL;
1eb5ac64
NP
1843 if (current->reclaim_state)
1844 current->reclaim_state->reclaimed_slab += pages;
74d555be 1845 unaccount_slab_page(page, order, s);
27ee57c9 1846 __free_pages(page, order);
81819f0f
CL
1847}
1848
1849static void rcu_free_slab(struct rcu_head *h)
1850{
bf68c214 1851 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1852
1b4f59e3 1853 __free_slab(page->slab_cache, page);
81819f0f
CL
1854}
1855
1856static void free_slab(struct kmem_cache *s, struct page *page)
1857{
5f0d5a3a 1858 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1859 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1860 } else
1861 __free_slab(s, page);
1862}
1863
1864static void discard_slab(struct kmem_cache *s, struct page *page)
1865{
205ab99d 1866 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1867 free_slab(s, page);
1868}
1869
1870/*
5cc6eee8 1871 * Management of partially allocated slabs.
81819f0f 1872 */
1e4dd946
SR
1873static inline void
1874__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1875{
e95eed57 1876 n->nr_partial++;
136333d1 1877 if (tail == DEACTIVATE_TO_TAIL)
916ac052 1878 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 1879 else
916ac052 1880 list_add(&page->slab_list, &n->partial);
81819f0f
CL
1881}
1882
1e4dd946
SR
1883static inline void add_partial(struct kmem_cache_node *n,
1884 struct page *page, int tail)
62e346a8 1885{
c65c1877 1886 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1887 __add_partial(n, page, tail);
1888}
c65c1877 1889
1e4dd946
SR
1890static inline void remove_partial(struct kmem_cache_node *n,
1891 struct page *page)
1892{
1893 lockdep_assert_held(&n->list_lock);
916ac052 1894 list_del(&page->slab_list);
52b4b950 1895 n->nr_partial--;
1e4dd946
SR
1896}
1897
81819f0f 1898/*
7ced3719
CL
1899 * Remove slab from the partial list, freeze it and
1900 * return the pointer to the freelist.
81819f0f 1901 *
497b66f2 1902 * Returns a list of objects or NULL if it fails.
81819f0f 1903 */
497b66f2 1904static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1905 struct kmem_cache_node *n, struct page *page,
633b0764 1906 int mode, int *objects)
81819f0f 1907{
2cfb7455
CL
1908 void *freelist;
1909 unsigned long counters;
1910 struct page new;
1911
c65c1877
PZ
1912 lockdep_assert_held(&n->list_lock);
1913
2cfb7455
CL
1914 /*
1915 * Zap the freelist and set the frozen bit.
1916 * The old freelist is the list of objects for the
1917 * per cpu allocation list.
1918 */
7ced3719
CL
1919 freelist = page->freelist;
1920 counters = page->counters;
1921 new.counters = counters;
633b0764 1922 *objects = new.objects - new.inuse;
23910c50 1923 if (mode) {
7ced3719 1924 new.inuse = page->objects;
23910c50
PE
1925 new.freelist = NULL;
1926 } else {
1927 new.freelist = freelist;
1928 }
2cfb7455 1929
a0132ac0 1930 VM_BUG_ON(new.frozen);
7ced3719 1931 new.frozen = 1;
2cfb7455 1932
7ced3719 1933 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1934 freelist, counters,
02d7633f 1935 new.freelist, new.counters,
7ced3719 1936 "acquire_slab"))
7ced3719 1937 return NULL;
2cfb7455
CL
1938
1939 remove_partial(n, page);
7ced3719 1940 WARN_ON(!freelist);
49e22585 1941 return freelist;
81819f0f
CL
1942}
1943
633b0764 1944static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1945static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1946
81819f0f 1947/*
672bba3a 1948 * Try to allocate a partial slab from a specific node.
81819f0f 1949 */
8ba00bb6
JK
1950static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1951 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1952{
49e22585
CL
1953 struct page *page, *page2;
1954 void *object = NULL;
e5d9998f 1955 unsigned int available = 0;
633b0764 1956 int objects;
81819f0f
CL
1957
1958 /*
1959 * Racy check. If we mistakenly see no partial slabs then we
1960 * just allocate an empty slab. If we mistakenly try to get a
70b6d25e 1961 * partial slab and there is none available then get_partial()
672bba3a 1962 * will return NULL.
81819f0f
CL
1963 */
1964 if (!n || !n->nr_partial)
1965 return NULL;
1966
1967 spin_lock(&n->list_lock);
916ac052 1968 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 1969 void *t;
49e22585 1970
8ba00bb6
JK
1971 if (!pfmemalloc_match(page, flags))
1972 continue;
1973
633b0764 1974 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585 1975 if (!t)
3555c14a 1976 break;
49e22585 1977
633b0764 1978 available += objects;
12d79634 1979 if (!object) {
49e22585 1980 c->page = page;
49e22585 1981 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1982 object = t;
49e22585 1983 } else {
633b0764 1984 put_cpu_partial(s, page, 0);
8028dcea 1985 stat(s, CPU_PARTIAL_NODE);
49e22585 1986 }
345c905d 1987 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 1988 || available > slub_cpu_partial(s) / 2)
49e22585
CL
1989 break;
1990
497b66f2 1991 }
81819f0f 1992 spin_unlock(&n->list_lock);
497b66f2 1993 return object;
81819f0f
CL
1994}
1995
1996/*
672bba3a 1997 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1998 */
de3ec035 1999static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 2000 struct kmem_cache_cpu *c)
81819f0f
CL
2001{
2002#ifdef CONFIG_NUMA
2003 struct zonelist *zonelist;
dd1a239f 2004 struct zoneref *z;
54a6eb5c 2005 struct zone *zone;
97a225e6 2006 enum zone_type highest_zoneidx = gfp_zone(flags);
497b66f2 2007 void *object;
cc9a6c87 2008 unsigned int cpuset_mems_cookie;
81819f0f
CL
2009
2010 /*
672bba3a
CL
2011 * The defrag ratio allows a configuration of the tradeoffs between
2012 * inter node defragmentation and node local allocations. A lower
2013 * defrag_ratio increases the tendency to do local allocations
2014 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2015 *
672bba3a
CL
2016 * If the defrag_ratio is set to 0 then kmalloc() always
2017 * returns node local objects. If the ratio is higher then kmalloc()
2018 * may return off node objects because partial slabs are obtained
2019 * from other nodes and filled up.
81819f0f 2020 *
43efd3ea
LP
2021 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2022 * (which makes defrag_ratio = 1000) then every (well almost)
2023 * allocation will first attempt to defrag slab caches on other nodes.
2024 * This means scanning over all nodes to look for partial slabs which
2025 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2026 * with available objects.
81819f0f 2027 */
9824601e
CL
2028 if (!s->remote_node_defrag_ratio ||
2029 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2030 return NULL;
2031
cc9a6c87 2032 do {
d26914d1 2033 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 2034 zonelist = node_zonelist(mempolicy_slab_node(), flags);
97a225e6 2035 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2036 struct kmem_cache_node *n;
2037
2038 n = get_node(s, zone_to_nid(zone));
2039
dee2f8aa 2040 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 2041 n->nr_partial > s->min_partial) {
8ba00bb6 2042 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
2043 if (object) {
2044 /*
d26914d1
MG
2045 * Don't check read_mems_allowed_retry()
2046 * here - if mems_allowed was updated in
2047 * parallel, that was a harmless race
2048 * between allocation and the cpuset
2049 * update
cc9a6c87 2050 */
cc9a6c87
MG
2051 return object;
2052 }
c0ff7453 2053 }
81819f0f 2054 }
d26914d1 2055 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2056#endif /* CONFIG_NUMA */
81819f0f
CL
2057 return NULL;
2058}
2059
2060/*
2061 * Get a partial page, lock it and return it.
2062 */
497b66f2 2063static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 2064 struct kmem_cache_cpu *c)
81819f0f 2065{
497b66f2 2066 void *object;
a561ce00
JK
2067 int searchnode = node;
2068
2069 if (node == NUMA_NO_NODE)
2070 searchnode = numa_mem_id();
81819f0f 2071
8ba00bb6 2072 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
2073 if (object || node != NUMA_NO_NODE)
2074 return object;
81819f0f 2075
acd19fd1 2076 return get_any_partial(s, flags, c);
81819f0f
CL
2077}
2078
923717cb 2079#ifdef CONFIG_PREEMPTION
8a5ec0ba 2080/*
0d645ed1 2081 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2082 * during cmpxchg. The transactions start with the cpu number and are then
2083 * incremented by CONFIG_NR_CPUS.
2084 */
2085#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2086#else
2087/*
2088 * No preemption supported therefore also no need to check for
2089 * different cpus.
2090 */
2091#define TID_STEP 1
2092#endif
2093
2094static inline unsigned long next_tid(unsigned long tid)
2095{
2096 return tid + TID_STEP;
2097}
2098
9d5f0be0 2099#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2100static inline unsigned int tid_to_cpu(unsigned long tid)
2101{
2102 return tid % TID_STEP;
2103}
2104
2105static inline unsigned long tid_to_event(unsigned long tid)
2106{
2107 return tid / TID_STEP;
2108}
9d5f0be0 2109#endif
8a5ec0ba
CL
2110
2111static inline unsigned int init_tid(int cpu)
2112{
2113 return cpu;
2114}
2115
2116static inline void note_cmpxchg_failure(const char *n,
2117 const struct kmem_cache *s, unsigned long tid)
2118{
2119#ifdef SLUB_DEBUG_CMPXCHG
2120 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2121
f9f58285 2122 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2123
923717cb 2124#ifdef CONFIG_PREEMPTION
8a5ec0ba 2125 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2126 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2127 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2128 else
2129#endif
2130 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2131 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2132 tid_to_event(tid), tid_to_event(actual_tid));
2133 else
f9f58285 2134 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2135 actual_tid, tid, next_tid(tid));
2136#endif
4fdccdfb 2137 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2138}
2139
788e1aad 2140static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2141{
8a5ec0ba
CL
2142 int cpu;
2143
2144 for_each_possible_cpu(cpu)
2145 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2146}
2cfb7455 2147
81819f0f
CL
2148/*
2149 * Remove the cpu slab
2150 */
d0e0ac97 2151static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2152 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2153{
2cfb7455 2154 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
2155 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2156 int lock = 0;
2157 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2158 void *nextfree;
136333d1 2159 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2160 struct page new;
2161 struct page old;
2162
2163 if (page->freelist) {
84e554e6 2164 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2165 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2166 }
2167
894b8788 2168 /*
2cfb7455
CL
2169 * Stage one: Free all available per cpu objects back
2170 * to the page freelist while it is still frozen. Leave the
2171 * last one.
2172 *
2173 * There is no need to take the list->lock because the page
2174 * is still frozen.
2175 */
2176 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2177 void *prior;
2178 unsigned long counters;
2179
52f23478
DZ
2180 /*
2181 * If 'nextfree' is invalid, it is possible that the object at
2182 * 'freelist' is already corrupted. So isolate all objects
2183 * starting at 'freelist'.
2184 */
dc07a728 2185 if (freelist_corrupted(s, page, &freelist, nextfree))
52f23478
DZ
2186 break;
2187
2cfb7455
CL
2188 do {
2189 prior = page->freelist;
2190 counters = page->counters;
2191 set_freepointer(s, freelist, prior);
2192 new.counters = counters;
2193 new.inuse--;
a0132ac0 2194 VM_BUG_ON(!new.frozen);
2cfb7455 2195
1d07171c 2196 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2197 prior, counters,
2198 freelist, new.counters,
2199 "drain percpu freelist"));
2200
2201 freelist = nextfree;
2202 }
2203
894b8788 2204 /*
2cfb7455
CL
2205 * Stage two: Ensure that the page is unfrozen while the
2206 * list presence reflects the actual number of objects
2207 * during unfreeze.
2208 *
2209 * We setup the list membership and then perform a cmpxchg
2210 * with the count. If there is a mismatch then the page
2211 * is not unfrozen but the page is on the wrong list.
2212 *
2213 * Then we restart the process which may have to remove
2214 * the page from the list that we just put it on again
2215 * because the number of objects in the slab may have
2216 * changed.
894b8788 2217 */
2cfb7455 2218redo:
894b8788 2219
2cfb7455
CL
2220 old.freelist = page->freelist;
2221 old.counters = page->counters;
a0132ac0 2222 VM_BUG_ON(!old.frozen);
7c2e132c 2223
2cfb7455
CL
2224 /* Determine target state of the slab */
2225 new.counters = old.counters;
2226 if (freelist) {
2227 new.inuse--;
2228 set_freepointer(s, freelist, old.freelist);
2229 new.freelist = freelist;
2230 } else
2231 new.freelist = old.freelist;
2232
2233 new.frozen = 0;
2234
8a5b20ae 2235 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2236 m = M_FREE;
2237 else if (new.freelist) {
2238 m = M_PARTIAL;
2239 if (!lock) {
2240 lock = 1;
2241 /*
8bb4e7a2 2242 * Taking the spinlock removes the possibility
2cfb7455
CL
2243 * that acquire_slab() will see a slab page that
2244 * is frozen
2245 */
2246 spin_lock(&n->list_lock);
2247 }
2248 } else {
2249 m = M_FULL;
965c4848 2250 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2cfb7455
CL
2251 lock = 1;
2252 /*
2253 * This also ensures that the scanning of full
2254 * slabs from diagnostic functions will not see
2255 * any frozen slabs.
2256 */
2257 spin_lock(&n->list_lock);
2258 }
2259 }
2260
2261 if (l != m) {
2cfb7455 2262 if (l == M_PARTIAL)
2cfb7455 2263 remove_partial(n, page);
2cfb7455 2264 else if (l == M_FULL)
c65c1877 2265 remove_full(s, n, page);
2cfb7455 2266
88349a28 2267 if (m == M_PARTIAL)
2cfb7455 2268 add_partial(n, page, tail);
88349a28 2269 else if (m == M_FULL)
2cfb7455 2270 add_full(s, n, page);
2cfb7455
CL
2271 }
2272
2273 l = m;
1d07171c 2274 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2275 old.freelist, old.counters,
2276 new.freelist, new.counters,
2277 "unfreezing slab"))
2278 goto redo;
2279
2cfb7455
CL
2280 if (lock)
2281 spin_unlock(&n->list_lock);
2282
88349a28
WY
2283 if (m == M_PARTIAL)
2284 stat(s, tail);
2285 else if (m == M_FULL)
2286 stat(s, DEACTIVATE_FULL);
2287 else if (m == M_FREE) {
2cfb7455
CL
2288 stat(s, DEACTIVATE_EMPTY);
2289 discard_slab(s, page);
2290 stat(s, FREE_SLAB);
894b8788 2291 }
d4ff6d35
WY
2292
2293 c->page = NULL;
2294 c->freelist = NULL;
81819f0f
CL
2295}
2296
d24ac77f
JK
2297/*
2298 * Unfreeze all the cpu partial slabs.
2299 *
59a09917
CL
2300 * This function must be called with interrupts disabled
2301 * for the cpu using c (or some other guarantee must be there
2302 * to guarantee no concurrent accesses).
d24ac77f 2303 */
59a09917
CL
2304static void unfreeze_partials(struct kmem_cache *s,
2305 struct kmem_cache_cpu *c)
49e22585 2306{
345c905d 2307#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2308 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2309 struct page *page, *discard_page = NULL;
49e22585 2310
4c7ba22e 2311 while ((page = slub_percpu_partial(c))) {
49e22585
CL
2312 struct page new;
2313 struct page old;
2314
4c7ba22e 2315 slub_set_percpu_partial(c, page);
43d77867
JK
2316
2317 n2 = get_node(s, page_to_nid(page));
2318 if (n != n2) {
2319 if (n)
2320 spin_unlock(&n->list_lock);
2321
2322 n = n2;
2323 spin_lock(&n->list_lock);
2324 }
49e22585
CL
2325
2326 do {
2327
2328 old.freelist = page->freelist;
2329 old.counters = page->counters;
a0132ac0 2330 VM_BUG_ON(!old.frozen);
49e22585
CL
2331
2332 new.counters = old.counters;
2333 new.freelist = old.freelist;
2334
2335 new.frozen = 0;
2336
d24ac77f 2337 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2338 old.freelist, old.counters,
2339 new.freelist, new.counters,
2340 "unfreezing slab"));
2341
8a5b20ae 2342 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2343 page->next = discard_page;
2344 discard_page = page;
43d77867
JK
2345 } else {
2346 add_partial(n, page, DEACTIVATE_TO_TAIL);
2347 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2348 }
2349 }
2350
2351 if (n)
2352 spin_unlock(&n->list_lock);
9ada1934
SL
2353
2354 while (discard_page) {
2355 page = discard_page;
2356 discard_page = discard_page->next;
2357
2358 stat(s, DEACTIVATE_EMPTY);
2359 discard_slab(s, page);
2360 stat(s, FREE_SLAB);
2361 }
6dfd1b65 2362#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2363}
2364
2365/*
9234bae9
WY
2366 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2367 * partial page slot if available.
49e22585
CL
2368 *
2369 * If we did not find a slot then simply move all the partials to the
2370 * per node partial list.
2371 */
633b0764 2372static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2373{
345c905d 2374#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2375 struct page *oldpage;
2376 int pages;
2377 int pobjects;
2378
d6e0b7fa 2379 preempt_disable();
49e22585
CL
2380 do {
2381 pages = 0;
2382 pobjects = 0;
2383 oldpage = this_cpu_read(s->cpu_slab->partial);
2384
2385 if (oldpage) {
2386 pobjects = oldpage->pobjects;
2387 pages = oldpage->pages;
bbd4e305 2388 if (drain && pobjects > slub_cpu_partial(s)) {
49e22585
CL
2389 unsigned long flags;
2390 /*
2391 * partial array is full. Move the existing
2392 * set to the per node partial list.
2393 */
2394 local_irq_save(flags);
59a09917 2395 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2396 local_irq_restore(flags);
e24fc410 2397 oldpage = NULL;
49e22585
CL
2398 pobjects = 0;
2399 pages = 0;
8028dcea 2400 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2401 }
2402 }
2403
2404 pages++;
2405 pobjects += page->objects - page->inuse;
2406
2407 page->pages = pages;
2408 page->pobjects = pobjects;
2409 page->next = oldpage;
2410
d0e0ac97
CG
2411 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2412 != oldpage);
bbd4e305 2413 if (unlikely(!slub_cpu_partial(s))) {
d6e0b7fa
VD
2414 unsigned long flags;
2415
2416 local_irq_save(flags);
2417 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2418 local_irq_restore(flags);
2419 }
2420 preempt_enable();
6dfd1b65 2421#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2422}
2423
dfb4f096 2424static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2425{
84e554e6 2426 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2427 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2428
2429 c->tid = next_tid(c->tid);
81819f0f
CL
2430}
2431
2432/*
2433 * Flush cpu slab.
6446faa2 2434 *
81819f0f
CL
2435 * Called from IPI handler with interrupts disabled.
2436 */
0c710013 2437static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2438{
9dfc6e68 2439 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2440
1265ef2d
WY
2441 if (c->page)
2442 flush_slab(s, c);
49e22585 2443
1265ef2d 2444 unfreeze_partials(s, c);
81819f0f
CL
2445}
2446
2447static void flush_cpu_slab(void *d)
2448{
2449 struct kmem_cache *s = d;
81819f0f 2450
dfb4f096 2451 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2452}
2453
a8364d55
GBY
2454static bool has_cpu_slab(int cpu, void *info)
2455{
2456 struct kmem_cache *s = info;
2457 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2458
a93cf07b 2459 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2460}
2461
81819f0f
CL
2462static void flush_all(struct kmem_cache *s)
2463{
cb923159 2464 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
81819f0f
CL
2465}
2466
a96a87bf
SAS
2467/*
2468 * Use the cpu notifier to insure that the cpu slabs are flushed when
2469 * necessary.
2470 */
2471static int slub_cpu_dead(unsigned int cpu)
2472{
2473 struct kmem_cache *s;
2474 unsigned long flags;
2475
2476 mutex_lock(&slab_mutex);
2477 list_for_each_entry(s, &slab_caches, list) {
2478 local_irq_save(flags);
2479 __flush_cpu_slab(s, cpu);
2480 local_irq_restore(flags);
2481 }
2482 mutex_unlock(&slab_mutex);
2483 return 0;
2484}
2485
dfb4f096
CL
2486/*
2487 * Check if the objects in a per cpu structure fit numa
2488 * locality expectations.
2489 */
57d437d2 2490static inline int node_match(struct page *page, int node)
dfb4f096
CL
2491{
2492#ifdef CONFIG_NUMA
6159d0f5 2493 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2494 return 0;
2495#endif
2496 return 1;
2497}
2498
9a02d699 2499#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2500static int count_free(struct page *page)
2501{
2502 return page->objects - page->inuse;
2503}
2504
9a02d699
DR
2505static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2506{
2507 return atomic_long_read(&n->total_objects);
2508}
2509#endif /* CONFIG_SLUB_DEBUG */
2510
2511#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2512static unsigned long count_partial(struct kmem_cache_node *n,
2513 int (*get_count)(struct page *))
2514{
2515 unsigned long flags;
2516 unsigned long x = 0;
2517 struct page *page;
2518
2519 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2520 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2521 x += get_count(page);
2522 spin_unlock_irqrestore(&n->list_lock, flags);
2523 return x;
2524}
9a02d699 2525#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2526
781b2ba6
PE
2527static noinline void
2528slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2529{
9a02d699
DR
2530#ifdef CONFIG_SLUB_DEBUG
2531 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2532 DEFAULT_RATELIMIT_BURST);
781b2ba6 2533 int node;
fa45dc25 2534 struct kmem_cache_node *n;
781b2ba6 2535
9a02d699
DR
2536 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2537 return;
2538
5b3810e5
VB
2539 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2540 nid, gfpflags, &gfpflags);
19af27af 2541 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2542 s->name, s->object_size, s->size, oo_order(s->oo),
2543 oo_order(s->min));
781b2ba6 2544
3b0efdfa 2545 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2546 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2547 s->name);
fa5ec8a1 2548
fa45dc25 2549 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2550 unsigned long nr_slabs;
2551 unsigned long nr_objs;
2552 unsigned long nr_free;
2553
26c02cf0
AB
2554 nr_free = count_partial(n, count_free);
2555 nr_slabs = node_nr_slabs(n);
2556 nr_objs = node_nr_objs(n);
781b2ba6 2557
f9f58285 2558 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2559 node, nr_slabs, nr_objs, nr_free);
2560 }
9a02d699 2561#endif
781b2ba6
PE
2562}
2563
497b66f2
CL
2564static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2565 int node, struct kmem_cache_cpu **pc)
2566{
6faa6833 2567 void *freelist;
188fd063
CL
2568 struct kmem_cache_cpu *c = *pc;
2569 struct page *page;
497b66f2 2570
128227e7
MW
2571 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2572
188fd063 2573 freelist = get_partial(s, flags, node, c);
497b66f2 2574
188fd063
CL
2575 if (freelist)
2576 return freelist;
2577
2578 page = new_slab(s, flags, node);
497b66f2 2579 if (page) {
7c8e0181 2580 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2581 if (c->page)
2582 flush_slab(s, c);
2583
2584 /*
2585 * No other reference to the page yet so we can
2586 * muck around with it freely without cmpxchg
2587 */
6faa6833 2588 freelist = page->freelist;
497b66f2
CL
2589 page->freelist = NULL;
2590
2591 stat(s, ALLOC_SLAB);
497b66f2
CL
2592 c->page = page;
2593 *pc = c;
edde82b6 2594 }
497b66f2 2595
6faa6833 2596 return freelist;
497b66f2
CL
2597}
2598
072bb0aa
MG
2599static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2600{
2601 if (unlikely(PageSlabPfmemalloc(page)))
2602 return gfp_pfmemalloc_allowed(gfpflags);
2603
2604 return true;
2605}
2606
213eeb9f 2607/*
d0e0ac97
CG
2608 * Check the page->freelist of a page and either transfer the freelist to the
2609 * per cpu freelist or deactivate the page.
213eeb9f
CL
2610 *
2611 * The page is still frozen if the return value is not NULL.
2612 *
2613 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2614 *
2615 * This function must be called with interrupt disabled.
213eeb9f
CL
2616 */
2617static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2618{
2619 struct page new;
2620 unsigned long counters;
2621 void *freelist;
2622
2623 do {
2624 freelist = page->freelist;
2625 counters = page->counters;
6faa6833 2626
213eeb9f 2627 new.counters = counters;
a0132ac0 2628 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2629
2630 new.inuse = page->objects;
2631 new.frozen = freelist != NULL;
2632
d24ac77f 2633 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2634 freelist, counters,
2635 NULL, new.counters,
2636 "get_freelist"));
2637
2638 return freelist;
2639}
2640
81819f0f 2641/*
894b8788
CL
2642 * Slow path. The lockless freelist is empty or we need to perform
2643 * debugging duties.
2644 *
894b8788
CL
2645 * Processing is still very fast if new objects have been freed to the
2646 * regular freelist. In that case we simply take over the regular freelist
2647 * as the lockless freelist and zap the regular freelist.
81819f0f 2648 *
894b8788
CL
2649 * If that is not working then we fall back to the partial lists. We take the
2650 * first element of the freelist as the object to allocate now and move the
2651 * rest of the freelist to the lockless freelist.
81819f0f 2652 *
894b8788 2653 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2654 * we need to allocate a new slab. This is the slowest path since it involves
2655 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2656 *
2657 * Version of __slab_alloc to use when we know that interrupts are
2658 * already disabled (which is the case for bulk allocation).
81819f0f 2659 */
a380a3c7 2660static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2661 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2662{
6faa6833 2663 void *freelist;
f6e7def7 2664 struct page *page;
81819f0f 2665
9f986d99
AW
2666 stat(s, ALLOC_SLOWPATH);
2667
f6e7def7 2668 page = c->page;
0715e6c5
VB
2669 if (!page) {
2670 /*
2671 * if the node is not online or has no normal memory, just
2672 * ignore the node constraint
2673 */
2674 if (unlikely(node != NUMA_NO_NODE &&
2675 !node_state(node, N_NORMAL_MEMORY)))
2676 node = NUMA_NO_NODE;
81819f0f 2677 goto new_slab;
0715e6c5 2678 }
49e22585 2679redo:
6faa6833 2680
57d437d2 2681 if (unlikely(!node_match(page, node))) {
0715e6c5
VB
2682 /*
2683 * same as above but node_match() being false already
2684 * implies node != NUMA_NO_NODE
2685 */
2686 if (!node_state(node, N_NORMAL_MEMORY)) {
2687 node = NUMA_NO_NODE;
2688 goto redo;
2689 } else {
a561ce00 2690 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2691 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2692 goto new_slab;
2693 }
fc59c053 2694 }
6446faa2 2695
072bb0aa
MG
2696 /*
2697 * By rights, we should be searching for a slab page that was
2698 * PFMEMALLOC but right now, we are losing the pfmemalloc
2699 * information when the page leaves the per-cpu allocator
2700 */
2701 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2702 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2703 goto new_slab;
2704 }
2705
73736e03 2706 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2707 freelist = c->freelist;
2708 if (freelist)
73736e03 2709 goto load_freelist;
03e404af 2710
f6e7def7 2711 freelist = get_freelist(s, page);
6446faa2 2712
6faa6833 2713 if (!freelist) {
03e404af
CL
2714 c->page = NULL;
2715 stat(s, DEACTIVATE_BYPASS);
fc59c053 2716 goto new_slab;
03e404af 2717 }
6446faa2 2718
84e554e6 2719 stat(s, ALLOC_REFILL);
6446faa2 2720
894b8788 2721load_freelist:
507effea
CL
2722 /*
2723 * freelist is pointing to the list of objects to be used.
2724 * page is pointing to the page from which the objects are obtained.
2725 * That page must be frozen for per cpu allocations to work.
2726 */
a0132ac0 2727 VM_BUG_ON(!c->page->frozen);
6faa6833 2728 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2729 c->tid = next_tid(c->tid);
6faa6833 2730 return freelist;
81819f0f 2731
81819f0f 2732new_slab:
2cfb7455 2733
a93cf07b
WY
2734 if (slub_percpu_partial(c)) {
2735 page = c->page = slub_percpu_partial(c);
2736 slub_set_percpu_partial(c, page);
49e22585 2737 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2738 goto redo;
81819f0f
CL
2739 }
2740
188fd063 2741 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2742
f4697436 2743 if (unlikely(!freelist)) {
9a02d699 2744 slab_out_of_memory(s, gfpflags, node);
f4697436 2745 return NULL;
81819f0f 2746 }
2cfb7455 2747
f6e7def7 2748 page = c->page;
5091b74a 2749 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2750 goto load_freelist;
2cfb7455 2751
497b66f2 2752 /* Only entered in the debug case */
d0e0ac97
CG
2753 if (kmem_cache_debug(s) &&
2754 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2755 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2756
d4ff6d35 2757 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2758 return freelist;
894b8788
CL
2759}
2760
a380a3c7
CL
2761/*
2762 * Another one that disabled interrupt and compensates for possible
2763 * cpu changes by refetching the per cpu area pointer.
2764 */
2765static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2766 unsigned long addr, struct kmem_cache_cpu *c)
2767{
2768 void *p;
2769 unsigned long flags;
2770
2771 local_irq_save(flags);
923717cb 2772#ifdef CONFIG_PREEMPTION
a380a3c7
CL
2773 /*
2774 * We may have been preempted and rescheduled on a different
2775 * cpu before disabling interrupts. Need to reload cpu area
2776 * pointer.
2777 */
2778 c = this_cpu_ptr(s->cpu_slab);
2779#endif
2780
2781 p = ___slab_alloc(s, gfpflags, node, addr, c);
2782 local_irq_restore(flags);
2783 return p;
2784}
2785
0f181f9f
AP
2786/*
2787 * If the object has been wiped upon free, make sure it's fully initialized by
2788 * zeroing out freelist pointer.
2789 */
2790static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2791 void *obj)
2792{
2793 if (unlikely(slab_want_init_on_free(s)) && obj)
ce5716c6
AK
2794 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
2795 0, sizeof(void *));
0f181f9f
AP
2796}
2797
894b8788
CL
2798/*
2799 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2800 * have the fastpath folded into their functions. So no function call
2801 * overhead for requests that can be satisfied on the fastpath.
2802 *
2803 * The fastpath works by first checking if the lockless freelist can be used.
2804 * If not then __slab_alloc is called for slow processing.
2805 *
2806 * Otherwise we can simply pick the next object from the lockless free list.
2807 */
2b847c3c 2808static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2809 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2810{
03ec0ed5 2811 void *object;
dfb4f096 2812 struct kmem_cache_cpu *c;
57d437d2 2813 struct page *page;
8a5ec0ba 2814 unsigned long tid;
964d4bd3 2815 struct obj_cgroup *objcg = NULL;
1f84260c 2816
964d4bd3 2817 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
8135be5a 2818 if (!s)
773ff60e 2819 return NULL;
8a5ec0ba 2820redo:
8a5ec0ba
CL
2821 /*
2822 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2823 * enabled. We may switch back and forth between cpus while
2824 * reading from one cpu area. That does not matter as long
2825 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2826 *
9aabf810 2827 * We should guarantee that tid and kmem_cache are retrieved on
923717cb 2828 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
9aabf810 2829 * to check if it is matched or not.
8a5ec0ba 2830 */
9aabf810
JK
2831 do {
2832 tid = this_cpu_read(s->cpu_slab->tid);
2833 c = raw_cpu_ptr(s->cpu_slab);
923717cb 2834 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 2835 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2836
2837 /*
2838 * Irqless object alloc/free algorithm used here depends on sequence
2839 * of fetching cpu_slab's data. tid should be fetched before anything
2840 * on c to guarantee that object and page associated with previous tid
2841 * won't be used with current tid. If we fetch tid first, object and
2842 * page could be one associated with next tid and our alloc/free
2843 * request will be failed. In this case, we will retry. So, no problem.
2844 */
2845 barrier();
8a5ec0ba 2846
8a5ec0ba
CL
2847 /*
2848 * The transaction ids are globally unique per cpu and per operation on
2849 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2850 * occurs on the right processor and that there was no operation on the
2851 * linked list in between.
2852 */
8a5ec0ba 2853
9dfc6e68 2854 object = c->freelist;
57d437d2 2855 page = c->page;
22e4663e 2856 if (unlikely(!object || !page || !node_match(page, node))) {
dfb4f096 2857 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492 2858 } else {
0ad9500e
ED
2859 void *next_object = get_freepointer_safe(s, object);
2860
8a5ec0ba 2861 /*
25985edc 2862 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2863 * operation and if we are on the right processor.
2864 *
d0e0ac97
CG
2865 * The cmpxchg does the following atomically (without lock
2866 * semantics!)
8a5ec0ba
CL
2867 * 1. Relocate first pointer to the current per cpu area.
2868 * 2. Verify that tid and freelist have not been changed
2869 * 3. If they were not changed replace tid and freelist
2870 *
d0e0ac97
CG
2871 * Since this is without lock semantics the protection is only
2872 * against code executing on this cpu *not* from access by
2873 * other cpus.
8a5ec0ba 2874 */
933393f5 2875 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2876 s->cpu_slab->freelist, s->cpu_slab->tid,
2877 object, tid,
0ad9500e 2878 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2879
2880 note_cmpxchg_failure("slab_alloc", s, tid);
2881 goto redo;
2882 }
0ad9500e 2883 prefetch_freepointer(s, next_object);
84e554e6 2884 stat(s, ALLOC_FASTPATH);
894b8788 2885 }
0f181f9f 2886
ce5716c6 2887 maybe_wipe_obj_freeptr(s, object);
8a5ec0ba 2888
6471384a 2889 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
aa1ef4d7 2890 memset(kasan_reset_tag(object), 0, s->object_size);
d07dbea4 2891
964d4bd3 2892 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object);
5a896d9e 2893
894b8788 2894 return object;
81819f0f
CL
2895}
2896
2b847c3c
EG
2897static __always_inline void *slab_alloc(struct kmem_cache *s,
2898 gfp_t gfpflags, unsigned long addr)
2899{
2900 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2901}
2902
81819f0f
CL
2903void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2904{
2b847c3c 2905 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2906
d0e0ac97
CG
2907 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2908 s->size, gfpflags);
5b882be4
EGM
2909
2910 return ret;
81819f0f
CL
2911}
2912EXPORT_SYMBOL(kmem_cache_alloc);
2913
0f24f128 2914#ifdef CONFIG_TRACING
4a92379b
RK
2915void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2916{
2b847c3c 2917 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2918 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 2919 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2920 return ret;
2921}
2922EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2923#endif
2924
81819f0f
CL
2925#ifdef CONFIG_NUMA
2926void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2927{
2b847c3c 2928 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2929
ca2b84cb 2930 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2931 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2932
2933 return ret;
81819f0f
CL
2934}
2935EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2936
0f24f128 2937#ifdef CONFIG_TRACING
4a92379b 2938void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2939 gfp_t gfpflags,
4a92379b 2940 int node, size_t size)
5b882be4 2941{
2b847c3c 2942 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2943
2944 trace_kmalloc_node(_RET_IP_, ret,
2945 size, s->size, gfpflags, node);
0316bec2 2946
0116523c 2947 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2948 return ret;
5b882be4 2949}
4a92379b 2950EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2951#endif
6dfd1b65 2952#endif /* CONFIG_NUMA */
5b882be4 2953
81819f0f 2954/*
94e4d712 2955 * Slow path handling. This may still be called frequently since objects
894b8788 2956 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2957 *
894b8788
CL
2958 * So we still attempt to reduce cache line usage. Just take the slab
2959 * lock and free the item. If there is no additional partial page
2960 * handling required then we can return immediately.
81819f0f 2961 */
894b8788 2962static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2963 void *head, void *tail, int cnt,
2964 unsigned long addr)
2965
81819f0f
CL
2966{
2967 void *prior;
2cfb7455 2968 int was_frozen;
2cfb7455
CL
2969 struct page new;
2970 unsigned long counters;
2971 struct kmem_cache_node *n = NULL;
3f649ab7 2972 unsigned long flags;
81819f0f 2973
8a5ec0ba 2974 stat(s, FREE_SLOWPATH);
81819f0f 2975
19c7ff9e 2976 if (kmem_cache_debug(s) &&
282acb43 2977 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2978 return;
6446faa2 2979
2cfb7455 2980 do {
837d678d
JK
2981 if (unlikely(n)) {
2982 spin_unlock_irqrestore(&n->list_lock, flags);
2983 n = NULL;
2984 }
2cfb7455
CL
2985 prior = page->freelist;
2986 counters = page->counters;
81084651 2987 set_freepointer(s, tail, prior);
2cfb7455
CL
2988 new.counters = counters;
2989 was_frozen = new.frozen;
81084651 2990 new.inuse -= cnt;
837d678d 2991 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2992
c65c1877 2993 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2994
2995 /*
d0e0ac97
CG
2996 * Slab was on no list before and will be
2997 * partially empty
2998 * We can defer the list move and instead
2999 * freeze it.
49e22585
CL
3000 */
3001 new.frozen = 1;
3002
c65c1877 3003 } else { /* Needs to be taken off a list */
49e22585 3004
b455def2 3005 n = get_node(s, page_to_nid(page));
49e22585
CL
3006 /*
3007 * Speculatively acquire the list_lock.
3008 * If the cmpxchg does not succeed then we may
3009 * drop the list_lock without any processing.
3010 *
3011 * Otherwise the list_lock will synchronize with
3012 * other processors updating the list of slabs.
3013 */
3014 spin_lock_irqsave(&n->list_lock, flags);
3015
3016 }
2cfb7455 3017 }
81819f0f 3018
2cfb7455
CL
3019 } while (!cmpxchg_double_slab(s, page,
3020 prior, counters,
81084651 3021 head, new.counters,
2cfb7455 3022 "__slab_free"));
81819f0f 3023
2cfb7455 3024 if (likely(!n)) {
49e22585 3025
c270cf30
AW
3026 if (likely(was_frozen)) {
3027 /*
3028 * The list lock was not taken therefore no list
3029 * activity can be necessary.
3030 */
3031 stat(s, FREE_FROZEN);
3032 } else if (new.frozen) {
3033 /*
3034 * If we just froze the page then put it onto the
3035 * per cpu partial list.
3036 */
49e22585 3037 put_cpu_partial(s, page, 1);
8028dcea
AS
3038 stat(s, CPU_PARTIAL_FREE);
3039 }
c270cf30 3040
b455def2
L
3041 return;
3042 }
81819f0f 3043
8a5b20ae 3044 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
3045 goto slab_empty;
3046
81819f0f 3047 /*
837d678d
JK
3048 * Objects left in the slab. If it was not on the partial list before
3049 * then add it.
81819f0f 3050 */
345c905d 3051 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 3052 remove_full(s, n, page);
837d678d
JK
3053 add_partial(n, page, DEACTIVATE_TO_TAIL);
3054 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 3055 }
80f08c19 3056 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
3057 return;
3058
3059slab_empty:
a973e9dd 3060 if (prior) {
81819f0f 3061 /*
6fbabb20 3062 * Slab on the partial list.
81819f0f 3063 */
5cc6eee8 3064 remove_partial(n, page);
84e554e6 3065 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 3066 } else {
6fbabb20 3067 /* Slab must be on the full list */
c65c1877
PZ
3068 remove_full(s, n, page);
3069 }
2cfb7455 3070
80f08c19 3071 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 3072 stat(s, FREE_SLAB);
81819f0f 3073 discard_slab(s, page);
81819f0f
CL
3074}
3075
894b8788
CL
3076/*
3077 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3078 * can perform fastpath freeing without additional function calls.
3079 *
3080 * The fastpath is only possible if we are freeing to the current cpu slab
3081 * of this processor. This typically the case if we have just allocated
3082 * the item before.
3083 *
3084 * If fastpath is not possible then fall back to __slab_free where we deal
3085 * with all sorts of special processing.
81084651
JDB
3086 *
3087 * Bulk free of a freelist with several objects (all pointing to the
3088 * same page) possible by specifying head and tail ptr, plus objects
3089 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 3090 */
80a9201a
AP
3091static __always_inline void do_slab_free(struct kmem_cache *s,
3092 struct page *page, void *head, void *tail,
3093 int cnt, unsigned long addr)
894b8788 3094{
81084651 3095 void *tail_obj = tail ? : head;
dfb4f096 3096 struct kmem_cache_cpu *c;
8a5ec0ba 3097 unsigned long tid;
964d4bd3 3098
d1b2cf6c 3099 memcg_slab_free_hook(s, &head, 1);
8a5ec0ba
CL
3100redo:
3101 /*
3102 * Determine the currently cpus per cpu slab.
3103 * The cpu may change afterward. However that does not matter since
3104 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3105 * during the cmpxchg then the free will succeed.
8a5ec0ba 3106 */
9aabf810
JK
3107 do {
3108 tid = this_cpu_read(s->cpu_slab->tid);
3109 c = raw_cpu_ptr(s->cpu_slab);
923717cb 3110 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 3111 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 3112
9aabf810
JK
3113 /* Same with comment on barrier() in slab_alloc_node() */
3114 barrier();
c016b0bd 3115
442b06bc 3116 if (likely(page == c->page)) {
5076190d
LT
3117 void **freelist = READ_ONCE(c->freelist);
3118
3119 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3120
933393f5 3121 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba 3122 s->cpu_slab->freelist, s->cpu_slab->tid,
5076190d 3123 freelist, tid,
81084651 3124 head, next_tid(tid)))) {
8a5ec0ba
CL
3125
3126 note_cmpxchg_failure("slab_free", s, tid);
3127 goto redo;
3128 }
84e554e6 3129 stat(s, FREE_FASTPATH);
894b8788 3130 } else
81084651 3131 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 3132
894b8788
CL
3133}
3134
80a9201a
AP
3135static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3136 void *head, void *tail, int cnt,
3137 unsigned long addr)
3138{
80a9201a 3139 /*
c3895391
AK
3140 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3141 * to remove objects, whose reuse must be delayed.
80a9201a 3142 */
c3895391
AK
3143 if (slab_free_freelist_hook(s, &head, &tail))
3144 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3145}
3146
2bd926b4 3147#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3148void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3149{
3150 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3151}
3152#endif
3153
81819f0f
CL
3154void kmem_cache_free(struct kmem_cache *s, void *x)
3155{
b9ce5ef4
GC
3156 s = cache_from_obj(s, x);
3157 if (!s)
79576102 3158 return;
81084651 3159 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 3160 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
3161}
3162EXPORT_SYMBOL(kmem_cache_free);
3163
d0ecd894 3164struct detached_freelist {
fbd02630 3165 struct page *page;
d0ecd894
JDB
3166 void *tail;
3167 void *freelist;
3168 int cnt;
376bf125 3169 struct kmem_cache *s;
d0ecd894 3170};
fbd02630 3171
d0ecd894
JDB
3172/*
3173 * This function progressively scans the array with free objects (with
3174 * a limited look ahead) and extract objects belonging to the same
3175 * page. It builds a detached freelist directly within the given
3176 * page/objects. This can happen without any need for
3177 * synchronization, because the objects are owned by running process.
3178 * The freelist is build up as a single linked list in the objects.
3179 * The idea is, that this detached freelist can then be bulk
3180 * transferred to the real freelist(s), but only requiring a single
3181 * synchronization primitive. Look ahead in the array is limited due
3182 * to performance reasons.
3183 */
376bf125
JDB
3184static inline
3185int build_detached_freelist(struct kmem_cache *s, size_t size,
3186 void **p, struct detached_freelist *df)
d0ecd894
JDB
3187{
3188 size_t first_skipped_index = 0;
3189 int lookahead = 3;
3190 void *object;
ca257195 3191 struct page *page;
fbd02630 3192
d0ecd894
JDB
3193 /* Always re-init detached_freelist */
3194 df->page = NULL;
fbd02630 3195
d0ecd894
JDB
3196 do {
3197 object = p[--size];
ca257195 3198 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3199 } while (!object && size);
3eed034d 3200
d0ecd894
JDB
3201 if (!object)
3202 return 0;
fbd02630 3203
ca257195
JDB
3204 page = virt_to_head_page(object);
3205 if (!s) {
3206 /* Handle kalloc'ed objects */
3207 if (unlikely(!PageSlab(page))) {
3208 BUG_ON(!PageCompound(page));
3209 kfree_hook(object);
4949148a 3210 __free_pages(page, compound_order(page));
ca257195
JDB
3211 p[size] = NULL; /* mark object processed */
3212 return size;
3213 }
3214 /* Derive kmem_cache from object */
3215 df->s = page->slab_cache;
3216 } else {
3217 df->s = cache_from_obj(s, object); /* Support for memcg */
3218 }
376bf125 3219
d0ecd894 3220 /* Start new detached freelist */
ca257195 3221 df->page = page;
376bf125 3222 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3223 df->tail = object;
3224 df->freelist = object;
3225 p[size] = NULL; /* mark object processed */
3226 df->cnt = 1;
3227
3228 while (size) {
3229 object = p[--size];
3230 if (!object)
3231 continue; /* Skip processed objects */
3232
3233 /* df->page is always set at this point */
3234 if (df->page == virt_to_head_page(object)) {
3235 /* Opportunity build freelist */
376bf125 3236 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3237 df->freelist = object;
3238 df->cnt++;
3239 p[size] = NULL; /* mark object processed */
3240
3241 continue;
fbd02630 3242 }
d0ecd894
JDB
3243
3244 /* Limit look ahead search */
3245 if (!--lookahead)
3246 break;
3247
3248 if (!first_skipped_index)
3249 first_skipped_index = size + 1;
fbd02630 3250 }
d0ecd894
JDB
3251
3252 return first_skipped_index;
3253}
3254
d0ecd894 3255/* Note that interrupts must be enabled when calling this function. */
376bf125 3256void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3257{
3258 if (WARN_ON(!size))
3259 return;
3260
d1b2cf6c 3261 memcg_slab_free_hook(s, p, size);
d0ecd894
JDB
3262 do {
3263 struct detached_freelist df;
3264
3265 size = build_detached_freelist(s, size, p, &df);
84582c8a 3266 if (!df.page)
d0ecd894
JDB
3267 continue;
3268
376bf125 3269 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3270 } while (likely(size));
484748f0
CL
3271}
3272EXPORT_SYMBOL(kmem_cache_free_bulk);
3273
994eb764 3274/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3275int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3276 void **p)
484748f0 3277{
994eb764
JDB
3278 struct kmem_cache_cpu *c;
3279 int i;
964d4bd3 3280 struct obj_cgroup *objcg = NULL;
994eb764 3281
03ec0ed5 3282 /* memcg and kmem_cache debug support */
964d4bd3 3283 s = slab_pre_alloc_hook(s, &objcg, size, flags);
03ec0ed5
JDB
3284 if (unlikely(!s))
3285 return false;
994eb764
JDB
3286 /*
3287 * Drain objects in the per cpu slab, while disabling local
3288 * IRQs, which protects against PREEMPT and interrupts
3289 * handlers invoking normal fastpath.
3290 */
3291 local_irq_disable();
3292 c = this_cpu_ptr(s->cpu_slab);
3293
3294 for (i = 0; i < size; i++) {
3295 void *object = c->freelist;
3296
ebe909e0 3297 if (unlikely(!object)) {
fd4d9c7d
JH
3298 /*
3299 * We may have removed an object from c->freelist using
3300 * the fastpath in the previous iteration; in that case,
3301 * c->tid has not been bumped yet.
3302 * Since ___slab_alloc() may reenable interrupts while
3303 * allocating memory, we should bump c->tid now.
3304 */
3305 c->tid = next_tid(c->tid);
3306
ebe909e0
JDB
3307 /*
3308 * Invoking slow path likely have side-effect
3309 * of re-populating per CPU c->freelist
3310 */
87098373 3311 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3312 _RET_IP_, c);
87098373
CL
3313 if (unlikely(!p[i]))
3314 goto error;
3315
ebe909e0 3316 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3317 maybe_wipe_obj_freeptr(s, p[i]);
3318
ebe909e0
JDB
3319 continue; /* goto for-loop */
3320 }
994eb764
JDB
3321 c->freelist = get_freepointer(s, object);
3322 p[i] = object;
0f181f9f 3323 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3324 }
3325 c->tid = next_tid(c->tid);
3326 local_irq_enable();
3327
3328 /* Clear memory outside IRQ disabled fastpath loop */
6471384a 3329 if (unlikely(slab_want_init_on_alloc(flags, s))) {
994eb764
JDB
3330 int j;
3331
3332 for (j = 0; j < i; j++)
ce5716c6 3333 memset(kasan_reset_tag(p[j]), 0, s->object_size);
994eb764
JDB
3334 }
3335
03ec0ed5 3336 /* memcg and kmem_cache debug support */
964d4bd3 3337 slab_post_alloc_hook(s, objcg, flags, size, p);
865762a8 3338 return i;
87098373 3339error:
87098373 3340 local_irq_enable();
964d4bd3 3341 slab_post_alloc_hook(s, objcg, flags, i, p);
03ec0ed5 3342 __kmem_cache_free_bulk(s, i, p);
865762a8 3343 return 0;
484748f0
CL
3344}
3345EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3346
3347
81819f0f 3348/*
672bba3a
CL
3349 * Object placement in a slab is made very easy because we always start at
3350 * offset 0. If we tune the size of the object to the alignment then we can
3351 * get the required alignment by putting one properly sized object after
3352 * another.
81819f0f
CL
3353 *
3354 * Notice that the allocation order determines the sizes of the per cpu
3355 * caches. Each processor has always one slab available for allocations.
3356 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3357 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3358 * locking overhead.
81819f0f
CL
3359 */
3360
3361/*
3362 * Mininum / Maximum order of slab pages. This influences locking overhead
3363 * and slab fragmentation. A higher order reduces the number of partial slabs
3364 * and increases the number of allocations possible without having to
3365 * take the list_lock.
3366 */
19af27af
AD
3367static unsigned int slub_min_order;
3368static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3369static unsigned int slub_min_objects;
81819f0f 3370
81819f0f
CL
3371/*
3372 * Calculate the order of allocation given an slab object size.
3373 *
672bba3a
CL
3374 * The order of allocation has significant impact on performance and other
3375 * system components. Generally order 0 allocations should be preferred since
3376 * order 0 does not cause fragmentation in the page allocator. Larger objects
3377 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3378 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3379 * would be wasted.
3380 *
3381 * In order to reach satisfactory performance we must ensure that a minimum
3382 * number of objects is in one slab. Otherwise we may generate too much
3383 * activity on the partial lists which requires taking the list_lock. This is
3384 * less a concern for large slabs though which are rarely used.
81819f0f 3385 *
672bba3a
CL
3386 * slub_max_order specifies the order where we begin to stop considering the
3387 * number of objects in a slab as critical. If we reach slub_max_order then
3388 * we try to keep the page order as low as possible. So we accept more waste
3389 * of space in favor of a small page order.
81819f0f 3390 *
672bba3a
CL
3391 * Higher order allocations also allow the placement of more objects in a
3392 * slab and thereby reduce object handling overhead. If the user has
3393 * requested a higher mininum order then we start with that one instead of
3394 * the smallest order which will fit the object.
81819f0f 3395 */
19af27af
AD
3396static inline unsigned int slab_order(unsigned int size,
3397 unsigned int min_objects, unsigned int max_order,
9736d2a9 3398 unsigned int fract_leftover)
81819f0f 3399{
19af27af
AD
3400 unsigned int min_order = slub_min_order;
3401 unsigned int order;
81819f0f 3402
9736d2a9 3403 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3404 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3405
9736d2a9 3406 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3407 order <= max_order; order++) {
81819f0f 3408
19af27af
AD
3409 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3410 unsigned int rem;
81819f0f 3411
9736d2a9 3412 rem = slab_size % size;
81819f0f 3413
5e6d444e 3414 if (rem <= slab_size / fract_leftover)
81819f0f 3415 break;
81819f0f 3416 }
672bba3a 3417
81819f0f
CL
3418 return order;
3419}
3420
9736d2a9 3421static inline int calculate_order(unsigned int size)
5e6d444e 3422{
19af27af
AD
3423 unsigned int order;
3424 unsigned int min_objects;
3425 unsigned int max_objects;
3286222f 3426 unsigned int nr_cpus;
5e6d444e
CL
3427
3428 /*
3429 * Attempt to find best configuration for a slab. This
3430 * works by first attempting to generate a layout with
3431 * the best configuration and backing off gradually.
3432 *
422ff4d7 3433 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3434 * we reduce the minimum objects required in a slab.
3435 */
3436 min_objects = slub_min_objects;
3286222f
VB
3437 if (!min_objects) {
3438 /*
3439 * Some architectures will only update present cpus when
3440 * onlining them, so don't trust the number if it's just 1. But
3441 * we also don't want to use nr_cpu_ids always, as on some other
3442 * architectures, there can be many possible cpus, but never
3443 * onlined. Here we compromise between trying to avoid too high
3444 * order on systems that appear larger than they are, and too
3445 * low order on systems that appear smaller than they are.
3446 */
3447 nr_cpus = num_present_cpus();
3448 if (nr_cpus <= 1)
3449 nr_cpus = nr_cpu_ids;
3450 min_objects = 4 * (fls(nr_cpus) + 1);
3451 }
9736d2a9 3452 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3453 min_objects = min(min_objects, max_objects);
3454
5e6d444e 3455 while (min_objects > 1) {
19af27af
AD
3456 unsigned int fraction;
3457
c124f5b5 3458 fraction = 16;
5e6d444e
CL
3459 while (fraction >= 4) {
3460 order = slab_order(size, min_objects,
9736d2a9 3461 slub_max_order, fraction);
5e6d444e
CL
3462 if (order <= slub_max_order)
3463 return order;
3464 fraction /= 2;
3465 }
5086c389 3466 min_objects--;
5e6d444e
CL
3467 }
3468
3469 /*
3470 * We were unable to place multiple objects in a slab. Now
3471 * lets see if we can place a single object there.
3472 */
9736d2a9 3473 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3474 if (order <= slub_max_order)
3475 return order;
3476
3477 /*
3478 * Doh this slab cannot be placed using slub_max_order.
3479 */
9736d2a9 3480 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3481 if (order < MAX_ORDER)
5e6d444e
CL
3482 return order;
3483 return -ENOSYS;
3484}
3485
5595cffc 3486static void
4053497d 3487init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3488{
3489 n->nr_partial = 0;
81819f0f
CL
3490 spin_lock_init(&n->list_lock);
3491 INIT_LIST_HEAD(&n->partial);
8ab1372f 3492#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3493 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3494 atomic_long_set(&n->total_objects, 0);
643b1138 3495 INIT_LIST_HEAD(&n->full);
8ab1372f 3496#endif
81819f0f
CL
3497}
3498
55136592 3499static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3500{
6c182dc0 3501 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3502 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3503
8a5ec0ba 3504 /*
d4d84fef
CM
3505 * Must align to double word boundary for the double cmpxchg
3506 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3507 */
d4d84fef
CM
3508 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3509 2 * sizeof(void *));
8a5ec0ba
CL
3510
3511 if (!s->cpu_slab)
3512 return 0;
3513
3514 init_kmem_cache_cpus(s);
4c93c355 3515
8a5ec0ba 3516 return 1;
4c93c355 3517}
4c93c355 3518
51df1142
CL
3519static struct kmem_cache *kmem_cache_node;
3520
81819f0f
CL
3521/*
3522 * No kmalloc_node yet so do it by hand. We know that this is the first
3523 * slab on the node for this slabcache. There are no concurrent accesses
3524 * possible.
3525 *
721ae22a
ZYW
3526 * Note that this function only works on the kmem_cache_node
3527 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3528 * memory on a fresh node that has no slab structures yet.
81819f0f 3529 */
55136592 3530static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3531{
3532 struct page *page;
3533 struct kmem_cache_node *n;
3534
51df1142 3535 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3536
51df1142 3537 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3538
3539 BUG_ON(!page);
a2f92ee7 3540 if (page_to_nid(page) != node) {
f9f58285
FF
3541 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3542 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3543 }
3544
81819f0f
CL
3545 n = page->freelist;
3546 BUG_ON(!n);
8ab1372f 3547#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3548 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3549 init_tracking(kmem_cache_node, n);
8ab1372f 3550#endif
12b22386 3551 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
505f5dcb 3552 GFP_KERNEL);
12b22386
AK
3553 page->freelist = get_freepointer(kmem_cache_node, n);
3554 page->inuse = 1;
3555 page->frozen = 0;
3556 kmem_cache_node->node[node] = n;
4053497d 3557 init_kmem_cache_node(n);
51df1142 3558 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3559
67b6c900 3560 /*
1e4dd946
SR
3561 * No locks need to be taken here as it has just been
3562 * initialized and there is no concurrent access.
67b6c900 3563 */
1e4dd946 3564 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3565}
3566
3567static void free_kmem_cache_nodes(struct kmem_cache *s)
3568{
3569 int node;
fa45dc25 3570 struct kmem_cache_node *n;
81819f0f 3571
fa45dc25 3572 for_each_kmem_cache_node(s, node, n) {
81819f0f 3573 s->node[node] = NULL;
ea37df54 3574 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3575 }
3576}
3577
52b4b950
DS
3578void __kmem_cache_release(struct kmem_cache *s)
3579{
210e7a43 3580 cache_random_seq_destroy(s);
52b4b950
DS
3581 free_percpu(s->cpu_slab);
3582 free_kmem_cache_nodes(s);
3583}
3584
55136592 3585static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3586{
3587 int node;
81819f0f 3588
f64dc58c 3589 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3590 struct kmem_cache_node *n;
3591
73367bd8 3592 if (slab_state == DOWN) {
55136592 3593 early_kmem_cache_node_alloc(node);
73367bd8
AD
3594 continue;
3595 }
51df1142 3596 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3597 GFP_KERNEL, node);
81819f0f 3598
73367bd8
AD
3599 if (!n) {
3600 free_kmem_cache_nodes(s);
3601 return 0;
81819f0f 3602 }
73367bd8 3603
4053497d 3604 init_kmem_cache_node(n);
ea37df54 3605 s->node[node] = n;
81819f0f
CL
3606 }
3607 return 1;
3608}
81819f0f 3609
c0bdb232 3610static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3611{
3612 if (min < MIN_PARTIAL)
3613 min = MIN_PARTIAL;
3614 else if (min > MAX_PARTIAL)
3615 min = MAX_PARTIAL;
3616 s->min_partial = min;
3617}
3618
e6d0e1dc
WY
3619static void set_cpu_partial(struct kmem_cache *s)
3620{
3621#ifdef CONFIG_SLUB_CPU_PARTIAL
3622 /*
3623 * cpu_partial determined the maximum number of objects kept in the
3624 * per cpu partial lists of a processor.
3625 *
3626 * Per cpu partial lists mainly contain slabs that just have one
3627 * object freed. If they are used for allocation then they can be
3628 * filled up again with minimal effort. The slab will never hit the
3629 * per node partial lists and therefore no locking will be required.
3630 *
3631 * This setting also determines
3632 *
3633 * A) The number of objects from per cpu partial slabs dumped to the
3634 * per node list when we reach the limit.
3635 * B) The number of objects in cpu partial slabs to extract from the
3636 * per node list when we run out of per cpu objects. We only fetch
3637 * 50% to keep some capacity around for frees.
3638 */
3639 if (!kmem_cache_has_cpu_partial(s))
bbd4e305 3640 slub_set_cpu_partial(s, 0);
e6d0e1dc 3641 else if (s->size >= PAGE_SIZE)
bbd4e305 3642 slub_set_cpu_partial(s, 2);
e6d0e1dc 3643 else if (s->size >= 1024)
bbd4e305 3644 slub_set_cpu_partial(s, 6);
e6d0e1dc 3645 else if (s->size >= 256)
bbd4e305 3646 slub_set_cpu_partial(s, 13);
e6d0e1dc 3647 else
bbd4e305 3648 slub_set_cpu_partial(s, 30);
e6d0e1dc
WY
3649#endif
3650}
3651
81819f0f
CL
3652/*
3653 * calculate_sizes() determines the order and the distribution of data within
3654 * a slab object.
3655 */
06b285dc 3656static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3657{
d50112ed 3658 slab_flags_t flags = s->flags;
be4a7988 3659 unsigned int size = s->object_size;
89b83f28 3660 unsigned int freepointer_area;
19af27af 3661 unsigned int order;
81819f0f 3662
d8b42bf5
CL
3663 /*
3664 * Round up object size to the next word boundary. We can only
3665 * place the free pointer at word boundaries and this determines
3666 * the possible location of the free pointer.
3667 */
3668 size = ALIGN(size, sizeof(void *));
89b83f28
KC
3669 /*
3670 * This is the area of the object where a freepointer can be
3671 * safely written. If redzoning adds more to the inuse size, we
3672 * can't use that portion for writing the freepointer, so
3673 * s->offset must be limited within this for the general case.
3674 */
3675 freepointer_area = size;
d8b42bf5
CL
3676
3677#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3678 /*
3679 * Determine if we can poison the object itself. If the user of
3680 * the slab may touch the object after free or before allocation
3681 * then we should never poison the object itself.
3682 */
5f0d5a3a 3683 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3684 !s->ctor)
81819f0f
CL
3685 s->flags |= __OBJECT_POISON;
3686 else
3687 s->flags &= ~__OBJECT_POISON;
3688
81819f0f
CL
3689
3690 /*
672bba3a 3691 * If we are Redzoning then check if there is some space between the
81819f0f 3692 * end of the object and the free pointer. If not then add an
672bba3a 3693 * additional word to have some bytes to store Redzone information.
81819f0f 3694 */
3b0efdfa 3695 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3696 size += sizeof(void *);
41ecc55b 3697#endif
81819f0f
CL
3698
3699 /*
672bba3a
CL
3700 * With that we have determined the number of bytes in actual use
3701 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3702 */
3703 s->inuse = size;
3704
5f0d5a3a 3705 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3706 s->ctor)) {
81819f0f
CL
3707 /*
3708 * Relocate free pointer after the object if it is not
3709 * permitted to overwrite the first word of the object on
3710 * kmem_cache_free.
3711 *
3712 * This is the case if we do RCU, have a constructor or
3713 * destructor or are poisoning the objects.
cbfc35a4
WL
3714 *
3715 * The assumption that s->offset >= s->inuse means free
3716 * pointer is outside of the object is used in the
3717 * freeptr_outside_object() function. If that is no
3718 * longer true, the function needs to be modified.
81819f0f
CL
3719 */
3720 s->offset = size;
3721 size += sizeof(void *);
89b83f28 3722 } else if (freepointer_area > sizeof(void *)) {
3202fa62
KC
3723 /*
3724 * Store freelist pointer near middle of object to keep
3725 * it away from the edges of the object to avoid small
3726 * sized over/underflows from neighboring allocations.
3727 */
89b83f28 3728 s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
81819f0f
CL
3729 }
3730
c12b3c62 3731#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3732 if (flags & SLAB_STORE_USER)
3733 /*
3734 * Need to store information about allocs and frees after
3735 * the object.
3736 */
3737 size += 2 * sizeof(struct track);
80a9201a 3738#endif
81819f0f 3739
80a9201a
AP
3740 kasan_cache_create(s, &size, &s->flags);
3741#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3742 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3743 /*
3744 * Add some empty padding so that we can catch
3745 * overwrites from earlier objects rather than let
3746 * tracking information or the free pointer be
0211a9c8 3747 * corrupted if a user writes before the start
81819f0f
CL
3748 * of the object.
3749 */
3750 size += sizeof(void *);
d86bd1be
JK
3751
3752 s->red_left_pad = sizeof(void *);
3753 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3754 size += s->red_left_pad;
3755 }
41ecc55b 3756#endif
672bba3a 3757
81819f0f
CL
3758 /*
3759 * SLUB stores one object immediately after another beginning from
3760 * offset 0. In order to align the objects we have to simply size
3761 * each object to conform to the alignment.
3762 */
45906855 3763 size = ALIGN(size, s->align);
81819f0f 3764 s->size = size;
4138fdfc 3765 s->reciprocal_size = reciprocal_value(size);
06b285dc
CL
3766 if (forced_order >= 0)
3767 order = forced_order;
3768 else
9736d2a9 3769 order = calculate_order(size);
81819f0f 3770
19af27af 3771 if ((int)order < 0)
81819f0f
CL
3772 return 0;
3773
b7a49f0d 3774 s->allocflags = 0;
834f3d11 3775 if (order)
b7a49f0d
CL
3776 s->allocflags |= __GFP_COMP;
3777
3778 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3779 s->allocflags |= GFP_DMA;
b7a49f0d 3780
6d6ea1e9
NB
3781 if (s->flags & SLAB_CACHE_DMA32)
3782 s->allocflags |= GFP_DMA32;
3783
b7a49f0d
CL
3784 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3785 s->allocflags |= __GFP_RECLAIMABLE;
3786
81819f0f
CL
3787 /*
3788 * Determine the number of objects per slab
3789 */
9736d2a9
MW
3790 s->oo = oo_make(order, size);
3791 s->min = oo_make(get_order(size), size);
205ab99d
CL
3792 if (oo_objects(s->oo) > oo_objects(s->max))
3793 s->max = s->oo;
81819f0f 3794
834f3d11 3795 return !!oo_objects(s->oo);
81819f0f
CL
3796}
3797
d50112ed 3798static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3799{
8a13a4cc 3800 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
2482ddec
KC
3801#ifdef CONFIG_SLAB_FREELIST_HARDENED
3802 s->random = get_random_long();
3803#endif
81819f0f 3804
06b285dc 3805 if (!calculate_sizes(s, -1))
81819f0f 3806 goto error;
3de47213
DR
3807 if (disable_higher_order_debug) {
3808 /*
3809 * Disable debugging flags that store metadata if the min slab
3810 * order increased.
3811 */
3b0efdfa 3812 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3813 s->flags &= ~DEBUG_METADATA_FLAGS;
3814 s->offset = 0;
3815 if (!calculate_sizes(s, -1))
3816 goto error;
3817 }
3818 }
81819f0f 3819
2565409f
HC
3820#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3821 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3822 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3823 /* Enable fast mode */
3824 s->flags |= __CMPXCHG_DOUBLE;
3825#endif
3826
3b89d7d8
DR
3827 /*
3828 * The larger the object size is, the more pages we want on the partial
3829 * list to avoid pounding the page allocator excessively.
3830 */
49e22585
CL
3831 set_min_partial(s, ilog2(s->size) / 2);
3832
e6d0e1dc 3833 set_cpu_partial(s);
49e22585 3834
81819f0f 3835#ifdef CONFIG_NUMA
e2cb96b7 3836 s->remote_node_defrag_ratio = 1000;
81819f0f 3837#endif
210e7a43
TG
3838
3839 /* Initialize the pre-computed randomized freelist if slab is up */
3840 if (slab_state >= UP) {
3841 if (init_cache_random_seq(s))
3842 goto error;
3843 }
3844
55136592 3845 if (!init_kmem_cache_nodes(s))
dfb4f096 3846 goto error;
81819f0f 3847
55136592 3848 if (alloc_kmem_cache_cpus(s))
278b1bb1 3849 return 0;
ff12059e 3850
4c93c355 3851 free_kmem_cache_nodes(s);
81819f0f 3852error:
278b1bb1 3853 return -EINVAL;
81819f0f 3854}
81819f0f 3855
33b12c38 3856static void list_slab_objects(struct kmem_cache *s, struct page *page,
55860d96 3857 const char *text)
33b12c38
CL
3858{
3859#ifdef CONFIG_SLUB_DEBUG
3860 void *addr = page_address(page);
55860d96 3861 unsigned long *map;
33b12c38 3862 void *p;
aa456c7a 3863
945cf2b6 3864 slab_err(s, page, text, s->name);
33b12c38 3865 slab_lock(page);
33b12c38 3866
90e9f6a6 3867 map = get_map(s, page);
33b12c38
CL
3868 for_each_object(p, s, addr, page->objects) {
3869
4138fdfc 3870 if (!test_bit(__obj_to_index(s, addr, p), map)) {
f9f58285 3871 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3872 print_tracking(s, p);
3873 }
3874 }
55860d96 3875 put_map(map);
33b12c38
CL
3876 slab_unlock(page);
3877#endif
3878}
3879
81819f0f 3880/*
599870b1 3881 * Attempt to free all partial slabs on a node.
52b4b950
DS
3882 * This is called from __kmem_cache_shutdown(). We must take list_lock
3883 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3884 */
599870b1 3885static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3886{
60398923 3887 LIST_HEAD(discard);
81819f0f
CL
3888 struct page *page, *h;
3889
52b4b950
DS
3890 BUG_ON(irqs_disabled());
3891 spin_lock_irq(&n->list_lock);
916ac052 3892 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 3893 if (!page->inuse) {
52b4b950 3894 remove_partial(n, page);
916ac052 3895 list_add(&page->slab_list, &discard);
33b12c38
CL
3896 } else {
3897 list_slab_objects(s, page,
55860d96 3898 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3899 }
33b12c38 3900 }
52b4b950 3901 spin_unlock_irq(&n->list_lock);
60398923 3902
916ac052 3903 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 3904 discard_slab(s, page);
81819f0f
CL
3905}
3906
f9e13c0a
SB
3907bool __kmem_cache_empty(struct kmem_cache *s)
3908{
3909 int node;
3910 struct kmem_cache_node *n;
3911
3912 for_each_kmem_cache_node(s, node, n)
3913 if (n->nr_partial || slabs_node(s, node))
3914 return false;
3915 return true;
3916}
3917
81819f0f 3918/*
672bba3a 3919 * Release all resources used by a slab cache.
81819f0f 3920 */
52b4b950 3921int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3922{
3923 int node;
fa45dc25 3924 struct kmem_cache_node *n;
81819f0f
CL
3925
3926 flush_all(s);
81819f0f 3927 /* Attempt to free all objects */
fa45dc25 3928 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3929 free_partial(s, n);
3930 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3931 return 1;
3932 }
81819f0f
CL
3933 return 0;
3934}
3935
81819f0f
CL
3936/********************************************************************
3937 * Kmalloc subsystem
3938 *******************************************************************/
3939
81819f0f
CL
3940static int __init setup_slub_min_order(char *str)
3941{
19af27af 3942 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
3943
3944 return 1;
3945}
3946
3947__setup("slub_min_order=", setup_slub_min_order);
3948
3949static int __init setup_slub_max_order(char *str)
3950{
19af27af
AD
3951 get_option(&str, (int *)&slub_max_order);
3952 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
3953
3954 return 1;
3955}
3956
3957__setup("slub_max_order=", setup_slub_max_order);
3958
3959static int __init setup_slub_min_objects(char *str)
3960{
19af27af 3961 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
3962
3963 return 1;
3964}
3965
3966__setup("slub_min_objects=", setup_slub_min_objects);
3967
81819f0f
CL
3968void *__kmalloc(size_t size, gfp_t flags)
3969{
aadb4bc4 3970 struct kmem_cache *s;
5b882be4 3971 void *ret;
81819f0f 3972
95a05b42 3973 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3974 return kmalloc_large(size, flags);
aadb4bc4 3975
2c59dd65 3976 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3977
3978 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3979 return s;
3980
2b847c3c 3981 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3982
ca2b84cb 3983 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3984
0116523c 3985 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3986
5b882be4 3987 return ret;
81819f0f
CL
3988}
3989EXPORT_SYMBOL(__kmalloc);
3990
5d1f57e4 3991#ifdef CONFIG_NUMA
f619cfe1
CL
3992static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3993{
b1eeab67 3994 struct page *page;
e4f7c0b4 3995 void *ptr = NULL;
6a486c0a 3996 unsigned int order = get_order(size);
f619cfe1 3997
75f296d9 3998 flags |= __GFP_COMP;
6a486c0a
VB
3999 page = alloc_pages_node(node, flags, order);
4000 if (page) {
e4f7c0b4 4001 ptr = page_address(page);
ca3c4f41
MS
4002 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4003 PAGE_SIZE << order);
6a486c0a 4004 }
e4f7c0b4 4005
0116523c 4006 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
4007}
4008
81819f0f
CL
4009void *__kmalloc_node(size_t size, gfp_t flags, int node)
4010{
aadb4bc4 4011 struct kmem_cache *s;
5b882be4 4012 void *ret;
81819f0f 4013
95a05b42 4014 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
4015 ret = kmalloc_large_node(size, flags, node);
4016
ca2b84cb
EGM
4017 trace_kmalloc_node(_RET_IP_, ret,
4018 size, PAGE_SIZE << get_order(size),
4019 flags, node);
5b882be4
EGM
4020
4021 return ret;
4022 }
aadb4bc4 4023
2c59dd65 4024 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4025
4026 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4027 return s;
4028
2b847c3c 4029 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 4030
ca2b84cb 4031 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 4032
0116523c 4033 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4034
5b882be4 4035 return ret;
81819f0f
CL
4036}
4037EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 4038#endif /* CONFIG_NUMA */
81819f0f 4039
ed18adc1
KC
4040#ifdef CONFIG_HARDENED_USERCOPY
4041/*
afcc90f8
KC
4042 * Rejects incorrectly sized objects and objects that are to be copied
4043 * to/from userspace but do not fall entirely within the containing slab
4044 * cache's usercopy region.
ed18adc1
KC
4045 *
4046 * Returns NULL if check passes, otherwise const char * to name of cache
4047 * to indicate an error.
4048 */
f4e6e289
KC
4049void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4050 bool to_user)
ed18adc1
KC
4051{
4052 struct kmem_cache *s;
44065b2e 4053 unsigned int offset;
ed18adc1
KC
4054 size_t object_size;
4055
96fedce2
AK
4056 ptr = kasan_reset_tag(ptr);
4057
ed18adc1
KC
4058 /* Find object and usable object size. */
4059 s = page->slab_cache;
ed18adc1
KC
4060
4061 /* Reject impossible pointers. */
4062 if (ptr < page_address(page))
f4e6e289
KC
4063 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4064 to_user, 0, n);
ed18adc1
KC
4065
4066 /* Find offset within object. */
4067 offset = (ptr - page_address(page)) % s->size;
4068
4069 /* Adjust for redzone and reject if within the redzone. */
59052e89 4070 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 4071 if (offset < s->red_left_pad)
f4e6e289
KC
4072 usercopy_abort("SLUB object in left red zone",
4073 s->name, to_user, offset, n);
ed18adc1
KC
4074 offset -= s->red_left_pad;
4075 }
4076
afcc90f8
KC
4077 /* Allow address range falling entirely within usercopy region. */
4078 if (offset >= s->useroffset &&
4079 offset - s->useroffset <= s->usersize &&
4080 n <= s->useroffset - offset + s->usersize)
f4e6e289 4081 return;
ed18adc1 4082
afcc90f8
KC
4083 /*
4084 * If the copy is still within the allocated object, produce
4085 * a warning instead of rejecting the copy. This is intended
4086 * to be a temporary method to find any missing usercopy
4087 * whitelists.
4088 */
4089 object_size = slab_ksize(s);
2d891fbc
KC
4090 if (usercopy_fallback &&
4091 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
4092 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4093 return;
4094 }
ed18adc1 4095
f4e6e289 4096 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
4097}
4098#endif /* CONFIG_HARDENED_USERCOPY */
4099
10d1f8cb 4100size_t __ksize(const void *object)
81819f0f 4101{
272c1d21 4102 struct page *page;
81819f0f 4103
ef8b4520 4104 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
4105 return 0;
4106
294a80a8 4107 page = virt_to_head_page(object);
294a80a8 4108
76994412
PE
4109 if (unlikely(!PageSlab(page))) {
4110 WARN_ON(!PageCompound(page));
a50b854e 4111 return page_size(page);
76994412 4112 }
81819f0f 4113
1b4f59e3 4114 return slab_ksize(page->slab_cache);
81819f0f 4115}
10d1f8cb 4116EXPORT_SYMBOL(__ksize);
81819f0f
CL
4117
4118void kfree(const void *x)
4119{
81819f0f 4120 struct page *page;
5bb983b0 4121 void *object = (void *)x;
81819f0f 4122
2121db74
PE
4123 trace_kfree(_RET_IP_, x);
4124
2408c550 4125 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
4126 return;
4127
b49af68f 4128 page = virt_to_head_page(x);
aadb4bc4 4129 if (unlikely(!PageSlab(page))) {
6a486c0a
VB
4130 unsigned int order = compound_order(page);
4131
0937502a 4132 BUG_ON(!PageCompound(page));
47adccce 4133 kfree_hook(object);
ca3c4f41
MS
4134 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4135 -(PAGE_SIZE << order));
6a486c0a 4136 __free_pages(page, order);
aadb4bc4
CL
4137 return;
4138 }
81084651 4139 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
4140}
4141EXPORT_SYMBOL(kfree);
4142
832f37f5
VD
4143#define SHRINK_PROMOTE_MAX 32
4144
2086d26a 4145/*
832f37f5
VD
4146 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4147 * up most to the head of the partial lists. New allocations will then
4148 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4149 *
4150 * The slabs with the least items are placed last. This results in them
4151 * being allocated from last increasing the chance that the last objects
4152 * are freed in them.
2086d26a 4153 */
c9fc5864 4154int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
4155{
4156 int node;
4157 int i;
4158 struct kmem_cache_node *n;
4159 struct page *page;
4160 struct page *t;
832f37f5
VD
4161 struct list_head discard;
4162 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4163 unsigned long flags;
ce3712d7 4164 int ret = 0;
2086d26a 4165
2086d26a 4166 flush_all(s);
fa45dc25 4167 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4168 INIT_LIST_HEAD(&discard);
4169 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4170 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4171
4172 spin_lock_irqsave(&n->list_lock, flags);
4173
4174 /*
832f37f5 4175 * Build lists of slabs to discard or promote.
2086d26a 4176 *
672bba3a
CL
4177 * Note that concurrent frees may occur while we hold the
4178 * list_lock. page->inuse here is the upper limit.
2086d26a 4179 */
916ac052 4180 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
4181 int free = page->objects - page->inuse;
4182
4183 /* Do not reread page->inuse */
4184 barrier();
4185
4186 /* We do not keep full slabs on the list */
4187 BUG_ON(free <= 0);
4188
4189 if (free == page->objects) {
916ac052 4190 list_move(&page->slab_list, &discard);
69cb8e6b 4191 n->nr_partial--;
832f37f5 4192 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4193 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4194 }
4195
2086d26a 4196 /*
832f37f5
VD
4197 * Promote the slabs filled up most to the head of the
4198 * partial list.
2086d26a 4199 */
832f37f5
VD
4200 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4201 list_splice(promote + i, &n->partial);
2086d26a 4202
2086d26a 4203 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4204
4205 /* Release empty slabs */
916ac052 4206 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4207 discard_slab(s, page);
ce3712d7
VD
4208
4209 if (slabs_node(s, node))
4210 ret = 1;
2086d26a
CL
4211 }
4212
ce3712d7 4213 return ret;
2086d26a 4214}
2086d26a 4215
b9049e23
YG
4216static int slab_mem_going_offline_callback(void *arg)
4217{
4218 struct kmem_cache *s;
4219
18004c5d 4220 mutex_lock(&slab_mutex);
b9049e23 4221 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4222 __kmem_cache_shrink(s);
18004c5d 4223 mutex_unlock(&slab_mutex);
b9049e23
YG
4224
4225 return 0;
4226}
4227
4228static void slab_mem_offline_callback(void *arg)
4229{
4230 struct kmem_cache_node *n;
4231 struct kmem_cache *s;
4232 struct memory_notify *marg = arg;
4233 int offline_node;
4234
b9d5ab25 4235 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4236
4237 /*
4238 * If the node still has available memory. we need kmem_cache_node
4239 * for it yet.
4240 */
4241 if (offline_node < 0)
4242 return;
4243
18004c5d 4244 mutex_lock(&slab_mutex);
b9049e23
YG
4245 list_for_each_entry(s, &slab_caches, list) {
4246 n = get_node(s, offline_node);
4247 if (n) {
4248 /*
4249 * if n->nr_slabs > 0, slabs still exist on the node
4250 * that is going down. We were unable to free them,
c9404c9c 4251 * and offline_pages() function shouldn't call this
b9049e23
YG
4252 * callback. So, we must fail.
4253 */
0f389ec6 4254 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4255
4256 s->node[offline_node] = NULL;
8de66a0c 4257 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4258 }
4259 }
18004c5d 4260 mutex_unlock(&slab_mutex);
b9049e23
YG
4261}
4262
4263static int slab_mem_going_online_callback(void *arg)
4264{
4265 struct kmem_cache_node *n;
4266 struct kmem_cache *s;
4267 struct memory_notify *marg = arg;
b9d5ab25 4268 int nid = marg->status_change_nid_normal;
b9049e23
YG
4269 int ret = 0;
4270
4271 /*
4272 * If the node's memory is already available, then kmem_cache_node is
4273 * already created. Nothing to do.
4274 */
4275 if (nid < 0)
4276 return 0;
4277
4278 /*
0121c619 4279 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4280 * allocate a kmem_cache_node structure in order to bring the node
4281 * online.
4282 */
18004c5d 4283 mutex_lock(&slab_mutex);
b9049e23
YG
4284 list_for_each_entry(s, &slab_caches, list) {
4285 /*
4286 * XXX: kmem_cache_alloc_node will fallback to other nodes
4287 * since memory is not yet available from the node that
4288 * is brought up.
4289 */
8de66a0c 4290 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4291 if (!n) {
4292 ret = -ENOMEM;
4293 goto out;
4294 }
4053497d 4295 init_kmem_cache_node(n);
b9049e23
YG
4296 s->node[nid] = n;
4297 }
4298out:
18004c5d 4299 mutex_unlock(&slab_mutex);
b9049e23
YG
4300 return ret;
4301}
4302
4303static int slab_memory_callback(struct notifier_block *self,
4304 unsigned long action, void *arg)
4305{
4306 int ret = 0;
4307
4308 switch (action) {
4309 case MEM_GOING_ONLINE:
4310 ret = slab_mem_going_online_callback(arg);
4311 break;
4312 case MEM_GOING_OFFLINE:
4313 ret = slab_mem_going_offline_callback(arg);
4314 break;
4315 case MEM_OFFLINE:
4316 case MEM_CANCEL_ONLINE:
4317 slab_mem_offline_callback(arg);
4318 break;
4319 case MEM_ONLINE:
4320 case MEM_CANCEL_OFFLINE:
4321 break;
4322 }
dc19f9db
KH
4323 if (ret)
4324 ret = notifier_from_errno(ret);
4325 else
4326 ret = NOTIFY_OK;
b9049e23
YG
4327 return ret;
4328}
4329
3ac38faa
AM
4330static struct notifier_block slab_memory_callback_nb = {
4331 .notifier_call = slab_memory_callback,
4332 .priority = SLAB_CALLBACK_PRI,
4333};
b9049e23 4334
81819f0f
CL
4335/********************************************************************
4336 * Basic setup of slabs
4337 *******************************************************************/
4338
51df1142
CL
4339/*
4340 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4341 * the page allocator. Allocate them properly then fix up the pointers
4342 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4343 */
4344
dffb4d60 4345static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4346{
4347 int node;
dffb4d60 4348 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4349 struct kmem_cache_node *n;
51df1142 4350
dffb4d60 4351 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4352
7d557b3c
GC
4353 /*
4354 * This runs very early, and only the boot processor is supposed to be
4355 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4356 * IPIs around.
4357 */
4358 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4359 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4360 struct page *p;
4361
916ac052 4362 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4363 p->slab_cache = s;
51df1142 4364
607bf324 4365#ifdef CONFIG_SLUB_DEBUG
916ac052 4366 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4367 p->slab_cache = s;
51df1142 4368#endif
51df1142 4369 }
dffb4d60
CL
4370 list_add(&s->list, &slab_caches);
4371 return s;
51df1142
CL
4372}
4373
81819f0f
CL
4374void __init kmem_cache_init(void)
4375{
dffb4d60
CL
4376 static __initdata struct kmem_cache boot_kmem_cache,
4377 boot_kmem_cache_node;
51df1142 4378
fc8d8620
SG
4379 if (debug_guardpage_minorder())
4380 slub_max_order = 0;
4381
dffb4d60
CL
4382 kmem_cache_node = &boot_kmem_cache_node;
4383 kmem_cache = &boot_kmem_cache;
51df1142 4384
dffb4d60 4385 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4386 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4387
3ac38faa 4388 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4389
4390 /* Able to allocate the per node structures */
4391 slab_state = PARTIAL;
4392
dffb4d60
CL
4393 create_boot_cache(kmem_cache, "kmem_cache",
4394 offsetof(struct kmem_cache, node) +
4395 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4396 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4397
dffb4d60 4398 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4399 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4400
4401 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4402 setup_kmalloc_cache_index_table();
f97d5f63 4403 create_kmalloc_caches(0);
81819f0f 4404
210e7a43
TG
4405 /* Setup random freelists for each cache */
4406 init_freelist_randomization();
4407
a96a87bf
SAS
4408 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4409 slub_cpu_dead);
81819f0f 4410
b9726c26 4411 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4412 cache_line_size(),
81819f0f
CL
4413 slub_min_order, slub_max_order, slub_min_objects,
4414 nr_cpu_ids, nr_node_ids);
4415}
4416
7e85ee0c
PE
4417void __init kmem_cache_init_late(void)
4418{
7e85ee0c
PE
4419}
4420
2633d7a0 4421struct kmem_cache *
f4957d5b 4422__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4423 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4424{
10befea9 4425 struct kmem_cache *s;
81819f0f 4426
a44cb944 4427 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4428 if (s) {
4429 s->refcount++;
84d0ddd6 4430
81819f0f
CL
4431 /*
4432 * Adjust the object sizes so that we clear
4433 * the complete object on kzalloc.
4434 */
1b473f29 4435 s->object_size = max(s->object_size, size);
52ee6d74 4436 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4437
7b8f3b66 4438 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4439 s->refcount--;
cbb79694 4440 s = NULL;
7b8f3b66 4441 }
a0e1d1be 4442 }
6446faa2 4443
cbb79694
CL
4444 return s;
4445}
84c1cf62 4446
d50112ed 4447int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4448{
aac3a166
PE
4449 int err;
4450
4451 err = kmem_cache_open(s, flags);
4452 if (err)
4453 return err;
20cea968 4454
45530c44
CL
4455 /* Mutex is not taken during early boot */
4456 if (slab_state <= UP)
4457 return 0;
4458
aac3a166 4459 err = sysfs_slab_add(s);
aac3a166 4460 if (err)
52b4b950 4461 __kmem_cache_release(s);
20cea968 4462
aac3a166 4463 return err;
81819f0f 4464}
81819f0f 4465
ce71e27c 4466void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4467{
aadb4bc4 4468 struct kmem_cache *s;
94b528d0 4469 void *ret;
aadb4bc4 4470
95a05b42 4471 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4472 return kmalloc_large(size, gfpflags);
4473
2c59dd65 4474 s = kmalloc_slab(size, gfpflags);
81819f0f 4475
2408c550 4476 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4477 return s;
81819f0f 4478
2b847c3c 4479 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4480
25985edc 4481 /* Honor the call site pointer we received. */
ca2b84cb 4482 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4483
4484 return ret;
81819f0f 4485}
fd7cb575 4486EXPORT_SYMBOL(__kmalloc_track_caller);
81819f0f 4487
5d1f57e4 4488#ifdef CONFIG_NUMA
81819f0f 4489void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4490 int node, unsigned long caller)
81819f0f 4491{
aadb4bc4 4492 struct kmem_cache *s;
94b528d0 4493 void *ret;
aadb4bc4 4494
95a05b42 4495 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4496 ret = kmalloc_large_node(size, gfpflags, node);
4497
4498 trace_kmalloc_node(caller, ret,
4499 size, PAGE_SIZE << get_order(size),
4500 gfpflags, node);
4501
4502 return ret;
4503 }
eada35ef 4504
2c59dd65 4505 s = kmalloc_slab(size, gfpflags);
81819f0f 4506
2408c550 4507 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4508 return s;
81819f0f 4509
2b847c3c 4510 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4511
25985edc 4512 /* Honor the call site pointer we received. */
ca2b84cb 4513 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4514
4515 return ret;
81819f0f 4516}
fd7cb575 4517EXPORT_SYMBOL(__kmalloc_node_track_caller);
5d1f57e4 4518#endif
81819f0f 4519
ab4d5ed5 4520#ifdef CONFIG_SYSFS
205ab99d
CL
4521static int count_inuse(struct page *page)
4522{
4523 return page->inuse;
4524}
4525
4526static int count_total(struct page *page)
4527{
4528 return page->objects;
4529}
ab4d5ed5 4530#endif
205ab99d 4531
ab4d5ed5 4532#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 4533static void validate_slab(struct kmem_cache *s, struct page *page)
53e15af0
CL
4534{
4535 void *p;
a973e9dd 4536 void *addr = page_address(page);
90e9f6a6
YZ
4537 unsigned long *map;
4538
4539 slab_lock(page);
53e15af0 4540
dd98afd4 4541 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
90e9f6a6 4542 goto unlock;
53e15af0
CL
4543
4544 /* Now we know that a valid freelist exists */
90e9f6a6 4545 map = get_map(s, page);
5f80b13a 4546 for_each_object(p, s, addr, page->objects) {
4138fdfc 4547 u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
dd98afd4 4548 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 4549
dd98afd4
YZ
4550 if (!check_object(s, page, p, val))
4551 break;
4552 }
90e9f6a6
YZ
4553 put_map(map);
4554unlock:
881db7fb 4555 slab_unlock(page);
53e15af0
CL
4556}
4557
434e245d 4558static int validate_slab_node(struct kmem_cache *s,
90e9f6a6 4559 struct kmem_cache_node *n)
53e15af0
CL
4560{
4561 unsigned long count = 0;
4562 struct page *page;
4563 unsigned long flags;
4564
4565 spin_lock_irqsave(&n->list_lock, flags);
4566
916ac052 4567 list_for_each_entry(page, &n->partial, slab_list) {
90e9f6a6 4568 validate_slab(s, page);
53e15af0
CL
4569 count++;
4570 }
4571 if (count != n->nr_partial)
f9f58285
FF
4572 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4573 s->name, count, n->nr_partial);
53e15af0
CL
4574
4575 if (!(s->flags & SLAB_STORE_USER))
4576 goto out;
4577
916ac052 4578 list_for_each_entry(page, &n->full, slab_list) {
90e9f6a6 4579 validate_slab(s, page);
53e15af0
CL
4580 count++;
4581 }
4582 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4583 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4584 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4585
4586out:
4587 spin_unlock_irqrestore(&n->list_lock, flags);
4588 return count;
4589}
4590
434e245d 4591static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4592{
4593 int node;
4594 unsigned long count = 0;
fa45dc25 4595 struct kmem_cache_node *n;
53e15af0
CL
4596
4597 flush_all(s);
fa45dc25 4598 for_each_kmem_cache_node(s, node, n)
90e9f6a6
YZ
4599 count += validate_slab_node(s, n);
4600
53e15af0
CL
4601 return count;
4602}
88a420e4 4603/*
672bba3a 4604 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4605 * and freed.
4606 */
4607
4608struct location {
4609 unsigned long count;
ce71e27c 4610 unsigned long addr;
45edfa58
CL
4611 long long sum_time;
4612 long min_time;
4613 long max_time;
4614 long min_pid;
4615 long max_pid;
174596a0 4616 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4617 nodemask_t nodes;
88a420e4
CL
4618};
4619
4620struct loc_track {
4621 unsigned long max;
4622 unsigned long count;
4623 struct location *loc;
4624};
4625
4626static void free_loc_track(struct loc_track *t)
4627{
4628 if (t->max)
4629 free_pages((unsigned long)t->loc,
4630 get_order(sizeof(struct location) * t->max));
4631}
4632
68dff6a9 4633static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4634{
4635 struct location *l;
4636 int order;
4637
88a420e4
CL
4638 order = get_order(sizeof(struct location) * max);
4639
68dff6a9 4640 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4641 if (!l)
4642 return 0;
4643
4644 if (t->count) {
4645 memcpy(l, t->loc, sizeof(struct location) * t->count);
4646 free_loc_track(t);
4647 }
4648 t->max = max;
4649 t->loc = l;
4650 return 1;
4651}
4652
4653static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4654 const struct track *track)
88a420e4
CL
4655{
4656 long start, end, pos;
4657 struct location *l;
ce71e27c 4658 unsigned long caddr;
45edfa58 4659 unsigned long age = jiffies - track->when;
88a420e4
CL
4660
4661 start = -1;
4662 end = t->count;
4663
4664 for ( ; ; ) {
4665 pos = start + (end - start + 1) / 2;
4666
4667 /*
4668 * There is nothing at "end". If we end up there
4669 * we need to add something to before end.
4670 */
4671 if (pos == end)
4672 break;
4673
4674 caddr = t->loc[pos].addr;
45edfa58
CL
4675 if (track->addr == caddr) {
4676
4677 l = &t->loc[pos];
4678 l->count++;
4679 if (track->when) {
4680 l->sum_time += age;
4681 if (age < l->min_time)
4682 l->min_time = age;
4683 if (age > l->max_time)
4684 l->max_time = age;
4685
4686 if (track->pid < l->min_pid)
4687 l->min_pid = track->pid;
4688 if (track->pid > l->max_pid)
4689 l->max_pid = track->pid;
4690
174596a0
RR
4691 cpumask_set_cpu(track->cpu,
4692 to_cpumask(l->cpus));
45edfa58
CL
4693 }
4694 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4695 return 1;
4696 }
4697
45edfa58 4698 if (track->addr < caddr)
88a420e4
CL
4699 end = pos;
4700 else
4701 start = pos;
4702 }
4703
4704 /*
672bba3a 4705 * Not found. Insert new tracking element.
88a420e4 4706 */
68dff6a9 4707 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4708 return 0;
4709
4710 l = t->loc + pos;
4711 if (pos < t->count)
4712 memmove(l + 1, l,
4713 (t->count - pos) * sizeof(struct location));
4714 t->count++;
4715 l->count = 1;
45edfa58
CL
4716 l->addr = track->addr;
4717 l->sum_time = age;
4718 l->min_time = age;
4719 l->max_time = age;
4720 l->min_pid = track->pid;
4721 l->max_pid = track->pid;
174596a0
RR
4722 cpumask_clear(to_cpumask(l->cpus));
4723 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4724 nodes_clear(l->nodes);
4725 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4726 return 1;
4727}
4728
4729static void process_slab(struct loc_track *t, struct kmem_cache *s,
90e9f6a6 4730 struct page *page, enum track_item alloc)
88a420e4 4731{
a973e9dd 4732 void *addr = page_address(page);
88a420e4 4733 void *p;
90e9f6a6 4734 unsigned long *map;
88a420e4 4735
90e9f6a6 4736 map = get_map(s, page);
224a88be 4737 for_each_object(p, s, addr, page->objects)
4138fdfc 4738 if (!test_bit(__obj_to_index(s, addr, p), map))
45edfa58 4739 add_location(t, s, get_track(s, p, alloc));
90e9f6a6 4740 put_map(map);
88a420e4
CL
4741}
4742
4743static int list_locations(struct kmem_cache *s, char *buf,
bf16d19a 4744 enum track_item alloc)
88a420e4 4745{
e374d483 4746 int len = 0;
88a420e4 4747 unsigned long i;
68dff6a9 4748 struct loc_track t = { 0, 0, NULL };
88a420e4 4749 int node;
fa45dc25 4750 struct kmem_cache_node *n;
88a420e4 4751
90e9f6a6
YZ
4752 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4753 GFP_KERNEL)) {
bf16d19a 4754 return sysfs_emit(buf, "Out of memory\n");
bbd7d57b 4755 }
88a420e4
CL
4756 /* Push back cpu slabs */
4757 flush_all(s);
4758
fa45dc25 4759 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4760 unsigned long flags;
4761 struct page *page;
4762
9e86943b 4763 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4764 continue;
4765
4766 spin_lock_irqsave(&n->list_lock, flags);
916ac052 4767 list_for_each_entry(page, &n->partial, slab_list)
90e9f6a6 4768 process_slab(&t, s, page, alloc);
916ac052 4769 list_for_each_entry(page, &n->full, slab_list)
90e9f6a6 4770 process_slab(&t, s, page, alloc);
88a420e4
CL
4771 spin_unlock_irqrestore(&n->list_lock, flags);
4772 }
4773
4774 for (i = 0; i < t.count; i++) {
45edfa58 4775 struct location *l = &t.loc[i];
88a420e4 4776
bf16d19a 4777 len += sysfs_emit_at(buf, len, "%7ld ", l->count);
45edfa58
CL
4778
4779 if (l->addr)
bf16d19a 4780 len += sysfs_emit_at(buf, len, "%pS", (void *)l->addr);
88a420e4 4781 else
bf16d19a
JP
4782 len += sysfs_emit_at(buf, len, "<not-available>");
4783
4784 if (l->sum_time != l->min_time)
4785 len += sysfs_emit_at(buf, len, " age=%ld/%ld/%ld",
4786 l->min_time,
4787 (long)div_u64(l->sum_time,
4788 l->count),
4789 l->max_time);
4790 else
4791 len += sysfs_emit_at(buf, len, " age=%ld", l->min_time);
45edfa58
CL
4792
4793 if (l->min_pid != l->max_pid)
bf16d19a
JP
4794 len += sysfs_emit_at(buf, len, " pid=%ld-%ld",
4795 l->min_pid, l->max_pid);
45edfa58 4796 else
bf16d19a
JP
4797 len += sysfs_emit_at(buf, len, " pid=%ld",
4798 l->min_pid);
45edfa58 4799
174596a0 4800 if (num_online_cpus() > 1 &&
bf16d19a
JP
4801 !cpumask_empty(to_cpumask(l->cpus)))
4802 len += sysfs_emit_at(buf, len, " cpus=%*pbl",
4803 cpumask_pr_args(to_cpumask(l->cpus)));
4804
4805 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
4806 len += sysfs_emit_at(buf, len, " nodes=%*pbl",
4807 nodemask_pr_args(&l->nodes));
4808
4809 len += sysfs_emit_at(buf, len, "\n");
88a420e4
CL
4810 }
4811
4812 free_loc_track(&t);
4813 if (!t.count)
bf16d19a
JP
4814 len += sysfs_emit_at(buf, len, "No data\n");
4815
e374d483 4816 return len;
88a420e4 4817}
6dfd1b65 4818#endif /* CONFIG_SLUB_DEBUG */
88a420e4 4819
a5a84755 4820#ifdef SLUB_RESILIENCY_TEST
c07b8183 4821static void __init resiliency_test(void)
a5a84755
CL
4822{
4823 u8 *p;
cc252eae 4824 int type = KMALLOC_NORMAL;
a5a84755 4825
95a05b42 4826 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4827
f9f58285
FF
4828 pr_err("SLUB resiliency testing\n");
4829 pr_err("-----------------------\n");
4830 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4831
4832 p = kzalloc(16, GFP_KERNEL);
4833 p[16] = 0x12;
f9f58285
FF
4834 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4835 p + 16);
a5a84755 4836
cc252eae 4837 validate_slab_cache(kmalloc_caches[type][4]);
a5a84755
CL
4838
4839 /* Hmmm... The next two are dangerous */
4840 p = kzalloc(32, GFP_KERNEL);
4841 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4842 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4843 p);
4844 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755 4845
cc252eae 4846 validate_slab_cache(kmalloc_caches[type][5]);
a5a84755
CL
4847 p = kzalloc(64, GFP_KERNEL);
4848 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4849 *p = 0x56;
f9f58285
FF
4850 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4851 p);
4852 pr_err("If allocated object is overwritten then not detectable\n\n");
cc252eae 4853 validate_slab_cache(kmalloc_caches[type][6]);
a5a84755 4854
f9f58285 4855 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4856 p = kzalloc(128, GFP_KERNEL);
4857 kfree(p);
4858 *p = 0x78;
f9f58285 4859 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
cc252eae 4860 validate_slab_cache(kmalloc_caches[type][7]);
a5a84755
CL
4861
4862 p = kzalloc(256, GFP_KERNEL);
4863 kfree(p);
4864 p[50] = 0x9a;
f9f58285 4865 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
cc252eae 4866 validate_slab_cache(kmalloc_caches[type][8]);
a5a84755
CL
4867
4868 p = kzalloc(512, GFP_KERNEL);
4869 kfree(p);
4870 p[512] = 0xab;
f9f58285 4871 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
cc252eae 4872 validate_slab_cache(kmalloc_caches[type][9]);
a5a84755
CL
4873}
4874#else
4875#ifdef CONFIG_SYSFS
4876static void resiliency_test(void) {};
4877#endif
6dfd1b65 4878#endif /* SLUB_RESILIENCY_TEST */
a5a84755 4879
ab4d5ed5 4880#ifdef CONFIG_SYSFS
81819f0f 4881enum slab_stat_type {
205ab99d
CL
4882 SL_ALL, /* All slabs */
4883 SL_PARTIAL, /* Only partially allocated slabs */
4884 SL_CPU, /* Only slabs used for cpu caches */
4885 SL_OBJECTS, /* Determine allocated objects not slabs */
4886 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4887};
4888
205ab99d 4889#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4890#define SO_PARTIAL (1 << SL_PARTIAL)
4891#define SO_CPU (1 << SL_CPU)
4892#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4893#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4894
1663f26d
TH
4895#ifdef CONFIG_MEMCG
4896static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4897
4898static int __init setup_slub_memcg_sysfs(char *str)
4899{
4900 int v;
4901
4902 if (get_option(&str, &v) > 0)
4903 memcg_sysfs_enabled = v;
4904
4905 return 1;
4906}
4907
4908__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4909#endif
4910
62e5c4b4 4911static ssize_t show_slab_objects(struct kmem_cache *s,
bf16d19a 4912 char *buf, unsigned long flags)
81819f0f
CL
4913{
4914 unsigned long total = 0;
81819f0f
CL
4915 int node;
4916 int x;
4917 unsigned long *nodes;
bf16d19a 4918 int len = 0;
81819f0f 4919
6396bb22 4920 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
4921 if (!nodes)
4922 return -ENOMEM;
81819f0f 4923
205ab99d
CL
4924 if (flags & SO_CPU) {
4925 int cpu;
81819f0f 4926
205ab99d 4927 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4928 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4929 cpu);
ec3ab083 4930 int node;
49e22585 4931 struct page *page;
dfb4f096 4932
4db0c3c2 4933 page = READ_ONCE(c->page);
ec3ab083
CL
4934 if (!page)
4935 continue;
205ab99d 4936
ec3ab083
CL
4937 node = page_to_nid(page);
4938 if (flags & SO_TOTAL)
4939 x = page->objects;
4940 else if (flags & SO_OBJECTS)
4941 x = page->inuse;
4942 else
4943 x = 1;
49e22585 4944
ec3ab083
CL
4945 total += x;
4946 nodes[node] += x;
4947
a93cf07b 4948 page = slub_percpu_partial_read_once(c);
49e22585 4949 if (page) {
8afb1474
LZ
4950 node = page_to_nid(page);
4951 if (flags & SO_TOTAL)
4952 WARN_ON_ONCE(1);
4953 else if (flags & SO_OBJECTS)
4954 WARN_ON_ONCE(1);
4955 else
4956 x = page->pages;
bc6697d8
ED
4957 total += x;
4958 nodes[node] += x;
49e22585 4959 }
81819f0f
CL
4960 }
4961 }
4962
e4f8e513
QC
4963 /*
4964 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4965 * already held which will conflict with an existing lock order:
4966 *
4967 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4968 *
4969 * We don't really need mem_hotplug_lock (to hold off
4970 * slab_mem_going_offline_callback) here because slab's memory hot
4971 * unplug code doesn't destroy the kmem_cache->node[] data.
4972 */
4973
ab4d5ed5 4974#ifdef CONFIG_SLUB_DEBUG
205ab99d 4975 if (flags & SO_ALL) {
fa45dc25
CL
4976 struct kmem_cache_node *n;
4977
4978 for_each_kmem_cache_node(s, node, n) {
205ab99d 4979
d0e0ac97
CG
4980 if (flags & SO_TOTAL)
4981 x = atomic_long_read(&n->total_objects);
4982 else if (flags & SO_OBJECTS)
4983 x = atomic_long_read(&n->total_objects) -
4984 count_partial(n, count_free);
81819f0f 4985 else
205ab99d 4986 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4987 total += x;
4988 nodes[node] += x;
4989 }
4990
ab4d5ed5
CL
4991 } else
4992#endif
4993 if (flags & SO_PARTIAL) {
fa45dc25 4994 struct kmem_cache_node *n;
81819f0f 4995
fa45dc25 4996 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4997 if (flags & SO_TOTAL)
4998 x = count_partial(n, count_total);
4999 else if (flags & SO_OBJECTS)
5000 x = count_partial(n, count_inuse);
81819f0f 5001 else
205ab99d 5002 x = n->nr_partial;
81819f0f
CL
5003 total += x;
5004 nodes[node] += x;
5005 }
5006 }
bf16d19a
JP
5007
5008 len += sysfs_emit_at(buf, len, "%lu", total);
81819f0f 5009#ifdef CONFIG_NUMA
bf16d19a 5010 for (node = 0; node < nr_node_ids; node++) {
81819f0f 5011 if (nodes[node])
bf16d19a
JP
5012 len += sysfs_emit_at(buf, len, " N%d=%lu",
5013 node, nodes[node]);
5014 }
81819f0f 5015#endif
bf16d19a 5016 len += sysfs_emit_at(buf, len, "\n");
81819f0f 5017 kfree(nodes);
bf16d19a
JP
5018
5019 return len;
81819f0f
CL
5020}
5021
81819f0f 5022#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 5023#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
5024
5025struct slab_attribute {
5026 struct attribute attr;
5027 ssize_t (*show)(struct kmem_cache *s, char *buf);
5028 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5029};
5030
5031#define SLAB_ATTR_RO(_name) \
ab067e99
VK
5032 static struct slab_attribute _name##_attr = \
5033 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
5034
5035#define SLAB_ATTR(_name) \
5036 static struct slab_attribute _name##_attr = \
ab067e99 5037 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 5038
81819f0f
CL
5039static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5040{
bf16d19a 5041 return sysfs_emit(buf, "%u\n", s->size);
81819f0f
CL
5042}
5043SLAB_ATTR_RO(slab_size);
5044
5045static ssize_t align_show(struct kmem_cache *s, char *buf)
5046{
bf16d19a 5047 return sysfs_emit(buf, "%u\n", s->align);
81819f0f
CL
5048}
5049SLAB_ATTR_RO(align);
5050
5051static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5052{
bf16d19a 5053 return sysfs_emit(buf, "%u\n", s->object_size);
81819f0f
CL
5054}
5055SLAB_ATTR_RO(object_size);
5056
5057static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5058{
bf16d19a 5059 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
5060}
5061SLAB_ATTR_RO(objs_per_slab);
5062
5063static ssize_t order_show(struct kmem_cache *s, char *buf)
5064{
bf16d19a 5065 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
81819f0f 5066}
32a6f409 5067SLAB_ATTR_RO(order);
81819f0f 5068
73d342b1
DR
5069static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5070{
bf16d19a 5071 return sysfs_emit(buf, "%lu\n", s->min_partial);
73d342b1
DR
5072}
5073
5074static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5075 size_t length)
5076{
5077 unsigned long min;
5078 int err;
5079
3dbb95f7 5080 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5081 if (err)
5082 return err;
5083
c0bdb232 5084 set_min_partial(s, min);
73d342b1
DR
5085 return length;
5086}
5087SLAB_ATTR(min_partial);
5088
49e22585
CL
5089static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5090{
bf16d19a 5091 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
5092}
5093
5094static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5095 size_t length)
5096{
e5d9998f 5097 unsigned int objects;
49e22585
CL
5098 int err;
5099
e5d9998f 5100 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5101 if (err)
5102 return err;
345c905d 5103 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5104 return -EINVAL;
49e22585 5105
e6d0e1dc 5106 slub_set_cpu_partial(s, objects);
49e22585
CL
5107 flush_all(s);
5108 return length;
5109}
5110SLAB_ATTR(cpu_partial);
5111
81819f0f
CL
5112static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5113{
62c70bce
JP
5114 if (!s->ctor)
5115 return 0;
bf16d19a 5116 return sysfs_emit(buf, "%pS\n", s->ctor);
81819f0f
CL
5117}
5118SLAB_ATTR_RO(ctor);
5119
81819f0f
CL
5120static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5121{
bf16d19a 5122 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5123}
5124SLAB_ATTR_RO(aliases);
5125
81819f0f
CL
5126static ssize_t partial_show(struct kmem_cache *s, char *buf)
5127{
d9acf4b7 5128 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5129}
5130SLAB_ATTR_RO(partial);
5131
5132static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5133{
d9acf4b7 5134 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5135}
5136SLAB_ATTR_RO(cpu_slabs);
5137
5138static ssize_t objects_show(struct kmem_cache *s, char *buf)
5139{
205ab99d 5140 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5141}
5142SLAB_ATTR_RO(objects);
5143
205ab99d
CL
5144static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5145{
5146 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5147}
5148SLAB_ATTR_RO(objects_partial);
5149
49e22585
CL
5150static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5151{
5152 int objects = 0;
5153 int pages = 0;
5154 int cpu;
bf16d19a 5155 int len = 0;
49e22585
CL
5156
5157 for_each_online_cpu(cpu) {
a93cf07b
WY
5158 struct page *page;
5159
5160 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5161
5162 if (page) {
5163 pages += page->pages;
5164 objects += page->pobjects;
5165 }
5166 }
5167
bf16d19a 5168 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
49e22585
CL
5169
5170#ifdef CONFIG_SMP
5171 for_each_online_cpu(cpu) {
a93cf07b
WY
5172 struct page *page;
5173
5174 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
bf16d19a
JP
5175 if (page)
5176 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5177 cpu, page->pobjects, page->pages);
49e22585
CL
5178 }
5179#endif
bf16d19a
JP
5180 len += sysfs_emit_at(buf, len, "\n");
5181
5182 return len;
49e22585
CL
5183}
5184SLAB_ATTR_RO(slabs_cpu_partial);
5185
a5a84755
CL
5186static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5187{
bf16d19a 5188 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
a5a84755 5189}
8f58119a 5190SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
5191
5192static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5193{
bf16d19a 5194 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
a5a84755
CL
5195}
5196SLAB_ATTR_RO(hwcache_align);
5197
5198#ifdef CONFIG_ZONE_DMA
5199static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5200{
bf16d19a 5201 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
a5a84755
CL
5202}
5203SLAB_ATTR_RO(cache_dma);
5204#endif
5205
8eb8284b
DW
5206static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5207{
bf16d19a 5208 return sysfs_emit(buf, "%u\n", s->usersize);
8eb8284b
DW
5209}
5210SLAB_ATTR_RO(usersize);
5211
a5a84755
CL
5212static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5213{
bf16d19a 5214 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5215}
5216SLAB_ATTR_RO(destroy_by_rcu);
5217
ab4d5ed5 5218#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5219static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5220{
5221 return show_slab_objects(s, buf, SO_ALL);
5222}
5223SLAB_ATTR_RO(slabs);
5224
205ab99d
CL
5225static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5226{
5227 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5228}
5229SLAB_ATTR_RO(total_objects);
5230
81819f0f
CL
5231static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5232{
bf16d19a 5233 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 5234}
060807f8 5235SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
5236
5237static ssize_t trace_show(struct kmem_cache *s, char *buf)
5238{
bf16d19a 5239 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
81819f0f 5240}
060807f8 5241SLAB_ATTR_RO(trace);
81819f0f 5242
81819f0f
CL
5243static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5244{
bf16d19a 5245 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
81819f0f
CL
5246}
5247
ad38b5b1 5248SLAB_ATTR_RO(red_zone);
81819f0f
CL
5249
5250static ssize_t poison_show(struct kmem_cache *s, char *buf)
5251{
bf16d19a 5252 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
81819f0f
CL
5253}
5254
ad38b5b1 5255SLAB_ATTR_RO(poison);
81819f0f
CL
5256
5257static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5258{
bf16d19a 5259 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
81819f0f
CL
5260}
5261
ad38b5b1 5262SLAB_ATTR_RO(store_user);
81819f0f 5263
53e15af0
CL
5264static ssize_t validate_show(struct kmem_cache *s, char *buf)
5265{
5266 return 0;
5267}
5268
5269static ssize_t validate_store(struct kmem_cache *s,
5270 const char *buf, size_t length)
5271{
434e245d
CL
5272 int ret = -EINVAL;
5273
5274 if (buf[0] == '1') {
5275 ret = validate_slab_cache(s);
5276 if (ret >= 0)
5277 ret = length;
5278 }
5279 return ret;
53e15af0
CL
5280}
5281SLAB_ATTR(validate);
a5a84755
CL
5282
5283static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5284{
5285 if (!(s->flags & SLAB_STORE_USER))
5286 return -ENOSYS;
5287 return list_locations(s, buf, TRACK_ALLOC);
5288}
5289SLAB_ATTR_RO(alloc_calls);
5290
5291static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5292{
5293 if (!(s->flags & SLAB_STORE_USER))
5294 return -ENOSYS;
5295 return list_locations(s, buf, TRACK_FREE);
5296}
5297SLAB_ATTR_RO(free_calls);
5298#endif /* CONFIG_SLUB_DEBUG */
5299
5300#ifdef CONFIG_FAILSLAB
5301static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5302{
bf16d19a 5303 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
a5a84755 5304}
060807f8 5305SLAB_ATTR_RO(failslab);
ab4d5ed5 5306#endif
53e15af0 5307
2086d26a
CL
5308static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5309{
5310 return 0;
5311}
5312
5313static ssize_t shrink_store(struct kmem_cache *s,
5314 const char *buf, size_t length)
5315{
832f37f5 5316 if (buf[0] == '1')
10befea9 5317 kmem_cache_shrink(s);
832f37f5 5318 else
2086d26a
CL
5319 return -EINVAL;
5320 return length;
5321}
5322SLAB_ATTR(shrink);
5323
81819f0f 5324#ifdef CONFIG_NUMA
9824601e 5325static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5326{
bf16d19a 5327 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5328}
5329
9824601e 5330static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5331 const char *buf, size_t length)
5332{
eb7235eb 5333 unsigned int ratio;
0121c619
CL
5334 int err;
5335
eb7235eb 5336 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5337 if (err)
5338 return err;
eb7235eb
AD
5339 if (ratio > 100)
5340 return -ERANGE;
0121c619 5341
eb7235eb 5342 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5343
81819f0f
CL
5344 return length;
5345}
9824601e 5346SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5347#endif
5348
8ff12cfc 5349#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5350static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5351{
5352 unsigned long sum = 0;
5353 int cpu;
bf16d19a 5354 int len = 0;
6da2ec56 5355 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5356
5357 if (!data)
5358 return -ENOMEM;
5359
5360 for_each_online_cpu(cpu) {
9dfc6e68 5361 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5362
5363 data[cpu] = x;
5364 sum += x;
5365 }
5366
bf16d19a 5367 len += sysfs_emit_at(buf, len, "%lu", sum);
8ff12cfc 5368
50ef37b9 5369#ifdef CONFIG_SMP
8ff12cfc 5370 for_each_online_cpu(cpu) {
bf16d19a
JP
5371 if (data[cpu])
5372 len += sysfs_emit_at(buf, len, " C%d=%u",
5373 cpu, data[cpu]);
8ff12cfc 5374 }
50ef37b9 5375#endif
8ff12cfc 5376 kfree(data);
bf16d19a
JP
5377 len += sysfs_emit_at(buf, len, "\n");
5378
5379 return len;
8ff12cfc
CL
5380}
5381
78eb00cc
DR
5382static void clear_stat(struct kmem_cache *s, enum stat_item si)
5383{
5384 int cpu;
5385
5386 for_each_online_cpu(cpu)
9dfc6e68 5387 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5388}
5389
8ff12cfc
CL
5390#define STAT_ATTR(si, text) \
5391static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5392{ \
5393 return show_stat(s, buf, si); \
5394} \
78eb00cc
DR
5395static ssize_t text##_store(struct kmem_cache *s, \
5396 const char *buf, size_t length) \
5397{ \
5398 if (buf[0] != '0') \
5399 return -EINVAL; \
5400 clear_stat(s, si); \
5401 return length; \
5402} \
5403SLAB_ATTR(text); \
8ff12cfc
CL
5404
5405STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5406STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5407STAT_ATTR(FREE_FASTPATH, free_fastpath);
5408STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5409STAT_ATTR(FREE_FROZEN, free_frozen);
5410STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5411STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5412STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5413STAT_ATTR(ALLOC_SLAB, alloc_slab);
5414STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5415STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5416STAT_ATTR(FREE_SLAB, free_slab);
5417STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5418STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5419STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5420STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5421STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5422STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5423STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5424STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5425STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5426STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5427STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5428STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5429STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5430STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5431#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5432
06428780 5433static struct attribute *slab_attrs[] = {
81819f0f
CL
5434 &slab_size_attr.attr,
5435 &object_size_attr.attr,
5436 &objs_per_slab_attr.attr,
5437 &order_attr.attr,
73d342b1 5438 &min_partial_attr.attr,
49e22585 5439 &cpu_partial_attr.attr,
81819f0f 5440 &objects_attr.attr,
205ab99d 5441 &objects_partial_attr.attr,
81819f0f
CL
5442 &partial_attr.attr,
5443 &cpu_slabs_attr.attr,
5444 &ctor_attr.attr,
81819f0f
CL
5445 &aliases_attr.attr,
5446 &align_attr.attr,
81819f0f
CL
5447 &hwcache_align_attr.attr,
5448 &reclaim_account_attr.attr,
5449 &destroy_by_rcu_attr.attr,
a5a84755 5450 &shrink_attr.attr,
49e22585 5451 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5452#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5453 &total_objects_attr.attr,
5454 &slabs_attr.attr,
5455 &sanity_checks_attr.attr,
5456 &trace_attr.attr,
81819f0f
CL
5457 &red_zone_attr.attr,
5458 &poison_attr.attr,
5459 &store_user_attr.attr,
53e15af0 5460 &validate_attr.attr,
88a420e4
CL
5461 &alloc_calls_attr.attr,
5462 &free_calls_attr.attr,
ab4d5ed5 5463#endif
81819f0f
CL
5464#ifdef CONFIG_ZONE_DMA
5465 &cache_dma_attr.attr,
5466#endif
5467#ifdef CONFIG_NUMA
9824601e 5468 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5469#endif
5470#ifdef CONFIG_SLUB_STATS
5471 &alloc_fastpath_attr.attr,
5472 &alloc_slowpath_attr.attr,
5473 &free_fastpath_attr.attr,
5474 &free_slowpath_attr.attr,
5475 &free_frozen_attr.attr,
5476 &free_add_partial_attr.attr,
5477 &free_remove_partial_attr.attr,
5478 &alloc_from_partial_attr.attr,
5479 &alloc_slab_attr.attr,
5480 &alloc_refill_attr.attr,
e36a2652 5481 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5482 &free_slab_attr.attr,
5483 &cpuslab_flush_attr.attr,
5484 &deactivate_full_attr.attr,
5485 &deactivate_empty_attr.attr,
5486 &deactivate_to_head_attr.attr,
5487 &deactivate_to_tail_attr.attr,
5488 &deactivate_remote_frees_attr.attr,
03e404af 5489 &deactivate_bypass_attr.attr,
65c3376a 5490 &order_fallback_attr.attr,
b789ef51
CL
5491 &cmpxchg_double_fail_attr.attr,
5492 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5493 &cpu_partial_alloc_attr.attr,
5494 &cpu_partial_free_attr.attr,
8028dcea
AS
5495 &cpu_partial_node_attr.attr,
5496 &cpu_partial_drain_attr.attr,
81819f0f 5497#endif
4c13dd3b
DM
5498#ifdef CONFIG_FAILSLAB
5499 &failslab_attr.attr,
5500#endif
8eb8284b 5501 &usersize_attr.attr,
4c13dd3b 5502
81819f0f
CL
5503 NULL
5504};
5505
1fdaaa23 5506static const struct attribute_group slab_attr_group = {
81819f0f
CL
5507 .attrs = slab_attrs,
5508};
5509
5510static ssize_t slab_attr_show(struct kobject *kobj,
5511 struct attribute *attr,
5512 char *buf)
5513{
5514 struct slab_attribute *attribute;
5515 struct kmem_cache *s;
5516 int err;
5517
5518 attribute = to_slab_attr(attr);
5519 s = to_slab(kobj);
5520
5521 if (!attribute->show)
5522 return -EIO;
5523
5524 err = attribute->show(s, buf);
5525
5526 return err;
5527}
5528
5529static ssize_t slab_attr_store(struct kobject *kobj,
5530 struct attribute *attr,
5531 const char *buf, size_t len)
5532{
5533 struct slab_attribute *attribute;
5534 struct kmem_cache *s;
5535 int err;
5536
5537 attribute = to_slab_attr(attr);
5538 s = to_slab(kobj);
5539
5540 if (!attribute->store)
5541 return -EIO;
5542
5543 err = attribute->store(s, buf, len);
81819f0f
CL
5544 return err;
5545}
5546
41a21285
CL
5547static void kmem_cache_release(struct kobject *k)
5548{
5549 slab_kmem_cache_release(to_slab(k));
5550}
5551
52cf25d0 5552static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5553 .show = slab_attr_show,
5554 .store = slab_attr_store,
5555};
5556
5557static struct kobj_type slab_ktype = {
5558 .sysfs_ops = &slab_sysfs_ops,
41a21285 5559 .release = kmem_cache_release,
81819f0f
CL
5560};
5561
27c3a314 5562static struct kset *slab_kset;
81819f0f 5563
9a41707b
VD
5564static inline struct kset *cache_kset(struct kmem_cache *s)
5565{
9a41707b
VD
5566 return slab_kset;
5567}
5568
81819f0f
CL
5569#define ID_STR_LENGTH 64
5570
5571/* Create a unique string id for a slab cache:
6446faa2
CL
5572 *
5573 * Format :[flags-]size
81819f0f
CL
5574 */
5575static char *create_unique_id(struct kmem_cache *s)
5576{
5577 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5578 char *p = name;
5579
5580 BUG_ON(!name);
5581
5582 *p++ = ':';
5583 /*
5584 * First flags affecting slabcache operations. We will only
5585 * get here for aliasable slabs so we do not need to support
5586 * too many flags. The flags here must cover all flags that
5587 * are matched during merging to guarantee that the id is
5588 * unique.
5589 */
5590 if (s->flags & SLAB_CACHE_DMA)
5591 *p++ = 'd';
6d6ea1e9
NB
5592 if (s->flags & SLAB_CACHE_DMA32)
5593 *p++ = 'D';
81819f0f
CL
5594 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5595 *p++ = 'a';
becfda68 5596 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5597 *p++ = 'F';
230e9fc2
VD
5598 if (s->flags & SLAB_ACCOUNT)
5599 *p++ = 'A';
81819f0f
CL
5600 if (p != name + 1)
5601 *p++ = '-';
44065b2e 5602 p += sprintf(p, "%07u", s->size);
2633d7a0 5603
81819f0f
CL
5604 BUG_ON(p > name + ID_STR_LENGTH - 1);
5605 return name;
5606}
5607
5608static int sysfs_slab_add(struct kmem_cache *s)
5609{
5610 int err;
5611 const char *name;
1663f26d 5612 struct kset *kset = cache_kset(s);
45530c44 5613 int unmergeable = slab_unmergeable(s);
81819f0f 5614
1663f26d
TH
5615 if (!kset) {
5616 kobject_init(&s->kobj, &slab_ktype);
5617 return 0;
5618 }
5619
11066386
MC
5620 if (!unmergeable && disable_higher_order_debug &&
5621 (slub_debug & DEBUG_METADATA_FLAGS))
5622 unmergeable = 1;
5623
81819f0f
CL
5624 if (unmergeable) {
5625 /*
5626 * Slabcache can never be merged so we can use the name proper.
5627 * This is typically the case for debug situations. In that
5628 * case we can catch duplicate names easily.
5629 */
27c3a314 5630 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5631 name = s->name;
5632 } else {
5633 /*
5634 * Create a unique name for the slab as a target
5635 * for the symlinks.
5636 */
5637 name = create_unique_id(s);
5638 }
5639
1663f26d 5640 s->kobj.kset = kset;
26e4f205 5641 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
757fed1d 5642 if (err)
80da026a 5643 goto out;
81819f0f
CL
5644
5645 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5646 if (err)
5647 goto out_del_kobj;
9a41707b 5648
81819f0f
CL
5649 if (!unmergeable) {
5650 /* Setup first alias */
5651 sysfs_slab_alias(s, s->name);
81819f0f 5652 }
54b6a731
DJ
5653out:
5654 if (!unmergeable)
5655 kfree(name);
5656 return err;
5657out_del_kobj:
5658 kobject_del(&s->kobj);
54b6a731 5659 goto out;
81819f0f
CL
5660}
5661
d50d82fa
MP
5662void sysfs_slab_unlink(struct kmem_cache *s)
5663{
5664 if (slab_state >= FULL)
5665 kobject_del(&s->kobj);
5666}
5667
bf5eb3de
TH
5668void sysfs_slab_release(struct kmem_cache *s)
5669{
5670 if (slab_state >= FULL)
5671 kobject_put(&s->kobj);
81819f0f
CL
5672}
5673
5674/*
5675 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5676 * available lest we lose that information.
81819f0f
CL
5677 */
5678struct saved_alias {
5679 struct kmem_cache *s;
5680 const char *name;
5681 struct saved_alias *next;
5682};
5683
5af328a5 5684static struct saved_alias *alias_list;
81819f0f
CL
5685
5686static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5687{
5688 struct saved_alias *al;
5689
97d06609 5690 if (slab_state == FULL) {
81819f0f
CL
5691 /*
5692 * If we have a leftover link then remove it.
5693 */
27c3a314
GKH
5694 sysfs_remove_link(&slab_kset->kobj, name);
5695 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5696 }
5697
5698 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5699 if (!al)
5700 return -ENOMEM;
5701
5702 al->s = s;
5703 al->name = name;
5704 al->next = alias_list;
5705 alias_list = al;
5706 return 0;
5707}
5708
5709static int __init slab_sysfs_init(void)
5710{
5b95a4ac 5711 struct kmem_cache *s;
81819f0f
CL
5712 int err;
5713
18004c5d 5714 mutex_lock(&slab_mutex);
2bce6485 5715
d7660ce5 5716 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 5717 if (!slab_kset) {
18004c5d 5718 mutex_unlock(&slab_mutex);
f9f58285 5719 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5720 return -ENOSYS;
5721 }
5722
97d06609 5723 slab_state = FULL;
26a7bd03 5724
5b95a4ac 5725 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5726 err = sysfs_slab_add(s);
5d540fb7 5727 if (err)
f9f58285
FF
5728 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5729 s->name);
26a7bd03 5730 }
81819f0f
CL
5731
5732 while (alias_list) {
5733 struct saved_alias *al = alias_list;
5734
5735 alias_list = alias_list->next;
5736 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5737 if (err)
f9f58285
FF
5738 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5739 al->name);
81819f0f
CL
5740 kfree(al);
5741 }
5742
18004c5d 5743 mutex_unlock(&slab_mutex);
81819f0f
CL
5744 resiliency_test();
5745 return 0;
5746}
5747
5748__initcall(slab_sysfs_init);
ab4d5ed5 5749#endif /* CONFIG_SYSFS */
57ed3eda
PE
5750
5751/*
5752 * The /proc/slabinfo ABI
5753 */
5b365771 5754#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5755void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5756{
57ed3eda 5757 unsigned long nr_slabs = 0;
205ab99d
CL
5758 unsigned long nr_objs = 0;
5759 unsigned long nr_free = 0;
57ed3eda 5760 int node;
fa45dc25 5761 struct kmem_cache_node *n;
57ed3eda 5762
fa45dc25 5763 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5764 nr_slabs += node_nr_slabs(n);
5765 nr_objs += node_nr_objs(n);
205ab99d 5766 nr_free += count_partial(n, count_free);
57ed3eda
PE
5767 }
5768
0d7561c6
GC
5769 sinfo->active_objs = nr_objs - nr_free;
5770 sinfo->num_objs = nr_objs;
5771 sinfo->active_slabs = nr_slabs;
5772 sinfo->num_slabs = nr_slabs;
5773 sinfo->objects_per_slab = oo_objects(s->oo);
5774 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5775}
5776
0d7561c6 5777void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5778{
7b3c3a50
AD
5779}
5780
b7454ad3
GC
5781ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5782 size_t count, loff_t *ppos)
7b3c3a50 5783{
b7454ad3 5784 return -EIO;
7b3c3a50 5785}
5b365771 5786#endif /* CONFIG_SLUB_DEBUG */