]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/slub.c
x86/mm, mm/hwpoison: Don't unconditionally unmap kernel 1:1 pages
[mirror_ubuntu-bionic-kernel.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
881db7fb
CL
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
3ac38faa 22#include <linux/notifier.h>
81819f0f 23#include <linux/seq_file.h>
a79316c6 24#include <linux/kasan.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
2482ddec 37#include <linux/random.h>
81819f0f 38
4a92379b
RK
39#include <trace/events/kmem.h>
40
072bb0aa
MG
41#include "internal.h"
42
81819f0f
CL
43/*
44 * Lock order:
18004c5d 45 * 1. slab_mutex (Global Mutex)
881db7fb
CL
46 * 2. node->list_lock
47 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 48 *
18004c5d 49 * slab_mutex
881db7fb 50 *
18004c5d 51 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
52 * and to synchronize major metadata changes to slab cache structures.
53 *
54 * The slab_lock is only used for debugging and on arches that do not
55 * have the ability to do a cmpxchg_double. It only protects the second
56 * double word in the page struct. Meaning
57 * A. page->freelist -> List of object free in a page
58 * B. page->counters -> Counters of objects
59 * C. page->frozen -> frozen state
60 *
61 * If a slab is frozen then it is exempt from list management. It is not
62 * on any list. The processor that froze the slab is the one who can
63 * perform list operations on the page. Other processors may put objects
64 * onto the freelist but the processor that froze the slab is the only
65 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
81819f0f
CL
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
672bba3a
CL
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 88 * freed then the slab will show up again on the partial lists.
672bba3a
CL
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
81819f0f
CL
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
96 * Overloading of page flags that are otherwise used for LRU management.
97 *
4b6f0750
CL
98 * PageActive The slab is frozen and exempt from list processing.
99 * This means that the slab is dedicated to a purpose
100 * such as satisfying allocations for a specific
101 * processor. Objects may be freed in the slab while
102 * it is frozen but slab_free will then skip the usual
103 * list operations. It is up to the processor holding
104 * the slab to integrate the slab into the slab lists
105 * when the slab is no longer needed.
106 *
107 * One use of this flag is to mark slabs that are
108 * used for allocations. Then such a slab becomes a cpu
109 * slab. The cpu slab may be equipped with an additional
dfb4f096 110 * freelist that allows lockless access to
894b8788
CL
111 * free objects in addition to the regular freelist
112 * that requires the slab lock.
81819f0f
CL
113 *
114 * PageError Slab requires special handling due to debug
115 * options set. This moves slab handling out of
894b8788 116 * the fast path and disables lockless freelists.
81819f0f
CL
117 */
118
af537b0a
CL
119static inline int kmem_cache_debug(struct kmem_cache *s)
120{
5577bd8a 121#ifdef CONFIG_SLUB_DEBUG
af537b0a 122 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 123#else
af537b0a 124 return 0;
5577bd8a 125#endif
af537b0a 126}
5577bd8a 127
117d54df 128void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be
JK
129{
130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 p += s->red_left_pad;
132
133 return p;
134}
135
345c905d
JK
136static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137{
138#ifdef CONFIG_SLUB_CPU_PARTIAL
139 return !kmem_cache_debug(s);
140#else
141 return false;
142#endif
143}
144
81819f0f
CL
145/*
146 * Issues still to be resolved:
147 *
81819f0f
CL
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 *
81819f0f
CL
150 * - Variable sizing of the per node arrays
151 */
152
153/* Enable to test recovery from slab corruption on boot */
154#undef SLUB_RESILIENCY_TEST
155
b789ef51
CL
156/* Enable to log cmpxchg failures */
157#undef SLUB_DEBUG_CMPXCHG
158
2086d26a
CL
159/*
160 * Mininum number of partial slabs. These will be left on the partial
161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 */
76be8950 163#define MIN_PARTIAL 5
e95eed57 164
2086d26a
CL
165/*
166 * Maximum number of desirable partial slabs.
167 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 168 * sort the partial list by the number of objects in use.
2086d26a
CL
169 */
170#define MAX_PARTIAL 10
171
becfda68 172#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 173 SLAB_POISON | SLAB_STORE_USER)
672bba3a 174
149daaf3
LA
175/*
176 * These debug flags cannot use CMPXCHG because there might be consistency
177 * issues when checking or reading debug information
178 */
179#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 SLAB_TRACE)
181
182
fa5ec8a1 183/*
3de47213
DR
184 * Debugging flags that require metadata to be stored in the slab. These get
185 * disabled when slub_debug=O is used and a cache's min order increases with
186 * metadata.
fa5ec8a1 187 */
3de47213 188#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 189
210b5c06
CG
190#define OO_SHIFT 16
191#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 192#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 193
81819f0f 194/* Internal SLUB flags */
d50112ed 195/* Poison object */
4fd0b46e 196#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 197/* Use cmpxchg_double */
4fd0b46e 198#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 199
02cbc874
CL
200/*
201 * Tracking user of a slab.
202 */
d6543e39 203#define TRACK_ADDRS_COUNT 16
02cbc874 204struct track {
ce71e27c 205 unsigned long addr; /* Called from address */
d6543e39
BG
206#ifdef CONFIG_STACKTRACE
207 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
208#endif
02cbc874
CL
209 int cpu; /* Was running on cpu */
210 int pid; /* Pid context */
211 unsigned long when; /* When did the operation occur */
212};
213
214enum track_item { TRACK_ALLOC, TRACK_FREE };
215
ab4d5ed5 216#ifdef CONFIG_SYSFS
81819f0f
CL
217static int sysfs_slab_add(struct kmem_cache *);
218static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 219static void memcg_propagate_slab_attrs(struct kmem_cache *s);
bf5eb3de 220static void sysfs_slab_remove(struct kmem_cache *s);
81819f0f 221#else
0c710013
CL
222static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
107dab5c 225static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
bf5eb3de 226static inline void sysfs_slab_remove(struct kmem_cache *s) { }
81819f0f
CL
227#endif
228
4fdccdfb 229static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
230{
231#ifdef CONFIG_SLUB_STATS
88da03a6
CL
232 /*
233 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 * avoid this_cpu_add()'s irq-disable overhead.
235 */
236 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
237#endif
238}
239
81819f0f
CL
240/********************************************************************
241 * Core slab cache functions
242 *******************************************************************/
243
2482ddec
KC
244/*
245 * Returns freelist pointer (ptr). With hardening, this is obfuscated
246 * with an XOR of the address where the pointer is held and a per-cache
247 * random number.
248 */
249static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
250 unsigned long ptr_addr)
251{
252#ifdef CONFIG_SLAB_FREELIST_HARDENED
253 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
254#else
255 return ptr;
256#endif
257}
258
259/* Returns the freelist pointer recorded at location ptr_addr. */
260static inline void *freelist_dereference(const struct kmem_cache *s,
261 void *ptr_addr)
262{
263 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
264 (unsigned long)ptr_addr);
265}
266
7656c72b
CL
267static inline void *get_freepointer(struct kmem_cache *s, void *object)
268{
2482ddec 269 return freelist_dereference(s, object + s->offset);
7656c72b
CL
270}
271
0ad9500e
ED
272static void prefetch_freepointer(const struct kmem_cache *s, void *object)
273{
2482ddec
KC
274 if (object)
275 prefetch(freelist_dereference(s, object + s->offset));
0ad9500e
ED
276}
277
1393d9a1
CL
278static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
279{
2482ddec 280 unsigned long freepointer_addr;
1393d9a1
CL
281 void *p;
282
922d566c
JK
283 if (!debug_pagealloc_enabled())
284 return get_freepointer(s, object);
285
2482ddec
KC
286 freepointer_addr = (unsigned long)object + s->offset;
287 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
288 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
289}
290
7656c72b
CL
291static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
292{
2482ddec
KC
293 unsigned long freeptr_addr = (unsigned long)object + s->offset;
294
ce6fa91b
AP
295#ifdef CONFIG_SLAB_FREELIST_HARDENED
296 BUG_ON(object == fp); /* naive detection of double free or corruption */
297#endif
298
2482ddec 299 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
300}
301
302/* Loop over all objects in a slab */
224a88be 303#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
304 for (__p = fixup_red_left(__s, __addr); \
305 __p < (__addr) + (__objects) * (__s)->size; \
306 __p += (__s)->size)
7656c72b 307
54266640 308#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
d86bd1be
JK
309 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
310 __idx <= __objects; \
311 __p += (__s)->size, __idx++)
54266640 312
7656c72b
CL
313/* Determine object index from a given position */
314static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
315{
316 return (p - addr) / s->size;
317}
318
ab9a0f19
LJ
319static inline int order_objects(int order, unsigned long size, int reserved)
320{
321 return ((PAGE_SIZE << order) - reserved) / size;
322}
323
834f3d11 324static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 325 unsigned long size, int reserved)
834f3d11
CL
326{
327 struct kmem_cache_order_objects x = {
ab9a0f19 328 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
329 };
330
331 return x;
332}
333
334static inline int oo_order(struct kmem_cache_order_objects x)
335{
210b5c06 336 return x.x >> OO_SHIFT;
834f3d11
CL
337}
338
339static inline int oo_objects(struct kmem_cache_order_objects x)
340{
210b5c06 341 return x.x & OO_MASK;
834f3d11
CL
342}
343
881db7fb
CL
344/*
345 * Per slab locking using the pagelock
346 */
347static __always_inline void slab_lock(struct page *page)
348{
48c935ad 349 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
350 bit_spin_lock(PG_locked, &page->flags);
351}
352
353static __always_inline void slab_unlock(struct page *page)
354{
48c935ad 355 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
356 __bit_spin_unlock(PG_locked, &page->flags);
357}
358
a0320865
DH
359static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
360{
361 struct page tmp;
362 tmp.counters = counters_new;
363 /*
364 * page->counters can cover frozen/inuse/objects as well
0139aa7b
JK
365 * as page->_refcount. If we assign to ->counters directly
366 * we run the risk of losing updates to page->_refcount, so
a0320865
DH
367 * be careful and only assign to the fields we need.
368 */
369 page->frozen = tmp.frozen;
370 page->inuse = tmp.inuse;
371 page->objects = tmp.objects;
372}
373
1d07171c
CL
374/* Interrupts must be disabled (for the fallback code to work right) */
375static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
378 const char *n)
379{
380 VM_BUG_ON(!irqs_disabled());
2565409f
HC
381#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 383 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 384 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
385 freelist_old, counters_old,
386 freelist_new, counters_new))
6f6528a1 387 return true;
1d07171c
CL
388 } else
389#endif
390 {
391 slab_lock(page);
d0e0ac97
CG
392 if (page->freelist == freelist_old &&
393 page->counters == counters_old) {
1d07171c 394 page->freelist = freelist_new;
a0320865 395 set_page_slub_counters(page, counters_new);
1d07171c 396 slab_unlock(page);
6f6528a1 397 return true;
1d07171c
CL
398 }
399 slab_unlock(page);
400 }
401
402 cpu_relax();
403 stat(s, CMPXCHG_DOUBLE_FAIL);
404
405#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 406 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
407#endif
408
6f6528a1 409 return false;
1d07171c
CL
410}
411
b789ef51
CL
412static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 void *freelist_old, unsigned long counters_old,
414 void *freelist_new, unsigned long counters_new,
415 const char *n)
416{
2565409f
HC
417#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 419 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 420 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
421 freelist_old, counters_old,
422 freelist_new, counters_new))
6f6528a1 423 return true;
b789ef51
CL
424 } else
425#endif
426 {
1d07171c
CL
427 unsigned long flags;
428
429 local_irq_save(flags);
881db7fb 430 slab_lock(page);
d0e0ac97
CG
431 if (page->freelist == freelist_old &&
432 page->counters == counters_old) {
b789ef51 433 page->freelist = freelist_new;
a0320865 434 set_page_slub_counters(page, counters_new);
881db7fb 435 slab_unlock(page);
1d07171c 436 local_irq_restore(flags);
6f6528a1 437 return true;
b789ef51 438 }
881db7fb 439 slab_unlock(page);
1d07171c 440 local_irq_restore(flags);
b789ef51
CL
441 }
442
443 cpu_relax();
444 stat(s, CMPXCHG_DOUBLE_FAIL);
445
446#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 447 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
448#endif
449
6f6528a1 450 return false;
b789ef51
CL
451}
452
41ecc55b 453#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
454/*
455 * Determine a map of object in use on a page.
456 *
881db7fb 457 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
458 * not vanish from under us.
459 */
460static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
461{
462 void *p;
463 void *addr = page_address(page);
464
465 for (p = page->freelist; p; p = get_freepointer(s, p))
466 set_bit(slab_index(p, s, addr), map);
467}
468
d86bd1be
JK
469static inline int size_from_object(struct kmem_cache *s)
470{
471 if (s->flags & SLAB_RED_ZONE)
472 return s->size - s->red_left_pad;
473
474 return s->size;
475}
476
477static inline void *restore_red_left(struct kmem_cache *s, void *p)
478{
479 if (s->flags & SLAB_RED_ZONE)
480 p -= s->red_left_pad;
481
482 return p;
483}
484
41ecc55b
CL
485/*
486 * Debug settings:
487 */
89d3c87e 488#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 489static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 490#else
d50112ed 491static slab_flags_t slub_debug;
f0630fff 492#endif
41ecc55b
CL
493
494static char *slub_debug_slabs;
fa5ec8a1 495static int disable_higher_order_debug;
41ecc55b 496
a79316c6
AR
497/*
498 * slub is about to manipulate internal object metadata. This memory lies
499 * outside the range of the allocated object, so accessing it would normally
500 * be reported by kasan as a bounds error. metadata_access_enable() is used
501 * to tell kasan that these accesses are OK.
502 */
503static inline void metadata_access_enable(void)
504{
505 kasan_disable_current();
506}
507
508static inline void metadata_access_disable(void)
509{
510 kasan_enable_current();
511}
512
81819f0f
CL
513/*
514 * Object debugging
515 */
d86bd1be
JK
516
517/* Verify that a pointer has an address that is valid within a slab page */
518static inline int check_valid_pointer(struct kmem_cache *s,
519 struct page *page, void *object)
520{
521 void *base;
522
523 if (!object)
524 return 1;
525
526 base = page_address(page);
527 object = restore_red_left(s, object);
528 if (object < base || object >= base + page->objects * s->size ||
529 (object - base) % s->size) {
530 return 0;
531 }
532
533 return 1;
534}
535
aa2efd5e
DT
536static void print_section(char *level, char *text, u8 *addr,
537 unsigned int length)
81819f0f 538{
a79316c6 539 metadata_access_enable();
aa2efd5e 540 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 541 length, 1);
a79316c6 542 metadata_access_disable();
81819f0f
CL
543}
544
81819f0f
CL
545static struct track *get_track(struct kmem_cache *s, void *object,
546 enum track_item alloc)
547{
548 struct track *p;
549
550 if (s->offset)
551 p = object + s->offset + sizeof(void *);
552 else
553 p = object + s->inuse;
554
555 return p + alloc;
556}
557
558static void set_track(struct kmem_cache *s, void *object,
ce71e27c 559 enum track_item alloc, unsigned long addr)
81819f0f 560{
1a00df4a 561 struct track *p = get_track(s, object, alloc);
81819f0f 562
81819f0f 563 if (addr) {
d6543e39
BG
564#ifdef CONFIG_STACKTRACE
565 struct stack_trace trace;
566 int i;
567
568 trace.nr_entries = 0;
569 trace.max_entries = TRACK_ADDRS_COUNT;
570 trace.entries = p->addrs;
571 trace.skip = 3;
a79316c6 572 metadata_access_enable();
d6543e39 573 save_stack_trace(&trace);
a79316c6 574 metadata_access_disable();
d6543e39
BG
575
576 /* See rant in lockdep.c */
577 if (trace.nr_entries != 0 &&
578 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
579 trace.nr_entries--;
580
581 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
582 p->addrs[i] = 0;
583#endif
81819f0f
CL
584 p->addr = addr;
585 p->cpu = smp_processor_id();
88e4ccf2 586 p->pid = current->pid;
81819f0f
CL
587 p->when = jiffies;
588 } else
589 memset(p, 0, sizeof(struct track));
590}
591
81819f0f
CL
592static void init_tracking(struct kmem_cache *s, void *object)
593{
24922684
CL
594 if (!(s->flags & SLAB_STORE_USER))
595 return;
596
ce71e27c
EGM
597 set_track(s, object, TRACK_FREE, 0UL);
598 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
599}
600
601static void print_track(const char *s, struct track *t)
602{
603 if (!t->addr)
604 return;
605
f9f58285
FF
606 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
607 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
608#ifdef CONFIG_STACKTRACE
609 {
610 int i;
611 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
612 if (t->addrs[i])
f9f58285 613 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
614 else
615 break;
616 }
617#endif
24922684
CL
618}
619
620static void print_tracking(struct kmem_cache *s, void *object)
621{
622 if (!(s->flags & SLAB_STORE_USER))
623 return;
624
625 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
626 print_track("Freed", get_track(s, object, TRACK_FREE));
627}
628
629static void print_page_info(struct page *page)
630{
f9f58285 631 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 632 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
633
634}
635
636static void slab_bug(struct kmem_cache *s, char *fmt, ...)
637{
ecc42fbe 638 struct va_format vaf;
24922684 639 va_list args;
24922684
CL
640
641 va_start(args, fmt);
ecc42fbe
FF
642 vaf.fmt = fmt;
643 vaf.va = &args;
f9f58285 644 pr_err("=============================================================================\n");
ecc42fbe 645 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 646 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 647
373d4d09 648 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 649 va_end(args);
81819f0f
CL
650}
651
24922684
CL
652static void slab_fix(struct kmem_cache *s, char *fmt, ...)
653{
ecc42fbe 654 struct va_format vaf;
24922684 655 va_list args;
24922684
CL
656
657 va_start(args, fmt);
ecc42fbe
FF
658 vaf.fmt = fmt;
659 vaf.va = &args;
660 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 661 va_end(args);
24922684
CL
662}
663
664static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
665{
666 unsigned int off; /* Offset of last byte */
a973e9dd 667 u8 *addr = page_address(page);
24922684
CL
668
669 print_tracking(s, p);
670
671 print_page_info(page);
672
f9f58285
FF
673 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
674 p, p - addr, get_freepointer(s, p));
24922684 675
d86bd1be 676 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
677 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
678 s->red_left_pad);
d86bd1be 679 else if (p > addr + 16)
aa2efd5e 680 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 681
aa2efd5e
DT
682 print_section(KERN_ERR, "Object ", p,
683 min_t(unsigned long, s->object_size, PAGE_SIZE));
81819f0f 684 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 685 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 686 s->inuse - s->object_size);
81819f0f 687
81819f0f
CL
688 if (s->offset)
689 off = s->offset + sizeof(void *);
690 else
691 off = s->inuse;
692
24922684 693 if (s->flags & SLAB_STORE_USER)
81819f0f 694 off += 2 * sizeof(struct track);
81819f0f 695
80a9201a
AP
696 off += kasan_metadata_size(s);
697
d86bd1be 698 if (off != size_from_object(s))
81819f0f 699 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
700 print_section(KERN_ERR, "Padding ", p + off,
701 size_from_object(s) - off);
24922684
CL
702
703 dump_stack();
81819f0f
CL
704}
705
75c66def 706void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
707 u8 *object, char *reason)
708{
3dc50637 709 slab_bug(s, "%s", reason);
24922684 710 print_trailer(s, page, object);
81819f0f
CL
711}
712
d0e0ac97
CG
713static void slab_err(struct kmem_cache *s, struct page *page,
714 const char *fmt, ...)
81819f0f
CL
715{
716 va_list args;
717 char buf[100];
718
24922684
CL
719 va_start(args, fmt);
720 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 721 va_end(args);
3dc50637 722 slab_bug(s, "%s", buf);
24922684 723 print_page_info(page);
81819f0f
CL
724 dump_stack();
725}
726
f7cb1933 727static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
728{
729 u8 *p = object;
730
d86bd1be
JK
731 if (s->flags & SLAB_RED_ZONE)
732 memset(p - s->red_left_pad, val, s->red_left_pad);
733
81819f0f 734 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
735 memset(p, POISON_FREE, s->object_size - 1);
736 p[s->object_size - 1] = POISON_END;
81819f0f
CL
737 }
738
739 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 740 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
741}
742
24922684
CL
743static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
744 void *from, void *to)
745{
746 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
747 memset(from, data, to - from);
748}
749
750static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
751 u8 *object, char *what,
06428780 752 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
753{
754 u8 *fault;
755 u8 *end;
756
a79316c6 757 metadata_access_enable();
79824820 758 fault = memchr_inv(start, value, bytes);
a79316c6 759 metadata_access_disable();
24922684
CL
760 if (!fault)
761 return 1;
762
763 end = start + bytes;
764 while (end > fault && end[-1] == value)
765 end--;
766
767 slab_bug(s, "%s overwritten", what);
f9f58285 768 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
769 fault, end - 1, fault[0], value);
770 print_trailer(s, page, object);
771
772 restore_bytes(s, what, value, fault, end);
773 return 0;
81819f0f
CL
774}
775
81819f0f
CL
776/*
777 * Object layout:
778 *
779 * object address
780 * Bytes of the object to be managed.
781 * If the freepointer may overlay the object then the free
782 * pointer is the first word of the object.
672bba3a 783 *
81819f0f
CL
784 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
785 * 0xa5 (POISON_END)
786 *
3b0efdfa 787 * object + s->object_size
81819f0f 788 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 789 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 790 * object_size == inuse.
672bba3a 791 *
81819f0f
CL
792 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
793 * 0xcc (RED_ACTIVE) for objects in use.
794 *
795 * object + s->inuse
672bba3a
CL
796 * Meta data starts here.
797 *
81819f0f
CL
798 * A. Free pointer (if we cannot overwrite object on free)
799 * B. Tracking data for SLAB_STORE_USER
672bba3a 800 * C. Padding to reach required alignment boundary or at mininum
6446faa2 801 * one word if debugging is on to be able to detect writes
672bba3a
CL
802 * before the word boundary.
803 *
804 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
805 *
806 * object + s->size
672bba3a 807 * Nothing is used beyond s->size.
81819f0f 808 *
3b0efdfa 809 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 810 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
811 * may be used with merged slabcaches.
812 */
813
81819f0f
CL
814static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
815{
816 unsigned long off = s->inuse; /* The end of info */
817
818 if (s->offset)
819 /* Freepointer is placed after the object. */
820 off += sizeof(void *);
821
822 if (s->flags & SLAB_STORE_USER)
823 /* We also have user information there */
824 off += 2 * sizeof(struct track);
825
80a9201a
AP
826 off += kasan_metadata_size(s);
827
d86bd1be 828 if (size_from_object(s) == off)
81819f0f
CL
829 return 1;
830
24922684 831 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 832 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
833}
834
39b26464 835/* Check the pad bytes at the end of a slab page */
81819f0f
CL
836static int slab_pad_check(struct kmem_cache *s, struct page *page)
837{
24922684
CL
838 u8 *start;
839 u8 *fault;
840 u8 *end;
841 int length;
842 int remainder;
81819f0f
CL
843
844 if (!(s->flags & SLAB_POISON))
845 return 1;
846
a973e9dd 847 start = page_address(page);
ab9a0f19 848 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
849 end = start + length;
850 remainder = length % s->size;
81819f0f
CL
851 if (!remainder)
852 return 1;
853
a79316c6 854 metadata_access_enable();
79824820 855 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
a79316c6 856 metadata_access_disable();
24922684
CL
857 if (!fault)
858 return 1;
859 while (end > fault && end[-1] == POISON_INUSE)
860 end--;
861
862 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
aa2efd5e 863 print_section(KERN_ERR, "Padding ", end - remainder, remainder);
24922684 864
8a3d271d 865 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 866 return 0;
81819f0f
CL
867}
868
869static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 870 void *object, u8 val)
81819f0f
CL
871{
872 u8 *p = object;
3b0efdfa 873 u8 *endobject = object + s->object_size;
81819f0f
CL
874
875 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
876 if (!check_bytes_and_report(s, page, object, "Redzone",
877 object - s->red_left_pad, val, s->red_left_pad))
878 return 0;
879
24922684 880 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 881 endobject, val, s->inuse - s->object_size))
81819f0f 882 return 0;
81819f0f 883 } else {
3b0efdfa 884 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 885 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
886 endobject, POISON_INUSE,
887 s->inuse - s->object_size);
3adbefee 888 }
81819f0f
CL
889 }
890
891 if (s->flags & SLAB_POISON) {
f7cb1933 892 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 893 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 894 POISON_FREE, s->object_size - 1) ||
24922684 895 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 896 p + s->object_size - 1, POISON_END, 1)))
81819f0f 897 return 0;
81819f0f
CL
898 /*
899 * check_pad_bytes cleans up on its own.
900 */
901 check_pad_bytes(s, page, p);
902 }
903
f7cb1933 904 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
905 /*
906 * Object and freepointer overlap. Cannot check
907 * freepointer while object is allocated.
908 */
909 return 1;
910
911 /* Check free pointer validity */
912 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
913 object_err(s, page, p, "Freepointer corrupt");
914 /*
9f6c708e 915 * No choice but to zap it and thus lose the remainder
81819f0f 916 * of the free objects in this slab. May cause
672bba3a 917 * another error because the object count is now wrong.
81819f0f 918 */
a973e9dd 919 set_freepointer(s, p, NULL);
81819f0f
CL
920 return 0;
921 }
922 return 1;
923}
924
925static int check_slab(struct kmem_cache *s, struct page *page)
926{
39b26464
CL
927 int maxobj;
928
81819f0f
CL
929 VM_BUG_ON(!irqs_disabled());
930
931 if (!PageSlab(page)) {
24922684 932 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
933 return 0;
934 }
39b26464 935
ab9a0f19 936 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
937 if (page->objects > maxobj) {
938 slab_err(s, page, "objects %u > max %u",
f6edde9c 939 page->objects, maxobj);
39b26464
CL
940 return 0;
941 }
942 if (page->inuse > page->objects) {
24922684 943 slab_err(s, page, "inuse %u > max %u",
f6edde9c 944 page->inuse, page->objects);
81819f0f
CL
945 return 0;
946 }
947 /* Slab_pad_check fixes things up after itself */
948 slab_pad_check(s, page);
949 return 1;
950}
951
952/*
672bba3a
CL
953 * Determine if a certain object on a page is on the freelist. Must hold the
954 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
955 */
956static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
957{
958 int nr = 0;
881db7fb 959 void *fp;
81819f0f 960 void *object = NULL;
f6edde9c 961 int max_objects;
81819f0f 962
881db7fb 963 fp = page->freelist;
39b26464 964 while (fp && nr <= page->objects) {
81819f0f
CL
965 if (fp == search)
966 return 1;
967 if (!check_valid_pointer(s, page, fp)) {
968 if (object) {
969 object_err(s, page, object,
970 "Freechain corrupt");
a973e9dd 971 set_freepointer(s, object, NULL);
81819f0f 972 } else {
24922684 973 slab_err(s, page, "Freepointer corrupt");
a973e9dd 974 page->freelist = NULL;
39b26464 975 page->inuse = page->objects;
24922684 976 slab_fix(s, "Freelist cleared");
81819f0f
CL
977 return 0;
978 }
979 break;
980 }
981 object = fp;
982 fp = get_freepointer(s, object);
983 nr++;
984 }
985
ab9a0f19 986 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
987 if (max_objects > MAX_OBJS_PER_PAGE)
988 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
989
990 if (page->objects != max_objects) {
756a025f
JP
991 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
992 page->objects, max_objects);
224a88be
CL
993 page->objects = max_objects;
994 slab_fix(s, "Number of objects adjusted.");
995 }
39b26464 996 if (page->inuse != page->objects - nr) {
756a025f
JP
997 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
998 page->inuse, page->objects - nr);
39b26464 999 page->inuse = page->objects - nr;
24922684 1000 slab_fix(s, "Object count adjusted.");
81819f0f
CL
1001 }
1002 return search == NULL;
1003}
1004
0121c619
CL
1005static void trace(struct kmem_cache *s, struct page *page, void *object,
1006 int alloc)
3ec09742
CL
1007{
1008 if (s->flags & SLAB_TRACE) {
f9f58285 1009 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1010 s->name,
1011 alloc ? "alloc" : "free",
1012 object, page->inuse,
1013 page->freelist);
1014
1015 if (!alloc)
aa2efd5e 1016 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1017 s->object_size);
3ec09742
CL
1018
1019 dump_stack();
1020 }
1021}
1022
643b1138 1023/*
672bba3a 1024 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1025 */
5cc6eee8
CL
1026static void add_full(struct kmem_cache *s,
1027 struct kmem_cache_node *n, struct page *page)
643b1138 1028{
5cc6eee8
CL
1029 if (!(s->flags & SLAB_STORE_USER))
1030 return;
1031
255d0884 1032 lockdep_assert_held(&n->list_lock);
643b1138 1033 list_add(&page->lru, &n->full);
643b1138
CL
1034}
1035
c65c1877 1036static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1037{
643b1138
CL
1038 if (!(s->flags & SLAB_STORE_USER))
1039 return;
1040
255d0884 1041 lockdep_assert_held(&n->list_lock);
643b1138 1042 list_del(&page->lru);
643b1138
CL
1043}
1044
0f389ec6
CL
1045/* Tracking of the number of slabs for debugging purposes */
1046static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1047{
1048 struct kmem_cache_node *n = get_node(s, node);
1049
1050 return atomic_long_read(&n->nr_slabs);
1051}
1052
26c02cf0
AB
1053static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1054{
1055 return atomic_long_read(&n->nr_slabs);
1056}
1057
205ab99d 1058static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1059{
1060 struct kmem_cache_node *n = get_node(s, node);
1061
1062 /*
1063 * May be called early in order to allocate a slab for the
1064 * kmem_cache_node structure. Solve the chicken-egg
1065 * dilemma by deferring the increment of the count during
1066 * bootstrap (see early_kmem_cache_node_alloc).
1067 */
338b2642 1068 if (likely(n)) {
0f389ec6 1069 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1070 atomic_long_add(objects, &n->total_objects);
1071 }
0f389ec6 1072}
205ab99d 1073static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1074{
1075 struct kmem_cache_node *n = get_node(s, node);
1076
1077 atomic_long_dec(&n->nr_slabs);
205ab99d 1078 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1079}
1080
1081/* Object debug checks for alloc/free paths */
3ec09742
CL
1082static void setup_object_debug(struct kmem_cache *s, struct page *page,
1083 void *object)
1084{
1085 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1086 return;
1087
f7cb1933 1088 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1089 init_tracking(s, object);
1090}
1091
becfda68 1092static inline int alloc_consistency_checks(struct kmem_cache *s,
d0e0ac97 1093 struct page *page,
ce71e27c 1094 void *object, unsigned long addr)
81819f0f
CL
1095{
1096 if (!check_slab(s, page))
becfda68 1097 return 0;
81819f0f 1098
81819f0f
CL
1099 if (!check_valid_pointer(s, page, object)) {
1100 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1101 return 0;
81819f0f
CL
1102 }
1103
f7cb1933 1104 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1105 return 0;
1106
1107 return 1;
1108}
1109
1110static noinline int alloc_debug_processing(struct kmem_cache *s,
1111 struct page *page,
1112 void *object, unsigned long addr)
1113{
1114 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1115 if (!alloc_consistency_checks(s, page, object, addr))
1116 goto bad;
1117 }
81819f0f 1118
3ec09742
CL
1119 /* Success perform special debug activities for allocs */
1120 if (s->flags & SLAB_STORE_USER)
1121 set_track(s, object, TRACK_ALLOC, addr);
1122 trace(s, page, object, 1);
f7cb1933 1123 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1124 return 1;
3ec09742 1125
81819f0f
CL
1126bad:
1127 if (PageSlab(page)) {
1128 /*
1129 * If this is a slab page then lets do the best we can
1130 * to avoid issues in the future. Marking all objects
672bba3a 1131 * as used avoids touching the remaining objects.
81819f0f 1132 */
24922684 1133 slab_fix(s, "Marking all objects used");
39b26464 1134 page->inuse = page->objects;
a973e9dd 1135 page->freelist = NULL;
81819f0f
CL
1136 }
1137 return 0;
1138}
1139
becfda68
LA
1140static inline int free_consistency_checks(struct kmem_cache *s,
1141 struct page *page, void *object, unsigned long addr)
81819f0f 1142{
81819f0f 1143 if (!check_valid_pointer(s, page, object)) {
70d71228 1144 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1145 return 0;
81819f0f
CL
1146 }
1147
1148 if (on_freelist(s, page, object)) {
24922684 1149 object_err(s, page, object, "Object already free");
becfda68 1150 return 0;
81819f0f
CL
1151 }
1152
f7cb1933 1153 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1154 return 0;
81819f0f 1155
1b4f59e3 1156 if (unlikely(s != page->slab_cache)) {
3adbefee 1157 if (!PageSlab(page)) {
756a025f
JP
1158 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1159 object);
1b4f59e3 1160 } else if (!page->slab_cache) {
f9f58285
FF
1161 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1162 object);
70d71228 1163 dump_stack();
06428780 1164 } else
24922684
CL
1165 object_err(s, page, object,
1166 "page slab pointer corrupt.");
becfda68
LA
1167 return 0;
1168 }
1169 return 1;
1170}
1171
1172/* Supports checking bulk free of a constructed freelist */
1173static noinline int free_debug_processing(
1174 struct kmem_cache *s, struct page *page,
1175 void *head, void *tail, int bulk_cnt,
1176 unsigned long addr)
1177{
1178 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1179 void *object = head;
1180 int cnt = 0;
1181 unsigned long uninitialized_var(flags);
1182 int ret = 0;
1183
1184 spin_lock_irqsave(&n->list_lock, flags);
1185 slab_lock(page);
1186
1187 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1188 if (!check_slab(s, page))
1189 goto out;
1190 }
1191
1192next_object:
1193 cnt++;
1194
1195 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1196 if (!free_consistency_checks(s, page, object, addr))
1197 goto out;
81819f0f 1198 }
3ec09742 1199
3ec09742
CL
1200 if (s->flags & SLAB_STORE_USER)
1201 set_track(s, object, TRACK_FREE, addr);
1202 trace(s, page, object, 0);
81084651 1203 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1204 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1205
1206 /* Reached end of constructed freelist yet? */
1207 if (object != tail) {
1208 object = get_freepointer(s, object);
1209 goto next_object;
1210 }
804aa132
LA
1211 ret = 1;
1212
5c2e4bbb 1213out:
81084651
JDB
1214 if (cnt != bulk_cnt)
1215 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1216 bulk_cnt, cnt);
1217
881db7fb 1218 slab_unlock(page);
282acb43 1219 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1220 if (!ret)
1221 slab_fix(s, "Object at 0x%p not freed", object);
1222 return ret;
81819f0f
CL
1223}
1224
41ecc55b
CL
1225static int __init setup_slub_debug(char *str)
1226{
f0630fff
CL
1227 slub_debug = DEBUG_DEFAULT_FLAGS;
1228 if (*str++ != '=' || !*str)
1229 /*
1230 * No options specified. Switch on full debugging.
1231 */
1232 goto out;
1233
1234 if (*str == ',')
1235 /*
1236 * No options but restriction on slabs. This means full
1237 * debugging for slabs matching a pattern.
1238 */
1239 goto check_slabs;
1240
1241 slub_debug = 0;
1242 if (*str == '-')
1243 /*
1244 * Switch off all debugging measures.
1245 */
1246 goto out;
1247
1248 /*
1249 * Determine which debug features should be switched on
1250 */
06428780 1251 for (; *str && *str != ','; str++) {
f0630fff
CL
1252 switch (tolower(*str)) {
1253 case 'f':
becfda68 1254 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1255 break;
1256 case 'z':
1257 slub_debug |= SLAB_RED_ZONE;
1258 break;
1259 case 'p':
1260 slub_debug |= SLAB_POISON;
1261 break;
1262 case 'u':
1263 slub_debug |= SLAB_STORE_USER;
1264 break;
1265 case 't':
1266 slub_debug |= SLAB_TRACE;
1267 break;
4c13dd3b
DM
1268 case 'a':
1269 slub_debug |= SLAB_FAILSLAB;
1270 break;
08303a73
CA
1271 case 'o':
1272 /*
1273 * Avoid enabling debugging on caches if its minimum
1274 * order would increase as a result.
1275 */
1276 disable_higher_order_debug = 1;
1277 break;
f0630fff 1278 default:
f9f58285
FF
1279 pr_err("slub_debug option '%c' unknown. skipped\n",
1280 *str);
f0630fff 1281 }
41ecc55b
CL
1282 }
1283
f0630fff 1284check_slabs:
41ecc55b
CL
1285 if (*str == ',')
1286 slub_debug_slabs = str + 1;
f0630fff 1287out:
41ecc55b
CL
1288 return 1;
1289}
1290
1291__setup("slub_debug", setup_slub_debug);
1292
d50112ed
AD
1293slab_flags_t kmem_cache_flags(unsigned long object_size,
1294 slab_flags_t flags, const char *name,
51cc5068 1295 void (*ctor)(void *))
41ecc55b
CL
1296{
1297 /*
e153362a 1298 * Enable debugging if selected on the kernel commandline.
41ecc55b 1299 */
c6f58d9b
CL
1300 if (slub_debug && (!slub_debug_slabs || (name &&
1301 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1302 flags |= slub_debug;
ba0268a8
CL
1303
1304 return flags;
41ecc55b 1305}
b4a64718 1306#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1307static inline void setup_object_debug(struct kmem_cache *s,
1308 struct page *page, void *object) {}
41ecc55b 1309
3ec09742 1310static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1311 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1312
282acb43 1313static inline int free_debug_processing(
81084651
JDB
1314 struct kmem_cache *s, struct page *page,
1315 void *head, void *tail, int bulk_cnt,
282acb43 1316 unsigned long addr) { return 0; }
41ecc55b 1317
41ecc55b
CL
1318static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1319 { return 1; }
1320static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1321 void *object, u8 val) { return 1; }
5cc6eee8
CL
1322static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1323 struct page *page) {}
c65c1877
PZ
1324static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1325 struct page *page) {}
d50112ed
AD
1326slab_flags_t kmem_cache_flags(unsigned long object_size,
1327 slab_flags_t flags, const char *name,
51cc5068 1328 void (*ctor)(void *))
ba0268a8
CL
1329{
1330 return flags;
1331}
41ecc55b 1332#define slub_debug 0
0f389ec6 1333
fdaa45e9
IM
1334#define disable_higher_order_debug 0
1335
0f389ec6
CL
1336static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1337 { return 0; }
26c02cf0
AB
1338static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1339 { return 0; }
205ab99d
CL
1340static inline void inc_slabs_node(struct kmem_cache *s, int node,
1341 int objects) {}
1342static inline void dec_slabs_node(struct kmem_cache *s, int node,
1343 int objects) {}
7d550c56 1344
02e72cc6
AR
1345#endif /* CONFIG_SLUB_DEBUG */
1346
1347/*
1348 * Hooks for other subsystems that check memory allocations. In a typical
1349 * production configuration these hooks all should produce no code at all.
1350 */
d56791b3
RB
1351static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1352{
1353 kmemleak_alloc(ptr, size, 1, flags);
505f5dcb 1354 kasan_kmalloc_large(ptr, size, flags);
d56791b3
RB
1355}
1356
1357static inline void kfree_hook(const void *x)
1358{
1359 kmemleak_free(x);
0316bec2 1360 kasan_kfree_large(x);
d56791b3
RB
1361}
1362
80a9201a 1363static inline void *slab_free_hook(struct kmem_cache *s, void *x)
d56791b3 1364{
80a9201a
AP
1365 void *freeptr;
1366
d56791b3 1367 kmemleak_free_recursive(x, s->flags);
7d550c56 1368
02e72cc6
AR
1369 /*
1370 * Trouble is that we may no longer disable interrupts in the fast path
1371 * So in order to make the debug calls that expect irqs to be
1372 * disabled we need to disable interrupts temporarily.
1373 */
4675ff05 1374#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1375 {
1376 unsigned long flags;
1377
1378 local_irq_save(flags);
02e72cc6
AR
1379 debug_check_no_locks_freed(x, s->object_size);
1380 local_irq_restore(flags);
1381 }
1382#endif
1383 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1384 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1385
80a9201a
AP
1386 freeptr = get_freepointer(s, x);
1387 /*
1388 * kasan_slab_free() may put x into memory quarantine, delaying its
1389 * reuse. In this case the object's freelist pointer is changed.
1390 */
0316bec2 1391 kasan_slab_free(s, x);
80a9201a 1392 return freeptr;
02e72cc6 1393}
205ab99d 1394
81084651
JDB
1395static inline void slab_free_freelist_hook(struct kmem_cache *s,
1396 void *head, void *tail)
1397{
1398/*
1399 * Compiler cannot detect this function can be removed if slab_free_hook()
1400 * evaluates to nothing. Thus, catch all relevant config debug options here.
1401 */
4675ff05 1402#if defined(CONFIG_LOCKDEP) || \
81084651
JDB
1403 defined(CONFIG_DEBUG_KMEMLEAK) || \
1404 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1405 defined(CONFIG_KASAN)
1406
1407 void *object = head;
1408 void *tail_obj = tail ? : head;
80a9201a 1409 void *freeptr;
81084651
JDB
1410
1411 do {
80a9201a
AP
1412 freeptr = slab_free_hook(s, object);
1413 } while ((object != tail_obj) && (object = freeptr));
81084651
JDB
1414#endif
1415}
1416
588f8ba9
TG
1417static void setup_object(struct kmem_cache *s, struct page *page,
1418 void *object)
1419{
1420 setup_object_debug(s, page, object);
b3cbd9bf 1421 kasan_init_slab_obj(s, object);
588f8ba9
TG
1422 if (unlikely(s->ctor)) {
1423 kasan_unpoison_object_data(s, object);
1424 s->ctor(object);
1425 kasan_poison_object_data(s, object);
1426 }
1427}
1428
81819f0f
CL
1429/*
1430 * Slab allocation and freeing
1431 */
5dfb4175
VD
1432static inline struct page *alloc_slab_page(struct kmem_cache *s,
1433 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1434{
5dfb4175 1435 struct page *page;
65c3376a
CL
1436 int order = oo_order(oo);
1437
2154a336 1438 if (node == NUMA_NO_NODE)
5dfb4175 1439 page = alloc_pages(flags, order);
65c3376a 1440 else
96db800f 1441 page = __alloc_pages_node(node, flags, order);
5dfb4175 1442
f3ccb2c4
VD
1443 if (page && memcg_charge_slab(page, flags, order, s)) {
1444 __free_pages(page, order);
1445 page = NULL;
1446 }
5dfb4175
VD
1447
1448 return page;
65c3376a
CL
1449}
1450
210e7a43
TG
1451#ifdef CONFIG_SLAB_FREELIST_RANDOM
1452/* Pre-initialize the random sequence cache */
1453static int init_cache_random_seq(struct kmem_cache *s)
1454{
1455 int err;
1456 unsigned long i, count = oo_objects(s->oo);
1457
a810007a
SR
1458 /* Bailout if already initialised */
1459 if (s->random_seq)
1460 return 0;
1461
210e7a43
TG
1462 err = cache_random_seq_create(s, count, GFP_KERNEL);
1463 if (err) {
1464 pr_err("SLUB: Unable to initialize free list for %s\n",
1465 s->name);
1466 return err;
1467 }
1468
1469 /* Transform to an offset on the set of pages */
1470 if (s->random_seq) {
1471 for (i = 0; i < count; i++)
1472 s->random_seq[i] *= s->size;
1473 }
1474 return 0;
1475}
1476
1477/* Initialize each random sequence freelist per cache */
1478static void __init init_freelist_randomization(void)
1479{
1480 struct kmem_cache *s;
1481
1482 mutex_lock(&slab_mutex);
1483
1484 list_for_each_entry(s, &slab_caches, list)
1485 init_cache_random_seq(s);
1486
1487 mutex_unlock(&slab_mutex);
1488}
1489
1490/* Get the next entry on the pre-computed freelist randomized */
1491static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1492 unsigned long *pos, void *start,
1493 unsigned long page_limit,
1494 unsigned long freelist_count)
1495{
1496 unsigned int idx;
1497
1498 /*
1499 * If the target page allocation failed, the number of objects on the
1500 * page might be smaller than the usual size defined by the cache.
1501 */
1502 do {
1503 idx = s->random_seq[*pos];
1504 *pos += 1;
1505 if (*pos >= freelist_count)
1506 *pos = 0;
1507 } while (unlikely(idx >= page_limit));
1508
1509 return (char *)start + idx;
1510}
1511
1512/* Shuffle the single linked freelist based on a random pre-computed sequence */
1513static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1514{
1515 void *start;
1516 void *cur;
1517 void *next;
1518 unsigned long idx, pos, page_limit, freelist_count;
1519
1520 if (page->objects < 2 || !s->random_seq)
1521 return false;
1522
1523 freelist_count = oo_objects(s->oo);
1524 pos = get_random_int() % freelist_count;
1525
1526 page_limit = page->objects * s->size;
1527 start = fixup_red_left(s, page_address(page));
1528
1529 /* First entry is used as the base of the freelist */
1530 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1531 freelist_count);
1532 page->freelist = cur;
1533
1534 for (idx = 1; idx < page->objects; idx++) {
1535 setup_object(s, page, cur);
1536 next = next_freelist_entry(s, page, &pos, start, page_limit,
1537 freelist_count);
1538 set_freepointer(s, cur, next);
1539 cur = next;
1540 }
1541 setup_object(s, page, cur);
1542 set_freepointer(s, cur, NULL);
1543
1544 return true;
1545}
1546#else
1547static inline int init_cache_random_seq(struct kmem_cache *s)
1548{
1549 return 0;
1550}
1551static inline void init_freelist_randomization(void) { }
1552static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1553{
1554 return false;
1555}
1556#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1557
81819f0f
CL
1558static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1559{
06428780 1560 struct page *page;
834f3d11 1561 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1562 gfp_t alloc_gfp;
588f8ba9
TG
1563 void *start, *p;
1564 int idx, order;
210e7a43 1565 bool shuffle;
81819f0f 1566
7e0528da
CL
1567 flags &= gfp_allowed_mask;
1568
d0164adc 1569 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1570 local_irq_enable();
1571
b7a49f0d 1572 flags |= s->allocflags;
e12ba74d 1573
ba52270d
PE
1574 /*
1575 * Let the initial higher-order allocation fail under memory pressure
1576 * so we fall-back to the minimum order allocation.
1577 */
1578 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1579 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1580 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1581
5dfb4175 1582 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1583 if (unlikely(!page)) {
1584 oo = s->min;
80c3a998 1585 alloc_gfp = flags;
65c3376a
CL
1586 /*
1587 * Allocation may have failed due to fragmentation.
1588 * Try a lower order alloc if possible
1589 */
5dfb4175 1590 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1591 if (unlikely(!page))
1592 goto out;
1593 stat(s, ORDER_FALLBACK);
65c3376a 1594 }
5a896d9e 1595
834f3d11 1596 page->objects = oo_objects(oo);
81819f0f 1597
1f458cbf 1598 order = compound_order(page);
1b4f59e3 1599 page->slab_cache = s;
c03f94cc 1600 __SetPageSlab(page);
2f064f34 1601 if (page_is_pfmemalloc(page))
072bb0aa 1602 SetPageSlabPfmemalloc(page);
81819f0f
CL
1603
1604 start = page_address(page);
81819f0f
CL
1605
1606 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1607 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1608
0316bec2
AR
1609 kasan_poison_slab(page);
1610
210e7a43
TG
1611 shuffle = shuffle_freelist(s, page);
1612
1613 if (!shuffle) {
1614 for_each_object_idx(p, idx, s, start, page->objects) {
1615 setup_object(s, page, p);
1616 if (likely(idx < page->objects))
1617 set_freepointer(s, p, p + s->size);
1618 else
1619 set_freepointer(s, p, NULL);
1620 }
1621 page->freelist = fixup_red_left(s, start);
81819f0f 1622 }
81819f0f 1623
e6e82ea1 1624 page->inuse = page->objects;
8cb0a506 1625 page->frozen = 1;
588f8ba9 1626
81819f0f 1627out:
d0164adc 1628 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1629 local_irq_disable();
1630 if (!page)
1631 return NULL;
1632
7779f212 1633 mod_lruvec_page_state(page,
588f8ba9
TG
1634 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1635 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1636 1 << oo_order(oo));
1637
1638 inc_slabs_node(s, page_to_nid(page), page->objects);
1639
81819f0f
CL
1640 return page;
1641}
1642
588f8ba9
TG
1643static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1644{
1645 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 1646 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
1647 flags &= ~GFP_SLAB_BUG_MASK;
1648 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1649 invalid_mask, &invalid_mask, flags, &flags);
65b9de75 1650 dump_stack();
588f8ba9
TG
1651 }
1652
1653 return allocate_slab(s,
1654 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1655}
1656
81819f0f
CL
1657static void __free_slab(struct kmem_cache *s, struct page *page)
1658{
834f3d11
CL
1659 int order = compound_order(page);
1660 int pages = 1 << order;
81819f0f 1661
becfda68 1662 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1663 void *p;
1664
1665 slab_pad_check(s, page);
224a88be
CL
1666 for_each_object(p, s, page_address(page),
1667 page->objects)
f7cb1933 1668 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1669 }
1670
7779f212 1671 mod_lruvec_page_state(page,
81819f0f
CL
1672 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1673 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1674 -pages);
81819f0f 1675
072bb0aa 1676 __ClearPageSlabPfmemalloc(page);
49bd5221 1677 __ClearPageSlab(page);
1f458cbf 1678
22b751c3 1679 page_mapcount_reset(page);
1eb5ac64
NP
1680 if (current->reclaim_state)
1681 current->reclaim_state->reclaimed_slab += pages;
27ee57c9
VD
1682 memcg_uncharge_slab(page, order, s);
1683 __free_pages(page, order);
81819f0f
CL
1684}
1685
da9a638c
LJ
1686#define need_reserve_slab_rcu \
1687 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1688
81819f0f
CL
1689static void rcu_free_slab(struct rcu_head *h)
1690{
1691 struct page *page;
1692
da9a638c
LJ
1693 if (need_reserve_slab_rcu)
1694 page = virt_to_head_page(h);
1695 else
1696 page = container_of((struct list_head *)h, struct page, lru);
1697
1b4f59e3 1698 __free_slab(page->slab_cache, page);
81819f0f
CL
1699}
1700
1701static void free_slab(struct kmem_cache *s, struct page *page)
1702{
5f0d5a3a 1703 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
da9a638c
LJ
1704 struct rcu_head *head;
1705
1706 if (need_reserve_slab_rcu) {
1707 int order = compound_order(page);
1708 int offset = (PAGE_SIZE << order) - s->reserved;
1709
1710 VM_BUG_ON(s->reserved != sizeof(*head));
1711 head = page_address(page) + offset;
1712 } else {
bc4f610d 1713 head = &page->rcu_head;
da9a638c 1714 }
81819f0f
CL
1715
1716 call_rcu(head, rcu_free_slab);
1717 } else
1718 __free_slab(s, page);
1719}
1720
1721static void discard_slab(struct kmem_cache *s, struct page *page)
1722{
205ab99d 1723 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1724 free_slab(s, page);
1725}
1726
1727/*
5cc6eee8 1728 * Management of partially allocated slabs.
81819f0f 1729 */
1e4dd946
SR
1730static inline void
1731__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1732{
e95eed57 1733 n->nr_partial++;
136333d1 1734 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1735 list_add_tail(&page->lru, &n->partial);
1736 else
1737 list_add(&page->lru, &n->partial);
81819f0f
CL
1738}
1739
1e4dd946
SR
1740static inline void add_partial(struct kmem_cache_node *n,
1741 struct page *page, int tail)
62e346a8 1742{
c65c1877 1743 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1744 __add_partial(n, page, tail);
1745}
c65c1877 1746
1e4dd946
SR
1747static inline void remove_partial(struct kmem_cache_node *n,
1748 struct page *page)
1749{
1750 lockdep_assert_held(&n->list_lock);
52b4b950
DS
1751 list_del(&page->lru);
1752 n->nr_partial--;
1e4dd946
SR
1753}
1754
81819f0f 1755/*
7ced3719
CL
1756 * Remove slab from the partial list, freeze it and
1757 * return the pointer to the freelist.
81819f0f 1758 *
497b66f2 1759 * Returns a list of objects or NULL if it fails.
81819f0f 1760 */
497b66f2 1761static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1762 struct kmem_cache_node *n, struct page *page,
633b0764 1763 int mode, int *objects)
81819f0f 1764{
2cfb7455
CL
1765 void *freelist;
1766 unsigned long counters;
1767 struct page new;
1768
c65c1877
PZ
1769 lockdep_assert_held(&n->list_lock);
1770
2cfb7455
CL
1771 /*
1772 * Zap the freelist and set the frozen bit.
1773 * The old freelist is the list of objects for the
1774 * per cpu allocation list.
1775 */
7ced3719
CL
1776 freelist = page->freelist;
1777 counters = page->counters;
1778 new.counters = counters;
633b0764 1779 *objects = new.objects - new.inuse;
23910c50 1780 if (mode) {
7ced3719 1781 new.inuse = page->objects;
23910c50
PE
1782 new.freelist = NULL;
1783 } else {
1784 new.freelist = freelist;
1785 }
2cfb7455 1786
a0132ac0 1787 VM_BUG_ON(new.frozen);
7ced3719 1788 new.frozen = 1;
2cfb7455 1789
7ced3719 1790 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1791 freelist, counters,
02d7633f 1792 new.freelist, new.counters,
7ced3719 1793 "acquire_slab"))
7ced3719 1794 return NULL;
2cfb7455
CL
1795
1796 remove_partial(n, page);
7ced3719 1797 WARN_ON(!freelist);
49e22585 1798 return freelist;
81819f0f
CL
1799}
1800
633b0764 1801static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1802static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1803
81819f0f 1804/*
672bba3a 1805 * Try to allocate a partial slab from a specific node.
81819f0f 1806 */
8ba00bb6
JK
1807static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1808 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1809{
49e22585
CL
1810 struct page *page, *page2;
1811 void *object = NULL;
633b0764
JK
1812 int available = 0;
1813 int objects;
81819f0f
CL
1814
1815 /*
1816 * Racy check. If we mistakenly see no partial slabs then we
1817 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1818 * partial slab and there is none available then get_partials()
1819 * will return NULL.
81819f0f
CL
1820 */
1821 if (!n || !n->nr_partial)
1822 return NULL;
1823
1824 spin_lock(&n->list_lock);
49e22585 1825 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1826 void *t;
49e22585 1827
8ba00bb6
JK
1828 if (!pfmemalloc_match(page, flags))
1829 continue;
1830
633b0764 1831 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1832 if (!t)
1833 break;
1834
633b0764 1835 available += objects;
12d79634 1836 if (!object) {
49e22585 1837 c->page = page;
49e22585 1838 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1839 object = t;
49e22585 1840 } else {
633b0764 1841 put_cpu_partial(s, page, 0);
8028dcea 1842 stat(s, CPU_PARTIAL_NODE);
49e22585 1843 }
345c905d 1844 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 1845 || available > slub_cpu_partial(s) / 2)
49e22585
CL
1846 break;
1847
497b66f2 1848 }
81819f0f 1849 spin_unlock(&n->list_lock);
497b66f2 1850 return object;
81819f0f
CL
1851}
1852
1853/*
672bba3a 1854 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1855 */
de3ec035 1856static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1857 struct kmem_cache_cpu *c)
81819f0f
CL
1858{
1859#ifdef CONFIG_NUMA
1860 struct zonelist *zonelist;
dd1a239f 1861 struct zoneref *z;
54a6eb5c
MG
1862 struct zone *zone;
1863 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1864 void *object;
cc9a6c87 1865 unsigned int cpuset_mems_cookie;
81819f0f
CL
1866
1867 /*
672bba3a
CL
1868 * The defrag ratio allows a configuration of the tradeoffs between
1869 * inter node defragmentation and node local allocations. A lower
1870 * defrag_ratio increases the tendency to do local allocations
1871 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1872 *
672bba3a
CL
1873 * If the defrag_ratio is set to 0 then kmalloc() always
1874 * returns node local objects. If the ratio is higher then kmalloc()
1875 * may return off node objects because partial slabs are obtained
1876 * from other nodes and filled up.
81819f0f 1877 *
43efd3ea
LP
1878 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1879 * (which makes defrag_ratio = 1000) then every (well almost)
1880 * allocation will first attempt to defrag slab caches on other nodes.
1881 * This means scanning over all nodes to look for partial slabs which
1882 * may be expensive if we do it every time we are trying to find a slab
672bba3a 1883 * with available objects.
81819f0f 1884 */
9824601e
CL
1885 if (!s->remote_node_defrag_ratio ||
1886 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1887 return NULL;
1888
cc9a6c87 1889 do {
d26914d1 1890 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1891 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1892 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1893 struct kmem_cache_node *n;
1894
1895 n = get_node(s, zone_to_nid(zone));
1896
dee2f8aa 1897 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1898 n->nr_partial > s->min_partial) {
8ba00bb6 1899 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1900 if (object) {
1901 /*
d26914d1
MG
1902 * Don't check read_mems_allowed_retry()
1903 * here - if mems_allowed was updated in
1904 * parallel, that was a harmless race
1905 * between allocation and the cpuset
1906 * update
cc9a6c87 1907 */
cc9a6c87
MG
1908 return object;
1909 }
c0ff7453 1910 }
81819f0f 1911 }
d26914d1 1912 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1913#endif
1914 return NULL;
1915}
1916
1917/*
1918 * Get a partial page, lock it and return it.
1919 */
497b66f2 1920static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1921 struct kmem_cache_cpu *c)
81819f0f 1922{
497b66f2 1923 void *object;
a561ce00
JK
1924 int searchnode = node;
1925
1926 if (node == NUMA_NO_NODE)
1927 searchnode = numa_mem_id();
1928 else if (!node_present_pages(node))
1929 searchnode = node_to_mem_node(node);
81819f0f 1930
8ba00bb6 1931 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1932 if (object || node != NUMA_NO_NODE)
1933 return object;
81819f0f 1934
acd19fd1 1935 return get_any_partial(s, flags, c);
81819f0f
CL
1936}
1937
8a5ec0ba
CL
1938#ifdef CONFIG_PREEMPT
1939/*
1940 * Calculate the next globally unique transaction for disambiguiation
1941 * during cmpxchg. The transactions start with the cpu number and are then
1942 * incremented by CONFIG_NR_CPUS.
1943 */
1944#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1945#else
1946/*
1947 * No preemption supported therefore also no need to check for
1948 * different cpus.
1949 */
1950#define TID_STEP 1
1951#endif
1952
1953static inline unsigned long next_tid(unsigned long tid)
1954{
1955 return tid + TID_STEP;
1956}
1957
1958static inline unsigned int tid_to_cpu(unsigned long tid)
1959{
1960 return tid % TID_STEP;
1961}
1962
1963static inline unsigned long tid_to_event(unsigned long tid)
1964{
1965 return tid / TID_STEP;
1966}
1967
1968static inline unsigned int init_tid(int cpu)
1969{
1970 return cpu;
1971}
1972
1973static inline void note_cmpxchg_failure(const char *n,
1974 const struct kmem_cache *s, unsigned long tid)
1975{
1976#ifdef SLUB_DEBUG_CMPXCHG
1977 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1978
f9f58285 1979 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1980
1981#ifdef CONFIG_PREEMPT
1982 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1983 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1984 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1985 else
1986#endif
1987 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1988 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1989 tid_to_event(tid), tid_to_event(actual_tid));
1990 else
f9f58285 1991 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1992 actual_tid, tid, next_tid(tid));
1993#endif
4fdccdfb 1994 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1995}
1996
788e1aad 1997static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1998{
8a5ec0ba
CL
1999 int cpu;
2000
2001 for_each_possible_cpu(cpu)
2002 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2003}
2cfb7455 2004
81819f0f
CL
2005/*
2006 * Remove the cpu slab
2007 */
d0e0ac97 2008static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2009 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2010{
2cfb7455 2011 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
2012 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2013 int lock = 0;
2014 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2015 void *nextfree;
136333d1 2016 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2017 struct page new;
2018 struct page old;
2019
2020 if (page->freelist) {
84e554e6 2021 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2022 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2023 }
2024
894b8788 2025 /*
2cfb7455
CL
2026 * Stage one: Free all available per cpu objects back
2027 * to the page freelist while it is still frozen. Leave the
2028 * last one.
2029 *
2030 * There is no need to take the list->lock because the page
2031 * is still frozen.
2032 */
2033 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2034 void *prior;
2035 unsigned long counters;
2036
2037 do {
2038 prior = page->freelist;
2039 counters = page->counters;
2040 set_freepointer(s, freelist, prior);
2041 new.counters = counters;
2042 new.inuse--;
a0132ac0 2043 VM_BUG_ON(!new.frozen);
2cfb7455 2044
1d07171c 2045 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2046 prior, counters,
2047 freelist, new.counters,
2048 "drain percpu freelist"));
2049
2050 freelist = nextfree;
2051 }
2052
894b8788 2053 /*
2cfb7455
CL
2054 * Stage two: Ensure that the page is unfrozen while the
2055 * list presence reflects the actual number of objects
2056 * during unfreeze.
2057 *
2058 * We setup the list membership and then perform a cmpxchg
2059 * with the count. If there is a mismatch then the page
2060 * is not unfrozen but the page is on the wrong list.
2061 *
2062 * Then we restart the process which may have to remove
2063 * the page from the list that we just put it on again
2064 * because the number of objects in the slab may have
2065 * changed.
894b8788 2066 */
2cfb7455 2067redo:
894b8788 2068
2cfb7455
CL
2069 old.freelist = page->freelist;
2070 old.counters = page->counters;
a0132ac0 2071 VM_BUG_ON(!old.frozen);
7c2e132c 2072
2cfb7455
CL
2073 /* Determine target state of the slab */
2074 new.counters = old.counters;
2075 if (freelist) {
2076 new.inuse--;
2077 set_freepointer(s, freelist, old.freelist);
2078 new.freelist = freelist;
2079 } else
2080 new.freelist = old.freelist;
2081
2082 new.frozen = 0;
2083
8a5b20ae 2084 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2085 m = M_FREE;
2086 else if (new.freelist) {
2087 m = M_PARTIAL;
2088 if (!lock) {
2089 lock = 1;
2090 /*
2091 * Taking the spinlock removes the possiblity
2092 * that acquire_slab() will see a slab page that
2093 * is frozen
2094 */
2095 spin_lock(&n->list_lock);
2096 }
2097 } else {
2098 m = M_FULL;
2099 if (kmem_cache_debug(s) && !lock) {
2100 lock = 1;
2101 /*
2102 * This also ensures that the scanning of full
2103 * slabs from diagnostic functions will not see
2104 * any frozen slabs.
2105 */
2106 spin_lock(&n->list_lock);
2107 }
2108 }
2109
2110 if (l != m) {
2111
2112 if (l == M_PARTIAL)
2113
2114 remove_partial(n, page);
2115
2116 else if (l == M_FULL)
894b8788 2117
c65c1877 2118 remove_full(s, n, page);
2cfb7455
CL
2119
2120 if (m == M_PARTIAL) {
2121
2122 add_partial(n, page, tail);
136333d1 2123 stat(s, tail);
2cfb7455
CL
2124
2125 } else if (m == M_FULL) {
894b8788 2126
2cfb7455
CL
2127 stat(s, DEACTIVATE_FULL);
2128 add_full(s, n, page);
2129
2130 }
2131 }
2132
2133 l = m;
1d07171c 2134 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2135 old.freelist, old.counters,
2136 new.freelist, new.counters,
2137 "unfreezing slab"))
2138 goto redo;
2139
2cfb7455
CL
2140 if (lock)
2141 spin_unlock(&n->list_lock);
2142
2143 if (m == M_FREE) {
2144 stat(s, DEACTIVATE_EMPTY);
2145 discard_slab(s, page);
2146 stat(s, FREE_SLAB);
894b8788 2147 }
d4ff6d35
WY
2148
2149 c->page = NULL;
2150 c->freelist = NULL;
81819f0f
CL
2151}
2152
d24ac77f
JK
2153/*
2154 * Unfreeze all the cpu partial slabs.
2155 *
59a09917
CL
2156 * This function must be called with interrupts disabled
2157 * for the cpu using c (or some other guarantee must be there
2158 * to guarantee no concurrent accesses).
d24ac77f 2159 */
59a09917
CL
2160static void unfreeze_partials(struct kmem_cache *s,
2161 struct kmem_cache_cpu *c)
49e22585 2162{
345c905d 2163#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2164 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2165 struct page *page, *discard_page = NULL;
49e22585
CL
2166
2167 while ((page = c->partial)) {
49e22585
CL
2168 struct page new;
2169 struct page old;
2170
2171 c->partial = page->next;
43d77867
JK
2172
2173 n2 = get_node(s, page_to_nid(page));
2174 if (n != n2) {
2175 if (n)
2176 spin_unlock(&n->list_lock);
2177
2178 n = n2;
2179 spin_lock(&n->list_lock);
2180 }
49e22585
CL
2181
2182 do {
2183
2184 old.freelist = page->freelist;
2185 old.counters = page->counters;
a0132ac0 2186 VM_BUG_ON(!old.frozen);
49e22585
CL
2187
2188 new.counters = old.counters;
2189 new.freelist = old.freelist;
2190
2191 new.frozen = 0;
2192
d24ac77f 2193 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2194 old.freelist, old.counters,
2195 new.freelist, new.counters,
2196 "unfreezing slab"));
2197
8a5b20ae 2198 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2199 page->next = discard_page;
2200 discard_page = page;
43d77867
JK
2201 } else {
2202 add_partial(n, page, DEACTIVATE_TO_TAIL);
2203 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2204 }
2205 }
2206
2207 if (n)
2208 spin_unlock(&n->list_lock);
9ada1934
SL
2209
2210 while (discard_page) {
2211 page = discard_page;
2212 discard_page = discard_page->next;
2213
2214 stat(s, DEACTIVATE_EMPTY);
2215 discard_slab(s, page);
2216 stat(s, FREE_SLAB);
2217 }
345c905d 2218#endif
49e22585
CL
2219}
2220
2221/*
2222 * Put a page that was just frozen (in __slab_free) into a partial page
2223 * slot if available. This is done without interrupts disabled and without
2224 * preemption disabled. The cmpxchg is racy and may put the partial page
2225 * onto a random cpus partial slot.
2226 *
2227 * If we did not find a slot then simply move all the partials to the
2228 * per node partial list.
2229 */
633b0764 2230static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2231{
345c905d 2232#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2233 struct page *oldpage;
2234 int pages;
2235 int pobjects;
2236
d6e0b7fa 2237 preempt_disable();
49e22585
CL
2238 do {
2239 pages = 0;
2240 pobjects = 0;
2241 oldpage = this_cpu_read(s->cpu_slab->partial);
2242
2243 if (oldpage) {
2244 pobjects = oldpage->pobjects;
2245 pages = oldpage->pages;
2246 if (drain && pobjects > s->cpu_partial) {
2247 unsigned long flags;
2248 /*
2249 * partial array is full. Move the existing
2250 * set to the per node partial list.
2251 */
2252 local_irq_save(flags);
59a09917 2253 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2254 local_irq_restore(flags);
e24fc410 2255 oldpage = NULL;
49e22585
CL
2256 pobjects = 0;
2257 pages = 0;
8028dcea 2258 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2259 }
2260 }
2261
2262 pages++;
2263 pobjects += page->objects - page->inuse;
2264
2265 page->pages = pages;
2266 page->pobjects = pobjects;
2267 page->next = oldpage;
2268
d0e0ac97
CG
2269 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2270 != oldpage);
d6e0b7fa
VD
2271 if (unlikely(!s->cpu_partial)) {
2272 unsigned long flags;
2273
2274 local_irq_save(flags);
2275 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2276 local_irq_restore(flags);
2277 }
2278 preempt_enable();
345c905d 2279#endif
49e22585
CL
2280}
2281
dfb4f096 2282static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2283{
84e554e6 2284 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2285 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2286
2287 c->tid = next_tid(c->tid);
81819f0f
CL
2288}
2289
2290/*
2291 * Flush cpu slab.
6446faa2 2292 *
81819f0f
CL
2293 * Called from IPI handler with interrupts disabled.
2294 */
0c710013 2295static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2296{
9dfc6e68 2297 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2298
49e22585
CL
2299 if (likely(c)) {
2300 if (c->page)
2301 flush_slab(s, c);
2302
59a09917 2303 unfreeze_partials(s, c);
49e22585 2304 }
81819f0f
CL
2305}
2306
2307static void flush_cpu_slab(void *d)
2308{
2309 struct kmem_cache *s = d;
81819f0f 2310
dfb4f096 2311 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2312}
2313
a8364d55
GBY
2314static bool has_cpu_slab(int cpu, void *info)
2315{
2316 struct kmem_cache *s = info;
2317 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2318
a93cf07b 2319 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2320}
2321
81819f0f
CL
2322static void flush_all(struct kmem_cache *s)
2323{
a8364d55 2324 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2325}
2326
a96a87bf
SAS
2327/*
2328 * Use the cpu notifier to insure that the cpu slabs are flushed when
2329 * necessary.
2330 */
2331static int slub_cpu_dead(unsigned int cpu)
2332{
2333 struct kmem_cache *s;
2334 unsigned long flags;
2335
2336 mutex_lock(&slab_mutex);
2337 list_for_each_entry(s, &slab_caches, list) {
2338 local_irq_save(flags);
2339 __flush_cpu_slab(s, cpu);
2340 local_irq_restore(flags);
2341 }
2342 mutex_unlock(&slab_mutex);
2343 return 0;
2344}
2345
dfb4f096
CL
2346/*
2347 * Check if the objects in a per cpu structure fit numa
2348 * locality expectations.
2349 */
57d437d2 2350static inline int node_match(struct page *page, int node)
dfb4f096
CL
2351{
2352#ifdef CONFIG_NUMA
4d7868e6 2353 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2354 return 0;
2355#endif
2356 return 1;
2357}
2358
9a02d699 2359#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2360static int count_free(struct page *page)
2361{
2362 return page->objects - page->inuse;
2363}
2364
9a02d699
DR
2365static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2366{
2367 return atomic_long_read(&n->total_objects);
2368}
2369#endif /* CONFIG_SLUB_DEBUG */
2370
2371#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2372static unsigned long count_partial(struct kmem_cache_node *n,
2373 int (*get_count)(struct page *))
2374{
2375 unsigned long flags;
2376 unsigned long x = 0;
2377 struct page *page;
2378
2379 spin_lock_irqsave(&n->list_lock, flags);
2380 list_for_each_entry(page, &n->partial, lru)
2381 x += get_count(page);
2382 spin_unlock_irqrestore(&n->list_lock, flags);
2383 return x;
2384}
9a02d699 2385#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2386
781b2ba6
PE
2387static noinline void
2388slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2389{
9a02d699
DR
2390#ifdef CONFIG_SLUB_DEBUG
2391 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2392 DEFAULT_RATELIMIT_BURST);
781b2ba6 2393 int node;
fa45dc25 2394 struct kmem_cache_node *n;
781b2ba6 2395
9a02d699
DR
2396 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2397 return;
2398
5b3810e5
VB
2399 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2400 nid, gfpflags, &gfpflags);
f9f58285
FF
2401 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2402 s->name, s->object_size, s->size, oo_order(s->oo),
2403 oo_order(s->min));
781b2ba6 2404
3b0efdfa 2405 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2406 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2407 s->name);
fa5ec8a1 2408
fa45dc25 2409 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2410 unsigned long nr_slabs;
2411 unsigned long nr_objs;
2412 unsigned long nr_free;
2413
26c02cf0
AB
2414 nr_free = count_partial(n, count_free);
2415 nr_slabs = node_nr_slabs(n);
2416 nr_objs = node_nr_objs(n);
781b2ba6 2417
f9f58285 2418 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2419 node, nr_slabs, nr_objs, nr_free);
2420 }
9a02d699 2421#endif
781b2ba6
PE
2422}
2423
497b66f2
CL
2424static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2425 int node, struct kmem_cache_cpu **pc)
2426{
6faa6833 2427 void *freelist;
188fd063
CL
2428 struct kmem_cache_cpu *c = *pc;
2429 struct page *page;
497b66f2 2430
188fd063 2431 freelist = get_partial(s, flags, node, c);
497b66f2 2432
188fd063
CL
2433 if (freelist)
2434 return freelist;
2435
2436 page = new_slab(s, flags, node);
497b66f2 2437 if (page) {
7c8e0181 2438 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2439 if (c->page)
2440 flush_slab(s, c);
2441
2442 /*
2443 * No other reference to the page yet so we can
2444 * muck around with it freely without cmpxchg
2445 */
6faa6833 2446 freelist = page->freelist;
497b66f2
CL
2447 page->freelist = NULL;
2448
2449 stat(s, ALLOC_SLAB);
497b66f2
CL
2450 c->page = page;
2451 *pc = c;
2452 } else
6faa6833 2453 freelist = NULL;
497b66f2 2454
6faa6833 2455 return freelist;
497b66f2
CL
2456}
2457
072bb0aa
MG
2458static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2459{
2460 if (unlikely(PageSlabPfmemalloc(page)))
2461 return gfp_pfmemalloc_allowed(gfpflags);
2462
2463 return true;
2464}
2465
213eeb9f 2466/*
d0e0ac97
CG
2467 * Check the page->freelist of a page and either transfer the freelist to the
2468 * per cpu freelist or deactivate the page.
213eeb9f
CL
2469 *
2470 * The page is still frozen if the return value is not NULL.
2471 *
2472 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2473 *
2474 * This function must be called with interrupt disabled.
213eeb9f
CL
2475 */
2476static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2477{
2478 struct page new;
2479 unsigned long counters;
2480 void *freelist;
2481
2482 do {
2483 freelist = page->freelist;
2484 counters = page->counters;
6faa6833 2485
213eeb9f 2486 new.counters = counters;
a0132ac0 2487 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2488
2489 new.inuse = page->objects;
2490 new.frozen = freelist != NULL;
2491
d24ac77f 2492 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2493 freelist, counters,
2494 NULL, new.counters,
2495 "get_freelist"));
2496
2497 return freelist;
2498}
2499
81819f0f 2500/*
894b8788
CL
2501 * Slow path. The lockless freelist is empty or we need to perform
2502 * debugging duties.
2503 *
894b8788
CL
2504 * Processing is still very fast if new objects have been freed to the
2505 * regular freelist. In that case we simply take over the regular freelist
2506 * as the lockless freelist and zap the regular freelist.
81819f0f 2507 *
894b8788
CL
2508 * If that is not working then we fall back to the partial lists. We take the
2509 * first element of the freelist as the object to allocate now and move the
2510 * rest of the freelist to the lockless freelist.
81819f0f 2511 *
894b8788 2512 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2513 * we need to allocate a new slab. This is the slowest path since it involves
2514 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2515 *
2516 * Version of __slab_alloc to use when we know that interrupts are
2517 * already disabled (which is the case for bulk allocation).
81819f0f 2518 */
a380a3c7 2519static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2520 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2521{
6faa6833 2522 void *freelist;
f6e7def7 2523 struct page *page;
81819f0f 2524
f6e7def7
CL
2525 page = c->page;
2526 if (!page)
81819f0f 2527 goto new_slab;
49e22585 2528redo:
6faa6833 2529
57d437d2 2530 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2531 int searchnode = node;
2532
2533 if (node != NUMA_NO_NODE && !node_present_pages(node))
2534 searchnode = node_to_mem_node(node);
2535
2536 if (unlikely(!node_match(page, searchnode))) {
2537 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2538 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2539 goto new_slab;
2540 }
fc59c053 2541 }
6446faa2 2542
072bb0aa
MG
2543 /*
2544 * By rights, we should be searching for a slab page that was
2545 * PFMEMALLOC but right now, we are losing the pfmemalloc
2546 * information when the page leaves the per-cpu allocator
2547 */
2548 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2549 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2550 goto new_slab;
2551 }
2552
73736e03 2553 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2554 freelist = c->freelist;
2555 if (freelist)
73736e03 2556 goto load_freelist;
03e404af 2557
f6e7def7 2558 freelist = get_freelist(s, page);
6446faa2 2559
6faa6833 2560 if (!freelist) {
03e404af
CL
2561 c->page = NULL;
2562 stat(s, DEACTIVATE_BYPASS);
fc59c053 2563 goto new_slab;
03e404af 2564 }
6446faa2 2565
84e554e6 2566 stat(s, ALLOC_REFILL);
6446faa2 2567
894b8788 2568load_freelist:
507effea
CL
2569 /*
2570 * freelist is pointing to the list of objects to be used.
2571 * page is pointing to the page from which the objects are obtained.
2572 * That page must be frozen for per cpu allocations to work.
2573 */
a0132ac0 2574 VM_BUG_ON(!c->page->frozen);
6faa6833 2575 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2576 c->tid = next_tid(c->tid);
6faa6833 2577 return freelist;
81819f0f 2578
81819f0f 2579new_slab:
2cfb7455 2580
a93cf07b
WY
2581 if (slub_percpu_partial(c)) {
2582 page = c->page = slub_percpu_partial(c);
2583 slub_set_percpu_partial(c, page);
49e22585 2584 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2585 goto redo;
81819f0f
CL
2586 }
2587
188fd063 2588 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2589
f4697436 2590 if (unlikely(!freelist)) {
9a02d699 2591 slab_out_of_memory(s, gfpflags, node);
f4697436 2592 return NULL;
81819f0f 2593 }
2cfb7455 2594
f6e7def7 2595 page = c->page;
5091b74a 2596 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2597 goto load_freelist;
2cfb7455 2598
497b66f2 2599 /* Only entered in the debug case */
d0e0ac97
CG
2600 if (kmem_cache_debug(s) &&
2601 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2602 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2603
d4ff6d35 2604 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2605 return freelist;
894b8788
CL
2606}
2607
a380a3c7
CL
2608/*
2609 * Another one that disabled interrupt and compensates for possible
2610 * cpu changes by refetching the per cpu area pointer.
2611 */
2612static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2613 unsigned long addr, struct kmem_cache_cpu *c)
2614{
2615 void *p;
2616 unsigned long flags;
2617
2618 local_irq_save(flags);
2619#ifdef CONFIG_PREEMPT
2620 /*
2621 * We may have been preempted and rescheduled on a different
2622 * cpu before disabling interrupts. Need to reload cpu area
2623 * pointer.
2624 */
2625 c = this_cpu_ptr(s->cpu_slab);
2626#endif
2627
2628 p = ___slab_alloc(s, gfpflags, node, addr, c);
2629 local_irq_restore(flags);
2630 return p;
2631}
2632
894b8788
CL
2633/*
2634 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2635 * have the fastpath folded into their functions. So no function call
2636 * overhead for requests that can be satisfied on the fastpath.
2637 *
2638 * The fastpath works by first checking if the lockless freelist can be used.
2639 * If not then __slab_alloc is called for slow processing.
2640 *
2641 * Otherwise we can simply pick the next object from the lockless free list.
2642 */
2b847c3c 2643static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2644 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2645{
03ec0ed5 2646 void *object;
dfb4f096 2647 struct kmem_cache_cpu *c;
57d437d2 2648 struct page *page;
8a5ec0ba 2649 unsigned long tid;
1f84260c 2650
8135be5a
VD
2651 s = slab_pre_alloc_hook(s, gfpflags);
2652 if (!s)
773ff60e 2653 return NULL;
8a5ec0ba 2654redo:
8a5ec0ba
CL
2655 /*
2656 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2657 * enabled. We may switch back and forth between cpus while
2658 * reading from one cpu area. That does not matter as long
2659 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2660 *
9aabf810
JK
2661 * We should guarantee that tid and kmem_cache are retrieved on
2662 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2663 * to check if it is matched or not.
8a5ec0ba 2664 */
9aabf810
JK
2665 do {
2666 tid = this_cpu_read(s->cpu_slab->tid);
2667 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2668 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2669 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2670
2671 /*
2672 * Irqless object alloc/free algorithm used here depends on sequence
2673 * of fetching cpu_slab's data. tid should be fetched before anything
2674 * on c to guarantee that object and page associated with previous tid
2675 * won't be used with current tid. If we fetch tid first, object and
2676 * page could be one associated with next tid and our alloc/free
2677 * request will be failed. In this case, we will retry. So, no problem.
2678 */
2679 barrier();
8a5ec0ba 2680
8a5ec0ba
CL
2681 /*
2682 * The transaction ids are globally unique per cpu and per operation on
2683 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2684 * occurs on the right processor and that there was no operation on the
2685 * linked list in between.
2686 */
8a5ec0ba 2687
9dfc6e68 2688 object = c->freelist;
57d437d2 2689 page = c->page;
8eae1492 2690 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2691 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2692 stat(s, ALLOC_SLOWPATH);
2693 } else {
0ad9500e
ED
2694 void *next_object = get_freepointer_safe(s, object);
2695
8a5ec0ba 2696 /*
25985edc 2697 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2698 * operation and if we are on the right processor.
2699 *
d0e0ac97
CG
2700 * The cmpxchg does the following atomically (without lock
2701 * semantics!)
8a5ec0ba
CL
2702 * 1. Relocate first pointer to the current per cpu area.
2703 * 2. Verify that tid and freelist have not been changed
2704 * 3. If they were not changed replace tid and freelist
2705 *
d0e0ac97
CG
2706 * Since this is without lock semantics the protection is only
2707 * against code executing on this cpu *not* from access by
2708 * other cpus.
8a5ec0ba 2709 */
933393f5 2710 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2711 s->cpu_slab->freelist, s->cpu_slab->tid,
2712 object, tid,
0ad9500e 2713 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2714
2715 note_cmpxchg_failure("slab_alloc", s, tid);
2716 goto redo;
2717 }
0ad9500e 2718 prefetch_freepointer(s, next_object);
84e554e6 2719 stat(s, ALLOC_FASTPATH);
894b8788 2720 }
8a5ec0ba 2721
74e2134f 2722 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2723 memset(object, 0, s->object_size);
d07dbea4 2724
03ec0ed5 2725 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2726
894b8788 2727 return object;
81819f0f
CL
2728}
2729
2b847c3c
EG
2730static __always_inline void *slab_alloc(struct kmem_cache *s,
2731 gfp_t gfpflags, unsigned long addr)
2732{
2733 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2734}
2735
81819f0f
CL
2736void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2737{
2b847c3c 2738 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2739
d0e0ac97
CG
2740 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2741 s->size, gfpflags);
5b882be4
EGM
2742
2743 return ret;
81819f0f
CL
2744}
2745EXPORT_SYMBOL(kmem_cache_alloc);
2746
0f24f128 2747#ifdef CONFIG_TRACING
4a92379b
RK
2748void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2749{
2b847c3c 2750 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2751 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
505f5dcb 2752 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2753 return ret;
2754}
2755EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2756#endif
2757
81819f0f
CL
2758#ifdef CONFIG_NUMA
2759void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2760{
2b847c3c 2761 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2762
ca2b84cb 2763 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2764 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2765
2766 return ret;
81819f0f
CL
2767}
2768EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2769
0f24f128 2770#ifdef CONFIG_TRACING
4a92379b 2771void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2772 gfp_t gfpflags,
4a92379b 2773 int node, size_t size)
5b882be4 2774{
2b847c3c 2775 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2776
2777 trace_kmalloc_node(_RET_IP_, ret,
2778 size, s->size, gfpflags, node);
0316bec2 2779
505f5dcb 2780 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2781 return ret;
5b882be4 2782}
4a92379b 2783EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2784#endif
5d1f57e4 2785#endif
5b882be4 2786
81819f0f 2787/*
94e4d712 2788 * Slow path handling. This may still be called frequently since objects
894b8788 2789 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2790 *
894b8788
CL
2791 * So we still attempt to reduce cache line usage. Just take the slab
2792 * lock and free the item. If there is no additional partial page
2793 * handling required then we can return immediately.
81819f0f 2794 */
894b8788 2795static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2796 void *head, void *tail, int cnt,
2797 unsigned long addr)
2798
81819f0f
CL
2799{
2800 void *prior;
2cfb7455 2801 int was_frozen;
2cfb7455
CL
2802 struct page new;
2803 unsigned long counters;
2804 struct kmem_cache_node *n = NULL;
61728d1e 2805 unsigned long uninitialized_var(flags);
81819f0f 2806
8a5ec0ba 2807 stat(s, FREE_SLOWPATH);
81819f0f 2808
19c7ff9e 2809 if (kmem_cache_debug(s) &&
282acb43 2810 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2811 return;
6446faa2 2812
2cfb7455 2813 do {
837d678d
JK
2814 if (unlikely(n)) {
2815 spin_unlock_irqrestore(&n->list_lock, flags);
2816 n = NULL;
2817 }
2cfb7455
CL
2818 prior = page->freelist;
2819 counters = page->counters;
81084651 2820 set_freepointer(s, tail, prior);
2cfb7455
CL
2821 new.counters = counters;
2822 was_frozen = new.frozen;
81084651 2823 new.inuse -= cnt;
837d678d 2824 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2825
c65c1877 2826 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2827
2828 /*
d0e0ac97
CG
2829 * Slab was on no list before and will be
2830 * partially empty
2831 * We can defer the list move and instead
2832 * freeze it.
49e22585
CL
2833 */
2834 new.frozen = 1;
2835
c65c1877 2836 } else { /* Needs to be taken off a list */
49e22585 2837
b455def2 2838 n = get_node(s, page_to_nid(page));
49e22585
CL
2839 /*
2840 * Speculatively acquire the list_lock.
2841 * If the cmpxchg does not succeed then we may
2842 * drop the list_lock without any processing.
2843 *
2844 * Otherwise the list_lock will synchronize with
2845 * other processors updating the list of slabs.
2846 */
2847 spin_lock_irqsave(&n->list_lock, flags);
2848
2849 }
2cfb7455 2850 }
81819f0f 2851
2cfb7455
CL
2852 } while (!cmpxchg_double_slab(s, page,
2853 prior, counters,
81084651 2854 head, new.counters,
2cfb7455 2855 "__slab_free"));
81819f0f 2856
2cfb7455 2857 if (likely(!n)) {
49e22585
CL
2858
2859 /*
2860 * If we just froze the page then put it onto the
2861 * per cpu partial list.
2862 */
8028dcea 2863 if (new.frozen && !was_frozen) {
49e22585 2864 put_cpu_partial(s, page, 1);
8028dcea
AS
2865 stat(s, CPU_PARTIAL_FREE);
2866 }
49e22585 2867 /*
2cfb7455
CL
2868 * The list lock was not taken therefore no list
2869 * activity can be necessary.
2870 */
b455def2
L
2871 if (was_frozen)
2872 stat(s, FREE_FROZEN);
2873 return;
2874 }
81819f0f 2875
8a5b20ae 2876 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2877 goto slab_empty;
2878
81819f0f 2879 /*
837d678d
JK
2880 * Objects left in the slab. If it was not on the partial list before
2881 * then add it.
81819f0f 2882 */
345c905d
JK
2883 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2884 if (kmem_cache_debug(s))
c65c1877 2885 remove_full(s, n, page);
837d678d
JK
2886 add_partial(n, page, DEACTIVATE_TO_TAIL);
2887 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2888 }
80f08c19 2889 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2890 return;
2891
2892slab_empty:
a973e9dd 2893 if (prior) {
81819f0f 2894 /*
6fbabb20 2895 * Slab on the partial list.
81819f0f 2896 */
5cc6eee8 2897 remove_partial(n, page);
84e554e6 2898 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2899 } else {
6fbabb20 2900 /* Slab must be on the full list */
c65c1877
PZ
2901 remove_full(s, n, page);
2902 }
2cfb7455 2903
80f08c19 2904 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2905 stat(s, FREE_SLAB);
81819f0f 2906 discard_slab(s, page);
81819f0f
CL
2907}
2908
894b8788
CL
2909/*
2910 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2911 * can perform fastpath freeing without additional function calls.
2912 *
2913 * The fastpath is only possible if we are freeing to the current cpu slab
2914 * of this processor. This typically the case if we have just allocated
2915 * the item before.
2916 *
2917 * If fastpath is not possible then fall back to __slab_free where we deal
2918 * with all sorts of special processing.
81084651
JDB
2919 *
2920 * Bulk free of a freelist with several objects (all pointing to the
2921 * same page) possible by specifying head and tail ptr, plus objects
2922 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2923 */
80a9201a
AP
2924static __always_inline void do_slab_free(struct kmem_cache *s,
2925 struct page *page, void *head, void *tail,
2926 int cnt, unsigned long addr)
894b8788 2927{
81084651 2928 void *tail_obj = tail ? : head;
dfb4f096 2929 struct kmem_cache_cpu *c;
8a5ec0ba 2930 unsigned long tid;
8a5ec0ba
CL
2931redo:
2932 /*
2933 * Determine the currently cpus per cpu slab.
2934 * The cpu may change afterward. However that does not matter since
2935 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2936 * during the cmpxchg then the free will succeed.
8a5ec0ba 2937 */
9aabf810
JK
2938 do {
2939 tid = this_cpu_read(s->cpu_slab->tid);
2940 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2941 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2942 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2943
9aabf810
JK
2944 /* Same with comment on barrier() in slab_alloc_node() */
2945 barrier();
c016b0bd 2946
442b06bc 2947 if (likely(page == c->page)) {
81084651 2948 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2949
933393f5 2950 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2951 s->cpu_slab->freelist, s->cpu_slab->tid,
2952 c->freelist, tid,
81084651 2953 head, next_tid(tid)))) {
8a5ec0ba
CL
2954
2955 note_cmpxchg_failure("slab_free", s, tid);
2956 goto redo;
2957 }
84e554e6 2958 stat(s, FREE_FASTPATH);
894b8788 2959 } else
81084651 2960 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 2961
894b8788
CL
2962}
2963
80a9201a
AP
2964static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2965 void *head, void *tail, int cnt,
2966 unsigned long addr)
2967{
2968 slab_free_freelist_hook(s, head, tail);
2969 /*
2970 * slab_free_freelist_hook() could have put the items into quarantine.
2971 * If so, no need to free them.
2972 */
5f0d5a3a 2973 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU))
80a9201a
AP
2974 return;
2975 do_slab_free(s, page, head, tail, cnt, addr);
2976}
2977
2978#ifdef CONFIG_KASAN
2979void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2980{
2981 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2982}
2983#endif
2984
81819f0f
CL
2985void kmem_cache_free(struct kmem_cache *s, void *x)
2986{
b9ce5ef4
GC
2987 s = cache_from_obj(s, x);
2988 if (!s)
79576102 2989 return;
81084651 2990 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 2991 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2992}
2993EXPORT_SYMBOL(kmem_cache_free);
2994
d0ecd894 2995struct detached_freelist {
fbd02630 2996 struct page *page;
d0ecd894
JDB
2997 void *tail;
2998 void *freelist;
2999 int cnt;
376bf125 3000 struct kmem_cache *s;
d0ecd894 3001};
fbd02630 3002
d0ecd894
JDB
3003/*
3004 * This function progressively scans the array with free objects (with
3005 * a limited look ahead) and extract objects belonging to the same
3006 * page. It builds a detached freelist directly within the given
3007 * page/objects. This can happen without any need for
3008 * synchronization, because the objects are owned by running process.
3009 * The freelist is build up as a single linked list in the objects.
3010 * The idea is, that this detached freelist can then be bulk
3011 * transferred to the real freelist(s), but only requiring a single
3012 * synchronization primitive. Look ahead in the array is limited due
3013 * to performance reasons.
3014 */
376bf125
JDB
3015static inline
3016int build_detached_freelist(struct kmem_cache *s, size_t size,
3017 void **p, struct detached_freelist *df)
d0ecd894
JDB
3018{
3019 size_t first_skipped_index = 0;
3020 int lookahead = 3;
3021 void *object;
ca257195 3022 struct page *page;
fbd02630 3023
d0ecd894
JDB
3024 /* Always re-init detached_freelist */
3025 df->page = NULL;
fbd02630 3026
d0ecd894
JDB
3027 do {
3028 object = p[--size];
ca257195 3029 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3030 } while (!object && size);
3eed034d 3031
d0ecd894
JDB
3032 if (!object)
3033 return 0;
fbd02630 3034
ca257195
JDB
3035 page = virt_to_head_page(object);
3036 if (!s) {
3037 /* Handle kalloc'ed objects */
3038 if (unlikely(!PageSlab(page))) {
3039 BUG_ON(!PageCompound(page));
3040 kfree_hook(object);
4949148a 3041 __free_pages(page, compound_order(page));
ca257195
JDB
3042 p[size] = NULL; /* mark object processed */
3043 return size;
3044 }
3045 /* Derive kmem_cache from object */
3046 df->s = page->slab_cache;
3047 } else {
3048 df->s = cache_from_obj(s, object); /* Support for memcg */
3049 }
376bf125 3050
d0ecd894 3051 /* Start new detached freelist */
ca257195 3052 df->page = page;
376bf125 3053 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3054 df->tail = object;
3055 df->freelist = object;
3056 p[size] = NULL; /* mark object processed */
3057 df->cnt = 1;
3058
3059 while (size) {
3060 object = p[--size];
3061 if (!object)
3062 continue; /* Skip processed objects */
3063
3064 /* df->page is always set at this point */
3065 if (df->page == virt_to_head_page(object)) {
3066 /* Opportunity build freelist */
376bf125 3067 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3068 df->freelist = object;
3069 df->cnt++;
3070 p[size] = NULL; /* mark object processed */
3071
3072 continue;
fbd02630 3073 }
d0ecd894
JDB
3074
3075 /* Limit look ahead search */
3076 if (!--lookahead)
3077 break;
3078
3079 if (!first_skipped_index)
3080 first_skipped_index = size + 1;
fbd02630 3081 }
d0ecd894
JDB
3082
3083 return first_skipped_index;
3084}
3085
d0ecd894 3086/* Note that interrupts must be enabled when calling this function. */
376bf125 3087void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3088{
3089 if (WARN_ON(!size))
3090 return;
3091
3092 do {
3093 struct detached_freelist df;
3094
3095 size = build_detached_freelist(s, size, p, &df);
84582c8a 3096 if (!df.page)
d0ecd894
JDB
3097 continue;
3098
376bf125 3099 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3100 } while (likely(size));
484748f0
CL
3101}
3102EXPORT_SYMBOL(kmem_cache_free_bulk);
3103
994eb764 3104/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3105int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3106 void **p)
484748f0 3107{
994eb764
JDB
3108 struct kmem_cache_cpu *c;
3109 int i;
3110
03ec0ed5
JDB
3111 /* memcg and kmem_cache debug support */
3112 s = slab_pre_alloc_hook(s, flags);
3113 if (unlikely(!s))
3114 return false;
994eb764
JDB
3115 /*
3116 * Drain objects in the per cpu slab, while disabling local
3117 * IRQs, which protects against PREEMPT and interrupts
3118 * handlers invoking normal fastpath.
3119 */
3120 local_irq_disable();
3121 c = this_cpu_ptr(s->cpu_slab);
3122
3123 for (i = 0; i < size; i++) {
3124 void *object = c->freelist;
3125
ebe909e0 3126 if (unlikely(!object)) {
ebe909e0
JDB
3127 /*
3128 * Invoking slow path likely have side-effect
3129 * of re-populating per CPU c->freelist
3130 */
87098373 3131 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3132 _RET_IP_, c);
87098373
CL
3133 if (unlikely(!p[i]))
3134 goto error;
3135
ebe909e0
JDB
3136 c = this_cpu_ptr(s->cpu_slab);
3137 continue; /* goto for-loop */
3138 }
994eb764
JDB
3139 c->freelist = get_freepointer(s, object);
3140 p[i] = object;
3141 }
3142 c->tid = next_tid(c->tid);
3143 local_irq_enable();
3144
3145 /* Clear memory outside IRQ disabled fastpath loop */
3146 if (unlikely(flags & __GFP_ZERO)) {
3147 int j;
3148
3149 for (j = 0; j < i; j++)
3150 memset(p[j], 0, s->object_size);
3151 }
3152
03ec0ed5
JDB
3153 /* memcg and kmem_cache debug support */
3154 slab_post_alloc_hook(s, flags, size, p);
865762a8 3155 return i;
87098373 3156error:
87098373 3157 local_irq_enable();
03ec0ed5
JDB
3158 slab_post_alloc_hook(s, flags, i, p);
3159 __kmem_cache_free_bulk(s, i, p);
865762a8 3160 return 0;
484748f0
CL
3161}
3162EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3163
3164
81819f0f 3165/*
672bba3a
CL
3166 * Object placement in a slab is made very easy because we always start at
3167 * offset 0. If we tune the size of the object to the alignment then we can
3168 * get the required alignment by putting one properly sized object after
3169 * another.
81819f0f
CL
3170 *
3171 * Notice that the allocation order determines the sizes of the per cpu
3172 * caches. Each processor has always one slab available for allocations.
3173 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3174 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3175 * locking overhead.
81819f0f
CL
3176 */
3177
3178/*
3179 * Mininum / Maximum order of slab pages. This influences locking overhead
3180 * and slab fragmentation. A higher order reduces the number of partial slabs
3181 * and increases the number of allocations possible without having to
3182 * take the list_lock.
3183 */
3184static int slub_min_order;
114e9e89 3185static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 3186static int slub_min_objects;
81819f0f 3187
81819f0f
CL
3188/*
3189 * Calculate the order of allocation given an slab object size.
3190 *
672bba3a
CL
3191 * The order of allocation has significant impact on performance and other
3192 * system components. Generally order 0 allocations should be preferred since
3193 * order 0 does not cause fragmentation in the page allocator. Larger objects
3194 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3195 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3196 * would be wasted.
3197 *
3198 * In order to reach satisfactory performance we must ensure that a minimum
3199 * number of objects is in one slab. Otherwise we may generate too much
3200 * activity on the partial lists which requires taking the list_lock. This is
3201 * less a concern for large slabs though which are rarely used.
81819f0f 3202 *
672bba3a
CL
3203 * slub_max_order specifies the order where we begin to stop considering the
3204 * number of objects in a slab as critical. If we reach slub_max_order then
3205 * we try to keep the page order as low as possible. So we accept more waste
3206 * of space in favor of a small page order.
81819f0f 3207 *
672bba3a
CL
3208 * Higher order allocations also allow the placement of more objects in a
3209 * slab and thereby reduce object handling overhead. If the user has
3210 * requested a higher mininum order then we start with that one instead of
3211 * the smallest order which will fit the object.
81819f0f 3212 */
5e6d444e 3213static inline int slab_order(int size, int min_objects,
ab9a0f19 3214 int max_order, int fract_leftover, int reserved)
81819f0f
CL
3215{
3216 int order;
3217 int rem;
6300ea75 3218 int min_order = slub_min_order;
81819f0f 3219
ab9a0f19 3220 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 3221 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3222
9f835703 3223 for (order = max(min_order, get_order(min_objects * size + reserved));
5e6d444e 3224 order <= max_order; order++) {
81819f0f 3225
5e6d444e 3226 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 3227
ab9a0f19 3228 rem = (slab_size - reserved) % size;
81819f0f 3229
5e6d444e 3230 if (rem <= slab_size / fract_leftover)
81819f0f 3231 break;
81819f0f 3232 }
672bba3a 3233
81819f0f
CL
3234 return order;
3235}
3236
ab9a0f19 3237static inline int calculate_order(int size, int reserved)
5e6d444e
CL
3238{
3239 int order;
3240 int min_objects;
3241 int fraction;
e8120ff1 3242 int max_objects;
5e6d444e
CL
3243
3244 /*
3245 * Attempt to find best configuration for a slab. This
3246 * works by first attempting to generate a layout with
3247 * the best configuration and backing off gradually.
3248 *
422ff4d7 3249 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3250 * we reduce the minimum objects required in a slab.
3251 */
3252 min_objects = slub_min_objects;
9b2cd506
CL
3253 if (!min_objects)
3254 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 3255 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
3256 min_objects = min(min_objects, max_objects);
3257
5e6d444e 3258 while (min_objects > 1) {
c124f5b5 3259 fraction = 16;
5e6d444e
CL
3260 while (fraction >= 4) {
3261 order = slab_order(size, min_objects,
ab9a0f19 3262 slub_max_order, fraction, reserved);
5e6d444e
CL
3263 if (order <= slub_max_order)
3264 return order;
3265 fraction /= 2;
3266 }
5086c389 3267 min_objects--;
5e6d444e
CL
3268 }
3269
3270 /*
3271 * We were unable to place multiple objects in a slab. Now
3272 * lets see if we can place a single object there.
3273 */
ab9a0f19 3274 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
3275 if (order <= slub_max_order)
3276 return order;
3277
3278 /*
3279 * Doh this slab cannot be placed using slub_max_order.
3280 */
ab9a0f19 3281 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 3282 if (order < MAX_ORDER)
5e6d444e
CL
3283 return order;
3284 return -ENOSYS;
3285}
3286
5595cffc 3287static void
4053497d 3288init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3289{
3290 n->nr_partial = 0;
81819f0f
CL
3291 spin_lock_init(&n->list_lock);
3292 INIT_LIST_HEAD(&n->partial);
8ab1372f 3293#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3294 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3295 atomic_long_set(&n->total_objects, 0);
643b1138 3296 INIT_LIST_HEAD(&n->full);
8ab1372f 3297#endif
81819f0f
CL
3298}
3299
55136592 3300static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3301{
6c182dc0 3302 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3303 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3304
8a5ec0ba 3305 /*
d4d84fef
CM
3306 * Must align to double word boundary for the double cmpxchg
3307 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3308 */
d4d84fef
CM
3309 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3310 2 * sizeof(void *));
8a5ec0ba
CL
3311
3312 if (!s->cpu_slab)
3313 return 0;
3314
3315 init_kmem_cache_cpus(s);
4c93c355 3316
8a5ec0ba 3317 return 1;
4c93c355 3318}
4c93c355 3319
51df1142
CL
3320static struct kmem_cache *kmem_cache_node;
3321
81819f0f
CL
3322/*
3323 * No kmalloc_node yet so do it by hand. We know that this is the first
3324 * slab on the node for this slabcache. There are no concurrent accesses
3325 * possible.
3326 *
721ae22a
ZYW
3327 * Note that this function only works on the kmem_cache_node
3328 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3329 * memory on a fresh node that has no slab structures yet.
81819f0f 3330 */
55136592 3331static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3332{
3333 struct page *page;
3334 struct kmem_cache_node *n;
3335
51df1142 3336 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3337
51df1142 3338 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3339
3340 BUG_ON(!page);
a2f92ee7 3341 if (page_to_nid(page) != node) {
f9f58285
FF
3342 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3343 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3344 }
3345
81819f0f
CL
3346 n = page->freelist;
3347 BUG_ON(!n);
51df1142 3348 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 3349 page->inuse = 1;
8cb0a506 3350 page->frozen = 0;
51df1142 3351 kmem_cache_node->node[node] = n;
8ab1372f 3352#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3353 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3354 init_tracking(kmem_cache_node, n);
8ab1372f 3355#endif
505f5dcb
AP
3356 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3357 GFP_KERNEL);
4053497d 3358 init_kmem_cache_node(n);
51df1142 3359 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3360
67b6c900 3361 /*
1e4dd946
SR
3362 * No locks need to be taken here as it has just been
3363 * initialized and there is no concurrent access.
67b6c900 3364 */
1e4dd946 3365 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3366}
3367
3368static void free_kmem_cache_nodes(struct kmem_cache *s)
3369{
3370 int node;
fa45dc25 3371 struct kmem_cache_node *n;
81819f0f 3372
fa45dc25 3373 for_each_kmem_cache_node(s, node, n) {
81819f0f 3374 s->node[node] = NULL;
ea37df54 3375 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3376 }
3377}
3378
52b4b950
DS
3379void __kmem_cache_release(struct kmem_cache *s)
3380{
210e7a43 3381 cache_random_seq_destroy(s);
52b4b950
DS
3382 free_percpu(s->cpu_slab);
3383 free_kmem_cache_nodes(s);
3384}
3385
55136592 3386static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3387{
3388 int node;
81819f0f 3389
f64dc58c 3390 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3391 struct kmem_cache_node *n;
3392
73367bd8 3393 if (slab_state == DOWN) {
55136592 3394 early_kmem_cache_node_alloc(node);
73367bd8
AD
3395 continue;
3396 }
51df1142 3397 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3398 GFP_KERNEL, node);
81819f0f 3399
73367bd8
AD
3400 if (!n) {
3401 free_kmem_cache_nodes(s);
3402 return 0;
81819f0f 3403 }
73367bd8 3404
4053497d 3405 init_kmem_cache_node(n);
ea37df54 3406 s->node[node] = n;
81819f0f
CL
3407 }
3408 return 1;
3409}
81819f0f 3410
c0bdb232 3411static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3412{
3413 if (min < MIN_PARTIAL)
3414 min = MIN_PARTIAL;
3415 else if (min > MAX_PARTIAL)
3416 min = MAX_PARTIAL;
3417 s->min_partial = min;
3418}
3419
e6d0e1dc
WY
3420static void set_cpu_partial(struct kmem_cache *s)
3421{
3422#ifdef CONFIG_SLUB_CPU_PARTIAL
3423 /*
3424 * cpu_partial determined the maximum number of objects kept in the
3425 * per cpu partial lists of a processor.
3426 *
3427 * Per cpu partial lists mainly contain slabs that just have one
3428 * object freed. If they are used for allocation then they can be
3429 * filled up again with minimal effort. The slab will never hit the
3430 * per node partial lists and therefore no locking will be required.
3431 *
3432 * This setting also determines
3433 *
3434 * A) The number of objects from per cpu partial slabs dumped to the
3435 * per node list when we reach the limit.
3436 * B) The number of objects in cpu partial slabs to extract from the
3437 * per node list when we run out of per cpu objects. We only fetch
3438 * 50% to keep some capacity around for frees.
3439 */
3440 if (!kmem_cache_has_cpu_partial(s))
3441 s->cpu_partial = 0;
3442 else if (s->size >= PAGE_SIZE)
3443 s->cpu_partial = 2;
3444 else if (s->size >= 1024)
3445 s->cpu_partial = 6;
3446 else if (s->size >= 256)
3447 s->cpu_partial = 13;
3448 else
3449 s->cpu_partial = 30;
3450#endif
3451}
3452
81819f0f
CL
3453/*
3454 * calculate_sizes() determines the order and the distribution of data within
3455 * a slab object.
3456 */
06b285dc 3457static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3458{
d50112ed 3459 slab_flags_t flags = s->flags;
80a9201a 3460 size_t size = s->object_size;
834f3d11 3461 int order;
81819f0f 3462
d8b42bf5
CL
3463 /*
3464 * Round up object size to the next word boundary. We can only
3465 * place the free pointer at word boundaries and this determines
3466 * the possible location of the free pointer.
3467 */
3468 size = ALIGN(size, sizeof(void *));
3469
3470#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3471 /*
3472 * Determine if we can poison the object itself. If the user of
3473 * the slab may touch the object after free or before allocation
3474 * then we should never poison the object itself.
3475 */
5f0d5a3a 3476 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3477 !s->ctor)
81819f0f
CL
3478 s->flags |= __OBJECT_POISON;
3479 else
3480 s->flags &= ~__OBJECT_POISON;
3481
81819f0f
CL
3482
3483 /*
672bba3a 3484 * If we are Redzoning then check if there is some space between the
81819f0f 3485 * end of the object and the free pointer. If not then add an
672bba3a 3486 * additional word to have some bytes to store Redzone information.
81819f0f 3487 */
3b0efdfa 3488 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3489 size += sizeof(void *);
41ecc55b 3490#endif
81819f0f
CL
3491
3492 /*
672bba3a
CL
3493 * With that we have determined the number of bytes in actual use
3494 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3495 */
3496 s->inuse = size;
3497
5f0d5a3a 3498 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3499 s->ctor)) {
81819f0f
CL
3500 /*
3501 * Relocate free pointer after the object if it is not
3502 * permitted to overwrite the first word of the object on
3503 * kmem_cache_free.
3504 *
3505 * This is the case if we do RCU, have a constructor or
3506 * destructor or are poisoning the objects.
3507 */
3508 s->offset = size;
3509 size += sizeof(void *);
3510 }
3511
c12b3c62 3512#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3513 if (flags & SLAB_STORE_USER)
3514 /*
3515 * Need to store information about allocs and frees after
3516 * the object.
3517 */
3518 size += 2 * sizeof(struct track);
80a9201a 3519#endif
81819f0f 3520
80a9201a
AP
3521 kasan_cache_create(s, &size, &s->flags);
3522#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3523 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3524 /*
3525 * Add some empty padding so that we can catch
3526 * overwrites from earlier objects rather than let
3527 * tracking information or the free pointer be
0211a9c8 3528 * corrupted if a user writes before the start
81819f0f
CL
3529 * of the object.
3530 */
3531 size += sizeof(void *);
d86bd1be
JK
3532
3533 s->red_left_pad = sizeof(void *);
3534 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3535 size += s->red_left_pad;
3536 }
41ecc55b 3537#endif
672bba3a 3538
81819f0f
CL
3539 /*
3540 * SLUB stores one object immediately after another beginning from
3541 * offset 0. In order to align the objects we have to simply size
3542 * each object to conform to the alignment.
3543 */
45906855 3544 size = ALIGN(size, s->align);
81819f0f 3545 s->size = size;
06b285dc
CL
3546 if (forced_order >= 0)
3547 order = forced_order;
3548 else
ab9a0f19 3549 order = calculate_order(size, s->reserved);
81819f0f 3550
834f3d11 3551 if (order < 0)
81819f0f
CL
3552 return 0;
3553
b7a49f0d 3554 s->allocflags = 0;
834f3d11 3555 if (order)
b7a49f0d
CL
3556 s->allocflags |= __GFP_COMP;
3557
3558 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3559 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3560
3561 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3562 s->allocflags |= __GFP_RECLAIMABLE;
3563
81819f0f
CL
3564 /*
3565 * Determine the number of objects per slab
3566 */
ab9a0f19
LJ
3567 s->oo = oo_make(order, size, s->reserved);
3568 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3569 if (oo_objects(s->oo) > oo_objects(s->max))
3570 s->max = s->oo;
81819f0f 3571
834f3d11 3572 return !!oo_objects(s->oo);
81819f0f
CL
3573}
3574
d50112ed 3575static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3576{
8a13a4cc 3577 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3578 s->reserved = 0;
2482ddec
KC
3579#ifdef CONFIG_SLAB_FREELIST_HARDENED
3580 s->random = get_random_long();
3581#endif
81819f0f 3582
5f0d5a3a 3583 if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
da9a638c 3584 s->reserved = sizeof(struct rcu_head);
81819f0f 3585
06b285dc 3586 if (!calculate_sizes(s, -1))
81819f0f 3587 goto error;
3de47213
DR
3588 if (disable_higher_order_debug) {
3589 /*
3590 * Disable debugging flags that store metadata if the min slab
3591 * order increased.
3592 */
3b0efdfa 3593 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3594 s->flags &= ~DEBUG_METADATA_FLAGS;
3595 s->offset = 0;
3596 if (!calculate_sizes(s, -1))
3597 goto error;
3598 }
3599 }
81819f0f 3600
2565409f
HC
3601#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3602 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3603 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3604 /* Enable fast mode */
3605 s->flags |= __CMPXCHG_DOUBLE;
3606#endif
3607
3b89d7d8
DR
3608 /*
3609 * The larger the object size is, the more pages we want on the partial
3610 * list to avoid pounding the page allocator excessively.
3611 */
49e22585
CL
3612 set_min_partial(s, ilog2(s->size) / 2);
3613
e6d0e1dc 3614 set_cpu_partial(s);
49e22585 3615
81819f0f 3616#ifdef CONFIG_NUMA
e2cb96b7 3617 s->remote_node_defrag_ratio = 1000;
81819f0f 3618#endif
210e7a43
TG
3619
3620 /* Initialize the pre-computed randomized freelist if slab is up */
3621 if (slab_state >= UP) {
3622 if (init_cache_random_seq(s))
3623 goto error;
3624 }
3625
55136592 3626 if (!init_kmem_cache_nodes(s))
dfb4f096 3627 goto error;
81819f0f 3628
55136592 3629 if (alloc_kmem_cache_cpus(s))
278b1bb1 3630 return 0;
ff12059e 3631
4c93c355 3632 free_kmem_cache_nodes(s);
81819f0f
CL
3633error:
3634 if (flags & SLAB_PANIC)
756a025f
JP
3635 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3636 s->name, (unsigned long)s->size, s->size,
4fd0b46e 3637 oo_order(s->oo), s->offset, (unsigned long)flags);
278b1bb1 3638 return -EINVAL;
81819f0f 3639}
81819f0f 3640
33b12c38
CL
3641static void list_slab_objects(struct kmem_cache *s, struct page *page,
3642 const char *text)
3643{
3644#ifdef CONFIG_SLUB_DEBUG
3645 void *addr = page_address(page);
3646 void *p;
a5dd5c11
NK
3647 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3648 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3649 if (!map)
3650 return;
945cf2b6 3651 slab_err(s, page, text, s->name);
33b12c38 3652 slab_lock(page);
33b12c38 3653
5f80b13a 3654 get_map(s, page, map);
33b12c38
CL
3655 for_each_object(p, s, addr, page->objects) {
3656
3657 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3658 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3659 print_tracking(s, p);
3660 }
3661 }
3662 slab_unlock(page);
bbd7d57b 3663 kfree(map);
33b12c38
CL
3664#endif
3665}
3666
81819f0f 3667/*
599870b1 3668 * Attempt to free all partial slabs on a node.
52b4b950
DS
3669 * This is called from __kmem_cache_shutdown(). We must take list_lock
3670 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3671 */
599870b1 3672static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3673{
60398923 3674 LIST_HEAD(discard);
81819f0f
CL
3675 struct page *page, *h;
3676
52b4b950
DS
3677 BUG_ON(irqs_disabled());
3678 spin_lock_irq(&n->list_lock);
33b12c38 3679 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3680 if (!page->inuse) {
52b4b950 3681 remove_partial(n, page);
60398923 3682 list_add(&page->lru, &discard);
33b12c38
CL
3683 } else {
3684 list_slab_objects(s, page,
52b4b950 3685 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3686 }
33b12c38 3687 }
52b4b950 3688 spin_unlock_irq(&n->list_lock);
60398923
CW
3689
3690 list_for_each_entry_safe(page, h, &discard, lru)
3691 discard_slab(s, page);
81819f0f
CL
3692}
3693
3694/*
672bba3a 3695 * Release all resources used by a slab cache.
81819f0f 3696 */
52b4b950 3697int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3698{
3699 int node;
fa45dc25 3700 struct kmem_cache_node *n;
81819f0f
CL
3701
3702 flush_all(s);
81819f0f 3703 /* Attempt to free all objects */
fa45dc25 3704 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3705 free_partial(s, n);
3706 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3707 return 1;
3708 }
bf5eb3de 3709 sysfs_slab_remove(s);
81819f0f
CL
3710 return 0;
3711}
3712
81819f0f
CL
3713/********************************************************************
3714 * Kmalloc subsystem
3715 *******************************************************************/
3716
81819f0f
CL
3717static int __init setup_slub_min_order(char *str)
3718{
06428780 3719 get_option(&str, &slub_min_order);
81819f0f
CL
3720
3721 return 1;
3722}
3723
3724__setup("slub_min_order=", setup_slub_min_order);
3725
3726static int __init setup_slub_max_order(char *str)
3727{
06428780 3728 get_option(&str, &slub_max_order);
818cf590 3729 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3730
3731 return 1;
3732}
3733
3734__setup("slub_max_order=", setup_slub_max_order);
3735
3736static int __init setup_slub_min_objects(char *str)
3737{
06428780 3738 get_option(&str, &slub_min_objects);
81819f0f
CL
3739
3740 return 1;
3741}
3742
3743__setup("slub_min_objects=", setup_slub_min_objects);
3744
81819f0f
CL
3745void *__kmalloc(size_t size, gfp_t flags)
3746{
aadb4bc4 3747 struct kmem_cache *s;
5b882be4 3748 void *ret;
81819f0f 3749
95a05b42 3750 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3751 return kmalloc_large(size, flags);
aadb4bc4 3752
2c59dd65 3753 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3754
3755 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3756 return s;
3757
2b847c3c 3758 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3759
ca2b84cb 3760 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3761
505f5dcb 3762 kasan_kmalloc(s, ret, size, flags);
0316bec2 3763
5b882be4 3764 return ret;
81819f0f
CL
3765}
3766EXPORT_SYMBOL(__kmalloc);
3767
5d1f57e4 3768#ifdef CONFIG_NUMA
f619cfe1
CL
3769static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3770{
b1eeab67 3771 struct page *page;
e4f7c0b4 3772 void *ptr = NULL;
f619cfe1 3773
75f296d9 3774 flags |= __GFP_COMP;
4949148a 3775 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3776 if (page)
e4f7c0b4
CM
3777 ptr = page_address(page);
3778
d56791b3 3779 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3780 return ptr;
f619cfe1
CL
3781}
3782
81819f0f
CL
3783void *__kmalloc_node(size_t size, gfp_t flags, int node)
3784{
aadb4bc4 3785 struct kmem_cache *s;
5b882be4 3786 void *ret;
81819f0f 3787
95a05b42 3788 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3789 ret = kmalloc_large_node(size, flags, node);
3790
ca2b84cb
EGM
3791 trace_kmalloc_node(_RET_IP_, ret,
3792 size, PAGE_SIZE << get_order(size),
3793 flags, node);
5b882be4
EGM
3794
3795 return ret;
3796 }
aadb4bc4 3797
2c59dd65 3798 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3799
3800 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3801 return s;
3802
2b847c3c 3803 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3804
ca2b84cb 3805 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3806
505f5dcb 3807 kasan_kmalloc(s, ret, size, flags);
0316bec2 3808
5b882be4 3809 return ret;
81819f0f
CL
3810}
3811EXPORT_SYMBOL(__kmalloc_node);
3812#endif
3813
ed18adc1
KC
3814#ifdef CONFIG_HARDENED_USERCOPY
3815/*
3816 * Rejects objects that are incorrectly sized.
3817 *
3818 * Returns NULL if check passes, otherwise const char * to name of cache
3819 * to indicate an error.
3820 */
3821const char *__check_heap_object(const void *ptr, unsigned long n,
3822 struct page *page)
3823{
3824 struct kmem_cache *s;
3825 unsigned long offset;
3826 size_t object_size;
3827
3828 /* Find object and usable object size. */
3829 s = page->slab_cache;
3830 object_size = slab_ksize(s);
3831
3832 /* Reject impossible pointers. */
3833 if (ptr < page_address(page))
3834 return s->name;
3835
3836 /* Find offset within object. */
3837 offset = (ptr - page_address(page)) % s->size;
3838
3839 /* Adjust for redzone and reject if within the redzone. */
3840 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3841 if (offset < s->red_left_pad)
3842 return s->name;
3843 offset -= s->red_left_pad;
3844 }
3845
3846 /* Allow address range falling entirely within object size. */
3847 if (offset <= object_size && n <= object_size - offset)
3848 return NULL;
3849
3850 return s->name;
3851}
3852#endif /* CONFIG_HARDENED_USERCOPY */
3853
0316bec2 3854static size_t __ksize(const void *object)
81819f0f 3855{
272c1d21 3856 struct page *page;
81819f0f 3857
ef8b4520 3858 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3859 return 0;
3860
294a80a8 3861 page = virt_to_head_page(object);
294a80a8 3862
76994412
PE
3863 if (unlikely(!PageSlab(page))) {
3864 WARN_ON(!PageCompound(page));
294a80a8 3865 return PAGE_SIZE << compound_order(page);
76994412 3866 }
81819f0f 3867
1b4f59e3 3868 return slab_ksize(page->slab_cache);
81819f0f 3869}
0316bec2
AR
3870
3871size_t ksize(const void *object)
3872{
3873 size_t size = __ksize(object);
3874 /* We assume that ksize callers could use whole allocated area,
4ebb31a4
AP
3875 * so we need to unpoison this area.
3876 */
3877 kasan_unpoison_shadow(object, size);
0316bec2
AR
3878 return size;
3879}
b1aabecd 3880EXPORT_SYMBOL(ksize);
81819f0f
CL
3881
3882void kfree(const void *x)
3883{
81819f0f 3884 struct page *page;
5bb983b0 3885 void *object = (void *)x;
81819f0f 3886
2121db74
PE
3887 trace_kfree(_RET_IP_, x);
3888
2408c550 3889 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3890 return;
3891
b49af68f 3892 page = virt_to_head_page(x);
aadb4bc4 3893 if (unlikely(!PageSlab(page))) {
0937502a 3894 BUG_ON(!PageCompound(page));
d56791b3 3895 kfree_hook(x);
4949148a 3896 __free_pages(page, compound_order(page));
aadb4bc4
CL
3897 return;
3898 }
81084651 3899 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3900}
3901EXPORT_SYMBOL(kfree);
3902
832f37f5
VD
3903#define SHRINK_PROMOTE_MAX 32
3904
2086d26a 3905/*
832f37f5
VD
3906 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3907 * up most to the head of the partial lists. New allocations will then
3908 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3909 *
3910 * The slabs with the least items are placed last. This results in them
3911 * being allocated from last increasing the chance that the last objects
3912 * are freed in them.
2086d26a 3913 */
c9fc5864 3914int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
3915{
3916 int node;
3917 int i;
3918 struct kmem_cache_node *n;
3919 struct page *page;
3920 struct page *t;
832f37f5
VD
3921 struct list_head discard;
3922 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3923 unsigned long flags;
ce3712d7 3924 int ret = 0;
2086d26a 3925
2086d26a 3926 flush_all(s);
fa45dc25 3927 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3928 INIT_LIST_HEAD(&discard);
3929 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3930 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3931
3932 spin_lock_irqsave(&n->list_lock, flags);
3933
3934 /*
832f37f5 3935 * Build lists of slabs to discard or promote.
2086d26a 3936 *
672bba3a
CL
3937 * Note that concurrent frees may occur while we hold the
3938 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3939 */
3940 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3941 int free = page->objects - page->inuse;
3942
3943 /* Do not reread page->inuse */
3944 barrier();
3945
3946 /* We do not keep full slabs on the list */
3947 BUG_ON(free <= 0);
3948
3949 if (free == page->objects) {
3950 list_move(&page->lru, &discard);
69cb8e6b 3951 n->nr_partial--;
832f37f5
VD
3952 } else if (free <= SHRINK_PROMOTE_MAX)
3953 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3954 }
3955
2086d26a 3956 /*
832f37f5
VD
3957 * Promote the slabs filled up most to the head of the
3958 * partial list.
2086d26a 3959 */
832f37f5
VD
3960 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3961 list_splice(promote + i, &n->partial);
2086d26a 3962
2086d26a 3963 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3964
3965 /* Release empty slabs */
832f37f5 3966 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 3967 discard_slab(s, page);
ce3712d7
VD
3968
3969 if (slabs_node(s, node))
3970 ret = 1;
2086d26a
CL
3971 }
3972
ce3712d7 3973 return ret;
2086d26a 3974}
2086d26a 3975
c9fc5864 3976#ifdef CONFIG_MEMCG
01fb58bc
TH
3977static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
3978{
50862ce7
TH
3979 /*
3980 * Called with all the locks held after a sched RCU grace period.
3981 * Even if @s becomes empty after shrinking, we can't know that @s
3982 * doesn't have allocations already in-flight and thus can't
3983 * destroy @s until the associated memcg is released.
3984 *
3985 * However, let's remove the sysfs files for empty caches here.
3986 * Each cache has a lot of interface files which aren't
3987 * particularly useful for empty draining caches; otherwise, we can
3988 * easily end up with millions of unnecessary sysfs files on
3989 * systems which have a lot of memory and transient cgroups.
3990 */
3991 if (!__kmem_cache_shrink(s))
3992 sysfs_slab_remove(s);
01fb58bc
TH
3993}
3994
c9fc5864
TH
3995void __kmemcg_cache_deactivate(struct kmem_cache *s)
3996{
3997 /*
3998 * Disable empty slabs caching. Used to avoid pinning offline
3999 * memory cgroups by kmem pages that can be freed.
4000 */
e6d0e1dc 4001 slub_set_cpu_partial(s, 0);
c9fc5864
TH
4002 s->min_partial = 0;
4003
4004 /*
4005 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
01fb58bc 4006 * we have to make sure the change is visible before shrinking.
c9fc5864 4007 */
01fb58bc 4008 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
c9fc5864
TH
4009}
4010#endif
4011
b9049e23
YG
4012static int slab_mem_going_offline_callback(void *arg)
4013{
4014 struct kmem_cache *s;
4015
18004c5d 4016 mutex_lock(&slab_mutex);
b9049e23 4017 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4018 __kmem_cache_shrink(s);
18004c5d 4019 mutex_unlock(&slab_mutex);
b9049e23
YG
4020
4021 return 0;
4022}
4023
4024static void slab_mem_offline_callback(void *arg)
4025{
4026 struct kmem_cache_node *n;
4027 struct kmem_cache *s;
4028 struct memory_notify *marg = arg;
4029 int offline_node;
4030
b9d5ab25 4031 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4032
4033 /*
4034 * If the node still has available memory. we need kmem_cache_node
4035 * for it yet.
4036 */
4037 if (offline_node < 0)
4038 return;
4039
18004c5d 4040 mutex_lock(&slab_mutex);
b9049e23
YG
4041 list_for_each_entry(s, &slab_caches, list) {
4042 n = get_node(s, offline_node);
4043 if (n) {
4044 /*
4045 * if n->nr_slabs > 0, slabs still exist on the node
4046 * that is going down. We were unable to free them,
c9404c9c 4047 * and offline_pages() function shouldn't call this
b9049e23
YG
4048 * callback. So, we must fail.
4049 */
0f389ec6 4050 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4051
4052 s->node[offline_node] = NULL;
8de66a0c 4053 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4054 }
4055 }
18004c5d 4056 mutex_unlock(&slab_mutex);
b9049e23
YG
4057}
4058
4059static int slab_mem_going_online_callback(void *arg)
4060{
4061 struct kmem_cache_node *n;
4062 struct kmem_cache *s;
4063 struct memory_notify *marg = arg;
b9d5ab25 4064 int nid = marg->status_change_nid_normal;
b9049e23
YG
4065 int ret = 0;
4066
4067 /*
4068 * If the node's memory is already available, then kmem_cache_node is
4069 * already created. Nothing to do.
4070 */
4071 if (nid < 0)
4072 return 0;
4073
4074 /*
0121c619 4075 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4076 * allocate a kmem_cache_node structure in order to bring the node
4077 * online.
4078 */
18004c5d 4079 mutex_lock(&slab_mutex);
b9049e23
YG
4080 list_for_each_entry(s, &slab_caches, list) {
4081 /*
4082 * XXX: kmem_cache_alloc_node will fallback to other nodes
4083 * since memory is not yet available from the node that
4084 * is brought up.
4085 */
8de66a0c 4086 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4087 if (!n) {
4088 ret = -ENOMEM;
4089 goto out;
4090 }
4053497d 4091 init_kmem_cache_node(n);
b9049e23
YG
4092 s->node[nid] = n;
4093 }
4094out:
18004c5d 4095 mutex_unlock(&slab_mutex);
b9049e23
YG
4096 return ret;
4097}
4098
4099static int slab_memory_callback(struct notifier_block *self,
4100 unsigned long action, void *arg)
4101{
4102 int ret = 0;
4103
4104 switch (action) {
4105 case MEM_GOING_ONLINE:
4106 ret = slab_mem_going_online_callback(arg);
4107 break;
4108 case MEM_GOING_OFFLINE:
4109 ret = slab_mem_going_offline_callback(arg);
4110 break;
4111 case MEM_OFFLINE:
4112 case MEM_CANCEL_ONLINE:
4113 slab_mem_offline_callback(arg);
4114 break;
4115 case MEM_ONLINE:
4116 case MEM_CANCEL_OFFLINE:
4117 break;
4118 }
dc19f9db
KH
4119 if (ret)
4120 ret = notifier_from_errno(ret);
4121 else
4122 ret = NOTIFY_OK;
b9049e23
YG
4123 return ret;
4124}
4125
3ac38faa
AM
4126static struct notifier_block slab_memory_callback_nb = {
4127 .notifier_call = slab_memory_callback,
4128 .priority = SLAB_CALLBACK_PRI,
4129};
b9049e23 4130
81819f0f
CL
4131/********************************************************************
4132 * Basic setup of slabs
4133 *******************************************************************/
4134
51df1142
CL
4135/*
4136 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4137 * the page allocator. Allocate them properly then fix up the pointers
4138 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4139 */
4140
dffb4d60 4141static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4142{
4143 int node;
dffb4d60 4144 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4145 struct kmem_cache_node *n;
51df1142 4146
dffb4d60 4147 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4148
7d557b3c
GC
4149 /*
4150 * This runs very early, and only the boot processor is supposed to be
4151 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4152 * IPIs around.
4153 */
4154 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4155 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4156 struct page *p;
4157
fa45dc25
CL
4158 list_for_each_entry(p, &n->partial, lru)
4159 p->slab_cache = s;
51df1142 4160
607bf324 4161#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
4162 list_for_each_entry(p, &n->full, lru)
4163 p->slab_cache = s;
51df1142 4164#endif
51df1142 4165 }
f7ce3190 4166 slab_init_memcg_params(s);
dffb4d60 4167 list_add(&s->list, &slab_caches);
510ded33 4168 memcg_link_cache(s);
dffb4d60 4169 return s;
51df1142
CL
4170}
4171
81819f0f
CL
4172void __init kmem_cache_init(void)
4173{
dffb4d60
CL
4174 static __initdata struct kmem_cache boot_kmem_cache,
4175 boot_kmem_cache_node;
51df1142 4176
fc8d8620
SG
4177 if (debug_guardpage_minorder())
4178 slub_max_order = 0;
4179
dffb4d60
CL
4180 kmem_cache_node = &boot_kmem_cache_node;
4181 kmem_cache = &boot_kmem_cache;
51df1142 4182
dffb4d60
CL
4183 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4184 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 4185
3ac38faa 4186 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4187
4188 /* Able to allocate the per node structures */
4189 slab_state = PARTIAL;
4190
dffb4d60
CL
4191 create_boot_cache(kmem_cache, "kmem_cache",
4192 offsetof(struct kmem_cache, node) +
4193 nr_node_ids * sizeof(struct kmem_cache_node *),
4194 SLAB_HWCACHE_ALIGN);
8a13a4cc 4195
dffb4d60 4196 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 4197
51df1142
CL
4198 /*
4199 * Allocate kmem_cache_node properly from the kmem_cache slab.
4200 * kmem_cache_node is separately allocated so no need to
4201 * update any list pointers.
4202 */
dffb4d60 4203 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4204
4205 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4206 setup_kmalloc_cache_index_table();
f97d5f63 4207 create_kmalloc_caches(0);
81819f0f 4208
210e7a43
TG
4209 /* Setup random freelists for each cache */
4210 init_freelist_randomization();
4211
a96a87bf
SAS
4212 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4213 slub_cpu_dead);
81819f0f 4214
9b130ad5 4215 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%u, Nodes=%d\n",
f97d5f63 4216 cache_line_size(),
81819f0f
CL
4217 slub_min_order, slub_max_order, slub_min_objects,
4218 nr_cpu_ids, nr_node_ids);
4219}
4220
7e85ee0c
PE
4221void __init kmem_cache_init_late(void)
4222{
7e85ee0c
PE
4223}
4224
2633d7a0 4225struct kmem_cache *
a44cb944 4226__kmem_cache_alias(const char *name, size_t size, size_t align,
d50112ed 4227 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4228{
426589f5 4229 struct kmem_cache *s, *c;
81819f0f 4230
a44cb944 4231 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4232 if (s) {
4233 s->refcount++;
84d0ddd6 4234
81819f0f
CL
4235 /*
4236 * Adjust the object sizes so that we clear
4237 * the complete object on kzalloc.
4238 */
3b0efdfa 4239 s->object_size = max(s->object_size, (int)size);
81819f0f 4240 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4241
426589f5 4242 for_each_memcg_cache(c, s) {
84d0ddd6
VD
4243 c->object_size = s->object_size;
4244 c->inuse = max_t(int, c->inuse,
4245 ALIGN(size, sizeof(void *)));
4246 }
4247
7b8f3b66 4248 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4249 s->refcount--;
cbb79694 4250 s = NULL;
7b8f3b66 4251 }
a0e1d1be 4252 }
6446faa2 4253
cbb79694
CL
4254 return s;
4255}
84c1cf62 4256
d50112ed 4257int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4258{
aac3a166
PE
4259 int err;
4260
4261 err = kmem_cache_open(s, flags);
4262 if (err)
4263 return err;
20cea968 4264
45530c44
CL
4265 /* Mutex is not taken during early boot */
4266 if (slab_state <= UP)
4267 return 0;
4268
107dab5c 4269 memcg_propagate_slab_attrs(s);
aac3a166 4270 err = sysfs_slab_add(s);
aac3a166 4271 if (err)
52b4b950 4272 __kmem_cache_release(s);
20cea968 4273
aac3a166 4274 return err;
81819f0f 4275}
81819f0f 4276
ce71e27c 4277void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4278{
aadb4bc4 4279 struct kmem_cache *s;
94b528d0 4280 void *ret;
aadb4bc4 4281
95a05b42 4282 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4283 return kmalloc_large(size, gfpflags);
4284
2c59dd65 4285 s = kmalloc_slab(size, gfpflags);
81819f0f 4286
2408c550 4287 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4288 return s;
81819f0f 4289
2b847c3c 4290 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4291
25985edc 4292 /* Honor the call site pointer we received. */
ca2b84cb 4293 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4294
4295 return ret;
81819f0f
CL
4296}
4297
5d1f57e4 4298#ifdef CONFIG_NUMA
81819f0f 4299void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4300 int node, unsigned long caller)
81819f0f 4301{
aadb4bc4 4302 struct kmem_cache *s;
94b528d0 4303 void *ret;
aadb4bc4 4304
95a05b42 4305 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4306 ret = kmalloc_large_node(size, gfpflags, node);
4307
4308 trace_kmalloc_node(caller, ret,
4309 size, PAGE_SIZE << get_order(size),
4310 gfpflags, node);
4311
4312 return ret;
4313 }
eada35ef 4314
2c59dd65 4315 s = kmalloc_slab(size, gfpflags);
81819f0f 4316
2408c550 4317 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4318 return s;
81819f0f 4319
2b847c3c 4320 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4321
25985edc 4322 /* Honor the call site pointer we received. */
ca2b84cb 4323 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4324
4325 return ret;
81819f0f 4326}
5d1f57e4 4327#endif
81819f0f 4328
ab4d5ed5 4329#ifdef CONFIG_SYSFS
205ab99d
CL
4330static int count_inuse(struct page *page)
4331{
4332 return page->inuse;
4333}
4334
4335static int count_total(struct page *page)
4336{
4337 return page->objects;
4338}
ab4d5ed5 4339#endif
205ab99d 4340
ab4d5ed5 4341#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4342static int validate_slab(struct kmem_cache *s, struct page *page,
4343 unsigned long *map)
53e15af0
CL
4344{
4345 void *p;
a973e9dd 4346 void *addr = page_address(page);
53e15af0
CL
4347
4348 if (!check_slab(s, page) ||
4349 !on_freelist(s, page, NULL))
4350 return 0;
4351
4352 /* Now we know that a valid freelist exists */
39b26464 4353 bitmap_zero(map, page->objects);
53e15af0 4354
5f80b13a
CL
4355 get_map(s, page, map);
4356 for_each_object(p, s, addr, page->objects) {
4357 if (test_bit(slab_index(p, s, addr), map))
4358 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4359 return 0;
53e15af0
CL
4360 }
4361
224a88be 4362 for_each_object(p, s, addr, page->objects)
7656c72b 4363 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4364 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4365 return 0;
4366 return 1;
4367}
4368
434e245d
CL
4369static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4370 unsigned long *map)
53e15af0 4371{
881db7fb
CL
4372 slab_lock(page);
4373 validate_slab(s, page, map);
4374 slab_unlock(page);
53e15af0
CL
4375}
4376
434e245d
CL
4377static int validate_slab_node(struct kmem_cache *s,
4378 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4379{
4380 unsigned long count = 0;
4381 struct page *page;
4382 unsigned long flags;
4383
4384 spin_lock_irqsave(&n->list_lock, flags);
4385
4386 list_for_each_entry(page, &n->partial, lru) {
434e245d 4387 validate_slab_slab(s, page, map);
53e15af0
CL
4388 count++;
4389 }
4390 if (count != n->nr_partial)
f9f58285
FF
4391 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4392 s->name, count, n->nr_partial);
53e15af0
CL
4393
4394 if (!(s->flags & SLAB_STORE_USER))
4395 goto out;
4396
4397 list_for_each_entry(page, &n->full, lru) {
434e245d 4398 validate_slab_slab(s, page, map);
53e15af0
CL
4399 count++;
4400 }
4401 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4402 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4403 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4404
4405out:
4406 spin_unlock_irqrestore(&n->list_lock, flags);
4407 return count;
4408}
4409
434e245d 4410static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4411{
4412 int node;
4413 unsigned long count = 0;
205ab99d 4414 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 4415 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4416 struct kmem_cache_node *n;
434e245d
CL
4417
4418 if (!map)
4419 return -ENOMEM;
53e15af0
CL
4420
4421 flush_all(s);
fa45dc25 4422 for_each_kmem_cache_node(s, node, n)
434e245d 4423 count += validate_slab_node(s, n, map);
434e245d 4424 kfree(map);
53e15af0
CL
4425 return count;
4426}
88a420e4 4427/*
672bba3a 4428 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4429 * and freed.
4430 */
4431
4432struct location {
4433 unsigned long count;
ce71e27c 4434 unsigned long addr;
45edfa58
CL
4435 long long sum_time;
4436 long min_time;
4437 long max_time;
4438 long min_pid;
4439 long max_pid;
174596a0 4440 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4441 nodemask_t nodes;
88a420e4
CL
4442};
4443
4444struct loc_track {
4445 unsigned long max;
4446 unsigned long count;
4447 struct location *loc;
4448};
4449
4450static void free_loc_track(struct loc_track *t)
4451{
4452 if (t->max)
4453 free_pages((unsigned long)t->loc,
4454 get_order(sizeof(struct location) * t->max));
4455}
4456
68dff6a9 4457static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4458{
4459 struct location *l;
4460 int order;
4461
88a420e4
CL
4462 order = get_order(sizeof(struct location) * max);
4463
68dff6a9 4464 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4465 if (!l)
4466 return 0;
4467
4468 if (t->count) {
4469 memcpy(l, t->loc, sizeof(struct location) * t->count);
4470 free_loc_track(t);
4471 }
4472 t->max = max;
4473 t->loc = l;
4474 return 1;
4475}
4476
4477static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4478 const struct track *track)
88a420e4
CL
4479{
4480 long start, end, pos;
4481 struct location *l;
ce71e27c 4482 unsigned long caddr;
45edfa58 4483 unsigned long age = jiffies - track->when;
88a420e4
CL
4484
4485 start = -1;
4486 end = t->count;
4487
4488 for ( ; ; ) {
4489 pos = start + (end - start + 1) / 2;
4490
4491 /*
4492 * There is nothing at "end". If we end up there
4493 * we need to add something to before end.
4494 */
4495 if (pos == end)
4496 break;
4497
4498 caddr = t->loc[pos].addr;
45edfa58
CL
4499 if (track->addr == caddr) {
4500
4501 l = &t->loc[pos];
4502 l->count++;
4503 if (track->when) {
4504 l->sum_time += age;
4505 if (age < l->min_time)
4506 l->min_time = age;
4507 if (age > l->max_time)
4508 l->max_time = age;
4509
4510 if (track->pid < l->min_pid)
4511 l->min_pid = track->pid;
4512 if (track->pid > l->max_pid)
4513 l->max_pid = track->pid;
4514
174596a0
RR
4515 cpumask_set_cpu(track->cpu,
4516 to_cpumask(l->cpus));
45edfa58
CL
4517 }
4518 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4519 return 1;
4520 }
4521
45edfa58 4522 if (track->addr < caddr)
88a420e4
CL
4523 end = pos;
4524 else
4525 start = pos;
4526 }
4527
4528 /*
672bba3a 4529 * Not found. Insert new tracking element.
88a420e4 4530 */
68dff6a9 4531 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4532 return 0;
4533
4534 l = t->loc + pos;
4535 if (pos < t->count)
4536 memmove(l + 1, l,
4537 (t->count - pos) * sizeof(struct location));
4538 t->count++;
4539 l->count = 1;
45edfa58
CL
4540 l->addr = track->addr;
4541 l->sum_time = age;
4542 l->min_time = age;
4543 l->max_time = age;
4544 l->min_pid = track->pid;
4545 l->max_pid = track->pid;
174596a0
RR
4546 cpumask_clear(to_cpumask(l->cpus));
4547 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4548 nodes_clear(l->nodes);
4549 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4550 return 1;
4551}
4552
4553static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4554 struct page *page, enum track_item alloc,
a5dd5c11 4555 unsigned long *map)
88a420e4 4556{
a973e9dd 4557 void *addr = page_address(page);
88a420e4
CL
4558 void *p;
4559
39b26464 4560 bitmap_zero(map, page->objects);
5f80b13a 4561 get_map(s, page, map);
88a420e4 4562
224a88be 4563 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4564 if (!test_bit(slab_index(p, s, addr), map))
4565 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4566}
4567
4568static int list_locations(struct kmem_cache *s, char *buf,
4569 enum track_item alloc)
4570{
e374d483 4571 int len = 0;
88a420e4 4572 unsigned long i;
68dff6a9 4573 struct loc_track t = { 0, 0, NULL };
88a420e4 4574 int node;
bbd7d57b
ED
4575 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4576 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4577 struct kmem_cache_node *n;
88a420e4 4578
bbd7d57b 4579 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
0ee931c4 4580 GFP_KERNEL)) {
bbd7d57b 4581 kfree(map);
68dff6a9 4582 return sprintf(buf, "Out of memory\n");
bbd7d57b 4583 }
88a420e4
CL
4584 /* Push back cpu slabs */
4585 flush_all(s);
4586
fa45dc25 4587 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4588 unsigned long flags;
4589 struct page *page;
4590
9e86943b 4591 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4592 continue;
4593
4594 spin_lock_irqsave(&n->list_lock, flags);
4595 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4596 process_slab(&t, s, page, alloc, map);
88a420e4 4597 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4598 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4599 spin_unlock_irqrestore(&n->list_lock, flags);
4600 }
4601
4602 for (i = 0; i < t.count; i++) {
45edfa58 4603 struct location *l = &t.loc[i];
88a420e4 4604
9c246247 4605 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4606 break;
e374d483 4607 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4608
4609 if (l->addr)
62c70bce 4610 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4611 else
e374d483 4612 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4613
4614 if (l->sum_time != l->min_time) {
e374d483 4615 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4616 l->min_time,
4617 (long)div_u64(l->sum_time, l->count),
4618 l->max_time);
45edfa58 4619 } else
e374d483 4620 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4621 l->min_time);
4622
4623 if (l->min_pid != l->max_pid)
e374d483 4624 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4625 l->min_pid, l->max_pid);
4626 else
e374d483 4627 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4628 l->min_pid);
4629
174596a0
RR
4630 if (num_online_cpus() > 1 &&
4631 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4632 len < PAGE_SIZE - 60)
4633 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4634 " cpus=%*pbl",
4635 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4636
62bc62a8 4637 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4638 len < PAGE_SIZE - 60)
4639 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4640 " nodes=%*pbl",
4641 nodemask_pr_args(&l->nodes));
45edfa58 4642
e374d483 4643 len += sprintf(buf + len, "\n");
88a420e4
CL
4644 }
4645
4646 free_loc_track(&t);
bbd7d57b 4647 kfree(map);
88a420e4 4648 if (!t.count)
e374d483
HH
4649 len += sprintf(buf, "No data\n");
4650 return len;
88a420e4 4651}
ab4d5ed5 4652#endif
88a420e4 4653
a5a84755 4654#ifdef SLUB_RESILIENCY_TEST
c07b8183 4655static void __init resiliency_test(void)
a5a84755
CL
4656{
4657 u8 *p;
4658
95a05b42 4659 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4660
f9f58285
FF
4661 pr_err("SLUB resiliency testing\n");
4662 pr_err("-----------------------\n");
4663 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4664
4665 p = kzalloc(16, GFP_KERNEL);
4666 p[16] = 0x12;
f9f58285
FF
4667 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4668 p + 16);
a5a84755
CL
4669
4670 validate_slab_cache(kmalloc_caches[4]);
4671
4672 /* Hmmm... The next two are dangerous */
4673 p = kzalloc(32, GFP_KERNEL);
4674 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4675 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4676 p);
4677 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4678
4679 validate_slab_cache(kmalloc_caches[5]);
4680 p = kzalloc(64, GFP_KERNEL);
4681 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4682 *p = 0x56;
f9f58285
FF
4683 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4684 p);
4685 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4686 validate_slab_cache(kmalloc_caches[6]);
4687
f9f58285 4688 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4689 p = kzalloc(128, GFP_KERNEL);
4690 kfree(p);
4691 *p = 0x78;
f9f58285 4692 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4693 validate_slab_cache(kmalloc_caches[7]);
4694
4695 p = kzalloc(256, GFP_KERNEL);
4696 kfree(p);
4697 p[50] = 0x9a;
f9f58285 4698 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4699 validate_slab_cache(kmalloc_caches[8]);
4700
4701 p = kzalloc(512, GFP_KERNEL);
4702 kfree(p);
4703 p[512] = 0xab;
f9f58285 4704 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4705 validate_slab_cache(kmalloc_caches[9]);
4706}
4707#else
4708#ifdef CONFIG_SYSFS
4709static void resiliency_test(void) {};
4710#endif
4711#endif
4712
ab4d5ed5 4713#ifdef CONFIG_SYSFS
81819f0f 4714enum slab_stat_type {
205ab99d
CL
4715 SL_ALL, /* All slabs */
4716 SL_PARTIAL, /* Only partially allocated slabs */
4717 SL_CPU, /* Only slabs used for cpu caches */
4718 SL_OBJECTS, /* Determine allocated objects not slabs */
4719 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4720};
4721
205ab99d 4722#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4723#define SO_PARTIAL (1 << SL_PARTIAL)
4724#define SO_CPU (1 << SL_CPU)
4725#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4726#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4727
1663f26d
TH
4728#ifdef CONFIG_MEMCG
4729static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4730
4731static int __init setup_slub_memcg_sysfs(char *str)
4732{
4733 int v;
4734
4735 if (get_option(&str, &v) > 0)
4736 memcg_sysfs_enabled = v;
4737
4738 return 1;
4739}
4740
4741__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4742#endif
4743
62e5c4b4
CG
4744static ssize_t show_slab_objects(struct kmem_cache *s,
4745 char *buf, unsigned long flags)
81819f0f
CL
4746{
4747 unsigned long total = 0;
81819f0f
CL
4748 int node;
4749 int x;
4750 unsigned long *nodes;
81819f0f 4751
e35e1a97 4752 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4753 if (!nodes)
4754 return -ENOMEM;
81819f0f 4755
205ab99d
CL
4756 if (flags & SO_CPU) {
4757 int cpu;
81819f0f 4758
205ab99d 4759 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4760 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4761 cpu);
ec3ab083 4762 int node;
49e22585 4763 struct page *page;
dfb4f096 4764
4db0c3c2 4765 page = READ_ONCE(c->page);
ec3ab083
CL
4766 if (!page)
4767 continue;
205ab99d 4768
ec3ab083
CL
4769 node = page_to_nid(page);
4770 if (flags & SO_TOTAL)
4771 x = page->objects;
4772 else if (flags & SO_OBJECTS)
4773 x = page->inuse;
4774 else
4775 x = 1;
49e22585 4776
ec3ab083
CL
4777 total += x;
4778 nodes[node] += x;
4779
a93cf07b 4780 page = slub_percpu_partial_read_once(c);
49e22585 4781 if (page) {
8afb1474
LZ
4782 node = page_to_nid(page);
4783 if (flags & SO_TOTAL)
4784 WARN_ON_ONCE(1);
4785 else if (flags & SO_OBJECTS)
4786 WARN_ON_ONCE(1);
4787 else
4788 x = page->pages;
bc6697d8
ED
4789 total += x;
4790 nodes[node] += x;
49e22585 4791 }
81819f0f
CL
4792 }
4793 }
4794
bfc8c901 4795 get_online_mems();
ab4d5ed5 4796#ifdef CONFIG_SLUB_DEBUG
205ab99d 4797 if (flags & SO_ALL) {
fa45dc25
CL
4798 struct kmem_cache_node *n;
4799
4800 for_each_kmem_cache_node(s, node, n) {
205ab99d 4801
d0e0ac97
CG
4802 if (flags & SO_TOTAL)
4803 x = atomic_long_read(&n->total_objects);
4804 else if (flags & SO_OBJECTS)
4805 x = atomic_long_read(&n->total_objects) -
4806 count_partial(n, count_free);
81819f0f 4807 else
205ab99d 4808 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4809 total += x;
4810 nodes[node] += x;
4811 }
4812
ab4d5ed5
CL
4813 } else
4814#endif
4815 if (flags & SO_PARTIAL) {
fa45dc25 4816 struct kmem_cache_node *n;
81819f0f 4817
fa45dc25 4818 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4819 if (flags & SO_TOTAL)
4820 x = count_partial(n, count_total);
4821 else if (flags & SO_OBJECTS)
4822 x = count_partial(n, count_inuse);
81819f0f 4823 else
205ab99d 4824 x = n->nr_partial;
81819f0f
CL
4825 total += x;
4826 nodes[node] += x;
4827 }
4828 }
81819f0f
CL
4829 x = sprintf(buf, "%lu", total);
4830#ifdef CONFIG_NUMA
fa45dc25 4831 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4832 if (nodes[node])
4833 x += sprintf(buf + x, " N%d=%lu",
4834 node, nodes[node]);
4835#endif
bfc8c901 4836 put_online_mems();
81819f0f
CL
4837 kfree(nodes);
4838 return x + sprintf(buf + x, "\n");
4839}
4840
ab4d5ed5 4841#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4842static int any_slab_objects(struct kmem_cache *s)
4843{
4844 int node;
fa45dc25 4845 struct kmem_cache_node *n;
81819f0f 4846
fa45dc25 4847 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4848 if (atomic_long_read(&n->total_objects))
81819f0f 4849 return 1;
fa45dc25 4850
81819f0f
CL
4851 return 0;
4852}
ab4d5ed5 4853#endif
81819f0f
CL
4854
4855#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4856#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4857
4858struct slab_attribute {
4859 struct attribute attr;
4860 ssize_t (*show)(struct kmem_cache *s, char *buf);
4861 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4862};
4863
4864#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4865 static struct slab_attribute _name##_attr = \
4866 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4867
4868#define SLAB_ATTR(_name) \
4869 static struct slab_attribute _name##_attr = \
ab067e99 4870 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4871
81819f0f
CL
4872static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4873{
4874 return sprintf(buf, "%d\n", s->size);
4875}
4876SLAB_ATTR_RO(slab_size);
4877
4878static ssize_t align_show(struct kmem_cache *s, char *buf)
4879{
4880 return sprintf(buf, "%d\n", s->align);
4881}
4882SLAB_ATTR_RO(align);
4883
4884static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4885{
3b0efdfa 4886 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4887}
4888SLAB_ATTR_RO(object_size);
4889
4890static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4891{
834f3d11 4892 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4893}
4894SLAB_ATTR_RO(objs_per_slab);
4895
06b285dc
CL
4896static ssize_t order_store(struct kmem_cache *s,
4897 const char *buf, size_t length)
4898{
0121c619
CL
4899 unsigned long order;
4900 int err;
4901
3dbb95f7 4902 err = kstrtoul(buf, 10, &order);
0121c619
CL
4903 if (err)
4904 return err;
06b285dc
CL
4905
4906 if (order > slub_max_order || order < slub_min_order)
4907 return -EINVAL;
4908
4909 calculate_sizes(s, order);
4910 return length;
4911}
4912
81819f0f
CL
4913static ssize_t order_show(struct kmem_cache *s, char *buf)
4914{
834f3d11 4915 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4916}
06b285dc 4917SLAB_ATTR(order);
81819f0f 4918
73d342b1
DR
4919static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4920{
4921 return sprintf(buf, "%lu\n", s->min_partial);
4922}
4923
4924static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4925 size_t length)
4926{
4927 unsigned long min;
4928 int err;
4929
3dbb95f7 4930 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4931 if (err)
4932 return err;
4933
c0bdb232 4934 set_min_partial(s, min);
73d342b1
DR
4935 return length;
4936}
4937SLAB_ATTR(min_partial);
4938
49e22585
CL
4939static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4940{
e6d0e1dc 4941 return sprintf(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
4942}
4943
4944static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4945 size_t length)
4946{
4947 unsigned long objects;
4948 int err;
4949
3dbb95f7 4950 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4951 if (err)
4952 return err;
345c905d 4953 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4954 return -EINVAL;
49e22585 4955
e6d0e1dc 4956 slub_set_cpu_partial(s, objects);
49e22585
CL
4957 flush_all(s);
4958 return length;
4959}
4960SLAB_ATTR(cpu_partial);
4961
81819f0f
CL
4962static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4963{
62c70bce
JP
4964 if (!s->ctor)
4965 return 0;
4966 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4967}
4968SLAB_ATTR_RO(ctor);
4969
81819f0f
CL
4970static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4971{
4307c14f 4972 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4973}
4974SLAB_ATTR_RO(aliases);
4975
81819f0f
CL
4976static ssize_t partial_show(struct kmem_cache *s, char *buf)
4977{
d9acf4b7 4978 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4979}
4980SLAB_ATTR_RO(partial);
4981
4982static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4983{
d9acf4b7 4984 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4985}
4986SLAB_ATTR_RO(cpu_slabs);
4987
4988static ssize_t objects_show(struct kmem_cache *s, char *buf)
4989{
205ab99d 4990 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4991}
4992SLAB_ATTR_RO(objects);
4993
205ab99d
CL
4994static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4995{
4996 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4997}
4998SLAB_ATTR_RO(objects_partial);
4999
49e22585
CL
5000static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5001{
5002 int objects = 0;
5003 int pages = 0;
5004 int cpu;
5005 int len;
5006
5007 for_each_online_cpu(cpu) {
a93cf07b
WY
5008 struct page *page;
5009
5010 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5011
5012 if (page) {
5013 pages += page->pages;
5014 objects += page->pobjects;
5015 }
5016 }
5017
5018 len = sprintf(buf, "%d(%d)", objects, pages);
5019
5020#ifdef CONFIG_SMP
5021 for_each_online_cpu(cpu) {
a93cf07b
WY
5022 struct page *page;
5023
5024 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5025
5026 if (page && len < PAGE_SIZE - 20)
5027 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5028 page->pobjects, page->pages);
5029 }
5030#endif
5031 return len + sprintf(buf + len, "\n");
5032}
5033SLAB_ATTR_RO(slabs_cpu_partial);
5034
a5a84755
CL
5035static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5036{
5037 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5038}
5039
5040static ssize_t reclaim_account_store(struct kmem_cache *s,
5041 const char *buf, size_t length)
5042{
5043 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5044 if (buf[0] == '1')
5045 s->flags |= SLAB_RECLAIM_ACCOUNT;
5046 return length;
5047}
5048SLAB_ATTR(reclaim_account);
5049
5050static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5051{
5052 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5053}
5054SLAB_ATTR_RO(hwcache_align);
5055
5056#ifdef CONFIG_ZONE_DMA
5057static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5058{
5059 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5060}
5061SLAB_ATTR_RO(cache_dma);
5062#endif
5063
5064static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5065{
5f0d5a3a 5066 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5067}
5068SLAB_ATTR_RO(destroy_by_rcu);
5069
ab9a0f19
LJ
5070static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5071{
5072 return sprintf(buf, "%d\n", s->reserved);
5073}
5074SLAB_ATTR_RO(reserved);
5075
ab4d5ed5 5076#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5077static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5078{
5079 return show_slab_objects(s, buf, SO_ALL);
5080}
5081SLAB_ATTR_RO(slabs);
5082
205ab99d
CL
5083static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5084{
5085 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5086}
5087SLAB_ATTR_RO(total_objects);
5088
81819f0f
CL
5089static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5090{
becfda68 5091 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
5092}
5093
5094static ssize_t sanity_checks_store(struct kmem_cache *s,
5095 const char *buf, size_t length)
5096{
becfda68 5097 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
5098 if (buf[0] == '1') {
5099 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 5100 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 5101 }
81819f0f
CL
5102 return length;
5103}
5104SLAB_ATTR(sanity_checks);
5105
5106static ssize_t trace_show(struct kmem_cache *s, char *buf)
5107{
5108 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5109}
5110
5111static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5112 size_t length)
5113{
c9e16131
CL
5114 /*
5115 * Tracing a merged cache is going to give confusing results
5116 * as well as cause other issues like converting a mergeable
5117 * cache into an umergeable one.
5118 */
5119 if (s->refcount > 1)
5120 return -EINVAL;
5121
81819f0f 5122 s->flags &= ~SLAB_TRACE;
b789ef51
CL
5123 if (buf[0] == '1') {
5124 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5125 s->flags |= SLAB_TRACE;
b789ef51 5126 }
81819f0f
CL
5127 return length;
5128}
5129SLAB_ATTR(trace);
5130
81819f0f
CL
5131static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5132{
5133 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5134}
5135
5136static ssize_t red_zone_store(struct kmem_cache *s,
5137 const char *buf, size_t length)
5138{
5139 if (any_slab_objects(s))
5140 return -EBUSY;
5141
5142 s->flags &= ~SLAB_RED_ZONE;
b789ef51 5143 if (buf[0] == '1') {
81819f0f 5144 s->flags |= SLAB_RED_ZONE;
b789ef51 5145 }
06b285dc 5146 calculate_sizes(s, -1);
81819f0f
CL
5147 return length;
5148}
5149SLAB_ATTR(red_zone);
5150
5151static ssize_t poison_show(struct kmem_cache *s, char *buf)
5152{
5153 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5154}
5155
5156static ssize_t poison_store(struct kmem_cache *s,
5157 const char *buf, size_t length)
5158{
5159 if (any_slab_objects(s))
5160 return -EBUSY;
5161
5162 s->flags &= ~SLAB_POISON;
b789ef51 5163 if (buf[0] == '1') {
81819f0f 5164 s->flags |= SLAB_POISON;
b789ef51 5165 }
06b285dc 5166 calculate_sizes(s, -1);
81819f0f
CL
5167 return length;
5168}
5169SLAB_ATTR(poison);
5170
5171static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5172{
5173 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5174}
5175
5176static ssize_t store_user_store(struct kmem_cache *s,
5177 const char *buf, size_t length)
5178{
5179 if (any_slab_objects(s))
5180 return -EBUSY;
5181
5182 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
5183 if (buf[0] == '1') {
5184 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5185 s->flags |= SLAB_STORE_USER;
b789ef51 5186 }
06b285dc 5187 calculate_sizes(s, -1);
81819f0f
CL
5188 return length;
5189}
5190SLAB_ATTR(store_user);
5191
53e15af0
CL
5192static ssize_t validate_show(struct kmem_cache *s, char *buf)
5193{
5194 return 0;
5195}
5196
5197static ssize_t validate_store(struct kmem_cache *s,
5198 const char *buf, size_t length)
5199{
434e245d
CL
5200 int ret = -EINVAL;
5201
5202 if (buf[0] == '1') {
5203 ret = validate_slab_cache(s);
5204 if (ret >= 0)
5205 ret = length;
5206 }
5207 return ret;
53e15af0
CL
5208}
5209SLAB_ATTR(validate);
a5a84755
CL
5210
5211static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5212{
5213 if (!(s->flags & SLAB_STORE_USER))
5214 return -ENOSYS;
5215 return list_locations(s, buf, TRACK_ALLOC);
5216}
5217SLAB_ATTR_RO(alloc_calls);
5218
5219static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5220{
5221 if (!(s->flags & SLAB_STORE_USER))
5222 return -ENOSYS;
5223 return list_locations(s, buf, TRACK_FREE);
5224}
5225SLAB_ATTR_RO(free_calls);
5226#endif /* CONFIG_SLUB_DEBUG */
5227
5228#ifdef CONFIG_FAILSLAB
5229static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5230{
5231 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5232}
5233
5234static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5235 size_t length)
5236{
c9e16131
CL
5237 if (s->refcount > 1)
5238 return -EINVAL;
5239
a5a84755
CL
5240 s->flags &= ~SLAB_FAILSLAB;
5241 if (buf[0] == '1')
5242 s->flags |= SLAB_FAILSLAB;
5243 return length;
5244}
5245SLAB_ATTR(failslab);
ab4d5ed5 5246#endif
53e15af0 5247
2086d26a
CL
5248static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5249{
5250 return 0;
5251}
5252
5253static ssize_t shrink_store(struct kmem_cache *s,
5254 const char *buf, size_t length)
5255{
832f37f5
VD
5256 if (buf[0] == '1')
5257 kmem_cache_shrink(s);
5258 else
2086d26a
CL
5259 return -EINVAL;
5260 return length;
5261}
5262SLAB_ATTR(shrink);
5263
81819f0f 5264#ifdef CONFIG_NUMA
9824601e 5265static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5266{
9824601e 5267 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5268}
5269
9824601e 5270static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5271 const char *buf, size_t length)
5272{
0121c619
CL
5273 unsigned long ratio;
5274 int err;
5275
3dbb95f7 5276 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
5277 if (err)
5278 return err;
5279
e2cb96b7 5280 if (ratio <= 100)
0121c619 5281 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5282
81819f0f
CL
5283 return length;
5284}
9824601e 5285SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5286#endif
5287
8ff12cfc 5288#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5289static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5290{
5291 unsigned long sum = 0;
5292 int cpu;
5293 int len;
5294 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5295
5296 if (!data)
5297 return -ENOMEM;
5298
5299 for_each_online_cpu(cpu) {
9dfc6e68 5300 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5301
5302 data[cpu] = x;
5303 sum += x;
5304 }
5305
5306 len = sprintf(buf, "%lu", sum);
5307
50ef37b9 5308#ifdef CONFIG_SMP
8ff12cfc
CL
5309 for_each_online_cpu(cpu) {
5310 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5311 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5312 }
50ef37b9 5313#endif
8ff12cfc
CL
5314 kfree(data);
5315 return len + sprintf(buf + len, "\n");
5316}
5317
78eb00cc
DR
5318static void clear_stat(struct kmem_cache *s, enum stat_item si)
5319{
5320 int cpu;
5321
5322 for_each_online_cpu(cpu)
9dfc6e68 5323 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5324}
5325
8ff12cfc
CL
5326#define STAT_ATTR(si, text) \
5327static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5328{ \
5329 return show_stat(s, buf, si); \
5330} \
78eb00cc
DR
5331static ssize_t text##_store(struct kmem_cache *s, \
5332 const char *buf, size_t length) \
5333{ \
5334 if (buf[0] != '0') \
5335 return -EINVAL; \
5336 clear_stat(s, si); \
5337 return length; \
5338} \
5339SLAB_ATTR(text); \
8ff12cfc
CL
5340
5341STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5342STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5343STAT_ATTR(FREE_FASTPATH, free_fastpath);
5344STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5345STAT_ATTR(FREE_FROZEN, free_frozen);
5346STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5347STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5348STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5349STAT_ATTR(ALLOC_SLAB, alloc_slab);
5350STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5351STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5352STAT_ATTR(FREE_SLAB, free_slab);
5353STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5354STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5355STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5356STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5357STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5358STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5359STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5360STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5361STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5362STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5363STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5364STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5365STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5366STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5367#endif
5368
06428780 5369static struct attribute *slab_attrs[] = {
81819f0f
CL
5370 &slab_size_attr.attr,
5371 &object_size_attr.attr,
5372 &objs_per_slab_attr.attr,
5373 &order_attr.attr,
73d342b1 5374 &min_partial_attr.attr,
49e22585 5375 &cpu_partial_attr.attr,
81819f0f 5376 &objects_attr.attr,
205ab99d 5377 &objects_partial_attr.attr,
81819f0f
CL
5378 &partial_attr.attr,
5379 &cpu_slabs_attr.attr,
5380 &ctor_attr.attr,
81819f0f
CL
5381 &aliases_attr.attr,
5382 &align_attr.attr,
81819f0f
CL
5383 &hwcache_align_attr.attr,
5384 &reclaim_account_attr.attr,
5385 &destroy_by_rcu_attr.attr,
a5a84755 5386 &shrink_attr.attr,
ab9a0f19 5387 &reserved_attr.attr,
49e22585 5388 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5389#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5390 &total_objects_attr.attr,
5391 &slabs_attr.attr,
5392 &sanity_checks_attr.attr,
5393 &trace_attr.attr,
81819f0f
CL
5394 &red_zone_attr.attr,
5395 &poison_attr.attr,
5396 &store_user_attr.attr,
53e15af0 5397 &validate_attr.attr,
88a420e4
CL
5398 &alloc_calls_attr.attr,
5399 &free_calls_attr.attr,
ab4d5ed5 5400#endif
81819f0f
CL
5401#ifdef CONFIG_ZONE_DMA
5402 &cache_dma_attr.attr,
5403#endif
5404#ifdef CONFIG_NUMA
9824601e 5405 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5406#endif
5407#ifdef CONFIG_SLUB_STATS
5408 &alloc_fastpath_attr.attr,
5409 &alloc_slowpath_attr.attr,
5410 &free_fastpath_attr.attr,
5411 &free_slowpath_attr.attr,
5412 &free_frozen_attr.attr,
5413 &free_add_partial_attr.attr,
5414 &free_remove_partial_attr.attr,
5415 &alloc_from_partial_attr.attr,
5416 &alloc_slab_attr.attr,
5417 &alloc_refill_attr.attr,
e36a2652 5418 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5419 &free_slab_attr.attr,
5420 &cpuslab_flush_attr.attr,
5421 &deactivate_full_attr.attr,
5422 &deactivate_empty_attr.attr,
5423 &deactivate_to_head_attr.attr,
5424 &deactivate_to_tail_attr.attr,
5425 &deactivate_remote_frees_attr.attr,
03e404af 5426 &deactivate_bypass_attr.attr,
65c3376a 5427 &order_fallback_attr.attr,
b789ef51
CL
5428 &cmpxchg_double_fail_attr.attr,
5429 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5430 &cpu_partial_alloc_attr.attr,
5431 &cpu_partial_free_attr.attr,
8028dcea
AS
5432 &cpu_partial_node_attr.attr,
5433 &cpu_partial_drain_attr.attr,
81819f0f 5434#endif
4c13dd3b
DM
5435#ifdef CONFIG_FAILSLAB
5436 &failslab_attr.attr,
5437#endif
5438
81819f0f
CL
5439 NULL
5440};
5441
1fdaaa23 5442static const struct attribute_group slab_attr_group = {
81819f0f
CL
5443 .attrs = slab_attrs,
5444};
5445
5446static ssize_t slab_attr_show(struct kobject *kobj,
5447 struct attribute *attr,
5448 char *buf)
5449{
5450 struct slab_attribute *attribute;
5451 struct kmem_cache *s;
5452 int err;
5453
5454 attribute = to_slab_attr(attr);
5455 s = to_slab(kobj);
5456
5457 if (!attribute->show)
5458 return -EIO;
5459
5460 err = attribute->show(s, buf);
5461
5462 return err;
5463}
5464
5465static ssize_t slab_attr_store(struct kobject *kobj,
5466 struct attribute *attr,
5467 const char *buf, size_t len)
5468{
5469 struct slab_attribute *attribute;
5470 struct kmem_cache *s;
5471 int err;
5472
5473 attribute = to_slab_attr(attr);
5474 s = to_slab(kobj);
5475
5476 if (!attribute->store)
5477 return -EIO;
5478
5479 err = attribute->store(s, buf, len);
127424c8 5480#ifdef CONFIG_MEMCG
107dab5c 5481 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5482 struct kmem_cache *c;
81819f0f 5483
107dab5c
GC
5484 mutex_lock(&slab_mutex);
5485 if (s->max_attr_size < len)
5486 s->max_attr_size = len;
5487
ebe945c2
GC
5488 /*
5489 * This is a best effort propagation, so this function's return
5490 * value will be determined by the parent cache only. This is
5491 * basically because not all attributes will have a well
5492 * defined semantics for rollbacks - most of the actions will
5493 * have permanent effects.
5494 *
5495 * Returning the error value of any of the children that fail
5496 * is not 100 % defined, in the sense that users seeing the
5497 * error code won't be able to know anything about the state of
5498 * the cache.
5499 *
5500 * Only returning the error code for the parent cache at least
5501 * has well defined semantics. The cache being written to
5502 * directly either failed or succeeded, in which case we loop
5503 * through the descendants with best-effort propagation.
5504 */
426589f5
VD
5505 for_each_memcg_cache(c, s)
5506 attribute->store(c, buf, len);
107dab5c
GC
5507 mutex_unlock(&slab_mutex);
5508 }
5509#endif
81819f0f
CL
5510 return err;
5511}
5512
107dab5c
GC
5513static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5514{
127424c8 5515#ifdef CONFIG_MEMCG
107dab5c
GC
5516 int i;
5517 char *buffer = NULL;
93030d83 5518 struct kmem_cache *root_cache;
107dab5c 5519
93030d83 5520 if (is_root_cache(s))
107dab5c
GC
5521 return;
5522
f7ce3190 5523 root_cache = s->memcg_params.root_cache;
93030d83 5524
107dab5c
GC
5525 /*
5526 * This mean this cache had no attribute written. Therefore, no point
5527 * in copying default values around
5528 */
93030d83 5529 if (!root_cache->max_attr_size)
107dab5c
GC
5530 return;
5531
5532 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5533 char mbuf[64];
5534 char *buf;
5535 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
478fe303 5536 ssize_t len;
107dab5c
GC
5537
5538 if (!attr || !attr->store || !attr->show)
5539 continue;
5540
5541 /*
5542 * It is really bad that we have to allocate here, so we will
5543 * do it only as a fallback. If we actually allocate, though,
5544 * we can just use the allocated buffer until the end.
5545 *
5546 * Most of the slub attributes will tend to be very small in
5547 * size, but sysfs allows buffers up to a page, so they can
5548 * theoretically happen.
5549 */
5550 if (buffer)
5551 buf = buffer;
93030d83 5552 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5553 buf = mbuf;
5554 else {
5555 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5556 if (WARN_ON(!buffer))
5557 continue;
5558 buf = buffer;
5559 }
5560
478fe303
TG
5561 len = attr->show(root_cache, buf);
5562 if (len > 0)
5563 attr->store(s, buf, len);
107dab5c
GC
5564 }
5565
5566 if (buffer)
5567 free_page((unsigned long)buffer);
5568#endif
5569}
5570
41a21285
CL
5571static void kmem_cache_release(struct kobject *k)
5572{
5573 slab_kmem_cache_release(to_slab(k));
5574}
5575
52cf25d0 5576static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5577 .show = slab_attr_show,
5578 .store = slab_attr_store,
5579};
5580
5581static struct kobj_type slab_ktype = {
5582 .sysfs_ops = &slab_sysfs_ops,
41a21285 5583 .release = kmem_cache_release,
81819f0f
CL
5584};
5585
5586static int uevent_filter(struct kset *kset, struct kobject *kobj)
5587{
5588 struct kobj_type *ktype = get_ktype(kobj);
5589
5590 if (ktype == &slab_ktype)
5591 return 1;
5592 return 0;
5593}
5594
9cd43611 5595static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5596 .filter = uevent_filter,
5597};
5598
27c3a314 5599static struct kset *slab_kset;
81819f0f 5600
9a41707b
VD
5601static inline struct kset *cache_kset(struct kmem_cache *s)
5602{
127424c8 5603#ifdef CONFIG_MEMCG
9a41707b 5604 if (!is_root_cache(s))
f7ce3190 5605 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5606#endif
5607 return slab_kset;
5608}
5609
81819f0f
CL
5610#define ID_STR_LENGTH 64
5611
5612/* Create a unique string id for a slab cache:
6446faa2
CL
5613 *
5614 * Format :[flags-]size
81819f0f
CL
5615 */
5616static char *create_unique_id(struct kmem_cache *s)
5617{
5618 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5619 char *p = name;
5620
5621 BUG_ON(!name);
5622
5623 *p++ = ':';
5624 /*
5625 * First flags affecting slabcache operations. We will only
5626 * get here for aliasable slabs so we do not need to support
5627 * too many flags. The flags here must cover all flags that
5628 * are matched during merging to guarantee that the id is
5629 * unique.
5630 */
5631 if (s->flags & SLAB_CACHE_DMA)
5632 *p++ = 'd';
5633 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5634 *p++ = 'a';
becfda68 5635 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5636 *p++ = 'F';
230e9fc2
VD
5637 if (s->flags & SLAB_ACCOUNT)
5638 *p++ = 'A';
81819f0f
CL
5639 if (p != name + 1)
5640 *p++ = '-';
5641 p += sprintf(p, "%07d", s->size);
2633d7a0 5642
81819f0f
CL
5643 BUG_ON(p > name + ID_STR_LENGTH - 1);
5644 return name;
5645}
5646
3b7b3140
TH
5647static void sysfs_slab_remove_workfn(struct work_struct *work)
5648{
5649 struct kmem_cache *s =
5650 container_of(work, struct kmem_cache, kobj_remove_work);
5651
5652 if (!s->kobj.state_in_sysfs)
5653 /*
5654 * For a memcg cache, this may be called during
5655 * deactivation and again on shutdown. Remove only once.
5656 * A cache is never shut down before deactivation is
5657 * complete, so no need to worry about synchronization.
5658 */
f6ba4880 5659 goto out;
3b7b3140
TH
5660
5661#ifdef CONFIG_MEMCG
5662 kset_unregister(s->memcg_kset);
5663#endif
5664 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5665 kobject_del(&s->kobj);
f6ba4880 5666out:
3b7b3140
TH
5667 kobject_put(&s->kobj);
5668}
5669
81819f0f
CL
5670static int sysfs_slab_add(struct kmem_cache *s)
5671{
5672 int err;
5673 const char *name;
1663f26d 5674 struct kset *kset = cache_kset(s);
45530c44 5675 int unmergeable = slab_unmergeable(s);
81819f0f 5676
3b7b3140
TH
5677 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5678
1663f26d
TH
5679 if (!kset) {
5680 kobject_init(&s->kobj, &slab_ktype);
5681 return 0;
5682 }
5683
11066386
MC
5684 if (!unmergeable && disable_higher_order_debug &&
5685 (slub_debug & DEBUG_METADATA_FLAGS))
5686 unmergeable = 1;
5687
81819f0f
CL
5688 if (unmergeable) {
5689 /*
5690 * Slabcache can never be merged so we can use the name proper.
5691 * This is typically the case for debug situations. In that
5692 * case we can catch duplicate names easily.
5693 */
27c3a314 5694 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5695 name = s->name;
5696 } else {
5697 /*
5698 * Create a unique name for the slab as a target
5699 * for the symlinks.
5700 */
5701 name = create_unique_id(s);
5702 }
5703
1663f26d 5704 s->kobj.kset = kset;
26e4f205 5705 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5706 if (err)
80da026a 5707 goto out;
81819f0f
CL
5708
5709 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5710 if (err)
5711 goto out_del_kobj;
9a41707b 5712
127424c8 5713#ifdef CONFIG_MEMCG
1663f26d 5714 if (is_root_cache(s) && memcg_sysfs_enabled) {
9a41707b
VD
5715 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5716 if (!s->memcg_kset) {
54b6a731
DJ
5717 err = -ENOMEM;
5718 goto out_del_kobj;
9a41707b
VD
5719 }
5720 }
5721#endif
5722
81819f0f
CL
5723 kobject_uevent(&s->kobj, KOBJ_ADD);
5724 if (!unmergeable) {
5725 /* Setup first alias */
5726 sysfs_slab_alias(s, s->name);
81819f0f 5727 }
54b6a731
DJ
5728out:
5729 if (!unmergeable)
5730 kfree(name);
5731 return err;
5732out_del_kobj:
5733 kobject_del(&s->kobj);
54b6a731 5734 goto out;
81819f0f
CL
5735}
5736
bf5eb3de 5737static void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5738{
97d06609 5739 if (slab_state < FULL)
2bce6485
CL
5740 /*
5741 * Sysfs has not been setup yet so no need to remove the
5742 * cache from sysfs.
5743 */
5744 return;
5745
3b7b3140
TH
5746 kobject_get(&s->kobj);
5747 schedule_work(&s->kobj_remove_work);
bf5eb3de
TH
5748}
5749
5750void sysfs_slab_release(struct kmem_cache *s)
5751{
5752 if (slab_state >= FULL)
5753 kobject_put(&s->kobj);
81819f0f
CL
5754}
5755
5756/*
5757 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5758 * available lest we lose that information.
81819f0f
CL
5759 */
5760struct saved_alias {
5761 struct kmem_cache *s;
5762 const char *name;
5763 struct saved_alias *next;
5764};
5765
5af328a5 5766static struct saved_alias *alias_list;
81819f0f
CL
5767
5768static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5769{
5770 struct saved_alias *al;
5771
97d06609 5772 if (slab_state == FULL) {
81819f0f
CL
5773 /*
5774 * If we have a leftover link then remove it.
5775 */
27c3a314
GKH
5776 sysfs_remove_link(&slab_kset->kobj, name);
5777 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5778 }
5779
5780 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5781 if (!al)
5782 return -ENOMEM;
5783
5784 al->s = s;
5785 al->name = name;
5786 al->next = alias_list;
5787 alias_list = al;
5788 return 0;
5789}
5790
5791static int __init slab_sysfs_init(void)
5792{
5b95a4ac 5793 struct kmem_cache *s;
81819f0f
CL
5794 int err;
5795
18004c5d 5796 mutex_lock(&slab_mutex);
2bce6485 5797
0ff21e46 5798 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5799 if (!slab_kset) {
18004c5d 5800 mutex_unlock(&slab_mutex);
f9f58285 5801 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5802 return -ENOSYS;
5803 }
5804
97d06609 5805 slab_state = FULL;
26a7bd03 5806
5b95a4ac 5807 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5808 err = sysfs_slab_add(s);
5d540fb7 5809 if (err)
f9f58285
FF
5810 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5811 s->name);
26a7bd03 5812 }
81819f0f
CL
5813
5814 while (alias_list) {
5815 struct saved_alias *al = alias_list;
5816
5817 alias_list = alias_list->next;
5818 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5819 if (err)
f9f58285
FF
5820 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5821 al->name);
81819f0f
CL
5822 kfree(al);
5823 }
5824
18004c5d 5825 mutex_unlock(&slab_mutex);
81819f0f
CL
5826 resiliency_test();
5827 return 0;
5828}
5829
5830__initcall(slab_sysfs_init);
ab4d5ed5 5831#endif /* CONFIG_SYSFS */
57ed3eda
PE
5832
5833/*
5834 * The /proc/slabinfo ABI
5835 */
5b365771 5836#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5837void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5838{
57ed3eda 5839 unsigned long nr_slabs = 0;
205ab99d
CL
5840 unsigned long nr_objs = 0;
5841 unsigned long nr_free = 0;
57ed3eda 5842 int node;
fa45dc25 5843 struct kmem_cache_node *n;
57ed3eda 5844
fa45dc25 5845 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5846 nr_slabs += node_nr_slabs(n);
5847 nr_objs += node_nr_objs(n);
205ab99d 5848 nr_free += count_partial(n, count_free);
57ed3eda
PE
5849 }
5850
0d7561c6
GC
5851 sinfo->active_objs = nr_objs - nr_free;
5852 sinfo->num_objs = nr_objs;
5853 sinfo->active_slabs = nr_slabs;
5854 sinfo->num_slabs = nr_slabs;
5855 sinfo->objects_per_slab = oo_objects(s->oo);
5856 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5857}
5858
0d7561c6 5859void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5860{
7b3c3a50
AD
5861}
5862
b7454ad3
GC
5863ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5864 size_t count, loff_t *ppos)
7b3c3a50 5865{
b7454ad3 5866 return -EIO;
7b3c3a50 5867}
5b365771 5868#endif /* CONFIG_SLUB_DEBUG */