]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/slub.c
drm/i915/display/psr: Disable DC3CO when the PSR2 is used
[mirror_ubuntu-hirsute-kernel.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
881db7fb
CL
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
2482ddec 36#include <linux/random.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 54 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 55 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
881db7fb
CL
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
65 * page's freelist.
81819f0f
CL
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
81819f0f
CL
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
672bba3a
CL
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 88 * freed then the slab will show up again on the partial lists.
672bba3a
CL
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
81819f0f
CL
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
aed68148 96 * page->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f 111 *
aed68148 112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
ca0cab65
VB
117#ifdef CONFIG_SLUB_DEBUG
118#ifdef CONFIG_SLUB_DEBUG_ON
119DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
120#else
121DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
122#endif
123#endif
124
59052e89
VB
125static inline bool kmem_cache_debug(struct kmem_cache *s)
126{
127 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 128}
5577bd8a 129
117d54df 130void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 131{
59052e89 132 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
133 p += s->red_left_pad;
134
135 return p;
136}
137
345c905d
JK
138static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
139{
140#ifdef CONFIG_SLUB_CPU_PARTIAL
141 return !kmem_cache_debug(s);
142#else
143 return false;
144#endif
145}
146
81819f0f
CL
147/*
148 * Issues still to be resolved:
149 *
81819f0f
CL
150 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
151 *
81819f0f
CL
152 * - Variable sizing of the per node arrays
153 */
154
155/* Enable to test recovery from slab corruption on boot */
156#undef SLUB_RESILIENCY_TEST
157
b789ef51
CL
158/* Enable to log cmpxchg failures */
159#undef SLUB_DEBUG_CMPXCHG
160
2086d26a
CL
161/*
162 * Mininum number of partial slabs. These will be left on the partial
163 * lists even if they are empty. kmem_cache_shrink may reclaim them.
164 */
76be8950 165#define MIN_PARTIAL 5
e95eed57 166
2086d26a
CL
167/*
168 * Maximum number of desirable partial slabs.
169 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 170 * sort the partial list by the number of objects in use.
2086d26a
CL
171 */
172#define MAX_PARTIAL 10
173
becfda68 174#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 175 SLAB_POISON | SLAB_STORE_USER)
672bba3a 176
149daaf3
LA
177/*
178 * These debug flags cannot use CMPXCHG because there might be consistency
179 * issues when checking or reading debug information
180 */
181#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
182 SLAB_TRACE)
183
184
fa5ec8a1 185/*
3de47213
DR
186 * Debugging flags that require metadata to be stored in the slab. These get
187 * disabled when slub_debug=O is used and a cache's min order increases with
188 * metadata.
fa5ec8a1 189 */
3de47213 190#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 191
210b5c06
CG
192#define OO_SHIFT 16
193#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 194#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 195
81819f0f 196/* Internal SLUB flags */
d50112ed 197/* Poison object */
4fd0b46e 198#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 199/* Use cmpxchg_double */
4fd0b46e 200#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 201
02cbc874
CL
202/*
203 * Tracking user of a slab.
204 */
d6543e39 205#define TRACK_ADDRS_COUNT 16
02cbc874 206struct track {
ce71e27c 207 unsigned long addr; /* Called from address */
d6543e39
BG
208#ifdef CONFIG_STACKTRACE
209 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
210#endif
02cbc874
CL
211 int cpu; /* Was running on cpu */
212 int pid; /* Pid context */
213 unsigned long when; /* When did the operation occur */
214};
215
216enum track_item { TRACK_ALLOC, TRACK_FREE };
217
ab4d5ed5 218#ifdef CONFIG_SYSFS
81819f0f
CL
219static int sysfs_slab_add(struct kmem_cache *);
220static int sysfs_slab_alias(struct kmem_cache *, const char *);
81819f0f 221#else
0c710013
CL
222static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
81819f0f
CL
225#endif
226
4fdccdfb 227static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
228{
229#ifdef CONFIG_SLUB_STATS
88da03a6
CL
230 /*
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
233 */
234 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
235#endif
236}
237
81819f0f
CL
238/********************************************************************
239 * Core slab cache functions
240 *******************************************************************/
241
2482ddec
KC
242/*
243 * Returns freelist pointer (ptr). With hardening, this is obfuscated
244 * with an XOR of the address where the pointer is held and a per-cache
245 * random number.
246 */
247static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 unsigned long ptr_addr)
249{
250#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9 251 /*
aa1ef4d7 252 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
d36a63a9
AK
253 * Normally, this doesn't cause any issues, as both set_freepointer()
254 * and get_freepointer() are called with a pointer with the same tag.
255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 * example, when __free_slub() iterates over objects in a cache, it
257 * passes untagged pointers to check_object(). check_object() in turns
258 * calls get_freepointer() with an untagged pointer, which causes the
259 * freepointer to be restored incorrectly.
260 */
261 return (void *)((unsigned long)ptr ^ s->random ^
1ad53d9f 262 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
263#else
264 return ptr;
265#endif
266}
267
268/* Returns the freelist pointer recorded at location ptr_addr. */
269static inline void *freelist_dereference(const struct kmem_cache *s,
270 void *ptr_addr)
271{
272 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
273 (unsigned long)ptr_addr);
274}
275
7656c72b
CL
276static inline void *get_freepointer(struct kmem_cache *s, void *object)
277{
aa1ef4d7 278 object = kasan_reset_tag(object);
2482ddec 279 return freelist_dereference(s, object + s->offset);
7656c72b
CL
280}
281
0ad9500e
ED
282static void prefetch_freepointer(const struct kmem_cache *s, void *object)
283{
0882ff91 284 prefetch(object + s->offset);
0ad9500e
ED
285}
286
1393d9a1
CL
287static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
288{
2482ddec 289 unsigned long freepointer_addr;
1393d9a1
CL
290 void *p;
291
8e57f8ac 292 if (!debug_pagealloc_enabled_static())
922d566c
JK
293 return get_freepointer(s, object);
294
2482ddec 295 freepointer_addr = (unsigned long)object + s->offset;
fe557319 296 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
2482ddec 297 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
298}
299
7656c72b
CL
300static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
301{
2482ddec
KC
302 unsigned long freeptr_addr = (unsigned long)object + s->offset;
303
ce6fa91b
AP
304#ifdef CONFIG_SLAB_FREELIST_HARDENED
305 BUG_ON(object == fp); /* naive detection of double free or corruption */
306#endif
307
aa1ef4d7 308 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
2482ddec 309 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
310}
311
312/* Loop over all objects in a slab */
224a88be 313#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
314 for (__p = fixup_red_left(__s, __addr); \
315 __p < (__addr) + (__objects) * (__s)->size; \
316 __p += (__s)->size)
7656c72b 317
9736d2a9 318static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 319{
9736d2a9 320 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
321}
322
19af27af 323static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 324 unsigned int size)
834f3d11
CL
325{
326 struct kmem_cache_order_objects x = {
9736d2a9 327 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
328 };
329
330 return x;
331}
332
19af27af 333static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 334{
210b5c06 335 return x.x >> OO_SHIFT;
834f3d11
CL
336}
337
19af27af 338static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 339{
210b5c06 340 return x.x & OO_MASK;
834f3d11
CL
341}
342
881db7fb
CL
343/*
344 * Per slab locking using the pagelock
345 */
346static __always_inline void slab_lock(struct page *page)
347{
48c935ad 348 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
349 bit_spin_lock(PG_locked, &page->flags);
350}
351
352static __always_inline void slab_unlock(struct page *page)
353{
48c935ad 354 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
355 __bit_spin_unlock(PG_locked, &page->flags);
356}
357
1d07171c
CL
358/* Interrupts must be disabled (for the fallback code to work right) */
359static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
360 void *freelist_old, unsigned long counters_old,
361 void *freelist_new, unsigned long counters_new,
362 const char *n)
363{
364 VM_BUG_ON(!irqs_disabled());
2565409f
HC
365#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
366 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 367 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 368 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
369 freelist_old, counters_old,
370 freelist_new, counters_new))
6f6528a1 371 return true;
1d07171c
CL
372 } else
373#endif
374 {
375 slab_lock(page);
d0e0ac97
CG
376 if (page->freelist == freelist_old &&
377 page->counters == counters_old) {
1d07171c 378 page->freelist = freelist_new;
7d27a04b 379 page->counters = counters_new;
1d07171c 380 slab_unlock(page);
6f6528a1 381 return true;
1d07171c
CL
382 }
383 slab_unlock(page);
384 }
385
386 cpu_relax();
387 stat(s, CMPXCHG_DOUBLE_FAIL);
388
389#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 390 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
391#endif
392
6f6528a1 393 return false;
1d07171c
CL
394}
395
b789ef51
CL
396static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
397 void *freelist_old, unsigned long counters_old,
398 void *freelist_new, unsigned long counters_new,
399 const char *n)
400{
2565409f
HC
401#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
402 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 403 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 404 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
405 freelist_old, counters_old,
406 freelist_new, counters_new))
6f6528a1 407 return true;
b789ef51
CL
408 } else
409#endif
410 {
1d07171c
CL
411 unsigned long flags;
412
413 local_irq_save(flags);
881db7fb 414 slab_lock(page);
d0e0ac97
CG
415 if (page->freelist == freelist_old &&
416 page->counters == counters_old) {
b789ef51 417 page->freelist = freelist_new;
7d27a04b 418 page->counters = counters_new;
881db7fb 419 slab_unlock(page);
1d07171c 420 local_irq_restore(flags);
6f6528a1 421 return true;
b789ef51 422 }
881db7fb 423 slab_unlock(page);
1d07171c 424 local_irq_restore(flags);
b789ef51
CL
425 }
426
427 cpu_relax();
428 stat(s, CMPXCHG_DOUBLE_FAIL);
429
430#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 431 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
432#endif
433
6f6528a1 434 return false;
b789ef51
CL
435}
436
41ecc55b 437#ifdef CONFIG_SLUB_DEBUG
90e9f6a6
YZ
438static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
439static DEFINE_SPINLOCK(object_map_lock);
440
5f80b13a
CL
441/*
442 * Determine a map of object in use on a page.
443 *
881db7fb 444 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
445 * not vanish from under us.
446 */
90e9f6a6 447static unsigned long *get_map(struct kmem_cache *s, struct page *page)
31364c2e 448 __acquires(&object_map_lock)
5f80b13a
CL
449{
450 void *p;
451 void *addr = page_address(page);
452
90e9f6a6
YZ
453 VM_BUG_ON(!irqs_disabled());
454
455 spin_lock(&object_map_lock);
456
457 bitmap_zero(object_map, page->objects);
458
5f80b13a 459 for (p = page->freelist; p; p = get_freepointer(s, p))
4138fdfc 460 set_bit(__obj_to_index(s, addr, p), object_map);
90e9f6a6
YZ
461
462 return object_map;
463}
464
81aba9e0 465static void put_map(unsigned long *map) __releases(&object_map_lock)
90e9f6a6
YZ
466{
467 VM_BUG_ON(map != object_map);
90e9f6a6 468 spin_unlock(&object_map_lock);
5f80b13a
CL
469}
470
870b1fbb 471static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
472{
473 if (s->flags & SLAB_RED_ZONE)
474 return s->size - s->red_left_pad;
475
476 return s->size;
477}
478
479static inline void *restore_red_left(struct kmem_cache *s, void *p)
480{
481 if (s->flags & SLAB_RED_ZONE)
482 p -= s->red_left_pad;
483
484 return p;
485}
486
41ecc55b
CL
487/*
488 * Debug settings:
489 */
89d3c87e 490#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 491static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 492#else
d50112ed 493static slab_flags_t slub_debug;
f0630fff 494#endif
41ecc55b 495
e17f1dfb 496static char *slub_debug_string;
fa5ec8a1 497static int disable_higher_order_debug;
41ecc55b 498
a79316c6
AR
499/*
500 * slub is about to manipulate internal object metadata. This memory lies
501 * outside the range of the allocated object, so accessing it would normally
502 * be reported by kasan as a bounds error. metadata_access_enable() is used
503 * to tell kasan that these accesses are OK.
504 */
505static inline void metadata_access_enable(void)
506{
507 kasan_disable_current();
508}
509
510static inline void metadata_access_disable(void)
511{
512 kasan_enable_current();
513}
514
81819f0f
CL
515/*
516 * Object debugging
517 */
d86bd1be
JK
518
519/* Verify that a pointer has an address that is valid within a slab page */
520static inline int check_valid_pointer(struct kmem_cache *s,
521 struct page *page, void *object)
522{
523 void *base;
524
525 if (!object)
526 return 1;
527
528 base = page_address(page);
338cfaad 529 object = kasan_reset_tag(object);
d86bd1be
JK
530 object = restore_red_left(s, object);
531 if (object < base || object >= base + page->objects * s->size ||
532 (object - base) % s->size) {
533 return 0;
534 }
535
536 return 1;
537}
538
aa2efd5e
DT
539static void print_section(char *level, char *text, u8 *addr,
540 unsigned int length)
81819f0f 541{
a79316c6 542 metadata_access_enable();
aa1ef4d7
AK
543 print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS,
544 16, 1, addr, length, 1);
a79316c6 545 metadata_access_disable();
81819f0f
CL
546}
547
cbfc35a4
WL
548/*
549 * See comment in calculate_sizes().
550 */
551static inline bool freeptr_outside_object(struct kmem_cache *s)
552{
553 return s->offset >= s->inuse;
554}
555
556/*
557 * Return offset of the end of info block which is inuse + free pointer if
558 * not overlapping with object.
559 */
560static inline unsigned int get_info_end(struct kmem_cache *s)
561{
562 if (freeptr_outside_object(s))
563 return s->inuse + sizeof(void *);
564 else
565 return s->inuse;
566}
567
81819f0f
CL
568static struct track *get_track(struct kmem_cache *s, void *object,
569 enum track_item alloc)
570{
571 struct track *p;
572
cbfc35a4 573 p = object + get_info_end(s);
81819f0f 574
aa1ef4d7 575 return kasan_reset_tag(p + alloc);
81819f0f
CL
576}
577
578static void set_track(struct kmem_cache *s, void *object,
ce71e27c 579 enum track_item alloc, unsigned long addr)
81819f0f 580{
1a00df4a 581 struct track *p = get_track(s, object, alloc);
81819f0f 582
81819f0f 583 if (addr) {
d6543e39 584#ifdef CONFIG_STACKTRACE
79716799 585 unsigned int nr_entries;
d6543e39 586
a79316c6 587 metadata_access_enable();
aa1ef4d7
AK
588 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
589 TRACK_ADDRS_COUNT, 3);
a79316c6 590 metadata_access_disable();
d6543e39 591
79716799
TG
592 if (nr_entries < TRACK_ADDRS_COUNT)
593 p->addrs[nr_entries] = 0;
d6543e39 594#endif
81819f0f
CL
595 p->addr = addr;
596 p->cpu = smp_processor_id();
88e4ccf2 597 p->pid = current->pid;
81819f0f 598 p->when = jiffies;
b8ca7ff7 599 } else {
81819f0f 600 memset(p, 0, sizeof(struct track));
b8ca7ff7 601 }
81819f0f
CL
602}
603
81819f0f
CL
604static void init_tracking(struct kmem_cache *s, void *object)
605{
24922684
CL
606 if (!(s->flags & SLAB_STORE_USER))
607 return;
608
ce71e27c
EGM
609 set_track(s, object, TRACK_FREE, 0UL);
610 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
611}
612
86609d33 613static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
614{
615 if (!t->addr)
616 return;
617
f9f58285 618 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 619 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
d6543e39
BG
620#ifdef CONFIG_STACKTRACE
621 {
622 int i;
623 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
624 if (t->addrs[i])
f9f58285 625 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
626 else
627 break;
628 }
629#endif
24922684
CL
630}
631
e42f174e 632void print_tracking(struct kmem_cache *s, void *object)
24922684 633{
86609d33 634 unsigned long pr_time = jiffies;
24922684
CL
635 if (!(s->flags & SLAB_STORE_USER))
636 return;
637
86609d33
CP
638 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
639 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
640}
641
642static void print_page_info(struct page *page)
643{
f9f58285 644 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 645 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
646
647}
648
649static void slab_bug(struct kmem_cache *s, char *fmt, ...)
650{
ecc42fbe 651 struct va_format vaf;
24922684 652 va_list args;
24922684
CL
653
654 va_start(args, fmt);
ecc42fbe
FF
655 vaf.fmt = fmt;
656 vaf.va = &args;
f9f58285 657 pr_err("=============================================================================\n");
ecc42fbe 658 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 659 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 660
373d4d09 661 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 662 va_end(args);
81819f0f
CL
663}
664
24922684
CL
665static void slab_fix(struct kmem_cache *s, char *fmt, ...)
666{
ecc42fbe 667 struct va_format vaf;
24922684 668 va_list args;
24922684
CL
669
670 va_start(args, fmt);
ecc42fbe
FF
671 vaf.fmt = fmt;
672 vaf.va = &args;
673 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 674 va_end(args);
24922684
CL
675}
676
52f23478 677static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 678 void **freelist, void *nextfree)
52f23478
DZ
679{
680 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
dc07a728
ER
681 !check_valid_pointer(s, page, nextfree) && freelist) {
682 object_err(s, page, *freelist, "Freechain corrupt");
683 *freelist = NULL;
52f23478
DZ
684 slab_fix(s, "Isolate corrupted freechain");
685 return true;
686 }
687
688 return false;
689}
690
24922684 691static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
692{
693 unsigned int off; /* Offset of last byte */
a973e9dd 694 u8 *addr = page_address(page);
24922684
CL
695
696 print_tracking(s, p);
697
698 print_page_info(page);
699
f9f58285
FF
700 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
701 p, p - addr, get_freepointer(s, p));
24922684 702
d86bd1be 703 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
704 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
705 s->red_left_pad);
d86bd1be 706 else if (p > addr + 16)
aa2efd5e 707 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 708
aa2efd5e 709 print_section(KERN_ERR, "Object ", p,
1b473f29 710 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 711 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 712 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 713 s->inuse - s->object_size);
81819f0f 714
cbfc35a4 715 off = get_info_end(s);
81819f0f 716
24922684 717 if (s->flags & SLAB_STORE_USER)
81819f0f 718 off += 2 * sizeof(struct track);
81819f0f 719
80a9201a
AP
720 off += kasan_metadata_size(s);
721
d86bd1be 722 if (off != size_from_object(s))
81819f0f 723 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
724 print_section(KERN_ERR, "Padding ", p + off,
725 size_from_object(s) - off);
24922684
CL
726
727 dump_stack();
81819f0f
CL
728}
729
75c66def 730void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
731 u8 *object, char *reason)
732{
3dc50637 733 slab_bug(s, "%s", reason);
24922684 734 print_trailer(s, page, object);
81819f0f
CL
735}
736
a38965bf 737static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 738 const char *fmt, ...)
81819f0f
CL
739{
740 va_list args;
741 char buf[100];
742
24922684
CL
743 va_start(args, fmt);
744 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 745 va_end(args);
3dc50637 746 slab_bug(s, "%s", buf);
24922684 747 print_page_info(page);
81819f0f
CL
748 dump_stack();
749}
750
f7cb1933 751static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f 752{
aa1ef4d7 753 u8 *p = kasan_reset_tag(object);
81819f0f 754
d86bd1be
JK
755 if (s->flags & SLAB_RED_ZONE)
756 memset(p - s->red_left_pad, val, s->red_left_pad);
757
81819f0f 758 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
759 memset(p, POISON_FREE, s->object_size - 1);
760 p[s->object_size - 1] = POISON_END;
81819f0f
CL
761 }
762
763 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 764 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
765}
766
24922684
CL
767static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
768 void *from, void *to)
769{
770 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
771 memset(from, data, to - from);
772}
773
774static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
775 u8 *object, char *what,
06428780 776 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
777{
778 u8 *fault;
779 u8 *end;
e1b70dd1 780 u8 *addr = page_address(page);
24922684 781
a79316c6 782 metadata_access_enable();
aa1ef4d7 783 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
a79316c6 784 metadata_access_disable();
24922684
CL
785 if (!fault)
786 return 1;
787
788 end = start + bytes;
789 while (end > fault && end[-1] == value)
790 end--;
791
792 slab_bug(s, "%s overwritten", what);
e1b70dd1
MC
793 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
794 fault, end - 1, fault - addr,
795 fault[0], value);
24922684
CL
796 print_trailer(s, page, object);
797
798 restore_bytes(s, what, value, fault, end);
799 return 0;
81819f0f
CL
800}
801
81819f0f
CL
802/*
803 * Object layout:
804 *
805 * object address
806 * Bytes of the object to be managed.
807 * If the freepointer may overlay the object then the free
cbfc35a4 808 * pointer is at the middle of the object.
672bba3a 809 *
81819f0f
CL
810 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
811 * 0xa5 (POISON_END)
812 *
3b0efdfa 813 * object + s->object_size
81819f0f 814 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 815 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 816 * object_size == inuse.
672bba3a 817 *
81819f0f
CL
818 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
819 * 0xcc (RED_ACTIVE) for objects in use.
820 *
821 * object + s->inuse
672bba3a
CL
822 * Meta data starts here.
823 *
81819f0f
CL
824 * A. Free pointer (if we cannot overwrite object on free)
825 * B. Tracking data for SLAB_STORE_USER
672bba3a 826 * C. Padding to reach required alignment boundary or at mininum
6446faa2 827 * one word if debugging is on to be able to detect writes
672bba3a
CL
828 * before the word boundary.
829 *
830 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
831 *
832 * object + s->size
672bba3a 833 * Nothing is used beyond s->size.
81819f0f 834 *
3b0efdfa 835 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 836 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
837 * may be used with merged slabcaches.
838 */
839
81819f0f
CL
840static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
841{
cbfc35a4 842 unsigned long off = get_info_end(s); /* The end of info */
81819f0f
CL
843
844 if (s->flags & SLAB_STORE_USER)
845 /* We also have user information there */
846 off += 2 * sizeof(struct track);
847
80a9201a
AP
848 off += kasan_metadata_size(s);
849
d86bd1be 850 if (size_from_object(s) == off)
81819f0f
CL
851 return 1;
852
24922684 853 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 854 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
855}
856
39b26464 857/* Check the pad bytes at the end of a slab page */
81819f0f
CL
858static int slab_pad_check(struct kmem_cache *s, struct page *page)
859{
24922684
CL
860 u8 *start;
861 u8 *fault;
862 u8 *end;
5d682681 863 u8 *pad;
24922684
CL
864 int length;
865 int remainder;
81819f0f
CL
866
867 if (!(s->flags & SLAB_POISON))
868 return 1;
869
a973e9dd 870 start = page_address(page);
a50b854e 871 length = page_size(page);
39b26464
CL
872 end = start + length;
873 remainder = length % s->size;
81819f0f
CL
874 if (!remainder)
875 return 1;
876
5d682681 877 pad = end - remainder;
a79316c6 878 metadata_access_enable();
aa1ef4d7 879 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
a79316c6 880 metadata_access_disable();
24922684
CL
881 if (!fault)
882 return 1;
883 while (end > fault && end[-1] == POISON_INUSE)
884 end--;
885
e1b70dd1
MC
886 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
887 fault, end - 1, fault - start);
5d682681 888 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 889
5d682681 890 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 891 return 0;
81819f0f
CL
892}
893
894static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 895 void *object, u8 val)
81819f0f
CL
896{
897 u8 *p = object;
3b0efdfa 898 u8 *endobject = object + s->object_size;
81819f0f
CL
899
900 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
901 if (!check_bytes_and_report(s, page, object, "Redzone",
902 object - s->red_left_pad, val, s->red_left_pad))
903 return 0;
904
24922684 905 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 906 endobject, val, s->inuse - s->object_size))
81819f0f 907 return 0;
81819f0f 908 } else {
3b0efdfa 909 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 910 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
911 endobject, POISON_INUSE,
912 s->inuse - s->object_size);
3adbefee 913 }
81819f0f
CL
914 }
915
916 if (s->flags & SLAB_POISON) {
f7cb1933 917 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 918 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 919 POISON_FREE, s->object_size - 1) ||
24922684 920 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 921 p + s->object_size - 1, POISON_END, 1)))
81819f0f 922 return 0;
81819f0f
CL
923 /*
924 * check_pad_bytes cleans up on its own.
925 */
926 check_pad_bytes(s, page, p);
927 }
928
cbfc35a4 929 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
930 /*
931 * Object and freepointer overlap. Cannot check
932 * freepointer while object is allocated.
933 */
934 return 1;
935
936 /* Check free pointer validity */
937 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
938 object_err(s, page, p, "Freepointer corrupt");
939 /*
9f6c708e 940 * No choice but to zap it and thus lose the remainder
81819f0f 941 * of the free objects in this slab. May cause
672bba3a 942 * another error because the object count is now wrong.
81819f0f 943 */
a973e9dd 944 set_freepointer(s, p, NULL);
81819f0f
CL
945 return 0;
946 }
947 return 1;
948}
949
950static int check_slab(struct kmem_cache *s, struct page *page)
951{
39b26464
CL
952 int maxobj;
953
81819f0f
CL
954 VM_BUG_ON(!irqs_disabled());
955
956 if (!PageSlab(page)) {
24922684 957 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
958 return 0;
959 }
39b26464 960
9736d2a9 961 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
962 if (page->objects > maxobj) {
963 slab_err(s, page, "objects %u > max %u",
f6edde9c 964 page->objects, maxobj);
39b26464
CL
965 return 0;
966 }
967 if (page->inuse > page->objects) {
24922684 968 slab_err(s, page, "inuse %u > max %u",
f6edde9c 969 page->inuse, page->objects);
81819f0f
CL
970 return 0;
971 }
972 /* Slab_pad_check fixes things up after itself */
973 slab_pad_check(s, page);
974 return 1;
975}
976
977/*
672bba3a
CL
978 * Determine if a certain object on a page is on the freelist. Must hold the
979 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
980 */
981static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
982{
983 int nr = 0;
881db7fb 984 void *fp;
81819f0f 985 void *object = NULL;
f6edde9c 986 int max_objects;
81819f0f 987
881db7fb 988 fp = page->freelist;
39b26464 989 while (fp && nr <= page->objects) {
81819f0f
CL
990 if (fp == search)
991 return 1;
992 if (!check_valid_pointer(s, page, fp)) {
993 if (object) {
994 object_err(s, page, object,
995 "Freechain corrupt");
a973e9dd 996 set_freepointer(s, object, NULL);
81819f0f 997 } else {
24922684 998 slab_err(s, page, "Freepointer corrupt");
a973e9dd 999 page->freelist = NULL;
39b26464 1000 page->inuse = page->objects;
24922684 1001 slab_fix(s, "Freelist cleared");
81819f0f
CL
1002 return 0;
1003 }
1004 break;
1005 }
1006 object = fp;
1007 fp = get_freepointer(s, object);
1008 nr++;
1009 }
1010
9736d2a9 1011 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
1012 if (max_objects > MAX_OBJS_PER_PAGE)
1013 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
1014
1015 if (page->objects != max_objects) {
756a025f
JP
1016 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1017 page->objects, max_objects);
224a88be
CL
1018 page->objects = max_objects;
1019 slab_fix(s, "Number of objects adjusted.");
1020 }
39b26464 1021 if (page->inuse != page->objects - nr) {
756a025f
JP
1022 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1023 page->inuse, page->objects - nr);
39b26464 1024 page->inuse = page->objects - nr;
24922684 1025 slab_fix(s, "Object count adjusted.");
81819f0f
CL
1026 }
1027 return search == NULL;
1028}
1029
0121c619
CL
1030static void trace(struct kmem_cache *s, struct page *page, void *object,
1031 int alloc)
3ec09742
CL
1032{
1033 if (s->flags & SLAB_TRACE) {
f9f58285 1034 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1035 s->name,
1036 alloc ? "alloc" : "free",
1037 object, page->inuse,
1038 page->freelist);
1039
1040 if (!alloc)
aa2efd5e 1041 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1042 s->object_size);
3ec09742
CL
1043
1044 dump_stack();
1045 }
1046}
1047
643b1138 1048/*
672bba3a 1049 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1050 */
5cc6eee8
CL
1051static void add_full(struct kmem_cache *s,
1052 struct kmem_cache_node *n, struct page *page)
643b1138 1053{
5cc6eee8
CL
1054 if (!(s->flags & SLAB_STORE_USER))
1055 return;
1056
255d0884 1057 lockdep_assert_held(&n->list_lock);
916ac052 1058 list_add(&page->slab_list, &n->full);
643b1138
CL
1059}
1060
c65c1877 1061static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1062{
643b1138
CL
1063 if (!(s->flags & SLAB_STORE_USER))
1064 return;
1065
255d0884 1066 lockdep_assert_held(&n->list_lock);
916ac052 1067 list_del(&page->slab_list);
643b1138
CL
1068}
1069
0f389ec6
CL
1070/* Tracking of the number of slabs for debugging purposes */
1071static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1072{
1073 struct kmem_cache_node *n = get_node(s, node);
1074
1075 return atomic_long_read(&n->nr_slabs);
1076}
1077
26c02cf0
AB
1078static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1079{
1080 return atomic_long_read(&n->nr_slabs);
1081}
1082
205ab99d 1083static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1084{
1085 struct kmem_cache_node *n = get_node(s, node);
1086
1087 /*
1088 * May be called early in order to allocate a slab for the
1089 * kmem_cache_node structure. Solve the chicken-egg
1090 * dilemma by deferring the increment of the count during
1091 * bootstrap (see early_kmem_cache_node_alloc).
1092 */
338b2642 1093 if (likely(n)) {
0f389ec6 1094 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1095 atomic_long_add(objects, &n->total_objects);
1096 }
0f389ec6 1097}
205ab99d 1098static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1099{
1100 struct kmem_cache_node *n = get_node(s, node);
1101
1102 atomic_long_dec(&n->nr_slabs);
205ab99d 1103 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1104}
1105
1106/* Object debug checks for alloc/free paths */
3ec09742
CL
1107static void setup_object_debug(struct kmem_cache *s, struct page *page,
1108 void *object)
1109{
8fc8d666 1110 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1111 return;
1112
f7cb1933 1113 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1114 init_tracking(s, object);
1115}
1116
a50b854e
MWO
1117static
1118void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
a7101224 1119{
8fc8d666 1120 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1121 return;
1122
1123 metadata_access_enable();
aa1ef4d7 1124 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
a7101224
AK
1125 metadata_access_disable();
1126}
1127
becfda68 1128static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1129 struct page *page, void *object)
81819f0f
CL
1130{
1131 if (!check_slab(s, page))
becfda68 1132 return 0;
81819f0f 1133
81819f0f
CL
1134 if (!check_valid_pointer(s, page, object)) {
1135 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1136 return 0;
81819f0f
CL
1137 }
1138
f7cb1933 1139 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1140 return 0;
1141
1142 return 1;
1143}
1144
1145static noinline int alloc_debug_processing(struct kmem_cache *s,
1146 struct page *page,
1147 void *object, unsigned long addr)
1148{
1149 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1150 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1151 goto bad;
1152 }
81819f0f 1153
3ec09742
CL
1154 /* Success perform special debug activities for allocs */
1155 if (s->flags & SLAB_STORE_USER)
1156 set_track(s, object, TRACK_ALLOC, addr);
1157 trace(s, page, object, 1);
f7cb1933 1158 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1159 return 1;
3ec09742 1160
81819f0f
CL
1161bad:
1162 if (PageSlab(page)) {
1163 /*
1164 * If this is a slab page then lets do the best we can
1165 * to avoid issues in the future. Marking all objects
672bba3a 1166 * as used avoids touching the remaining objects.
81819f0f 1167 */
24922684 1168 slab_fix(s, "Marking all objects used");
39b26464 1169 page->inuse = page->objects;
a973e9dd 1170 page->freelist = NULL;
81819f0f
CL
1171 }
1172 return 0;
1173}
1174
becfda68
LA
1175static inline int free_consistency_checks(struct kmem_cache *s,
1176 struct page *page, void *object, unsigned long addr)
81819f0f 1177{
81819f0f 1178 if (!check_valid_pointer(s, page, object)) {
70d71228 1179 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1180 return 0;
81819f0f
CL
1181 }
1182
1183 if (on_freelist(s, page, object)) {
24922684 1184 object_err(s, page, object, "Object already free");
becfda68 1185 return 0;
81819f0f
CL
1186 }
1187
f7cb1933 1188 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1189 return 0;
81819f0f 1190
1b4f59e3 1191 if (unlikely(s != page->slab_cache)) {
3adbefee 1192 if (!PageSlab(page)) {
756a025f
JP
1193 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1194 object);
1b4f59e3 1195 } else if (!page->slab_cache) {
f9f58285
FF
1196 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1197 object);
70d71228 1198 dump_stack();
06428780 1199 } else
24922684
CL
1200 object_err(s, page, object,
1201 "page slab pointer corrupt.");
becfda68
LA
1202 return 0;
1203 }
1204 return 1;
1205}
1206
1207/* Supports checking bulk free of a constructed freelist */
1208static noinline int free_debug_processing(
1209 struct kmem_cache *s, struct page *page,
1210 void *head, void *tail, int bulk_cnt,
1211 unsigned long addr)
1212{
1213 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1214 void *object = head;
1215 int cnt = 0;
3f649ab7 1216 unsigned long flags;
becfda68
LA
1217 int ret = 0;
1218
1219 spin_lock_irqsave(&n->list_lock, flags);
1220 slab_lock(page);
1221
1222 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1223 if (!check_slab(s, page))
1224 goto out;
1225 }
1226
1227next_object:
1228 cnt++;
1229
1230 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1231 if (!free_consistency_checks(s, page, object, addr))
1232 goto out;
81819f0f 1233 }
3ec09742 1234
3ec09742
CL
1235 if (s->flags & SLAB_STORE_USER)
1236 set_track(s, object, TRACK_FREE, addr);
1237 trace(s, page, object, 0);
81084651 1238 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1239 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1240
1241 /* Reached end of constructed freelist yet? */
1242 if (object != tail) {
1243 object = get_freepointer(s, object);
1244 goto next_object;
1245 }
804aa132
LA
1246 ret = 1;
1247
5c2e4bbb 1248out:
81084651
JDB
1249 if (cnt != bulk_cnt)
1250 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1251 bulk_cnt, cnt);
1252
881db7fb 1253 slab_unlock(page);
282acb43 1254 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1255 if (!ret)
1256 slab_fix(s, "Object at 0x%p not freed", object);
1257 return ret;
81819f0f
CL
1258}
1259
e17f1dfb
VB
1260/*
1261 * Parse a block of slub_debug options. Blocks are delimited by ';'
1262 *
1263 * @str: start of block
1264 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1265 * @slabs: return start of list of slabs, or NULL when there's no list
1266 * @init: assume this is initial parsing and not per-kmem-create parsing
1267 *
1268 * returns the start of next block if there's any, or NULL
1269 */
1270static char *
1271parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1272{
e17f1dfb 1273 bool higher_order_disable = false;
f0630fff 1274
e17f1dfb
VB
1275 /* Skip any completely empty blocks */
1276 while (*str && *str == ';')
1277 str++;
1278
1279 if (*str == ',') {
f0630fff
CL
1280 /*
1281 * No options but restriction on slabs. This means full
1282 * debugging for slabs matching a pattern.
1283 */
e17f1dfb 1284 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1285 goto check_slabs;
e17f1dfb
VB
1286 }
1287 *flags = 0;
f0630fff 1288
e17f1dfb
VB
1289 /* Determine which debug features should be switched on */
1290 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1291 switch (tolower(*str)) {
e17f1dfb
VB
1292 case '-':
1293 *flags = 0;
1294 break;
f0630fff 1295 case 'f':
e17f1dfb 1296 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1297 break;
1298 case 'z':
e17f1dfb 1299 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1300 break;
1301 case 'p':
e17f1dfb 1302 *flags |= SLAB_POISON;
f0630fff
CL
1303 break;
1304 case 'u':
e17f1dfb 1305 *flags |= SLAB_STORE_USER;
f0630fff
CL
1306 break;
1307 case 't':
e17f1dfb 1308 *flags |= SLAB_TRACE;
f0630fff 1309 break;
4c13dd3b 1310 case 'a':
e17f1dfb 1311 *flags |= SLAB_FAILSLAB;
4c13dd3b 1312 break;
08303a73
CA
1313 case 'o':
1314 /*
1315 * Avoid enabling debugging on caches if its minimum
1316 * order would increase as a result.
1317 */
e17f1dfb 1318 higher_order_disable = true;
08303a73 1319 break;
f0630fff 1320 default:
e17f1dfb
VB
1321 if (init)
1322 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
f0630fff 1323 }
41ecc55b 1324 }
f0630fff 1325check_slabs:
41ecc55b 1326 if (*str == ',')
e17f1dfb
VB
1327 *slabs = ++str;
1328 else
1329 *slabs = NULL;
1330
1331 /* Skip over the slab list */
1332 while (*str && *str != ';')
1333 str++;
1334
1335 /* Skip any completely empty blocks */
1336 while (*str && *str == ';')
1337 str++;
1338
1339 if (init && higher_order_disable)
1340 disable_higher_order_debug = 1;
1341
1342 if (*str)
1343 return str;
1344 else
1345 return NULL;
1346}
1347
1348static int __init setup_slub_debug(char *str)
1349{
1350 slab_flags_t flags;
1351 char *saved_str;
1352 char *slab_list;
1353 bool global_slub_debug_changed = false;
1354 bool slab_list_specified = false;
1355
1356 slub_debug = DEBUG_DEFAULT_FLAGS;
1357 if (*str++ != '=' || !*str)
1358 /*
1359 * No options specified. Switch on full debugging.
1360 */
1361 goto out;
1362
1363 saved_str = str;
1364 while (str) {
1365 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1366
1367 if (!slab_list) {
1368 slub_debug = flags;
1369 global_slub_debug_changed = true;
1370 } else {
1371 slab_list_specified = true;
1372 }
1373 }
1374
1375 /*
1376 * For backwards compatibility, a single list of flags with list of
1377 * slabs means debugging is only enabled for those slabs, so the global
1378 * slub_debug should be 0. We can extended that to multiple lists as
1379 * long as there is no option specifying flags without a slab list.
1380 */
1381 if (slab_list_specified) {
1382 if (!global_slub_debug_changed)
1383 slub_debug = 0;
1384 slub_debug_string = saved_str;
1385 }
f0630fff 1386out:
ca0cab65
VB
1387 if (slub_debug != 0 || slub_debug_string)
1388 static_branch_enable(&slub_debug_enabled);
6471384a
AP
1389 if ((static_branch_unlikely(&init_on_alloc) ||
1390 static_branch_unlikely(&init_on_free)) &&
1391 (slub_debug & SLAB_POISON))
1392 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1393 return 1;
1394}
1395
1396__setup("slub_debug", setup_slub_debug);
1397
c5fd3ca0
AT
1398/*
1399 * kmem_cache_flags - apply debugging options to the cache
1400 * @object_size: the size of an object without meta data
1401 * @flags: flags to set
1402 * @name: name of the cache
c5fd3ca0
AT
1403 *
1404 * Debug option(s) are applied to @flags. In addition to the debug
1405 * option(s), if a slab name (or multiple) is specified i.e.
1406 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1407 * then only the select slabs will receive the debug option(s).
1408 */
0293d1fd 1409slab_flags_t kmem_cache_flags(unsigned int object_size,
f505bc0c 1410 slab_flags_t flags, const char *name)
41ecc55b 1411{
c5fd3ca0
AT
1412 char *iter;
1413 size_t len;
e17f1dfb
VB
1414 char *next_block;
1415 slab_flags_t block_flags;
c5fd3ca0 1416
c5fd3ca0 1417 len = strlen(name);
e17f1dfb
VB
1418 next_block = slub_debug_string;
1419 /* Go through all blocks of debug options, see if any matches our slab's name */
1420 while (next_block) {
1421 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1422 if (!iter)
1423 continue;
1424 /* Found a block that has a slab list, search it */
1425 while (*iter) {
1426 char *end, *glob;
1427 size_t cmplen;
1428
1429 end = strchrnul(iter, ',');
1430 if (next_block && next_block < end)
1431 end = next_block - 1;
1432
1433 glob = strnchr(iter, end - iter, '*');
1434 if (glob)
1435 cmplen = glob - iter;
1436 else
1437 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1438
e17f1dfb
VB
1439 if (!strncmp(name, iter, cmplen)) {
1440 flags |= block_flags;
1441 return flags;
1442 }
c5fd3ca0 1443
e17f1dfb
VB
1444 if (!*end || *end == ';')
1445 break;
1446 iter = end + 1;
c5fd3ca0 1447 }
c5fd3ca0 1448 }
ba0268a8 1449
484cfaca 1450 return flags | slub_debug;
41ecc55b 1451}
b4a64718 1452#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1453static inline void setup_object_debug(struct kmem_cache *s,
1454 struct page *page, void *object) {}
a50b854e
MWO
1455static inline
1456void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
41ecc55b 1457
3ec09742 1458static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1459 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1460
282acb43 1461static inline int free_debug_processing(
81084651
JDB
1462 struct kmem_cache *s, struct page *page,
1463 void *head, void *tail, int bulk_cnt,
282acb43 1464 unsigned long addr) { return 0; }
41ecc55b 1465
41ecc55b
CL
1466static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1467 { return 1; }
1468static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1469 void *object, u8 val) { return 1; }
5cc6eee8
CL
1470static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1471 struct page *page) {}
c65c1877
PZ
1472static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1473 struct page *page) {}
0293d1fd 1474slab_flags_t kmem_cache_flags(unsigned int object_size,
f505bc0c 1475 slab_flags_t flags, const char *name)
ba0268a8
CL
1476{
1477 return flags;
1478}
41ecc55b 1479#define slub_debug 0
0f389ec6 1480
fdaa45e9
IM
1481#define disable_higher_order_debug 0
1482
0f389ec6
CL
1483static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1484 { return 0; }
26c02cf0
AB
1485static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1486 { return 0; }
205ab99d
CL
1487static inline void inc_slabs_node(struct kmem_cache *s, int node,
1488 int objects) {}
1489static inline void dec_slabs_node(struct kmem_cache *s, int node,
1490 int objects) {}
7d550c56 1491
52f23478 1492static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 1493 void **freelist, void *nextfree)
52f23478
DZ
1494{
1495 return false;
1496}
02e72cc6
AR
1497#endif /* CONFIG_SLUB_DEBUG */
1498
1499/*
1500 * Hooks for other subsystems that check memory allocations. In a typical
1501 * production configuration these hooks all should produce no code at all.
1502 */
0116523c 1503static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1504{
53128245 1505 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1506 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1507 kmemleak_alloc(ptr, size, 1, flags);
53128245 1508 return ptr;
d56791b3
RB
1509}
1510
ee3ce779 1511static __always_inline void kfree_hook(void *x)
d56791b3
RB
1512{
1513 kmemleak_free(x);
ee3ce779 1514 kasan_kfree_large(x, _RET_IP_);
d56791b3
RB
1515}
1516
c3895391 1517static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
d56791b3
RB
1518{
1519 kmemleak_free_recursive(x, s->flags);
7d550c56 1520
02e72cc6
AR
1521 /*
1522 * Trouble is that we may no longer disable interrupts in the fast path
1523 * So in order to make the debug calls that expect irqs to be
1524 * disabled we need to disable interrupts temporarily.
1525 */
4675ff05 1526#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1527 {
1528 unsigned long flags;
1529
1530 local_irq_save(flags);
02e72cc6
AR
1531 debug_check_no_locks_freed(x, s->object_size);
1532 local_irq_restore(flags);
1533 }
1534#endif
1535 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1536 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1537
cfbe1636
ME
1538 /* Use KCSAN to help debug racy use-after-free. */
1539 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1540 __kcsan_check_access(x, s->object_size,
1541 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1542
c3895391
AK
1543 /* KASAN might put x into memory quarantine, delaying its reuse */
1544 return kasan_slab_free(s, x, _RET_IP_);
02e72cc6 1545}
205ab99d 1546
c3895391
AK
1547static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1548 void **head, void **tail)
81084651 1549{
6471384a
AP
1550
1551 void *object;
1552 void *next = *head;
1553 void *old_tail = *tail ? *tail : *head;
1554 int rsize;
1555
aea4df4c
LA
1556 /* Head and tail of the reconstructed freelist */
1557 *head = NULL;
1558 *tail = NULL;
1b7e816f 1559
aea4df4c
LA
1560 do {
1561 object = next;
1562 next = get_freepointer(s, object);
1563
1564 if (slab_want_init_on_free(s)) {
6471384a
AP
1565 /*
1566 * Clear the object and the metadata, but don't touch
1567 * the redzone.
1568 */
aa1ef4d7 1569 memset(kasan_reset_tag(object), 0, s->object_size);
6471384a
AP
1570 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1571 : 0;
aa1ef4d7 1572 memset((char *)kasan_reset_tag(object) + s->inuse, 0,
6471384a 1573 s->size - s->inuse - rsize);
81084651 1574
aea4df4c 1575 }
c3895391
AK
1576 /* If object's reuse doesn't have to be delayed */
1577 if (!slab_free_hook(s, object)) {
1578 /* Move object to the new freelist */
1579 set_freepointer(s, object, *head);
1580 *head = object;
1581 if (!*tail)
1582 *tail = object;
1583 }
1584 } while (object != old_tail);
1585
1586 if (*head == *tail)
1587 *tail = NULL;
1588
1589 return *head != NULL;
81084651
JDB
1590}
1591
4d176711 1592static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1593 void *object)
1594{
1595 setup_object_debug(s, page, object);
4d176711 1596 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1597 if (unlikely(s->ctor)) {
1598 kasan_unpoison_object_data(s, object);
1599 s->ctor(object);
1600 kasan_poison_object_data(s, object);
1601 }
4d176711 1602 return object;
588f8ba9
TG
1603}
1604
81819f0f
CL
1605/*
1606 * Slab allocation and freeing
1607 */
5dfb4175
VD
1608static inline struct page *alloc_slab_page(struct kmem_cache *s,
1609 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1610{
5dfb4175 1611 struct page *page;
19af27af 1612 unsigned int order = oo_order(oo);
65c3376a 1613
2154a336 1614 if (node == NUMA_NO_NODE)
5dfb4175 1615 page = alloc_pages(flags, order);
65c3376a 1616 else
96db800f 1617 page = __alloc_pages_node(node, flags, order);
5dfb4175 1618
5dfb4175 1619 return page;
65c3376a
CL
1620}
1621
210e7a43
TG
1622#ifdef CONFIG_SLAB_FREELIST_RANDOM
1623/* Pre-initialize the random sequence cache */
1624static int init_cache_random_seq(struct kmem_cache *s)
1625{
19af27af 1626 unsigned int count = oo_objects(s->oo);
210e7a43 1627 int err;
210e7a43 1628
a810007a
SR
1629 /* Bailout if already initialised */
1630 if (s->random_seq)
1631 return 0;
1632
210e7a43
TG
1633 err = cache_random_seq_create(s, count, GFP_KERNEL);
1634 if (err) {
1635 pr_err("SLUB: Unable to initialize free list for %s\n",
1636 s->name);
1637 return err;
1638 }
1639
1640 /* Transform to an offset on the set of pages */
1641 if (s->random_seq) {
19af27af
AD
1642 unsigned int i;
1643
210e7a43
TG
1644 for (i = 0; i < count; i++)
1645 s->random_seq[i] *= s->size;
1646 }
1647 return 0;
1648}
1649
1650/* Initialize each random sequence freelist per cache */
1651static void __init init_freelist_randomization(void)
1652{
1653 struct kmem_cache *s;
1654
1655 mutex_lock(&slab_mutex);
1656
1657 list_for_each_entry(s, &slab_caches, list)
1658 init_cache_random_seq(s);
1659
1660 mutex_unlock(&slab_mutex);
1661}
1662
1663/* Get the next entry on the pre-computed freelist randomized */
1664static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1665 unsigned long *pos, void *start,
1666 unsigned long page_limit,
1667 unsigned long freelist_count)
1668{
1669 unsigned int idx;
1670
1671 /*
1672 * If the target page allocation failed, the number of objects on the
1673 * page might be smaller than the usual size defined by the cache.
1674 */
1675 do {
1676 idx = s->random_seq[*pos];
1677 *pos += 1;
1678 if (*pos >= freelist_count)
1679 *pos = 0;
1680 } while (unlikely(idx >= page_limit));
1681
1682 return (char *)start + idx;
1683}
1684
1685/* Shuffle the single linked freelist based on a random pre-computed sequence */
1686static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1687{
1688 void *start;
1689 void *cur;
1690 void *next;
1691 unsigned long idx, pos, page_limit, freelist_count;
1692
1693 if (page->objects < 2 || !s->random_seq)
1694 return false;
1695
1696 freelist_count = oo_objects(s->oo);
1697 pos = get_random_int() % freelist_count;
1698
1699 page_limit = page->objects * s->size;
1700 start = fixup_red_left(s, page_address(page));
1701
1702 /* First entry is used as the base of the freelist */
1703 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1704 freelist_count);
4d176711 1705 cur = setup_object(s, page, cur);
210e7a43
TG
1706 page->freelist = cur;
1707
1708 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1709 next = next_freelist_entry(s, page, &pos, start, page_limit,
1710 freelist_count);
4d176711 1711 next = setup_object(s, page, next);
210e7a43
TG
1712 set_freepointer(s, cur, next);
1713 cur = next;
1714 }
210e7a43
TG
1715 set_freepointer(s, cur, NULL);
1716
1717 return true;
1718}
1719#else
1720static inline int init_cache_random_seq(struct kmem_cache *s)
1721{
1722 return 0;
1723}
1724static inline void init_freelist_randomization(void) { }
1725static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1726{
1727 return false;
1728}
1729#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1730
81819f0f
CL
1731static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1732{
06428780 1733 struct page *page;
834f3d11 1734 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1735 gfp_t alloc_gfp;
4d176711 1736 void *start, *p, *next;
a50b854e 1737 int idx;
210e7a43 1738 bool shuffle;
81819f0f 1739
7e0528da
CL
1740 flags &= gfp_allowed_mask;
1741
d0164adc 1742 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1743 local_irq_enable();
1744
b7a49f0d 1745 flags |= s->allocflags;
e12ba74d 1746
ba52270d
PE
1747 /*
1748 * Let the initial higher-order allocation fail under memory pressure
1749 * so we fall-back to the minimum order allocation.
1750 */
1751 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1752 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1753 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1754
5dfb4175 1755 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1756 if (unlikely(!page)) {
1757 oo = s->min;
80c3a998 1758 alloc_gfp = flags;
65c3376a
CL
1759 /*
1760 * Allocation may have failed due to fragmentation.
1761 * Try a lower order alloc if possible
1762 */
5dfb4175 1763 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1764 if (unlikely(!page))
1765 goto out;
1766 stat(s, ORDER_FALLBACK);
65c3376a 1767 }
5a896d9e 1768
834f3d11 1769 page->objects = oo_objects(oo);
81819f0f 1770
1f3147b4
RG
1771 account_slab_page(page, oo_order(oo), s);
1772
1b4f59e3 1773 page->slab_cache = s;
c03f94cc 1774 __SetPageSlab(page);
2f064f34 1775 if (page_is_pfmemalloc(page))
072bb0aa 1776 SetPageSlabPfmemalloc(page);
81819f0f 1777
a7101224 1778 kasan_poison_slab(page);
81819f0f 1779
a7101224 1780 start = page_address(page);
81819f0f 1781
a50b854e 1782 setup_page_debug(s, page, start);
0316bec2 1783
210e7a43
TG
1784 shuffle = shuffle_freelist(s, page);
1785
1786 if (!shuffle) {
4d176711
AK
1787 start = fixup_red_left(s, start);
1788 start = setup_object(s, page, start);
1789 page->freelist = start;
18e50661
AK
1790 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1791 next = p + s->size;
1792 next = setup_object(s, page, next);
1793 set_freepointer(s, p, next);
1794 p = next;
1795 }
1796 set_freepointer(s, p, NULL);
81819f0f 1797 }
81819f0f 1798
e6e82ea1 1799 page->inuse = page->objects;
8cb0a506 1800 page->frozen = 1;
588f8ba9 1801
81819f0f 1802out:
d0164adc 1803 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1804 local_irq_disable();
1805 if (!page)
1806 return NULL;
1807
588f8ba9
TG
1808 inc_slabs_node(s, page_to_nid(page), page->objects);
1809
81819f0f
CL
1810 return page;
1811}
1812
588f8ba9
TG
1813static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1814{
44405099
LL
1815 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1816 flags = kmalloc_fix_flags(flags);
588f8ba9
TG
1817
1818 return allocate_slab(s,
1819 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1820}
1821
81819f0f
CL
1822static void __free_slab(struct kmem_cache *s, struct page *page)
1823{
834f3d11
CL
1824 int order = compound_order(page);
1825 int pages = 1 << order;
81819f0f 1826
8fc8d666 1827 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
81819f0f
CL
1828 void *p;
1829
1830 slab_pad_check(s, page);
224a88be
CL
1831 for_each_object(p, s, page_address(page),
1832 page->objects)
f7cb1933 1833 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1834 }
1835
072bb0aa 1836 __ClearPageSlabPfmemalloc(page);
49bd5221 1837 __ClearPageSlab(page);
0c06dd75
VB
1838 /* In union with page->mapping where page allocator expects NULL */
1839 page->slab_cache = NULL;
1eb5ac64
NP
1840 if (current->reclaim_state)
1841 current->reclaim_state->reclaimed_slab += pages;
74d555be 1842 unaccount_slab_page(page, order, s);
27ee57c9 1843 __free_pages(page, order);
81819f0f
CL
1844}
1845
1846static void rcu_free_slab(struct rcu_head *h)
1847{
bf68c214 1848 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1849
1b4f59e3 1850 __free_slab(page->slab_cache, page);
81819f0f
CL
1851}
1852
1853static void free_slab(struct kmem_cache *s, struct page *page)
1854{
5f0d5a3a 1855 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1856 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1857 } else
1858 __free_slab(s, page);
1859}
1860
1861static void discard_slab(struct kmem_cache *s, struct page *page)
1862{
205ab99d 1863 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1864 free_slab(s, page);
1865}
1866
1867/*
5cc6eee8 1868 * Management of partially allocated slabs.
81819f0f 1869 */
1e4dd946
SR
1870static inline void
1871__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1872{
e95eed57 1873 n->nr_partial++;
136333d1 1874 if (tail == DEACTIVATE_TO_TAIL)
916ac052 1875 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 1876 else
916ac052 1877 list_add(&page->slab_list, &n->partial);
81819f0f
CL
1878}
1879
1e4dd946
SR
1880static inline void add_partial(struct kmem_cache_node *n,
1881 struct page *page, int tail)
62e346a8 1882{
c65c1877 1883 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1884 __add_partial(n, page, tail);
1885}
c65c1877 1886
1e4dd946
SR
1887static inline void remove_partial(struct kmem_cache_node *n,
1888 struct page *page)
1889{
1890 lockdep_assert_held(&n->list_lock);
916ac052 1891 list_del(&page->slab_list);
52b4b950 1892 n->nr_partial--;
1e4dd946
SR
1893}
1894
81819f0f 1895/*
7ced3719
CL
1896 * Remove slab from the partial list, freeze it and
1897 * return the pointer to the freelist.
81819f0f 1898 *
497b66f2 1899 * Returns a list of objects or NULL if it fails.
81819f0f 1900 */
497b66f2 1901static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1902 struct kmem_cache_node *n, struct page *page,
633b0764 1903 int mode, int *objects)
81819f0f 1904{
2cfb7455
CL
1905 void *freelist;
1906 unsigned long counters;
1907 struct page new;
1908
c65c1877
PZ
1909 lockdep_assert_held(&n->list_lock);
1910
2cfb7455
CL
1911 /*
1912 * Zap the freelist and set the frozen bit.
1913 * The old freelist is the list of objects for the
1914 * per cpu allocation list.
1915 */
7ced3719
CL
1916 freelist = page->freelist;
1917 counters = page->counters;
1918 new.counters = counters;
633b0764 1919 *objects = new.objects - new.inuse;
23910c50 1920 if (mode) {
7ced3719 1921 new.inuse = page->objects;
23910c50
PE
1922 new.freelist = NULL;
1923 } else {
1924 new.freelist = freelist;
1925 }
2cfb7455 1926
a0132ac0 1927 VM_BUG_ON(new.frozen);
7ced3719 1928 new.frozen = 1;
2cfb7455 1929
7ced3719 1930 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1931 freelist, counters,
02d7633f 1932 new.freelist, new.counters,
7ced3719 1933 "acquire_slab"))
7ced3719 1934 return NULL;
2cfb7455
CL
1935
1936 remove_partial(n, page);
7ced3719 1937 WARN_ON(!freelist);
49e22585 1938 return freelist;
81819f0f
CL
1939}
1940
633b0764 1941static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1942static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1943
81819f0f 1944/*
672bba3a 1945 * Try to allocate a partial slab from a specific node.
81819f0f 1946 */
8ba00bb6
JK
1947static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1948 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1949{
49e22585
CL
1950 struct page *page, *page2;
1951 void *object = NULL;
e5d9998f 1952 unsigned int available = 0;
633b0764 1953 int objects;
81819f0f
CL
1954
1955 /*
1956 * Racy check. If we mistakenly see no partial slabs then we
1957 * just allocate an empty slab. If we mistakenly try to get a
70b6d25e 1958 * partial slab and there is none available then get_partial()
672bba3a 1959 * will return NULL.
81819f0f
CL
1960 */
1961 if (!n || !n->nr_partial)
1962 return NULL;
1963
1964 spin_lock(&n->list_lock);
916ac052 1965 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 1966 void *t;
49e22585 1967
8ba00bb6
JK
1968 if (!pfmemalloc_match(page, flags))
1969 continue;
1970
633b0764 1971 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585 1972 if (!t)
3555c14a 1973 break;
49e22585 1974
633b0764 1975 available += objects;
12d79634 1976 if (!object) {
49e22585 1977 c->page = page;
49e22585 1978 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1979 object = t;
49e22585 1980 } else {
633b0764 1981 put_cpu_partial(s, page, 0);
8028dcea 1982 stat(s, CPU_PARTIAL_NODE);
49e22585 1983 }
345c905d 1984 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 1985 || available > slub_cpu_partial(s) / 2)
49e22585
CL
1986 break;
1987
497b66f2 1988 }
81819f0f 1989 spin_unlock(&n->list_lock);
497b66f2 1990 return object;
81819f0f
CL
1991}
1992
1993/*
672bba3a 1994 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1995 */
de3ec035 1996static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1997 struct kmem_cache_cpu *c)
81819f0f
CL
1998{
1999#ifdef CONFIG_NUMA
2000 struct zonelist *zonelist;
dd1a239f 2001 struct zoneref *z;
54a6eb5c 2002 struct zone *zone;
97a225e6 2003 enum zone_type highest_zoneidx = gfp_zone(flags);
497b66f2 2004 void *object;
cc9a6c87 2005 unsigned int cpuset_mems_cookie;
81819f0f
CL
2006
2007 /*
672bba3a
CL
2008 * The defrag ratio allows a configuration of the tradeoffs between
2009 * inter node defragmentation and node local allocations. A lower
2010 * defrag_ratio increases the tendency to do local allocations
2011 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2012 *
672bba3a
CL
2013 * If the defrag_ratio is set to 0 then kmalloc() always
2014 * returns node local objects. If the ratio is higher then kmalloc()
2015 * may return off node objects because partial slabs are obtained
2016 * from other nodes and filled up.
81819f0f 2017 *
43efd3ea
LP
2018 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2019 * (which makes defrag_ratio = 1000) then every (well almost)
2020 * allocation will first attempt to defrag slab caches on other nodes.
2021 * This means scanning over all nodes to look for partial slabs which
2022 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2023 * with available objects.
81819f0f 2024 */
9824601e
CL
2025 if (!s->remote_node_defrag_ratio ||
2026 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2027 return NULL;
2028
cc9a6c87 2029 do {
d26914d1 2030 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 2031 zonelist = node_zonelist(mempolicy_slab_node(), flags);
97a225e6 2032 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2033 struct kmem_cache_node *n;
2034
2035 n = get_node(s, zone_to_nid(zone));
2036
dee2f8aa 2037 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 2038 n->nr_partial > s->min_partial) {
8ba00bb6 2039 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
2040 if (object) {
2041 /*
d26914d1
MG
2042 * Don't check read_mems_allowed_retry()
2043 * here - if mems_allowed was updated in
2044 * parallel, that was a harmless race
2045 * between allocation and the cpuset
2046 * update
cc9a6c87 2047 */
cc9a6c87
MG
2048 return object;
2049 }
c0ff7453 2050 }
81819f0f 2051 }
d26914d1 2052 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2053#endif /* CONFIG_NUMA */
81819f0f
CL
2054 return NULL;
2055}
2056
2057/*
2058 * Get a partial page, lock it and return it.
2059 */
497b66f2 2060static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 2061 struct kmem_cache_cpu *c)
81819f0f 2062{
497b66f2 2063 void *object;
a561ce00
JK
2064 int searchnode = node;
2065
2066 if (node == NUMA_NO_NODE)
2067 searchnode = numa_mem_id();
81819f0f 2068
8ba00bb6 2069 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
2070 if (object || node != NUMA_NO_NODE)
2071 return object;
81819f0f 2072
acd19fd1 2073 return get_any_partial(s, flags, c);
81819f0f
CL
2074}
2075
923717cb 2076#ifdef CONFIG_PREEMPTION
8a5ec0ba 2077/*
0d645ed1 2078 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2079 * during cmpxchg. The transactions start with the cpu number and are then
2080 * incremented by CONFIG_NR_CPUS.
2081 */
2082#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2083#else
2084/*
2085 * No preemption supported therefore also no need to check for
2086 * different cpus.
2087 */
2088#define TID_STEP 1
2089#endif
2090
2091static inline unsigned long next_tid(unsigned long tid)
2092{
2093 return tid + TID_STEP;
2094}
2095
9d5f0be0 2096#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2097static inline unsigned int tid_to_cpu(unsigned long tid)
2098{
2099 return tid % TID_STEP;
2100}
2101
2102static inline unsigned long tid_to_event(unsigned long tid)
2103{
2104 return tid / TID_STEP;
2105}
9d5f0be0 2106#endif
8a5ec0ba
CL
2107
2108static inline unsigned int init_tid(int cpu)
2109{
2110 return cpu;
2111}
2112
2113static inline void note_cmpxchg_failure(const char *n,
2114 const struct kmem_cache *s, unsigned long tid)
2115{
2116#ifdef SLUB_DEBUG_CMPXCHG
2117 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2118
f9f58285 2119 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2120
923717cb 2121#ifdef CONFIG_PREEMPTION
8a5ec0ba 2122 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2123 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2124 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2125 else
2126#endif
2127 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2128 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2129 tid_to_event(tid), tid_to_event(actual_tid));
2130 else
f9f58285 2131 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2132 actual_tid, tid, next_tid(tid));
2133#endif
4fdccdfb 2134 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2135}
2136
788e1aad 2137static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2138{
8a5ec0ba
CL
2139 int cpu;
2140
2141 for_each_possible_cpu(cpu)
2142 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2143}
2cfb7455 2144
81819f0f
CL
2145/*
2146 * Remove the cpu slab
2147 */
d0e0ac97 2148static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2149 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2150{
2cfb7455 2151 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
2152 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2153 int lock = 0;
2154 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2155 void *nextfree;
136333d1 2156 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2157 struct page new;
2158 struct page old;
2159
2160 if (page->freelist) {
84e554e6 2161 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2162 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2163 }
2164
894b8788 2165 /*
2cfb7455
CL
2166 * Stage one: Free all available per cpu objects back
2167 * to the page freelist while it is still frozen. Leave the
2168 * last one.
2169 *
2170 * There is no need to take the list->lock because the page
2171 * is still frozen.
2172 */
2173 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2174 void *prior;
2175 unsigned long counters;
2176
52f23478
DZ
2177 /*
2178 * If 'nextfree' is invalid, it is possible that the object at
2179 * 'freelist' is already corrupted. So isolate all objects
2180 * starting at 'freelist'.
2181 */
dc07a728 2182 if (freelist_corrupted(s, page, &freelist, nextfree))
52f23478
DZ
2183 break;
2184
2cfb7455
CL
2185 do {
2186 prior = page->freelist;
2187 counters = page->counters;
2188 set_freepointer(s, freelist, prior);
2189 new.counters = counters;
2190 new.inuse--;
a0132ac0 2191 VM_BUG_ON(!new.frozen);
2cfb7455 2192
1d07171c 2193 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2194 prior, counters,
2195 freelist, new.counters,
2196 "drain percpu freelist"));
2197
2198 freelist = nextfree;
2199 }
2200
894b8788 2201 /*
2cfb7455
CL
2202 * Stage two: Ensure that the page is unfrozen while the
2203 * list presence reflects the actual number of objects
2204 * during unfreeze.
2205 *
2206 * We setup the list membership and then perform a cmpxchg
2207 * with the count. If there is a mismatch then the page
2208 * is not unfrozen but the page is on the wrong list.
2209 *
2210 * Then we restart the process which may have to remove
2211 * the page from the list that we just put it on again
2212 * because the number of objects in the slab may have
2213 * changed.
894b8788 2214 */
2cfb7455 2215redo:
894b8788 2216
2cfb7455
CL
2217 old.freelist = page->freelist;
2218 old.counters = page->counters;
a0132ac0 2219 VM_BUG_ON(!old.frozen);
7c2e132c 2220
2cfb7455
CL
2221 /* Determine target state of the slab */
2222 new.counters = old.counters;
2223 if (freelist) {
2224 new.inuse--;
2225 set_freepointer(s, freelist, old.freelist);
2226 new.freelist = freelist;
2227 } else
2228 new.freelist = old.freelist;
2229
2230 new.frozen = 0;
2231
8a5b20ae 2232 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2233 m = M_FREE;
2234 else if (new.freelist) {
2235 m = M_PARTIAL;
2236 if (!lock) {
2237 lock = 1;
2238 /*
8bb4e7a2 2239 * Taking the spinlock removes the possibility
2cfb7455
CL
2240 * that acquire_slab() will see a slab page that
2241 * is frozen
2242 */
2243 spin_lock(&n->list_lock);
2244 }
2245 } else {
2246 m = M_FULL;
965c4848 2247 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2cfb7455
CL
2248 lock = 1;
2249 /*
2250 * This also ensures that the scanning of full
2251 * slabs from diagnostic functions will not see
2252 * any frozen slabs.
2253 */
2254 spin_lock(&n->list_lock);
2255 }
2256 }
2257
2258 if (l != m) {
2cfb7455 2259 if (l == M_PARTIAL)
2cfb7455 2260 remove_partial(n, page);
2cfb7455 2261 else if (l == M_FULL)
c65c1877 2262 remove_full(s, n, page);
2cfb7455 2263
88349a28 2264 if (m == M_PARTIAL)
2cfb7455 2265 add_partial(n, page, tail);
88349a28 2266 else if (m == M_FULL)
2cfb7455 2267 add_full(s, n, page);
2cfb7455
CL
2268 }
2269
2270 l = m;
1d07171c 2271 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2272 old.freelist, old.counters,
2273 new.freelist, new.counters,
2274 "unfreezing slab"))
2275 goto redo;
2276
2cfb7455
CL
2277 if (lock)
2278 spin_unlock(&n->list_lock);
2279
88349a28
WY
2280 if (m == M_PARTIAL)
2281 stat(s, tail);
2282 else if (m == M_FULL)
2283 stat(s, DEACTIVATE_FULL);
2284 else if (m == M_FREE) {
2cfb7455
CL
2285 stat(s, DEACTIVATE_EMPTY);
2286 discard_slab(s, page);
2287 stat(s, FREE_SLAB);
894b8788 2288 }
d4ff6d35
WY
2289
2290 c->page = NULL;
2291 c->freelist = NULL;
81819f0f
CL
2292}
2293
d24ac77f
JK
2294/*
2295 * Unfreeze all the cpu partial slabs.
2296 *
59a09917
CL
2297 * This function must be called with interrupts disabled
2298 * for the cpu using c (or some other guarantee must be there
2299 * to guarantee no concurrent accesses).
d24ac77f 2300 */
59a09917
CL
2301static void unfreeze_partials(struct kmem_cache *s,
2302 struct kmem_cache_cpu *c)
49e22585 2303{
345c905d 2304#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2305 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2306 struct page *page, *discard_page = NULL;
49e22585 2307
4c7ba22e 2308 while ((page = slub_percpu_partial(c))) {
49e22585
CL
2309 struct page new;
2310 struct page old;
2311
4c7ba22e 2312 slub_set_percpu_partial(c, page);
43d77867
JK
2313
2314 n2 = get_node(s, page_to_nid(page));
2315 if (n != n2) {
2316 if (n)
2317 spin_unlock(&n->list_lock);
2318
2319 n = n2;
2320 spin_lock(&n->list_lock);
2321 }
49e22585
CL
2322
2323 do {
2324
2325 old.freelist = page->freelist;
2326 old.counters = page->counters;
a0132ac0 2327 VM_BUG_ON(!old.frozen);
49e22585
CL
2328
2329 new.counters = old.counters;
2330 new.freelist = old.freelist;
2331
2332 new.frozen = 0;
2333
d24ac77f 2334 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2335 old.freelist, old.counters,
2336 new.freelist, new.counters,
2337 "unfreezing slab"));
2338
8a5b20ae 2339 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2340 page->next = discard_page;
2341 discard_page = page;
43d77867
JK
2342 } else {
2343 add_partial(n, page, DEACTIVATE_TO_TAIL);
2344 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2345 }
2346 }
2347
2348 if (n)
2349 spin_unlock(&n->list_lock);
9ada1934
SL
2350
2351 while (discard_page) {
2352 page = discard_page;
2353 discard_page = discard_page->next;
2354
2355 stat(s, DEACTIVATE_EMPTY);
2356 discard_slab(s, page);
2357 stat(s, FREE_SLAB);
2358 }
6dfd1b65 2359#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2360}
2361
2362/*
9234bae9
WY
2363 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2364 * partial page slot if available.
49e22585
CL
2365 *
2366 * If we did not find a slot then simply move all the partials to the
2367 * per node partial list.
2368 */
633b0764 2369static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2370{
345c905d 2371#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2372 struct page *oldpage;
2373 int pages;
2374 int pobjects;
2375
d6e0b7fa 2376 preempt_disable();
49e22585
CL
2377 do {
2378 pages = 0;
2379 pobjects = 0;
2380 oldpage = this_cpu_read(s->cpu_slab->partial);
2381
2382 if (oldpage) {
2383 pobjects = oldpage->pobjects;
2384 pages = oldpage->pages;
bbd4e305 2385 if (drain && pobjects > slub_cpu_partial(s)) {
49e22585
CL
2386 unsigned long flags;
2387 /*
2388 * partial array is full. Move the existing
2389 * set to the per node partial list.
2390 */
2391 local_irq_save(flags);
59a09917 2392 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2393 local_irq_restore(flags);
e24fc410 2394 oldpage = NULL;
49e22585
CL
2395 pobjects = 0;
2396 pages = 0;
8028dcea 2397 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2398 }
2399 }
2400
2401 pages++;
2402 pobjects += page->objects - page->inuse;
2403
2404 page->pages = pages;
2405 page->pobjects = pobjects;
2406 page->next = oldpage;
2407
d0e0ac97
CG
2408 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2409 != oldpage);
bbd4e305 2410 if (unlikely(!slub_cpu_partial(s))) {
d6e0b7fa
VD
2411 unsigned long flags;
2412
2413 local_irq_save(flags);
2414 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2415 local_irq_restore(flags);
2416 }
2417 preempt_enable();
6dfd1b65 2418#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2419}
2420
dfb4f096 2421static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2422{
84e554e6 2423 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2424 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2425
2426 c->tid = next_tid(c->tid);
81819f0f
CL
2427}
2428
2429/*
2430 * Flush cpu slab.
6446faa2 2431 *
81819f0f
CL
2432 * Called from IPI handler with interrupts disabled.
2433 */
0c710013 2434static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2435{
9dfc6e68 2436 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2437
1265ef2d
WY
2438 if (c->page)
2439 flush_slab(s, c);
49e22585 2440
1265ef2d 2441 unfreeze_partials(s, c);
81819f0f
CL
2442}
2443
2444static void flush_cpu_slab(void *d)
2445{
2446 struct kmem_cache *s = d;
81819f0f 2447
dfb4f096 2448 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2449}
2450
a8364d55
GBY
2451static bool has_cpu_slab(int cpu, void *info)
2452{
2453 struct kmem_cache *s = info;
2454 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2455
a93cf07b 2456 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2457}
2458
81819f0f
CL
2459static void flush_all(struct kmem_cache *s)
2460{
cb923159 2461 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
81819f0f
CL
2462}
2463
a96a87bf
SAS
2464/*
2465 * Use the cpu notifier to insure that the cpu slabs are flushed when
2466 * necessary.
2467 */
2468static int slub_cpu_dead(unsigned int cpu)
2469{
2470 struct kmem_cache *s;
2471 unsigned long flags;
2472
2473 mutex_lock(&slab_mutex);
2474 list_for_each_entry(s, &slab_caches, list) {
2475 local_irq_save(flags);
2476 __flush_cpu_slab(s, cpu);
2477 local_irq_restore(flags);
2478 }
2479 mutex_unlock(&slab_mutex);
2480 return 0;
2481}
2482
dfb4f096
CL
2483/*
2484 * Check if the objects in a per cpu structure fit numa
2485 * locality expectations.
2486 */
57d437d2 2487static inline int node_match(struct page *page, int node)
dfb4f096
CL
2488{
2489#ifdef CONFIG_NUMA
6159d0f5 2490 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2491 return 0;
2492#endif
2493 return 1;
2494}
2495
9a02d699 2496#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2497static int count_free(struct page *page)
2498{
2499 return page->objects - page->inuse;
2500}
2501
9a02d699
DR
2502static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2503{
2504 return atomic_long_read(&n->total_objects);
2505}
2506#endif /* CONFIG_SLUB_DEBUG */
2507
2508#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2509static unsigned long count_partial(struct kmem_cache_node *n,
2510 int (*get_count)(struct page *))
2511{
2512 unsigned long flags;
2513 unsigned long x = 0;
2514 struct page *page;
2515
2516 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2517 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2518 x += get_count(page);
2519 spin_unlock_irqrestore(&n->list_lock, flags);
2520 return x;
2521}
9a02d699 2522#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2523
781b2ba6
PE
2524static noinline void
2525slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2526{
9a02d699
DR
2527#ifdef CONFIG_SLUB_DEBUG
2528 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2529 DEFAULT_RATELIMIT_BURST);
781b2ba6 2530 int node;
fa45dc25 2531 struct kmem_cache_node *n;
781b2ba6 2532
9a02d699
DR
2533 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2534 return;
2535
5b3810e5
VB
2536 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2537 nid, gfpflags, &gfpflags);
19af27af 2538 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2539 s->name, s->object_size, s->size, oo_order(s->oo),
2540 oo_order(s->min));
781b2ba6 2541
3b0efdfa 2542 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2543 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2544 s->name);
fa5ec8a1 2545
fa45dc25 2546 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2547 unsigned long nr_slabs;
2548 unsigned long nr_objs;
2549 unsigned long nr_free;
2550
26c02cf0
AB
2551 nr_free = count_partial(n, count_free);
2552 nr_slabs = node_nr_slabs(n);
2553 nr_objs = node_nr_objs(n);
781b2ba6 2554
f9f58285 2555 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2556 node, nr_slabs, nr_objs, nr_free);
2557 }
9a02d699 2558#endif
781b2ba6
PE
2559}
2560
497b66f2
CL
2561static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2562 int node, struct kmem_cache_cpu **pc)
2563{
6faa6833 2564 void *freelist;
188fd063
CL
2565 struct kmem_cache_cpu *c = *pc;
2566 struct page *page;
497b66f2 2567
128227e7
MW
2568 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2569
188fd063 2570 freelist = get_partial(s, flags, node, c);
497b66f2 2571
188fd063
CL
2572 if (freelist)
2573 return freelist;
2574
2575 page = new_slab(s, flags, node);
497b66f2 2576 if (page) {
7c8e0181 2577 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2578 if (c->page)
2579 flush_slab(s, c);
2580
2581 /*
2582 * No other reference to the page yet so we can
2583 * muck around with it freely without cmpxchg
2584 */
6faa6833 2585 freelist = page->freelist;
497b66f2
CL
2586 page->freelist = NULL;
2587
2588 stat(s, ALLOC_SLAB);
497b66f2
CL
2589 c->page = page;
2590 *pc = c;
edde82b6 2591 }
497b66f2 2592
6faa6833 2593 return freelist;
497b66f2
CL
2594}
2595
072bb0aa
MG
2596static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2597{
2598 if (unlikely(PageSlabPfmemalloc(page)))
2599 return gfp_pfmemalloc_allowed(gfpflags);
2600
2601 return true;
2602}
2603
213eeb9f 2604/*
d0e0ac97
CG
2605 * Check the page->freelist of a page and either transfer the freelist to the
2606 * per cpu freelist or deactivate the page.
213eeb9f
CL
2607 *
2608 * The page is still frozen if the return value is not NULL.
2609 *
2610 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2611 *
2612 * This function must be called with interrupt disabled.
213eeb9f
CL
2613 */
2614static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2615{
2616 struct page new;
2617 unsigned long counters;
2618 void *freelist;
2619
2620 do {
2621 freelist = page->freelist;
2622 counters = page->counters;
6faa6833 2623
213eeb9f 2624 new.counters = counters;
a0132ac0 2625 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2626
2627 new.inuse = page->objects;
2628 new.frozen = freelist != NULL;
2629
d24ac77f 2630 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2631 freelist, counters,
2632 NULL, new.counters,
2633 "get_freelist"));
2634
2635 return freelist;
2636}
2637
81819f0f 2638/*
894b8788
CL
2639 * Slow path. The lockless freelist is empty or we need to perform
2640 * debugging duties.
2641 *
894b8788
CL
2642 * Processing is still very fast if new objects have been freed to the
2643 * regular freelist. In that case we simply take over the regular freelist
2644 * as the lockless freelist and zap the regular freelist.
81819f0f 2645 *
894b8788
CL
2646 * If that is not working then we fall back to the partial lists. We take the
2647 * first element of the freelist as the object to allocate now and move the
2648 * rest of the freelist to the lockless freelist.
81819f0f 2649 *
894b8788 2650 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2651 * we need to allocate a new slab. This is the slowest path since it involves
2652 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2653 *
2654 * Version of __slab_alloc to use when we know that interrupts are
2655 * already disabled (which is the case for bulk allocation).
81819f0f 2656 */
a380a3c7 2657static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2658 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2659{
6faa6833 2660 void *freelist;
f6e7def7 2661 struct page *page;
81819f0f 2662
9f986d99
AW
2663 stat(s, ALLOC_SLOWPATH);
2664
f6e7def7 2665 page = c->page;
0715e6c5
VB
2666 if (!page) {
2667 /*
2668 * if the node is not online or has no normal memory, just
2669 * ignore the node constraint
2670 */
2671 if (unlikely(node != NUMA_NO_NODE &&
2672 !node_state(node, N_NORMAL_MEMORY)))
2673 node = NUMA_NO_NODE;
81819f0f 2674 goto new_slab;
0715e6c5 2675 }
49e22585 2676redo:
6faa6833 2677
57d437d2 2678 if (unlikely(!node_match(page, node))) {
0715e6c5
VB
2679 /*
2680 * same as above but node_match() being false already
2681 * implies node != NUMA_NO_NODE
2682 */
2683 if (!node_state(node, N_NORMAL_MEMORY)) {
2684 node = NUMA_NO_NODE;
2685 goto redo;
2686 } else {
a561ce00 2687 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2688 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2689 goto new_slab;
2690 }
fc59c053 2691 }
6446faa2 2692
072bb0aa
MG
2693 /*
2694 * By rights, we should be searching for a slab page that was
2695 * PFMEMALLOC but right now, we are losing the pfmemalloc
2696 * information when the page leaves the per-cpu allocator
2697 */
2698 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2699 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2700 goto new_slab;
2701 }
2702
73736e03 2703 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2704 freelist = c->freelist;
2705 if (freelist)
73736e03 2706 goto load_freelist;
03e404af 2707
f6e7def7 2708 freelist = get_freelist(s, page);
6446faa2 2709
6faa6833 2710 if (!freelist) {
03e404af
CL
2711 c->page = NULL;
2712 stat(s, DEACTIVATE_BYPASS);
fc59c053 2713 goto new_slab;
03e404af 2714 }
6446faa2 2715
84e554e6 2716 stat(s, ALLOC_REFILL);
6446faa2 2717
894b8788 2718load_freelist:
507effea
CL
2719 /*
2720 * freelist is pointing to the list of objects to be used.
2721 * page is pointing to the page from which the objects are obtained.
2722 * That page must be frozen for per cpu allocations to work.
2723 */
a0132ac0 2724 VM_BUG_ON(!c->page->frozen);
6faa6833 2725 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2726 c->tid = next_tid(c->tid);
6faa6833 2727 return freelist;
81819f0f 2728
81819f0f 2729new_slab:
2cfb7455 2730
a93cf07b
WY
2731 if (slub_percpu_partial(c)) {
2732 page = c->page = slub_percpu_partial(c);
2733 slub_set_percpu_partial(c, page);
49e22585 2734 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2735 goto redo;
81819f0f
CL
2736 }
2737
188fd063 2738 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2739
f4697436 2740 if (unlikely(!freelist)) {
9a02d699 2741 slab_out_of_memory(s, gfpflags, node);
f4697436 2742 return NULL;
81819f0f 2743 }
2cfb7455 2744
f6e7def7 2745 page = c->page;
5091b74a 2746 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2747 goto load_freelist;
2cfb7455 2748
497b66f2 2749 /* Only entered in the debug case */
d0e0ac97
CG
2750 if (kmem_cache_debug(s) &&
2751 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2752 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2753
d4ff6d35 2754 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2755 return freelist;
894b8788
CL
2756}
2757
a380a3c7
CL
2758/*
2759 * Another one that disabled interrupt and compensates for possible
2760 * cpu changes by refetching the per cpu area pointer.
2761 */
2762static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2763 unsigned long addr, struct kmem_cache_cpu *c)
2764{
2765 void *p;
2766 unsigned long flags;
2767
2768 local_irq_save(flags);
923717cb 2769#ifdef CONFIG_PREEMPTION
a380a3c7
CL
2770 /*
2771 * We may have been preempted and rescheduled on a different
2772 * cpu before disabling interrupts. Need to reload cpu area
2773 * pointer.
2774 */
2775 c = this_cpu_ptr(s->cpu_slab);
2776#endif
2777
2778 p = ___slab_alloc(s, gfpflags, node, addr, c);
2779 local_irq_restore(flags);
2780 return p;
2781}
2782
0f181f9f
AP
2783/*
2784 * If the object has been wiped upon free, make sure it's fully initialized by
2785 * zeroing out freelist pointer.
2786 */
2787static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2788 void *obj)
2789{
2790 if (unlikely(slab_want_init_on_free(s)) && obj)
ce5716c6
AK
2791 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
2792 0, sizeof(void *));
0f181f9f
AP
2793}
2794
894b8788
CL
2795/*
2796 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2797 * have the fastpath folded into their functions. So no function call
2798 * overhead for requests that can be satisfied on the fastpath.
2799 *
2800 * The fastpath works by first checking if the lockless freelist can be used.
2801 * If not then __slab_alloc is called for slow processing.
2802 *
2803 * Otherwise we can simply pick the next object from the lockless free list.
2804 */
2b847c3c 2805static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2806 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2807{
03ec0ed5 2808 void *object;
dfb4f096 2809 struct kmem_cache_cpu *c;
57d437d2 2810 struct page *page;
8a5ec0ba 2811 unsigned long tid;
964d4bd3 2812 struct obj_cgroup *objcg = NULL;
1f84260c 2813
964d4bd3 2814 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
8135be5a 2815 if (!s)
773ff60e 2816 return NULL;
8a5ec0ba 2817redo:
8a5ec0ba
CL
2818 /*
2819 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2820 * enabled. We may switch back and forth between cpus while
2821 * reading from one cpu area. That does not matter as long
2822 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2823 *
9aabf810 2824 * We should guarantee that tid and kmem_cache are retrieved on
923717cb 2825 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
9aabf810 2826 * to check if it is matched or not.
8a5ec0ba 2827 */
9aabf810
JK
2828 do {
2829 tid = this_cpu_read(s->cpu_slab->tid);
2830 c = raw_cpu_ptr(s->cpu_slab);
923717cb 2831 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 2832 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2833
2834 /*
2835 * Irqless object alloc/free algorithm used here depends on sequence
2836 * of fetching cpu_slab's data. tid should be fetched before anything
2837 * on c to guarantee that object and page associated with previous tid
2838 * won't be used with current tid. If we fetch tid first, object and
2839 * page could be one associated with next tid and our alloc/free
2840 * request will be failed. In this case, we will retry. So, no problem.
2841 */
2842 barrier();
8a5ec0ba 2843
8a5ec0ba
CL
2844 /*
2845 * The transaction ids are globally unique per cpu and per operation on
2846 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2847 * occurs on the right processor and that there was no operation on the
2848 * linked list in between.
2849 */
8a5ec0ba 2850
9dfc6e68 2851 object = c->freelist;
57d437d2 2852 page = c->page;
22e4663e 2853 if (unlikely(!object || !page || !node_match(page, node))) {
dfb4f096 2854 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492 2855 } else {
0ad9500e
ED
2856 void *next_object = get_freepointer_safe(s, object);
2857
8a5ec0ba 2858 /*
25985edc 2859 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2860 * operation and if we are on the right processor.
2861 *
d0e0ac97
CG
2862 * The cmpxchg does the following atomically (without lock
2863 * semantics!)
8a5ec0ba
CL
2864 * 1. Relocate first pointer to the current per cpu area.
2865 * 2. Verify that tid and freelist have not been changed
2866 * 3. If they were not changed replace tid and freelist
2867 *
d0e0ac97
CG
2868 * Since this is without lock semantics the protection is only
2869 * against code executing on this cpu *not* from access by
2870 * other cpus.
8a5ec0ba 2871 */
933393f5 2872 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2873 s->cpu_slab->freelist, s->cpu_slab->tid,
2874 object, tid,
0ad9500e 2875 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2876
2877 note_cmpxchg_failure("slab_alloc", s, tid);
2878 goto redo;
2879 }
0ad9500e 2880 prefetch_freepointer(s, next_object);
84e554e6 2881 stat(s, ALLOC_FASTPATH);
894b8788 2882 }
0f181f9f 2883
ce5716c6 2884 maybe_wipe_obj_freeptr(s, object);
8a5ec0ba 2885
6471384a 2886 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
aa1ef4d7 2887 memset(kasan_reset_tag(object), 0, s->object_size);
d07dbea4 2888
964d4bd3 2889 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object);
5a896d9e 2890
894b8788 2891 return object;
81819f0f
CL
2892}
2893
2b847c3c
EG
2894static __always_inline void *slab_alloc(struct kmem_cache *s,
2895 gfp_t gfpflags, unsigned long addr)
2896{
2897 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2898}
2899
81819f0f
CL
2900void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2901{
2b847c3c 2902 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2903
d0e0ac97
CG
2904 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2905 s->size, gfpflags);
5b882be4
EGM
2906
2907 return ret;
81819f0f
CL
2908}
2909EXPORT_SYMBOL(kmem_cache_alloc);
2910
0f24f128 2911#ifdef CONFIG_TRACING
4a92379b
RK
2912void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2913{
2b847c3c 2914 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2915 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 2916 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2917 return ret;
2918}
2919EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2920#endif
2921
81819f0f
CL
2922#ifdef CONFIG_NUMA
2923void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2924{
2b847c3c 2925 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2926
ca2b84cb 2927 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2928 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2929
2930 return ret;
81819f0f
CL
2931}
2932EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2933
0f24f128 2934#ifdef CONFIG_TRACING
4a92379b 2935void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2936 gfp_t gfpflags,
4a92379b 2937 int node, size_t size)
5b882be4 2938{
2b847c3c 2939 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2940
2941 trace_kmalloc_node(_RET_IP_, ret,
2942 size, s->size, gfpflags, node);
0316bec2 2943
0116523c 2944 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2945 return ret;
5b882be4 2946}
4a92379b 2947EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2948#endif
6dfd1b65 2949#endif /* CONFIG_NUMA */
5b882be4 2950
81819f0f 2951/*
94e4d712 2952 * Slow path handling. This may still be called frequently since objects
894b8788 2953 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2954 *
894b8788
CL
2955 * So we still attempt to reduce cache line usage. Just take the slab
2956 * lock and free the item. If there is no additional partial page
2957 * handling required then we can return immediately.
81819f0f 2958 */
894b8788 2959static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2960 void *head, void *tail, int cnt,
2961 unsigned long addr)
2962
81819f0f
CL
2963{
2964 void *prior;
2cfb7455 2965 int was_frozen;
2cfb7455
CL
2966 struct page new;
2967 unsigned long counters;
2968 struct kmem_cache_node *n = NULL;
3f649ab7 2969 unsigned long flags;
81819f0f 2970
8a5ec0ba 2971 stat(s, FREE_SLOWPATH);
81819f0f 2972
19c7ff9e 2973 if (kmem_cache_debug(s) &&
282acb43 2974 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2975 return;
6446faa2 2976
2cfb7455 2977 do {
837d678d
JK
2978 if (unlikely(n)) {
2979 spin_unlock_irqrestore(&n->list_lock, flags);
2980 n = NULL;
2981 }
2cfb7455
CL
2982 prior = page->freelist;
2983 counters = page->counters;
81084651 2984 set_freepointer(s, tail, prior);
2cfb7455
CL
2985 new.counters = counters;
2986 was_frozen = new.frozen;
81084651 2987 new.inuse -= cnt;
837d678d 2988 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2989
c65c1877 2990 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2991
2992 /*
d0e0ac97
CG
2993 * Slab was on no list before and will be
2994 * partially empty
2995 * We can defer the list move and instead
2996 * freeze it.
49e22585
CL
2997 */
2998 new.frozen = 1;
2999
c65c1877 3000 } else { /* Needs to be taken off a list */
49e22585 3001
b455def2 3002 n = get_node(s, page_to_nid(page));
49e22585
CL
3003 /*
3004 * Speculatively acquire the list_lock.
3005 * If the cmpxchg does not succeed then we may
3006 * drop the list_lock without any processing.
3007 *
3008 * Otherwise the list_lock will synchronize with
3009 * other processors updating the list of slabs.
3010 */
3011 spin_lock_irqsave(&n->list_lock, flags);
3012
3013 }
2cfb7455 3014 }
81819f0f 3015
2cfb7455
CL
3016 } while (!cmpxchg_double_slab(s, page,
3017 prior, counters,
81084651 3018 head, new.counters,
2cfb7455 3019 "__slab_free"));
81819f0f 3020
2cfb7455 3021 if (likely(!n)) {
49e22585 3022
c270cf30
AW
3023 if (likely(was_frozen)) {
3024 /*
3025 * The list lock was not taken therefore no list
3026 * activity can be necessary.
3027 */
3028 stat(s, FREE_FROZEN);
3029 } else if (new.frozen) {
3030 /*
3031 * If we just froze the page then put it onto the
3032 * per cpu partial list.
3033 */
49e22585 3034 put_cpu_partial(s, page, 1);
8028dcea
AS
3035 stat(s, CPU_PARTIAL_FREE);
3036 }
c270cf30 3037
b455def2
L
3038 return;
3039 }
81819f0f 3040
8a5b20ae 3041 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
3042 goto slab_empty;
3043
81819f0f 3044 /*
837d678d
JK
3045 * Objects left in the slab. If it was not on the partial list before
3046 * then add it.
81819f0f 3047 */
345c905d 3048 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 3049 remove_full(s, n, page);
837d678d
JK
3050 add_partial(n, page, DEACTIVATE_TO_TAIL);
3051 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 3052 }
80f08c19 3053 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
3054 return;
3055
3056slab_empty:
a973e9dd 3057 if (prior) {
81819f0f 3058 /*
6fbabb20 3059 * Slab on the partial list.
81819f0f 3060 */
5cc6eee8 3061 remove_partial(n, page);
84e554e6 3062 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 3063 } else {
6fbabb20 3064 /* Slab must be on the full list */
c65c1877
PZ
3065 remove_full(s, n, page);
3066 }
2cfb7455 3067
80f08c19 3068 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 3069 stat(s, FREE_SLAB);
81819f0f 3070 discard_slab(s, page);
81819f0f
CL
3071}
3072
894b8788
CL
3073/*
3074 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3075 * can perform fastpath freeing without additional function calls.
3076 *
3077 * The fastpath is only possible if we are freeing to the current cpu slab
3078 * of this processor. This typically the case if we have just allocated
3079 * the item before.
3080 *
3081 * If fastpath is not possible then fall back to __slab_free where we deal
3082 * with all sorts of special processing.
81084651
JDB
3083 *
3084 * Bulk free of a freelist with several objects (all pointing to the
3085 * same page) possible by specifying head and tail ptr, plus objects
3086 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 3087 */
80a9201a
AP
3088static __always_inline void do_slab_free(struct kmem_cache *s,
3089 struct page *page, void *head, void *tail,
3090 int cnt, unsigned long addr)
894b8788 3091{
81084651 3092 void *tail_obj = tail ? : head;
dfb4f096 3093 struct kmem_cache_cpu *c;
8a5ec0ba 3094 unsigned long tid;
964d4bd3 3095
d1b2cf6c 3096 memcg_slab_free_hook(s, &head, 1);
8a5ec0ba
CL
3097redo:
3098 /*
3099 * Determine the currently cpus per cpu slab.
3100 * The cpu may change afterward. However that does not matter since
3101 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3102 * during the cmpxchg then the free will succeed.
8a5ec0ba 3103 */
9aabf810
JK
3104 do {
3105 tid = this_cpu_read(s->cpu_slab->tid);
3106 c = raw_cpu_ptr(s->cpu_slab);
923717cb 3107 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 3108 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 3109
9aabf810
JK
3110 /* Same with comment on barrier() in slab_alloc_node() */
3111 barrier();
c016b0bd 3112
442b06bc 3113 if (likely(page == c->page)) {
5076190d
LT
3114 void **freelist = READ_ONCE(c->freelist);
3115
3116 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3117
933393f5 3118 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba 3119 s->cpu_slab->freelist, s->cpu_slab->tid,
5076190d 3120 freelist, tid,
81084651 3121 head, next_tid(tid)))) {
8a5ec0ba
CL
3122
3123 note_cmpxchg_failure("slab_free", s, tid);
3124 goto redo;
3125 }
84e554e6 3126 stat(s, FREE_FASTPATH);
894b8788 3127 } else
81084651 3128 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 3129
894b8788
CL
3130}
3131
80a9201a
AP
3132static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3133 void *head, void *tail, int cnt,
3134 unsigned long addr)
3135{
80a9201a 3136 /*
c3895391
AK
3137 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3138 * to remove objects, whose reuse must be delayed.
80a9201a 3139 */
c3895391
AK
3140 if (slab_free_freelist_hook(s, &head, &tail))
3141 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3142}
3143
2bd926b4 3144#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3145void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3146{
3147 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3148}
3149#endif
3150
81819f0f
CL
3151void kmem_cache_free(struct kmem_cache *s, void *x)
3152{
b9ce5ef4
GC
3153 s = cache_from_obj(s, x);
3154 if (!s)
79576102 3155 return;
81084651 3156 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 3157 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
3158}
3159EXPORT_SYMBOL(kmem_cache_free);
3160
d0ecd894 3161struct detached_freelist {
fbd02630 3162 struct page *page;
d0ecd894
JDB
3163 void *tail;
3164 void *freelist;
3165 int cnt;
376bf125 3166 struct kmem_cache *s;
d0ecd894 3167};
fbd02630 3168
d0ecd894
JDB
3169/*
3170 * This function progressively scans the array with free objects (with
3171 * a limited look ahead) and extract objects belonging to the same
3172 * page. It builds a detached freelist directly within the given
3173 * page/objects. This can happen without any need for
3174 * synchronization, because the objects are owned by running process.
3175 * The freelist is build up as a single linked list in the objects.
3176 * The idea is, that this detached freelist can then be bulk
3177 * transferred to the real freelist(s), but only requiring a single
3178 * synchronization primitive. Look ahead in the array is limited due
3179 * to performance reasons.
3180 */
376bf125
JDB
3181static inline
3182int build_detached_freelist(struct kmem_cache *s, size_t size,
3183 void **p, struct detached_freelist *df)
d0ecd894
JDB
3184{
3185 size_t first_skipped_index = 0;
3186 int lookahead = 3;
3187 void *object;
ca257195 3188 struct page *page;
fbd02630 3189
d0ecd894
JDB
3190 /* Always re-init detached_freelist */
3191 df->page = NULL;
fbd02630 3192
d0ecd894
JDB
3193 do {
3194 object = p[--size];
ca257195 3195 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3196 } while (!object && size);
3eed034d 3197
d0ecd894
JDB
3198 if (!object)
3199 return 0;
fbd02630 3200
ca257195
JDB
3201 page = virt_to_head_page(object);
3202 if (!s) {
3203 /* Handle kalloc'ed objects */
3204 if (unlikely(!PageSlab(page))) {
3205 BUG_ON(!PageCompound(page));
3206 kfree_hook(object);
4949148a 3207 __free_pages(page, compound_order(page));
ca257195
JDB
3208 p[size] = NULL; /* mark object processed */
3209 return size;
3210 }
3211 /* Derive kmem_cache from object */
3212 df->s = page->slab_cache;
3213 } else {
3214 df->s = cache_from_obj(s, object); /* Support for memcg */
3215 }
376bf125 3216
d0ecd894 3217 /* Start new detached freelist */
ca257195 3218 df->page = page;
376bf125 3219 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3220 df->tail = object;
3221 df->freelist = object;
3222 p[size] = NULL; /* mark object processed */
3223 df->cnt = 1;
3224
3225 while (size) {
3226 object = p[--size];
3227 if (!object)
3228 continue; /* Skip processed objects */
3229
3230 /* df->page is always set at this point */
3231 if (df->page == virt_to_head_page(object)) {
3232 /* Opportunity build freelist */
376bf125 3233 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3234 df->freelist = object;
3235 df->cnt++;
3236 p[size] = NULL; /* mark object processed */
3237
3238 continue;
fbd02630 3239 }
d0ecd894
JDB
3240
3241 /* Limit look ahead search */
3242 if (!--lookahead)
3243 break;
3244
3245 if (!first_skipped_index)
3246 first_skipped_index = size + 1;
fbd02630 3247 }
d0ecd894
JDB
3248
3249 return first_skipped_index;
3250}
3251
d0ecd894 3252/* Note that interrupts must be enabled when calling this function. */
376bf125 3253void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3254{
3255 if (WARN_ON(!size))
3256 return;
3257
d1b2cf6c 3258 memcg_slab_free_hook(s, p, size);
d0ecd894
JDB
3259 do {
3260 struct detached_freelist df;
3261
3262 size = build_detached_freelist(s, size, p, &df);
84582c8a 3263 if (!df.page)
d0ecd894
JDB
3264 continue;
3265
376bf125 3266 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3267 } while (likely(size));
484748f0
CL
3268}
3269EXPORT_SYMBOL(kmem_cache_free_bulk);
3270
994eb764 3271/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3272int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3273 void **p)
484748f0 3274{
994eb764
JDB
3275 struct kmem_cache_cpu *c;
3276 int i;
964d4bd3 3277 struct obj_cgroup *objcg = NULL;
994eb764 3278
03ec0ed5 3279 /* memcg and kmem_cache debug support */
964d4bd3 3280 s = slab_pre_alloc_hook(s, &objcg, size, flags);
03ec0ed5
JDB
3281 if (unlikely(!s))
3282 return false;
994eb764
JDB
3283 /*
3284 * Drain objects in the per cpu slab, while disabling local
3285 * IRQs, which protects against PREEMPT and interrupts
3286 * handlers invoking normal fastpath.
3287 */
3288 local_irq_disable();
3289 c = this_cpu_ptr(s->cpu_slab);
3290
3291 for (i = 0; i < size; i++) {
3292 void *object = c->freelist;
3293
ebe909e0 3294 if (unlikely(!object)) {
fd4d9c7d
JH
3295 /*
3296 * We may have removed an object from c->freelist using
3297 * the fastpath in the previous iteration; in that case,
3298 * c->tid has not been bumped yet.
3299 * Since ___slab_alloc() may reenable interrupts while
3300 * allocating memory, we should bump c->tid now.
3301 */
3302 c->tid = next_tid(c->tid);
3303
ebe909e0
JDB
3304 /*
3305 * Invoking slow path likely have side-effect
3306 * of re-populating per CPU c->freelist
3307 */
87098373 3308 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3309 _RET_IP_, c);
87098373
CL
3310 if (unlikely(!p[i]))
3311 goto error;
3312
ebe909e0 3313 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3314 maybe_wipe_obj_freeptr(s, p[i]);
3315
ebe909e0
JDB
3316 continue; /* goto for-loop */
3317 }
994eb764
JDB
3318 c->freelist = get_freepointer(s, object);
3319 p[i] = object;
0f181f9f 3320 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3321 }
3322 c->tid = next_tid(c->tid);
3323 local_irq_enable();
3324
3325 /* Clear memory outside IRQ disabled fastpath loop */
6471384a 3326 if (unlikely(slab_want_init_on_alloc(flags, s))) {
994eb764
JDB
3327 int j;
3328
3329 for (j = 0; j < i; j++)
ce5716c6 3330 memset(kasan_reset_tag(p[j]), 0, s->object_size);
994eb764
JDB
3331 }
3332
03ec0ed5 3333 /* memcg and kmem_cache debug support */
964d4bd3 3334 slab_post_alloc_hook(s, objcg, flags, size, p);
865762a8 3335 return i;
87098373 3336error:
87098373 3337 local_irq_enable();
964d4bd3 3338 slab_post_alloc_hook(s, objcg, flags, i, p);
03ec0ed5 3339 __kmem_cache_free_bulk(s, i, p);
865762a8 3340 return 0;
484748f0
CL
3341}
3342EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3343
3344
81819f0f 3345/*
672bba3a
CL
3346 * Object placement in a slab is made very easy because we always start at
3347 * offset 0. If we tune the size of the object to the alignment then we can
3348 * get the required alignment by putting one properly sized object after
3349 * another.
81819f0f
CL
3350 *
3351 * Notice that the allocation order determines the sizes of the per cpu
3352 * caches. Each processor has always one slab available for allocations.
3353 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3354 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3355 * locking overhead.
81819f0f
CL
3356 */
3357
3358/*
3359 * Mininum / Maximum order of slab pages. This influences locking overhead
3360 * and slab fragmentation. A higher order reduces the number of partial slabs
3361 * and increases the number of allocations possible without having to
3362 * take the list_lock.
3363 */
19af27af
AD
3364static unsigned int slub_min_order;
3365static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3366static unsigned int slub_min_objects;
81819f0f 3367
81819f0f
CL
3368/*
3369 * Calculate the order of allocation given an slab object size.
3370 *
672bba3a
CL
3371 * The order of allocation has significant impact on performance and other
3372 * system components. Generally order 0 allocations should be preferred since
3373 * order 0 does not cause fragmentation in the page allocator. Larger objects
3374 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3375 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3376 * would be wasted.
3377 *
3378 * In order to reach satisfactory performance we must ensure that a minimum
3379 * number of objects is in one slab. Otherwise we may generate too much
3380 * activity on the partial lists which requires taking the list_lock. This is
3381 * less a concern for large slabs though which are rarely used.
81819f0f 3382 *
672bba3a
CL
3383 * slub_max_order specifies the order where we begin to stop considering the
3384 * number of objects in a slab as critical. If we reach slub_max_order then
3385 * we try to keep the page order as low as possible. So we accept more waste
3386 * of space in favor of a small page order.
81819f0f 3387 *
672bba3a
CL
3388 * Higher order allocations also allow the placement of more objects in a
3389 * slab and thereby reduce object handling overhead. If the user has
3390 * requested a higher mininum order then we start with that one instead of
3391 * the smallest order which will fit the object.
81819f0f 3392 */
19af27af
AD
3393static inline unsigned int slab_order(unsigned int size,
3394 unsigned int min_objects, unsigned int max_order,
9736d2a9 3395 unsigned int fract_leftover)
81819f0f 3396{
19af27af
AD
3397 unsigned int min_order = slub_min_order;
3398 unsigned int order;
81819f0f 3399
9736d2a9 3400 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3401 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3402
9736d2a9 3403 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3404 order <= max_order; order++) {
81819f0f 3405
19af27af
AD
3406 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3407 unsigned int rem;
81819f0f 3408
9736d2a9 3409 rem = slab_size % size;
81819f0f 3410
5e6d444e 3411 if (rem <= slab_size / fract_leftover)
81819f0f 3412 break;
81819f0f 3413 }
672bba3a 3414
81819f0f
CL
3415 return order;
3416}
3417
9736d2a9 3418static inline int calculate_order(unsigned int size)
5e6d444e 3419{
19af27af
AD
3420 unsigned int order;
3421 unsigned int min_objects;
3422 unsigned int max_objects;
3286222f 3423 unsigned int nr_cpus;
5e6d444e
CL
3424
3425 /*
3426 * Attempt to find best configuration for a slab. This
3427 * works by first attempting to generate a layout with
3428 * the best configuration and backing off gradually.
3429 *
422ff4d7 3430 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3431 * we reduce the minimum objects required in a slab.
3432 */
3433 min_objects = slub_min_objects;
3286222f
VB
3434 if (!min_objects) {
3435 /*
3436 * Some architectures will only update present cpus when
3437 * onlining them, so don't trust the number if it's just 1. But
3438 * we also don't want to use nr_cpu_ids always, as on some other
3439 * architectures, there can be many possible cpus, but never
3440 * onlined. Here we compromise between trying to avoid too high
3441 * order on systems that appear larger than they are, and too
3442 * low order on systems that appear smaller than they are.
3443 */
3444 nr_cpus = num_present_cpus();
3445 if (nr_cpus <= 1)
3446 nr_cpus = nr_cpu_ids;
3447 min_objects = 4 * (fls(nr_cpus) + 1);
3448 }
9736d2a9 3449 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3450 min_objects = min(min_objects, max_objects);
3451
5e6d444e 3452 while (min_objects > 1) {
19af27af
AD
3453 unsigned int fraction;
3454
c124f5b5 3455 fraction = 16;
5e6d444e
CL
3456 while (fraction >= 4) {
3457 order = slab_order(size, min_objects,
9736d2a9 3458 slub_max_order, fraction);
5e6d444e
CL
3459 if (order <= slub_max_order)
3460 return order;
3461 fraction /= 2;
3462 }
5086c389 3463 min_objects--;
5e6d444e
CL
3464 }
3465
3466 /*
3467 * We were unable to place multiple objects in a slab. Now
3468 * lets see if we can place a single object there.
3469 */
9736d2a9 3470 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3471 if (order <= slub_max_order)
3472 return order;
3473
3474 /*
3475 * Doh this slab cannot be placed using slub_max_order.
3476 */
9736d2a9 3477 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3478 if (order < MAX_ORDER)
5e6d444e
CL
3479 return order;
3480 return -ENOSYS;
3481}
3482
5595cffc 3483static void
4053497d 3484init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3485{
3486 n->nr_partial = 0;
81819f0f
CL
3487 spin_lock_init(&n->list_lock);
3488 INIT_LIST_HEAD(&n->partial);
8ab1372f 3489#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3490 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3491 atomic_long_set(&n->total_objects, 0);
643b1138 3492 INIT_LIST_HEAD(&n->full);
8ab1372f 3493#endif
81819f0f
CL
3494}
3495
55136592 3496static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3497{
6c182dc0 3498 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3499 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3500
8a5ec0ba 3501 /*
d4d84fef
CM
3502 * Must align to double word boundary for the double cmpxchg
3503 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3504 */
d4d84fef
CM
3505 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3506 2 * sizeof(void *));
8a5ec0ba
CL
3507
3508 if (!s->cpu_slab)
3509 return 0;
3510
3511 init_kmem_cache_cpus(s);
4c93c355 3512
8a5ec0ba 3513 return 1;
4c93c355 3514}
4c93c355 3515
51df1142
CL
3516static struct kmem_cache *kmem_cache_node;
3517
81819f0f
CL
3518/*
3519 * No kmalloc_node yet so do it by hand. We know that this is the first
3520 * slab on the node for this slabcache. There are no concurrent accesses
3521 * possible.
3522 *
721ae22a
ZYW
3523 * Note that this function only works on the kmem_cache_node
3524 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3525 * memory on a fresh node that has no slab structures yet.
81819f0f 3526 */
55136592 3527static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3528{
3529 struct page *page;
3530 struct kmem_cache_node *n;
3531
51df1142 3532 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3533
51df1142 3534 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3535
3536 BUG_ON(!page);
a2f92ee7 3537 if (page_to_nid(page) != node) {
f9f58285
FF
3538 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3539 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3540 }
3541
81819f0f
CL
3542 n = page->freelist;
3543 BUG_ON(!n);
8ab1372f 3544#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3545 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3546 init_tracking(kmem_cache_node, n);
8ab1372f 3547#endif
12b22386 3548 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
505f5dcb 3549 GFP_KERNEL);
12b22386
AK
3550 page->freelist = get_freepointer(kmem_cache_node, n);
3551 page->inuse = 1;
3552 page->frozen = 0;
3553 kmem_cache_node->node[node] = n;
4053497d 3554 init_kmem_cache_node(n);
51df1142 3555 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3556
67b6c900 3557 /*
1e4dd946
SR
3558 * No locks need to be taken here as it has just been
3559 * initialized and there is no concurrent access.
67b6c900 3560 */
1e4dd946 3561 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3562}
3563
3564static void free_kmem_cache_nodes(struct kmem_cache *s)
3565{
3566 int node;
fa45dc25 3567 struct kmem_cache_node *n;
81819f0f 3568
fa45dc25 3569 for_each_kmem_cache_node(s, node, n) {
81819f0f 3570 s->node[node] = NULL;
ea37df54 3571 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3572 }
3573}
3574
52b4b950
DS
3575void __kmem_cache_release(struct kmem_cache *s)
3576{
210e7a43 3577 cache_random_seq_destroy(s);
52b4b950
DS
3578 free_percpu(s->cpu_slab);
3579 free_kmem_cache_nodes(s);
3580}
3581
55136592 3582static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3583{
3584 int node;
81819f0f 3585
f64dc58c 3586 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3587 struct kmem_cache_node *n;
3588
73367bd8 3589 if (slab_state == DOWN) {
55136592 3590 early_kmem_cache_node_alloc(node);
73367bd8
AD
3591 continue;
3592 }
51df1142 3593 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3594 GFP_KERNEL, node);
81819f0f 3595
73367bd8
AD
3596 if (!n) {
3597 free_kmem_cache_nodes(s);
3598 return 0;
81819f0f 3599 }
73367bd8 3600
4053497d 3601 init_kmem_cache_node(n);
ea37df54 3602 s->node[node] = n;
81819f0f
CL
3603 }
3604 return 1;
3605}
81819f0f 3606
c0bdb232 3607static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3608{
3609 if (min < MIN_PARTIAL)
3610 min = MIN_PARTIAL;
3611 else if (min > MAX_PARTIAL)
3612 min = MAX_PARTIAL;
3613 s->min_partial = min;
3614}
3615
e6d0e1dc
WY
3616static void set_cpu_partial(struct kmem_cache *s)
3617{
3618#ifdef CONFIG_SLUB_CPU_PARTIAL
3619 /*
3620 * cpu_partial determined the maximum number of objects kept in the
3621 * per cpu partial lists of a processor.
3622 *
3623 * Per cpu partial lists mainly contain slabs that just have one
3624 * object freed. If they are used for allocation then they can be
3625 * filled up again with minimal effort. The slab will never hit the
3626 * per node partial lists and therefore no locking will be required.
3627 *
3628 * This setting also determines
3629 *
3630 * A) The number of objects from per cpu partial slabs dumped to the
3631 * per node list when we reach the limit.
3632 * B) The number of objects in cpu partial slabs to extract from the
3633 * per node list when we run out of per cpu objects. We only fetch
3634 * 50% to keep some capacity around for frees.
3635 */
3636 if (!kmem_cache_has_cpu_partial(s))
bbd4e305 3637 slub_set_cpu_partial(s, 0);
e6d0e1dc 3638 else if (s->size >= PAGE_SIZE)
bbd4e305 3639 slub_set_cpu_partial(s, 2);
e6d0e1dc 3640 else if (s->size >= 1024)
bbd4e305 3641 slub_set_cpu_partial(s, 6);
e6d0e1dc 3642 else if (s->size >= 256)
bbd4e305 3643 slub_set_cpu_partial(s, 13);
e6d0e1dc 3644 else
bbd4e305 3645 slub_set_cpu_partial(s, 30);
e6d0e1dc
WY
3646#endif
3647}
3648
81819f0f
CL
3649/*
3650 * calculate_sizes() determines the order and the distribution of data within
3651 * a slab object.
3652 */
06b285dc 3653static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3654{
d50112ed 3655 slab_flags_t flags = s->flags;
be4a7988 3656 unsigned int size = s->object_size;
89b83f28 3657 unsigned int freepointer_area;
19af27af 3658 unsigned int order;
81819f0f 3659
d8b42bf5
CL
3660 /*
3661 * Round up object size to the next word boundary. We can only
3662 * place the free pointer at word boundaries and this determines
3663 * the possible location of the free pointer.
3664 */
3665 size = ALIGN(size, sizeof(void *));
89b83f28
KC
3666 /*
3667 * This is the area of the object where a freepointer can be
3668 * safely written. If redzoning adds more to the inuse size, we
3669 * can't use that portion for writing the freepointer, so
3670 * s->offset must be limited within this for the general case.
3671 */
3672 freepointer_area = size;
d8b42bf5
CL
3673
3674#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3675 /*
3676 * Determine if we can poison the object itself. If the user of
3677 * the slab may touch the object after free or before allocation
3678 * then we should never poison the object itself.
3679 */
5f0d5a3a 3680 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3681 !s->ctor)
81819f0f
CL
3682 s->flags |= __OBJECT_POISON;
3683 else
3684 s->flags &= ~__OBJECT_POISON;
3685
81819f0f
CL
3686
3687 /*
672bba3a 3688 * If we are Redzoning then check if there is some space between the
81819f0f 3689 * end of the object and the free pointer. If not then add an
672bba3a 3690 * additional word to have some bytes to store Redzone information.
81819f0f 3691 */
3b0efdfa 3692 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3693 size += sizeof(void *);
41ecc55b 3694#endif
81819f0f
CL
3695
3696 /*
672bba3a
CL
3697 * With that we have determined the number of bytes in actual use
3698 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3699 */
3700 s->inuse = size;
3701
5f0d5a3a 3702 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3703 s->ctor)) {
81819f0f
CL
3704 /*
3705 * Relocate free pointer after the object if it is not
3706 * permitted to overwrite the first word of the object on
3707 * kmem_cache_free.
3708 *
3709 * This is the case if we do RCU, have a constructor or
3710 * destructor or are poisoning the objects.
cbfc35a4
WL
3711 *
3712 * The assumption that s->offset >= s->inuse means free
3713 * pointer is outside of the object is used in the
3714 * freeptr_outside_object() function. If that is no
3715 * longer true, the function needs to be modified.
81819f0f
CL
3716 */
3717 s->offset = size;
3718 size += sizeof(void *);
89b83f28 3719 } else if (freepointer_area > sizeof(void *)) {
3202fa62
KC
3720 /*
3721 * Store freelist pointer near middle of object to keep
3722 * it away from the edges of the object to avoid small
3723 * sized over/underflows from neighboring allocations.
3724 */
89b83f28 3725 s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
81819f0f
CL
3726 }
3727
c12b3c62 3728#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3729 if (flags & SLAB_STORE_USER)
3730 /*
3731 * Need to store information about allocs and frees after
3732 * the object.
3733 */
3734 size += 2 * sizeof(struct track);
80a9201a 3735#endif
81819f0f 3736
80a9201a
AP
3737 kasan_cache_create(s, &size, &s->flags);
3738#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3739 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3740 /*
3741 * Add some empty padding so that we can catch
3742 * overwrites from earlier objects rather than let
3743 * tracking information or the free pointer be
0211a9c8 3744 * corrupted if a user writes before the start
81819f0f
CL
3745 * of the object.
3746 */
3747 size += sizeof(void *);
d86bd1be
JK
3748
3749 s->red_left_pad = sizeof(void *);
3750 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3751 size += s->red_left_pad;
3752 }
41ecc55b 3753#endif
672bba3a 3754
81819f0f
CL
3755 /*
3756 * SLUB stores one object immediately after another beginning from
3757 * offset 0. In order to align the objects we have to simply size
3758 * each object to conform to the alignment.
3759 */
45906855 3760 size = ALIGN(size, s->align);
81819f0f 3761 s->size = size;
4138fdfc 3762 s->reciprocal_size = reciprocal_value(size);
06b285dc
CL
3763 if (forced_order >= 0)
3764 order = forced_order;
3765 else
9736d2a9 3766 order = calculate_order(size);
81819f0f 3767
19af27af 3768 if ((int)order < 0)
81819f0f
CL
3769 return 0;
3770
b7a49f0d 3771 s->allocflags = 0;
834f3d11 3772 if (order)
b7a49f0d
CL
3773 s->allocflags |= __GFP_COMP;
3774
3775 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3776 s->allocflags |= GFP_DMA;
b7a49f0d 3777
6d6ea1e9
NB
3778 if (s->flags & SLAB_CACHE_DMA32)
3779 s->allocflags |= GFP_DMA32;
3780
b7a49f0d
CL
3781 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3782 s->allocflags |= __GFP_RECLAIMABLE;
3783
81819f0f
CL
3784 /*
3785 * Determine the number of objects per slab
3786 */
9736d2a9
MW
3787 s->oo = oo_make(order, size);
3788 s->min = oo_make(get_order(size), size);
205ab99d
CL
3789 if (oo_objects(s->oo) > oo_objects(s->max))
3790 s->max = s->oo;
81819f0f 3791
834f3d11 3792 return !!oo_objects(s->oo);
81819f0f
CL
3793}
3794
d50112ed 3795static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3796{
f505bc0c 3797 s->flags = kmem_cache_flags(s->size, flags, s->name);
2482ddec
KC
3798#ifdef CONFIG_SLAB_FREELIST_HARDENED
3799 s->random = get_random_long();
3800#endif
81819f0f 3801
06b285dc 3802 if (!calculate_sizes(s, -1))
81819f0f 3803 goto error;
3de47213
DR
3804 if (disable_higher_order_debug) {
3805 /*
3806 * Disable debugging flags that store metadata if the min slab
3807 * order increased.
3808 */
3b0efdfa 3809 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3810 s->flags &= ~DEBUG_METADATA_FLAGS;
3811 s->offset = 0;
3812 if (!calculate_sizes(s, -1))
3813 goto error;
3814 }
3815 }
81819f0f 3816
2565409f
HC
3817#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3818 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3819 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3820 /* Enable fast mode */
3821 s->flags |= __CMPXCHG_DOUBLE;
3822#endif
3823
3b89d7d8
DR
3824 /*
3825 * The larger the object size is, the more pages we want on the partial
3826 * list to avoid pounding the page allocator excessively.
3827 */
49e22585
CL
3828 set_min_partial(s, ilog2(s->size) / 2);
3829
e6d0e1dc 3830 set_cpu_partial(s);
49e22585 3831
81819f0f 3832#ifdef CONFIG_NUMA
e2cb96b7 3833 s->remote_node_defrag_ratio = 1000;
81819f0f 3834#endif
210e7a43
TG
3835
3836 /* Initialize the pre-computed randomized freelist if slab is up */
3837 if (slab_state >= UP) {
3838 if (init_cache_random_seq(s))
3839 goto error;
3840 }
3841
55136592 3842 if (!init_kmem_cache_nodes(s))
dfb4f096 3843 goto error;
81819f0f 3844
55136592 3845 if (alloc_kmem_cache_cpus(s))
278b1bb1 3846 return 0;
ff12059e 3847
4c93c355 3848 free_kmem_cache_nodes(s);
81819f0f 3849error:
278b1bb1 3850 return -EINVAL;
81819f0f 3851}
81819f0f 3852
33b12c38 3853static void list_slab_objects(struct kmem_cache *s, struct page *page,
55860d96 3854 const char *text)
33b12c38
CL
3855{
3856#ifdef CONFIG_SLUB_DEBUG
3857 void *addr = page_address(page);
55860d96 3858 unsigned long *map;
33b12c38 3859 void *p;
aa456c7a 3860
945cf2b6 3861 slab_err(s, page, text, s->name);
33b12c38 3862 slab_lock(page);
33b12c38 3863
90e9f6a6 3864 map = get_map(s, page);
33b12c38
CL
3865 for_each_object(p, s, addr, page->objects) {
3866
4138fdfc 3867 if (!test_bit(__obj_to_index(s, addr, p), map)) {
f9f58285 3868 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3869 print_tracking(s, p);
3870 }
3871 }
55860d96 3872 put_map(map);
33b12c38
CL
3873 slab_unlock(page);
3874#endif
3875}
3876
81819f0f 3877/*
599870b1 3878 * Attempt to free all partial slabs on a node.
52b4b950
DS
3879 * This is called from __kmem_cache_shutdown(). We must take list_lock
3880 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3881 */
599870b1 3882static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3883{
60398923 3884 LIST_HEAD(discard);
81819f0f
CL
3885 struct page *page, *h;
3886
52b4b950
DS
3887 BUG_ON(irqs_disabled());
3888 spin_lock_irq(&n->list_lock);
916ac052 3889 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 3890 if (!page->inuse) {
52b4b950 3891 remove_partial(n, page);
916ac052 3892 list_add(&page->slab_list, &discard);
33b12c38
CL
3893 } else {
3894 list_slab_objects(s, page,
55860d96 3895 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3896 }
33b12c38 3897 }
52b4b950 3898 spin_unlock_irq(&n->list_lock);
60398923 3899
916ac052 3900 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 3901 discard_slab(s, page);
81819f0f
CL
3902}
3903
f9e13c0a
SB
3904bool __kmem_cache_empty(struct kmem_cache *s)
3905{
3906 int node;
3907 struct kmem_cache_node *n;
3908
3909 for_each_kmem_cache_node(s, node, n)
3910 if (n->nr_partial || slabs_node(s, node))
3911 return false;
3912 return true;
3913}
3914
81819f0f 3915/*
672bba3a 3916 * Release all resources used by a slab cache.
81819f0f 3917 */
52b4b950 3918int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3919{
3920 int node;
fa45dc25 3921 struct kmem_cache_node *n;
81819f0f
CL
3922
3923 flush_all(s);
81819f0f 3924 /* Attempt to free all objects */
fa45dc25 3925 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3926 free_partial(s, n);
3927 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3928 return 1;
3929 }
81819f0f
CL
3930 return 0;
3931}
3932
81819f0f
CL
3933/********************************************************************
3934 * Kmalloc subsystem
3935 *******************************************************************/
3936
81819f0f
CL
3937static int __init setup_slub_min_order(char *str)
3938{
19af27af 3939 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
3940
3941 return 1;
3942}
3943
3944__setup("slub_min_order=", setup_slub_min_order);
3945
3946static int __init setup_slub_max_order(char *str)
3947{
19af27af
AD
3948 get_option(&str, (int *)&slub_max_order);
3949 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
3950
3951 return 1;
3952}
3953
3954__setup("slub_max_order=", setup_slub_max_order);
3955
3956static int __init setup_slub_min_objects(char *str)
3957{
19af27af 3958 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
3959
3960 return 1;
3961}
3962
3963__setup("slub_min_objects=", setup_slub_min_objects);
3964
81819f0f
CL
3965void *__kmalloc(size_t size, gfp_t flags)
3966{
aadb4bc4 3967 struct kmem_cache *s;
5b882be4 3968 void *ret;
81819f0f 3969
95a05b42 3970 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3971 return kmalloc_large(size, flags);
aadb4bc4 3972
2c59dd65 3973 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3974
3975 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3976 return s;
3977
2b847c3c 3978 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3979
ca2b84cb 3980 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3981
0116523c 3982 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3983
5b882be4 3984 return ret;
81819f0f
CL
3985}
3986EXPORT_SYMBOL(__kmalloc);
3987
5d1f57e4 3988#ifdef CONFIG_NUMA
f619cfe1
CL
3989static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3990{
b1eeab67 3991 struct page *page;
e4f7c0b4 3992 void *ptr = NULL;
6a486c0a 3993 unsigned int order = get_order(size);
f619cfe1 3994
75f296d9 3995 flags |= __GFP_COMP;
6a486c0a
VB
3996 page = alloc_pages_node(node, flags, order);
3997 if (page) {
e4f7c0b4 3998 ptr = page_address(page);
ca3c4f41
MS
3999 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4000 PAGE_SIZE << order);
6a486c0a 4001 }
e4f7c0b4 4002
0116523c 4003 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
4004}
4005
81819f0f
CL
4006void *__kmalloc_node(size_t size, gfp_t flags, int node)
4007{
aadb4bc4 4008 struct kmem_cache *s;
5b882be4 4009 void *ret;
81819f0f 4010
95a05b42 4011 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
4012 ret = kmalloc_large_node(size, flags, node);
4013
ca2b84cb
EGM
4014 trace_kmalloc_node(_RET_IP_, ret,
4015 size, PAGE_SIZE << get_order(size),
4016 flags, node);
5b882be4
EGM
4017
4018 return ret;
4019 }
aadb4bc4 4020
2c59dd65 4021 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4022
4023 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4024 return s;
4025
2b847c3c 4026 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 4027
ca2b84cb 4028 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 4029
0116523c 4030 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4031
5b882be4 4032 return ret;
81819f0f
CL
4033}
4034EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 4035#endif /* CONFIG_NUMA */
81819f0f 4036
ed18adc1
KC
4037#ifdef CONFIG_HARDENED_USERCOPY
4038/*
afcc90f8
KC
4039 * Rejects incorrectly sized objects and objects that are to be copied
4040 * to/from userspace but do not fall entirely within the containing slab
4041 * cache's usercopy region.
ed18adc1
KC
4042 *
4043 * Returns NULL if check passes, otherwise const char * to name of cache
4044 * to indicate an error.
4045 */
f4e6e289
KC
4046void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4047 bool to_user)
ed18adc1
KC
4048{
4049 struct kmem_cache *s;
44065b2e 4050 unsigned int offset;
ed18adc1
KC
4051 size_t object_size;
4052
96fedce2
AK
4053 ptr = kasan_reset_tag(ptr);
4054
ed18adc1
KC
4055 /* Find object and usable object size. */
4056 s = page->slab_cache;
ed18adc1
KC
4057
4058 /* Reject impossible pointers. */
4059 if (ptr < page_address(page))
f4e6e289
KC
4060 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4061 to_user, 0, n);
ed18adc1
KC
4062
4063 /* Find offset within object. */
4064 offset = (ptr - page_address(page)) % s->size;
4065
4066 /* Adjust for redzone and reject if within the redzone. */
59052e89 4067 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 4068 if (offset < s->red_left_pad)
f4e6e289
KC
4069 usercopy_abort("SLUB object in left red zone",
4070 s->name, to_user, offset, n);
ed18adc1
KC
4071 offset -= s->red_left_pad;
4072 }
4073
afcc90f8
KC
4074 /* Allow address range falling entirely within usercopy region. */
4075 if (offset >= s->useroffset &&
4076 offset - s->useroffset <= s->usersize &&
4077 n <= s->useroffset - offset + s->usersize)
f4e6e289 4078 return;
ed18adc1 4079
afcc90f8
KC
4080 /*
4081 * If the copy is still within the allocated object, produce
4082 * a warning instead of rejecting the copy. This is intended
4083 * to be a temporary method to find any missing usercopy
4084 * whitelists.
4085 */
4086 object_size = slab_ksize(s);
2d891fbc
KC
4087 if (usercopy_fallback &&
4088 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
4089 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4090 return;
4091 }
ed18adc1 4092
f4e6e289 4093 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
4094}
4095#endif /* CONFIG_HARDENED_USERCOPY */
4096
10d1f8cb 4097size_t __ksize(const void *object)
81819f0f 4098{
272c1d21 4099 struct page *page;
81819f0f 4100
ef8b4520 4101 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
4102 return 0;
4103
294a80a8 4104 page = virt_to_head_page(object);
294a80a8 4105
76994412
PE
4106 if (unlikely(!PageSlab(page))) {
4107 WARN_ON(!PageCompound(page));
a50b854e 4108 return page_size(page);
76994412 4109 }
81819f0f 4110
1b4f59e3 4111 return slab_ksize(page->slab_cache);
81819f0f 4112}
10d1f8cb 4113EXPORT_SYMBOL(__ksize);
81819f0f
CL
4114
4115void kfree(const void *x)
4116{
81819f0f 4117 struct page *page;
5bb983b0 4118 void *object = (void *)x;
81819f0f 4119
2121db74
PE
4120 trace_kfree(_RET_IP_, x);
4121
2408c550 4122 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
4123 return;
4124
b49af68f 4125 page = virt_to_head_page(x);
aadb4bc4 4126 if (unlikely(!PageSlab(page))) {
6a486c0a
VB
4127 unsigned int order = compound_order(page);
4128
0937502a 4129 BUG_ON(!PageCompound(page));
47adccce 4130 kfree_hook(object);
ca3c4f41
MS
4131 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4132 -(PAGE_SIZE << order));
6a486c0a 4133 __free_pages(page, order);
aadb4bc4
CL
4134 return;
4135 }
81084651 4136 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
4137}
4138EXPORT_SYMBOL(kfree);
4139
832f37f5
VD
4140#define SHRINK_PROMOTE_MAX 32
4141
2086d26a 4142/*
832f37f5
VD
4143 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4144 * up most to the head of the partial lists. New allocations will then
4145 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4146 *
4147 * The slabs with the least items are placed last. This results in them
4148 * being allocated from last increasing the chance that the last objects
4149 * are freed in them.
2086d26a 4150 */
c9fc5864 4151int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
4152{
4153 int node;
4154 int i;
4155 struct kmem_cache_node *n;
4156 struct page *page;
4157 struct page *t;
832f37f5
VD
4158 struct list_head discard;
4159 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4160 unsigned long flags;
ce3712d7 4161 int ret = 0;
2086d26a 4162
2086d26a 4163 flush_all(s);
fa45dc25 4164 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4165 INIT_LIST_HEAD(&discard);
4166 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4167 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4168
4169 spin_lock_irqsave(&n->list_lock, flags);
4170
4171 /*
832f37f5 4172 * Build lists of slabs to discard or promote.
2086d26a 4173 *
672bba3a
CL
4174 * Note that concurrent frees may occur while we hold the
4175 * list_lock. page->inuse here is the upper limit.
2086d26a 4176 */
916ac052 4177 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
4178 int free = page->objects - page->inuse;
4179
4180 /* Do not reread page->inuse */
4181 barrier();
4182
4183 /* We do not keep full slabs on the list */
4184 BUG_ON(free <= 0);
4185
4186 if (free == page->objects) {
916ac052 4187 list_move(&page->slab_list, &discard);
69cb8e6b 4188 n->nr_partial--;
832f37f5 4189 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4190 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4191 }
4192
2086d26a 4193 /*
832f37f5
VD
4194 * Promote the slabs filled up most to the head of the
4195 * partial list.
2086d26a 4196 */
832f37f5
VD
4197 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4198 list_splice(promote + i, &n->partial);
2086d26a 4199
2086d26a 4200 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4201
4202 /* Release empty slabs */
916ac052 4203 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4204 discard_slab(s, page);
ce3712d7
VD
4205
4206 if (slabs_node(s, node))
4207 ret = 1;
2086d26a
CL
4208 }
4209
ce3712d7 4210 return ret;
2086d26a 4211}
2086d26a 4212
b9049e23
YG
4213static int slab_mem_going_offline_callback(void *arg)
4214{
4215 struct kmem_cache *s;
4216
18004c5d 4217 mutex_lock(&slab_mutex);
b9049e23 4218 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4219 __kmem_cache_shrink(s);
18004c5d 4220 mutex_unlock(&slab_mutex);
b9049e23
YG
4221
4222 return 0;
4223}
4224
4225static void slab_mem_offline_callback(void *arg)
4226{
4227 struct kmem_cache_node *n;
4228 struct kmem_cache *s;
4229 struct memory_notify *marg = arg;
4230 int offline_node;
4231
b9d5ab25 4232 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4233
4234 /*
4235 * If the node still has available memory. we need kmem_cache_node
4236 * for it yet.
4237 */
4238 if (offline_node < 0)
4239 return;
4240
18004c5d 4241 mutex_lock(&slab_mutex);
b9049e23
YG
4242 list_for_each_entry(s, &slab_caches, list) {
4243 n = get_node(s, offline_node);
4244 if (n) {
4245 /*
4246 * if n->nr_slabs > 0, slabs still exist on the node
4247 * that is going down. We were unable to free them,
c9404c9c 4248 * and offline_pages() function shouldn't call this
b9049e23
YG
4249 * callback. So, we must fail.
4250 */
0f389ec6 4251 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4252
4253 s->node[offline_node] = NULL;
8de66a0c 4254 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4255 }
4256 }
18004c5d 4257 mutex_unlock(&slab_mutex);
b9049e23
YG
4258}
4259
4260static int slab_mem_going_online_callback(void *arg)
4261{
4262 struct kmem_cache_node *n;
4263 struct kmem_cache *s;
4264 struct memory_notify *marg = arg;
b9d5ab25 4265 int nid = marg->status_change_nid_normal;
b9049e23
YG
4266 int ret = 0;
4267
4268 /*
4269 * If the node's memory is already available, then kmem_cache_node is
4270 * already created. Nothing to do.
4271 */
4272 if (nid < 0)
4273 return 0;
4274
4275 /*
0121c619 4276 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4277 * allocate a kmem_cache_node structure in order to bring the node
4278 * online.
4279 */
18004c5d 4280 mutex_lock(&slab_mutex);
b9049e23
YG
4281 list_for_each_entry(s, &slab_caches, list) {
4282 /*
4283 * XXX: kmem_cache_alloc_node will fallback to other nodes
4284 * since memory is not yet available from the node that
4285 * is brought up.
4286 */
8de66a0c 4287 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4288 if (!n) {
4289 ret = -ENOMEM;
4290 goto out;
4291 }
4053497d 4292 init_kmem_cache_node(n);
b9049e23
YG
4293 s->node[nid] = n;
4294 }
4295out:
18004c5d 4296 mutex_unlock(&slab_mutex);
b9049e23
YG
4297 return ret;
4298}
4299
4300static int slab_memory_callback(struct notifier_block *self,
4301 unsigned long action, void *arg)
4302{
4303 int ret = 0;
4304
4305 switch (action) {
4306 case MEM_GOING_ONLINE:
4307 ret = slab_mem_going_online_callback(arg);
4308 break;
4309 case MEM_GOING_OFFLINE:
4310 ret = slab_mem_going_offline_callback(arg);
4311 break;
4312 case MEM_OFFLINE:
4313 case MEM_CANCEL_ONLINE:
4314 slab_mem_offline_callback(arg);
4315 break;
4316 case MEM_ONLINE:
4317 case MEM_CANCEL_OFFLINE:
4318 break;
4319 }
dc19f9db
KH
4320 if (ret)
4321 ret = notifier_from_errno(ret);
4322 else
4323 ret = NOTIFY_OK;
b9049e23
YG
4324 return ret;
4325}
4326
3ac38faa
AM
4327static struct notifier_block slab_memory_callback_nb = {
4328 .notifier_call = slab_memory_callback,
4329 .priority = SLAB_CALLBACK_PRI,
4330};
b9049e23 4331
81819f0f
CL
4332/********************************************************************
4333 * Basic setup of slabs
4334 *******************************************************************/
4335
51df1142
CL
4336/*
4337 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4338 * the page allocator. Allocate them properly then fix up the pointers
4339 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4340 */
4341
dffb4d60 4342static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4343{
4344 int node;
dffb4d60 4345 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4346 struct kmem_cache_node *n;
51df1142 4347
dffb4d60 4348 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4349
7d557b3c
GC
4350 /*
4351 * This runs very early, and only the boot processor is supposed to be
4352 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4353 * IPIs around.
4354 */
4355 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4356 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4357 struct page *p;
4358
916ac052 4359 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4360 p->slab_cache = s;
51df1142 4361
607bf324 4362#ifdef CONFIG_SLUB_DEBUG
916ac052 4363 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4364 p->slab_cache = s;
51df1142 4365#endif
51df1142 4366 }
dffb4d60
CL
4367 list_add(&s->list, &slab_caches);
4368 return s;
51df1142
CL
4369}
4370
81819f0f
CL
4371void __init kmem_cache_init(void)
4372{
dffb4d60
CL
4373 static __initdata struct kmem_cache boot_kmem_cache,
4374 boot_kmem_cache_node;
51df1142 4375
fc8d8620
SG
4376 if (debug_guardpage_minorder())
4377 slub_max_order = 0;
4378
dffb4d60
CL
4379 kmem_cache_node = &boot_kmem_cache_node;
4380 kmem_cache = &boot_kmem_cache;
51df1142 4381
dffb4d60 4382 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4383 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4384
3ac38faa 4385 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4386
4387 /* Able to allocate the per node structures */
4388 slab_state = PARTIAL;
4389
dffb4d60
CL
4390 create_boot_cache(kmem_cache, "kmem_cache",
4391 offsetof(struct kmem_cache, node) +
4392 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4393 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4394
dffb4d60 4395 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4396 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4397
4398 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4399 setup_kmalloc_cache_index_table();
f97d5f63 4400 create_kmalloc_caches(0);
81819f0f 4401
210e7a43
TG
4402 /* Setup random freelists for each cache */
4403 init_freelist_randomization();
4404
a96a87bf
SAS
4405 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4406 slub_cpu_dead);
81819f0f 4407
b9726c26 4408 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4409 cache_line_size(),
81819f0f
CL
4410 slub_min_order, slub_max_order, slub_min_objects,
4411 nr_cpu_ids, nr_node_ids);
4412}
4413
7e85ee0c
PE
4414void __init kmem_cache_init_late(void)
4415{
7e85ee0c
PE
4416}
4417
2633d7a0 4418struct kmem_cache *
f4957d5b 4419__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4420 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4421{
10befea9 4422 struct kmem_cache *s;
81819f0f 4423
a44cb944 4424 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4425 if (s) {
4426 s->refcount++;
84d0ddd6 4427
81819f0f
CL
4428 /*
4429 * Adjust the object sizes so that we clear
4430 * the complete object on kzalloc.
4431 */
1b473f29 4432 s->object_size = max(s->object_size, size);
52ee6d74 4433 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4434
7b8f3b66 4435 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4436 s->refcount--;
cbb79694 4437 s = NULL;
7b8f3b66 4438 }
a0e1d1be 4439 }
6446faa2 4440
cbb79694
CL
4441 return s;
4442}
84c1cf62 4443
d50112ed 4444int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4445{
aac3a166
PE
4446 int err;
4447
4448 err = kmem_cache_open(s, flags);
4449 if (err)
4450 return err;
20cea968 4451
45530c44
CL
4452 /* Mutex is not taken during early boot */
4453 if (slab_state <= UP)
4454 return 0;
4455
aac3a166 4456 err = sysfs_slab_add(s);
aac3a166 4457 if (err)
52b4b950 4458 __kmem_cache_release(s);
20cea968 4459
aac3a166 4460 return err;
81819f0f 4461}
81819f0f 4462
ce71e27c 4463void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4464{
aadb4bc4 4465 struct kmem_cache *s;
94b528d0 4466 void *ret;
aadb4bc4 4467
95a05b42 4468 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4469 return kmalloc_large(size, gfpflags);
4470
2c59dd65 4471 s = kmalloc_slab(size, gfpflags);
81819f0f 4472
2408c550 4473 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4474 return s;
81819f0f 4475
2b847c3c 4476 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4477
25985edc 4478 /* Honor the call site pointer we received. */
ca2b84cb 4479 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4480
4481 return ret;
81819f0f 4482}
fd7cb575 4483EXPORT_SYMBOL(__kmalloc_track_caller);
81819f0f 4484
5d1f57e4 4485#ifdef CONFIG_NUMA
81819f0f 4486void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4487 int node, unsigned long caller)
81819f0f 4488{
aadb4bc4 4489 struct kmem_cache *s;
94b528d0 4490 void *ret;
aadb4bc4 4491
95a05b42 4492 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4493 ret = kmalloc_large_node(size, gfpflags, node);
4494
4495 trace_kmalloc_node(caller, ret,
4496 size, PAGE_SIZE << get_order(size),
4497 gfpflags, node);
4498
4499 return ret;
4500 }
eada35ef 4501
2c59dd65 4502 s = kmalloc_slab(size, gfpflags);
81819f0f 4503
2408c550 4504 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4505 return s;
81819f0f 4506
2b847c3c 4507 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4508
25985edc 4509 /* Honor the call site pointer we received. */
ca2b84cb 4510 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4511
4512 return ret;
81819f0f 4513}
fd7cb575 4514EXPORT_SYMBOL(__kmalloc_node_track_caller);
5d1f57e4 4515#endif
81819f0f 4516
ab4d5ed5 4517#ifdef CONFIG_SYSFS
205ab99d
CL
4518static int count_inuse(struct page *page)
4519{
4520 return page->inuse;
4521}
4522
4523static int count_total(struct page *page)
4524{
4525 return page->objects;
4526}
ab4d5ed5 4527#endif
205ab99d 4528
ab4d5ed5 4529#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 4530static void validate_slab(struct kmem_cache *s, struct page *page)
53e15af0
CL
4531{
4532 void *p;
a973e9dd 4533 void *addr = page_address(page);
90e9f6a6
YZ
4534 unsigned long *map;
4535
4536 slab_lock(page);
53e15af0 4537
dd98afd4 4538 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
90e9f6a6 4539 goto unlock;
53e15af0
CL
4540
4541 /* Now we know that a valid freelist exists */
90e9f6a6 4542 map = get_map(s, page);
5f80b13a 4543 for_each_object(p, s, addr, page->objects) {
4138fdfc 4544 u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
dd98afd4 4545 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 4546
dd98afd4
YZ
4547 if (!check_object(s, page, p, val))
4548 break;
4549 }
90e9f6a6
YZ
4550 put_map(map);
4551unlock:
881db7fb 4552 slab_unlock(page);
53e15af0
CL
4553}
4554
434e245d 4555static int validate_slab_node(struct kmem_cache *s,
90e9f6a6 4556 struct kmem_cache_node *n)
53e15af0
CL
4557{
4558 unsigned long count = 0;
4559 struct page *page;
4560 unsigned long flags;
4561
4562 spin_lock_irqsave(&n->list_lock, flags);
4563
916ac052 4564 list_for_each_entry(page, &n->partial, slab_list) {
90e9f6a6 4565 validate_slab(s, page);
53e15af0
CL
4566 count++;
4567 }
4568 if (count != n->nr_partial)
f9f58285
FF
4569 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4570 s->name, count, n->nr_partial);
53e15af0
CL
4571
4572 if (!(s->flags & SLAB_STORE_USER))
4573 goto out;
4574
916ac052 4575 list_for_each_entry(page, &n->full, slab_list) {
90e9f6a6 4576 validate_slab(s, page);
53e15af0
CL
4577 count++;
4578 }
4579 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4580 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4581 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4582
4583out:
4584 spin_unlock_irqrestore(&n->list_lock, flags);
4585 return count;
4586}
4587
434e245d 4588static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4589{
4590 int node;
4591 unsigned long count = 0;
fa45dc25 4592 struct kmem_cache_node *n;
53e15af0
CL
4593
4594 flush_all(s);
fa45dc25 4595 for_each_kmem_cache_node(s, node, n)
90e9f6a6
YZ
4596 count += validate_slab_node(s, n);
4597
53e15af0
CL
4598 return count;
4599}
88a420e4 4600/*
672bba3a 4601 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4602 * and freed.
4603 */
4604
4605struct location {
4606 unsigned long count;
ce71e27c 4607 unsigned long addr;
45edfa58
CL
4608 long long sum_time;
4609 long min_time;
4610 long max_time;
4611 long min_pid;
4612 long max_pid;
174596a0 4613 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4614 nodemask_t nodes;
88a420e4
CL
4615};
4616
4617struct loc_track {
4618 unsigned long max;
4619 unsigned long count;
4620 struct location *loc;
4621};
4622
4623static void free_loc_track(struct loc_track *t)
4624{
4625 if (t->max)
4626 free_pages((unsigned long)t->loc,
4627 get_order(sizeof(struct location) * t->max));
4628}
4629
68dff6a9 4630static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4631{
4632 struct location *l;
4633 int order;
4634
88a420e4
CL
4635 order = get_order(sizeof(struct location) * max);
4636
68dff6a9 4637 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4638 if (!l)
4639 return 0;
4640
4641 if (t->count) {
4642 memcpy(l, t->loc, sizeof(struct location) * t->count);
4643 free_loc_track(t);
4644 }
4645 t->max = max;
4646 t->loc = l;
4647 return 1;
4648}
4649
4650static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4651 const struct track *track)
88a420e4
CL
4652{
4653 long start, end, pos;
4654 struct location *l;
ce71e27c 4655 unsigned long caddr;
45edfa58 4656 unsigned long age = jiffies - track->when;
88a420e4
CL
4657
4658 start = -1;
4659 end = t->count;
4660
4661 for ( ; ; ) {
4662 pos = start + (end - start + 1) / 2;
4663
4664 /*
4665 * There is nothing at "end". If we end up there
4666 * we need to add something to before end.
4667 */
4668 if (pos == end)
4669 break;
4670
4671 caddr = t->loc[pos].addr;
45edfa58
CL
4672 if (track->addr == caddr) {
4673
4674 l = &t->loc[pos];
4675 l->count++;
4676 if (track->when) {
4677 l->sum_time += age;
4678 if (age < l->min_time)
4679 l->min_time = age;
4680 if (age > l->max_time)
4681 l->max_time = age;
4682
4683 if (track->pid < l->min_pid)
4684 l->min_pid = track->pid;
4685 if (track->pid > l->max_pid)
4686 l->max_pid = track->pid;
4687
174596a0
RR
4688 cpumask_set_cpu(track->cpu,
4689 to_cpumask(l->cpus));
45edfa58
CL
4690 }
4691 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4692 return 1;
4693 }
4694
45edfa58 4695 if (track->addr < caddr)
88a420e4
CL
4696 end = pos;
4697 else
4698 start = pos;
4699 }
4700
4701 /*
672bba3a 4702 * Not found. Insert new tracking element.
88a420e4 4703 */
68dff6a9 4704 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4705 return 0;
4706
4707 l = t->loc + pos;
4708 if (pos < t->count)
4709 memmove(l + 1, l,
4710 (t->count - pos) * sizeof(struct location));
4711 t->count++;
4712 l->count = 1;
45edfa58
CL
4713 l->addr = track->addr;
4714 l->sum_time = age;
4715 l->min_time = age;
4716 l->max_time = age;
4717 l->min_pid = track->pid;
4718 l->max_pid = track->pid;
174596a0
RR
4719 cpumask_clear(to_cpumask(l->cpus));
4720 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4721 nodes_clear(l->nodes);
4722 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4723 return 1;
4724}
4725
4726static void process_slab(struct loc_track *t, struct kmem_cache *s,
90e9f6a6 4727 struct page *page, enum track_item alloc)
88a420e4 4728{
a973e9dd 4729 void *addr = page_address(page);
88a420e4 4730 void *p;
90e9f6a6 4731 unsigned long *map;
88a420e4 4732
90e9f6a6 4733 map = get_map(s, page);
224a88be 4734 for_each_object(p, s, addr, page->objects)
4138fdfc 4735 if (!test_bit(__obj_to_index(s, addr, p), map))
45edfa58 4736 add_location(t, s, get_track(s, p, alloc));
90e9f6a6 4737 put_map(map);
88a420e4
CL
4738}
4739
4740static int list_locations(struct kmem_cache *s, char *buf,
bf16d19a 4741 enum track_item alloc)
88a420e4 4742{
e374d483 4743 int len = 0;
88a420e4 4744 unsigned long i;
68dff6a9 4745 struct loc_track t = { 0, 0, NULL };
88a420e4 4746 int node;
fa45dc25 4747 struct kmem_cache_node *n;
88a420e4 4748
90e9f6a6
YZ
4749 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4750 GFP_KERNEL)) {
bf16d19a 4751 return sysfs_emit(buf, "Out of memory\n");
bbd7d57b 4752 }
88a420e4
CL
4753 /* Push back cpu slabs */
4754 flush_all(s);
4755
fa45dc25 4756 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4757 unsigned long flags;
4758 struct page *page;
4759
9e86943b 4760 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4761 continue;
4762
4763 spin_lock_irqsave(&n->list_lock, flags);
916ac052 4764 list_for_each_entry(page, &n->partial, slab_list)
90e9f6a6 4765 process_slab(&t, s, page, alloc);
916ac052 4766 list_for_each_entry(page, &n->full, slab_list)
90e9f6a6 4767 process_slab(&t, s, page, alloc);
88a420e4
CL
4768 spin_unlock_irqrestore(&n->list_lock, flags);
4769 }
4770
4771 for (i = 0; i < t.count; i++) {
45edfa58 4772 struct location *l = &t.loc[i];
88a420e4 4773
bf16d19a 4774 len += sysfs_emit_at(buf, len, "%7ld ", l->count);
45edfa58
CL
4775
4776 if (l->addr)
bf16d19a 4777 len += sysfs_emit_at(buf, len, "%pS", (void *)l->addr);
88a420e4 4778 else
bf16d19a
JP
4779 len += sysfs_emit_at(buf, len, "<not-available>");
4780
4781 if (l->sum_time != l->min_time)
4782 len += sysfs_emit_at(buf, len, " age=%ld/%ld/%ld",
4783 l->min_time,
4784 (long)div_u64(l->sum_time,
4785 l->count),
4786 l->max_time);
4787 else
4788 len += sysfs_emit_at(buf, len, " age=%ld", l->min_time);
45edfa58
CL
4789
4790 if (l->min_pid != l->max_pid)
bf16d19a
JP
4791 len += sysfs_emit_at(buf, len, " pid=%ld-%ld",
4792 l->min_pid, l->max_pid);
45edfa58 4793 else
bf16d19a
JP
4794 len += sysfs_emit_at(buf, len, " pid=%ld",
4795 l->min_pid);
45edfa58 4796
174596a0 4797 if (num_online_cpus() > 1 &&
bf16d19a
JP
4798 !cpumask_empty(to_cpumask(l->cpus)))
4799 len += sysfs_emit_at(buf, len, " cpus=%*pbl",
4800 cpumask_pr_args(to_cpumask(l->cpus)));
4801
4802 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
4803 len += sysfs_emit_at(buf, len, " nodes=%*pbl",
4804 nodemask_pr_args(&l->nodes));
4805
4806 len += sysfs_emit_at(buf, len, "\n");
88a420e4
CL
4807 }
4808
4809 free_loc_track(&t);
4810 if (!t.count)
bf16d19a
JP
4811 len += sysfs_emit_at(buf, len, "No data\n");
4812
e374d483 4813 return len;
88a420e4 4814}
6dfd1b65 4815#endif /* CONFIG_SLUB_DEBUG */
88a420e4 4816
a5a84755 4817#ifdef SLUB_RESILIENCY_TEST
c07b8183 4818static void __init resiliency_test(void)
a5a84755
CL
4819{
4820 u8 *p;
cc252eae 4821 int type = KMALLOC_NORMAL;
a5a84755 4822
95a05b42 4823 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4824
f9f58285
FF
4825 pr_err("SLUB resiliency testing\n");
4826 pr_err("-----------------------\n");
4827 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4828
4829 p = kzalloc(16, GFP_KERNEL);
4830 p[16] = 0x12;
f9f58285
FF
4831 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4832 p + 16);
a5a84755 4833
cc252eae 4834 validate_slab_cache(kmalloc_caches[type][4]);
a5a84755
CL
4835
4836 /* Hmmm... The next two are dangerous */
4837 p = kzalloc(32, GFP_KERNEL);
4838 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4839 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4840 p);
4841 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755 4842
cc252eae 4843 validate_slab_cache(kmalloc_caches[type][5]);
a5a84755
CL
4844 p = kzalloc(64, GFP_KERNEL);
4845 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4846 *p = 0x56;
f9f58285
FF
4847 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4848 p);
4849 pr_err("If allocated object is overwritten then not detectable\n\n");
cc252eae 4850 validate_slab_cache(kmalloc_caches[type][6]);
a5a84755 4851
f9f58285 4852 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4853 p = kzalloc(128, GFP_KERNEL);
4854 kfree(p);
4855 *p = 0x78;
f9f58285 4856 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
cc252eae 4857 validate_slab_cache(kmalloc_caches[type][7]);
a5a84755
CL
4858
4859 p = kzalloc(256, GFP_KERNEL);
4860 kfree(p);
4861 p[50] = 0x9a;
f9f58285 4862 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
cc252eae 4863 validate_slab_cache(kmalloc_caches[type][8]);
a5a84755
CL
4864
4865 p = kzalloc(512, GFP_KERNEL);
4866 kfree(p);
4867 p[512] = 0xab;
f9f58285 4868 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
cc252eae 4869 validate_slab_cache(kmalloc_caches[type][9]);
a5a84755
CL
4870}
4871#else
4872#ifdef CONFIG_SYSFS
4873static void resiliency_test(void) {};
4874#endif
6dfd1b65 4875#endif /* SLUB_RESILIENCY_TEST */
a5a84755 4876
ab4d5ed5 4877#ifdef CONFIG_SYSFS
81819f0f 4878enum slab_stat_type {
205ab99d
CL
4879 SL_ALL, /* All slabs */
4880 SL_PARTIAL, /* Only partially allocated slabs */
4881 SL_CPU, /* Only slabs used for cpu caches */
4882 SL_OBJECTS, /* Determine allocated objects not slabs */
4883 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4884};
4885
205ab99d 4886#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4887#define SO_PARTIAL (1 << SL_PARTIAL)
4888#define SO_CPU (1 << SL_CPU)
4889#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4890#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4891
1663f26d
TH
4892#ifdef CONFIG_MEMCG
4893static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4894
4895static int __init setup_slub_memcg_sysfs(char *str)
4896{
4897 int v;
4898
4899 if (get_option(&str, &v) > 0)
4900 memcg_sysfs_enabled = v;
4901
4902 return 1;
4903}
4904
4905__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4906#endif
4907
62e5c4b4 4908static ssize_t show_slab_objects(struct kmem_cache *s,
bf16d19a 4909 char *buf, unsigned long flags)
81819f0f
CL
4910{
4911 unsigned long total = 0;
81819f0f
CL
4912 int node;
4913 int x;
4914 unsigned long *nodes;
bf16d19a 4915 int len = 0;
81819f0f 4916
6396bb22 4917 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
4918 if (!nodes)
4919 return -ENOMEM;
81819f0f 4920
205ab99d
CL
4921 if (flags & SO_CPU) {
4922 int cpu;
81819f0f 4923
205ab99d 4924 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4925 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4926 cpu);
ec3ab083 4927 int node;
49e22585 4928 struct page *page;
dfb4f096 4929
4db0c3c2 4930 page = READ_ONCE(c->page);
ec3ab083
CL
4931 if (!page)
4932 continue;
205ab99d 4933
ec3ab083
CL
4934 node = page_to_nid(page);
4935 if (flags & SO_TOTAL)
4936 x = page->objects;
4937 else if (flags & SO_OBJECTS)
4938 x = page->inuse;
4939 else
4940 x = 1;
49e22585 4941
ec3ab083
CL
4942 total += x;
4943 nodes[node] += x;
4944
a93cf07b 4945 page = slub_percpu_partial_read_once(c);
49e22585 4946 if (page) {
8afb1474
LZ
4947 node = page_to_nid(page);
4948 if (flags & SO_TOTAL)
4949 WARN_ON_ONCE(1);
4950 else if (flags & SO_OBJECTS)
4951 WARN_ON_ONCE(1);
4952 else
4953 x = page->pages;
bc6697d8
ED
4954 total += x;
4955 nodes[node] += x;
49e22585 4956 }
81819f0f
CL
4957 }
4958 }
4959
e4f8e513
QC
4960 /*
4961 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4962 * already held which will conflict with an existing lock order:
4963 *
4964 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4965 *
4966 * We don't really need mem_hotplug_lock (to hold off
4967 * slab_mem_going_offline_callback) here because slab's memory hot
4968 * unplug code doesn't destroy the kmem_cache->node[] data.
4969 */
4970
ab4d5ed5 4971#ifdef CONFIG_SLUB_DEBUG
205ab99d 4972 if (flags & SO_ALL) {
fa45dc25
CL
4973 struct kmem_cache_node *n;
4974
4975 for_each_kmem_cache_node(s, node, n) {
205ab99d 4976
d0e0ac97
CG
4977 if (flags & SO_TOTAL)
4978 x = atomic_long_read(&n->total_objects);
4979 else if (flags & SO_OBJECTS)
4980 x = atomic_long_read(&n->total_objects) -
4981 count_partial(n, count_free);
81819f0f 4982 else
205ab99d 4983 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4984 total += x;
4985 nodes[node] += x;
4986 }
4987
ab4d5ed5
CL
4988 } else
4989#endif
4990 if (flags & SO_PARTIAL) {
fa45dc25 4991 struct kmem_cache_node *n;
81819f0f 4992
fa45dc25 4993 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4994 if (flags & SO_TOTAL)
4995 x = count_partial(n, count_total);
4996 else if (flags & SO_OBJECTS)
4997 x = count_partial(n, count_inuse);
81819f0f 4998 else
205ab99d 4999 x = n->nr_partial;
81819f0f
CL
5000 total += x;
5001 nodes[node] += x;
5002 }
5003 }
bf16d19a
JP
5004
5005 len += sysfs_emit_at(buf, len, "%lu", total);
81819f0f 5006#ifdef CONFIG_NUMA
bf16d19a 5007 for (node = 0; node < nr_node_ids; node++) {
81819f0f 5008 if (nodes[node])
bf16d19a
JP
5009 len += sysfs_emit_at(buf, len, " N%d=%lu",
5010 node, nodes[node]);
5011 }
81819f0f 5012#endif
bf16d19a 5013 len += sysfs_emit_at(buf, len, "\n");
81819f0f 5014 kfree(nodes);
bf16d19a
JP
5015
5016 return len;
81819f0f
CL
5017}
5018
81819f0f 5019#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 5020#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
5021
5022struct slab_attribute {
5023 struct attribute attr;
5024 ssize_t (*show)(struct kmem_cache *s, char *buf);
5025 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5026};
5027
5028#define SLAB_ATTR_RO(_name) \
ab067e99
VK
5029 static struct slab_attribute _name##_attr = \
5030 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
5031
5032#define SLAB_ATTR(_name) \
5033 static struct slab_attribute _name##_attr = \
ab067e99 5034 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 5035
81819f0f
CL
5036static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5037{
bf16d19a 5038 return sysfs_emit(buf, "%u\n", s->size);
81819f0f
CL
5039}
5040SLAB_ATTR_RO(slab_size);
5041
5042static ssize_t align_show(struct kmem_cache *s, char *buf)
5043{
bf16d19a 5044 return sysfs_emit(buf, "%u\n", s->align);
81819f0f
CL
5045}
5046SLAB_ATTR_RO(align);
5047
5048static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5049{
bf16d19a 5050 return sysfs_emit(buf, "%u\n", s->object_size);
81819f0f
CL
5051}
5052SLAB_ATTR_RO(object_size);
5053
5054static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5055{
bf16d19a 5056 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
5057}
5058SLAB_ATTR_RO(objs_per_slab);
5059
5060static ssize_t order_show(struct kmem_cache *s, char *buf)
5061{
bf16d19a 5062 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
81819f0f 5063}
32a6f409 5064SLAB_ATTR_RO(order);
81819f0f 5065
73d342b1
DR
5066static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5067{
bf16d19a 5068 return sysfs_emit(buf, "%lu\n", s->min_partial);
73d342b1
DR
5069}
5070
5071static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5072 size_t length)
5073{
5074 unsigned long min;
5075 int err;
5076
3dbb95f7 5077 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5078 if (err)
5079 return err;
5080
c0bdb232 5081 set_min_partial(s, min);
73d342b1
DR
5082 return length;
5083}
5084SLAB_ATTR(min_partial);
5085
49e22585
CL
5086static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5087{
bf16d19a 5088 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
5089}
5090
5091static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5092 size_t length)
5093{
e5d9998f 5094 unsigned int objects;
49e22585
CL
5095 int err;
5096
e5d9998f 5097 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5098 if (err)
5099 return err;
345c905d 5100 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5101 return -EINVAL;
49e22585 5102
e6d0e1dc 5103 slub_set_cpu_partial(s, objects);
49e22585
CL
5104 flush_all(s);
5105 return length;
5106}
5107SLAB_ATTR(cpu_partial);
5108
81819f0f
CL
5109static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5110{
62c70bce
JP
5111 if (!s->ctor)
5112 return 0;
bf16d19a 5113 return sysfs_emit(buf, "%pS\n", s->ctor);
81819f0f
CL
5114}
5115SLAB_ATTR_RO(ctor);
5116
81819f0f
CL
5117static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5118{
bf16d19a 5119 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5120}
5121SLAB_ATTR_RO(aliases);
5122
81819f0f
CL
5123static ssize_t partial_show(struct kmem_cache *s, char *buf)
5124{
d9acf4b7 5125 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5126}
5127SLAB_ATTR_RO(partial);
5128
5129static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5130{
d9acf4b7 5131 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5132}
5133SLAB_ATTR_RO(cpu_slabs);
5134
5135static ssize_t objects_show(struct kmem_cache *s, char *buf)
5136{
205ab99d 5137 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5138}
5139SLAB_ATTR_RO(objects);
5140
205ab99d
CL
5141static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5142{
5143 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5144}
5145SLAB_ATTR_RO(objects_partial);
5146
49e22585
CL
5147static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5148{
5149 int objects = 0;
5150 int pages = 0;
5151 int cpu;
bf16d19a 5152 int len = 0;
49e22585
CL
5153
5154 for_each_online_cpu(cpu) {
a93cf07b
WY
5155 struct page *page;
5156
5157 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5158
5159 if (page) {
5160 pages += page->pages;
5161 objects += page->pobjects;
5162 }
5163 }
5164
bf16d19a 5165 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
49e22585
CL
5166
5167#ifdef CONFIG_SMP
5168 for_each_online_cpu(cpu) {
a93cf07b
WY
5169 struct page *page;
5170
5171 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
bf16d19a
JP
5172 if (page)
5173 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5174 cpu, page->pobjects, page->pages);
49e22585
CL
5175 }
5176#endif
bf16d19a
JP
5177 len += sysfs_emit_at(buf, len, "\n");
5178
5179 return len;
49e22585
CL
5180}
5181SLAB_ATTR_RO(slabs_cpu_partial);
5182
a5a84755
CL
5183static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5184{
bf16d19a 5185 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
a5a84755 5186}
8f58119a 5187SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
5188
5189static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5190{
bf16d19a 5191 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
a5a84755
CL
5192}
5193SLAB_ATTR_RO(hwcache_align);
5194
5195#ifdef CONFIG_ZONE_DMA
5196static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5197{
bf16d19a 5198 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
a5a84755
CL
5199}
5200SLAB_ATTR_RO(cache_dma);
5201#endif
5202
8eb8284b
DW
5203static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5204{
bf16d19a 5205 return sysfs_emit(buf, "%u\n", s->usersize);
8eb8284b
DW
5206}
5207SLAB_ATTR_RO(usersize);
5208
a5a84755
CL
5209static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5210{
bf16d19a 5211 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5212}
5213SLAB_ATTR_RO(destroy_by_rcu);
5214
ab4d5ed5 5215#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5216static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5217{
5218 return show_slab_objects(s, buf, SO_ALL);
5219}
5220SLAB_ATTR_RO(slabs);
5221
205ab99d
CL
5222static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5223{
5224 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5225}
5226SLAB_ATTR_RO(total_objects);
5227
81819f0f
CL
5228static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5229{
bf16d19a 5230 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 5231}
060807f8 5232SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
5233
5234static ssize_t trace_show(struct kmem_cache *s, char *buf)
5235{
bf16d19a 5236 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
81819f0f 5237}
060807f8 5238SLAB_ATTR_RO(trace);
81819f0f 5239
81819f0f
CL
5240static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5241{
bf16d19a 5242 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
81819f0f
CL
5243}
5244
ad38b5b1 5245SLAB_ATTR_RO(red_zone);
81819f0f
CL
5246
5247static ssize_t poison_show(struct kmem_cache *s, char *buf)
5248{
bf16d19a 5249 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
81819f0f
CL
5250}
5251
ad38b5b1 5252SLAB_ATTR_RO(poison);
81819f0f
CL
5253
5254static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5255{
bf16d19a 5256 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
81819f0f
CL
5257}
5258
ad38b5b1 5259SLAB_ATTR_RO(store_user);
81819f0f 5260
53e15af0
CL
5261static ssize_t validate_show(struct kmem_cache *s, char *buf)
5262{
5263 return 0;
5264}
5265
5266static ssize_t validate_store(struct kmem_cache *s,
5267 const char *buf, size_t length)
5268{
434e245d
CL
5269 int ret = -EINVAL;
5270
5271 if (buf[0] == '1') {
5272 ret = validate_slab_cache(s);
5273 if (ret >= 0)
5274 ret = length;
5275 }
5276 return ret;
53e15af0
CL
5277}
5278SLAB_ATTR(validate);
a5a84755
CL
5279
5280static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5281{
5282 if (!(s->flags & SLAB_STORE_USER))
5283 return -ENOSYS;
5284 return list_locations(s, buf, TRACK_ALLOC);
5285}
5286SLAB_ATTR_RO(alloc_calls);
5287
5288static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5289{
5290 if (!(s->flags & SLAB_STORE_USER))
5291 return -ENOSYS;
5292 return list_locations(s, buf, TRACK_FREE);
5293}
5294SLAB_ATTR_RO(free_calls);
5295#endif /* CONFIG_SLUB_DEBUG */
5296
5297#ifdef CONFIG_FAILSLAB
5298static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5299{
bf16d19a 5300 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
a5a84755 5301}
060807f8 5302SLAB_ATTR_RO(failslab);
ab4d5ed5 5303#endif
53e15af0 5304
2086d26a
CL
5305static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5306{
5307 return 0;
5308}
5309
5310static ssize_t shrink_store(struct kmem_cache *s,
5311 const char *buf, size_t length)
5312{
832f37f5 5313 if (buf[0] == '1')
10befea9 5314 kmem_cache_shrink(s);
832f37f5 5315 else
2086d26a
CL
5316 return -EINVAL;
5317 return length;
5318}
5319SLAB_ATTR(shrink);
5320
81819f0f 5321#ifdef CONFIG_NUMA
9824601e 5322static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5323{
bf16d19a 5324 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5325}
5326
9824601e 5327static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5328 const char *buf, size_t length)
5329{
eb7235eb 5330 unsigned int ratio;
0121c619
CL
5331 int err;
5332
eb7235eb 5333 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5334 if (err)
5335 return err;
eb7235eb
AD
5336 if (ratio > 100)
5337 return -ERANGE;
0121c619 5338
eb7235eb 5339 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5340
81819f0f
CL
5341 return length;
5342}
9824601e 5343SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5344#endif
5345
8ff12cfc 5346#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5347static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5348{
5349 unsigned long sum = 0;
5350 int cpu;
bf16d19a 5351 int len = 0;
6da2ec56 5352 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5353
5354 if (!data)
5355 return -ENOMEM;
5356
5357 for_each_online_cpu(cpu) {
9dfc6e68 5358 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5359
5360 data[cpu] = x;
5361 sum += x;
5362 }
5363
bf16d19a 5364 len += sysfs_emit_at(buf, len, "%lu", sum);
8ff12cfc 5365
50ef37b9 5366#ifdef CONFIG_SMP
8ff12cfc 5367 for_each_online_cpu(cpu) {
bf16d19a
JP
5368 if (data[cpu])
5369 len += sysfs_emit_at(buf, len, " C%d=%u",
5370 cpu, data[cpu]);
8ff12cfc 5371 }
50ef37b9 5372#endif
8ff12cfc 5373 kfree(data);
bf16d19a
JP
5374 len += sysfs_emit_at(buf, len, "\n");
5375
5376 return len;
8ff12cfc
CL
5377}
5378
78eb00cc
DR
5379static void clear_stat(struct kmem_cache *s, enum stat_item si)
5380{
5381 int cpu;
5382
5383 for_each_online_cpu(cpu)
9dfc6e68 5384 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5385}
5386
8ff12cfc
CL
5387#define STAT_ATTR(si, text) \
5388static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5389{ \
5390 return show_stat(s, buf, si); \
5391} \
78eb00cc
DR
5392static ssize_t text##_store(struct kmem_cache *s, \
5393 const char *buf, size_t length) \
5394{ \
5395 if (buf[0] != '0') \
5396 return -EINVAL; \
5397 clear_stat(s, si); \
5398 return length; \
5399} \
5400SLAB_ATTR(text); \
8ff12cfc
CL
5401
5402STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5403STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5404STAT_ATTR(FREE_FASTPATH, free_fastpath);
5405STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5406STAT_ATTR(FREE_FROZEN, free_frozen);
5407STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5408STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5409STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5410STAT_ATTR(ALLOC_SLAB, alloc_slab);
5411STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5412STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5413STAT_ATTR(FREE_SLAB, free_slab);
5414STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5415STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5416STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5417STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5418STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5419STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5420STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5421STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5422STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5423STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5424STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5425STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5426STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5427STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5428#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5429
06428780 5430static struct attribute *slab_attrs[] = {
81819f0f
CL
5431 &slab_size_attr.attr,
5432 &object_size_attr.attr,
5433 &objs_per_slab_attr.attr,
5434 &order_attr.attr,
73d342b1 5435 &min_partial_attr.attr,
49e22585 5436 &cpu_partial_attr.attr,
81819f0f 5437 &objects_attr.attr,
205ab99d 5438 &objects_partial_attr.attr,
81819f0f
CL
5439 &partial_attr.attr,
5440 &cpu_slabs_attr.attr,
5441 &ctor_attr.attr,
81819f0f
CL
5442 &aliases_attr.attr,
5443 &align_attr.attr,
81819f0f
CL
5444 &hwcache_align_attr.attr,
5445 &reclaim_account_attr.attr,
5446 &destroy_by_rcu_attr.attr,
a5a84755 5447 &shrink_attr.attr,
49e22585 5448 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5449#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5450 &total_objects_attr.attr,
5451 &slabs_attr.attr,
5452 &sanity_checks_attr.attr,
5453 &trace_attr.attr,
81819f0f
CL
5454 &red_zone_attr.attr,
5455 &poison_attr.attr,
5456 &store_user_attr.attr,
53e15af0 5457 &validate_attr.attr,
88a420e4
CL
5458 &alloc_calls_attr.attr,
5459 &free_calls_attr.attr,
ab4d5ed5 5460#endif
81819f0f
CL
5461#ifdef CONFIG_ZONE_DMA
5462 &cache_dma_attr.attr,
5463#endif
5464#ifdef CONFIG_NUMA
9824601e 5465 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5466#endif
5467#ifdef CONFIG_SLUB_STATS
5468 &alloc_fastpath_attr.attr,
5469 &alloc_slowpath_attr.attr,
5470 &free_fastpath_attr.attr,
5471 &free_slowpath_attr.attr,
5472 &free_frozen_attr.attr,
5473 &free_add_partial_attr.attr,
5474 &free_remove_partial_attr.attr,
5475 &alloc_from_partial_attr.attr,
5476 &alloc_slab_attr.attr,
5477 &alloc_refill_attr.attr,
e36a2652 5478 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5479 &free_slab_attr.attr,
5480 &cpuslab_flush_attr.attr,
5481 &deactivate_full_attr.attr,
5482 &deactivate_empty_attr.attr,
5483 &deactivate_to_head_attr.attr,
5484 &deactivate_to_tail_attr.attr,
5485 &deactivate_remote_frees_attr.attr,
03e404af 5486 &deactivate_bypass_attr.attr,
65c3376a 5487 &order_fallback_attr.attr,
b789ef51
CL
5488 &cmpxchg_double_fail_attr.attr,
5489 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5490 &cpu_partial_alloc_attr.attr,
5491 &cpu_partial_free_attr.attr,
8028dcea
AS
5492 &cpu_partial_node_attr.attr,
5493 &cpu_partial_drain_attr.attr,
81819f0f 5494#endif
4c13dd3b
DM
5495#ifdef CONFIG_FAILSLAB
5496 &failslab_attr.attr,
5497#endif
8eb8284b 5498 &usersize_attr.attr,
4c13dd3b 5499
81819f0f
CL
5500 NULL
5501};
5502
1fdaaa23 5503static const struct attribute_group slab_attr_group = {
81819f0f
CL
5504 .attrs = slab_attrs,
5505};
5506
5507static ssize_t slab_attr_show(struct kobject *kobj,
5508 struct attribute *attr,
5509 char *buf)
5510{
5511 struct slab_attribute *attribute;
5512 struct kmem_cache *s;
5513 int err;
5514
5515 attribute = to_slab_attr(attr);
5516 s = to_slab(kobj);
5517
5518 if (!attribute->show)
5519 return -EIO;
5520
5521 err = attribute->show(s, buf);
5522
5523 return err;
5524}
5525
5526static ssize_t slab_attr_store(struct kobject *kobj,
5527 struct attribute *attr,
5528 const char *buf, size_t len)
5529{
5530 struct slab_attribute *attribute;
5531 struct kmem_cache *s;
5532 int err;
5533
5534 attribute = to_slab_attr(attr);
5535 s = to_slab(kobj);
5536
5537 if (!attribute->store)
5538 return -EIO;
5539
5540 err = attribute->store(s, buf, len);
81819f0f
CL
5541 return err;
5542}
5543
41a21285
CL
5544static void kmem_cache_release(struct kobject *k)
5545{
5546 slab_kmem_cache_release(to_slab(k));
5547}
5548
52cf25d0 5549static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5550 .show = slab_attr_show,
5551 .store = slab_attr_store,
5552};
5553
5554static struct kobj_type slab_ktype = {
5555 .sysfs_ops = &slab_sysfs_ops,
41a21285 5556 .release = kmem_cache_release,
81819f0f
CL
5557};
5558
27c3a314 5559static struct kset *slab_kset;
81819f0f 5560
9a41707b
VD
5561static inline struct kset *cache_kset(struct kmem_cache *s)
5562{
9a41707b
VD
5563 return slab_kset;
5564}
5565
81819f0f
CL
5566#define ID_STR_LENGTH 64
5567
5568/* Create a unique string id for a slab cache:
6446faa2
CL
5569 *
5570 * Format :[flags-]size
81819f0f
CL
5571 */
5572static char *create_unique_id(struct kmem_cache *s)
5573{
5574 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5575 char *p = name;
5576
5577 BUG_ON(!name);
5578
5579 *p++ = ':';
5580 /*
5581 * First flags affecting slabcache operations. We will only
5582 * get here for aliasable slabs so we do not need to support
5583 * too many flags. The flags here must cover all flags that
5584 * are matched during merging to guarantee that the id is
5585 * unique.
5586 */
5587 if (s->flags & SLAB_CACHE_DMA)
5588 *p++ = 'd';
6d6ea1e9
NB
5589 if (s->flags & SLAB_CACHE_DMA32)
5590 *p++ = 'D';
81819f0f
CL
5591 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5592 *p++ = 'a';
becfda68 5593 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5594 *p++ = 'F';
230e9fc2
VD
5595 if (s->flags & SLAB_ACCOUNT)
5596 *p++ = 'A';
81819f0f
CL
5597 if (p != name + 1)
5598 *p++ = '-';
44065b2e 5599 p += sprintf(p, "%07u", s->size);
2633d7a0 5600
81819f0f
CL
5601 BUG_ON(p > name + ID_STR_LENGTH - 1);
5602 return name;
5603}
5604
5605static int sysfs_slab_add(struct kmem_cache *s)
5606{
5607 int err;
5608 const char *name;
1663f26d 5609 struct kset *kset = cache_kset(s);
45530c44 5610 int unmergeable = slab_unmergeable(s);
81819f0f 5611
1663f26d
TH
5612 if (!kset) {
5613 kobject_init(&s->kobj, &slab_ktype);
5614 return 0;
5615 }
5616
11066386
MC
5617 if (!unmergeable && disable_higher_order_debug &&
5618 (slub_debug & DEBUG_METADATA_FLAGS))
5619 unmergeable = 1;
5620
81819f0f
CL
5621 if (unmergeable) {
5622 /*
5623 * Slabcache can never be merged so we can use the name proper.
5624 * This is typically the case for debug situations. In that
5625 * case we can catch duplicate names easily.
5626 */
27c3a314 5627 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5628 name = s->name;
5629 } else {
5630 /*
5631 * Create a unique name for the slab as a target
5632 * for the symlinks.
5633 */
5634 name = create_unique_id(s);
5635 }
5636
1663f26d 5637 s->kobj.kset = kset;
26e4f205 5638 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
757fed1d 5639 if (err)
80da026a 5640 goto out;
81819f0f
CL
5641
5642 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5643 if (err)
5644 goto out_del_kobj;
9a41707b 5645
81819f0f
CL
5646 if (!unmergeable) {
5647 /* Setup first alias */
5648 sysfs_slab_alias(s, s->name);
81819f0f 5649 }
54b6a731
DJ
5650out:
5651 if (!unmergeable)
5652 kfree(name);
5653 return err;
5654out_del_kobj:
5655 kobject_del(&s->kobj);
54b6a731 5656 goto out;
81819f0f
CL
5657}
5658
d50d82fa
MP
5659void sysfs_slab_unlink(struct kmem_cache *s)
5660{
5661 if (slab_state >= FULL)
5662 kobject_del(&s->kobj);
5663}
5664
bf5eb3de
TH
5665void sysfs_slab_release(struct kmem_cache *s)
5666{
5667 if (slab_state >= FULL)
5668 kobject_put(&s->kobj);
81819f0f
CL
5669}
5670
5671/*
5672 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5673 * available lest we lose that information.
81819f0f
CL
5674 */
5675struct saved_alias {
5676 struct kmem_cache *s;
5677 const char *name;
5678 struct saved_alias *next;
5679};
5680
5af328a5 5681static struct saved_alias *alias_list;
81819f0f
CL
5682
5683static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5684{
5685 struct saved_alias *al;
5686
97d06609 5687 if (slab_state == FULL) {
81819f0f
CL
5688 /*
5689 * If we have a leftover link then remove it.
5690 */
27c3a314
GKH
5691 sysfs_remove_link(&slab_kset->kobj, name);
5692 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5693 }
5694
5695 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5696 if (!al)
5697 return -ENOMEM;
5698
5699 al->s = s;
5700 al->name = name;
5701 al->next = alias_list;
5702 alias_list = al;
5703 return 0;
5704}
5705
5706static int __init slab_sysfs_init(void)
5707{
5b95a4ac 5708 struct kmem_cache *s;
81819f0f
CL
5709 int err;
5710
18004c5d 5711 mutex_lock(&slab_mutex);
2bce6485 5712
d7660ce5 5713 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 5714 if (!slab_kset) {
18004c5d 5715 mutex_unlock(&slab_mutex);
f9f58285 5716 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5717 return -ENOSYS;
5718 }
5719
97d06609 5720 slab_state = FULL;
26a7bd03 5721
5b95a4ac 5722 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5723 err = sysfs_slab_add(s);
5d540fb7 5724 if (err)
f9f58285
FF
5725 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5726 s->name);
26a7bd03 5727 }
81819f0f
CL
5728
5729 while (alias_list) {
5730 struct saved_alias *al = alias_list;
5731
5732 alias_list = alias_list->next;
5733 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5734 if (err)
f9f58285
FF
5735 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5736 al->name);
81819f0f
CL
5737 kfree(al);
5738 }
5739
18004c5d 5740 mutex_unlock(&slab_mutex);
81819f0f
CL
5741 resiliency_test();
5742 return 0;
5743}
5744
5745__initcall(slab_sysfs_init);
ab4d5ed5 5746#endif /* CONFIG_SYSFS */
57ed3eda
PE
5747
5748/*
5749 * The /proc/slabinfo ABI
5750 */
5b365771 5751#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5752void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5753{
57ed3eda 5754 unsigned long nr_slabs = 0;
205ab99d
CL
5755 unsigned long nr_objs = 0;
5756 unsigned long nr_free = 0;
57ed3eda 5757 int node;
fa45dc25 5758 struct kmem_cache_node *n;
57ed3eda 5759
fa45dc25 5760 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5761 nr_slabs += node_nr_slabs(n);
5762 nr_objs += node_nr_objs(n);
205ab99d 5763 nr_free += count_partial(n, count_free);
57ed3eda
PE
5764 }
5765
0d7561c6
GC
5766 sinfo->active_objs = nr_objs - nr_free;
5767 sinfo->num_objs = nr_objs;
5768 sinfo->active_slabs = nr_slabs;
5769 sinfo->num_slabs = nr_slabs;
5770 sinfo->objects_per_slab = oo_objects(s->oo);
5771 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5772}
5773
0d7561c6 5774void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5775{
7b3c3a50
AD
5776}
5777
b7454ad3
GC
5778ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5779 size_t count, loff_t *ppos)
7b3c3a50 5780{
b7454ad3 5781 return -EIO;
7b3c3a50 5782}
5b365771 5783#endif /* CONFIG_SLUB_DEBUG */