]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/slub.c
btrfs: cleaner_kthread() doesn't need explicit freeze
[mirror_ubuntu-artful-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
5a896d9e 24#include <linux/kmemcheck.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
81819f0f
CL
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
672bba3a
CL
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 87 * freed then the slab will show up again on the partial lists.
672bba3a
CL
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
81819f0f
CL
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
4b6f0750
CL
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
dfb4f096 109 * freelist that allows lockless access to
894b8788
CL
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
81819f0f
CL
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
894b8788 115 * the fast path and disables lockless freelists.
81819f0f
CL
116 */
117
af537b0a
CL
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
345c905d
JK
127static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
128{
129#ifdef CONFIG_SLUB_CPU_PARTIAL
130 return !kmem_cache_debug(s);
131#else
132 return false;
133#endif
134}
135
81819f0f
CL
136/*
137 * Issues still to be resolved:
138 *
81819f0f
CL
139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140 *
81819f0f
CL
141 * - Variable sizing of the per node arrays
142 */
143
144/* Enable to test recovery from slab corruption on boot */
145#undef SLUB_RESILIENCY_TEST
146
b789ef51
CL
147/* Enable to log cmpxchg failures */
148#undef SLUB_DEBUG_CMPXCHG
149
2086d26a
CL
150/*
151 * Mininum number of partial slabs. These will be left on the partial
152 * lists even if they are empty. kmem_cache_shrink may reclaim them.
153 */
76be8950 154#define MIN_PARTIAL 5
e95eed57 155
2086d26a
CL
156/*
157 * Maximum number of desirable partial slabs.
158 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 159 * sort the partial list by the number of objects in use.
2086d26a
CL
160 */
161#define MAX_PARTIAL 10
162
81819f0f
CL
163#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
164 SLAB_POISON | SLAB_STORE_USER)
672bba3a 165
fa5ec8a1 166/*
3de47213
DR
167 * Debugging flags that require metadata to be stored in the slab. These get
168 * disabled when slub_debug=O is used and a cache's min order increases with
169 * metadata.
fa5ec8a1 170 */
3de47213 171#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 172
210b5c06
CG
173#define OO_SHIFT 16
174#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 175#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 176
81819f0f 177/* Internal SLUB flags */
f90ec390 178#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 179#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 180
81819f0f
CL
181#ifdef CONFIG_SMP
182static struct notifier_block slab_notifier;
183#endif
184
02cbc874
CL
185/*
186 * Tracking user of a slab.
187 */
d6543e39 188#define TRACK_ADDRS_COUNT 16
02cbc874 189struct track {
ce71e27c 190 unsigned long addr; /* Called from address */
d6543e39
BG
191#ifdef CONFIG_STACKTRACE
192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
193#endif
02cbc874
CL
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197};
198
199enum track_item { TRACK_ALLOC, TRACK_FREE };
200
ab4d5ed5 201#ifdef CONFIG_SYSFS
81819f0f
CL
202static int sysfs_slab_add(struct kmem_cache *);
203static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 204static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 205#else
0c710013
CL
206static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 { return 0; }
107dab5c 209static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
210#endif
211
4fdccdfb 212static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
213{
214#ifdef CONFIG_SLUB_STATS
88da03a6
CL
215 /*
216 * The rmw is racy on a preemptible kernel but this is acceptable, so
217 * avoid this_cpu_add()'s irq-disable overhead.
218 */
219 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
220#endif
221}
222
81819f0f
CL
223/********************************************************************
224 * Core slab cache functions
225 *******************************************************************/
226
6446faa2 227/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
228static inline int check_valid_pointer(struct kmem_cache *s,
229 struct page *page, const void *object)
230{
231 void *base;
232
a973e9dd 233 if (!object)
02cbc874
CL
234 return 1;
235
a973e9dd 236 base = page_address(page);
39b26464 237 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
238 (object - base) % s->size) {
239 return 0;
240 }
241
242 return 1;
243}
244
7656c72b
CL
245static inline void *get_freepointer(struct kmem_cache *s, void *object)
246{
247 return *(void **)(object + s->offset);
248}
249
0ad9500e
ED
250static void prefetch_freepointer(const struct kmem_cache *s, void *object)
251{
252 prefetch(object + s->offset);
253}
254
1393d9a1
CL
255static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
256{
257 void *p;
258
259#ifdef CONFIG_DEBUG_PAGEALLOC
260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261#else
262 p = get_freepointer(s, object);
263#endif
264 return p;
265}
266
7656c72b
CL
267static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
268{
269 *(void **)(object + s->offset) = fp;
270}
271
272/* Loop over all objects in a slab */
224a88be
CL
273#define for_each_object(__p, __s, __addr, __objects) \
274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
275 __p += (__s)->size)
276
54266640
WY
277#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
278 for (__p = (__addr), __idx = 1; __idx <= __objects;\
279 __p += (__s)->size, __idx++)
280
7656c72b
CL
281/* Determine object index from a given position */
282static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283{
284 return (p - addr) / s->size;
285}
286
d71f606f
MK
287static inline size_t slab_ksize(const struct kmem_cache *s)
288{
289#ifdef CONFIG_SLUB_DEBUG
290 /*
291 * Debugging requires use of the padding between object
292 * and whatever may come after it.
293 */
294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 295 return s->object_size;
d71f606f
MK
296
297#endif
298 /*
299 * If we have the need to store the freelist pointer
300 * back there or track user information then we can
301 * only use the space before that information.
302 */
303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
304 return s->inuse;
305 /*
306 * Else we can use all the padding etc for the allocation
307 */
308 return s->size;
309}
310
ab9a0f19
LJ
311static inline int order_objects(int order, unsigned long size, int reserved)
312{
313 return ((PAGE_SIZE << order) - reserved) / size;
314}
315
834f3d11 316static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 317 unsigned long size, int reserved)
834f3d11
CL
318{
319 struct kmem_cache_order_objects x = {
ab9a0f19 320 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
321 };
322
323 return x;
324}
325
326static inline int oo_order(struct kmem_cache_order_objects x)
327{
210b5c06 328 return x.x >> OO_SHIFT;
834f3d11
CL
329}
330
331static inline int oo_objects(struct kmem_cache_order_objects x)
332{
210b5c06 333 return x.x & OO_MASK;
834f3d11
CL
334}
335
881db7fb
CL
336/*
337 * Per slab locking using the pagelock
338 */
339static __always_inline void slab_lock(struct page *page)
340{
48c935ad 341 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
342 bit_spin_lock(PG_locked, &page->flags);
343}
344
345static __always_inline void slab_unlock(struct page *page)
346{
48c935ad 347 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
348 __bit_spin_unlock(PG_locked, &page->flags);
349}
350
a0320865
DH
351static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
352{
353 struct page tmp;
354 tmp.counters = counters_new;
355 /*
356 * page->counters can cover frozen/inuse/objects as well
357 * as page->_count. If we assign to ->counters directly
358 * we run the risk of losing updates to page->_count, so
359 * be careful and only assign to the fields we need.
360 */
361 page->frozen = tmp.frozen;
362 page->inuse = tmp.inuse;
363 page->objects = tmp.objects;
364}
365
1d07171c
CL
366/* Interrupts must be disabled (for the fallback code to work right) */
367static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
368 void *freelist_old, unsigned long counters_old,
369 void *freelist_new, unsigned long counters_new,
370 const char *n)
371{
372 VM_BUG_ON(!irqs_disabled());
2565409f
HC
373#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
374 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 375 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 376 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
377 freelist_old, counters_old,
378 freelist_new, counters_new))
6f6528a1 379 return true;
1d07171c
CL
380 } else
381#endif
382 {
383 slab_lock(page);
d0e0ac97
CG
384 if (page->freelist == freelist_old &&
385 page->counters == counters_old) {
1d07171c 386 page->freelist = freelist_new;
a0320865 387 set_page_slub_counters(page, counters_new);
1d07171c 388 slab_unlock(page);
6f6528a1 389 return true;
1d07171c
CL
390 }
391 slab_unlock(page);
392 }
393
394 cpu_relax();
395 stat(s, CMPXCHG_DOUBLE_FAIL);
396
397#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 398 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
399#endif
400
6f6528a1 401 return false;
1d07171c
CL
402}
403
b789ef51
CL
404static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
405 void *freelist_old, unsigned long counters_old,
406 void *freelist_new, unsigned long counters_new,
407 const char *n)
408{
2565409f
HC
409#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
410 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 411 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 412 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
413 freelist_old, counters_old,
414 freelist_new, counters_new))
6f6528a1 415 return true;
b789ef51
CL
416 } else
417#endif
418 {
1d07171c
CL
419 unsigned long flags;
420
421 local_irq_save(flags);
881db7fb 422 slab_lock(page);
d0e0ac97
CG
423 if (page->freelist == freelist_old &&
424 page->counters == counters_old) {
b789ef51 425 page->freelist = freelist_new;
a0320865 426 set_page_slub_counters(page, counters_new);
881db7fb 427 slab_unlock(page);
1d07171c 428 local_irq_restore(flags);
6f6528a1 429 return true;
b789ef51 430 }
881db7fb 431 slab_unlock(page);
1d07171c 432 local_irq_restore(flags);
b789ef51
CL
433 }
434
435 cpu_relax();
436 stat(s, CMPXCHG_DOUBLE_FAIL);
437
438#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 439 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
440#endif
441
6f6528a1 442 return false;
b789ef51
CL
443}
444
41ecc55b 445#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
446/*
447 * Determine a map of object in use on a page.
448 *
881db7fb 449 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
450 * not vanish from under us.
451 */
452static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
453{
454 void *p;
455 void *addr = page_address(page);
456
457 for (p = page->freelist; p; p = get_freepointer(s, p))
458 set_bit(slab_index(p, s, addr), map);
459}
460
41ecc55b
CL
461/*
462 * Debug settings:
463 */
89d3c87e 464#if defined(CONFIG_SLUB_DEBUG_ON)
f0630fff 465static int slub_debug = DEBUG_DEFAULT_FLAGS;
89d3c87e
AR
466#elif defined(CONFIG_KASAN)
467static int slub_debug = SLAB_STORE_USER;
f0630fff 468#else
41ecc55b 469static int slub_debug;
f0630fff 470#endif
41ecc55b
CL
471
472static char *slub_debug_slabs;
fa5ec8a1 473static int disable_higher_order_debug;
41ecc55b 474
a79316c6
AR
475/*
476 * slub is about to manipulate internal object metadata. This memory lies
477 * outside the range of the allocated object, so accessing it would normally
478 * be reported by kasan as a bounds error. metadata_access_enable() is used
479 * to tell kasan that these accesses are OK.
480 */
481static inline void metadata_access_enable(void)
482{
483 kasan_disable_current();
484}
485
486static inline void metadata_access_disable(void)
487{
488 kasan_enable_current();
489}
490
81819f0f
CL
491/*
492 * Object debugging
493 */
494static void print_section(char *text, u8 *addr, unsigned int length)
495{
a79316c6 496 metadata_access_enable();
ffc79d28
SAS
497 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
498 length, 1);
a79316c6 499 metadata_access_disable();
81819f0f
CL
500}
501
81819f0f
CL
502static struct track *get_track(struct kmem_cache *s, void *object,
503 enum track_item alloc)
504{
505 struct track *p;
506
507 if (s->offset)
508 p = object + s->offset + sizeof(void *);
509 else
510 p = object + s->inuse;
511
512 return p + alloc;
513}
514
515static void set_track(struct kmem_cache *s, void *object,
ce71e27c 516 enum track_item alloc, unsigned long addr)
81819f0f 517{
1a00df4a 518 struct track *p = get_track(s, object, alloc);
81819f0f 519
81819f0f 520 if (addr) {
d6543e39
BG
521#ifdef CONFIG_STACKTRACE
522 struct stack_trace trace;
523 int i;
524
525 trace.nr_entries = 0;
526 trace.max_entries = TRACK_ADDRS_COUNT;
527 trace.entries = p->addrs;
528 trace.skip = 3;
a79316c6 529 metadata_access_enable();
d6543e39 530 save_stack_trace(&trace);
a79316c6 531 metadata_access_disable();
d6543e39
BG
532
533 /* See rant in lockdep.c */
534 if (trace.nr_entries != 0 &&
535 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
536 trace.nr_entries--;
537
538 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
539 p->addrs[i] = 0;
540#endif
81819f0f
CL
541 p->addr = addr;
542 p->cpu = smp_processor_id();
88e4ccf2 543 p->pid = current->pid;
81819f0f
CL
544 p->when = jiffies;
545 } else
546 memset(p, 0, sizeof(struct track));
547}
548
81819f0f
CL
549static void init_tracking(struct kmem_cache *s, void *object)
550{
24922684
CL
551 if (!(s->flags & SLAB_STORE_USER))
552 return;
553
ce71e27c
EGM
554 set_track(s, object, TRACK_FREE, 0UL);
555 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
556}
557
558static void print_track(const char *s, struct track *t)
559{
560 if (!t->addr)
561 return;
562
f9f58285
FF
563 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
564 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
565#ifdef CONFIG_STACKTRACE
566 {
567 int i;
568 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
569 if (t->addrs[i])
f9f58285 570 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
571 else
572 break;
573 }
574#endif
24922684
CL
575}
576
577static void print_tracking(struct kmem_cache *s, void *object)
578{
579 if (!(s->flags & SLAB_STORE_USER))
580 return;
581
582 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
583 print_track("Freed", get_track(s, object, TRACK_FREE));
584}
585
586static void print_page_info(struct page *page)
587{
f9f58285 588 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 589 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
590
591}
592
593static void slab_bug(struct kmem_cache *s, char *fmt, ...)
594{
ecc42fbe 595 struct va_format vaf;
24922684 596 va_list args;
24922684
CL
597
598 va_start(args, fmt);
ecc42fbe
FF
599 vaf.fmt = fmt;
600 vaf.va = &args;
f9f58285 601 pr_err("=============================================================================\n");
ecc42fbe 602 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 603 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 604
373d4d09 605 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 606 va_end(args);
81819f0f
CL
607}
608
24922684
CL
609static void slab_fix(struct kmem_cache *s, char *fmt, ...)
610{
ecc42fbe 611 struct va_format vaf;
24922684 612 va_list args;
24922684
CL
613
614 va_start(args, fmt);
ecc42fbe
FF
615 vaf.fmt = fmt;
616 vaf.va = &args;
617 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 618 va_end(args);
24922684
CL
619}
620
621static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
622{
623 unsigned int off; /* Offset of last byte */
a973e9dd 624 u8 *addr = page_address(page);
24922684
CL
625
626 print_tracking(s, p);
627
628 print_page_info(page);
629
f9f58285
FF
630 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
631 p, p - addr, get_freepointer(s, p));
24922684
CL
632
633 if (p > addr + 16)
ffc79d28 634 print_section("Bytes b4 ", p - 16, 16);
81819f0f 635
3b0efdfa 636 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 637 PAGE_SIZE));
81819f0f 638 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
639 print_section("Redzone ", p + s->object_size,
640 s->inuse - s->object_size);
81819f0f 641
81819f0f
CL
642 if (s->offset)
643 off = s->offset + sizeof(void *);
644 else
645 off = s->inuse;
646
24922684 647 if (s->flags & SLAB_STORE_USER)
81819f0f 648 off += 2 * sizeof(struct track);
81819f0f
CL
649
650 if (off != s->size)
651 /* Beginning of the filler is the free pointer */
ffc79d28 652 print_section("Padding ", p + off, s->size - off);
24922684
CL
653
654 dump_stack();
81819f0f
CL
655}
656
75c66def 657void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
658 u8 *object, char *reason)
659{
3dc50637 660 slab_bug(s, "%s", reason);
24922684 661 print_trailer(s, page, object);
81819f0f
CL
662}
663
d0e0ac97
CG
664static void slab_err(struct kmem_cache *s, struct page *page,
665 const char *fmt, ...)
81819f0f
CL
666{
667 va_list args;
668 char buf[100];
669
24922684
CL
670 va_start(args, fmt);
671 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 672 va_end(args);
3dc50637 673 slab_bug(s, "%s", buf);
24922684 674 print_page_info(page);
81819f0f
CL
675 dump_stack();
676}
677
f7cb1933 678static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
679{
680 u8 *p = object;
681
682 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
683 memset(p, POISON_FREE, s->object_size - 1);
684 p[s->object_size - 1] = POISON_END;
81819f0f
CL
685 }
686
687 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 688 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
689}
690
24922684
CL
691static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
692 void *from, void *to)
693{
694 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
695 memset(from, data, to - from);
696}
697
698static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
699 u8 *object, char *what,
06428780 700 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
701{
702 u8 *fault;
703 u8 *end;
704
a79316c6 705 metadata_access_enable();
79824820 706 fault = memchr_inv(start, value, bytes);
a79316c6 707 metadata_access_disable();
24922684
CL
708 if (!fault)
709 return 1;
710
711 end = start + bytes;
712 while (end > fault && end[-1] == value)
713 end--;
714
715 slab_bug(s, "%s overwritten", what);
f9f58285 716 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
717 fault, end - 1, fault[0], value);
718 print_trailer(s, page, object);
719
720 restore_bytes(s, what, value, fault, end);
721 return 0;
81819f0f
CL
722}
723
81819f0f
CL
724/*
725 * Object layout:
726 *
727 * object address
728 * Bytes of the object to be managed.
729 * If the freepointer may overlay the object then the free
730 * pointer is the first word of the object.
672bba3a 731 *
81819f0f
CL
732 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
733 * 0xa5 (POISON_END)
734 *
3b0efdfa 735 * object + s->object_size
81819f0f 736 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 737 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 738 * object_size == inuse.
672bba3a 739 *
81819f0f
CL
740 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
741 * 0xcc (RED_ACTIVE) for objects in use.
742 *
743 * object + s->inuse
672bba3a
CL
744 * Meta data starts here.
745 *
81819f0f
CL
746 * A. Free pointer (if we cannot overwrite object on free)
747 * B. Tracking data for SLAB_STORE_USER
672bba3a 748 * C. Padding to reach required alignment boundary or at mininum
6446faa2 749 * one word if debugging is on to be able to detect writes
672bba3a
CL
750 * before the word boundary.
751 *
752 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
753 *
754 * object + s->size
672bba3a 755 * Nothing is used beyond s->size.
81819f0f 756 *
3b0efdfa 757 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 758 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
759 * may be used with merged slabcaches.
760 */
761
81819f0f
CL
762static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
763{
764 unsigned long off = s->inuse; /* The end of info */
765
766 if (s->offset)
767 /* Freepointer is placed after the object. */
768 off += sizeof(void *);
769
770 if (s->flags & SLAB_STORE_USER)
771 /* We also have user information there */
772 off += 2 * sizeof(struct track);
773
774 if (s->size == off)
775 return 1;
776
24922684
CL
777 return check_bytes_and_report(s, page, p, "Object padding",
778 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
779}
780
39b26464 781/* Check the pad bytes at the end of a slab page */
81819f0f
CL
782static int slab_pad_check(struct kmem_cache *s, struct page *page)
783{
24922684
CL
784 u8 *start;
785 u8 *fault;
786 u8 *end;
787 int length;
788 int remainder;
81819f0f
CL
789
790 if (!(s->flags & SLAB_POISON))
791 return 1;
792
a973e9dd 793 start = page_address(page);
ab9a0f19 794 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
795 end = start + length;
796 remainder = length % s->size;
81819f0f
CL
797 if (!remainder)
798 return 1;
799
a79316c6 800 metadata_access_enable();
79824820 801 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
a79316c6 802 metadata_access_disable();
24922684
CL
803 if (!fault)
804 return 1;
805 while (end > fault && end[-1] == POISON_INUSE)
806 end--;
807
808 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 809 print_section("Padding ", end - remainder, remainder);
24922684 810
8a3d271d 811 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 812 return 0;
81819f0f
CL
813}
814
815static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 816 void *object, u8 val)
81819f0f
CL
817{
818 u8 *p = object;
3b0efdfa 819 u8 *endobject = object + s->object_size;
81819f0f
CL
820
821 if (s->flags & SLAB_RED_ZONE) {
24922684 822 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 823 endobject, val, s->inuse - s->object_size))
81819f0f 824 return 0;
81819f0f 825 } else {
3b0efdfa 826 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 827 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
828 endobject, POISON_INUSE,
829 s->inuse - s->object_size);
3adbefee 830 }
81819f0f
CL
831 }
832
833 if (s->flags & SLAB_POISON) {
f7cb1933 834 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 835 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 836 POISON_FREE, s->object_size - 1) ||
24922684 837 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 838 p + s->object_size - 1, POISON_END, 1)))
81819f0f 839 return 0;
81819f0f
CL
840 /*
841 * check_pad_bytes cleans up on its own.
842 */
843 check_pad_bytes(s, page, p);
844 }
845
f7cb1933 846 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
847 /*
848 * Object and freepointer overlap. Cannot check
849 * freepointer while object is allocated.
850 */
851 return 1;
852
853 /* Check free pointer validity */
854 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
855 object_err(s, page, p, "Freepointer corrupt");
856 /*
9f6c708e 857 * No choice but to zap it and thus lose the remainder
81819f0f 858 * of the free objects in this slab. May cause
672bba3a 859 * another error because the object count is now wrong.
81819f0f 860 */
a973e9dd 861 set_freepointer(s, p, NULL);
81819f0f
CL
862 return 0;
863 }
864 return 1;
865}
866
867static int check_slab(struct kmem_cache *s, struct page *page)
868{
39b26464
CL
869 int maxobj;
870
81819f0f
CL
871 VM_BUG_ON(!irqs_disabled());
872
873 if (!PageSlab(page)) {
24922684 874 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
875 return 0;
876 }
39b26464 877
ab9a0f19 878 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
879 if (page->objects > maxobj) {
880 slab_err(s, page, "objects %u > max %u",
f6edde9c 881 page->objects, maxobj);
39b26464
CL
882 return 0;
883 }
884 if (page->inuse > page->objects) {
24922684 885 slab_err(s, page, "inuse %u > max %u",
f6edde9c 886 page->inuse, page->objects);
81819f0f
CL
887 return 0;
888 }
889 /* Slab_pad_check fixes things up after itself */
890 slab_pad_check(s, page);
891 return 1;
892}
893
894/*
672bba3a
CL
895 * Determine if a certain object on a page is on the freelist. Must hold the
896 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
897 */
898static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
899{
900 int nr = 0;
881db7fb 901 void *fp;
81819f0f 902 void *object = NULL;
f6edde9c 903 int max_objects;
81819f0f 904
881db7fb 905 fp = page->freelist;
39b26464 906 while (fp && nr <= page->objects) {
81819f0f
CL
907 if (fp == search)
908 return 1;
909 if (!check_valid_pointer(s, page, fp)) {
910 if (object) {
911 object_err(s, page, object,
912 "Freechain corrupt");
a973e9dd 913 set_freepointer(s, object, NULL);
81819f0f 914 } else {
24922684 915 slab_err(s, page, "Freepointer corrupt");
a973e9dd 916 page->freelist = NULL;
39b26464 917 page->inuse = page->objects;
24922684 918 slab_fix(s, "Freelist cleared");
81819f0f
CL
919 return 0;
920 }
921 break;
922 }
923 object = fp;
924 fp = get_freepointer(s, object);
925 nr++;
926 }
927
ab9a0f19 928 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
929 if (max_objects > MAX_OBJS_PER_PAGE)
930 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
931
932 if (page->objects != max_objects) {
933 slab_err(s, page, "Wrong number of objects. Found %d but "
934 "should be %d", page->objects, max_objects);
935 page->objects = max_objects;
936 slab_fix(s, "Number of objects adjusted.");
937 }
39b26464 938 if (page->inuse != page->objects - nr) {
70d71228 939 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
940 "counted were %d", page->inuse, page->objects - nr);
941 page->inuse = page->objects - nr;
24922684 942 slab_fix(s, "Object count adjusted.");
81819f0f
CL
943 }
944 return search == NULL;
945}
946
0121c619
CL
947static void trace(struct kmem_cache *s, struct page *page, void *object,
948 int alloc)
3ec09742
CL
949{
950 if (s->flags & SLAB_TRACE) {
f9f58285 951 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
952 s->name,
953 alloc ? "alloc" : "free",
954 object, page->inuse,
955 page->freelist);
956
957 if (!alloc)
d0e0ac97
CG
958 print_section("Object ", (void *)object,
959 s->object_size);
3ec09742
CL
960
961 dump_stack();
962 }
963}
964
643b1138 965/*
672bba3a 966 * Tracking of fully allocated slabs for debugging purposes.
643b1138 967 */
5cc6eee8
CL
968static void add_full(struct kmem_cache *s,
969 struct kmem_cache_node *n, struct page *page)
643b1138 970{
5cc6eee8
CL
971 if (!(s->flags & SLAB_STORE_USER))
972 return;
973
255d0884 974 lockdep_assert_held(&n->list_lock);
643b1138 975 list_add(&page->lru, &n->full);
643b1138
CL
976}
977
c65c1877 978static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 979{
643b1138
CL
980 if (!(s->flags & SLAB_STORE_USER))
981 return;
982
255d0884 983 lockdep_assert_held(&n->list_lock);
643b1138 984 list_del(&page->lru);
643b1138
CL
985}
986
0f389ec6
CL
987/* Tracking of the number of slabs for debugging purposes */
988static inline unsigned long slabs_node(struct kmem_cache *s, int node)
989{
990 struct kmem_cache_node *n = get_node(s, node);
991
992 return atomic_long_read(&n->nr_slabs);
993}
994
26c02cf0
AB
995static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
996{
997 return atomic_long_read(&n->nr_slabs);
998}
999
205ab99d 1000static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1001{
1002 struct kmem_cache_node *n = get_node(s, node);
1003
1004 /*
1005 * May be called early in order to allocate a slab for the
1006 * kmem_cache_node structure. Solve the chicken-egg
1007 * dilemma by deferring the increment of the count during
1008 * bootstrap (see early_kmem_cache_node_alloc).
1009 */
338b2642 1010 if (likely(n)) {
0f389ec6 1011 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1012 atomic_long_add(objects, &n->total_objects);
1013 }
0f389ec6 1014}
205ab99d 1015static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1016{
1017 struct kmem_cache_node *n = get_node(s, node);
1018
1019 atomic_long_dec(&n->nr_slabs);
205ab99d 1020 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1021}
1022
1023/* Object debug checks for alloc/free paths */
3ec09742
CL
1024static void setup_object_debug(struct kmem_cache *s, struct page *page,
1025 void *object)
1026{
1027 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1028 return;
1029
f7cb1933 1030 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1031 init_tracking(s, object);
1032}
1033
d0e0ac97
CG
1034static noinline int alloc_debug_processing(struct kmem_cache *s,
1035 struct page *page,
ce71e27c 1036 void *object, unsigned long addr)
81819f0f
CL
1037{
1038 if (!check_slab(s, page))
1039 goto bad;
1040
81819f0f
CL
1041 if (!check_valid_pointer(s, page, object)) {
1042 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1043 goto bad;
81819f0f
CL
1044 }
1045
f7cb1933 1046 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1047 goto bad;
81819f0f 1048
3ec09742
CL
1049 /* Success perform special debug activities for allocs */
1050 if (s->flags & SLAB_STORE_USER)
1051 set_track(s, object, TRACK_ALLOC, addr);
1052 trace(s, page, object, 1);
f7cb1933 1053 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1054 return 1;
3ec09742 1055
81819f0f
CL
1056bad:
1057 if (PageSlab(page)) {
1058 /*
1059 * If this is a slab page then lets do the best we can
1060 * to avoid issues in the future. Marking all objects
672bba3a 1061 * as used avoids touching the remaining objects.
81819f0f 1062 */
24922684 1063 slab_fix(s, "Marking all objects used");
39b26464 1064 page->inuse = page->objects;
a973e9dd 1065 page->freelist = NULL;
81819f0f
CL
1066 }
1067 return 0;
1068}
1069
81084651 1070/* Supports checking bulk free of a constructed freelist */
19c7ff9e 1071static noinline struct kmem_cache_node *free_debug_processing(
81084651
JDB
1072 struct kmem_cache *s, struct page *page,
1073 void *head, void *tail, int bulk_cnt,
19c7ff9e 1074 unsigned long addr, unsigned long *flags)
81819f0f 1075{
19c7ff9e 1076 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
81084651
JDB
1077 void *object = head;
1078 int cnt = 0;
5c2e4bbb 1079
19c7ff9e 1080 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1081 slab_lock(page);
1082
81819f0f
CL
1083 if (!check_slab(s, page))
1084 goto fail;
1085
81084651
JDB
1086next_object:
1087 cnt++;
1088
81819f0f 1089 if (!check_valid_pointer(s, page, object)) {
70d71228 1090 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1091 goto fail;
1092 }
1093
1094 if (on_freelist(s, page, object)) {
24922684 1095 object_err(s, page, object, "Object already free");
81819f0f
CL
1096 goto fail;
1097 }
1098
f7cb1933 1099 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1100 goto out;
81819f0f 1101
1b4f59e3 1102 if (unlikely(s != page->slab_cache)) {
3adbefee 1103 if (!PageSlab(page)) {
70d71228
CL
1104 slab_err(s, page, "Attempt to free object(0x%p) "
1105 "outside of slab", object);
1b4f59e3 1106 } else if (!page->slab_cache) {
f9f58285
FF
1107 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1108 object);
70d71228 1109 dump_stack();
06428780 1110 } else
24922684
CL
1111 object_err(s, page, object,
1112 "page slab pointer corrupt.");
81819f0f
CL
1113 goto fail;
1114 }
3ec09742 1115
3ec09742
CL
1116 if (s->flags & SLAB_STORE_USER)
1117 set_track(s, object, TRACK_FREE, addr);
1118 trace(s, page, object, 0);
81084651 1119 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1120 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1121
1122 /* Reached end of constructed freelist yet? */
1123 if (object != tail) {
1124 object = get_freepointer(s, object);
1125 goto next_object;
1126 }
5c2e4bbb 1127out:
81084651
JDB
1128 if (cnt != bulk_cnt)
1129 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1130 bulk_cnt, cnt);
1131
881db7fb 1132 slab_unlock(page);
19c7ff9e
CL
1133 /*
1134 * Keep node_lock to preserve integrity
1135 * until the object is actually freed
1136 */
1137 return n;
3ec09742 1138
81819f0f 1139fail:
19c7ff9e
CL
1140 slab_unlock(page);
1141 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1142 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1143 return NULL;
81819f0f
CL
1144}
1145
41ecc55b
CL
1146static int __init setup_slub_debug(char *str)
1147{
f0630fff
CL
1148 slub_debug = DEBUG_DEFAULT_FLAGS;
1149 if (*str++ != '=' || !*str)
1150 /*
1151 * No options specified. Switch on full debugging.
1152 */
1153 goto out;
1154
1155 if (*str == ',')
1156 /*
1157 * No options but restriction on slabs. This means full
1158 * debugging for slabs matching a pattern.
1159 */
1160 goto check_slabs;
1161
1162 slub_debug = 0;
1163 if (*str == '-')
1164 /*
1165 * Switch off all debugging measures.
1166 */
1167 goto out;
1168
1169 /*
1170 * Determine which debug features should be switched on
1171 */
06428780 1172 for (; *str && *str != ','; str++) {
f0630fff
CL
1173 switch (tolower(*str)) {
1174 case 'f':
1175 slub_debug |= SLAB_DEBUG_FREE;
1176 break;
1177 case 'z':
1178 slub_debug |= SLAB_RED_ZONE;
1179 break;
1180 case 'p':
1181 slub_debug |= SLAB_POISON;
1182 break;
1183 case 'u':
1184 slub_debug |= SLAB_STORE_USER;
1185 break;
1186 case 't':
1187 slub_debug |= SLAB_TRACE;
1188 break;
4c13dd3b
DM
1189 case 'a':
1190 slub_debug |= SLAB_FAILSLAB;
1191 break;
08303a73
CA
1192 case 'o':
1193 /*
1194 * Avoid enabling debugging on caches if its minimum
1195 * order would increase as a result.
1196 */
1197 disable_higher_order_debug = 1;
1198 break;
f0630fff 1199 default:
f9f58285
FF
1200 pr_err("slub_debug option '%c' unknown. skipped\n",
1201 *str);
f0630fff 1202 }
41ecc55b
CL
1203 }
1204
f0630fff 1205check_slabs:
41ecc55b
CL
1206 if (*str == ',')
1207 slub_debug_slabs = str + 1;
f0630fff 1208out:
41ecc55b
CL
1209 return 1;
1210}
1211
1212__setup("slub_debug", setup_slub_debug);
1213
423c929c 1214unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1215 unsigned long flags, const char *name,
51cc5068 1216 void (*ctor)(void *))
41ecc55b
CL
1217{
1218 /*
e153362a 1219 * Enable debugging if selected on the kernel commandline.
41ecc55b 1220 */
c6f58d9b
CL
1221 if (slub_debug && (!slub_debug_slabs || (name &&
1222 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1223 flags |= slub_debug;
ba0268a8
CL
1224
1225 return flags;
41ecc55b 1226}
b4a64718 1227#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1228static inline void setup_object_debug(struct kmem_cache *s,
1229 struct page *page, void *object) {}
41ecc55b 1230
3ec09742 1231static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1232 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1233
19c7ff9e 1234static inline struct kmem_cache_node *free_debug_processing(
81084651
JDB
1235 struct kmem_cache *s, struct page *page,
1236 void *head, void *tail, int bulk_cnt,
19c7ff9e 1237 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1238
41ecc55b
CL
1239static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1240 { return 1; }
1241static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1242 void *object, u8 val) { return 1; }
5cc6eee8
CL
1243static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1244 struct page *page) {}
c65c1877
PZ
1245static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1246 struct page *page) {}
423c929c 1247unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1248 unsigned long flags, const char *name,
51cc5068 1249 void (*ctor)(void *))
ba0268a8
CL
1250{
1251 return flags;
1252}
41ecc55b 1253#define slub_debug 0
0f389ec6 1254
fdaa45e9
IM
1255#define disable_higher_order_debug 0
1256
0f389ec6
CL
1257static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1258 { return 0; }
26c02cf0
AB
1259static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1260 { return 0; }
205ab99d
CL
1261static inline void inc_slabs_node(struct kmem_cache *s, int node,
1262 int objects) {}
1263static inline void dec_slabs_node(struct kmem_cache *s, int node,
1264 int objects) {}
7d550c56 1265
02e72cc6
AR
1266#endif /* CONFIG_SLUB_DEBUG */
1267
1268/*
1269 * Hooks for other subsystems that check memory allocations. In a typical
1270 * production configuration these hooks all should produce no code at all.
1271 */
d56791b3
RB
1272static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1273{
1274 kmemleak_alloc(ptr, size, 1, flags);
0316bec2 1275 kasan_kmalloc_large(ptr, size);
d56791b3
RB
1276}
1277
1278static inline void kfree_hook(const void *x)
1279{
1280 kmemleak_free(x);
0316bec2 1281 kasan_kfree_large(x);
d56791b3
RB
1282}
1283
8135be5a
VD
1284static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1285 gfp_t flags)
02e72cc6
AR
1286{
1287 flags &= gfp_allowed_mask;
1288 lockdep_trace_alloc(flags);
d0164adc 1289 might_sleep_if(gfpflags_allow_blocking(flags));
7d550c56 1290
8135be5a
VD
1291 if (should_failslab(s->object_size, flags, s->flags))
1292 return NULL;
1293
1294 return memcg_kmem_get_cache(s, flags);
02e72cc6
AR
1295}
1296
03ec0ed5
JDB
1297static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1298 size_t size, void **p)
d56791b3 1299{
03ec0ed5
JDB
1300 size_t i;
1301
02e72cc6 1302 flags &= gfp_allowed_mask;
03ec0ed5
JDB
1303 for (i = 0; i < size; i++) {
1304 void *object = p[i];
1305
1306 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1307 kmemleak_alloc_recursive(object, s->object_size, 1,
1308 s->flags, flags);
1309 kasan_slab_alloc(s, object);
1310 }
8135be5a 1311 memcg_kmem_put_cache(s);
d56791b3 1312}
7d550c56 1313
d56791b3
RB
1314static inline void slab_free_hook(struct kmem_cache *s, void *x)
1315{
1316 kmemleak_free_recursive(x, s->flags);
7d550c56 1317
02e72cc6
AR
1318 /*
1319 * Trouble is that we may no longer disable interrupts in the fast path
1320 * So in order to make the debug calls that expect irqs to be
1321 * disabled we need to disable interrupts temporarily.
1322 */
1323#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1324 {
1325 unsigned long flags;
1326
1327 local_irq_save(flags);
1328 kmemcheck_slab_free(s, x, s->object_size);
1329 debug_check_no_locks_freed(x, s->object_size);
1330 local_irq_restore(flags);
1331 }
1332#endif
1333 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1334 debug_check_no_obj_freed(x, s->object_size);
0316bec2
AR
1335
1336 kasan_slab_free(s, x);
02e72cc6 1337}
205ab99d 1338
81084651
JDB
1339static inline void slab_free_freelist_hook(struct kmem_cache *s,
1340 void *head, void *tail)
1341{
1342/*
1343 * Compiler cannot detect this function can be removed if slab_free_hook()
1344 * evaluates to nothing. Thus, catch all relevant config debug options here.
1345 */
1346#if defined(CONFIG_KMEMCHECK) || \
1347 defined(CONFIG_LOCKDEP) || \
1348 defined(CONFIG_DEBUG_KMEMLEAK) || \
1349 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1350 defined(CONFIG_KASAN)
1351
1352 void *object = head;
1353 void *tail_obj = tail ? : head;
1354
1355 do {
1356 slab_free_hook(s, object);
1357 } while ((object != tail_obj) &&
1358 (object = get_freepointer(s, object)));
1359#endif
1360}
1361
588f8ba9
TG
1362static void setup_object(struct kmem_cache *s, struct page *page,
1363 void *object)
1364{
1365 setup_object_debug(s, page, object);
1366 if (unlikely(s->ctor)) {
1367 kasan_unpoison_object_data(s, object);
1368 s->ctor(object);
1369 kasan_poison_object_data(s, object);
1370 }
1371}
1372
81819f0f
CL
1373/*
1374 * Slab allocation and freeing
1375 */
5dfb4175
VD
1376static inline struct page *alloc_slab_page(struct kmem_cache *s,
1377 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1378{
5dfb4175 1379 struct page *page;
65c3376a
CL
1380 int order = oo_order(oo);
1381
b1eeab67
VN
1382 flags |= __GFP_NOTRACK;
1383
2154a336 1384 if (node == NUMA_NO_NODE)
5dfb4175 1385 page = alloc_pages(flags, order);
65c3376a 1386 else
96db800f 1387 page = __alloc_pages_node(node, flags, order);
5dfb4175 1388
f3ccb2c4
VD
1389 if (page && memcg_charge_slab(page, flags, order, s)) {
1390 __free_pages(page, order);
1391 page = NULL;
1392 }
5dfb4175
VD
1393
1394 return page;
65c3376a
CL
1395}
1396
81819f0f
CL
1397static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1398{
06428780 1399 struct page *page;
834f3d11 1400 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1401 gfp_t alloc_gfp;
588f8ba9
TG
1402 void *start, *p;
1403 int idx, order;
81819f0f 1404
7e0528da
CL
1405 flags &= gfp_allowed_mask;
1406
d0164adc 1407 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1408 local_irq_enable();
1409
b7a49f0d 1410 flags |= s->allocflags;
e12ba74d 1411
ba52270d
PE
1412 /*
1413 * Let the initial higher-order allocation fail under memory pressure
1414 * so we fall-back to the minimum order allocation.
1415 */
1416 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc
MG
1417 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1418 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_DIRECT_RECLAIM;
ba52270d 1419
5dfb4175 1420 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1421 if (unlikely(!page)) {
1422 oo = s->min;
80c3a998 1423 alloc_gfp = flags;
65c3376a
CL
1424 /*
1425 * Allocation may have failed due to fragmentation.
1426 * Try a lower order alloc if possible
1427 */
5dfb4175 1428 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1429 if (unlikely(!page))
1430 goto out;
1431 stat(s, ORDER_FALLBACK);
65c3376a 1432 }
5a896d9e 1433
588f8ba9
TG
1434 if (kmemcheck_enabled &&
1435 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1436 int pages = 1 << oo_order(oo);
1437
80c3a998 1438 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1439
1440 /*
1441 * Objects from caches that have a constructor don't get
1442 * cleared when they're allocated, so we need to do it here.
1443 */
1444 if (s->ctor)
1445 kmemcheck_mark_uninitialized_pages(page, pages);
1446 else
1447 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1448 }
1449
834f3d11 1450 page->objects = oo_objects(oo);
81819f0f 1451
1f458cbf 1452 order = compound_order(page);
1b4f59e3 1453 page->slab_cache = s;
c03f94cc 1454 __SetPageSlab(page);
2f064f34 1455 if (page_is_pfmemalloc(page))
072bb0aa 1456 SetPageSlabPfmemalloc(page);
81819f0f
CL
1457
1458 start = page_address(page);
81819f0f
CL
1459
1460 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1461 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1462
0316bec2
AR
1463 kasan_poison_slab(page);
1464
54266640
WY
1465 for_each_object_idx(p, idx, s, start, page->objects) {
1466 setup_object(s, page, p);
1467 if (likely(idx < page->objects))
1468 set_freepointer(s, p, p + s->size);
1469 else
1470 set_freepointer(s, p, NULL);
81819f0f 1471 }
81819f0f
CL
1472
1473 page->freelist = start;
e6e82ea1 1474 page->inuse = page->objects;
8cb0a506 1475 page->frozen = 1;
588f8ba9 1476
81819f0f 1477out:
d0164adc 1478 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1479 local_irq_disable();
1480 if (!page)
1481 return NULL;
1482
1483 mod_zone_page_state(page_zone(page),
1484 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1485 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1486 1 << oo_order(oo));
1487
1488 inc_slabs_node(s, page_to_nid(page), page->objects);
1489
81819f0f
CL
1490 return page;
1491}
1492
588f8ba9
TG
1493static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1494{
1495 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1496 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1497 BUG();
1498 }
1499
1500 return allocate_slab(s,
1501 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1502}
1503
81819f0f
CL
1504static void __free_slab(struct kmem_cache *s, struct page *page)
1505{
834f3d11
CL
1506 int order = compound_order(page);
1507 int pages = 1 << order;
81819f0f 1508
af537b0a 1509 if (kmem_cache_debug(s)) {
81819f0f
CL
1510 void *p;
1511
1512 slab_pad_check(s, page);
224a88be
CL
1513 for_each_object(p, s, page_address(page),
1514 page->objects)
f7cb1933 1515 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1516 }
1517
b1eeab67 1518 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1519
81819f0f
CL
1520 mod_zone_page_state(page_zone(page),
1521 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1522 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1523 -pages);
81819f0f 1524
072bb0aa 1525 __ClearPageSlabPfmemalloc(page);
49bd5221 1526 __ClearPageSlab(page);
1f458cbf 1527
22b751c3 1528 page_mapcount_reset(page);
1eb5ac64
NP
1529 if (current->reclaim_state)
1530 current->reclaim_state->reclaimed_slab += pages;
f3ccb2c4 1531 __free_kmem_pages(page, order);
81819f0f
CL
1532}
1533
da9a638c
LJ
1534#define need_reserve_slab_rcu \
1535 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1536
81819f0f
CL
1537static void rcu_free_slab(struct rcu_head *h)
1538{
1539 struct page *page;
1540
da9a638c
LJ
1541 if (need_reserve_slab_rcu)
1542 page = virt_to_head_page(h);
1543 else
1544 page = container_of((struct list_head *)h, struct page, lru);
1545
1b4f59e3 1546 __free_slab(page->slab_cache, page);
81819f0f
CL
1547}
1548
1549static void free_slab(struct kmem_cache *s, struct page *page)
1550{
1551 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1552 struct rcu_head *head;
1553
1554 if (need_reserve_slab_rcu) {
1555 int order = compound_order(page);
1556 int offset = (PAGE_SIZE << order) - s->reserved;
1557
1558 VM_BUG_ON(s->reserved != sizeof(*head));
1559 head = page_address(page) + offset;
1560 } else {
bc4f610d 1561 head = &page->rcu_head;
da9a638c 1562 }
81819f0f
CL
1563
1564 call_rcu(head, rcu_free_slab);
1565 } else
1566 __free_slab(s, page);
1567}
1568
1569static void discard_slab(struct kmem_cache *s, struct page *page)
1570{
205ab99d 1571 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1572 free_slab(s, page);
1573}
1574
1575/*
5cc6eee8 1576 * Management of partially allocated slabs.
81819f0f 1577 */
1e4dd946
SR
1578static inline void
1579__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1580{
e95eed57 1581 n->nr_partial++;
136333d1 1582 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1583 list_add_tail(&page->lru, &n->partial);
1584 else
1585 list_add(&page->lru, &n->partial);
81819f0f
CL
1586}
1587
1e4dd946
SR
1588static inline void add_partial(struct kmem_cache_node *n,
1589 struct page *page, int tail)
62e346a8 1590{
c65c1877 1591 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1592 __add_partial(n, page, tail);
1593}
c65c1877 1594
1e4dd946
SR
1595static inline void remove_partial(struct kmem_cache_node *n,
1596 struct page *page)
1597{
1598 lockdep_assert_held(&n->list_lock);
52b4b950
DS
1599 list_del(&page->lru);
1600 n->nr_partial--;
1e4dd946
SR
1601}
1602
81819f0f 1603/*
7ced3719
CL
1604 * Remove slab from the partial list, freeze it and
1605 * return the pointer to the freelist.
81819f0f 1606 *
497b66f2 1607 * Returns a list of objects or NULL if it fails.
81819f0f 1608 */
497b66f2 1609static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1610 struct kmem_cache_node *n, struct page *page,
633b0764 1611 int mode, int *objects)
81819f0f 1612{
2cfb7455
CL
1613 void *freelist;
1614 unsigned long counters;
1615 struct page new;
1616
c65c1877
PZ
1617 lockdep_assert_held(&n->list_lock);
1618
2cfb7455
CL
1619 /*
1620 * Zap the freelist and set the frozen bit.
1621 * The old freelist is the list of objects for the
1622 * per cpu allocation list.
1623 */
7ced3719
CL
1624 freelist = page->freelist;
1625 counters = page->counters;
1626 new.counters = counters;
633b0764 1627 *objects = new.objects - new.inuse;
23910c50 1628 if (mode) {
7ced3719 1629 new.inuse = page->objects;
23910c50
PE
1630 new.freelist = NULL;
1631 } else {
1632 new.freelist = freelist;
1633 }
2cfb7455 1634
a0132ac0 1635 VM_BUG_ON(new.frozen);
7ced3719 1636 new.frozen = 1;
2cfb7455 1637
7ced3719 1638 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1639 freelist, counters,
02d7633f 1640 new.freelist, new.counters,
7ced3719 1641 "acquire_slab"))
7ced3719 1642 return NULL;
2cfb7455
CL
1643
1644 remove_partial(n, page);
7ced3719 1645 WARN_ON(!freelist);
49e22585 1646 return freelist;
81819f0f
CL
1647}
1648
633b0764 1649static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1650static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1651
81819f0f 1652/*
672bba3a 1653 * Try to allocate a partial slab from a specific node.
81819f0f 1654 */
8ba00bb6
JK
1655static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1656 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1657{
49e22585
CL
1658 struct page *page, *page2;
1659 void *object = NULL;
633b0764
JK
1660 int available = 0;
1661 int objects;
81819f0f
CL
1662
1663 /*
1664 * Racy check. If we mistakenly see no partial slabs then we
1665 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1666 * partial slab and there is none available then get_partials()
1667 * will return NULL.
81819f0f
CL
1668 */
1669 if (!n || !n->nr_partial)
1670 return NULL;
1671
1672 spin_lock(&n->list_lock);
49e22585 1673 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1674 void *t;
49e22585 1675
8ba00bb6
JK
1676 if (!pfmemalloc_match(page, flags))
1677 continue;
1678
633b0764 1679 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1680 if (!t)
1681 break;
1682
633b0764 1683 available += objects;
12d79634 1684 if (!object) {
49e22585 1685 c->page = page;
49e22585 1686 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1687 object = t;
49e22585 1688 } else {
633b0764 1689 put_cpu_partial(s, page, 0);
8028dcea 1690 stat(s, CPU_PARTIAL_NODE);
49e22585 1691 }
345c905d
JK
1692 if (!kmem_cache_has_cpu_partial(s)
1693 || available > s->cpu_partial / 2)
49e22585
CL
1694 break;
1695
497b66f2 1696 }
81819f0f 1697 spin_unlock(&n->list_lock);
497b66f2 1698 return object;
81819f0f
CL
1699}
1700
1701/*
672bba3a 1702 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1703 */
de3ec035 1704static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1705 struct kmem_cache_cpu *c)
81819f0f
CL
1706{
1707#ifdef CONFIG_NUMA
1708 struct zonelist *zonelist;
dd1a239f 1709 struct zoneref *z;
54a6eb5c
MG
1710 struct zone *zone;
1711 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1712 void *object;
cc9a6c87 1713 unsigned int cpuset_mems_cookie;
81819f0f
CL
1714
1715 /*
672bba3a
CL
1716 * The defrag ratio allows a configuration of the tradeoffs between
1717 * inter node defragmentation and node local allocations. A lower
1718 * defrag_ratio increases the tendency to do local allocations
1719 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1720 *
672bba3a
CL
1721 * If the defrag_ratio is set to 0 then kmalloc() always
1722 * returns node local objects. If the ratio is higher then kmalloc()
1723 * may return off node objects because partial slabs are obtained
1724 * from other nodes and filled up.
81819f0f 1725 *
6446faa2 1726 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1727 * defrag_ratio = 1000) then every (well almost) allocation will
1728 * first attempt to defrag slab caches on other nodes. This means
1729 * scanning over all nodes to look for partial slabs which may be
1730 * expensive if we do it every time we are trying to find a slab
1731 * with available objects.
81819f0f 1732 */
9824601e
CL
1733 if (!s->remote_node_defrag_ratio ||
1734 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1735 return NULL;
1736
cc9a6c87 1737 do {
d26914d1 1738 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1739 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1740 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1741 struct kmem_cache_node *n;
1742
1743 n = get_node(s, zone_to_nid(zone));
1744
dee2f8aa 1745 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1746 n->nr_partial > s->min_partial) {
8ba00bb6 1747 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1748 if (object) {
1749 /*
d26914d1
MG
1750 * Don't check read_mems_allowed_retry()
1751 * here - if mems_allowed was updated in
1752 * parallel, that was a harmless race
1753 * between allocation and the cpuset
1754 * update
cc9a6c87 1755 */
cc9a6c87
MG
1756 return object;
1757 }
c0ff7453 1758 }
81819f0f 1759 }
d26914d1 1760 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1761#endif
1762 return NULL;
1763}
1764
1765/*
1766 * Get a partial page, lock it and return it.
1767 */
497b66f2 1768static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1769 struct kmem_cache_cpu *c)
81819f0f 1770{
497b66f2 1771 void *object;
a561ce00
JK
1772 int searchnode = node;
1773
1774 if (node == NUMA_NO_NODE)
1775 searchnode = numa_mem_id();
1776 else if (!node_present_pages(node))
1777 searchnode = node_to_mem_node(node);
81819f0f 1778
8ba00bb6 1779 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1780 if (object || node != NUMA_NO_NODE)
1781 return object;
81819f0f 1782
acd19fd1 1783 return get_any_partial(s, flags, c);
81819f0f
CL
1784}
1785
8a5ec0ba
CL
1786#ifdef CONFIG_PREEMPT
1787/*
1788 * Calculate the next globally unique transaction for disambiguiation
1789 * during cmpxchg. The transactions start with the cpu number and are then
1790 * incremented by CONFIG_NR_CPUS.
1791 */
1792#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1793#else
1794/*
1795 * No preemption supported therefore also no need to check for
1796 * different cpus.
1797 */
1798#define TID_STEP 1
1799#endif
1800
1801static inline unsigned long next_tid(unsigned long tid)
1802{
1803 return tid + TID_STEP;
1804}
1805
1806static inline unsigned int tid_to_cpu(unsigned long tid)
1807{
1808 return tid % TID_STEP;
1809}
1810
1811static inline unsigned long tid_to_event(unsigned long tid)
1812{
1813 return tid / TID_STEP;
1814}
1815
1816static inline unsigned int init_tid(int cpu)
1817{
1818 return cpu;
1819}
1820
1821static inline void note_cmpxchg_failure(const char *n,
1822 const struct kmem_cache *s, unsigned long tid)
1823{
1824#ifdef SLUB_DEBUG_CMPXCHG
1825 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1826
f9f58285 1827 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1828
1829#ifdef CONFIG_PREEMPT
1830 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1831 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1832 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1833 else
1834#endif
1835 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1836 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1837 tid_to_event(tid), tid_to_event(actual_tid));
1838 else
f9f58285 1839 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1840 actual_tid, tid, next_tid(tid));
1841#endif
4fdccdfb 1842 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1843}
1844
788e1aad 1845static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1846{
8a5ec0ba
CL
1847 int cpu;
1848
1849 for_each_possible_cpu(cpu)
1850 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1851}
2cfb7455 1852
81819f0f
CL
1853/*
1854 * Remove the cpu slab
1855 */
d0e0ac97
CG
1856static void deactivate_slab(struct kmem_cache *s, struct page *page,
1857 void *freelist)
81819f0f 1858{
2cfb7455 1859 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1860 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1861 int lock = 0;
1862 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1863 void *nextfree;
136333d1 1864 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1865 struct page new;
1866 struct page old;
1867
1868 if (page->freelist) {
84e554e6 1869 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1870 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1871 }
1872
894b8788 1873 /*
2cfb7455
CL
1874 * Stage one: Free all available per cpu objects back
1875 * to the page freelist while it is still frozen. Leave the
1876 * last one.
1877 *
1878 * There is no need to take the list->lock because the page
1879 * is still frozen.
1880 */
1881 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1882 void *prior;
1883 unsigned long counters;
1884
1885 do {
1886 prior = page->freelist;
1887 counters = page->counters;
1888 set_freepointer(s, freelist, prior);
1889 new.counters = counters;
1890 new.inuse--;
a0132ac0 1891 VM_BUG_ON(!new.frozen);
2cfb7455 1892
1d07171c 1893 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1894 prior, counters,
1895 freelist, new.counters,
1896 "drain percpu freelist"));
1897
1898 freelist = nextfree;
1899 }
1900
894b8788 1901 /*
2cfb7455
CL
1902 * Stage two: Ensure that the page is unfrozen while the
1903 * list presence reflects the actual number of objects
1904 * during unfreeze.
1905 *
1906 * We setup the list membership and then perform a cmpxchg
1907 * with the count. If there is a mismatch then the page
1908 * is not unfrozen but the page is on the wrong list.
1909 *
1910 * Then we restart the process which may have to remove
1911 * the page from the list that we just put it on again
1912 * because the number of objects in the slab may have
1913 * changed.
894b8788 1914 */
2cfb7455 1915redo:
894b8788 1916
2cfb7455
CL
1917 old.freelist = page->freelist;
1918 old.counters = page->counters;
a0132ac0 1919 VM_BUG_ON(!old.frozen);
7c2e132c 1920
2cfb7455
CL
1921 /* Determine target state of the slab */
1922 new.counters = old.counters;
1923 if (freelist) {
1924 new.inuse--;
1925 set_freepointer(s, freelist, old.freelist);
1926 new.freelist = freelist;
1927 } else
1928 new.freelist = old.freelist;
1929
1930 new.frozen = 0;
1931
8a5b20ae 1932 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
1933 m = M_FREE;
1934 else if (new.freelist) {
1935 m = M_PARTIAL;
1936 if (!lock) {
1937 lock = 1;
1938 /*
1939 * Taking the spinlock removes the possiblity
1940 * that acquire_slab() will see a slab page that
1941 * is frozen
1942 */
1943 spin_lock(&n->list_lock);
1944 }
1945 } else {
1946 m = M_FULL;
1947 if (kmem_cache_debug(s) && !lock) {
1948 lock = 1;
1949 /*
1950 * This also ensures that the scanning of full
1951 * slabs from diagnostic functions will not see
1952 * any frozen slabs.
1953 */
1954 spin_lock(&n->list_lock);
1955 }
1956 }
1957
1958 if (l != m) {
1959
1960 if (l == M_PARTIAL)
1961
1962 remove_partial(n, page);
1963
1964 else if (l == M_FULL)
894b8788 1965
c65c1877 1966 remove_full(s, n, page);
2cfb7455
CL
1967
1968 if (m == M_PARTIAL) {
1969
1970 add_partial(n, page, tail);
136333d1 1971 stat(s, tail);
2cfb7455
CL
1972
1973 } else if (m == M_FULL) {
894b8788 1974
2cfb7455
CL
1975 stat(s, DEACTIVATE_FULL);
1976 add_full(s, n, page);
1977
1978 }
1979 }
1980
1981 l = m;
1d07171c 1982 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1983 old.freelist, old.counters,
1984 new.freelist, new.counters,
1985 "unfreezing slab"))
1986 goto redo;
1987
2cfb7455
CL
1988 if (lock)
1989 spin_unlock(&n->list_lock);
1990
1991 if (m == M_FREE) {
1992 stat(s, DEACTIVATE_EMPTY);
1993 discard_slab(s, page);
1994 stat(s, FREE_SLAB);
894b8788 1995 }
81819f0f
CL
1996}
1997
d24ac77f
JK
1998/*
1999 * Unfreeze all the cpu partial slabs.
2000 *
59a09917
CL
2001 * This function must be called with interrupts disabled
2002 * for the cpu using c (or some other guarantee must be there
2003 * to guarantee no concurrent accesses).
d24ac77f 2004 */
59a09917
CL
2005static void unfreeze_partials(struct kmem_cache *s,
2006 struct kmem_cache_cpu *c)
49e22585 2007{
345c905d 2008#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2009 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2010 struct page *page, *discard_page = NULL;
49e22585
CL
2011
2012 while ((page = c->partial)) {
49e22585
CL
2013 struct page new;
2014 struct page old;
2015
2016 c->partial = page->next;
43d77867
JK
2017
2018 n2 = get_node(s, page_to_nid(page));
2019 if (n != n2) {
2020 if (n)
2021 spin_unlock(&n->list_lock);
2022
2023 n = n2;
2024 spin_lock(&n->list_lock);
2025 }
49e22585
CL
2026
2027 do {
2028
2029 old.freelist = page->freelist;
2030 old.counters = page->counters;
a0132ac0 2031 VM_BUG_ON(!old.frozen);
49e22585
CL
2032
2033 new.counters = old.counters;
2034 new.freelist = old.freelist;
2035
2036 new.frozen = 0;
2037
d24ac77f 2038 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2039 old.freelist, old.counters,
2040 new.freelist, new.counters,
2041 "unfreezing slab"));
2042
8a5b20ae 2043 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2044 page->next = discard_page;
2045 discard_page = page;
43d77867
JK
2046 } else {
2047 add_partial(n, page, DEACTIVATE_TO_TAIL);
2048 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2049 }
2050 }
2051
2052 if (n)
2053 spin_unlock(&n->list_lock);
9ada1934
SL
2054
2055 while (discard_page) {
2056 page = discard_page;
2057 discard_page = discard_page->next;
2058
2059 stat(s, DEACTIVATE_EMPTY);
2060 discard_slab(s, page);
2061 stat(s, FREE_SLAB);
2062 }
345c905d 2063#endif
49e22585
CL
2064}
2065
2066/*
2067 * Put a page that was just frozen (in __slab_free) into a partial page
2068 * slot if available. This is done without interrupts disabled and without
2069 * preemption disabled. The cmpxchg is racy and may put the partial page
2070 * onto a random cpus partial slot.
2071 *
2072 * If we did not find a slot then simply move all the partials to the
2073 * per node partial list.
2074 */
633b0764 2075static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2076{
345c905d 2077#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2078 struct page *oldpage;
2079 int pages;
2080 int pobjects;
2081
d6e0b7fa 2082 preempt_disable();
49e22585
CL
2083 do {
2084 pages = 0;
2085 pobjects = 0;
2086 oldpage = this_cpu_read(s->cpu_slab->partial);
2087
2088 if (oldpage) {
2089 pobjects = oldpage->pobjects;
2090 pages = oldpage->pages;
2091 if (drain && pobjects > s->cpu_partial) {
2092 unsigned long flags;
2093 /*
2094 * partial array is full. Move the existing
2095 * set to the per node partial list.
2096 */
2097 local_irq_save(flags);
59a09917 2098 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2099 local_irq_restore(flags);
e24fc410 2100 oldpage = NULL;
49e22585
CL
2101 pobjects = 0;
2102 pages = 0;
8028dcea 2103 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2104 }
2105 }
2106
2107 pages++;
2108 pobjects += page->objects - page->inuse;
2109
2110 page->pages = pages;
2111 page->pobjects = pobjects;
2112 page->next = oldpage;
2113
d0e0ac97
CG
2114 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2115 != oldpage);
d6e0b7fa
VD
2116 if (unlikely(!s->cpu_partial)) {
2117 unsigned long flags;
2118
2119 local_irq_save(flags);
2120 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2121 local_irq_restore(flags);
2122 }
2123 preempt_enable();
345c905d 2124#endif
49e22585
CL
2125}
2126
dfb4f096 2127static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2128{
84e554e6 2129 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2130 deactivate_slab(s, c->page, c->freelist);
2131
2132 c->tid = next_tid(c->tid);
2133 c->page = NULL;
2134 c->freelist = NULL;
81819f0f
CL
2135}
2136
2137/*
2138 * Flush cpu slab.
6446faa2 2139 *
81819f0f
CL
2140 * Called from IPI handler with interrupts disabled.
2141 */
0c710013 2142static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2143{
9dfc6e68 2144 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2145
49e22585
CL
2146 if (likely(c)) {
2147 if (c->page)
2148 flush_slab(s, c);
2149
59a09917 2150 unfreeze_partials(s, c);
49e22585 2151 }
81819f0f
CL
2152}
2153
2154static void flush_cpu_slab(void *d)
2155{
2156 struct kmem_cache *s = d;
81819f0f 2157
dfb4f096 2158 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2159}
2160
a8364d55
GBY
2161static bool has_cpu_slab(int cpu, void *info)
2162{
2163 struct kmem_cache *s = info;
2164 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2165
02e1a9cd 2166 return c->page || c->partial;
a8364d55
GBY
2167}
2168
81819f0f
CL
2169static void flush_all(struct kmem_cache *s)
2170{
a8364d55 2171 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2172}
2173
dfb4f096
CL
2174/*
2175 * Check if the objects in a per cpu structure fit numa
2176 * locality expectations.
2177 */
57d437d2 2178static inline int node_match(struct page *page, int node)
dfb4f096
CL
2179{
2180#ifdef CONFIG_NUMA
4d7868e6 2181 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2182 return 0;
2183#endif
2184 return 1;
2185}
2186
9a02d699 2187#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2188static int count_free(struct page *page)
2189{
2190 return page->objects - page->inuse;
2191}
2192
9a02d699
DR
2193static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2194{
2195 return atomic_long_read(&n->total_objects);
2196}
2197#endif /* CONFIG_SLUB_DEBUG */
2198
2199#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2200static unsigned long count_partial(struct kmem_cache_node *n,
2201 int (*get_count)(struct page *))
2202{
2203 unsigned long flags;
2204 unsigned long x = 0;
2205 struct page *page;
2206
2207 spin_lock_irqsave(&n->list_lock, flags);
2208 list_for_each_entry(page, &n->partial, lru)
2209 x += get_count(page);
2210 spin_unlock_irqrestore(&n->list_lock, flags);
2211 return x;
2212}
9a02d699 2213#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2214
781b2ba6
PE
2215static noinline void
2216slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2217{
9a02d699
DR
2218#ifdef CONFIG_SLUB_DEBUG
2219 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2220 DEFAULT_RATELIMIT_BURST);
781b2ba6 2221 int node;
fa45dc25 2222 struct kmem_cache_node *n;
781b2ba6 2223
9a02d699
DR
2224 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2225 return;
2226
f9f58285 2227 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
781b2ba6 2228 nid, gfpflags);
f9f58285
FF
2229 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2230 s->name, s->object_size, s->size, oo_order(s->oo),
2231 oo_order(s->min));
781b2ba6 2232
3b0efdfa 2233 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2234 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2235 s->name);
fa5ec8a1 2236
fa45dc25 2237 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2238 unsigned long nr_slabs;
2239 unsigned long nr_objs;
2240 unsigned long nr_free;
2241
26c02cf0
AB
2242 nr_free = count_partial(n, count_free);
2243 nr_slabs = node_nr_slabs(n);
2244 nr_objs = node_nr_objs(n);
781b2ba6 2245
f9f58285 2246 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2247 node, nr_slabs, nr_objs, nr_free);
2248 }
9a02d699 2249#endif
781b2ba6
PE
2250}
2251
497b66f2
CL
2252static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2253 int node, struct kmem_cache_cpu **pc)
2254{
6faa6833 2255 void *freelist;
188fd063
CL
2256 struct kmem_cache_cpu *c = *pc;
2257 struct page *page;
497b66f2 2258
188fd063 2259 freelist = get_partial(s, flags, node, c);
497b66f2 2260
188fd063
CL
2261 if (freelist)
2262 return freelist;
2263
2264 page = new_slab(s, flags, node);
497b66f2 2265 if (page) {
7c8e0181 2266 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2267 if (c->page)
2268 flush_slab(s, c);
2269
2270 /*
2271 * No other reference to the page yet so we can
2272 * muck around with it freely without cmpxchg
2273 */
6faa6833 2274 freelist = page->freelist;
497b66f2
CL
2275 page->freelist = NULL;
2276
2277 stat(s, ALLOC_SLAB);
497b66f2
CL
2278 c->page = page;
2279 *pc = c;
2280 } else
6faa6833 2281 freelist = NULL;
497b66f2 2282
6faa6833 2283 return freelist;
497b66f2
CL
2284}
2285
072bb0aa
MG
2286static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2287{
2288 if (unlikely(PageSlabPfmemalloc(page)))
2289 return gfp_pfmemalloc_allowed(gfpflags);
2290
2291 return true;
2292}
2293
213eeb9f 2294/*
d0e0ac97
CG
2295 * Check the page->freelist of a page and either transfer the freelist to the
2296 * per cpu freelist or deactivate the page.
213eeb9f
CL
2297 *
2298 * The page is still frozen if the return value is not NULL.
2299 *
2300 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2301 *
2302 * This function must be called with interrupt disabled.
213eeb9f
CL
2303 */
2304static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2305{
2306 struct page new;
2307 unsigned long counters;
2308 void *freelist;
2309
2310 do {
2311 freelist = page->freelist;
2312 counters = page->counters;
6faa6833 2313
213eeb9f 2314 new.counters = counters;
a0132ac0 2315 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2316
2317 new.inuse = page->objects;
2318 new.frozen = freelist != NULL;
2319
d24ac77f 2320 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2321 freelist, counters,
2322 NULL, new.counters,
2323 "get_freelist"));
2324
2325 return freelist;
2326}
2327
81819f0f 2328/*
894b8788
CL
2329 * Slow path. The lockless freelist is empty or we need to perform
2330 * debugging duties.
2331 *
894b8788
CL
2332 * Processing is still very fast if new objects have been freed to the
2333 * regular freelist. In that case we simply take over the regular freelist
2334 * as the lockless freelist and zap the regular freelist.
81819f0f 2335 *
894b8788
CL
2336 * If that is not working then we fall back to the partial lists. We take the
2337 * first element of the freelist as the object to allocate now and move the
2338 * rest of the freelist to the lockless freelist.
81819f0f 2339 *
894b8788 2340 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2341 * we need to allocate a new slab. This is the slowest path since it involves
2342 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2343 *
2344 * Version of __slab_alloc to use when we know that interrupts are
2345 * already disabled (which is the case for bulk allocation).
81819f0f 2346 */
a380a3c7 2347static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2348 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2349{
6faa6833 2350 void *freelist;
f6e7def7 2351 struct page *page;
81819f0f 2352
f6e7def7
CL
2353 page = c->page;
2354 if (!page)
81819f0f 2355 goto new_slab;
49e22585 2356redo:
6faa6833 2357
57d437d2 2358 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2359 int searchnode = node;
2360
2361 if (node != NUMA_NO_NODE && !node_present_pages(node))
2362 searchnode = node_to_mem_node(node);
2363
2364 if (unlikely(!node_match(page, searchnode))) {
2365 stat(s, ALLOC_NODE_MISMATCH);
2366 deactivate_slab(s, page, c->freelist);
2367 c->page = NULL;
2368 c->freelist = NULL;
2369 goto new_slab;
2370 }
fc59c053 2371 }
6446faa2 2372
072bb0aa
MG
2373 /*
2374 * By rights, we should be searching for a slab page that was
2375 * PFMEMALLOC but right now, we are losing the pfmemalloc
2376 * information when the page leaves the per-cpu allocator
2377 */
2378 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2379 deactivate_slab(s, page, c->freelist);
2380 c->page = NULL;
2381 c->freelist = NULL;
2382 goto new_slab;
2383 }
2384
73736e03 2385 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2386 freelist = c->freelist;
2387 if (freelist)
73736e03 2388 goto load_freelist;
03e404af 2389
f6e7def7 2390 freelist = get_freelist(s, page);
6446faa2 2391
6faa6833 2392 if (!freelist) {
03e404af
CL
2393 c->page = NULL;
2394 stat(s, DEACTIVATE_BYPASS);
fc59c053 2395 goto new_slab;
03e404af 2396 }
6446faa2 2397
84e554e6 2398 stat(s, ALLOC_REFILL);
6446faa2 2399
894b8788 2400load_freelist:
507effea
CL
2401 /*
2402 * freelist is pointing to the list of objects to be used.
2403 * page is pointing to the page from which the objects are obtained.
2404 * That page must be frozen for per cpu allocations to work.
2405 */
a0132ac0 2406 VM_BUG_ON(!c->page->frozen);
6faa6833 2407 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2408 c->tid = next_tid(c->tid);
6faa6833 2409 return freelist;
81819f0f 2410
81819f0f 2411new_slab:
2cfb7455 2412
49e22585 2413 if (c->partial) {
f6e7def7
CL
2414 page = c->page = c->partial;
2415 c->partial = page->next;
49e22585
CL
2416 stat(s, CPU_PARTIAL_ALLOC);
2417 c->freelist = NULL;
2418 goto redo;
81819f0f
CL
2419 }
2420
188fd063 2421 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2422
f4697436 2423 if (unlikely(!freelist)) {
9a02d699 2424 slab_out_of_memory(s, gfpflags, node);
f4697436 2425 return NULL;
81819f0f 2426 }
2cfb7455 2427
f6e7def7 2428 page = c->page;
5091b74a 2429 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2430 goto load_freelist;
2cfb7455 2431
497b66f2 2432 /* Only entered in the debug case */
d0e0ac97
CG
2433 if (kmem_cache_debug(s) &&
2434 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2435 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2436
f6e7def7 2437 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2438 c->page = NULL;
2439 c->freelist = NULL;
6faa6833 2440 return freelist;
894b8788
CL
2441}
2442
a380a3c7
CL
2443/*
2444 * Another one that disabled interrupt and compensates for possible
2445 * cpu changes by refetching the per cpu area pointer.
2446 */
2447static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2448 unsigned long addr, struct kmem_cache_cpu *c)
2449{
2450 void *p;
2451 unsigned long flags;
2452
2453 local_irq_save(flags);
2454#ifdef CONFIG_PREEMPT
2455 /*
2456 * We may have been preempted and rescheduled on a different
2457 * cpu before disabling interrupts. Need to reload cpu area
2458 * pointer.
2459 */
2460 c = this_cpu_ptr(s->cpu_slab);
2461#endif
2462
2463 p = ___slab_alloc(s, gfpflags, node, addr, c);
2464 local_irq_restore(flags);
2465 return p;
2466}
2467
894b8788
CL
2468/*
2469 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2470 * have the fastpath folded into their functions. So no function call
2471 * overhead for requests that can be satisfied on the fastpath.
2472 *
2473 * The fastpath works by first checking if the lockless freelist can be used.
2474 * If not then __slab_alloc is called for slow processing.
2475 *
2476 * Otherwise we can simply pick the next object from the lockless free list.
2477 */
2b847c3c 2478static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2479 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2480{
03ec0ed5 2481 void *object;
dfb4f096 2482 struct kmem_cache_cpu *c;
57d437d2 2483 struct page *page;
8a5ec0ba 2484 unsigned long tid;
1f84260c 2485
8135be5a
VD
2486 s = slab_pre_alloc_hook(s, gfpflags);
2487 if (!s)
773ff60e 2488 return NULL;
8a5ec0ba 2489redo:
8a5ec0ba
CL
2490 /*
2491 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2492 * enabled. We may switch back and forth between cpus while
2493 * reading from one cpu area. That does not matter as long
2494 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2495 *
9aabf810
JK
2496 * We should guarantee that tid and kmem_cache are retrieved on
2497 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2498 * to check if it is matched or not.
8a5ec0ba 2499 */
9aabf810
JK
2500 do {
2501 tid = this_cpu_read(s->cpu_slab->tid);
2502 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2503 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2504 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2505
2506 /*
2507 * Irqless object alloc/free algorithm used here depends on sequence
2508 * of fetching cpu_slab's data. tid should be fetched before anything
2509 * on c to guarantee that object and page associated with previous tid
2510 * won't be used with current tid. If we fetch tid first, object and
2511 * page could be one associated with next tid and our alloc/free
2512 * request will be failed. In this case, we will retry. So, no problem.
2513 */
2514 barrier();
8a5ec0ba 2515
8a5ec0ba
CL
2516 /*
2517 * The transaction ids are globally unique per cpu and per operation on
2518 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2519 * occurs on the right processor and that there was no operation on the
2520 * linked list in between.
2521 */
8a5ec0ba 2522
9dfc6e68 2523 object = c->freelist;
57d437d2 2524 page = c->page;
8eae1492 2525 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2526 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2527 stat(s, ALLOC_SLOWPATH);
2528 } else {
0ad9500e
ED
2529 void *next_object = get_freepointer_safe(s, object);
2530
8a5ec0ba 2531 /*
25985edc 2532 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2533 * operation and if we are on the right processor.
2534 *
d0e0ac97
CG
2535 * The cmpxchg does the following atomically (without lock
2536 * semantics!)
8a5ec0ba
CL
2537 * 1. Relocate first pointer to the current per cpu area.
2538 * 2. Verify that tid and freelist have not been changed
2539 * 3. If they were not changed replace tid and freelist
2540 *
d0e0ac97
CG
2541 * Since this is without lock semantics the protection is only
2542 * against code executing on this cpu *not* from access by
2543 * other cpus.
8a5ec0ba 2544 */
933393f5 2545 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2546 s->cpu_slab->freelist, s->cpu_slab->tid,
2547 object, tid,
0ad9500e 2548 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2549
2550 note_cmpxchg_failure("slab_alloc", s, tid);
2551 goto redo;
2552 }
0ad9500e 2553 prefetch_freepointer(s, next_object);
84e554e6 2554 stat(s, ALLOC_FASTPATH);
894b8788 2555 }
8a5ec0ba 2556
74e2134f 2557 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2558 memset(object, 0, s->object_size);
d07dbea4 2559
03ec0ed5 2560 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2561
894b8788 2562 return object;
81819f0f
CL
2563}
2564
2b847c3c
EG
2565static __always_inline void *slab_alloc(struct kmem_cache *s,
2566 gfp_t gfpflags, unsigned long addr)
2567{
2568 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2569}
2570
81819f0f
CL
2571void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2572{
2b847c3c 2573 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2574
d0e0ac97
CG
2575 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2576 s->size, gfpflags);
5b882be4
EGM
2577
2578 return ret;
81819f0f
CL
2579}
2580EXPORT_SYMBOL(kmem_cache_alloc);
2581
0f24f128 2582#ifdef CONFIG_TRACING
4a92379b
RK
2583void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2584{
2b847c3c 2585 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2586 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0316bec2 2587 kasan_kmalloc(s, ret, size);
4a92379b
RK
2588 return ret;
2589}
2590EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2591#endif
2592
81819f0f
CL
2593#ifdef CONFIG_NUMA
2594void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2595{
2b847c3c 2596 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2597
ca2b84cb 2598 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2599 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2600
2601 return ret;
81819f0f
CL
2602}
2603EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2604
0f24f128 2605#ifdef CONFIG_TRACING
4a92379b 2606void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2607 gfp_t gfpflags,
4a92379b 2608 int node, size_t size)
5b882be4 2609{
2b847c3c 2610 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2611
2612 trace_kmalloc_node(_RET_IP_, ret,
2613 size, s->size, gfpflags, node);
0316bec2
AR
2614
2615 kasan_kmalloc(s, ret, size);
4a92379b 2616 return ret;
5b882be4 2617}
4a92379b 2618EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2619#endif
5d1f57e4 2620#endif
5b882be4 2621
81819f0f 2622/*
94e4d712 2623 * Slow path handling. This may still be called frequently since objects
894b8788 2624 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2625 *
894b8788
CL
2626 * So we still attempt to reduce cache line usage. Just take the slab
2627 * lock and free the item. If there is no additional partial page
2628 * handling required then we can return immediately.
81819f0f 2629 */
894b8788 2630static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2631 void *head, void *tail, int cnt,
2632 unsigned long addr)
2633
81819f0f
CL
2634{
2635 void *prior;
2cfb7455 2636 int was_frozen;
2cfb7455
CL
2637 struct page new;
2638 unsigned long counters;
2639 struct kmem_cache_node *n = NULL;
61728d1e 2640 unsigned long uninitialized_var(flags);
81819f0f 2641
8a5ec0ba 2642 stat(s, FREE_SLOWPATH);
81819f0f 2643
19c7ff9e 2644 if (kmem_cache_debug(s) &&
81084651
JDB
2645 !(n = free_debug_processing(s, page, head, tail, cnt,
2646 addr, &flags)))
80f08c19 2647 return;
6446faa2 2648
2cfb7455 2649 do {
837d678d
JK
2650 if (unlikely(n)) {
2651 spin_unlock_irqrestore(&n->list_lock, flags);
2652 n = NULL;
2653 }
2cfb7455
CL
2654 prior = page->freelist;
2655 counters = page->counters;
81084651 2656 set_freepointer(s, tail, prior);
2cfb7455
CL
2657 new.counters = counters;
2658 was_frozen = new.frozen;
81084651 2659 new.inuse -= cnt;
837d678d 2660 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2661
c65c1877 2662 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2663
2664 /*
d0e0ac97
CG
2665 * Slab was on no list before and will be
2666 * partially empty
2667 * We can defer the list move and instead
2668 * freeze it.
49e22585
CL
2669 */
2670 new.frozen = 1;
2671
c65c1877 2672 } else { /* Needs to be taken off a list */
49e22585 2673
b455def2 2674 n = get_node(s, page_to_nid(page));
49e22585
CL
2675 /*
2676 * Speculatively acquire the list_lock.
2677 * If the cmpxchg does not succeed then we may
2678 * drop the list_lock without any processing.
2679 *
2680 * Otherwise the list_lock will synchronize with
2681 * other processors updating the list of slabs.
2682 */
2683 spin_lock_irqsave(&n->list_lock, flags);
2684
2685 }
2cfb7455 2686 }
81819f0f 2687
2cfb7455
CL
2688 } while (!cmpxchg_double_slab(s, page,
2689 prior, counters,
81084651 2690 head, new.counters,
2cfb7455 2691 "__slab_free"));
81819f0f 2692
2cfb7455 2693 if (likely(!n)) {
49e22585
CL
2694
2695 /*
2696 * If we just froze the page then put it onto the
2697 * per cpu partial list.
2698 */
8028dcea 2699 if (new.frozen && !was_frozen) {
49e22585 2700 put_cpu_partial(s, page, 1);
8028dcea
AS
2701 stat(s, CPU_PARTIAL_FREE);
2702 }
49e22585 2703 /*
2cfb7455
CL
2704 * The list lock was not taken therefore no list
2705 * activity can be necessary.
2706 */
b455def2
L
2707 if (was_frozen)
2708 stat(s, FREE_FROZEN);
2709 return;
2710 }
81819f0f 2711
8a5b20ae 2712 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2713 goto slab_empty;
2714
81819f0f 2715 /*
837d678d
JK
2716 * Objects left in the slab. If it was not on the partial list before
2717 * then add it.
81819f0f 2718 */
345c905d
JK
2719 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2720 if (kmem_cache_debug(s))
c65c1877 2721 remove_full(s, n, page);
837d678d
JK
2722 add_partial(n, page, DEACTIVATE_TO_TAIL);
2723 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2724 }
80f08c19 2725 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2726 return;
2727
2728slab_empty:
a973e9dd 2729 if (prior) {
81819f0f 2730 /*
6fbabb20 2731 * Slab on the partial list.
81819f0f 2732 */
5cc6eee8 2733 remove_partial(n, page);
84e554e6 2734 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2735 } else {
6fbabb20 2736 /* Slab must be on the full list */
c65c1877
PZ
2737 remove_full(s, n, page);
2738 }
2cfb7455 2739
80f08c19 2740 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2741 stat(s, FREE_SLAB);
81819f0f 2742 discard_slab(s, page);
81819f0f
CL
2743}
2744
894b8788
CL
2745/*
2746 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2747 * can perform fastpath freeing without additional function calls.
2748 *
2749 * The fastpath is only possible if we are freeing to the current cpu slab
2750 * of this processor. This typically the case if we have just allocated
2751 * the item before.
2752 *
2753 * If fastpath is not possible then fall back to __slab_free where we deal
2754 * with all sorts of special processing.
81084651
JDB
2755 *
2756 * Bulk free of a freelist with several objects (all pointing to the
2757 * same page) possible by specifying head and tail ptr, plus objects
2758 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2759 */
81084651
JDB
2760static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2761 void *head, void *tail, int cnt,
2762 unsigned long addr)
894b8788 2763{
81084651 2764 void *tail_obj = tail ? : head;
dfb4f096 2765 struct kmem_cache_cpu *c;
8a5ec0ba 2766 unsigned long tid;
1f84260c 2767
81084651 2768 slab_free_freelist_hook(s, head, tail);
c016b0bd 2769
8a5ec0ba
CL
2770redo:
2771 /*
2772 * Determine the currently cpus per cpu slab.
2773 * The cpu may change afterward. However that does not matter since
2774 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2775 * during the cmpxchg then the free will succeed.
8a5ec0ba 2776 */
9aabf810
JK
2777 do {
2778 tid = this_cpu_read(s->cpu_slab->tid);
2779 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2780 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2781 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2782
9aabf810
JK
2783 /* Same with comment on barrier() in slab_alloc_node() */
2784 barrier();
c016b0bd 2785
442b06bc 2786 if (likely(page == c->page)) {
81084651 2787 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2788
933393f5 2789 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2790 s->cpu_slab->freelist, s->cpu_slab->tid,
2791 c->freelist, tid,
81084651 2792 head, next_tid(tid)))) {
8a5ec0ba
CL
2793
2794 note_cmpxchg_failure("slab_free", s, tid);
2795 goto redo;
2796 }
84e554e6 2797 stat(s, FREE_FASTPATH);
894b8788 2798 } else
81084651 2799 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 2800
894b8788
CL
2801}
2802
81819f0f
CL
2803void kmem_cache_free(struct kmem_cache *s, void *x)
2804{
b9ce5ef4
GC
2805 s = cache_from_obj(s, x);
2806 if (!s)
79576102 2807 return;
81084651 2808 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 2809 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2810}
2811EXPORT_SYMBOL(kmem_cache_free);
2812
d0ecd894 2813struct detached_freelist {
fbd02630 2814 struct page *page;
d0ecd894
JDB
2815 void *tail;
2816 void *freelist;
2817 int cnt;
2818};
fbd02630 2819
d0ecd894
JDB
2820/*
2821 * This function progressively scans the array with free objects (with
2822 * a limited look ahead) and extract objects belonging to the same
2823 * page. It builds a detached freelist directly within the given
2824 * page/objects. This can happen without any need for
2825 * synchronization, because the objects are owned by running process.
2826 * The freelist is build up as a single linked list in the objects.
2827 * The idea is, that this detached freelist can then be bulk
2828 * transferred to the real freelist(s), but only requiring a single
2829 * synchronization primitive. Look ahead in the array is limited due
2830 * to performance reasons.
2831 */
2832static int build_detached_freelist(struct kmem_cache *s, size_t size,
2833 void **p, struct detached_freelist *df)
2834{
2835 size_t first_skipped_index = 0;
2836 int lookahead = 3;
2837 void *object;
fbd02630 2838
d0ecd894
JDB
2839 /* Always re-init detached_freelist */
2840 df->page = NULL;
fbd02630 2841
d0ecd894
JDB
2842 do {
2843 object = p[--size];
2844 } while (!object && size);
3eed034d 2845
d0ecd894
JDB
2846 if (!object)
2847 return 0;
fbd02630 2848
d0ecd894
JDB
2849 /* Start new detached freelist */
2850 set_freepointer(s, object, NULL);
2851 df->page = virt_to_head_page(object);
2852 df->tail = object;
2853 df->freelist = object;
2854 p[size] = NULL; /* mark object processed */
2855 df->cnt = 1;
2856
2857 while (size) {
2858 object = p[--size];
2859 if (!object)
2860 continue; /* Skip processed objects */
2861
2862 /* df->page is always set at this point */
2863 if (df->page == virt_to_head_page(object)) {
2864 /* Opportunity build freelist */
2865 set_freepointer(s, object, df->freelist);
2866 df->freelist = object;
2867 df->cnt++;
2868 p[size] = NULL; /* mark object processed */
2869
2870 continue;
fbd02630 2871 }
d0ecd894
JDB
2872
2873 /* Limit look ahead search */
2874 if (!--lookahead)
2875 break;
2876
2877 if (!first_skipped_index)
2878 first_skipped_index = size + 1;
fbd02630 2879 }
d0ecd894
JDB
2880
2881 return first_skipped_index;
2882}
2883
2884
2885/* Note that interrupts must be enabled when calling this function. */
03374518 2886void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
d0ecd894
JDB
2887{
2888 if (WARN_ON(!size))
2889 return;
2890
2891 do {
2892 struct detached_freelist df;
03374518
JDB
2893 struct kmem_cache *s;
2894
2895 /* Support for memcg */
2896 s = cache_from_obj(orig_s, p[size - 1]);
d0ecd894
JDB
2897
2898 size = build_detached_freelist(s, size, p, &df);
2899 if (unlikely(!df.page))
2900 continue;
2901
2902 slab_free(s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
2903 } while (likely(size));
484748f0
CL
2904}
2905EXPORT_SYMBOL(kmem_cache_free_bulk);
2906
994eb764 2907/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
2908int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2909 void **p)
484748f0 2910{
994eb764
JDB
2911 struct kmem_cache_cpu *c;
2912 int i;
2913
03ec0ed5
JDB
2914 /* memcg and kmem_cache debug support */
2915 s = slab_pre_alloc_hook(s, flags);
2916 if (unlikely(!s))
2917 return false;
994eb764
JDB
2918 /*
2919 * Drain objects in the per cpu slab, while disabling local
2920 * IRQs, which protects against PREEMPT and interrupts
2921 * handlers invoking normal fastpath.
2922 */
2923 local_irq_disable();
2924 c = this_cpu_ptr(s->cpu_slab);
2925
2926 for (i = 0; i < size; i++) {
2927 void *object = c->freelist;
2928
ebe909e0 2929 if (unlikely(!object)) {
ebe909e0
JDB
2930 /*
2931 * Invoking slow path likely have side-effect
2932 * of re-populating per CPU c->freelist
2933 */
87098373 2934 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 2935 _RET_IP_, c);
87098373
CL
2936 if (unlikely(!p[i]))
2937 goto error;
2938
ebe909e0
JDB
2939 c = this_cpu_ptr(s->cpu_slab);
2940 continue; /* goto for-loop */
2941 }
994eb764
JDB
2942 c->freelist = get_freepointer(s, object);
2943 p[i] = object;
2944 }
2945 c->tid = next_tid(c->tid);
2946 local_irq_enable();
2947
2948 /* Clear memory outside IRQ disabled fastpath loop */
2949 if (unlikely(flags & __GFP_ZERO)) {
2950 int j;
2951
2952 for (j = 0; j < i; j++)
2953 memset(p[j], 0, s->object_size);
2954 }
2955
03ec0ed5
JDB
2956 /* memcg and kmem_cache debug support */
2957 slab_post_alloc_hook(s, flags, size, p);
865762a8 2958 return i;
87098373 2959error:
87098373 2960 local_irq_enable();
03ec0ed5
JDB
2961 slab_post_alloc_hook(s, flags, i, p);
2962 __kmem_cache_free_bulk(s, i, p);
865762a8 2963 return 0;
484748f0
CL
2964}
2965EXPORT_SYMBOL(kmem_cache_alloc_bulk);
2966
2967
81819f0f 2968/*
672bba3a
CL
2969 * Object placement in a slab is made very easy because we always start at
2970 * offset 0. If we tune the size of the object to the alignment then we can
2971 * get the required alignment by putting one properly sized object after
2972 * another.
81819f0f
CL
2973 *
2974 * Notice that the allocation order determines the sizes of the per cpu
2975 * caches. Each processor has always one slab available for allocations.
2976 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2977 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2978 * locking overhead.
81819f0f
CL
2979 */
2980
2981/*
2982 * Mininum / Maximum order of slab pages. This influences locking overhead
2983 * and slab fragmentation. A higher order reduces the number of partial slabs
2984 * and increases the number of allocations possible without having to
2985 * take the list_lock.
2986 */
2987static int slub_min_order;
114e9e89 2988static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2989static int slub_min_objects;
81819f0f 2990
81819f0f
CL
2991/*
2992 * Calculate the order of allocation given an slab object size.
2993 *
672bba3a
CL
2994 * The order of allocation has significant impact on performance and other
2995 * system components. Generally order 0 allocations should be preferred since
2996 * order 0 does not cause fragmentation in the page allocator. Larger objects
2997 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2998 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2999 * would be wasted.
3000 *
3001 * In order to reach satisfactory performance we must ensure that a minimum
3002 * number of objects is in one slab. Otherwise we may generate too much
3003 * activity on the partial lists which requires taking the list_lock. This is
3004 * less a concern for large slabs though which are rarely used.
81819f0f 3005 *
672bba3a
CL
3006 * slub_max_order specifies the order where we begin to stop considering the
3007 * number of objects in a slab as critical. If we reach slub_max_order then
3008 * we try to keep the page order as low as possible. So we accept more waste
3009 * of space in favor of a small page order.
81819f0f 3010 *
672bba3a
CL
3011 * Higher order allocations also allow the placement of more objects in a
3012 * slab and thereby reduce object handling overhead. If the user has
3013 * requested a higher mininum order then we start with that one instead of
3014 * the smallest order which will fit the object.
81819f0f 3015 */
5e6d444e 3016static inline int slab_order(int size, int min_objects,
ab9a0f19 3017 int max_order, int fract_leftover, int reserved)
81819f0f
CL
3018{
3019 int order;
3020 int rem;
6300ea75 3021 int min_order = slub_min_order;
81819f0f 3022
ab9a0f19 3023 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 3024 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3025
9f835703 3026 for (order = max(min_order, get_order(min_objects * size + reserved));
5e6d444e 3027 order <= max_order; order++) {
81819f0f 3028
5e6d444e 3029 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 3030
ab9a0f19 3031 rem = (slab_size - reserved) % size;
81819f0f 3032
5e6d444e 3033 if (rem <= slab_size / fract_leftover)
81819f0f 3034 break;
81819f0f 3035 }
672bba3a 3036
81819f0f
CL
3037 return order;
3038}
3039
ab9a0f19 3040static inline int calculate_order(int size, int reserved)
5e6d444e
CL
3041{
3042 int order;
3043 int min_objects;
3044 int fraction;
e8120ff1 3045 int max_objects;
5e6d444e
CL
3046
3047 /*
3048 * Attempt to find best configuration for a slab. This
3049 * works by first attempting to generate a layout with
3050 * the best configuration and backing off gradually.
3051 *
422ff4d7 3052 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3053 * we reduce the minimum objects required in a slab.
3054 */
3055 min_objects = slub_min_objects;
9b2cd506
CL
3056 if (!min_objects)
3057 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 3058 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
3059 min_objects = min(min_objects, max_objects);
3060
5e6d444e 3061 while (min_objects > 1) {
c124f5b5 3062 fraction = 16;
5e6d444e
CL
3063 while (fraction >= 4) {
3064 order = slab_order(size, min_objects,
ab9a0f19 3065 slub_max_order, fraction, reserved);
5e6d444e
CL
3066 if (order <= slub_max_order)
3067 return order;
3068 fraction /= 2;
3069 }
5086c389 3070 min_objects--;
5e6d444e
CL
3071 }
3072
3073 /*
3074 * We were unable to place multiple objects in a slab. Now
3075 * lets see if we can place a single object there.
3076 */
ab9a0f19 3077 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
3078 if (order <= slub_max_order)
3079 return order;
3080
3081 /*
3082 * Doh this slab cannot be placed using slub_max_order.
3083 */
ab9a0f19 3084 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 3085 if (order < MAX_ORDER)
5e6d444e
CL
3086 return order;
3087 return -ENOSYS;
3088}
3089
5595cffc 3090static void
4053497d 3091init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3092{
3093 n->nr_partial = 0;
81819f0f
CL
3094 spin_lock_init(&n->list_lock);
3095 INIT_LIST_HEAD(&n->partial);
8ab1372f 3096#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3097 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3098 atomic_long_set(&n->total_objects, 0);
643b1138 3099 INIT_LIST_HEAD(&n->full);
8ab1372f 3100#endif
81819f0f
CL
3101}
3102
55136592 3103static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3104{
6c182dc0 3105 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3106 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3107
8a5ec0ba 3108 /*
d4d84fef
CM
3109 * Must align to double word boundary for the double cmpxchg
3110 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3111 */
d4d84fef
CM
3112 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3113 2 * sizeof(void *));
8a5ec0ba
CL
3114
3115 if (!s->cpu_slab)
3116 return 0;
3117
3118 init_kmem_cache_cpus(s);
4c93c355 3119
8a5ec0ba 3120 return 1;
4c93c355 3121}
4c93c355 3122
51df1142
CL
3123static struct kmem_cache *kmem_cache_node;
3124
81819f0f
CL
3125/*
3126 * No kmalloc_node yet so do it by hand. We know that this is the first
3127 * slab on the node for this slabcache. There are no concurrent accesses
3128 * possible.
3129 *
721ae22a
ZYW
3130 * Note that this function only works on the kmem_cache_node
3131 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3132 * memory on a fresh node that has no slab structures yet.
81819f0f 3133 */
55136592 3134static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3135{
3136 struct page *page;
3137 struct kmem_cache_node *n;
3138
51df1142 3139 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3140
51df1142 3141 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3142
3143 BUG_ON(!page);
a2f92ee7 3144 if (page_to_nid(page) != node) {
f9f58285
FF
3145 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3146 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3147 }
3148
81819f0f
CL
3149 n = page->freelist;
3150 BUG_ON(!n);
51df1142 3151 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 3152 page->inuse = 1;
8cb0a506 3153 page->frozen = 0;
51df1142 3154 kmem_cache_node->node[node] = n;
8ab1372f 3155#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3156 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3157 init_tracking(kmem_cache_node, n);
8ab1372f 3158#endif
0316bec2 3159 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
4053497d 3160 init_kmem_cache_node(n);
51df1142 3161 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3162
67b6c900 3163 /*
1e4dd946
SR
3164 * No locks need to be taken here as it has just been
3165 * initialized and there is no concurrent access.
67b6c900 3166 */
1e4dd946 3167 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3168}
3169
3170static void free_kmem_cache_nodes(struct kmem_cache *s)
3171{
3172 int node;
fa45dc25 3173 struct kmem_cache_node *n;
81819f0f 3174
fa45dc25
CL
3175 for_each_kmem_cache_node(s, node, n) {
3176 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3177 s->node[node] = NULL;
3178 }
3179}
3180
52b4b950
DS
3181void __kmem_cache_release(struct kmem_cache *s)
3182{
3183 free_percpu(s->cpu_slab);
3184 free_kmem_cache_nodes(s);
3185}
3186
55136592 3187static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3188{
3189 int node;
81819f0f 3190
f64dc58c 3191 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3192 struct kmem_cache_node *n;
3193
73367bd8 3194 if (slab_state == DOWN) {
55136592 3195 early_kmem_cache_node_alloc(node);
73367bd8
AD
3196 continue;
3197 }
51df1142 3198 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3199 GFP_KERNEL, node);
81819f0f 3200
73367bd8
AD
3201 if (!n) {
3202 free_kmem_cache_nodes(s);
3203 return 0;
81819f0f 3204 }
73367bd8 3205
81819f0f 3206 s->node[node] = n;
4053497d 3207 init_kmem_cache_node(n);
81819f0f
CL
3208 }
3209 return 1;
3210}
81819f0f 3211
c0bdb232 3212static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3213{
3214 if (min < MIN_PARTIAL)
3215 min = MIN_PARTIAL;
3216 else if (min > MAX_PARTIAL)
3217 min = MAX_PARTIAL;
3218 s->min_partial = min;
3219}
3220
81819f0f
CL
3221/*
3222 * calculate_sizes() determines the order and the distribution of data within
3223 * a slab object.
3224 */
06b285dc 3225static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
3226{
3227 unsigned long flags = s->flags;
3b0efdfa 3228 unsigned long size = s->object_size;
834f3d11 3229 int order;
81819f0f 3230
d8b42bf5
CL
3231 /*
3232 * Round up object size to the next word boundary. We can only
3233 * place the free pointer at word boundaries and this determines
3234 * the possible location of the free pointer.
3235 */
3236 size = ALIGN(size, sizeof(void *));
3237
3238#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3239 /*
3240 * Determine if we can poison the object itself. If the user of
3241 * the slab may touch the object after free or before allocation
3242 * then we should never poison the object itself.
3243 */
3244 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 3245 !s->ctor)
81819f0f
CL
3246 s->flags |= __OBJECT_POISON;
3247 else
3248 s->flags &= ~__OBJECT_POISON;
3249
81819f0f
CL
3250
3251 /*
672bba3a 3252 * If we are Redzoning then check if there is some space between the
81819f0f 3253 * end of the object and the free pointer. If not then add an
672bba3a 3254 * additional word to have some bytes to store Redzone information.
81819f0f 3255 */
3b0efdfa 3256 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3257 size += sizeof(void *);
41ecc55b 3258#endif
81819f0f
CL
3259
3260 /*
672bba3a
CL
3261 * With that we have determined the number of bytes in actual use
3262 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3263 */
3264 s->inuse = size;
3265
3266 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 3267 s->ctor)) {
81819f0f
CL
3268 /*
3269 * Relocate free pointer after the object if it is not
3270 * permitted to overwrite the first word of the object on
3271 * kmem_cache_free.
3272 *
3273 * This is the case if we do RCU, have a constructor or
3274 * destructor or are poisoning the objects.
3275 */
3276 s->offset = size;
3277 size += sizeof(void *);
3278 }
3279
c12b3c62 3280#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3281 if (flags & SLAB_STORE_USER)
3282 /*
3283 * Need to store information about allocs and frees after
3284 * the object.
3285 */
3286 size += 2 * sizeof(struct track);
3287
be7b3fbc 3288 if (flags & SLAB_RED_ZONE)
81819f0f
CL
3289 /*
3290 * Add some empty padding so that we can catch
3291 * overwrites from earlier objects rather than let
3292 * tracking information or the free pointer be
0211a9c8 3293 * corrupted if a user writes before the start
81819f0f
CL
3294 * of the object.
3295 */
3296 size += sizeof(void *);
41ecc55b 3297#endif
672bba3a 3298
81819f0f
CL
3299 /*
3300 * SLUB stores one object immediately after another beginning from
3301 * offset 0. In order to align the objects we have to simply size
3302 * each object to conform to the alignment.
3303 */
45906855 3304 size = ALIGN(size, s->align);
81819f0f 3305 s->size = size;
06b285dc
CL
3306 if (forced_order >= 0)
3307 order = forced_order;
3308 else
ab9a0f19 3309 order = calculate_order(size, s->reserved);
81819f0f 3310
834f3d11 3311 if (order < 0)
81819f0f
CL
3312 return 0;
3313
b7a49f0d 3314 s->allocflags = 0;
834f3d11 3315 if (order)
b7a49f0d
CL
3316 s->allocflags |= __GFP_COMP;
3317
3318 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3319 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3320
3321 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3322 s->allocflags |= __GFP_RECLAIMABLE;
3323
81819f0f
CL
3324 /*
3325 * Determine the number of objects per slab
3326 */
ab9a0f19
LJ
3327 s->oo = oo_make(order, size, s->reserved);
3328 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3329 if (oo_objects(s->oo) > oo_objects(s->max))
3330 s->max = s->oo;
81819f0f 3331
834f3d11 3332 return !!oo_objects(s->oo);
81819f0f
CL
3333}
3334
8a13a4cc 3335static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3336{
8a13a4cc 3337 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3338 s->reserved = 0;
81819f0f 3339
da9a638c
LJ
3340 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3341 s->reserved = sizeof(struct rcu_head);
81819f0f 3342
06b285dc 3343 if (!calculate_sizes(s, -1))
81819f0f 3344 goto error;
3de47213
DR
3345 if (disable_higher_order_debug) {
3346 /*
3347 * Disable debugging flags that store metadata if the min slab
3348 * order increased.
3349 */
3b0efdfa 3350 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3351 s->flags &= ~DEBUG_METADATA_FLAGS;
3352 s->offset = 0;
3353 if (!calculate_sizes(s, -1))
3354 goto error;
3355 }
3356 }
81819f0f 3357
2565409f
HC
3358#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3359 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3360 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3361 /* Enable fast mode */
3362 s->flags |= __CMPXCHG_DOUBLE;
3363#endif
3364
3b89d7d8
DR
3365 /*
3366 * The larger the object size is, the more pages we want on the partial
3367 * list to avoid pounding the page allocator excessively.
3368 */
49e22585
CL
3369 set_min_partial(s, ilog2(s->size) / 2);
3370
3371 /*
3372 * cpu_partial determined the maximum number of objects kept in the
3373 * per cpu partial lists of a processor.
3374 *
3375 * Per cpu partial lists mainly contain slabs that just have one
3376 * object freed. If they are used for allocation then they can be
3377 * filled up again with minimal effort. The slab will never hit the
3378 * per node partial lists and therefore no locking will be required.
3379 *
3380 * This setting also determines
3381 *
3382 * A) The number of objects from per cpu partial slabs dumped to the
3383 * per node list when we reach the limit.
9f264904 3384 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3385 * per node list when we run out of per cpu objects. We only fetch
3386 * 50% to keep some capacity around for frees.
49e22585 3387 */
345c905d 3388 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3389 s->cpu_partial = 0;
3390 else if (s->size >= PAGE_SIZE)
49e22585
CL
3391 s->cpu_partial = 2;
3392 else if (s->size >= 1024)
3393 s->cpu_partial = 6;
3394 else if (s->size >= 256)
3395 s->cpu_partial = 13;
3396 else
3397 s->cpu_partial = 30;
3398
81819f0f 3399#ifdef CONFIG_NUMA
e2cb96b7 3400 s->remote_node_defrag_ratio = 1000;
81819f0f 3401#endif
55136592 3402 if (!init_kmem_cache_nodes(s))
dfb4f096 3403 goto error;
81819f0f 3404
55136592 3405 if (alloc_kmem_cache_cpus(s))
278b1bb1 3406 return 0;
ff12059e 3407
4c93c355 3408 free_kmem_cache_nodes(s);
81819f0f
CL
3409error:
3410 if (flags & SLAB_PANIC)
3411 panic("Cannot create slab %s size=%lu realsize=%u "
3412 "order=%u offset=%u flags=%lx\n",
d0e0ac97
CG
3413 s->name, (unsigned long)s->size, s->size,
3414 oo_order(s->oo), s->offset, flags);
278b1bb1 3415 return -EINVAL;
81819f0f 3416}
81819f0f 3417
33b12c38
CL
3418static void list_slab_objects(struct kmem_cache *s, struct page *page,
3419 const char *text)
3420{
3421#ifdef CONFIG_SLUB_DEBUG
3422 void *addr = page_address(page);
3423 void *p;
a5dd5c11
NK
3424 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3425 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3426 if (!map)
3427 return;
945cf2b6 3428 slab_err(s, page, text, s->name);
33b12c38 3429 slab_lock(page);
33b12c38 3430
5f80b13a 3431 get_map(s, page, map);
33b12c38
CL
3432 for_each_object(p, s, addr, page->objects) {
3433
3434 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3435 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3436 print_tracking(s, p);
3437 }
3438 }
3439 slab_unlock(page);
bbd7d57b 3440 kfree(map);
33b12c38
CL
3441#endif
3442}
3443
81819f0f 3444/*
599870b1 3445 * Attempt to free all partial slabs on a node.
52b4b950
DS
3446 * This is called from __kmem_cache_shutdown(). We must take list_lock
3447 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3448 */
599870b1 3449static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3450{
81819f0f
CL
3451 struct page *page, *h;
3452
52b4b950
DS
3453 BUG_ON(irqs_disabled());
3454 spin_lock_irq(&n->list_lock);
33b12c38 3455 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3456 if (!page->inuse) {
52b4b950 3457 remove_partial(n, page);
81819f0f 3458 discard_slab(s, page);
33b12c38
CL
3459 } else {
3460 list_slab_objects(s, page,
52b4b950 3461 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3462 }
33b12c38 3463 }
52b4b950 3464 spin_unlock_irq(&n->list_lock);
81819f0f
CL
3465}
3466
3467/*
672bba3a 3468 * Release all resources used by a slab cache.
81819f0f 3469 */
52b4b950 3470int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3471{
3472 int node;
fa45dc25 3473 struct kmem_cache_node *n;
81819f0f
CL
3474
3475 flush_all(s);
81819f0f 3476 /* Attempt to free all objects */
fa45dc25 3477 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3478 free_partial(s, n);
3479 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3480 return 1;
3481 }
81819f0f
CL
3482 return 0;
3483}
3484
81819f0f
CL
3485/********************************************************************
3486 * Kmalloc subsystem
3487 *******************************************************************/
3488
81819f0f
CL
3489static int __init setup_slub_min_order(char *str)
3490{
06428780 3491 get_option(&str, &slub_min_order);
81819f0f
CL
3492
3493 return 1;
3494}
3495
3496__setup("slub_min_order=", setup_slub_min_order);
3497
3498static int __init setup_slub_max_order(char *str)
3499{
06428780 3500 get_option(&str, &slub_max_order);
818cf590 3501 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3502
3503 return 1;
3504}
3505
3506__setup("slub_max_order=", setup_slub_max_order);
3507
3508static int __init setup_slub_min_objects(char *str)
3509{
06428780 3510 get_option(&str, &slub_min_objects);
81819f0f
CL
3511
3512 return 1;
3513}
3514
3515__setup("slub_min_objects=", setup_slub_min_objects);
3516
81819f0f
CL
3517void *__kmalloc(size_t size, gfp_t flags)
3518{
aadb4bc4 3519 struct kmem_cache *s;
5b882be4 3520 void *ret;
81819f0f 3521
95a05b42 3522 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3523 return kmalloc_large(size, flags);
aadb4bc4 3524
2c59dd65 3525 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3526
3527 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3528 return s;
3529
2b847c3c 3530 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3531
ca2b84cb 3532 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3533
0316bec2
AR
3534 kasan_kmalloc(s, ret, size);
3535
5b882be4 3536 return ret;
81819f0f
CL
3537}
3538EXPORT_SYMBOL(__kmalloc);
3539
5d1f57e4 3540#ifdef CONFIG_NUMA
f619cfe1
CL
3541static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3542{
b1eeab67 3543 struct page *page;
e4f7c0b4 3544 void *ptr = NULL;
f619cfe1 3545
52383431
VD
3546 flags |= __GFP_COMP | __GFP_NOTRACK;
3547 page = alloc_kmem_pages_node(node, flags, get_order(size));
f619cfe1 3548 if (page)
e4f7c0b4
CM
3549 ptr = page_address(page);
3550
d56791b3 3551 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3552 return ptr;
f619cfe1
CL
3553}
3554
81819f0f
CL
3555void *__kmalloc_node(size_t size, gfp_t flags, int node)
3556{
aadb4bc4 3557 struct kmem_cache *s;
5b882be4 3558 void *ret;
81819f0f 3559
95a05b42 3560 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3561 ret = kmalloc_large_node(size, flags, node);
3562
ca2b84cb
EGM
3563 trace_kmalloc_node(_RET_IP_, ret,
3564 size, PAGE_SIZE << get_order(size),
3565 flags, node);
5b882be4
EGM
3566
3567 return ret;
3568 }
aadb4bc4 3569
2c59dd65 3570 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3571
3572 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3573 return s;
3574
2b847c3c 3575 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3576
ca2b84cb 3577 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3578
0316bec2
AR
3579 kasan_kmalloc(s, ret, size);
3580
5b882be4 3581 return ret;
81819f0f
CL
3582}
3583EXPORT_SYMBOL(__kmalloc_node);
3584#endif
3585
0316bec2 3586static size_t __ksize(const void *object)
81819f0f 3587{
272c1d21 3588 struct page *page;
81819f0f 3589
ef8b4520 3590 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3591 return 0;
3592
294a80a8 3593 page = virt_to_head_page(object);
294a80a8 3594
76994412
PE
3595 if (unlikely(!PageSlab(page))) {
3596 WARN_ON(!PageCompound(page));
294a80a8 3597 return PAGE_SIZE << compound_order(page);
76994412 3598 }
81819f0f 3599
1b4f59e3 3600 return slab_ksize(page->slab_cache);
81819f0f 3601}
0316bec2
AR
3602
3603size_t ksize(const void *object)
3604{
3605 size_t size = __ksize(object);
3606 /* We assume that ksize callers could use whole allocated area,
3607 so we need unpoison this area. */
3608 kasan_krealloc(object, size);
3609 return size;
3610}
b1aabecd 3611EXPORT_SYMBOL(ksize);
81819f0f
CL
3612
3613void kfree(const void *x)
3614{
81819f0f 3615 struct page *page;
5bb983b0 3616 void *object = (void *)x;
81819f0f 3617
2121db74
PE
3618 trace_kfree(_RET_IP_, x);
3619
2408c550 3620 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3621 return;
3622
b49af68f 3623 page = virt_to_head_page(x);
aadb4bc4 3624 if (unlikely(!PageSlab(page))) {
0937502a 3625 BUG_ON(!PageCompound(page));
d56791b3 3626 kfree_hook(x);
52383431 3627 __free_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3628 return;
3629 }
81084651 3630 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3631}
3632EXPORT_SYMBOL(kfree);
3633
832f37f5
VD
3634#define SHRINK_PROMOTE_MAX 32
3635
2086d26a 3636/*
832f37f5
VD
3637 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3638 * up most to the head of the partial lists. New allocations will then
3639 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3640 *
3641 * The slabs with the least items are placed last. This results in them
3642 * being allocated from last increasing the chance that the last objects
3643 * are freed in them.
2086d26a 3644 */
d6e0b7fa 3645int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
2086d26a
CL
3646{
3647 int node;
3648 int i;
3649 struct kmem_cache_node *n;
3650 struct page *page;
3651 struct page *t;
832f37f5
VD
3652 struct list_head discard;
3653 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3654 unsigned long flags;
ce3712d7 3655 int ret = 0;
2086d26a 3656
d6e0b7fa
VD
3657 if (deactivate) {
3658 /*
3659 * Disable empty slabs caching. Used to avoid pinning offline
3660 * memory cgroups by kmem pages that can be freed.
3661 */
3662 s->cpu_partial = 0;
3663 s->min_partial = 0;
3664
3665 /*
3666 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3667 * so we have to make sure the change is visible.
3668 */
3669 kick_all_cpus_sync();
3670 }
3671
2086d26a 3672 flush_all(s);
fa45dc25 3673 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3674 INIT_LIST_HEAD(&discard);
3675 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3676 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3677
3678 spin_lock_irqsave(&n->list_lock, flags);
3679
3680 /*
832f37f5 3681 * Build lists of slabs to discard or promote.
2086d26a 3682 *
672bba3a
CL
3683 * Note that concurrent frees may occur while we hold the
3684 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3685 */
3686 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3687 int free = page->objects - page->inuse;
3688
3689 /* Do not reread page->inuse */
3690 barrier();
3691
3692 /* We do not keep full slabs on the list */
3693 BUG_ON(free <= 0);
3694
3695 if (free == page->objects) {
3696 list_move(&page->lru, &discard);
69cb8e6b 3697 n->nr_partial--;
832f37f5
VD
3698 } else if (free <= SHRINK_PROMOTE_MAX)
3699 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3700 }
3701
2086d26a 3702 /*
832f37f5
VD
3703 * Promote the slabs filled up most to the head of the
3704 * partial list.
2086d26a 3705 */
832f37f5
VD
3706 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3707 list_splice(promote + i, &n->partial);
2086d26a 3708
2086d26a 3709 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3710
3711 /* Release empty slabs */
832f37f5 3712 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 3713 discard_slab(s, page);
ce3712d7
VD
3714
3715 if (slabs_node(s, node))
3716 ret = 1;
2086d26a
CL
3717 }
3718
ce3712d7 3719 return ret;
2086d26a 3720}
2086d26a 3721
b9049e23
YG
3722static int slab_mem_going_offline_callback(void *arg)
3723{
3724 struct kmem_cache *s;
3725
18004c5d 3726 mutex_lock(&slab_mutex);
b9049e23 3727 list_for_each_entry(s, &slab_caches, list)
d6e0b7fa 3728 __kmem_cache_shrink(s, false);
18004c5d 3729 mutex_unlock(&slab_mutex);
b9049e23
YG
3730
3731 return 0;
3732}
3733
3734static void slab_mem_offline_callback(void *arg)
3735{
3736 struct kmem_cache_node *n;
3737 struct kmem_cache *s;
3738 struct memory_notify *marg = arg;
3739 int offline_node;
3740
b9d5ab25 3741 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3742
3743 /*
3744 * If the node still has available memory. we need kmem_cache_node
3745 * for it yet.
3746 */
3747 if (offline_node < 0)
3748 return;
3749
18004c5d 3750 mutex_lock(&slab_mutex);
b9049e23
YG
3751 list_for_each_entry(s, &slab_caches, list) {
3752 n = get_node(s, offline_node);
3753 if (n) {
3754 /*
3755 * if n->nr_slabs > 0, slabs still exist on the node
3756 * that is going down. We were unable to free them,
c9404c9c 3757 * and offline_pages() function shouldn't call this
b9049e23
YG
3758 * callback. So, we must fail.
3759 */
0f389ec6 3760 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3761
3762 s->node[offline_node] = NULL;
8de66a0c 3763 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3764 }
3765 }
18004c5d 3766 mutex_unlock(&slab_mutex);
b9049e23
YG
3767}
3768
3769static int slab_mem_going_online_callback(void *arg)
3770{
3771 struct kmem_cache_node *n;
3772 struct kmem_cache *s;
3773 struct memory_notify *marg = arg;
b9d5ab25 3774 int nid = marg->status_change_nid_normal;
b9049e23
YG
3775 int ret = 0;
3776
3777 /*
3778 * If the node's memory is already available, then kmem_cache_node is
3779 * already created. Nothing to do.
3780 */
3781 if (nid < 0)
3782 return 0;
3783
3784 /*
0121c619 3785 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3786 * allocate a kmem_cache_node structure in order to bring the node
3787 * online.
3788 */
18004c5d 3789 mutex_lock(&slab_mutex);
b9049e23
YG
3790 list_for_each_entry(s, &slab_caches, list) {
3791 /*
3792 * XXX: kmem_cache_alloc_node will fallback to other nodes
3793 * since memory is not yet available from the node that
3794 * is brought up.
3795 */
8de66a0c 3796 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3797 if (!n) {
3798 ret = -ENOMEM;
3799 goto out;
3800 }
4053497d 3801 init_kmem_cache_node(n);
b9049e23
YG
3802 s->node[nid] = n;
3803 }
3804out:
18004c5d 3805 mutex_unlock(&slab_mutex);
b9049e23
YG
3806 return ret;
3807}
3808
3809static int slab_memory_callback(struct notifier_block *self,
3810 unsigned long action, void *arg)
3811{
3812 int ret = 0;
3813
3814 switch (action) {
3815 case MEM_GOING_ONLINE:
3816 ret = slab_mem_going_online_callback(arg);
3817 break;
3818 case MEM_GOING_OFFLINE:
3819 ret = slab_mem_going_offline_callback(arg);
3820 break;
3821 case MEM_OFFLINE:
3822 case MEM_CANCEL_ONLINE:
3823 slab_mem_offline_callback(arg);
3824 break;
3825 case MEM_ONLINE:
3826 case MEM_CANCEL_OFFLINE:
3827 break;
3828 }
dc19f9db
KH
3829 if (ret)
3830 ret = notifier_from_errno(ret);
3831 else
3832 ret = NOTIFY_OK;
b9049e23
YG
3833 return ret;
3834}
3835
3ac38faa
AM
3836static struct notifier_block slab_memory_callback_nb = {
3837 .notifier_call = slab_memory_callback,
3838 .priority = SLAB_CALLBACK_PRI,
3839};
b9049e23 3840
81819f0f
CL
3841/********************************************************************
3842 * Basic setup of slabs
3843 *******************************************************************/
3844
51df1142
CL
3845/*
3846 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3847 * the page allocator. Allocate them properly then fix up the pointers
3848 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3849 */
3850
dffb4d60 3851static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3852{
3853 int node;
dffb4d60 3854 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 3855 struct kmem_cache_node *n;
51df1142 3856
dffb4d60 3857 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3858
7d557b3c
GC
3859 /*
3860 * This runs very early, and only the boot processor is supposed to be
3861 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3862 * IPIs around.
3863 */
3864 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 3865 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
3866 struct page *p;
3867
fa45dc25
CL
3868 list_for_each_entry(p, &n->partial, lru)
3869 p->slab_cache = s;
51df1142 3870
607bf324 3871#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
3872 list_for_each_entry(p, &n->full, lru)
3873 p->slab_cache = s;
51df1142 3874#endif
51df1142 3875 }
f7ce3190 3876 slab_init_memcg_params(s);
dffb4d60
CL
3877 list_add(&s->list, &slab_caches);
3878 return s;
51df1142
CL
3879}
3880
81819f0f
CL
3881void __init kmem_cache_init(void)
3882{
dffb4d60
CL
3883 static __initdata struct kmem_cache boot_kmem_cache,
3884 boot_kmem_cache_node;
51df1142 3885
fc8d8620
SG
3886 if (debug_guardpage_minorder())
3887 slub_max_order = 0;
3888
dffb4d60
CL
3889 kmem_cache_node = &boot_kmem_cache_node;
3890 kmem_cache = &boot_kmem_cache;
51df1142 3891
dffb4d60
CL
3892 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3893 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3894
3ac38faa 3895 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3896
3897 /* Able to allocate the per node structures */
3898 slab_state = PARTIAL;
3899
dffb4d60
CL
3900 create_boot_cache(kmem_cache, "kmem_cache",
3901 offsetof(struct kmem_cache, node) +
3902 nr_node_ids * sizeof(struct kmem_cache_node *),
3903 SLAB_HWCACHE_ALIGN);
8a13a4cc 3904
dffb4d60 3905 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3906
51df1142
CL
3907 /*
3908 * Allocate kmem_cache_node properly from the kmem_cache slab.
3909 * kmem_cache_node is separately allocated so no need to
3910 * update any list pointers.
3911 */
dffb4d60 3912 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3913
3914 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 3915 setup_kmalloc_cache_index_table();
f97d5f63 3916 create_kmalloc_caches(0);
81819f0f
CL
3917
3918#ifdef CONFIG_SMP
3919 register_cpu_notifier(&slab_notifier);
9dfc6e68 3920#endif
81819f0f 3921
f9f58285 3922 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 3923 cache_line_size(),
81819f0f
CL
3924 slub_min_order, slub_max_order, slub_min_objects,
3925 nr_cpu_ids, nr_node_ids);
3926}
3927
7e85ee0c
PE
3928void __init kmem_cache_init_late(void)
3929{
7e85ee0c
PE
3930}
3931
2633d7a0 3932struct kmem_cache *
a44cb944
VD
3933__kmem_cache_alias(const char *name, size_t size, size_t align,
3934 unsigned long flags, void (*ctor)(void *))
81819f0f 3935{
426589f5 3936 struct kmem_cache *s, *c;
81819f0f 3937
a44cb944 3938 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3939 if (s) {
3940 s->refcount++;
84d0ddd6 3941
81819f0f
CL
3942 /*
3943 * Adjust the object sizes so that we clear
3944 * the complete object on kzalloc.
3945 */
3b0efdfa 3946 s->object_size = max(s->object_size, (int)size);
81819f0f 3947 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3948
426589f5 3949 for_each_memcg_cache(c, s) {
84d0ddd6
VD
3950 c->object_size = s->object_size;
3951 c->inuse = max_t(int, c->inuse,
3952 ALIGN(size, sizeof(void *)));
3953 }
3954
7b8f3b66 3955 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3956 s->refcount--;
cbb79694 3957 s = NULL;
7b8f3b66 3958 }
a0e1d1be 3959 }
6446faa2 3960
cbb79694
CL
3961 return s;
3962}
84c1cf62 3963
8a13a4cc 3964int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3965{
aac3a166
PE
3966 int err;
3967
3968 err = kmem_cache_open(s, flags);
3969 if (err)
3970 return err;
20cea968 3971
45530c44
CL
3972 /* Mutex is not taken during early boot */
3973 if (slab_state <= UP)
3974 return 0;
3975
107dab5c 3976 memcg_propagate_slab_attrs(s);
aac3a166 3977 err = sysfs_slab_add(s);
aac3a166 3978 if (err)
52b4b950 3979 __kmem_cache_release(s);
20cea968 3980
aac3a166 3981 return err;
81819f0f 3982}
81819f0f 3983
81819f0f 3984#ifdef CONFIG_SMP
81819f0f 3985/*
672bba3a
CL
3986 * Use the cpu notifier to insure that the cpu slabs are flushed when
3987 * necessary.
81819f0f 3988 */
0db0628d 3989static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
3990 unsigned long action, void *hcpu)
3991{
3992 long cpu = (long)hcpu;
5b95a4ac
CL
3993 struct kmem_cache *s;
3994 unsigned long flags;
81819f0f
CL
3995
3996 switch (action) {
3997 case CPU_UP_CANCELED:
8bb78442 3998 case CPU_UP_CANCELED_FROZEN:
81819f0f 3999 case CPU_DEAD:
8bb78442 4000 case CPU_DEAD_FROZEN:
18004c5d 4001 mutex_lock(&slab_mutex);
5b95a4ac
CL
4002 list_for_each_entry(s, &slab_caches, list) {
4003 local_irq_save(flags);
4004 __flush_cpu_slab(s, cpu);
4005 local_irq_restore(flags);
4006 }
18004c5d 4007 mutex_unlock(&slab_mutex);
81819f0f
CL
4008 break;
4009 default:
4010 break;
4011 }
4012 return NOTIFY_OK;
4013}
4014
0db0628d 4015static struct notifier_block slab_notifier = {
3adbefee 4016 .notifier_call = slab_cpuup_callback
06428780 4017};
81819f0f
CL
4018
4019#endif
4020
ce71e27c 4021void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4022{
aadb4bc4 4023 struct kmem_cache *s;
94b528d0 4024 void *ret;
aadb4bc4 4025
95a05b42 4026 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4027 return kmalloc_large(size, gfpflags);
4028
2c59dd65 4029 s = kmalloc_slab(size, gfpflags);
81819f0f 4030
2408c550 4031 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4032 return s;
81819f0f 4033
2b847c3c 4034 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4035
25985edc 4036 /* Honor the call site pointer we received. */
ca2b84cb 4037 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4038
4039 return ret;
81819f0f
CL
4040}
4041
5d1f57e4 4042#ifdef CONFIG_NUMA
81819f0f 4043void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4044 int node, unsigned long caller)
81819f0f 4045{
aadb4bc4 4046 struct kmem_cache *s;
94b528d0 4047 void *ret;
aadb4bc4 4048
95a05b42 4049 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4050 ret = kmalloc_large_node(size, gfpflags, node);
4051
4052 trace_kmalloc_node(caller, ret,
4053 size, PAGE_SIZE << get_order(size),
4054 gfpflags, node);
4055
4056 return ret;
4057 }
eada35ef 4058
2c59dd65 4059 s = kmalloc_slab(size, gfpflags);
81819f0f 4060
2408c550 4061 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4062 return s;
81819f0f 4063
2b847c3c 4064 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4065
25985edc 4066 /* Honor the call site pointer we received. */
ca2b84cb 4067 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4068
4069 return ret;
81819f0f 4070}
5d1f57e4 4071#endif
81819f0f 4072
ab4d5ed5 4073#ifdef CONFIG_SYSFS
205ab99d
CL
4074static int count_inuse(struct page *page)
4075{
4076 return page->inuse;
4077}
4078
4079static int count_total(struct page *page)
4080{
4081 return page->objects;
4082}
ab4d5ed5 4083#endif
205ab99d 4084
ab4d5ed5 4085#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4086static int validate_slab(struct kmem_cache *s, struct page *page,
4087 unsigned long *map)
53e15af0
CL
4088{
4089 void *p;
a973e9dd 4090 void *addr = page_address(page);
53e15af0
CL
4091
4092 if (!check_slab(s, page) ||
4093 !on_freelist(s, page, NULL))
4094 return 0;
4095
4096 /* Now we know that a valid freelist exists */
39b26464 4097 bitmap_zero(map, page->objects);
53e15af0 4098
5f80b13a
CL
4099 get_map(s, page, map);
4100 for_each_object(p, s, addr, page->objects) {
4101 if (test_bit(slab_index(p, s, addr), map))
4102 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4103 return 0;
53e15af0
CL
4104 }
4105
224a88be 4106 for_each_object(p, s, addr, page->objects)
7656c72b 4107 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4108 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4109 return 0;
4110 return 1;
4111}
4112
434e245d
CL
4113static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4114 unsigned long *map)
53e15af0 4115{
881db7fb
CL
4116 slab_lock(page);
4117 validate_slab(s, page, map);
4118 slab_unlock(page);
53e15af0
CL
4119}
4120
434e245d
CL
4121static int validate_slab_node(struct kmem_cache *s,
4122 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4123{
4124 unsigned long count = 0;
4125 struct page *page;
4126 unsigned long flags;
4127
4128 spin_lock_irqsave(&n->list_lock, flags);
4129
4130 list_for_each_entry(page, &n->partial, lru) {
434e245d 4131 validate_slab_slab(s, page, map);
53e15af0
CL
4132 count++;
4133 }
4134 if (count != n->nr_partial)
f9f58285
FF
4135 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4136 s->name, count, n->nr_partial);
53e15af0
CL
4137
4138 if (!(s->flags & SLAB_STORE_USER))
4139 goto out;
4140
4141 list_for_each_entry(page, &n->full, lru) {
434e245d 4142 validate_slab_slab(s, page, map);
53e15af0
CL
4143 count++;
4144 }
4145 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4146 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4147 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4148
4149out:
4150 spin_unlock_irqrestore(&n->list_lock, flags);
4151 return count;
4152}
4153
434e245d 4154static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4155{
4156 int node;
4157 unsigned long count = 0;
205ab99d 4158 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 4159 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4160 struct kmem_cache_node *n;
434e245d
CL
4161
4162 if (!map)
4163 return -ENOMEM;
53e15af0
CL
4164
4165 flush_all(s);
fa45dc25 4166 for_each_kmem_cache_node(s, node, n)
434e245d 4167 count += validate_slab_node(s, n, map);
434e245d 4168 kfree(map);
53e15af0
CL
4169 return count;
4170}
88a420e4 4171/*
672bba3a 4172 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4173 * and freed.
4174 */
4175
4176struct location {
4177 unsigned long count;
ce71e27c 4178 unsigned long addr;
45edfa58
CL
4179 long long sum_time;
4180 long min_time;
4181 long max_time;
4182 long min_pid;
4183 long max_pid;
174596a0 4184 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4185 nodemask_t nodes;
88a420e4
CL
4186};
4187
4188struct loc_track {
4189 unsigned long max;
4190 unsigned long count;
4191 struct location *loc;
4192};
4193
4194static void free_loc_track(struct loc_track *t)
4195{
4196 if (t->max)
4197 free_pages((unsigned long)t->loc,
4198 get_order(sizeof(struct location) * t->max));
4199}
4200
68dff6a9 4201static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4202{
4203 struct location *l;
4204 int order;
4205
88a420e4
CL
4206 order = get_order(sizeof(struct location) * max);
4207
68dff6a9 4208 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4209 if (!l)
4210 return 0;
4211
4212 if (t->count) {
4213 memcpy(l, t->loc, sizeof(struct location) * t->count);
4214 free_loc_track(t);
4215 }
4216 t->max = max;
4217 t->loc = l;
4218 return 1;
4219}
4220
4221static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4222 const struct track *track)
88a420e4
CL
4223{
4224 long start, end, pos;
4225 struct location *l;
ce71e27c 4226 unsigned long caddr;
45edfa58 4227 unsigned long age = jiffies - track->when;
88a420e4
CL
4228
4229 start = -1;
4230 end = t->count;
4231
4232 for ( ; ; ) {
4233 pos = start + (end - start + 1) / 2;
4234
4235 /*
4236 * There is nothing at "end". If we end up there
4237 * we need to add something to before end.
4238 */
4239 if (pos == end)
4240 break;
4241
4242 caddr = t->loc[pos].addr;
45edfa58
CL
4243 if (track->addr == caddr) {
4244
4245 l = &t->loc[pos];
4246 l->count++;
4247 if (track->when) {
4248 l->sum_time += age;
4249 if (age < l->min_time)
4250 l->min_time = age;
4251 if (age > l->max_time)
4252 l->max_time = age;
4253
4254 if (track->pid < l->min_pid)
4255 l->min_pid = track->pid;
4256 if (track->pid > l->max_pid)
4257 l->max_pid = track->pid;
4258
174596a0
RR
4259 cpumask_set_cpu(track->cpu,
4260 to_cpumask(l->cpus));
45edfa58
CL
4261 }
4262 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4263 return 1;
4264 }
4265
45edfa58 4266 if (track->addr < caddr)
88a420e4
CL
4267 end = pos;
4268 else
4269 start = pos;
4270 }
4271
4272 /*
672bba3a 4273 * Not found. Insert new tracking element.
88a420e4 4274 */
68dff6a9 4275 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4276 return 0;
4277
4278 l = t->loc + pos;
4279 if (pos < t->count)
4280 memmove(l + 1, l,
4281 (t->count - pos) * sizeof(struct location));
4282 t->count++;
4283 l->count = 1;
45edfa58
CL
4284 l->addr = track->addr;
4285 l->sum_time = age;
4286 l->min_time = age;
4287 l->max_time = age;
4288 l->min_pid = track->pid;
4289 l->max_pid = track->pid;
174596a0
RR
4290 cpumask_clear(to_cpumask(l->cpus));
4291 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4292 nodes_clear(l->nodes);
4293 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4294 return 1;
4295}
4296
4297static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4298 struct page *page, enum track_item alloc,
a5dd5c11 4299 unsigned long *map)
88a420e4 4300{
a973e9dd 4301 void *addr = page_address(page);
88a420e4
CL
4302 void *p;
4303
39b26464 4304 bitmap_zero(map, page->objects);
5f80b13a 4305 get_map(s, page, map);
88a420e4 4306
224a88be 4307 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4308 if (!test_bit(slab_index(p, s, addr), map))
4309 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4310}
4311
4312static int list_locations(struct kmem_cache *s, char *buf,
4313 enum track_item alloc)
4314{
e374d483 4315 int len = 0;
88a420e4 4316 unsigned long i;
68dff6a9 4317 struct loc_track t = { 0, 0, NULL };
88a420e4 4318 int node;
bbd7d57b
ED
4319 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4320 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4321 struct kmem_cache_node *n;
88a420e4 4322
bbd7d57b
ED
4323 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4324 GFP_TEMPORARY)) {
4325 kfree(map);
68dff6a9 4326 return sprintf(buf, "Out of memory\n");
bbd7d57b 4327 }
88a420e4
CL
4328 /* Push back cpu slabs */
4329 flush_all(s);
4330
fa45dc25 4331 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4332 unsigned long flags;
4333 struct page *page;
4334
9e86943b 4335 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4336 continue;
4337
4338 spin_lock_irqsave(&n->list_lock, flags);
4339 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4340 process_slab(&t, s, page, alloc, map);
88a420e4 4341 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4342 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4343 spin_unlock_irqrestore(&n->list_lock, flags);
4344 }
4345
4346 for (i = 0; i < t.count; i++) {
45edfa58 4347 struct location *l = &t.loc[i];
88a420e4 4348
9c246247 4349 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4350 break;
e374d483 4351 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4352
4353 if (l->addr)
62c70bce 4354 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4355 else
e374d483 4356 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4357
4358 if (l->sum_time != l->min_time) {
e374d483 4359 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4360 l->min_time,
4361 (long)div_u64(l->sum_time, l->count),
4362 l->max_time);
45edfa58 4363 } else
e374d483 4364 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4365 l->min_time);
4366
4367 if (l->min_pid != l->max_pid)
e374d483 4368 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4369 l->min_pid, l->max_pid);
4370 else
e374d483 4371 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4372 l->min_pid);
4373
174596a0
RR
4374 if (num_online_cpus() > 1 &&
4375 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4376 len < PAGE_SIZE - 60)
4377 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4378 " cpus=%*pbl",
4379 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4380
62bc62a8 4381 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4382 len < PAGE_SIZE - 60)
4383 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4384 " nodes=%*pbl",
4385 nodemask_pr_args(&l->nodes));
45edfa58 4386
e374d483 4387 len += sprintf(buf + len, "\n");
88a420e4
CL
4388 }
4389
4390 free_loc_track(&t);
bbd7d57b 4391 kfree(map);
88a420e4 4392 if (!t.count)
e374d483
HH
4393 len += sprintf(buf, "No data\n");
4394 return len;
88a420e4 4395}
ab4d5ed5 4396#endif
88a420e4 4397
a5a84755 4398#ifdef SLUB_RESILIENCY_TEST
c07b8183 4399static void __init resiliency_test(void)
a5a84755
CL
4400{
4401 u8 *p;
4402
95a05b42 4403 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4404
f9f58285
FF
4405 pr_err("SLUB resiliency testing\n");
4406 pr_err("-----------------------\n");
4407 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4408
4409 p = kzalloc(16, GFP_KERNEL);
4410 p[16] = 0x12;
f9f58285
FF
4411 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4412 p + 16);
a5a84755
CL
4413
4414 validate_slab_cache(kmalloc_caches[4]);
4415
4416 /* Hmmm... The next two are dangerous */
4417 p = kzalloc(32, GFP_KERNEL);
4418 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4419 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4420 p);
4421 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4422
4423 validate_slab_cache(kmalloc_caches[5]);
4424 p = kzalloc(64, GFP_KERNEL);
4425 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4426 *p = 0x56;
f9f58285
FF
4427 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4428 p);
4429 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4430 validate_slab_cache(kmalloc_caches[6]);
4431
f9f58285 4432 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4433 p = kzalloc(128, GFP_KERNEL);
4434 kfree(p);
4435 *p = 0x78;
f9f58285 4436 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4437 validate_slab_cache(kmalloc_caches[7]);
4438
4439 p = kzalloc(256, GFP_KERNEL);
4440 kfree(p);
4441 p[50] = 0x9a;
f9f58285 4442 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4443 validate_slab_cache(kmalloc_caches[8]);
4444
4445 p = kzalloc(512, GFP_KERNEL);
4446 kfree(p);
4447 p[512] = 0xab;
f9f58285 4448 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4449 validate_slab_cache(kmalloc_caches[9]);
4450}
4451#else
4452#ifdef CONFIG_SYSFS
4453static void resiliency_test(void) {};
4454#endif
4455#endif
4456
ab4d5ed5 4457#ifdef CONFIG_SYSFS
81819f0f 4458enum slab_stat_type {
205ab99d
CL
4459 SL_ALL, /* All slabs */
4460 SL_PARTIAL, /* Only partially allocated slabs */
4461 SL_CPU, /* Only slabs used for cpu caches */
4462 SL_OBJECTS, /* Determine allocated objects not slabs */
4463 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4464};
4465
205ab99d 4466#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4467#define SO_PARTIAL (1 << SL_PARTIAL)
4468#define SO_CPU (1 << SL_CPU)
4469#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4470#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4471
62e5c4b4
CG
4472static ssize_t show_slab_objects(struct kmem_cache *s,
4473 char *buf, unsigned long flags)
81819f0f
CL
4474{
4475 unsigned long total = 0;
81819f0f
CL
4476 int node;
4477 int x;
4478 unsigned long *nodes;
81819f0f 4479
e35e1a97 4480 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4481 if (!nodes)
4482 return -ENOMEM;
81819f0f 4483
205ab99d
CL
4484 if (flags & SO_CPU) {
4485 int cpu;
81819f0f 4486
205ab99d 4487 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4488 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4489 cpu);
ec3ab083 4490 int node;
49e22585 4491 struct page *page;
dfb4f096 4492
4db0c3c2 4493 page = READ_ONCE(c->page);
ec3ab083
CL
4494 if (!page)
4495 continue;
205ab99d 4496
ec3ab083
CL
4497 node = page_to_nid(page);
4498 if (flags & SO_TOTAL)
4499 x = page->objects;
4500 else if (flags & SO_OBJECTS)
4501 x = page->inuse;
4502 else
4503 x = 1;
49e22585 4504
ec3ab083
CL
4505 total += x;
4506 nodes[node] += x;
4507
4db0c3c2 4508 page = READ_ONCE(c->partial);
49e22585 4509 if (page) {
8afb1474
LZ
4510 node = page_to_nid(page);
4511 if (flags & SO_TOTAL)
4512 WARN_ON_ONCE(1);
4513 else if (flags & SO_OBJECTS)
4514 WARN_ON_ONCE(1);
4515 else
4516 x = page->pages;
bc6697d8
ED
4517 total += x;
4518 nodes[node] += x;
49e22585 4519 }
81819f0f
CL
4520 }
4521 }
4522
bfc8c901 4523 get_online_mems();
ab4d5ed5 4524#ifdef CONFIG_SLUB_DEBUG
205ab99d 4525 if (flags & SO_ALL) {
fa45dc25
CL
4526 struct kmem_cache_node *n;
4527
4528 for_each_kmem_cache_node(s, node, n) {
205ab99d 4529
d0e0ac97
CG
4530 if (flags & SO_TOTAL)
4531 x = atomic_long_read(&n->total_objects);
4532 else if (flags & SO_OBJECTS)
4533 x = atomic_long_read(&n->total_objects) -
4534 count_partial(n, count_free);
81819f0f 4535 else
205ab99d 4536 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4537 total += x;
4538 nodes[node] += x;
4539 }
4540
ab4d5ed5
CL
4541 } else
4542#endif
4543 if (flags & SO_PARTIAL) {
fa45dc25 4544 struct kmem_cache_node *n;
81819f0f 4545
fa45dc25 4546 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4547 if (flags & SO_TOTAL)
4548 x = count_partial(n, count_total);
4549 else if (flags & SO_OBJECTS)
4550 x = count_partial(n, count_inuse);
81819f0f 4551 else
205ab99d 4552 x = n->nr_partial;
81819f0f
CL
4553 total += x;
4554 nodes[node] += x;
4555 }
4556 }
81819f0f
CL
4557 x = sprintf(buf, "%lu", total);
4558#ifdef CONFIG_NUMA
fa45dc25 4559 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4560 if (nodes[node])
4561 x += sprintf(buf + x, " N%d=%lu",
4562 node, nodes[node]);
4563#endif
bfc8c901 4564 put_online_mems();
81819f0f
CL
4565 kfree(nodes);
4566 return x + sprintf(buf + x, "\n");
4567}
4568
ab4d5ed5 4569#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4570static int any_slab_objects(struct kmem_cache *s)
4571{
4572 int node;
fa45dc25 4573 struct kmem_cache_node *n;
81819f0f 4574
fa45dc25 4575 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4576 if (atomic_long_read(&n->total_objects))
81819f0f 4577 return 1;
fa45dc25 4578
81819f0f
CL
4579 return 0;
4580}
ab4d5ed5 4581#endif
81819f0f
CL
4582
4583#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4584#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4585
4586struct slab_attribute {
4587 struct attribute attr;
4588 ssize_t (*show)(struct kmem_cache *s, char *buf);
4589 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4590};
4591
4592#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4593 static struct slab_attribute _name##_attr = \
4594 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4595
4596#define SLAB_ATTR(_name) \
4597 static struct slab_attribute _name##_attr = \
ab067e99 4598 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4599
81819f0f
CL
4600static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4601{
4602 return sprintf(buf, "%d\n", s->size);
4603}
4604SLAB_ATTR_RO(slab_size);
4605
4606static ssize_t align_show(struct kmem_cache *s, char *buf)
4607{
4608 return sprintf(buf, "%d\n", s->align);
4609}
4610SLAB_ATTR_RO(align);
4611
4612static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4613{
3b0efdfa 4614 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4615}
4616SLAB_ATTR_RO(object_size);
4617
4618static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4619{
834f3d11 4620 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4621}
4622SLAB_ATTR_RO(objs_per_slab);
4623
06b285dc
CL
4624static ssize_t order_store(struct kmem_cache *s,
4625 const char *buf, size_t length)
4626{
0121c619
CL
4627 unsigned long order;
4628 int err;
4629
3dbb95f7 4630 err = kstrtoul(buf, 10, &order);
0121c619
CL
4631 if (err)
4632 return err;
06b285dc
CL
4633
4634 if (order > slub_max_order || order < slub_min_order)
4635 return -EINVAL;
4636
4637 calculate_sizes(s, order);
4638 return length;
4639}
4640
81819f0f
CL
4641static ssize_t order_show(struct kmem_cache *s, char *buf)
4642{
834f3d11 4643 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4644}
06b285dc 4645SLAB_ATTR(order);
81819f0f 4646
73d342b1
DR
4647static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4648{
4649 return sprintf(buf, "%lu\n", s->min_partial);
4650}
4651
4652static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4653 size_t length)
4654{
4655 unsigned long min;
4656 int err;
4657
3dbb95f7 4658 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4659 if (err)
4660 return err;
4661
c0bdb232 4662 set_min_partial(s, min);
73d342b1
DR
4663 return length;
4664}
4665SLAB_ATTR(min_partial);
4666
49e22585
CL
4667static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4668{
4669 return sprintf(buf, "%u\n", s->cpu_partial);
4670}
4671
4672static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4673 size_t length)
4674{
4675 unsigned long objects;
4676 int err;
4677
3dbb95f7 4678 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4679 if (err)
4680 return err;
345c905d 4681 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4682 return -EINVAL;
49e22585
CL
4683
4684 s->cpu_partial = objects;
4685 flush_all(s);
4686 return length;
4687}
4688SLAB_ATTR(cpu_partial);
4689
81819f0f
CL
4690static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4691{
62c70bce
JP
4692 if (!s->ctor)
4693 return 0;
4694 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4695}
4696SLAB_ATTR_RO(ctor);
4697
81819f0f
CL
4698static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4699{
4307c14f 4700 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4701}
4702SLAB_ATTR_RO(aliases);
4703
81819f0f
CL
4704static ssize_t partial_show(struct kmem_cache *s, char *buf)
4705{
d9acf4b7 4706 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4707}
4708SLAB_ATTR_RO(partial);
4709
4710static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4711{
d9acf4b7 4712 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4713}
4714SLAB_ATTR_RO(cpu_slabs);
4715
4716static ssize_t objects_show(struct kmem_cache *s, char *buf)
4717{
205ab99d 4718 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4719}
4720SLAB_ATTR_RO(objects);
4721
205ab99d
CL
4722static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4723{
4724 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4725}
4726SLAB_ATTR_RO(objects_partial);
4727
49e22585
CL
4728static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4729{
4730 int objects = 0;
4731 int pages = 0;
4732 int cpu;
4733 int len;
4734
4735 for_each_online_cpu(cpu) {
4736 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4737
4738 if (page) {
4739 pages += page->pages;
4740 objects += page->pobjects;
4741 }
4742 }
4743
4744 len = sprintf(buf, "%d(%d)", objects, pages);
4745
4746#ifdef CONFIG_SMP
4747 for_each_online_cpu(cpu) {
4748 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4749
4750 if (page && len < PAGE_SIZE - 20)
4751 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4752 page->pobjects, page->pages);
4753 }
4754#endif
4755 return len + sprintf(buf + len, "\n");
4756}
4757SLAB_ATTR_RO(slabs_cpu_partial);
4758
a5a84755
CL
4759static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4760{
4761 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4762}
4763
4764static ssize_t reclaim_account_store(struct kmem_cache *s,
4765 const char *buf, size_t length)
4766{
4767 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4768 if (buf[0] == '1')
4769 s->flags |= SLAB_RECLAIM_ACCOUNT;
4770 return length;
4771}
4772SLAB_ATTR(reclaim_account);
4773
4774static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4775{
4776 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4777}
4778SLAB_ATTR_RO(hwcache_align);
4779
4780#ifdef CONFIG_ZONE_DMA
4781static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4782{
4783 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4784}
4785SLAB_ATTR_RO(cache_dma);
4786#endif
4787
4788static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4789{
4790 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4791}
4792SLAB_ATTR_RO(destroy_by_rcu);
4793
ab9a0f19
LJ
4794static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4795{
4796 return sprintf(buf, "%d\n", s->reserved);
4797}
4798SLAB_ATTR_RO(reserved);
4799
ab4d5ed5 4800#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4801static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4802{
4803 return show_slab_objects(s, buf, SO_ALL);
4804}
4805SLAB_ATTR_RO(slabs);
4806
205ab99d
CL
4807static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4808{
4809 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4810}
4811SLAB_ATTR_RO(total_objects);
4812
81819f0f
CL
4813static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4814{
4815 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4816}
4817
4818static ssize_t sanity_checks_store(struct kmem_cache *s,
4819 const char *buf, size_t length)
4820{
4821 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4822 if (buf[0] == '1') {
4823 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4824 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4825 }
81819f0f
CL
4826 return length;
4827}
4828SLAB_ATTR(sanity_checks);
4829
4830static ssize_t trace_show(struct kmem_cache *s, char *buf)
4831{
4832 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4833}
4834
4835static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4836 size_t length)
4837{
c9e16131
CL
4838 /*
4839 * Tracing a merged cache is going to give confusing results
4840 * as well as cause other issues like converting a mergeable
4841 * cache into an umergeable one.
4842 */
4843 if (s->refcount > 1)
4844 return -EINVAL;
4845
81819f0f 4846 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4847 if (buf[0] == '1') {
4848 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4849 s->flags |= SLAB_TRACE;
b789ef51 4850 }
81819f0f
CL
4851 return length;
4852}
4853SLAB_ATTR(trace);
4854
81819f0f
CL
4855static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4856{
4857 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4858}
4859
4860static ssize_t red_zone_store(struct kmem_cache *s,
4861 const char *buf, size_t length)
4862{
4863 if (any_slab_objects(s))
4864 return -EBUSY;
4865
4866 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4867 if (buf[0] == '1') {
4868 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4869 s->flags |= SLAB_RED_ZONE;
b789ef51 4870 }
06b285dc 4871 calculate_sizes(s, -1);
81819f0f
CL
4872 return length;
4873}
4874SLAB_ATTR(red_zone);
4875
4876static ssize_t poison_show(struct kmem_cache *s, char *buf)
4877{
4878 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4879}
4880
4881static ssize_t poison_store(struct kmem_cache *s,
4882 const char *buf, size_t length)
4883{
4884 if (any_slab_objects(s))
4885 return -EBUSY;
4886
4887 s->flags &= ~SLAB_POISON;
b789ef51
CL
4888 if (buf[0] == '1') {
4889 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4890 s->flags |= SLAB_POISON;
b789ef51 4891 }
06b285dc 4892 calculate_sizes(s, -1);
81819f0f
CL
4893 return length;
4894}
4895SLAB_ATTR(poison);
4896
4897static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4898{
4899 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4900}
4901
4902static ssize_t store_user_store(struct kmem_cache *s,
4903 const char *buf, size_t length)
4904{
4905 if (any_slab_objects(s))
4906 return -EBUSY;
4907
4908 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4909 if (buf[0] == '1') {
4910 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4911 s->flags |= SLAB_STORE_USER;
b789ef51 4912 }
06b285dc 4913 calculate_sizes(s, -1);
81819f0f
CL
4914 return length;
4915}
4916SLAB_ATTR(store_user);
4917
53e15af0
CL
4918static ssize_t validate_show(struct kmem_cache *s, char *buf)
4919{
4920 return 0;
4921}
4922
4923static ssize_t validate_store(struct kmem_cache *s,
4924 const char *buf, size_t length)
4925{
434e245d
CL
4926 int ret = -EINVAL;
4927
4928 if (buf[0] == '1') {
4929 ret = validate_slab_cache(s);
4930 if (ret >= 0)
4931 ret = length;
4932 }
4933 return ret;
53e15af0
CL
4934}
4935SLAB_ATTR(validate);
a5a84755
CL
4936
4937static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4938{
4939 if (!(s->flags & SLAB_STORE_USER))
4940 return -ENOSYS;
4941 return list_locations(s, buf, TRACK_ALLOC);
4942}
4943SLAB_ATTR_RO(alloc_calls);
4944
4945static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4946{
4947 if (!(s->flags & SLAB_STORE_USER))
4948 return -ENOSYS;
4949 return list_locations(s, buf, TRACK_FREE);
4950}
4951SLAB_ATTR_RO(free_calls);
4952#endif /* CONFIG_SLUB_DEBUG */
4953
4954#ifdef CONFIG_FAILSLAB
4955static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4956{
4957 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4958}
4959
4960static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4961 size_t length)
4962{
c9e16131
CL
4963 if (s->refcount > 1)
4964 return -EINVAL;
4965
a5a84755
CL
4966 s->flags &= ~SLAB_FAILSLAB;
4967 if (buf[0] == '1')
4968 s->flags |= SLAB_FAILSLAB;
4969 return length;
4970}
4971SLAB_ATTR(failslab);
ab4d5ed5 4972#endif
53e15af0 4973
2086d26a
CL
4974static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4975{
4976 return 0;
4977}
4978
4979static ssize_t shrink_store(struct kmem_cache *s,
4980 const char *buf, size_t length)
4981{
832f37f5
VD
4982 if (buf[0] == '1')
4983 kmem_cache_shrink(s);
4984 else
2086d26a
CL
4985 return -EINVAL;
4986 return length;
4987}
4988SLAB_ATTR(shrink);
4989
81819f0f 4990#ifdef CONFIG_NUMA
9824601e 4991static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4992{
9824601e 4993 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4994}
4995
9824601e 4996static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4997 const char *buf, size_t length)
4998{
0121c619
CL
4999 unsigned long ratio;
5000 int err;
5001
3dbb95f7 5002 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
5003 if (err)
5004 return err;
5005
e2cb96b7 5006 if (ratio <= 100)
0121c619 5007 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5008
81819f0f
CL
5009 return length;
5010}
9824601e 5011SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5012#endif
5013
8ff12cfc 5014#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5015static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5016{
5017 unsigned long sum = 0;
5018 int cpu;
5019 int len;
5020 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5021
5022 if (!data)
5023 return -ENOMEM;
5024
5025 for_each_online_cpu(cpu) {
9dfc6e68 5026 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5027
5028 data[cpu] = x;
5029 sum += x;
5030 }
5031
5032 len = sprintf(buf, "%lu", sum);
5033
50ef37b9 5034#ifdef CONFIG_SMP
8ff12cfc
CL
5035 for_each_online_cpu(cpu) {
5036 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5037 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5038 }
50ef37b9 5039#endif
8ff12cfc
CL
5040 kfree(data);
5041 return len + sprintf(buf + len, "\n");
5042}
5043
78eb00cc
DR
5044static void clear_stat(struct kmem_cache *s, enum stat_item si)
5045{
5046 int cpu;
5047
5048 for_each_online_cpu(cpu)
9dfc6e68 5049 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5050}
5051
8ff12cfc
CL
5052#define STAT_ATTR(si, text) \
5053static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5054{ \
5055 return show_stat(s, buf, si); \
5056} \
78eb00cc
DR
5057static ssize_t text##_store(struct kmem_cache *s, \
5058 const char *buf, size_t length) \
5059{ \
5060 if (buf[0] != '0') \
5061 return -EINVAL; \
5062 clear_stat(s, si); \
5063 return length; \
5064} \
5065SLAB_ATTR(text); \
8ff12cfc
CL
5066
5067STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5068STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5069STAT_ATTR(FREE_FASTPATH, free_fastpath);
5070STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5071STAT_ATTR(FREE_FROZEN, free_frozen);
5072STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5073STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5074STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5075STAT_ATTR(ALLOC_SLAB, alloc_slab);
5076STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5077STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5078STAT_ATTR(FREE_SLAB, free_slab);
5079STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5080STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5081STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5082STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5083STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5084STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5085STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5086STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5087STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5088STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5089STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5090STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5091STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5092STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5093#endif
5094
06428780 5095static struct attribute *slab_attrs[] = {
81819f0f
CL
5096 &slab_size_attr.attr,
5097 &object_size_attr.attr,
5098 &objs_per_slab_attr.attr,
5099 &order_attr.attr,
73d342b1 5100 &min_partial_attr.attr,
49e22585 5101 &cpu_partial_attr.attr,
81819f0f 5102 &objects_attr.attr,
205ab99d 5103 &objects_partial_attr.attr,
81819f0f
CL
5104 &partial_attr.attr,
5105 &cpu_slabs_attr.attr,
5106 &ctor_attr.attr,
81819f0f
CL
5107 &aliases_attr.attr,
5108 &align_attr.attr,
81819f0f
CL
5109 &hwcache_align_attr.attr,
5110 &reclaim_account_attr.attr,
5111 &destroy_by_rcu_attr.attr,
a5a84755 5112 &shrink_attr.attr,
ab9a0f19 5113 &reserved_attr.attr,
49e22585 5114 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5115#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5116 &total_objects_attr.attr,
5117 &slabs_attr.attr,
5118 &sanity_checks_attr.attr,
5119 &trace_attr.attr,
81819f0f
CL
5120 &red_zone_attr.attr,
5121 &poison_attr.attr,
5122 &store_user_attr.attr,
53e15af0 5123 &validate_attr.attr,
88a420e4
CL
5124 &alloc_calls_attr.attr,
5125 &free_calls_attr.attr,
ab4d5ed5 5126#endif
81819f0f
CL
5127#ifdef CONFIG_ZONE_DMA
5128 &cache_dma_attr.attr,
5129#endif
5130#ifdef CONFIG_NUMA
9824601e 5131 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5132#endif
5133#ifdef CONFIG_SLUB_STATS
5134 &alloc_fastpath_attr.attr,
5135 &alloc_slowpath_attr.attr,
5136 &free_fastpath_attr.attr,
5137 &free_slowpath_attr.attr,
5138 &free_frozen_attr.attr,
5139 &free_add_partial_attr.attr,
5140 &free_remove_partial_attr.attr,
5141 &alloc_from_partial_attr.attr,
5142 &alloc_slab_attr.attr,
5143 &alloc_refill_attr.attr,
e36a2652 5144 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5145 &free_slab_attr.attr,
5146 &cpuslab_flush_attr.attr,
5147 &deactivate_full_attr.attr,
5148 &deactivate_empty_attr.attr,
5149 &deactivate_to_head_attr.attr,
5150 &deactivate_to_tail_attr.attr,
5151 &deactivate_remote_frees_attr.attr,
03e404af 5152 &deactivate_bypass_attr.attr,
65c3376a 5153 &order_fallback_attr.attr,
b789ef51
CL
5154 &cmpxchg_double_fail_attr.attr,
5155 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5156 &cpu_partial_alloc_attr.attr,
5157 &cpu_partial_free_attr.attr,
8028dcea
AS
5158 &cpu_partial_node_attr.attr,
5159 &cpu_partial_drain_attr.attr,
81819f0f 5160#endif
4c13dd3b
DM
5161#ifdef CONFIG_FAILSLAB
5162 &failslab_attr.attr,
5163#endif
5164
81819f0f
CL
5165 NULL
5166};
5167
5168static struct attribute_group slab_attr_group = {
5169 .attrs = slab_attrs,
5170};
5171
5172static ssize_t slab_attr_show(struct kobject *kobj,
5173 struct attribute *attr,
5174 char *buf)
5175{
5176 struct slab_attribute *attribute;
5177 struct kmem_cache *s;
5178 int err;
5179
5180 attribute = to_slab_attr(attr);
5181 s = to_slab(kobj);
5182
5183 if (!attribute->show)
5184 return -EIO;
5185
5186 err = attribute->show(s, buf);
5187
5188 return err;
5189}
5190
5191static ssize_t slab_attr_store(struct kobject *kobj,
5192 struct attribute *attr,
5193 const char *buf, size_t len)
5194{
5195 struct slab_attribute *attribute;
5196 struct kmem_cache *s;
5197 int err;
5198
5199 attribute = to_slab_attr(attr);
5200 s = to_slab(kobj);
5201
5202 if (!attribute->store)
5203 return -EIO;
5204
5205 err = attribute->store(s, buf, len);
127424c8 5206#ifdef CONFIG_MEMCG
107dab5c 5207 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5208 struct kmem_cache *c;
81819f0f 5209
107dab5c
GC
5210 mutex_lock(&slab_mutex);
5211 if (s->max_attr_size < len)
5212 s->max_attr_size = len;
5213
ebe945c2
GC
5214 /*
5215 * This is a best effort propagation, so this function's return
5216 * value will be determined by the parent cache only. This is
5217 * basically because not all attributes will have a well
5218 * defined semantics for rollbacks - most of the actions will
5219 * have permanent effects.
5220 *
5221 * Returning the error value of any of the children that fail
5222 * is not 100 % defined, in the sense that users seeing the
5223 * error code won't be able to know anything about the state of
5224 * the cache.
5225 *
5226 * Only returning the error code for the parent cache at least
5227 * has well defined semantics. The cache being written to
5228 * directly either failed or succeeded, in which case we loop
5229 * through the descendants with best-effort propagation.
5230 */
426589f5
VD
5231 for_each_memcg_cache(c, s)
5232 attribute->store(c, buf, len);
107dab5c
GC
5233 mutex_unlock(&slab_mutex);
5234 }
5235#endif
81819f0f
CL
5236 return err;
5237}
5238
107dab5c
GC
5239static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5240{
127424c8 5241#ifdef CONFIG_MEMCG
107dab5c
GC
5242 int i;
5243 char *buffer = NULL;
93030d83 5244 struct kmem_cache *root_cache;
107dab5c 5245
93030d83 5246 if (is_root_cache(s))
107dab5c
GC
5247 return;
5248
f7ce3190 5249 root_cache = s->memcg_params.root_cache;
93030d83 5250
107dab5c
GC
5251 /*
5252 * This mean this cache had no attribute written. Therefore, no point
5253 * in copying default values around
5254 */
93030d83 5255 if (!root_cache->max_attr_size)
107dab5c
GC
5256 return;
5257
5258 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5259 char mbuf[64];
5260 char *buf;
5261 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5262
5263 if (!attr || !attr->store || !attr->show)
5264 continue;
5265
5266 /*
5267 * It is really bad that we have to allocate here, so we will
5268 * do it only as a fallback. If we actually allocate, though,
5269 * we can just use the allocated buffer until the end.
5270 *
5271 * Most of the slub attributes will tend to be very small in
5272 * size, but sysfs allows buffers up to a page, so they can
5273 * theoretically happen.
5274 */
5275 if (buffer)
5276 buf = buffer;
93030d83 5277 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5278 buf = mbuf;
5279 else {
5280 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5281 if (WARN_ON(!buffer))
5282 continue;
5283 buf = buffer;
5284 }
5285
93030d83 5286 attr->show(root_cache, buf);
107dab5c
GC
5287 attr->store(s, buf, strlen(buf));
5288 }
5289
5290 if (buffer)
5291 free_page((unsigned long)buffer);
5292#endif
5293}
5294
41a21285
CL
5295static void kmem_cache_release(struct kobject *k)
5296{
5297 slab_kmem_cache_release(to_slab(k));
5298}
5299
52cf25d0 5300static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5301 .show = slab_attr_show,
5302 .store = slab_attr_store,
5303};
5304
5305static struct kobj_type slab_ktype = {
5306 .sysfs_ops = &slab_sysfs_ops,
41a21285 5307 .release = kmem_cache_release,
81819f0f
CL
5308};
5309
5310static int uevent_filter(struct kset *kset, struct kobject *kobj)
5311{
5312 struct kobj_type *ktype = get_ktype(kobj);
5313
5314 if (ktype == &slab_ktype)
5315 return 1;
5316 return 0;
5317}
5318
9cd43611 5319static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5320 .filter = uevent_filter,
5321};
5322
27c3a314 5323static struct kset *slab_kset;
81819f0f 5324
9a41707b
VD
5325static inline struct kset *cache_kset(struct kmem_cache *s)
5326{
127424c8 5327#ifdef CONFIG_MEMCG
9a41707b 5328 if (!is_root_cache(s))
f7ce3190 5329 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5330#endif
5331 return slab_kset;
5332}
5333
81819f0f
CL
5334#define ID_STR_LENGTH 64
5335
5336/* Create a unique string id for a slab cache:
6446faa2
CL
5337 *
5338 * Format :[flags-]size
81819f0f
CL
5339 */
5340static char *create_unique_id(struct kmem_cache *s)
5341{
5342 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5343 char *p = name;
5344
5345 BUG_ON(!name);
5346
5347 *p++ = ':';
5348 /*
5349 * First flags affecting slabcache operations. We will only
5350 * get here for aliasable slabs so we do not need to support
5351 * too many flags. The flags here must cover all flags that
5352 * are matched during merging to guarantee that the id is
5353 * unique.
5354 */
5355 if (s->flags & SLAB_CACHE_DMA)
5356 *p++ = 'd';
5357 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5358 *p++ = 'a';
5359 if (s->flags & SLAB_DEBUG_FREE)
5360 *p++ = 'F';
5a896d9e
VN
5361 if (!(s->flags & SLAB_NOTRACK))
5362 *p++ = 't';
230e9fc2
VD
5363 if (s->flags & SLAB_ACCOUNT)
5364 *p++ = 'A';
81819f0f
CL
5365 if (p != name + 1)
5366 *p++ = '-';
5367 p += sprintf(p, "%07d", s->size);
2633d7a0 5368
81819f0f
CL
5369 BUG_ON(p > name + ID_STR_LENGTH - 1);
5370 return name;
5371}
5372
5373static int sysfs_slab_add(struct kmem_cache *s)
5374{
5375 int err;
5376 const char *name;
45530c44 5377 int unmergeable = slab_unmergeable(s);
81819f0f 5378
81819f0f
CL
5379 if (unmergeable) {
5380 /*
5381 * Slabcache can never be merged so we can use the name proper.
5382 * This is typically the case for debug situations. In that
5383 * case we can catch duplicate names easily.
5384 */
27c3a314 5385 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5386 name = s->name;
5387 } else {
5388 /*
5389 * Create a unique name for the slab as a target
5390 * for the symlinks.
5391 */
5392 name = create_unique_id(s);
5393 }
5394
9a41707b 5395 s->kobj.kset = cache_kset(s);
26e4f205 5396 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5397 if (err)
80da026a 5398 goto out;
81819f0f
CL
5399
5400 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5401 if (err)
5402 goto out_del_kobj;
9a41707b 5403
127424c8 5404#ifdef CONFIG_MEMCG
9a41707b
VD
5405 if (is_root_cache(s)) {
5406 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5407 if (!s->memcg_kset) {
54b6a731
DJ
5408 err = -ENOMEM;
5409 goto out_del_kobj;
9a41707b
VD
5410 }
5411 }
5412#endif
5413
81819f0f
CL
5414 kobject_uevent(&s->kobj, KOBJ_ADD);
5415 if (!unmergeable) {
5416 /* Setup first alias */
5417 sysfs_slab_alias(s, s->name);
81819f0f 5418 }
54b6a731
DJ
5419out:
5420 if (!unmergeable)
5421 kfree(name);
5422 return err;
5423out_del_kobj:
5424 kobject_del(&s->kobj);
54b6a731 5425 goto out;
81819f0f
CL
5426}
5427
41a21285 5428void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5429{
97d06609 5430 if (slab_state < FULL)
2bce6485
CL
5431 /*
5432 * Sysfs has not been setup yet so no need to remove the
5433 * cache from sysfs.
5434 */
5435 return;
5436
127424c8 5437#ifdef CONFIG_MEMCG
9a41707b
VD
5438 kset_unregister(s->memcg_kset);
5439#endif
81819f0f
CL
5440 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5441 kobject_del(&s->kobj);
151c602f 5442 kobject_put(&s->kobj);
81819f0f
CL
5443}
5444
5445/*
5446 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5447 * available lest we lose that information.
81819f0f
CL
5448 */
5449struct saved_alias {
5450 struct kmem_cache *s;
5451 const char *name;
5452 struct saved_alias *next;
5453};
5454
5af328a5 5455static struct saved_alias *alias_list;
81819f0f
CL
5456
5457static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5458{
5459 struct saved_alias *al;
5460
97d06609 5461 if (slab_state == FULL) {
81819f0f
CL
5462 /*
5463 * If we have a leftover link then remove it.
5464 */
27c3a314
GKH
5465 sysfs_remove_link(&slab_kset->kobj, name);
5466 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5467 }
5468
5469 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5470 if (!al)
5471 return -ENOMEM;
5472
5473 al->s = s;
5474 al->name = name;
5475 al->next = alias_list;
5476 alias_list = al;
5477 return 0;
5478}
5479
5480static int __init slab_sysfs_init(void)
5481{
5b95a4ac 5482 struct kmem_cache *s;
81819f0f
CL
5483 int err;
5484
18004c5d 5485 mutex_lock(&slab_mutex);
2bce6485 5486
0ff21e46 5487 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5488 if (!slab_kset) {
18004c5d 5489 mutex_unlock(&slab_mutex);
f9f58285 5490 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5491 return -ENOSYS;
5492 }
5493
97d06609 5494 slab_state = FULL;
26a7bd03 5495
5b95a4ac 5496 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5497 err = sysfs_slab_add(s);
5d540fb7 5498 if (err)
f9f58285
FF
5499 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5500 s->name);
26a7bd03 5501 }
81819f0f
CL
5502
5503 while (alias_list) {
5504 struct saved_alias *al = alias_list;
5505
5506 alias_list = alias_list->next;
5507 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5508 if (err)
f9f58285
FF
5509 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5510 al->name);
81819f0f
CL
5511 kfree(al);
5512 }
5513
18004c5d 5514 mutex_unlock(&slab_mutex);
81819f0f
CL
5515 resiliency_test();
5516 return 0;
5517}
5518
5519__initcall(slab_sysfs_init);
ab4d5ed5 5520#endif /* CONFIG_SYSFS */
57ed3eda
PE
5521
5522/*
5523 * The /proc/slabinfo ABI
5524 */
158a9624 5525#ifdef CONFIG_SLABINFO
0d7561c6 5526void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5527{
57ed3eda 5528 unsigned long nr_slabs = 0;
205ab99d
CL
5529 unsigned long nr_objs = 0;
5530 unsigned long nr_free = 0;
57ed3eda 5531 int node;
fa45dc25 5532 struct kmem_cache_node *n;
57ed3eda 5533
fa45dc25 5534 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5535 nr_slabs += node_nr_slabs(n);
5536 nr_objs += node_nr_objs(n);
205ab99d 5537 nr_free += count_partial(n, count_free);
57ed3eda
PE
5538 }
5539
0d7561c6
GC
5540 sinfo->active_objs = nr_objs - nr_free;
5541 sinfo->num_objs = nr_objs;
5542 sinfo->active_slabs = nr_slabs;
5543 sinfo->num_slabs = nr_slabs;
5544 sinfo->objects_per_slab = oo_objects(s->oo);
5545 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5546}
5547
0d7561c6 5548void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5549{
7b3c3a50
AD
5550}
5551
b7454ad3
GC
5552ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5553 size_t count, loff_t *ppos)
7b3c3a50 5554{
b7454ad3 5555 return -EIO;
7b3c3a50 5556}
158a9624 5557#endif /* CONFIG_SLABINFO */