]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/slub.c
Merge tag 'linux-kselftest-kunit-fixes-5.14-rc2' of git://git.kernel.org/pub/scm...
[mirror_ubuntu-jammy-kernel.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
dc84207d 6 * The allocator synchronizes using per slab locks or atomic operations
881db7fb 7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
1b3865d0 18#include <linux/swab.h>
81819f0f
CL
19#include <linux/bitops.h>
20#include <linux/slab.h>
97d06609 21#include "slab.h"
7b3c3a50 22#include <linux/proc_fs.h>
81819f0f 23#include <linux/seq_file.h>
a79316c6 24#include <linux/kasan.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
78869146 29#include <linux/stackdepot.h>
3ac7fe5a 30#include <linux/debugobjects.h>
81819f0f 31#include <linux/kallsyms.h>
b89fb5ef 32#include <linux/kfence.h>
b9049e23 33#include <linux/memory.h>
f8bd2258 34#include <linux/math64.h>
773ff60e 35#include <linux/fault-inject.h>
bfa71457 36#include <linux/stacktrace.h>
4de900b4 37#include <linux/prefetch.h>
2633d7a0 38#include <linux/memcontrol.h>
2482ddec 39#include <linux/random.h>
1f9f78b1 40#include <kunit/test.h>
81819f0f 41
64dd6849 42#include <linux/debugfs.h>
4a92379b
RK
43#include <trace/events/kmem.h>
44
072bb0aa
MG
45#include "internal.h"
46
81819f0f
CL
47/*
48 * Lock order:
18004c5d 49 * 1. slab_mutex (Global Mutex)
881db7fb
CL
50 * 2. node->list_lock
51 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 52 *
18004c5d 53 * slab_mutex
881db7fb 54 *
18004c5d 55 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
56 * and to synchronize major metadata changes to slab cache structures.
57 *
58 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 59 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 60 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
61 * B. page->inuse -> Number of objects in use
62 * C. page->objects -> Number of objects in page
63 * D. page->frozen -> frozen state
881db7fb
CL
64 *
65 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
66 * on any list except per cpu partial list. The processor that froze the
67 * slab is the one who can perform list operations on the page. Other
68 * processors may put objects onto the freelist but the processor that
69 * froze the slab is the only one that can retrieve the objects from the
70 * page's freelist.
81819f0f
CL
71 *
72 * The list_lock protects the partial and full list on each node and
73 * the partial slab counter. If taken then no new slabs may be added or
74 * removed from the lists nor make the number of partial slabs be modified.
75 * (Note that the total number of slabs is an atomic value that may be
76 * modified without taking the list lock).
77 *
78 * The list_lock is a centralized lock and thus we avoid taking it as
79 * much as possible. As long as SLUB does not have to handle partial
80 * slabs, operations can continue without any centralized lock. F.e.
81 * allocating a long series of objects that fill up slabs does not require
82 * the list lock.
81819f0f
CL
83 * Interrupts are disabled during allocation and deallocation in order to
84 * make the slab allocator safe to use in the context of an irq. In addition
85 * interrupts are disabled to ensure that the processor does not change
86 * while handling per_cpu slabs, due to kernel preemption.
87 *
88 * SLUB assigns one slab for allocation to each processor.
89 * Allocations only occur from these slabs called cpu slabs.
90 *
672bba3a
CL
91 * Slabs with free elements are kept on a partial list and during regular
92 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 93 * freed then the slab will show up again on the partial lists.
672bba3a
CL
94 * We track full slabs for debugging purposes though because otherwise we
95 * cannot scan all objects.
81819f0f
CL
96 *
97 * Slabs are freed when they become empty. Teardown and setup is
98 * minimal so we rely on the page allocators per cpu caches for
99 * fast frees and allocs.
100 *
aed68148 101 * page->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
102 * This means that the slab is dedicated to a purpose
103 * such as satisfying allocations for a specific
104 * processor. Objects may be freed in the slab while
105 * it is frozen but slab_free will then skip the usual
106 * list operations. It is up to the processor holding
107 * the slab to integrate the slab into the slab lists
108 * when the slab is no longer needed.
109 *
110 * One use of this flag is to mark slabs that are
111 * used for allocations. Then such a slab becomes a cpu
112 * slab. The cpu slab may be equipped with an additional
dfb4f096 113 * freelist that allows lockless access to
894b8788
CL
114 * free objects in addition to the regular freelist
115 * that requires the slab lock.
81819f0f 116 *
aed68148 117 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 118 * options set. This moves slab handling out of
894b8788 119 * the fast path and disables lockless freelists.
81819f0f
CL
120 */
121
ca0cab65
VB
122#ifdef CONFIG_SLUB_DEBUG
123#ifdef CONFIG_SLUB_DEBUG_ON
124DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
125#else
126DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
127#endif
79270291 128#endif /* CONFIG_SLUB_DEBUG */
ca0cab65 129
59052e89
VB
130static inline bool kmem_cache_debug(struct kmem_cache *s)
131{
132 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 133}
5577bd8a 134
117d54df 135void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 136{
59052e89 137 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
138 p += s->red_left_pad;
139
140 return p;
141}
142
345c905d
JK
143static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
144{
145#ifdef CONFIG_SLUB_CPU_PARTIAL
146 return !kmem_cache_debug(s);
147#else
148 return false;
149#endif
150}
151
81819f0f
CL
152/*
153 * Issues still to be resolved:
154 *
81819f0f
CL
155 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
156 *
81819f0f
CL
157 * - Variable sizing of the per node arrays
158 */
159
b789ef51
CL
160/* Enable to log cmpxchg failures */
161#undef SLUB_DEBUG_CMPXCHG
162
2086d26a 163/*
dc84207d 164 * Minimum number of partial slabs. These will be left on the partial
2086d26a
CL
165 * lists even if they are empty. kmem_cache_shrink may reclaim them.
166 */
76be8950 167#define MIN_PARTIAL 5
e95eed57 168
2086d26a
CL
169/*
170 * Maximum number of desirable partial slabs.
171 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 172 * sort the partial list by the number of objects in use.
2086d26a
CL
173 */
174#define MAX_PARTIAL 10
175
becfda68 176#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 177 SLAB_POISON | SLAB_STORE_USER)
672bba3a 178
149daaf3
LA
179/*
180 * These debug flags cannot use CMPXCHG because there might be consistency
181 * issues when checking or reading debug information
182 */
183#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
184 SLAB_TRACE)
185
186
fa5ec8a1 187/*
3de47213
DR
188 * Debugging flags that require metadata to be stored in the slab. These get
189 * disabled when slub_debug=O is used and a cache's min order increases with
190 * metadata.
fa5ec8a1 191 */
3de47213 192#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 193
210b5c06
CG
194#define OO_SHIFT 16
195#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 196#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 197
81819f0f 198/* Internal SLUB flags */
d50112ed 199/* Poison object */
4fd0b46e 200#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 201/* Use cmpxchg_double */
4fd0b46e 202#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 203
02cbc874
CL
204/*
205 * Tracking user of a slab.
206 */
d6543e39 207#define TRACK_ADDRS_COUNT 16
02cbc874 208struct track {
ce71e27c 209 unsigned long addr; /* Called from address */
78869146
OG
210#ifdef CONFIG_STACKDEPOT
211 depot_stack_handle_t handle;
d6543e39 212#endif
02cbc874
CL
213 int cpu; /* Was running on cpu */
214 int pid; /* Pid context */
215 unsigned long when; /* When did the operation occur */
216};
217
218enum track_item { TRACK_ALLOC, TRACK_FREE };
219
ab4d5ed5 220#ifdef CONFIG_SYSFS
81819f0f
CL
221static int sysfs_slab_add(struct kmem_cache *);
222static int sysfs_slab_alias(struct kmem_cache *, const char *);
81819f0f 223#else
0c710013
CL
224static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
225static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
226 { return 0; }
81819f0f
CL
227#endif
228
64dd6849
FM
229#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
230static void debugfs_slab_add(struct kmem_cache *);
231#else
232static inline void debugfs_slab_add(struct kmem_cache *s) { }
233#endif
234
4fdccdfb 235static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
236{
237#ifdef CONFIG_SLUB_STATS
88da03a6
CL
238 /*
239 * The rmw is racy on a preemptible kernel but this is acceptable, so
240 * avoid this_cpu_add()'s irq-disable overhead.
241 */
242 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
243#endif
244}
245
7e1fa93d
VB
246/*
247 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
248 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
249 * differ during memory hotplug/hotremove operations.
250 * Protected by slab_mutex.
251 */
252static nodemask_t slab_nodes;
253
81819f0f
CL
254/********************************************************************
255 * Core slab cache functions
256 *******************************************************************/
257
2482ddec
KC
258/*
259 * Returns freelist pointer (ptr). With hardening, this is obfuscated
260 * with an XOR of the address where the pointer is held and a per-cache
261 * random number.
262 */
263static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
264 unsigned long ptr_addr)
265{
266#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9 267 /*
aa1ef4d7 268 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
d36a63a9
AK
269 * Normally, this doesn't cause any issues, as both set_freepointer()
270 * and get_freepointer() are called with a pointer with the same tag.
271 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
272 * example, when __free_slub() iterates over objects in a cache, it
273 * passes untagged pointers to check_object(). check_object() in turns
274 * calls get_freepointer() with an untagged pointer, which causes the
275 * freepointer to be restored incorrectly.
276 */
277 return (void *)((unsigned long)ptr ^ s->random ^
1ad53d9f 278 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
279#else
280 return ptr;
281#endif
282}
283
284/* Returns the freelist pointer recorded at location ptr_addr. */
285static inline void *freelist_dereference(const struct kmem_cache *s,
286 void *ptr_addr)
287{
288 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
289 (unsigned long)ptr_addr);
290}
291
7656c72b
CL
292static inline void *get_freepointer(struct kmem_cache *s, void *object)
293{
aa1ef4d7 294 object = kasan_reset_tag(object);
2482ddec 295 return freelist_dereference(s, object + s->offset);
7656c72b
CL
296}
297
0ad9500e
ED
298static void prefetch_freepointer(const struct kmem_cache *s, void *object)
299{
0882ff91 300 prefetch(object + s->offset);
0ad9500e
ED
301}
302
1393d9a1
CL
303static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
304{
2482ddec 305 unsigned long freepointer_addr;
1393d9a1
CL
306 void *p;
307
8e57f8ac 308 if (!debug_pagealloc_enabled_static())
922d566c
JK
309 return get_freepointer(s, object);
310
f70b0049 311 object = kasan_reset_tag(object);
2482ddec 312 freepointer_addr = (unsigned long)object + s->offset;
fe557319 313 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
2482ddec 314 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
315}
316
7656c72b
CL
317static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
318{
2482ddec
KC
319 unsigned long freeptr_addr = (unsigned long)object + s->offset;
320
ce6fa91b
AP
321#ifdef CONFIG_SLAB_FREELIST_HARDENED
322 BUG_ON(object == fp); /* naive detection of double free or corruption */
323#endif
324
aa1ef4d7 325 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
2482ddec 326 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
327}
328
329/* Loop over all objects in a slab */
224a88be 330#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
331 for (__p = fixup_red_left(__s, __addr); \
332 __p < (__addr) + (__objects) * (__s)->size; \
333 __p += (__s)->size)
7656c72b 334
9736d2a9 335static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 336{
9736d2a9 337 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
338}
339
19af27af 340static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 341 unsigned int size)
834f3d11
CL
342{
343 struct kmem_cache_order_objects x = {
9736d2a9 344 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
345 };
346
347 return x;
348}
349
19af27af 350static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 351{
210b5c06 352 return x.x >> OO_SHIFT;
834f3d11
CL
353}
354
19af27af 355static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 356{
210b5c06 357 return x.x & OO_MASK;
834f3d11
CL
358}
359
881db7fb
CL
360/*
361 * Per slab locking using the pagelock
362 */
363static __always_inline void slab_lock(struct page *page)
364{
48c935ad 365 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
366 bit_spin_lock(PG_locked, &page->flags);
367}
368
369static __always_inline void slab_unlock(struct page *page)
370{
48c935ad 371 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
372 __bit_spin_unlock(PG_locked, &page->flags);
373}
374
1d07171c
CL
375/* Interrupts must be disabled (for the fallback code to work right) */
376static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
377 void *freelist_old, unsigned long counters_old,
378 void *freelist_new, unsigned long counters_new,
379 const char *n)
380{
381 VM_BUG_ON(!irqs_disabled());
2565409f
HC
382#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
383 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 384 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 385 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
386 freelist_old, counters_old,
387 freelist_new, counters_new))
6f6528a1 388 return true;
1d07171c
CL
389 } else
390#endif
391 {
392 slab_lock(page);
d0e0ac97
CG
393 if (page->freelist == freelist_old &&
394 page->counters == counters_old) {
1d07171c 395 page->freelist = freelist_new;
7d27a04b 396 page->counters = counters_new;
1d07171c 397 slab_unlock(page);
6f6528a1 398 return true;
1d07171c
CL
399 }
400 slab_unlock(page);
401 }
402
403 cpu_relax();
404 stat(s, CMPXCHG_DOUBLE_FAIL);
405
406#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 407 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
408#endif
409
6f6528a1 410 return false;
1d07171c
CL
411}
412
b789ef51
CL
413static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
414 void *freelist_old, unsigned long counters_old,
415 void *freelist_new, unsigned long counters_new,
416 const char *n)
417{
2565409f
HC
418#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
419 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 420 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 421 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
422 freelist_old, counters_old,
423 freelist_new, counters_new))
6f6528a1 424 return true;
b789ef51
CL
425 } else
426#endif
427 {
1d07171c
CL
428 unsigned long flags;
429
430 local_irq_save(flags);
881db7fb 431 slab_lock(page);
d0e0ac97
CG
432 if (page->freelist == freelist_old &&
433 page->counters == counters_old) {
b789ef51 434 page->freelist = freelist_new;
7d27a04b 435 page->counters = counters_new;
881db7fb 436 slab_unlock(page);
1d07171c 437 local_irq_restore(flags);
6f6528a1 438 return true;
b789ef51 439 }
881db7fb 440 slab_unlock(page);
1d07171c 441 local_irq_restore(flags);
b789ef51
CL
442 }
443
444 cpu_relax();
445 stat(s, CMPXCHG_DOUBLE_FAIL);
446
447#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 448 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
449#endif
450
6f6528a1 451 return false;
b789ef51
CL
452}
453
41ecc55b 454#ifdef CONFIG_SLUB_DEBUG
90e9f6a6
YZ
455static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
456static DEFINE_SPINLOCK(object_map_lock);
457
1f9f78b1
OG
458#if IS_ENABLED(CONFIG_KUNIT)
459static bool slab_add_kunit_errors(void)
460{
461 struct kunit_resource *resource;
462
463 if (likely(!current->kunit_test))
464 return false;
465
466 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
467 if (!resource)
468 return false;
469
470 (*(int *)resource->data)++;
471 kunit_put_resource(resource);
472 return true;
473}
474#else
475static inline bool slab_add_kunit_errors(void) { return false; }
476#endif
477
5f80b13a
CL
478/*
479 * Determine a map of object in use on a page.
480 *
881db7fb 481 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
482 * not vanish from under us.
483 */
90e9f6a6 484static unsigned long *get_map(struct kmem_cache *s, struct page *page)
31364c2e 485 __acquires(&object_map_lock)
5f80b13a
CL
486{
487 void *p;
488 void *addr = page_address(page);
489
90e9f6a6
YZ
490 VM_BUG_ON(!irqs_disabled());
491
492 spin_lock(&object_map_lock);
493
494 bitmap_zero(object_map, page->objects);
495
5f80b13a 496 for (p = page->freelist; p; p = get_freepointer(s, p))
4138fdfc 497 set_bit(__obj_to_index(s, addr, p), object_map);
90e9f6a6
YZ
498
499 return object_map;
500}
501
81aba9e0 502static void put_map(unsigned long *map) __releases(&object_map_lock)
90e9f6a6
YZ
503{
504 VM_BUG_ON(map != object_map);
90e9f6a6 505 spin_unlock(&object_map_lock);
5f80b13a
CL
506}
507
870b1fbb 508static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
509{
510 if (s->flags & SLAB_RED_ZONE)
511 return s->size - s->red_left_pad;
512
513 return s->size;
514}
515
516static inline void *restore_red_left(struct kmem_cache *s, void *p)
517{
518 if (s->flags & SLAB_RED_ZONE)
519 p -= s->red_left_pad;
520
521 return p;
522}
523
41ecc55b
CL
524/*
525 * Debug settings:
526 */
89d3c87e 527#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 528static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 529#else
d50112ed 530static slab_flags_t slub_debug;
f0630fff 531#endif
41ecc55b 532
e17f1dfb 533static char *slub_debug_string;
fa5ec8a1 534static int disable_higher_order_debug;
41ecc55b 535
a79316c6
AR
536/*
537 * slub is about to manipulate internal object metadata. This memory lies
538 * outside the range of the allocated object, so accessing it would normally
539 * be reported by kasan as a bounds error. metadata_access_enable() is used
540 * to tell kasan that these accesses are OK.
541 */
542static inline void metadata_access_enable(void)
543{
544 kasan_disable_current();
545}
546
547static inline void metadata_access_disable(void)
548{
549 kasan_enable_current();
550}
551
81819f0f
CL
552/*
553 * Object debugging
554 */
d86bd1be
JK
555
556/* Verify that a pointer has an address that is valid within a slab page */
557static inline int check_valid_pointer(struct kmem_cache *s,
558 struct page *page, void *object)
559{
560 void *base;
561
562 if (!object)
563 return 1;
564
565 base = page_address(page);
338cfaad 566 object = kasan_reset_tag(object);
d86bd1be
JK
567 object = restore_red_left(s, object);
568 if (object < base || object >= base + page->objects * s->size ||
569 (object - base) % s->size) {
570 return 0;
571 }
572
573 return 1;
574}
575
aa2efd5e
DT
576static void print_section(char *level, char *text, u8 *addr,
577 unsigned int length)
81819f0f 578{
a79316c6 579 metadata_access_enable();
aa1ef4d7
AK
580 print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS,
581 16, 1, addr, length, 1);
a79316c6 582 metadata_access_disable();
81819f0f
CL
583}
584
cbfc35a4
WL
585/*
586 * See comment in calculate_sizes().
587 */
588static inline bool freeptr_outside_object(struct kmem_cache *s)
589{
590 return s->offset >= s->inuse;
591}
592
593/*
594 * Return offset of the end of info block which is inuse + free pointer if
595 * not overlapping with object.
596 */
597static inline unsigned int get_info_end(struct kmem_cache *s)
598{
599 if (freeptr_outside_object(s))
600 return s->inuse + sizeof(void *);
601 else
602 return s->inuse;
603}
604
81819f0f
CL
605static struct track *get_track(struct kmem_cache *s, void *object,
606 enum track_item alloc)
607{
608 struct track *p;
609
cbfc35a4 610 p = object + get_info_end(s);
81819f0f 611
aa1ef4d7 612 return kasan_reset_tag(p + alloc);
81819f0f
CL
613}
614
78869146
OG
615#ifdef CONFIG_STACKDEPOT
616static depot_stack_handle_t save_stack_depot_trace(gfp_t flags)
617{
618 unsigned long entries[TRACK_ADDRS_COUNT];
619 depot_stack_handle_t handle;
620 unsigned int nr_entries;
621
622 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 4);
623 handle = stack_depot_save(entries, nr_entries, flags);
624 return handle;
625}
626#endif
627
81819f0f 628static void set_track(struct kmem_cache *s, void *object,
ce71e27c 629 enum track_item alloc, unsigned long addr)
81819f0f 630{
1a00df4a 631 struct track *p = get_track(s, object, alloc);
81819f0f 632
81819f0f 633 if (addr) {
78869146
OG
634#ifdef CONFIG_STACKDEPOT
635 p->handle = save_stack_depot_trace(GFP_NOWAIT);
d6543e39 636#endif
81819f0f
CL
637 p->addr = addr;
638 p->cpu = smp_processor_id();
88e4ccf2 639 p->pid = current->pid;
81819f0f 640 p->when = jiffies;
b8ca7ff7 641 } else {
81819f0f 642 memset(p, 0, sizeof(struct track));
b8ca7ff7 643 }
81819f0f
CL
644}
645
81819f0f
CL
646static void init_tracking(struct kmem_cache *s, void *object)
647{
24922684
CL
648 if (!(s->flags & SLAB_STORE_USER))
649 return;
650
ce71e27c
EGM
651 set_track(s, object, TRACK_FREE, 0UL);
652 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
653}
654
86609d33 655static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
656{
657 if (!t->addr)
658 return;
659
96b94abc 660 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 661 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
78869146 662#ifdef CONFIG_STACKDEPOT
d6543e39 663 {
78869146
OG
664 depot_stack_handle_t handle;
665 unsigned long *entries;
666 unsigned int nr_entries;
667
668 handle = READ_ONCE(t->handle);
669 if (!handle) {
670 pr_err("object allocation/free stack trace missing\n");
671 } else {
672 nr_entries = stack_depot_fetch(handle, &entries);
673 stack_trace_print(entries, nr_entries, 0);
674 }
d6543e39
BG
675 }
676#endif
24922684
CL
677}
678
e42f174e 679void print_tracking(struct kmem_cache *s, void *object)
24922684 680{
86609d33 681 unsigned long pr_time = jiffies;
24922684
CL
682 if (!(s->flags & SLAB_STORE_USER))
683 return;
684
86609d33
CP
685 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
686 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
687}
688
689static void print_page_info(struct page *page)
690{
96b94abc 691 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n",
4a8ef190
YS
692 page, page->objects, page->inuse, page->freelist,
693 page->flags, &page->flags);
24922684
CL
694
695}
696
697static void slab_bug(struct kmem_cache *s, char *fmt, ...)
698{
ecc42fbe 699 struct va_format vaf;
24922684 700 va_list args;
24922684
CL
701
702 va_start(args, fmt);
ecc42fbe
FF
703 vaf.fmt = fmt;
704 vaf.va = &args;
f9f58285 705 pr_err("=============================================================================\n");
ecc42fbe 706 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 707 pr_err("-----------------------------------------------------------------------------\n\n");
ecc42fbe 708 va_end(args);
81819f0f
CL
709}
710
582d1212 711__printf(2, 3)
24922684
CL
712static void slab_fix(struct kmem_cache *s, char *fmt, ...)
713{
ecc42fbe 714 struct va_format vaf;
24922684 715 va_list args;
24922684 716
1f9f78b1
OG
717 if (slab_add_kunit_errors())
718 return;
719
24922684 720 va_start(args, fmt);
ecc42fbe
FF
721 vaf.fmt = fmt;
722 vaf.va = &args;
723 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 724 va_end(args);
24922684
CL
725}
726
52f23478 727static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 728 void **freelist, void *nextfree)
52f23478
DZ
729{
730 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
dc07a728
ER
731 !check_valid_pointer(s, page, nextfree) && freelist) {
732 object_err(s, page, *freelist, "Freechain corrupt");
733 *freelist = NULL;
52f23478
DZ
734 slab_fix(s, "Isolate corrupted freechain");
735 return true;
736 }
737
738 return false;
739}
740
24922684 741static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
742{
743 unsigned int off; /* Offset of last byte */
a973e9dd 744 u8 *addr = page_address(page);
24922684
CL
745
746 print_tracking(s, p);
747
748 print_page_info(page);
749
96b94abc 750 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
f9f58285 751 p, p - addr, get_freepointer(s, p));
24922684 752
d86bd1be 753 if (s->flags & SLAB_RED_ZONE)
8669dbab 754 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
aa2efd5e 755 s->red_left_pad);
d86bd1be 756 else if (p > addr + 16)
aa2efd5e 757 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 758
8669dbab 759 print_section(KERN_ERR, "Object ", p,
1b473f29 760 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 761 if (s->flags & SLAB_RED_ZONE)
8669dbab 762 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 763 s->inuse - s->object_size);
81819f0f 764
cbfc35a4 765 off = get_info_end(s);
81819f0f 766
24922684 767 if (s->flags & SLAB_STORE_USER)
81819f0f 768 off += 2 * sizeof(struct track);
81819f0f 769
80a9201a
AP
770 off += kasan_metadata_size(s);
771
d86bd1be 772 if (off != size_from_object(s))
81819f0f 773 /* Beginning of the filler is the free pointer */
8669dbab 774 print_section(KERN_ERR, "Padding ", p + off,
aa2efd5e 775 size_from_object(s) - off);
24922684
CL
776
777 dump_stack();
81819f0f
CL
778}
779
75c66def 780void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
781 u8 *object, char *reason)
782{
1f9f78b1
OG
783 if (slab_add_kunit_errors())
784 return;
785
3dc50637 786 slab_bug(s, "%s", reason);
24922684 787 print_trailer(s, page, object);
65ebdeef 788 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
789}
790
a38965bf 791static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 792 const char *fmt, ...)
81819f0f
CL
793{
794 va_list args;
795 char buf[100];
796
1f9f78b1
OG
797 if (slab_add_kunit_errors())
798 return;
799
24922684
CL
800 va_start(args, fmt);
801 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 802 va_end(args);
3dc50637 803 slab_bug(s, "%s", buf);
24922684 804 print_page_info(page);
81819f0f 805 dump_stack();
65ebdeef 806 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
807}
808
f7cb1933 809static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f 810{
aa1ef4d7 811 u8 *p = kasan_reset_tag(object);
81819f0f 812
d86bd1be
JK
813 if (s->flags & SLAB_RED_ZONE)
814 memset(p - s->red_left_pad, val, s->red_left_pad);
815
81819f0f 816 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
817 memset(p, POISON_FREE, s->object_size - 1);
818 p[s->object_size - 1] = POISON_END;
81819f0f
CL
819 }
820
821 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 822 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
823}
824
24922684
CL
825static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
826 void *from, void *to)
827{
582d1212 828 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
24922684
CL
829 memset(from, data, to - from);
830}
831
832static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
833 u8 *object, char *what,
06428780 834 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
835{
836 u8 *fault;
837 u8 *end;
e1b70dd1 838 u8 *addr = page_address(page);
24922684 839
a79316c6 840 metadata_access_enable();
aa1ef4d7 841 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
a79316c6 842 metadata_access_disable();
24922684
CL
843 if (!fault)
844 return 1;
845
846 end = start + bytes;
847 while (end > fault && end[-1] == value)
848 end--;
849
1f9f78b1
OG
850 if (slab_add_kunit_errors())
851 goto skip_bug_print;
852
24922684 853 slab_bug(s, "%s overwritten", what);
96b94abc 854 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
e1b70dd1
MC
855 fault, end - 1, fault - addr,
856 fault[0], value);
24922684 857 print_trailer(s, page, object);
65ebdeef 858 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
24922684 859
1f9f78b1 860skip_bug_print:
24922684
CL
861 restore_bytes(s, what, value, fault, end);
862 return 0;
81819f0f
CL
863}
864
81819f0f
CL
865/*
866 * Object layout:
867 *
868 * object address
869 * Bytes of the object to be managed.
870 * If the freepointer may overlay the object then the free
cbfc35a4 871 * pointer is at the middle of the object.
672bba3a 872 *
81819f0f
CL
873 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
874 * 0xa5 (POISON_END)
875 *
3b0efdfa 876 * object + s->object_size
81819f0f 877 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 878 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 879 * object_size == inuse.
672bba3a 880 *
81819f0f
CL
881 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
882 * 0xcc (RED_ACTIVE) for objects in use.
883 *
884 * object + s->inuse
672bba3a
CL
885 * Meta data starts here.
886 *
81819f0f
CL
887 * A. Free pointer (if we cannot overwrite object on free)
888 * B. Tracking data for SLAB_STORE_USER
dc84207d 889 * C. Padding to reach required alignment boundary or at minimum
6446faa2 890 * one word if debugging is on to be able to detect writes
672bba3a
CL
891 * before the word boundary.
892 *
893 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
894 *
895 * object + s->size
672bba3a 896 * Nothing is used beyond s->size.
81819f0f 897 *
3b0efdfa 898 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 899 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
900 * may be used with merged slabcaches.
901 */
902
81819f0f
CL
903static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
904{
cbfc35a4 905 unsigned long off = get_info_end(s); /* The end of info */
81819f0f
CL
906
907 if (s->flags & SLAB_STORE_USER)
908 /* We also have user information there */
909 off += 2 * sizeof(struct track);
910
80a9201a
AP
911 off += kasan_metadata_size(s);
912
d86bd1be 913 if (size_from_object(s) == off)
81819f0f
CL
914 return 1;
915
24922684 916 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 917 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
918}
919
39b26464 920/* Check the pad bytes at the end of a slab page */
81819f0f
CL
921static int slab_pad_check(struct kmem_cache *s, struct page *page)
922{
24922684
CL
923 u8 *start;
924 u8 *fault;
925 u8 *end;
5d682681 926 u8 *pad;
24922684
CL
927 int length;
928 int remainder;
81819f0f
CL
929
930 if (!(s->flags & SLAB_POISON))
931 return 1;
932
a973e9dd 933 start = page_address(page);
a50b854e 934 length = page_size(page);
39b26464
CL
935 end = start + length;
936 remainder = length % s->size;
81819f0f
CL
937 if (!remainder)
938 return 1;
939
5d682681 940 pad = end - remainder;
a79316c6 941 metadata_access_enable();
aa1ef4d7 942 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
a79316c6 943 metadata_access_disable();
24922684
CL
944 if (!fault)
945 return 1;
946 while (end > fault && end[-1] == POISON_INUSE)
947 end--;
948
e1b70dd1
MC
949 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
950 fault, end - 1, fault - start);
5d682681 951 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 952
5d682681 953 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 954 return 0;
81819f0f
CL
955}
956
957static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 958 void *object, u8 val)
81819f0f
CL
959{
960 u8 *p = object;
3b0efdfa 961 u8 *endobject = object + s->object_size;
81819f0f
CL
962
963 if (s->flags & SLAB_RED_ZONE) {
8669dbab 964 if (!check_bytes_and_report(s, page, object, "Left Redzone",
d86bd1be
JK
965 object - s->red_left_pad, val, s->red_left_pad))
966 return 0;
967
8669dbab 968 if (!check_bytes_and_report(s, page, object, "Right Redzone",
3b0efdfa 969 endobject, val, s->inuse - s->object_size))
81819f0f 970 return 0;
81819f0f 971 } else {
3b0efdfa 972 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 973 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
974 endobject, POISON_INUSE,
975 s->inuse - s->object_size);
3adbefee 976 }
81819f0f
CL
977 }
978
979 if (s->flags & SLAB_POISON) {
f7cb1933 980 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 981 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 982 POISON_FREE, s->object_size - 1) ||
8669dbab 983 !check_bytes_and_report(s, page, p, "End Poison",
3b0efdfa 984 p + s->object_size - 1, POISON_END, 1)))
81819f0f 985 return 0;
81819f0f
CL
986 /*
987 * check_pad_bytes cleans up on its own.
988 */
989 check_pad_bytes(s, page, p);
990 }
991
cbfc35a4 992 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
993 /*
994 * Object and freepointer overlap. Cannot check
995 * freepointer while object is allocated.
996 */
997 return 1;
998
999 /* Check free pointer validity */
1000 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
1001 object_err(s, page, p, "Freepointer corrupt");
1002 /*
9f6c708e 1003 * No choice but to zap it and thus lose the remainder
81819f0f 1004 * of the free objects in this slab. May cause
672bba3a 1005 * another error because the object count is now wrong.
81819f0f 1006 */
a973e9dd 1007 set_freepointer(s, p, NULL);
81819f0f
CL
1008 return 0;
1009 }
1010 return 1;
1011}
1012
1013static int check_slab(struct kmem_cache *s, struct page *page)
1014{
39b26464
CL
1015 int maxobj;
1016
81819f0f
CL
1017 VM_BUG_ON(!irqs_disabled());
1018
1019 if (!PageSlab(page)) {
24922684 1020 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
1021 return 0;
1022 }
39b26464 1023
9736d2a9 1024 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
1025 if (page->objects > maxobj) {
1026 slab_err(s, page, "objects %u > max %u",
f6edde9c 1027 page->objects, maxobj);
39b26464
CL
1028 return 0;
1029 }
1030 if (page->inuse > page->objects) {
24922684 1031 slab_err(s, page, "inuse %u > max %u",
f6edde9c 1032 page->inuse, page->objects);
81819f0f
CL
1033 return 0;
1034 }
1035 /* Slab_pad_check fixes things up after itself */
1036 slab_pad_check(s, page);
1037 return 1;
1038}
1039
1040/*
672bba3a
CL
1041 * Determine if a certain object on a page is on the freelist. Must hold the
1042 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
1043 */
1044static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
1045{
1046 int nr = 0;
881db7fb 1047 void *fp;
81819f0f 1048 void *object = NULL;
f6edde9c 1049 int max_objects;
81819f0f 1050
881db7fb 1051 fp = page->freelist;
39b26464 1052 while (fp && nr <= page->objects) {
81819f0f
CL
1053 if (fp == search)
1054 return 1;
1055 if (!check_valid_pointer(s, page, fp)) {
1056 if (object) {
1057 object_err(s, page, object,
1058 "Freechain corrupt");
a973e9dd 1059 set_freepointer(s, object, NULL);
81819f0f 1060 } else {
24922684 1061 slab_err(s, page, "Freepointer corrupt");
a973e9dd 1062 page->freelist = NULL;
39b26464 1063 page->inuse = page->objects;
24922684 1064 slab_fix(s, "Freelist cleared");
81819f0f
CL
1065 return 0;
1066 }
1067 break;
1068 }
1069 object = fp;
1070 fp = get_freepointer(s, object);
1071 nr++;
1072 }
1073
9736d2a9 1074 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
1075 if (max_objects > MAX_OBJS_PER_PAGE)
1076 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
1077
1078 if (page->objects != max_objects) {
756a025f
JP
1079 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1080 page->objects, max_objects);
224a88be 1081 page->objects = max_objects;
582d1212 1082 slab_fix(s, "Number of objects adjusted");
224a88be 1083 }
39b26464 1084 if (page->inuse != page->objects - nr) {
756a025f
JP
1085 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1086 page->inuse, page->objects - nr);
39b26464 1087 page->inuse = page->objects - nr;
582d1212 1088 slab_fix(s, "Object count adjusted");
81819f0f
CL
1089 }
1090 return search == NULL;
1091}
1092
0121c619
CL
1093static void trace(struct kmem_cache *s, struct page *page, void *object,
1094 int alloc)
3ec09742
CL
1095{
1096 if (s->flags & SLAB_TRACE) {
f9f58285 1097 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1098 s->name,
1099 alloc ? "alloc" : "free",
1100 object, page->inuse,
1101 page->freelist);
1102
1103 if (!alloc)
aa2efd5e 1104 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1105 s->object_size);
3ec09742
CL
1106
1107 dump_stack();
1108 }
1109}
1110
643b1138 1111/*
672bba3a 1112 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1113 */
5cc6eee8
CL
1114static void add_full(struct kmem_cache *s,
1115 struct kmem_cache_node *n, struct page *page)
643b1138 1116{
5cc6eee8
CL
1117 if (!(s->flags & SLAB_STORE_USER))
1118 return;
1119
255d0884 1120 lockdep_assert_held(&n->list_lock);
916ac052 1121 list_add(&page->slab_list, &n->full);
643b1138
CL
1122}
1123
c65c1877 1124static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1125{
643b1138
CL
1126 if (!(s->flags & SLAB_STORE_USER))
1127 return;
1128
255d0884 1129 lockdep_assert_held(&n->list_lock);
916ac052 1130 list_del(&page->slab_list);
643b1138
CL
1131}
1132
0f389ec6
CL
1133/* Tracking of the number of slabs for debugging purposes */
1134static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1135{
1136 struct kmem_cache_node *n = get_node(s, node);
1137
1138 return atomic_long_read(&n->nr_slabs);
1139}
1140
26c02cf0
AB
1141static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1142{
1143 return atomic_long_read(&n->nr_slabs);
1144}
1145
205ab99d 1146static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1147{
1148 struct kmem_cache_node *n = get_node(s, node);
1149
1150 /*
1151 * May be called early in order to allocate a slab for the
1152 * kmem_cache_node structure. Solve the chicken-egg
1153 * dilemma by deferring the increment of the count during
1154 * bootstrap (see early_kmem_cache_node_alloc).
1155 */
338b2642 1156 if (likely(n)) {
0f389ec6 1157 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1158 atomic_long_add(objects, &n->total_objects);
1159 }
0f389ec6 1160}
205ab99d 1161static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1162{
1163 struct kmem_cache_node *n = get_node(s, node);
1164
1165 atomic_long_dec(&n->nr_slabs);
205ab99d 1166 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1167}
1168
1169/* Object debug checks for alloc/free paths */
3ec09742
CL
1170static void setup_object_debug(struct kmem_cache *s, struct page *page,
1171 void *object)
1172{
8fc8d666 1173 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1174 return;
1175
f7cb1933 1176 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1177 init_tracking(s, object);
1178}
1179
a50b854e
MWO
1180static
1181void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
a7101224 1182{
8fc8d666 1183 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1184 return;
1185
1186 metadata_access_enable();
aa1ef4d7 1187 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
a7101224
AK
1188 metadata_access_disable();
1189}
1190
becfda68 1191static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1192 struct page *page, void *object)
81819f0f
CL
1193{
1194 if (!check_slab(s, page))
becfda68 1195 return 0;
81819f0f 1196
81819f0f
CL
1197 if (!check_valid_pointer(s, page, object)) {
1198 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1199 return 0;
81819f0f
CL
1200 }
1201
f7cb1933 1202 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1203 return 0;
1204
1205 return 1;
1206}
1207
1208static noinline int alloc_debug_processing(struct kmem_cache *s,
1209 struct page *page,
1210 void *object, unsigned long addr)
1211{
1212 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1213 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1214 goto bad;
1215 }
81819f0f 1216
3ec09742
CL
1217 /* Success perform special debug activities for allocs */
1218 if (s->flags & SLAB_STORE_USER)
1219 set_track(s, object, TRACK_ALLOC, addr);
1220 trace(s, page, object, 1);
f7cb1933 1221 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1222 return 1;
3ec09742 1223
81819f0f
CL
1224bad:
1225 if (PageSlab(page)) {
1226 /*
1227 * If this is a slab page then lets do the best we can
1228 * to avoid issues in the future. Marking all objects
672bba3a 1229 * as used avoids touching the remaining objects.
81819f0f 1230 */
24922684 1231 slab_fix(s, "Marking all objects used");
39b26464 1232 page->inuse = page->objects;
a973e9dd 1233 page->freelist = NULL;
81819f0f
CL
1234 }
1235 return 0;
1236}
1237
becfda68
LA
1238static inline int free_consistency_checks(struct kmem_cache *s,
1239 struct page *page, void *object, unsigned long addr)
81819f0f 1240{
81819f0f 1241 if (!check_valid_pointer(s, page, object)) {
70d71228 1242 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1243 return 0;
81819f0f
CL
1244 }
1245
1246 if (on_freelist(s, page, object)) {
24922684 1247 object_err(s, page, object, "Object already free");
becfda68 1248 return 0;
81819f0f
CL
1249 }
1250
f7cb1933 1251 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1252 return 0;
81819f0f 1253
1b4f59e3 1254 if (unlikely(s != page->slab_cache)) {
3adbefee 1255 if (!PageSlab(page)) {
756a025f
JP
1256 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1257 object);
1b4f59e3 1258 } else if (!page->slab_cache) {
f9f58285
FF
1259 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1260 object);
70d71228 1261 dump_stack();
06428780 1262 } else
24922684
CL
1263 object_err(s, page, object,
1264 "page slab pointer corrupt.");
becfda68
LA
1265 return 0;
1266 }
1267 return 1;
1268}
1269
1270/* Supports checking bulk free of a constructed freelist */
1271static noinline int free_debug_processing(
1272 struct kmem_cache *s, struct page *page,
1273 void *head, void *tail, int bulk_cnt,
1274 unsigned long addr)
1275{
1276 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1277 void *object = head;
1278 int cnt = 0;
3f649ab7 1279 unsigned long flags;
becfda68
LA
1280 int ret = 0;
1281
1282 spin_lock_irqsave(&n->list_lock, flags);
1283 slab_lock(page);
1284
1285 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1286 if (!check_slab(s, page))
1287 goto out;
1288 }
1289
1290next_object:
1291 cnt++;
1292
1293 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1294 if (!free_consistency_checks(s, page, object, addr))
1295 goto out;
81819f0f 1296 }
3ec09742 1297
3ec09742
CL
1298 if (s->flags & SLAB_STORE_USER)
1299 set_track(s, object, TRACK_FREE, addr);
1300 trace(s, page, object, 0);
81084651 1301 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1302 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1303
1304 /* Reached end of constructed freelist yet? */
1305 if (object != tail) {
1306 object = get_freepointer(s, object);
1307 goto next_object;
1308 }
804aa132
LA
1309 ret = 1;
1310
5c2e4bbb 1311out:
81084651
JDB
1312 if (cnt != bulk_cnt)
1313 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1314 bulk_cnt, cnt);
1315
881db7fb 1316 slab_unlock(page);
282acb43 1317 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1318 if (!ret)
1319 slab_fix(s, "Object at 0x%p not freed", object);
1320 return ret;
81819f0f
CL
1321}
1322
e17f1dfb
VB
1323/*
1324 * Parse a block of slub_debug options. Blocks are delimited by ';'
1325 *
1326 * @str: start of block
1327 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1328 * @slabs: return start of list of slabs, or NULL when there's no list
1329 * @init: assume this is initial parsing and not per-kmem-create parsing
1330 *
1331 * returns the start of next block if there's any, or NULL
1332 */
1333static char *
1334parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1335{
e17f1dfb 1336 bool higher_order_disable = false;
f0630fff 1337
e17f1dfb
VB
1338 /* Skip any completely empty blocks */
1339 while (*str && *str == ';')
1340 str++;
1341
1342 if (*str == ',') {
f0630fff
CL
1343 /*
1344 * No options but restriction on slabs. This means full
1345 * debugging for slabs matching a pattern.
1346 */
e17f1dfb 1347 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1348 goto check_slabs;
e17f1dfb
VB
1349 }
1350 *flags = 0;
f0630fff 1351
e17f1dfb
VB
1352 /* Determine which debug features should be switched on */
1353 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1354 switch (tolower(*str)) {
e17f1dfb
VB
1355 case '-':
1356 *flags = 0;
1357 break;
f0630fff 1358 case 'f':
e17f1dfb 1359 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1360 break;
1361 case 'z':
e17f1dfb 1362 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1363 break;
1364 case 'p':
e17f1dfb 1365 *flags |= SLAB_POISON;
f0630fff
CL
1366 break;
1367 case 'u':
e17f1dfb 1368 *flags |= SLAB_STORE_USER;
f0630fff
CL
1369 break;
1370 case 't':
e17f1dfb 1371 *flags |= SLAB_TRACE;
f0630fff 1372 break;
4c13dd3b 1373 case 'a':
e17f1dfb 1374 *flags |= SLAB_FAILSLAB;
4c13dd3b 1375 break;
08303a73
CA
1376 case 'o':
1377 /*
1378 * Avoid enabling debugging on caches if its minimum
1379 * order would increase as a result.
1380 */
e17f1dfb 1381 higher_order_disable = true;
08303a73 1382 break;
f0630fff 1383 default:
e17f1dfb
VB
1384 if (init)
1385 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
f0630fff 1386 }
41ecc55b 1387 }
f0630fff 1388check_slabs:
41ecc55b 1389 if (*str == ',')
e17f1dfb
VB
1390 *slabs = ++str;
1391 else
1392 *slabs = NULL;
1393
1394 /* Skip over the slab list */
1395 while (*str && *str != ';')
1396 str++;
1397
1398 /* Skip any completely empty blocks */
1399 while (*str && *str == ';')
1400 str++;
1401
1402 if (init && higher_order_disable)
1403 disable_higher_order_debug = 1;
1404
1405 if (*str)
1406 return str;
1407 else
1408 return NULL;
1409}
1410
1411static int __init setup_slub_debug(char *str)
1412{
1413 slab_flags_t flags;
1414 char *saved_str;
1415 char *slab_list;
1416 bool global_slub_debug_changed = false;
1417 bool slab_list_specified = false;
1418
1419 slub_debug = DEBUG_DEFAULT_FLAGS;
1420 if (*str++ != '=' || !*str)
1421 /*
1422 * No options specified. Switch on full debugging.
1423 */
1424 goto out;
1425
1426 saved_str = str;
1427 while (str) {
1428 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1429
1430 if (!slab_list) {
1431 slub_debug = flags;
1432 global_slub_debug_changed = true;
1433 } else {
1434 slab_list_specified = true;
1435 }
1436 }
1437
1438 /*
1439 * For backwards compatibility, a single list of flags with list of
1440 * slabs means debugging is only enabled for those slabs, so the global
1441 * slub_debug should be 0. We can extended that to multiple lists as
1442 * long as there is no option specifying flags without a slab list.
1443 */
1444 if (slab_list_specified) {
1445 if (!global_slub_debug_changed)
1446 slub_debug = 0;
1447 slub_debug_string = saved_str;
1448 }
f0630fff 1449out:
ca0cab65
VB
1450 if (slub_debug != 0 || slub_debug_string)
1451 static_branch_enable(&slub_debug_enabled);
02ac47d0
SB
1452 else
1453 static_branch_disable(&slub_debug_enabled);
6471384a
AP
1454 if ((static_branch_unlikely(&init_on_alloc) ||
1455 static_branch_unlikely(&init_on_free)) &&
1456 (slub_debug & SLAB_POISON))
1457 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1458 return 1;
1459}
1460
1461__setup("slub_debug", setup_slub_debug);
1462
c5fd3ca0
AT
1463/*
1464 * kmem_cache_flags - apply debugging options to the cache
1465 * @object_size: the size of an object without meta data
1466 * @flags: flags to set
1467 * @name: name of the cache
c5fd3ca0
AT
1468 *
1469 * Debug option(s) are applied to @flags. In addition to the debug
1470 * option(s), if a slab name (or multiple) is specified i.e.
1471 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1472 * then only the select slabs will receive the debug option(s).
1473 */
0293d1fd 1474slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1475 slab_flags_t flags, const char *name)
41ecc55b 1476{
c5fd3ca0
AT
1477 char *iter;
1478 size_t len;
e17f1dfb
VB
1479 char *next_block;
1480 slab_flags_t block_flags;
ca220593
JB
1481 slab_flags_t slub_debug_local = slub_debug;
1482
1483 /*
1484 * If the slab cache is for debugging (e.g. kmemleak) then
1485 * don't store user (stack trace) information by default,
1486 * but let the user enable it via the command line below.
1487 */
1488 if (flags & SLAB_NOLEAKTRACE)
1489 slub_debug_local &= ~SLAB_STORE_USER;
c5fd3ca0 1490
c5fd3ca0 1491 len = strlen(name);
e17f1dfb
VB
1492 next_block = slub_debug_string;
1493 /* Go through all blocks of debug options, see if any matches our slab's name */
1494 while (next_block) {
1495 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1496 if (!iter)
1497 continue;
1498 /* Found a block that has a slab list, search it */
1499 while (*iter) {
1500 char *end, *glob;
1501 size_t cmplen;
1502
1503 end = strchrnul(iter, ',');
1504 if (next_block && next_block < end)
1505 end = next_block - 1;
1506
1507 glob = strnchr(iter, end - iter, '*');
1508 if (glob)
1509 cmplen = glob - iter;
1510 else
1511 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1512
e17f1dfb
VB
1513 if (!strncmp(name, iter, cmplen)) {
1514 flags |= block_flags;
1515 return flags;
1516 }
c5fd3ca0 1517
e17f1dfb
VB
1518 if (!*end || *end == ';')
1519 break;
1520 iter = end + 1;
c5fd3ca0 1521 }
c5fd3ca0 1522 }
ba0268a8 1523
ca220593 1524 return flags | slub_debug_local;
41ecc55b 1525}
b4a64718 1526#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1527static inline void setup_object_debug(struct kmem_cache *s,
1528 struct page *page, void *object) {}
a50b854e
MWO
1529static inline
1530void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
41ecc55b 1531
3ec09742 1532static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1533 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1534
282acb43 1535static inline int free_debug_processing(
81084651
JDB
1536 struct kmem_cache *s, struct page *page,
1537 void *head, void *tail, int bulk_cnt,
282acb43 1538 unsigned long addr) { return 0; }
41ecc55b 1539
41ecc55b
CL
1540static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1541 { return 1; }
1542static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1543 void *object, u8 val) { return 1; }
5cc6eee8
CL
1544static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1545 struct page *page) {}
c65c1877
PZ
1546static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1547 struct page *page) {}
0293d1fd 1548slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1549 slab_flags_t flags, const char *name)
ba0268a8
CL
1550{
1551 return flags;
1552}
41ecc55b 1553#define slub_debug 0
0f389ec6 1554
fdaa45e9
IM
1555#define disable_higher_order_debug 0
1556
0f389ec6
CL
1557static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1558 { return 0; }
26c02cf0
AB
1559static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1560 { return 0; }
205ab99d
CL
1561static inline void inc_slabs_node(struct kmem_cache *s, int node,
1562 int objects) {}
1563static inline void dec_slabs_node(struct kmem_cache *s, int node,
1564 int objects) {}
7d550c56 1565
52f23478 1566static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 1567 void **freelist, void *nextfree)
52f23478
DZ
1568{
1569 return false;
1570}
02e72cc6
AR
1571#endif /* CONFIG_SLUB_DEBUG */
1572
1573/*
1574 * Hooks for other subsystems that check memory allocations. In a typical
1575 * production configuration these hooks all should produce no code at all.
1576 */
0116523c 1577static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1578{
53128245 1579 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1580 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1581 kmemleak_alloc(ptr, size, 1, flags);
53128245 1582 return ptr;
d56791b3
RB
1583}
1584
ee3ce779 1585static __always_inline void kfree_hook(void *x)
d56791b3
RB
1586{
1587 kmemleak_free(x);
027b37b5 1588 kasan_kfree_large(x);
d56791b3
RB
1589}
1590
d57a964e
AK
1591static __always_inline bool slab_free_hook(struct kmem_cache *s,
1592 void *x, bool init)
d56791b3
RB
1593{
1594 kmemleak_free_recursive(x, s->flags);
7d550c56 1595
02e72cc6
AR
1596 /*
1597 * Trouble is that we may no longer disable interrupts in the fast path
1598 * So in order to make the debug calls that expect irqs to be
1599 * disabled we need to disable interrupts temporarily.
1600 */
4675ff05 1601#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1602 {
1603 unsigned long flags;
1604
1605 local_irq_save(flags);
02e72cc6
AR
1606 debug_check_no_locks_freed(x, s->object_size);
1607 local_irq_restore(flags);
1608 }
1609#endif
1610 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1611 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1612
cfbe1636
ME
1613 /* Use KCSAN to help debug racy use-after-free. */
1614 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1615 __kcsan_check_access(x, s->object_size,
1616 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1617
d57a964e
AK
1618 /*
1619 * As memory initialization might be integrated into KASAN,
1620 * kasan_slab_free and initialization memset's must be
1621 * kept together to avoid discrepancies in behavior.
1622 *
1623 * The initialization memset's clear the object and the metadata,
1624 * but don't touch the SLAB redzone.
1625 */
1626 if (init) {
1627 int rsize;
1628
1629 if (!kasan_has_integrated_init())
1630 memset(kasan_reset_tag(x), 0, s->object_size);
1631 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1632 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1633 s->size - s->inuse - rsize);
1634 }
1635 /* KASAN might put x into memory quarantine, delaying its reuse. */
1636 return kasan_slab_free(s, x, init);
02e72cc6 1637}
205ab99d 1638
c3895391
AK
1639static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1640 void **head, void **tail)
81084651 1641{
6471384a
AP
1642
1643 void *object;
1644 void *next = *head;
1645 void *old_tail = *tail ? *tail : *head;
6471384a 1646
b89fb5ef 1647 if (is_kfence_address(next)) {
d57a964e 1648 slab_free_hook(s, next, false);
b89fb5ef
AP
1649 return true;
1650 }
1651
aea4df4c
LA
1652 /* Head and tail of the reconstructed freelist */
1653 *head = NULL;
1654 *tail = NULL;
1b7e816f 1655
aea4df4c
LA
1656 do {
1657 object = next;
1658 next = get_freepointer(s, object);
1659
c3895391 1660 /* If object's reuse doesn't have to be delayed */
d57a964e 1661 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
c3895391
AK
1662 /* Move object to the new freelist */
1663 set_freepointer(s, object, *head);
1664 *head = object;
1665 if (!*tail)
1666 *tail = object;
1667 }
1668 } while (object != old_tail);
1669
1670 if (*head == *tail)
1671 *tail = NULL;
1672
1673 return *head != NULL;
81084651
JDB
1674}
1675
4d176711 1676static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1677 void *object)
1678{
1679 setup_object_debug(s, page, object);
4d176711 1680 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1681 if (unlikely(s->ctor)) {
1682 kasan_unpoison_object_data(s, object);
1683 s->ctor(object);
1684 kasan_poison_object_data(s, object);
1685 }
4d176711 1686 return object;
588f8ba9
TG
1687}
1688
81819f0f
CL
1689/*
1690 * Slab allocation and freeing
1691 */
5dfb4175
VD
1692static inline struct page *alloc_slab_page(struct kmem_cache *s,
1693 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1694{
5dfb4175 1695 struct page *page;
19af27af 1696 unsigned int order = oo_order(oo);
65c3376a 1697
2154a336 1698 if (node == NUMA_NO_NODE)
5dfb4175 1699 page = alloc_pages(flags, order);
65c3376a 1700 else
96db800f 1701 page = __alloc_pages_node(node, flags, order);
5dfb4175 1702
5dfb4175 1703 return page;
65c3376a
CL
1704}
1705
210e7a43
TG
1706#ifdef CONFIG_SLAB_FREELIST_RANDOM
1707/* Pre-initialize the random sequence cache */
1708static int init_cache_random_seq(struct kmem_cache *s)
1709{
19af27af 1710 unsigned int count = oo_objects(s->oo);
210e7a43 1711 int err;
210e7a43 1712
a810007a
SR
1713 /* Bailout if already initialised */
1714 if (s->random_seq)
1715 return 0;
1716
210e7a43
TG
1717 err = cache_random_seq_create(s, count, GFP_KERNEL);
1718 if (err) {
1719 pr_err("SLUB: Unable to initialize free list for %s\n",
1720 s->name);
1721 return err;
1722 }
1723
1724 /* Transform to an offset on the set of pages */
1725 if (s->random_seq) {
19af27af
AD
1726 unsigned int i;
1727
210e7a43
TG
1728 for (i = 0; i < count; i++)
1729 s->random_seq[i] *= s->size;
1730 }
1731 return 0;
1732}
1733
1734/* Initialize each random sequence freelist per cache */
1735static void __init init_freelist_randomization(void)
1736{
1737 struct kmem_cache *s;
1738
1739 mutex_lock(&slab_mutex);
1740
1741 list_for_each_entry(s, &slab_caches, list)
1742 init_cache_random_seq(s);
1743
1744 mutex_unlock(&slab_mutex);
1745}
1746
1747/* Get the next entry on the pre-computed freelist randomized */
1748static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1749 unsigned long *pos, void *start,
1750 unsigned long page_limit,
1751 unsigned long freelist_count)
1752{
1753 unsigned int idx;
1754
1755 /*
1756 * If the target page allocation failed, the number of objects on the
1757 * page might be smaller than the usual size defined by the cache.
1758 */
1759 do {
1760 idx = s->random_seq[*pos];
1761 *pos += 1;
1762 if (*pos >= freelist_count)
1763 *pos = 0;
1764 } while (unlikely(idx >= page_limit));
1765
1766 return (char *)start + idx;
1767}
1768
1769/* Shuffle the single linked freelist based on a random pre-computed sequence */
1770static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1771{
1772 void *start;
1773 void *cur;
1774 void *next;
1775 unsigned long idx, pos, page_limit, freelist_count;
1776
1777 if (page->objects < 2 || !s->random_seq)
1778 return false;
1779
1780 freelist_count = oo_objects(s->oo);
1781 pos = get_random_int() % freelist_count;
1782
1783 page_limit = page->objects * s->size;
1784 start = fixup_red_left(s, page_address(page));
1785
1786 /* First entry is used as the base of the freelist */
1787 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1788 freelist_count);
4d176711 1789 cur = setup_object(s, page, cur);
210e7a43
TG
1790 page->freelist = cur;
1791
1792 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1793 next = next_freelist_entry(s, page, &pos, start, page_limit,
1794 freelist_count);
4d176711 1795 next = setup_object(s, page, next);
210e7a43
TG
1796 set_freepointer(s, cur, next);
1797 cur = next;
1798 }
210e7a43
TG
1799 set_freepointer(s, cur, NULL);
1800
1801 return true;
1802}
1803#else
1804static inline int init_cache_random_seq(struct kmem_cache *s)
1805{
1806 return 0;
1807}
1808static inline void init_freelist_randomization(void) { }
1809static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1810{
1811 return false;
1812}
1813#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1814
81819f0f
CL
1815static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1816{
06428780 1817 struct page *page;
834f3d11 1818 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1819 gfp_t alloc_gfp;
4d176711 1820 void *start, *p, *next;
a50b854e 1821 int idx;
210e7a43 1822 bool shuffle;
81819f0f 1823
7e0528da
CL
1824 flags &= gfp_allowed_mask;
1825
d0164adc 1826 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1827 local_irq_enable();
1828
b7a49f0d 1829 flags |= s->allocflags;
e12ba74d 1830
ba52270d
PE
1831 /*
1832 * Let the initial higher-order allocation fail under memory pressure
1833 * so we fall-back to the minimum order allocation.
1834 */
1835 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1836 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1837 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1838
5dfb4175 1839 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1840 if (unlikely(!page)) {
1841 oo = s->min;
80c3a998 1842 alloc_gfp = flags;
65c3376a
CL
1843 /*
1844 * Allocation may have failed due to fragmentation.
1845 * Try a lower order alloc if possible
1846 */
5dfb4175 1847 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1848 if (unlikely(!page))
1849 goto out;
1850 stat(s, ORDER_FALLBACK);
65c3376a 1851 }
5a896d9e 1852
834f3d11 1853 page->objects = oo_objects(oo);
81819f0f 1854
2e9bd483 1855 account_slab_page(page, oo_order(oo), s, flags);
1f3147b4 1856
1b4f59e3 1857 page->slab_cache = s;
c03f94cc 1858 __SetPageSlab(page);
2f064f34 1859 if (page_is_pfmemalloc(page))
072bb0aa 1860 SetPageSlabPfmemalloc(page);
81819f0f 1861
a7101224 1862 kasan_poison_slab(page);
81819f0f 1863
a7101224 1864 start = page_address(page);
81819f0f 1865
a50b854e 1866 setup_page_debug(s, page, start);
0316bec2 1867
210e7a43
TG
1868 shuffle = shuffle_freelist(s, page);
1869
1870 if (!shuffle) {
4d176711
AK
1871 start = fixup_red_left(s, start);
1872 start = setup_object(s, page, start);
1873 page->freelist = start;
18e50661
AK
1874 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1875 next = p + s->size;
1876 next = setup_object(s, page, next);
1877 set_freepointer(s, p, next);
1878 p = next;
1879 }
1880 set_freepointer(s, p, NULL);
81819f0f 1881 }
81819f0f 1882
e6e82ea1 1883 page->inuse = page->objects;
8cb0a506 1884 page->frozen = 1;
588f8ba9 1885
81819f0f 1886out:
d0164adc 1887 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1888 local_irq_disable();
1889 if (!page)
1890 return NULL;
1891
588f8ba9
TG
1892 inc_slabs_node(s, page_to_nid(page), page->objects);
1893
81819f0f
CL
1894 return page;
1895}
1896
588f8ba9
TG
1897static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1898{
44405099
LL
1899 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1900 flags = kmalloc_fix_flags(flags);
588f8ba9
TG
1901
1902 return allocate_slab(s,
1903 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1904}
1905
81819f0f
CL
1906static void __free_slab(struct kmem_cache *s, struct page *page)
1907{
834f3d11
CL
1908 int order = compound_order(page);
1909 int pages = 1 << order;
81819f0f 1910
8fc8d666 1911 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
81819f0f
CL
1912 void *p;
1913
1914 slab_pad_check(s, page);
224a88be
CL
1915 for_each_object(p, s, page_address(page),
1916 page->objects)
f7cb1933 1917 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1918 }
1919
072bb0aa 1920 __ClearPageSlabPfmemalloc(page);
49bd5221 1921 __ClearPageSlab(page);
0c06dd75
VB
1922 /* In union with page->mapping where page allocator expects NULL */
1923 page->slab_cache = NULL;
1eb5ac64
NP
1924 if (current->reclaim_state)
1925 current->reclaim_state->reclaimed_slab += pages;
74d555be 1926 unaccount_slab_page(page, order, s);
27ee57c9 1927 __free_pages(page, order);
81819f0f
CL
1928}
1929
1930static void rcu_free_slab(struct rcu_head *h)
1931{
bf68c214 1932 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1933
1b4f59e3 1934 __free_slab(page->slab_cache, page);
81819f0f
CL
1935}
1936
1937static void free_slab(struct kmem_cache *s, struct page *page)
1938{
5f0d5a3a 1939 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1940 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1941 } else
1942 __free_slab(s, page);
1943}
1944
1945static void discard_slab(struct kmem_cache *s, struct page *page)
1946{
205ab99d 1947 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1948 free_slab(s, page);
1949}
1950
1951/*
5cc6eee8 1952 * Management of partially allocated slabs.
81819f0f 1953 */
1e4dd946
SR
1954static inline void
1955__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1956{
e95eed57 1957 n->nr_partial++;
136333d1 1958 if (tail == DEACTIVATE_TO_TAIL)
916ac052 1959 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 1960 else
916ac052 1961 list_add(&page->slab_list, &n->partial);
81819f0f
CL
1962}
1963
1e4dd946
SR
1964static inline void add_partial(struct kmem_cache_node *n,
1965 struct page *page, int tail)
62e346a8 1966{
c65c1877 1967 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1968 __add_partial(n, page, tail);
1969}
c65c1877 1970
1e4dd946
SR
1971static inline void remove_partial(struct kmem_cache_node *n,
1972 struct page *page)
1973{
1974 lockdep_assert_held(&n->list_lock);
916ac052 1975 list_del(&page->slab_list);
52b4b950 1976 n->nr_partial--;
1e4dd946
SR
1977}
1978
81819f0f 1979/*
7ced3719
CL
1980 * Remove slab from the partial list, freeze it and
1981 * return the pointer to the freelist.
81819f0f 1982 *
497b66f2 1983 * Returns a list of objects or NULL if it fails.
81819f0f 1984 */
497b66f2 1985static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1986 struct kmem_cache_node *n, struct page *page,
633b0764 1987 int mode, int *objects)
81819f0f 1988{
2cfb7455
CL
1989 void *freelist;
1990 unsigned long counters;
1991 struct page new;
1992
c65c1877
PZ
1993 lockdep_assert_held(&n->list_lock);
1994
2cfb7455
CL
1995 /*
1996 * Zap the freelist and set the frozen bit.
1997 * The old freelist is the list of objects for the
1998 * per cpu allocation list.
1999 */
7ced3719
CL
2000 freelist = page->freelist;
2001 counters = page->counters;
2002 new.counters = counters;
633b0764 2003 *objects = new.objects - new.inuse;
23910c50 2004 if (mode) {
7ced3719 2005 new.inuse = page->objects;
23910c50
PE
2006 new.freelist = NULL;
2007 } else {
2008 new.freelist = freelist;
2009 }
2cfb7455 2010
a0132ac0 2011 VM_BUG_ON(new.frozen);
7ced3719 2012 new.frozen = 1;
2cfb7455 2013
7ced3719 2014 if (!__cmpxchg_double_slab(s, page,
2cfb7455 2015 freelist, counters,
02d7633f 2016 new.freelist, new.counters,
7ced3719 2017 "acquire_slab"))
7ced3719 2018 return NULL;
2cfb7455
CL
2019
2020 remove_partial(n, page);
7ced3719 2021 WARN_ON(!freelist);
49e22585 2022 return freelist;
81819f0f
CL
2023}
2024
633b0764 2025static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 2026static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 2027
81819f0f 2028/*
672bba3a 2029 * Try to allocate a partial slab from a specific node.
81819f0f 2030 */
8ba00bb6
JK
2031static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2032 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 2033{
49e22585
CL
2034 struct page *page, *page2;
2035 void *object = NULL;
e5d9998f 2036 unsigned int available = 0;
633b0764 2037 int objects;
81819f0f
CL
2038
2039 /*
2040 * Racy check. If we mistakenly see no partial slabs then we
2041 * just allocate an empty slab. If we mistakenly try to get a
70b6d25e 2042 * partial slab and there is none available then get_partial()
672bba3a 2043 * will return NULL.
81819f0f
CL
2044 */
2045 if (!n || !n->nr_partial)
2046 return NULL;
2047
2048 spin_lock(&n->list_lock);
916ac052 2049 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 2050 void *t;
49e22585 2051
8ba00bb6
JK
2052 if (!pfmemalloc_match(page, flags))
2053 continue;
2054
633b0764 2055 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585 2056 if (!t)
9b1ea29b 2057 break;
49e22585 2058
633b0764 2059 available += objects;
12d79634 2060 if (!object) {
49e22585 2061 c->page = page;
49e22585 2062 stat(s, ALLOC_FROM_PARTIAL);
49e22585 2063 object = t;
49e22585 2064 } else {
633b0764 2065 put_cpu_partial(s, page, 0);
8028dcea 2066 stat(s, CPU_PARTIAL_NODE);
49e22585 2067 }
345c905d 2068 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 2069 || available > slub_cpu_partial(s) / 2)
49e22585
CL
2070 break;
2071
497b66f2 2072 }
81819f0f 2073 spin_unlock(&n->list_lock);
497b66f2 2074 return object;
81819f0f
CL
2075}
2076
2077/*
672bba3a 2078 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 2079 */
de3ec035 2080static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 2081 struct kmem_cache_cpu *c)
81819f0f
CL
2082{
2083#ifdef CONFIG_NUMA
2084 struct zonelist *zonelist;
dd1a239f 2085 struct zoneref *z;
54a6eb5c 2086 struct zone *zone;
97a225e6 2087 enum zone_type highest_zoneidx = gfp_zone(flags);
497b66f2 2088 void *object;
cc9a6c87 2089 unsigned int cpuset_mems_cookie;
81819f0f
CL
2090
2091 /*
672bba3a
CL
2092 * The defrag ratio allows a configuration of the tradeoffs between
2093 * inter node defragmentation and node local allocations. A lower
2094 * defrag_ratio increases the tendency to do local allocations
2095 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2096 *
672bba3a
CL
2097 * If the defrag_ratio is set to 0 then kmalloc() always
2098 * returns node local objects. If the ratio is higher then kmalloc()
2099 * may return off node objects because partial slabs are obtained
2100 * from other nodes and filled up.
81819f0f 2101 *
43efd3ea
LP
2102 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2103 * (which makes defrag_ratio = 1000) then every (well almost)
2104 * allocation will first attempt to defrag slab caches on other nodes.
2105 * This means scanning over all nodes to look for partial slabs which
2106 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2107 * with available objects.
81819f0f 2108 */
9824601e
CL
2109 if (!s->remote_node_defrag_ratio ||
2110 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2111 return NULL;
2112
cc9a6c87 2113 do {
d26914d1 2114 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 2115 zonelist = node_zonelist(mempolicy_slab_node(), flags);
97a225e6 2116 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2117 struct kmem_cache_node *n;
2118
2119 n = get_node(s, zone_to_nid(zone));
2120
dee2f8aa 2121 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 2122 n->nr_partial > s->min_partial) {
8ba00bb6 2123 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
2124 if (object) {
2125 /*
d26914d1
MG
2126 * Don't check read_mems_allowed_retry()
2127 * here - if mems_allowed was updated in
2128 * parallel, that was a harmless race
2129 * between allocation and the cpuset
2130 * update
cc9a6c87 2131 */
cc9a6c87
MG
2132 return object;
2133 }
c0ff7453 2134 }
81819f0f 2135 }
d26914d1 2136 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2137#endif /* CONFIG_NUMA */
81819f0f
CL
2138 return NULL;
2139}
2140
2141/*
2142 * Get a partial page, lock it and return it.
2143 */
497b66f2 2144static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 2145 struct kmem_cache_cpu *c)
81819f0f 2146{
497b66f2 2147 void *object;
a561ce00
JK
2148 int searchnode = node;
2149
2150 if (node == NUMA_NO_NODE)
2151 searchnode = numa_mem_id();
81819f0f 2152
8ba00bb6 2153 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
2154 if (object || node != NUMA_NO_NODE)
2155 return object;
81819f0f 2156
acd19fd1 2157 return get_any_partial(s, flags, c);
81819f0f
CL
2158}
2159
923717cb 2160#ifdef CONFIG_PREEMPTION
8a5ec0ba 2161/*
0d645ed1 2162 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2163 * during cmpxchg. The transactions start with the cpu number and are then
2164 * incremented by CONFIG_NR_CPUS.
2165 */
2166#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2167#else
2168/*
2169 * No preemption supported therefore also no need to check for
2170 * different cpus.
2171 */
2172#define TID_STEP 1
2173#endif
2174
2175static inline unsigned long next_tid(unsigned long tid)
2176{
2177 return tid + TID_STEP;
2178}
2179
9d5f0be0 2180#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2181static inline unsigned int tid_to_cpu(unsigned long tid)
2182{
2183 return tid % TID_STEP;
2184}
2185
2186static inline unsigned long tid_to_event(unsigned long tid)
2187{
2188 return tid / TID_STEP;
2189}
9d5f0be0 2190#endif
8a5ec0ba
CL
2191
2192static inline unsigned int init_tid(int cpu)
2193{
2194 return cpu;
2195}
2196
2197static inline void note_cmpxchg_failure(const char *n,
2198 const struct kmem_cache *s, unsigned long tid)
2199{
2200#ifdef SLUB_DEBUG_CMPXCHG
2201 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2202
f9f58285 2203 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2204
923717cb 2205#ifdef CONFIG_PREEMPTION
8a5ec0ba 2206 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2207 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2208 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2209 else
2210#endif
2211 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2212 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2213 tid_to_event(tid), tid_to_event(actual_tid));
2214 else
f9f58285 2215 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2216 actual_tid, tid, next_tid(tid));
2217#endif
4fdccdfb 2218 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2219}
2220
788e1aad 2221static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2222{
8a5ec0ba
CL
2223 int cpu;
2224
2225 for_each_possible_cpu(cpu)
2226 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2227}
2cfb7455 2228
81819f0f
CL
2229/*
2230 * Remove the cpu slab
2231 */
d0e0ac97 2232static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2233 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2234{
2cfb7455 2235 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455 2236 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
d930ff03 2237 int lock = 0, free_delta = 0;
2cfb7455 2238 enum slab_modes l = M_NONE, m = M_NONE;
d930ff03 2239 void *nextfree, *freelist_iter, *freelist_tail;
136333d1 2240 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2241 struct page new;
2242 struct page old;
2243
2244 if (page->freelist) {
84e554e6 2245 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2246 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2247 }
2248
894b8788 2249 /*
d930ff03
VB
2250 * Stage one: Count the objects on cpu's freelist as free_delta and
2251 * remember the last object in freelist_tail for later splicing.
2cfb7455 2252 */
d930ff03
VB
2253 freelist_tail = NULL;
2254 freelist_iter = freelist;
2255 while (freelist_iter) {
2256 nextfree = get_freepointer(s, freelist_iter);
2cfb7455 2257
52f23478
DZ
2258 /*
2259 * If 'nextfree' is invalid, it is possible that the object at
d930ff03
VB
2260 * 'freelist_iter' is already corrupted. So isolate all objects
2261 * starting at 'freelist_iter' by skipping them.
52f23478 2262 */
d930ff03 2263 if (freelist_corrupted(s, page, &freelist_iter, nextfree))
52f23478
DZ
2264 break;
2265
d930ff03
VB
2266 freelist_tail = freelist_iter;
2267 free_delta++;
2cfb7455 2268
d930ff03 2269 freelist_iter = nextfree;
2cfb7455
CL
2270 }
2271
894b8788 2272 /*
d930ff03
VB
2273 * Stage two: Unfreeze the page while splicing the per-cpu
2274 * freelist to the head of page's freelist.
2275 *
2276 * Ensure that the page is unfrozen while the list presence
2277 * reflects the actual number of objects during unfreeze.
2cfb7455
CL
2278 *
2279 * We setup the list membership and then perform a cmpxchg
2280 * with the count. If there is a mismatch then the page
2281 * is not unfrozen but the page is on the wrong list.
2282 *
2283 * Then we restart the process which may have to remove
2284 * the page from the list that we just put it on again
2285 * because the number of objects in the slab may have
2286 * changed.
894b8788 2287 */
2cfb7455 2288redo:
894b8788 2289
d930ff03
VB
2290 old.freelist = READ_ONCE(page->freelist);
2291 old.counters = READ_ONCE(page->counters);
a0132ac0 2292 VM_BUG_ON(!old.frozen);
7c2e132c 2293
2cfb7455
CL
2294 /* Determine target state of the slab */
2295 new.counters = old.counters;
d930ff03
VB
2296 if (freelist_tail) {
2297 new.inuse -= free_delta;
2298 set_freepointer(s, freelist_tail, old.freelist);
2cfb7455
CL
2299 new.freelist = freelist;
2300 } else
2301 new.freelist = old.freelist;
2302
2303 new.frozen = 0;
2304
8a5b20ae 2305 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2306 m = M_FREE;
2307 else if (new.freelist) {
2308 m = M_PARTIAL;
2309 if (!lock) {
2310 lock = 1;
2311 /*
8bb4e7a2 2312 * Taking the spinlock removes the possibility
2cfb7455
CL
2313 * that acquire_slab() will see a slab page that
2314 * is frozen
2315 */
2316 spin_lock(&n->list_lock);
2317 }
2318 } else {
2319 m = M_FULL;
965c4848 2320 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2cfb7455
CL
2321 lock = 1;
2322 /*
2323 * This also ensures that the scanning of full
2324 * slabs from diagnostic functions will not see
2325 * any frozen slabs.
2326 */
2327 spin_lock(&n->list_lock);
2328 }
2329 }
2330
2331 if (l != m) {
2cfb7455 2332 if (l == M_PARTIAL)
2cfb7455 2333 remove_partial(n, page);
2cfb7455 2334 else if (l == M_FULL)
c65c1877 2335 remove_full(s, n, page);
2cfb7455 2336
88349a28 2337 if (m == M_PARTIAL)
2cfb7455 2338 add_partial(n, page, tail);
88349a28 2339 else if (m == M_FULL)
2cfb7455 2340 add_full(s, n, page);
2cfb7455
CL
2341 }
2342
2343 l = m;
1d07171c 2344 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2345 old.freelist, old.counters,
2346 new.freelist, new.counters,
2347 "unfreezing slab"))
2348 goto redo;
2349
2cfb7455
CL
2350 if (lock)
2351 spin_unlock(&n->list_lock);
2352
88349a28
WY
2353 if (m == M_PARTIAL)
2354 stat(s, tail);
2355 else if (m == M_FULL)
2356 stat(s, DEACTIVATE_FULL);
2357 else if (m == M_FREE) {
2cfb7455
CL
2358 stat(s, DEACTIVATE_EMPTY);
2359 discard_slab(s, page);
2360 stat(s, FREE_SLAB);
894b8788 2361 }
d4ff6d35
WY
2362
2363 c->page = NULL;
2364 c->freelist = NULL;
81819f0f
CL
2365}
2366
d24ac77f
JK
2367/*
2368 * Unfreeze all the cpu partial slabs.
2369 *
59a09917
CL
2370 * This function must be called with interrupts disabled
2371 * for the cpu using c (or some other guarantee must be there
2372 * to guarantee no concurrent accesses).
d24ac77f 2373 */
59a09917
CL
2374static void unfreeze_partials(struct kmem_cache *s,
2375 struct kmem_cache_cpu *c)
49e22585 2376{
345c905d 2377#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2378 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2379 struct page *page, *discard_page = NULL;
49e22585 2380
4c7ba22e 2381 while ((page = slub_percpu_partial(c))) {
49e22585
CL
2382 struct page new;
2383 struct page old;
2384
4c7ba22e 2385 slub_set_percpu_partial(c, page);
43d77867
JK
2386
2387 n2 = get_node(s, page_to_nid(page));
2388 if (n != n2) {
2389 if (n)
2390 spin_unlock(&n->list_lock);
2391
2392 n = n2;
2393 spin_lock(&n->list_lock);
2394 }
49e22585
CL
2395
2396 do {
2397
2398 old.freelist = page->freelist;
2399 old.counters = page->counters;
a0132ac0 2400 VM_BUG_ON(!old.frozen);
49e22585
CL
2401
2402 new.counters = old.counters;
2403 new.freelist = old.freelist;
2404
2405 new.frozen = 0;
2406
d24ac77f 2407 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2408 old.freelist, old.counters,
2409 new.freelist, new.counters,
2410 "unfreezing slab"));
2411
8a5b20ae 2412 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2413 page->next = discard_page;
2414 discard_page = page;
43d77867
JK
2415 } else {
2416 add_partial(n, page, DEACTIVATE_TO_TAIL);
2417 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2418 }
2419 }
2420
2421 if (n)
2422 spin_unlock(&n->list_lock);
9ada1934
SL
2423
2424 while (discard_page) {
2425 page = discard_page;
2426 discard_page = discard_page->next;
2427
2428 stat(s, DEACTIVATE_EMPTY);
2429 discard_slab(s, page);
2430 stat(s, FREE_SLAB);
2431 }
6dfd1b65 2432#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2433}
2434
2435/*
9234bae9
WY
2436 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2437 * partial page slot if available.
49e22585
CL
2438 *
2439 * If we did not find a slot then simply move all the partials to the
2440 * per node partial list.
2441 */
633b0764 2442static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2443{
345c905d 2444#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2445 struct page *oldpage;
2446 int pages;
2447 int pobjects;
2448
d6e0b7fa 2449 preempt_disable();
49e22585
CL
2450 do {
2451 pages = 0;
2452 pobjects = 0;
2453 oldpage = this_cpu_read(s->cpu_slab->partial);
2454
2455 if (oldpage) {
2456 pobjects = oldpage->pobjects;
2457 pages = oldpage->pages;
bbd4e305 2458 if (drain && pobjects > slub_cpu_partial(s)) {
49e22585
CL
2459 unsigned long flags;
2460 /*
2461 * partial array is full. Move the existing
2462 * set to the per node partial list.
2463 */
2464 local_irq_save(flags);
59a09917 2465 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2466 local_irq_restore(flags);
e24fc410 2467 oldpage = NULL;
49e22585
CL
2468 pobjects = 0;
2469 pages = 0;
8028dcea 2470 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2471 }
2472 }
2473
2474 pages++;
2475 pobjects += page->objects - page->inuse;
2476
2477 page->pages = pages;
2478 page->pobjects = pobjects;
2479 page->next = oldpage;
2480
d0e0ac97
CG
2481 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2482 != oldpage);
bbd4e305 2483 if (unlikely(!slub_cpu_partial(s))) {
d6e0b7fa
VD
2484 unsigned long flags;
2485
2486 local_irq_save(flags);
2487 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2488 local_irq_restore(flags);
2489 }
2490 preempt_enable();
6dfd1b65 2491#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2492}
2493
dfb4f096 2494static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2495{
84e554e6 2496 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2497 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2498
2499 c->tid = next_tid(c->tid);
81819f0f
CL
2500}
2501
2502/*
2503 * Flush cpu slab.
6446faa2 2504 *
81819f0f
CL
2505 * Called from IPI handler with interrupts disabled.
2506 */
0c710013 2507static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2508{
9dfc6e68 2509 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2510
1265ef2d
WY
2511 if (c->page)
2512 flush_slab(s, c);
49e22585 2513
1265ef2d 2514 unfreeze_partials(s, c);
81819f0f
CL
2515}
2516
2517static void flush_cpu_slab(void *d)
2518{
2519 struct kmem_cache *s = d;
81819f0f 2520
dfb4f096 2521 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2522}
2523
a8364d55
GBY
2524static bool has_cpu_slab(int cpu, void *info)
2525{
2526 struct kmem_cache *s = info;
2527 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2528
a93cf07b 2529 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2530}
2531
81819f0f
CL
2532static void flush_all(struct kmem_cache *s)
2533{
cb923159 2534 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
81819f0f
CL
2535}
2536
a96a87bf
SAS
2537/*
2538 * Use the cpu notifier to insure that the cpu slabs are flushed when
2539 * necessary.
2540 */
2541static int slub_cpu_dead(unsigned int cpu)
2542{
2543 struct kmem_cache *s;
2544 unsigned long flags;
2545
2546 mutex_lock(&slab_mutex);
2547 list_for_each_entry(s, &slab_caches, list) {
2548 local_irq_save(flags);
2549 __flush_cpu_slab(s, cpu);
2550 local_irq_restore(flags);
2551 }
2552 mutex_unlock(&slab_mutex);
2553 return 0;
2554}
2555
dfb4f096
CL
2556/*
2557 * Check if the objects in a per cpu structure fit numa
2558 * locality expectations.
2559 */
57d437d2 2560static inline int node_match(struct page *page, int node)
dfb4f096
CL
2561{
2562#ifdef CONFIG_NUMA
6159d0f5 2563 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2564 return 0;
2565#endif
2566 return 1;
2567}
2568
9a02d699 2569#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2570static int count_free(struct page *page)
2571{
2572 return page->objects - page->inuse;
2573}
2574
9a02d699
DR
2575static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2576{
2577 return atomic_long_read(&n->total_objects);
2578}
2579#endif /* CONFIG_SLUB_DEBUG */
2580
2581#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2582static unsigned long count_partial(struct kmem_cache_node *n,
2583 int (*get_count)(struct page *))
2584{
2585 unsigned long flags;
2586 unsigned long x = 0;
2587 struct page *page;
2588
2589 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2590 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2591 x += get_count(page);
2592 spin_unlock_irqrestore(&n->list_lock, flags);
2593 return x;
2594}
9a02d699 2595#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2596
781b2ba6
PE
2597static noinline void
2598slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2599{
9a02d699
DR
2600#ifdef CONFIG_SLUB_DEBUG
2601 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2602 DEFAULT_RATELIMIT_BURST);
781b2ba6 2603 int node;
fa45dc25 2604 struct kmem_cache_node *n;
781b2ba6 2605
9a02d699
DR
2606 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2607 return;
2608
5b3810e5
VB
2609 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2610 nid, gfpflags, &gfpflags);
19af27af 2611 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2612 s->name, s->object_size, s->size, oo_order(s->oo),
2613 oo_order(s->min));
781b2ba6 2614
3b0efdfa 2615 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2616 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2617 s->name);
fa5ec8a1 2618
fa45dc25 2619 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2620 unsigned long nr_slabs;
2621 unsigned long nr_objs;
2622 unsigned long nr_free;
2623
26c02cf0
AB
2624 nr_free = count_partial(n, count_free);
2625 nr_slabs = node_nr_slabs(n);
2626 nr_objs = node_nr_objs(n);
781b2ba6 2627
f9f58285 2628 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2629 node, nr_slabs, nr_objs, nr_free);
2630 }
9a02d699 2631#endif
781b2ba6
PE
2632}
2633
497b66f2
CL
2634static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2635 int node, struct kmem_cache_cpu **pc)
2636{
6faa6833 2637 void *freelist;
188fd063
CL
2638 struct kmem_cache_cpu *c = *pc;
2639 struct page *page;
497b66f2 2640
128227e7
MW
2641 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2642
188fd063 2643 freelist = get_partial(s, flags, node, c);
497b66f2 2644
188fd063
CL
2645 if (freelist)
2646 return freelist;
2647
2648 page = new_slab(s, flags, node);
497b66f2 2649 if (page) {
7c8e0181 2650 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2651 if (c->page)
2652 flush_slab(s, c);
2653
2654 /*
2655 * No other reference to the page yet so we can
2656 * muck around with it freely without cmpxchg
2657 */
6faa6833 2658 freelist = page->freelist;
497b66f2
CL
2659 page->freelist = NULL;
2660
2661 stat(s, ALLOC_SLAB);
497b66f2
CL
2662 c->page = page;
2663 *pc = c;
edde82b6 2664 }
497b66f2 2665
6faa6833 2666 return freelist;
497b66f2
CL
2667}
2668
072bb0aa
MG
2669static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2670{
2671 if (unlikely(PageSlabPfmemalloc(page)))
2672 return gfp_pfmemalloc_allowed(gfpflags);
2673
2674 return true;
2675}
2676
213eeb9f 2677/*
d0e0ac97
CG
2678 * Check the page->freelist of a page and either transfer the freelist to the
2679 * per cpu freelist or deactivate the page.
213eeb9f
CL
2680 *
2681 * The page is still frozen if the return value is not NULL.
2682 *
2683 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2684 *
2685 * This function must be called with interrupt disabled.
213eeb9f
CL
2686 */
2687static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2688{
2689 struct page new;
2690 unsigned long counters;
2691 void *freelist;
2692
2693 do {
2694 freelist = page->freelist;
2695 counters = page->counters;
6faa6833 2696
213eeb9f 2697 new.counters = counters;
a0132ac0 2698 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2699
2700 new.inuse = page->objects;
2701 new.frozen = freelist != NULL;
2702
d24ac77f 2703 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2704 freelist, counters,
2705 NULL, new.counters,
2706 "get_freelist"));
2707
2708 return freelist;
2709}
2710
81819f0f 2711/*
894b8788
CL
2712 * Slow path. The lockless freelist is empty or we need to perform
2713 * debugging duties.
2714 *
894b8788
CL
2715 * Processing is still very fast if new objects have been freed to the
2716 * regular freelist. In that case we simply take over the regular freelist
2717 * as the lockless freelist and zap the regular freelist.
81819f0f 2718 *
894b8788
CL
2719 * If that is not working then we fall back to the partial lists. We take the
2720 * first element of the freelist as the object to allocate now and move the
2721 * rest of the freelist to the lockless freelist.
81819f0f 2722 *
894b8788 2723 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2724 * we need to allocate a new slab. This is the slowest path since it involves
2725 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2726 *
2727 * Version of __slab_alloc to use when we know that interrupts are
2728 * already disabled (which is the case for bulk allocation).
81819f0f 2729 */
a380a3c7 2730static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2731 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2732{
6faa6833 2733 void *freelist;
f6e7def7 2734 struct page *page;
81819f0f 2735
9f986d99
AW
2736 stat(s, ALLOC_SLOWPATH);
2737
f6e7def7 2738 page = c->page;
0715e6c5
VB
2739 if (!page) {
2740 /*
2741 * if the node is not online or has no normal memory, just
2742 * ignore the node constraint
2743 */
2744 if (unlikely(node != NUMA_NO_NODE &&
7e1fa93d 2745 !node_isset(node, slab_nodes)))
0715e6c5 2746 node = NUMA_NO_NODE;
81819f0f 2747 goto new_slab;
0715e6c5 2748 }
49e22585 2749redo:
6faa6833 2750
57d437d2 2751 if (unlikely(!node_match(page, node))) {
0715e6c5
VB
2752 /*
2753 * same as above but node_match() being false already
2754 * implies node != NUMA_NO_NODE
2755 */
7e1fa93d 2756 if (!node_isset(node, slab_nodes)) {
0715e6c5
VB
2757 node = NUMA_NO_NODE;
2758 goto redo;
2759 } else {
a561ce00 2760 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2761 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2762 goto new_slab;
2763 }
fc59c053 2764 }
6446faa2 2765
072bb0aa
MG
2766 /*
2767 * By rights, we should be searching for a slab page that was
2768 * PFMEMALLOC but right now, we are losing the pfmemalloc
2769 * information when the page leaves the per-cpu allocator
2770 */
2771 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2772 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2773 goto new_slab;
2774 }
2775
73736e03 2776 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2777 freelist = c->freelist;
2778 if (freelist)
73736e03 2779 goto load_freelist;
03e404af 2780
f6e7def7 2781 freelist = get_freelist(s, page);
6446faa2 2782
6faa6833 2783 if (!freelist) {
03e404af
CL
2784 c->page = NULL;
2785 stat(s, DEACTIVATE_BYPASS);
fc59c053 2786 goto new_slab;
03e404af 2787 }
6446faa2 2788
84e554e6 2789 stat(s, ALLOC_REFILL);
6446faa2 2790
894b8788 2791load_freelist:
507effea
CL
2792 /*
2793 * freelist is pointing to the list of objects to be used.
2794 * page is pointing to the page from which the objects are obtained.
2795 * That page must be frozen for per cpu allocations to work.
2796 */
a0132ac0 2797 VM_BUG_ON(!c->page->frozen);
6faa6833 2798 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2799 c->tid = next_tid(c->tid);
6faa6833 2800 return freelist;
81819f0f 2801
81819f0f 2802new_slab:
2cfb7455 2803
a93cf07b
WY
2804 if (slub_percpu_partial(c)) {
2805 page = c->page = slub_percpu_partial(c);
2806 slub_set_percpu_partial(c, page);
49e22585 2807 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2808 goto redo;
81819f0f
CL
2809 }
2810
188fd063 2811 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2812
f4697436 2813 if (unlikely(!freelist)) {
9a02d699 2814 slab_out_of_memory(s, gfpflags, node);
f4697436 2815 return NULL;
81819f0f 2816 }
2cfb7455 2817
f6e7def7 2818 page = c->page;
5091b74a 2819 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2820 goto load_freelist;
2cfb7455 2821
497b66f2 2822 /* Only entered in the debug case */
d0e0ac97
CG
2823 if (kmem_cache_debug(s) &&
2824 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2825 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2826
d4ff6d35 2827 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2828 return freelist;
894b8788
CL
2829}
2830
a380a3c7
CL
2831/*
2832 * Another one that disabled interrupt and compensates for possible
2833 * cpu changes by refetching the per cpu area pointer.
2834 */
2835static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2836 unsigned long addr, struct kmem_cache_cpu *c)
2837{
2838 void *p;
2839 unsigned long flags;
2840
2841 local_irq_save(flags);
923717cb 2842#ifdef CONFIG_PREEMPTION
a380a3c7
CL
2843 /*
2844 * We may have been preempted and rescheduled on a different
2845 * cpu before disabling interrupts. Need to reload cpu area
2846 * pointer.
2847 */
2848 c = this_cpu_ptr(s->cpu_slab);
2849#endif
2850
2851 p = ___slab_alloc(s, gfpflags, node, addr, c);
2852 local_irq_restore(flags);
2853 return p;
2854}
2855
0f181f9f
AP
2856/*
2857 * If the object has been wiped upon free, make sure it's fully initialized by
2858 * zeroing out freelist pointer.
2859 */
2860static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2861 void *obj)
2862{
2863 if (unlikely(slab_want_init_on_free(s)) && obj)
ce5716c6
AK
2864 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
2865 0, sizeof(void *));
0f181f9f
AP
2866}
2867
894b8788
CL
2868/*
2869 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2870 * have the fastpath folded into their functions. So no function call
2871 * overhead for requests that can be satisfied on the fastpath.
2872 *
2873 * The fastpath works by first checking if the lockless freelist can be used.
2874 * If not then __slab_alloc is called for slow processing.
2875 *
2876 * Otherwise we can simply pick the next object from the lockless free list.
2877 */
2b847c3c 2878static __always_inline void *slab_alloc_node(struct kmem_cache *s,
b89fb5ef 2879 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
894b8788 2880{
03ec0ed5 2881 void *object;
dfb4f096 2882 struct kmem_cache_cpu *c;
57d437d2 2883 struct page *page;
8a5ec0ba 2884 unsigned long tid;
964d4bd3 2885 struct obj_cgroup *objcg = NULL;
da844b78 2886 bool init = false;
1f84260c 2887
964d4bd3 2888 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
8135be5a 2889 if (!s)
773ff60e 2890 return NULL;
b89fb5ef
AP
2891
2892 object = kfence_alloc(s, orig_size, gfpflags);
2893 if (unlikely(object))
2894 goto out;
2895
8a5ec0ba 2896redo:
8a5ec0ba
CL
2897 /*
2898 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2899 * enabled. We may switch back and forth between cpus while
2900 * reading from one cpu area. That does not matter as long
2901 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2902 *
9aabf810 2903 * We should guarantee that tid and kmem_cache are retrieved on
923717cb 2904 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
9aabf810 2905 * to check if it is matched or not.
8a5ec0ba 2906 */
9aabf810
JK
2907 do {
2908 tid = this_cpu_read(s->cpu_slab->tid);
2909 c = raw_cpu_ptr(s->cpu_slab);
923717cb 2910 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 2911 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2912
2913 /*
2914 * Irqless object alloc/free algorithm used here depends on sequence
2915 * of fetching cpu_slab's data. tid should be fetched before anything
2916 * on c to guarantee that object and page associated with previous tid
2917 * won't be used with current tid. If we fetch tid first, object and
2918 * page could be one associated with next tid and our alloc/free
2919 * request will be failed. In this case, we will retry. So, no problem.
2920 */
2921 barrier();
8a5ec0ba 2922
8a5ec0ba
CL
2923 /*
2924 * The transaction ids are globally unique per cpu and per operation on
2925 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2926 * occurs on the right processor and that there was no operation on the
2927 * linked list in between.
2928 */
8a5ec0ba 2929
9dfc6e68 2930 object = c->freelist;
57d437d2 2931 page = c->page;
22e4663e 2932 if (unlikely(!object || !page || !node_match(page, node))) {
dfb4f096 2933 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492 2934 } else {
0ad9500e
ED
2935 void *next_object = get_freepointer_safe(s, object);
2936
8a5ec0ba 2937 /*
25985edc 2938 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2939 * operation and if we are on the right processor.
2940 *
d0e0ac97
CG
2941 * The cmpxchg does the following atomically (without lock
2942 * semantics!)
8a5ec0ba
CL
2943 * 1. Relocate first pointer to the current per cpu area.
2944 * 2. Verify that tid and freelist have not been changed
2945 * 3. If they were not changed replace tid and freelist
2946 *
d0e0ac97
CG
2947 * Since this is without lock semantics the protection is only
2948 * against code executing on this cpu *not* from access by
2949 * other cpus.
8a5ec0ba 2950 */
933393f5 2951 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2952 s->cpu_slab->freelist, s->cpu_slab->tid,
2953 object, tid,
0ad9500e 2954 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2955
2956 note_cmpxchg_failure("slab_alloc", s, tid);
2957 goto redo;
2958 }
0ad9500e 2959 prefetch_freepointer(s, next_object);
84e554e6 2960 stat(s, ALLOC_FASTPATH);
894b8788 2961 }
0f181f9f 2962
ce5716c6 2963 maybe_wipe_obj_freeptr(s, object);
da844b78 2964 init = slab_want_init_on_alloc(gfpflags, s);
d07dbea4 2965
b89fb5ef 2966out:
da844b78 2967 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
5a896d9e 2968
894b8788 2969 return object;
81819f0f
CL
2970}
2971
2b847c3c 2972static __always_inline void *slab_alloc(struct kmem_cache *s,
b89fb5ef 2973 gfp_t gfpflags, unsigned long addr, size_t orig_size)
2b847c3c 2974{
b89fb5ef 2975 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
2b847c3c
EG
2976}
2977
81819f0f
CL
2978void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2979{
b89fb5ef 2980 void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
5b882be4 2981
d0e0ac97
CG
2982 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2983 s->size, gfpflags);
5b882be4
EGM
2984
2985 return ret;
81819f0f
CL
2986}
2987EXPORT_SYMBOL(kmem_cache_alloc);
2988
0f24f128 2989#ifdef CONFIG_TRACING
4a92379b
RK
2990void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2991{
b89fb5ef 2992 void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
4a92379b 2993 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 2994 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2995 return ret;
2996}
2997EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2998#endif
2999
81819f0f
CL
3000#ifdef CONFIG_NUMA
3001void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3002{
b89fb5ef 3003 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
5b882be4 3004
ca2b84cb 3005 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 3006 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
3007
3008 return ret;
81819f0f
CL
3009}
3010EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 3011
0f24f128 3012#ifdef CONFIG_TRACING
4a92379b 3013void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 3014 gfp_t gfpflags,
4a92379b 3015 int node, size_t size)
5b882be4 3016{
b89fb5ef 3017 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
4a92379b
RK
3018
3019 trace_kmalloc_node(_RET_IP_, ret,
3020 size, s->size, gfpflags, node);
0316bec2 3021
0116523c 3022 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 3023 return ret;
5b882be4 3024}
4a92379b 3025EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 3026#endif
6dfd1b65 3027#endif /* CONFIG_NUMA */
5b882be4 3028
81819f0f 3029/*
94e4d712 3030 * Slow path handling. This may still be called frequently since objects
894b8788 3031 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 3032 *
894b8788
CL
3033 * So we still attempt to reduce cache line usage. Just take the slab
3034 * lock and free the item. If there is no additional partial page
3035 * handling required then we can return immediately.
81819f0f 3036 */
894b8788 3037static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
3038 void *head, void *tail, int cnt,
3039 unsigned long addr)
3040
81819f0f
CL
3041{
3042 void *prior;
2cfb7455 3043 int was_frozen;
2cfb7455
CL
3044 struct page new;
3045 unsigned long counters;
3046 struct kmem_cache_node *n = NULL;
3f649ab7 3047 unsigned long flags;
81819f0f 3048
8a5ec0ba 3049 stat(s, FREE_SLOWPATH);
81819f0f 3050
b89fb5ef
AP
3051 if (kfence_free(head))
3052 return;
3053
19c7ff9e 3054 if (kmem_cache_debug(s) &&
282acb43 3055 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 3056 return;
6446faa2 3057
2cfb7455 3058 do {
837d678d
JK
3059 if (unlikely(n)) {
3060 spin_unlock_irqrestore(&n->list_lock, flags);
3061 n = NULL;
3062 }
2cfb7455
CL
3063 prior = page->freelist;
3064 counters = page->counters;
81084651 3065 set_freepointer(s, tail, prior);
2cfb7455
CL
3066 new.counters = counters;
3067 was_frozen = new.frozen;
81084651 3068 new.inuse -= cnt;
837d678d 3069 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 3070
c65c1877 3071 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
3072
3073 /*
d0e0ac97
CG
3074 * Slab was on no list before and will be
3075 * partially empty
3076 * We can defer the list move and instead
3077 * freeze it.
49e22585
CL
3078 */
3079 new.frozen = 1;
3080
c65c1877 3081 } else { /* Needs to be taken off a list */
49e22585 3082
b455def2 3083 n = get_node(s, page_to_nid(page));
49e22585
CL
3084 /*
3085 * Speculatively acquire the list_lock.
3086 * If the cmpxchg does not succeed then we may
3087 * drop the list_lock without any processing.
3088 *
3089 * Otherwise the list_lock will synchronize with
3090 * other processors updating the list of slabs.
3091 */
3092 spin_lock_irqsave(&n->list_lock, flags);
3093
3094 }
2cfb7455 3095 }
81819f0f 3096
2cfb7455
CL
3097 } while (!cmpxchg_double_slab(s, page,
3098 prior, counters,
81084651 3099 head, new.counters,
2cfb7455 3100 "__slab_free"));
81819f0f 3101
2cfb7455 3102 if (likely(!n)) {
49e22585 3103
c270cf30
AW
3104 if (likely(was_frozen)) {
3105 /*
3106 * The list lock was not taken therefore no list
3107 * activity can be necessary.
3108 */
3109 stat(s, FREE_FROZEN);
3110 } else if (new.frozen) {
3111 /*
3112 * If we just froze the page then put it onto the
3113 * per cpu partial list.
3114 */
49e22585 3115 put_cpu_partial(s, page, 1);
8028dcea
AS
3116 stat(s, CPU_PARTIAL_FREE);
3117 }
c270cf30 3118
b455def2
L
3119 return;
3120 }
81819f0f 3121
8a5b20ae 3122 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
3123 goto slab_empty;
3124
81819f0f 3125 /*
837d678d
JK
3126 * Objects left in the slab. If it was not on the partial list before
3127 * then add it.
81819f0f 3128 */
345c905d 3129 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 3130 remove_full(s, n, page);
837d678d
JK
3131 add_partial(n, page, DEACTIVATE_TO_TAIL);
3132 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 3133 }
80f08c19 3134 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
3135 return;
3136
3137slab_empty:
a973e9dd 3138 if (prior) {
81819f0f 3139 /*
6fbabb20 3140 * Slab on the partial list.
81819f0f 3141 */
5cc6eee8 3142 remove_partial(n, page);
84e554e6 3143 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 3144 } else {
6fbabb20 3145 /* Slab must be on the full list */
c65c1877
PZ
3146 remove_full(s, n, page);
3147 }
2cfb7455 3148
80f08c19 3149 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 3150 stat(s, FREE_SLAB);
81819f0f 3151 discard_slab(s, page);
81819f0f
CL
3152}
3153
894b8788
CL
3154/*
3155 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3156 * can perform fastpath freeing without additional function calls.
3157 *
3158 * The fastpath is only possible if we are freeing to the current cpu slab
3159 * of this processor. This typically the case if we have just allocated
3160 * the item before.
3161 *
3162 * If fastpath is not possible then fall back to __slab_free where we deal
3163 * with all sorts of special processing.
81084651
JDB
3164 *
3165 * Bulk free of a freelist with several objects (all pointing to the
3166 * same page) possible by specifying head and tail ptr, plus objects
3167 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 3168 */
80a9201a
AP
3169static __always_inline void do_slab_free(struct kmem_cache *s,
3170 struct page *page, void *head, void *tail,
3171 int cnt, unsigned long addr)
894b8788 3172{
81084651 3173 void *tail_obj = tail ? : head;
dfb4f096 3174 struct kmem_cache_cpu *c;
8a5ec0ba 3175 unsigned long tid;
964d4bd3 3176
d1b2cf6c 3177 memcg_slab_free_hook(s, &head, 1);
8a5ec0ba
CL
3178redo:
3179 /*
3180 * Determine the currently cpus per cpu slab.
3181 * The cpu may change afterward. However that does not matter since
3182 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3183 * during the cmpxchg then the free will succeed.
8a5ec0ba 3184 */
9aabf810
JK
3185 do {
3186 tid = this_cpu_read(s->cpu_slab->tid);
3187 c = raw_cpu_ptr(s->cpu_slab);
923717cb 3188 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 3189 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 3190
9aabf810
JK
3191 /* Same with comment on barrier() in slab_alloc_node() */
3192 barrier();
c016b0bd 3193
442b06bc 3194 if (likely(page == c->page)) {
5076190d
LT
3195 void **freelist = READ_ONCE(c->freelist);
3196
3197 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3198
933393f5 3199 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba 3200 s->cpu_slab->freelist, s->cpu_slab->tid,
5076190d 3201 freelist, tid,
81084651 3202 head, next_tid(tid)))) {
8a5ec0ba
CL
3203
3204 note_cmpxchg_failure("slab_free", s, tid);
3205 goto redo;
3206 }
84e554e6 3207 stat(s, FREE_FASTPATH);
894b8788 3208 } else
81084651 3209 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 3210
894b8788
CL
3211}
3212
80a9201a
AP
3213static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3214 void *head, void *tail, int cnt,
3215 unsigned long addr)
3216{
80a9201a 3217 /*
c3895391
AK
3218 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3219 * to remove objects, whose reuse must be delayed.
80a9201a 3220 */
c3895391
AK
3221 if (slab_free_freelist_hook(s, &head, &tail))
3222 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3223}
3224
2bd926b4 3225#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3226void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3227{
3228 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3229}
3230#endif
3231
81819f0f
CL
3232void kmem_cache_free(struct kmem_cache *s, void *x)
3233{
b9ce5ef4
GC
3234 s = cache_from_obj(s, x);
3235 if (!s)
79576102 3236 return;
81084651 3237 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3544de8e 3238 trace_kmem_cache_free(_RET_IP_, x, s->name);
81819f0f
CL
3239}
3240EXPORT_SYMBOL(kmem_cache_free);
3241
d0ecd894 3242struct detached_freelist {
fbd02630 3243 struct page *page;
d0ecd894
JDB
3244 void *tail;
3245 void *freelist;
3246 int cnt;
376bf125 3247 struct kmem_cache *s;
d0ecd894 3248};
fbd02630 3249
d0ecd894
JDB
3250/*
3251 * This function progressively scans the array with free objects (with
3252 * a limited look ahead) and extract objects belonging to the same
3253 * page. It builds a detached freelist directly within the given
3254 * page/objects. This can happen without any need for
3255 * synchronization, because the objects are owned by running process.
3256 * The freelist is build up as a single linked list in the objects.
3257 * The idea is, that this detached freelist can then be bulk
3258 * transferred to the real freelist(s), but only requiring a single
3259 * synchronization primitive. Look ahead in the array is limited due
3260 * to performance reasons.
3261 */
376bf125
JDB
3262static inline
3263int build_detached_freelist(struct kmem_cache *s, size_t size,
3264 void **p, struct detached_freelist *df)
d0ecd894
JDB
3265{
3266 size_t first_skipped_index = 0;
3267 int lookahead = 3;
3268 void *object;
ca257195 3269 struct page *page;
fbd02630 3270
d0ecd894
JDB
3271 /* Always re-init detached_freelist */
3272 df->page = NULL;
fbd02630 3273
d0ecd894
JDB
3274 do {
3275 object = p[--size];
ca257195 3276 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3277 } while (!object && size);
3eed034d 3278
d0ecd894
JDB
3279 if (!object)
3280 return 0;
fbd02630 3281
ca257195
JDB
3282 page = virt_to_head_page(object);
3283 if (!s) {
3284 /* Handle kalloc'ed objects */
3285 if (unlikely(!PageSlab(page))) {
3286 BUG_ON(!PageCompound(page));
3287 kfree_hook(object);
4949148a 3288 __free_pages(page, compound_order(page));
ca257195
JDB
3289 p[size] = NULL; /* mark object processed */
3290 return size;
3291 }
3292 /* Derive kmem_cache from object */
3293 df->s = page->slab_cache;
3294 } else {
3295 df->s = cache_from_obj(s, object); /* Support for memcg */
3296 }
376bf125 3297
b89fb5ef 3298 if (is_kfence_address(object)) {
d57a964e 3299 slab_free_hook(df->s, object, false);
b89fb5ef
AP
3300 __kfence_free(object);
3301 p[size] = NULL; /* mark object processed */
3302 return size;
3303 }
3304
d0ecd894 3305 /* Start new detached freelist */
ca257195 3306 df->page = page;
376bf125 3307 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3308 df->tail = object;
3309 df->freelist = object;
3310 p[size] = NULL; /* mark object processed */
3311 df->cnt = 1;
3312
3313 while (size) {
3314 object = p[--size];
3315 if (!object)
3316 continue; /* Skip processed objects */
3317
3318 /* df->page is always set at this point */
3319 if (df->page == virt_to_head_page(object)) {
3320 /* Opportunity build freelist */
376bf125 3321 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3322 df->freelist = object;
3323 df->cnt++;
3324 p[size] = NULL; /* mark object processed */
3325
3326 continue;
fbd02630 3327 }
d0ecd894
JDB
3328
3329 /* Limit look ahead search */
3330 if (!--lookahead)
3331 break;
3332
3333 if (!first_skipped_index)
3334 first_skipped_index = size + 1;
fbd02630 3335 }
d0ecd894
JDB
3336
3337 return first_skipped_index;
3338}
3339
d0ecd894 3340/* Note that interrupts must be enabled when calling this function. */
376bf125 3341void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3342{
3343 if (WARN_ON(!size))
3344 return;
3345
d1b2cf6c 3346 memcg_slab_free_hook(s, p, size);
d0ecd894
JDB
3347 do {
3348 struct detached_freelist df;
3349
3350 size = build_detached_freelist(s, size, p, &df);
84582c8a 3351 if (!df.page)
d0ecd894
JDB
3352 continue;
3353
457c82c3 3354 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
d0ecd894 3355 } while (likely(size));
484748f0
CL
3356}
3357EXPORT_SYMBOL(kmem_cache_free_bulk);
3358
994eb764 3359/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3360int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3361 void **p)
484748f0 3362{
994eb764
JDB
3363 struct kmem_cache_cpu *c;
3364 int i;
964d4bd3 3365 struct obj_cgroup *objcg = NULL;
994eb764 3366
03ec0ed5 3367 /* memcg and kmem_cache debug support */
964d4bd3 3368 s = slab_pre_alloc_hook(s, &objcg, size, flags);
03ec0ed5
JDB
3369 if (unlikely(!s))
3370 return false;
994eb764
JDB
3371 /*
3372 * Drain objects in the per cpu slab, while disabling local
3373 * IRQs, which protects against PREEMPT and interrupts
3374 * handlers invoking normal fastpath.
3375 */
3376 local_irq_disable();
3377 c = this_cpu_ptr(s->cpu_slab);
3378
3379 for (i = 0; i < size; i++) {
b89fb5ef 3380 void *object = kfence_alloc(s, s->object_size, flags);
994eb764 3381
b89fb5ef
AP
3382 if (unlikely(object)) {
3383 p[i] = object;
3384 continue;
3385 }
3386
3387 object = c->freelist;
ebe909e0 3388 if (unlikely(!object)) {
fd4d9c7d
JH
3389 /*
3390 * We may have removed an object from c->freelist using
3391 * the fastpath in the previous iteration; in that case,
3392 * c->tid has not been bumped yet.
3393 * Since ___slab_alloc() may reenable interrupts while
3394 * allocating memory, we should bump c->tid now.
3395 */
3396 c->tid = next_tid(c->tid);
3397
ebe909e0
JDB
3398 /*
3399 * Invoking slow path likely have side-effect
3400 * of re-populating per CPU c->freelist
3401 */
87098373 3402 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3403 _RET_IP_, c);
87098373
CL
3404 if (unlikely(!p[i]))
3405 goto error;
3406
ebe909e0 3407 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3408 maybe_wipe_obj_freeptr(s, p[i]);
3409
ebe909e0
JDB
3410 continue; /* goto for-loop */
3411 }
994eb764
JDB
3412 c->freelist = get_freepointer(s, object);
3413 p[i] = object;
0f181f9f 3414 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3415 }
3416 c->tid = next_tid(c->tid);
3417 local_irq_enable();
3418
da844b78
AK
3419 /*
3420 * memcg and kmem_cache debug support and memory initialization.
3421 * Done outside of the IRQ disabled fastpath loop.
3422 */
3423 slab_post_alloc_hook(s, objcg, flags, size, p,
3424 slab_want_init_on_alloc(flags, s));
865762a8 3425 return i;
87098373 3426error:
87098373 3427 local_irq_enable();
da844b78 3428 slab_post_alloc_hook(s, objcg, flags, i, p, false);
03ec0ed5 3429 __kmem_cache_free_bulk(s, i, p);
865762a8 3430 return 0;
484748f0
CL
3431}
3432EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3433
3434
81819f0f 3435/*
672bba3a
CL
3436 * Object placement in a slab is made very easy because we always start at
3437 * offset 0. If we tune the size of the object to the alignment then we can
3438 * get the required alignment by putting one properly sized object after
3439 * another.
81819f0f
CL
3440 *
3441 * Notice that the allocation order determines the sizes of the per cpu
3442 * caches. Each processor has always one slab available for allocations.
3443 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3444 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3445 * locking overhead.
81819f0f
CL
3446 */
3447
3448/*
f0953a1b 3449 * Minimum / Maximum order of slab pages. This influences locking overhead
81819f0f
CL
3450 * and slab fragmentation. A higher order reduces the number of partial slabs
3451 * and increases the number of allocations possible without having to
3452 * take the list_lock.
3453 */
19af27af
AD
3454static unsigned int slub_min_order;
3455static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3456static unsigned int slub_min_objects;
81819f0f 3457
81819f0f
CL
3458/*
3459 * Calculate the order of allocation given an slab object size.
3460 *
672bba3a
CL
3461 * The order of allocation has significant impact on performance and other
3462 * system components. Generally order 0 allocations should be preferred since
3463 * order 0 does not cause fragmentation in the page allocator. Larger objects
3464 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3465 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3466 * would be wasted.
3467 *
3468 * In order to reach satisfactory performance we must ensure that a minimum
3469 * number of objects is in one slab. Otherwise we may generate too much
3470 * activity on the partial lists which requires taking the list_lock. This is
3471 * less a concern for large slabs though which are rarely used.
81819f0f 3472 *
672bba3a
CL
3473 * slub_max_order specifies the order where we begin to stop considering the
3474 * number of objects in a slab as critical. If we reach slub_max_order then
3475 * we try to keep the page order as low as possible. So we accept more waste
3476 * of space in favor of a small page order.
81819f0f 3477 *
672bba3a
CL
3478 * Higher order allocations also allow the placement of more objects in a
3479 * slab and thereby reduce object handling overhead. If the user has
dc84207d 3480 * requested a higher minimum order then we start with that one instead of
672bba3a 3481 * the smallest order which will fit the object.
81819f0f 3482 */
19af27af
AD
3483static inline unsigned int slab_order(unsigned int size,
3484 unsigned int min_objects, unsigned int max_order,
9736d2a9 3485 unsigned int fract_leftover)
81819f0f 3486{
19af27af
AD
3487 unsigned int min_order = slub_min_order;
3488 unsigned int order;
81819f0f 3489
9736d2a9 3490 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3491 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3492
9736d2a9 3493 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3494 order <= max_order; order++) {
81819f0f 3495
19af27af
AD
3496 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3497 unsigned int rem;
81819f0f 3498
9736d2a9 3499 rem = slab_size % size;
81819f0f 3500
5e6d444e 3501 if (rem <= slab_size / fract_leftover)
81819f0f 3502 break;
81819f0f 3503 }
672bba3a 3504
81819f0f
CL
3505 return order;
3506}
3507
9736d2a9 3508static inline int calculate_order(unsigned int size)
5e6d444e 3509{
19af27af
AD
3510 unsigned int order;
3511 unsigned int min_objects;
3512 unsigned int max_objects;
3286222f 3513 unsigned int nr_cpus;
5e6d444e
CL
3514
3515 /*
3516 * Attempt to find best configuration for a slab. This
3517 * works by first attempting to generate a layout with
3518 * the best configuration and backing off gradually.
3519 *
422ff4d7 3520 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3521 * we reduce the minimum objects required in a slab.
3522 */
3523 min_objects = slub_min_objects;
3286222f
VB
3524 if (!min_objects) {
3525 /*
3526 * Some architectures will only update present cpus when
3527 * onlining them, so don't trust the number if it's just 1. But
3528 * we also don't want to use nr_cpu_ids always, as on some other
3529 * architectures, there can be many possible cpus, but never
3530 * onlined. Here we compromise between trying to avoid too high
3531 * order on systems that appear larger than they are, and too
3532 * low order on systems that appear smaller than they are.
3533 */
3534 nr_cpus = num_present_cpus();
3535 if (nr_cpus <= 1)
3536 nr_cpus = nr_cpu_ids;
3537 min_objects = 4 * (fls(nr_cpus) + 1);
3538 }
9736d2a9 3539 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3540 min_objects = min(min_objects, max_objects);
3541
5e6d444e 3542 while (min_objects > 1) {
19af27af
AD
3543 unsigned int fraction;
3544
c124f5b5 3545 fraction = 16;
5e6d444e
CL
3546 while (fraction >= 4) {
3547 order = slab_order(size, min_objects,
9736d2a9 3548 slub_max_order, fraction);
5e6d444e
CL
3549 if (order <= slub_max_order)
3550 return order;
3551 fraction /= 2;
3552 }
5086c389 3553 min_objects--;
5e6d444e
CL
3554 }
3555
3556 /*
3557 * We were unable to place multiple objects in a slab. Now
3558 * lets see if we can place a single object there.
3559 */
9736d2a9 3560 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3561 if (order <= slub_max_order)
3562 return order;
3563
3564 /*
3565 * Doh this slab cannot be placed using slub_max_order.
3566 */
9736d2a9 3567 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3568 if (order < MAX_ORDER)
5e6d444e
CL
3569 return order;
3570 return -ENOSYS;
3571}
3572
5595cffc 3573static void
4053497d 3574init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3575{
3576 n->nr_partial = 0;
81819f0f
CL
3577 spin_lock_init(&n->list_lock);
3578 INIT_LIST_HEAD(&n->partial);
8ab1372f 3579#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3580 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3581 atomic_long_set(&n->total_objects, 0);
643b1138 3582 INIT_LIST_HEAD(&n->full);
8ab1372f 3583#endif
81819f0f
CL
3584}
3585
55136592 3586static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3587{
6c182dc0 3588 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3589 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3590
8a5ec0ba 3591 /*
d4d84fef
CM
3592 * Must align to double word boundary for the double cmpxchg
3593 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3594 */
d4d84fef
CM
3595 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3596 2 * sizeof(void *));
8a5ec0ba
CL
3597
3598 if (!s->cpu_slab)
3599 return 0;
3600
3601 init_kmem_cache_cpus(s);
4c93c355 3602
8a5ec0ba 3603 return 1;
4c93c355 3604}
4c93c355 3605
51df1142
CL
3606static struct kmem_cache *kmem_cache_node;
3607
81819f0f
CL
3608/*
3609 * No kmalloc_node yet so do it by hand. We know that this is the first
3610 * slab on the node for this slabcache. There are no concurrent accesses
3611 * possible.
3612 *
721ae22a
ZYW
3613 * Note that this function only works on the kmem_cache_node
3614 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3615 * memory on a fresh node that has no slab structures yet.
81819f0f 3616 */
55136592 3617static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3618{
3619 struct page *page;
3620 struct kmem_cache_node *n;
3621
51df1142 3622 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3623
51df1142 3624 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3625
3626 BUG_ON(!page);
a2f92ee7 3627 if (page_to_nid(page) != node) {
f9f58285
FF
3628 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3629 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3630 }
3631
81819f0f
CL
3632 n = page->freelist;
3633 BUG_ON(!n);
8ab1372f 3634#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3635 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3636 init_tracking(kmem_cache_node, n);
8ab1372f 3637#endif
da844b78 3638 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
12b22386
AK
3639 page->freelist = get_freepointer(kmem_cache_node, n);
3640 page->inuse = 1;
3641 page->frozen = 0;
3642 kmem_cache_node->node[node] = n;
4053497d 3643 init_kmem_cache_node(n);
51df1142 3644 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3645
67b6c900 3646 /*
1e4dd946
SR
3647 * No locks need to be taken here as it has just been
3648 * initialized and there is no concurrent access.
67b6c900 3649 */
1e4dd946 3650 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3651}
3652
3653static void free_kmem_cache_nodes(struct kmem_cache *s)
3654{
3655 int node;
fa45dc25 3656 struct kmem_cache_node *n;
81819f0f 3657
fa45dc25 3658 for_each_kmem_cache_node(s, node, n) {
81819f0f 3659 s->node[node] = NULL;
ea37df54 3660 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3661 }
3662}
3663
52b4b950
DS
3664void __kmem_cache_release(struct kmem_cache *s)
3665{
210e7a43 3666 cache_random_seq_destroy(s);
52b4b950
DS
3667 free_percpu(s->cpu_slab);
3668 free_kmem_cache_nodes(s);
3669}
3670
55136592 3671static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3672{
3673 int node;
81819f0f 3674
7e1fa93d 3675 for_each_node_mask(node, slab_nodes) {
81819f0f
CL
3676 struct kmem_cache_node *n;
3677
73367bd8 3678 if (slab_state == DOWN) {
55136592 3679 early_kmem_cache_node_alloc(node);
73367bd8
AD
3680 continue;
3681 }
51df1142 3682 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3683 GFP_KERNEL, node);
81819f0f 3684
73367bd8
AD
3685 if (!n) {
3686 free_kmem_cache_nodes(s);
3687 return 0;
81819f0f 3688 }
73367bd8 3689
4053497d 3690 init_kmem_cache_node(n);
ea37df54 3691 s->node[node] = n;
81819f0f
CL
3692 }
3693 return 1;
3694}
81819f0f 3695
c0bdb232 3696static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3697{
3698 if (min < MIN_PARTIAL)
3699 min = MIN_PARTIAL;
3700 else if (min > MAX_PARTIAL)
3701 min = MAX_PARTIAL;
3702 s->min_partial = min;
3703}
3704
e6d0e1dc
WY
3705static void set_cpu_partial(struct kmem_cache *s)
3706{
3707#ifdef CONFIG_SLUB_CPU_PARTIAL
3708 /*
3709 * cpu_partial determined the maximum number of objects kept in the
3710 * per cpu partial lists of a processor.
3711 *
3712 * Per cpu partial lists mainly contain slabs that just have one
3713 * object freed. If they are used for allocation then they can be
3714 * filled up again with minimal effort. The slab will never hit the
3715 * per node partial lists and therefore no locking will be required.
3716 *
3717 * This setting also determines
3718 *
3719 * A) The number of objects from per cpu partial slabs dumped to the
3720 * per node list when we reach the limit.
3721 * B) The number of objects in cpu partial slabs to extract from the
3722 * per node list when we run out of per cpu objects. We only fetch
3723 * 50% to keep some capacity around for frees.
3724 */
3725 if (!kmem_cache_has_cpu_partial(s))
bbd4e305 3726 slub_set_cpu_partial(s, 0);
e6d0e1dc 3727 else if (s->size >= PAGE_SIZE)
bbd4e305 3728 slub_set_cpu_partial(s, 2);
e6d0e1dc 3729 else if (s->size >= 1024)
bbd4e305 3730 slub_set_cpu_partial(s, 6);
e6d0e1dc 3731 else if (s->size >= 256)
bbd4e305 3732 slub_set_cpu_partial(s, 13);
e6d0e1dc 3733 else
bbd4e305 3734 slub_set_cpu_partial(s, 30);
e6d0e1dc
WY
3735#endif
3736}
3737
81819f0f
CL
3738/*
3739 * calculate_sizes() determines the order and the distribution of data within
3740 * a slab object.
3741 */
06b285dc 3742static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3743{
d50112ed 3744 slab_flags_t flags = s->flags;
be4a7988 3745 unsigned int size = s->object_size;
19af27af 3746 unsigned int order;
81819f0f 3747
d8b42bf5
CL
3748 /*
3749 * Round up object size to the next word boundary. We can only
3750 * place the free pointer at word boundaries and this determines
3751 * the possible location of the free pointer.
3752 */
3753 size = ALIGN(size, sizeof(void *));
3754
3755#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3756 /*
3757 * Determine if we can poison the object itself. If the user of
3758 * the slab may touch the object after free or before allocation
3759 * then we should never poison the object itself.
3760 */
5f0d5a3a 3761 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3762 !s->ctor)
81819f0f
CL
3763 s->flags |= __OBJECT_POISON;
3764 else
3765 s->flags &= ~__OBJECT_POISON;
3766
81819f0f
CL
3767
3768 /*
672bba3a 3769 * If we are Redzoning then check if there is some space between the
81819f0f 3770 * end of the object and the free pointer. If not then add an
672bba3a 3771 * additional word to have some bytes to store Redzone information.
81819f0f 3772 */
3b0efdfa 3773 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3774 size += sizeof(void *);
41ecc55b 3775#endif
81819f0f
CL
3776
3777 /*
672bba3a 3778 * With that we have determined the number of bytes in actual use
e41a49fa 3779 * by the object and redzoning.
81819f0f
CL
3780 */
3781 s->inuse = size;
3782
74c1d3e0
KC
3783 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3784 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
3785 s->ctor) {
81819f0f
CL
3786 /*
3787 * Relocate free pointer after the object if it is not
3788 * permitted to overwrite the first word of the object on
3789 * kmem_cache_free.
3790 *
3791 * This is the case if we do RCU, have a constructor or
74c1d3e0
KC
3792 * destructor, are poisoning the objects, or are
3793 * redzoning an object smaller than sizeof(void *).
cbfc35a4
WL
3794 *
3795 * The assumption that s->offset >= s->inuse means free
3796 * pointer is outside of the object is used in the
3797 * freeptr_outside_object() function. If that is no
3798 * longer true, the function needs to be modified.
81819f0f
CL
3799 */
3800 s->offset = size;
3801 size += sizeof(void *);
e41a49fa 3802 } else {
3202fa62
KC
3803 /*
3804 * Store freelist pointer near middle of object to keep
3805 * it away from the edges of the object to avoid small
3806 * sized over/underflows from neighboring allocations.
3807 */
e41a49fa 3808 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
81819f0f
CL
3809 }
3810
c12b3c62 3811#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3812 if (flags & SLAB_STORE_USER)
3813 /*
3814 * Need to store information about allocs and frees after
3815 * the object.
3816 */
3817 size += 2 * sizeof(struct track);
80a9201a 3818#endif
81819f0f 3819
80a9201a
AP
3820 kasan_cache_create(s, &size, &s->flags);
3821#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3822 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3823 /*
3824 * Add some empty padding so that we can catch
3825 * overwrites from earlier objects rather than let
3826 * tracking information or the free pointer be
0211a9c8 3827 * corrupted if a user writes before the start
81819f0f
CL
3828 * of the object.
3829 */
3830 size += sizeof(void *);
d86bd1be
JK
3831
3832 s->red_left_pad = sizeof(void *);
3833 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3834 size += s->red_left_pad;
3835 }
41ecc55b 3836#endif
672bba3a 3837
81819f0f
CL
3838 /*
3839 * SLUB stores one object immediately after another beginning from
3840 * offset 0. In order to align the objects we have to simply size
3841 * each object to conform to the alignment.
3842 */
45906855 3843 size = ALIGN(size, s->align);
81819f0f 3844 s->size = size;
4138fdfc 3845 s->reciprocal_size = reciprocal_value(size);
06b285dc
CL
3846 if (forced_order >= 0)
3847 order = forced_order;
3848 else
9736d2a9 3849 order = calculate_order(size);
81819f0f 3850
19af27af 3851 if ((int)order < 0)
81819f0f
CL
3852 return 0;
3853
b7a49f0d 3854 s->allocflags = 0;
834f3d11 3855 if (order)
b7a49f0d
CL
3856 s->allocflags |= __GFP_COMP;
3857
3858 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3859 s->allocflags |= GFP_DMA;
b7a49f0d 3860
6d6ea1e9
NB
3861 if (s->flags & SLAB_CACHE_DMA32)
3862 s->allocflags |= GFP_DMA32;
3863
b7a49f0d
CL
3864 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3865 s->allocflags |= __GFP_RECLAIMABLE;
3866
81819f0f
CL
3867 /*
3868 * Determine the number of objects per slab
3869 */
9736d2a9
MW
3870 s->oo = oo_make(order, size);
3871 s->min = oo_make(get_order(size), size);
205ab99d
CL
3872 if (oo_objects(s->oo) > oo_objects(s->max))
3873 s->max = s->oo;
81819f0f 3874
834f3d11 3875 return !!oo_objects(s->oo);
81819f0f
CL
3876}
3877
d50112ed 3878static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3879{
37540008 3880 s->flags = kmem_cache_flags(s->size, flags, s->name);
2482ddec
KC
3881#ifdef CONFIG_SLAB_FREELIST_HARDENED
3882 s->random = get_random_long();
3883#endif
81819f0f 3884
06b285dc 3885 if (!calculate_sizes(s, -1))
81819f0f 3886 goto error;
3de47213
DR
3887 if (disable_higher_order_debug) {
3888 /*
3889 * Disable debugging flags that store metadata if the min slab
3890 * order increased.
3891 */
3b0efdfa 3892 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3893 s->flags &= ~DEBUG_METADATA_FLAGS;
3894 s->offset = 0;
3895 if (!calculate_sizes(s, -1))
3896 goto error;
3897 }
3898 }
81819f0f 3899
2565409f
HC
3900#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3901 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3902 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3903 /* Enable fast mode */
3904 s->flags |= __CMPXCHG_DOUBLE;
3905#endif
3906
3b89d7d8
DR
3907 /*
3908 * The larger the object size is, the more pages we want on the partial
3909 * list to avoid pounding the page allocator excessively.
3910 */
49e22585
CL
3911 set_min_partial(s, ilog2(s->size) / 2);
3912
e6d0e1dc 3913 set_cpu_partial(s);
49e22585 3914
81819f0f 3915#ifdef CONFIG_NUMA
e2cb96b7 3916 s->remote_node_defrag_ratio = 1000;
81819f0f 3917#endif
210e7a43
TG
3918
3919 /* Initialize the pre-computed randomized freelist if slab is up */
3920 if (slab_state >= UP) {
3921 if (init_cache_random_seq(s))
3922 goto error;
3923 }
3924
55136592 3925 if (!init_kmem_cache_nodes(s))
dfb4f096 3926 goto error;
81819f0f 3927
55136592 3928 if (alloc_kmem_cache_cpus(s))
278b1bb1 3929 return 0;
ff12059e 3930
4c93c355 3931 free_kmem_cache_nodes(s);
81819f0f 3932error:
278b1bb1 3933 return -EINVAL;
81819f0f 3934}
81819f0f 3935
33b12c38 3936static void list_slab_objects(struct kmem_cache *s, struct page *page,
55860d96 3937 const char *text)
33b12c38
CL
3938{
3939#ifdef CONFIG_SLUB_DEBUG
3940 void *addr = page_address(page);
55860d96 3941 unsigned long *map;
33b12c38 3942 void *p;
aa456c7a 3943
945cf2b6 3944 slab_err(s, page, text, s->name);
33b12c38 3945 slab_lock(page);
33b12c38 3946
90e9f6a6 3947 map = get_map(s, page);
33b12c38
CL
3948 for_each_object(p, s, addr, page->objects) {
3949
4138fdfc 3950 if (!test_bit(__obj_to_index(s, addr, p), map)) {
96b94abc 3951 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3952 print_tracking(s, p);
3953 }
3954 }
55860d96 3955 put_map(map);
33b12c38
CL
3956 slab_unlock(page);
3957#endif
3958}
3959
81819f0f 3960/*
599870b1 3961 * Attempt to free all partial slabs on a node.
52b4b950
DS
3962 * This is called from __kmem_cache_shutdown(). We must take list_lock
3963 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3964 */
599870b1 3965static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3966{
60398923 3967 LIST_HEAD(discard);
81819f0f
CL
3968 struct page *page, *h;
3969
52b4b950
DS
3970 BUG_ON(irqs_disabled());
3971 spin_lock_irq(&n->list_lock);
916ac052 3972 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 3973 if (!page->inuse) {
52b4b950 3974 remove_partial(n, page);
916ac052 3975 list_add(&page->slab_list, &discard);
33b12c38
CL
3976 } else {
3977 list_slab_objects(s, page,
55860d96 3978 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3979 }
33b12c38 3980 }
52b4b950 3981 spin_unlock_irq(&n->list_lock);
60398923 3982
916ac052 3983 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 3984 discard_slab(s, page);
81819f0f
CL
3985}
3986
f9e13c0a
SB
3987bool __kmem_cache_empty(struct kmem_cache *s)
3988{
3989 int node;
3990 struct kmem_cache_node *n;
3991
3992 for_each_kmem_cache_node(s, node, n)
3993 if (n->nr_partial || slabs_node(s, node))
3994 return false;
3995 return true;
3996}
3997
81819f0f 3998/*
672bba3a 3999 * Release all resources used by a slab cache.
81819f0f 4000 */
52b4b950 4001int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
4002{
4003 int node;
fa45dc25 4004 struct kmem_cache_node *n;
81819f0f
CL
4005
4006 flush_all(s);
81819f0f 4007 /* Attempt to free all objects */
fa45dc25 4008 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
4009 free_partial(s, n);
4010 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
4011 return 1;
4012 }
81819f0f
CL
4013 return 0;
4014}
4015
5bb1bb35 4016#ifdef CONFIG_PRINTK
8e7f37f2
PM
4017void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
4018{
4019 void *base;
4020 int __maybe_unused i;
4021 unsigned int objnr;
4022 void *objp;
4023 void *objp0;
4024 struct kmem_cache *s = page->slab_cache;
4025 struct track __maybe_unused *trackp;
4026
4027 kpp->kp_ptr = object;
4028 kpp->kp_page = page;
4029 kpp->kp_slab_cache = s;
4030 base = page_address(page);
4031 objp0 = kasan_reset_tag(object);
4032#ifdef CONFIG_SLUB_DEBUG
4033 objp = restore_red_left(s, objp0);
4034#else
4035 objp = objp0;
4036#endif
4037 objnr = obj_to_index(s, page, objp);
4038 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4039 objp = base + s->size * objnr;
4040 kpp->kp_objp = objp;
4041 if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
4042 !(s->flags & SLAB_STORE_USER))
4043 return;
4044#ifdef CONFIG_SLUB_DEBUG
0cbc124b 4045 objp = fixup_red_left(s, objp);
8e7f37f2
PM
4046 trackp = get_track(s, objp, TRACK_ALLOC);
4047 kpp->kp_ret = (void *)trackp->addr;
78869146
OG
4048#ifdef CONFIG_STACKDEPOT
4049 {
4050 depot_stack_handle_t handle;
4051 unsigned long *entries;
4052 unsigned int nr_entries;
e548eaa1 4053
78869146
OG
4054 handle = READ_ONCE(trackp->handle);
4055 if (handle) {
4056 nr_entries = stack_depot_fetch(handle, &entries);
4057 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4058 kpp->kp_stack[i] = (void *)entries[i];
4059 }
4060
4061 trackp = get_track(s, objp, TRACK_FREE);
4062 handle = READ_ONCE(trackp->handle);
4063 if (handle) {
4064 nr_entries = stack_depot_fetch(handle, &entries);
4065 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4066 kpp->kp_free_stack[i] = (void *)entries[i];
4067 }
e548eaa1 4068 }
8e7f37f2
PM
4069#endif
4070#endif
4071}
5bb1bb35 4072#endif
8e7f37f2 4073
81819f0f
CL
4074/********************************************************************
4075 * Kmalloc subsystem
4076 *******************************************************************/
4077
81819f0f
CL
4078static int __init setup_slub_min_order(char *str)
4079{
19af27af 4080 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
4081
4082 return 1;
4083}
4084
4085__setup("slub_min_order=", setup_slub_min_order);
4086
4087static int __init setup_slub_max_order(char *str)
4088{
19af27af
AD
4089 get_option(&str, (int *)&slub_max_order);
4090 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
4091
4092 return 1;
4093}
4094
4095__setup("slub_max_order=", setup_slub_max_order);
4096
4097static int __init setup_slub_min_objects(char *str)
4098{
19af27af 4099 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
4100
4101 return 1;
4102}
4103
4104__setup("slub_min_objects=", setup_slub_min_objects);
4105
81819f0f
CL
4106void *__kmalloc(size_t size, gfp_t flags)
4107{
aadb4bc4 4108 struct kmem_cache *s;
5b882be4 4109 void *ret;
81819f0f 4110
95a05b42 4111 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 4112 return kmalloc_large(size, flags);
aadb4bc4 4113
2c59dd65 4114 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4115
4116 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4117 return s;
4118
b89fb5ef 4119 ret = slab_alloc(s, flags, _RET_IP_, size);
5b882be4 4120
ca2b84cb 4121 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 4122
0116523c 4123 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4124
5b882be4 4125 return ret;
81819f0f
CL
4126}
4127EXPORT_SYMBOL(__kmalloc);
4128
5d1f57e4 4129#ifdef CONFIG_NUMA
f619cfe1
CL
4130static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4131{
b1eeab67 4132 struct page *page;
e4f7c0b4 4133 void *ptr = NULL;
6a486c0a 4134 unsigned int order = get_order(size);
f619cfe1 4135
75f296d9 4136 flags |= __GFP_COMP;
6a486c0a
VB
4137 page = alloc_pages_node(node, flags, order);
4138 if (page) {
e4f7c0b4 4139 ptr = page_address(page);
96403bfe
MS
4140 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4141 PAGE_SIZE << order);
6a486c0a 4142 }
e4f7c0b4 4143
0116523c 4144 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
4145}
4146
81819f0f
CL
4147void *__kmalloc_node(size_t size, gfp_t flags, int node)
4148{
aadb4bc4 4149 struct kmem_cache *s;
5b882be4 4150 void *ret;
81819f0f 4151
95a05b42 4152 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
4153 ret = kmalloc_large_node(size, flags, node);
4154
ca2b84cb
EGM
4155 trace_kmalloc_node(_RET_IP_, ret,
4156 size, PAGE_SIZE << get_order(size),
4157 flags, node);
5b882be4
EGM
4158
4159 return ret;
4160 }
aadb4bc4 4161
2c59dd65 4162 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4163
4164 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4165 return s;
4166
b89fb5ef 4167 ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
5b882be4 4168
ca2b84cb 4169 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 4170
0116523c 4171 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4172
5b882be4 4173 return ret;
81819f0f
CL
4174}
4175EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 4176#endif /* CONFIG_NUMA */
81819f0f 4177
ed18adc1
KC
4178#ifdef CONFIG_HARDENED_USERCOPY
4179/*
afcc90f8
KC
4180 * Rejects incorrectly sized objects and objects that are to be copied
4181 * to/from userspace but do not fall entirely within the containing slab
4182 * cache's usercopy region.
ed18adc1
KC
4183 *
4184 * Returns NULL if check passes, otherwise const char * to name of cache
4185 * to indicate an error.
4186 */
f4e6e289
KC
4187void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4188 bool to_user)
ed18adc1
KC
4189{
4190 struct kmem_cache *s;
44065b2e 4191 unsigned int offset;
ed18adc1 4192 size_t object_size;
b89fb5ef 4193 bool is_kfence = is_kfence_address(ptr);
ed18adc1 4194
96fedce2
AK
4195 ptr = kasan_reset_tag(ptr);
4196
ed18adc1
KC
4197 /* Find object and usable object size. */
4198 s = page->slab_cache;
ed18adc1
KC
4199
4200 /* Reject impossible pointers. */
4201 if (ptr < page_address(page))
f4e6e289
KC
4202 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4203 to_user, 0, n);
ed18adc1
KC
4204
4205 /* Find offset within object. */
b89fb5ef
AP
4206 if (is_kfence)
4207 offset = ptr - kfence_object_start(ptr);
4208 else
4209 offset = (ptr - page_address(page)) % s->size;
ed18adc1
KC
4210
4211 /* Adjust for redzone and reject if within the redzone. */
b89fb5ef 4212 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 4213 if (offset < s->red_left_pad)
f4e6e289
KC
4214 usercopy_abort("SLUB object in left red zone",
4215 s->name, to_user, offset, n);
ed18adc1
KC
4216 offset -= s->red_left_pad;
4217 }
4218
afcc90f8
KC
4219 /* Allow address range falling entirely within usercopy region. */
4220 if (offset >= s->useroffset &&
4221 offset - s->useroffset <= s->usersize &&
4222 n <= s->useroffset - offset + s->usersize)
f4e6e289 4223 return;
ed18adc1 4224
afcc90f8
KC
4225 /*
4226 * If the copy is still within the allocated object, produce
4227 * a warning instead of rejecting the copy. This is intended
4228 * to be a temporary method to find any missing usercopy
4229 * whitelists.
4230 */
4231 object_size = slab_ksize(s);
2d891fbc
KC
4232 if (usercopy_fallback &&
4233 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
4234 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4235 return;
4236 }
ed18adc1 4237
f4e6e289 4238 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
4239}
4240#endif /* CONFIG_HARDENED_USERCOPY */
4241
10d1f8cb 4242size_t __ksize(const void *object)
81819f0f 4243{
272c1d21 4244 struct page *page;
81819f0f 4245
ef8b4520 4246 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
4247 return 0;
4248
294a80a8 4249 page = virt_to_head_page(object);
294a80a8 4250
76994412
PE
4251 if (unlikely(!PageSlab(page))) {
4252 WARN_ON(!PageCompound(page));
a50b854e 4253 return page_size(page);
76994412 4254 }
81819f0f 4255
1b4f59e3 4256 return slab_ksize(page->slab_cache);
81819f0f 4257}
10d1f8cb 4258EXPORT_SYMBOL(__ksize);
81819f0f
CL
4259
4260void kfree(const void *x)
4261{
81819f0f 4262 struct page *page;
5bb983b0 4263 void *object = (void *)x;
81819f0f 4264
2121db74
PE
4265 trace_kfree(_RET_IP_, x);
4266
2408c550 4267 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
4268 return;
4269
b49af68f 4270 page = virt_to_head_page(x);
aadb4bc4 4271 if (unlikely(!PageSlab(page))) {
6a486c0a
VB
4272 unsigned int order = compound_order(page);
4273
0937502a 4274 BUG_ON(!PageCompound(page));
47adccce 4275 kfree_hook(object);
96403bfe
MS
4276 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4277 -(PAGE_SIZE << order));
6a486c0a 4278 __free_pages(page, order);
aadb4bc4
CL
4279 return;
4280 }
81084651 4281 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
4282}
4283EXPORT_SYMBOL(kfree);
4284
832f37f5
VD
4285#define SHRINK_PROMOTE_MAX 32
4286
2086d26a 4287/*
832f37f5
VD
4288 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4289 * up most to the head of the partial lists. New allocations will then
4290 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4291 *
4292 * The slabs with the least items are placed last. This results in them
4293 * being allocated from last increasing the chance that the last objects
4294 * are freed in them.
2086d26a 4295 */
c9fc5864 4296int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
4297{
4298 int node;
4299 int i;
4300 struct kmem_cache_node *n;
4301 struct page *page;
4302 struct page *t;
832f37f5
VD
4303 struct list_head discard;
4304 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4305 unsigned long flags;
ce3712d7 4306 int ret = 0;
2086d26a 4307
2086d26a 4308 flush_all(s);
fa45dc25 4309 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4310 INIT_LIST_HEAD(&discard);
4311 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4312 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4313
4314 spin_lock_irqsave(&n->list_lock, flags);
4315
4316 /*
832f37f5 4317 * Build lists of slabs to discard or promote.
2086d26a 4318 *
672bba3a
CL
4319 * Note that concurrent frees may occur while we hold the
4320 * list_lock. page->inuse here is the upper limit.
2086d26a 4321 */
916ac052 4322 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
4323 int free = page->objects - page->inuse;
4324
4325 /* Do not reread page->inuse */
4326 barrier();
4327
4328 /* We do not keep full slabs on the list */
4329 BUG_ON(free <= 0);
4330
4331 if (free == page->objects) {
916ac052 4332 list_move(&page->slab_list, &discard);
69cb8e6b 4333 n->nr_partial--;
832f37f5 4334 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4335 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4336 }
4337
2086d26a 4338 /*
832f37f5
VD
4339 * Promote the slabs filled up most to the head of the
4340 * partial list.
2086d26a 4341 */
832f37f5
VD
4342 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4343 list_splice(promote + i, &n->partial);
2086d26a 4344
2086d26a 4345 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4346
4347 /* Release empty slabs */
916ac052 4348 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4349 discard_slab(s, page);
ce3712d7
VD
4350
4351 if (slabs_node(s, node))
4352 ret = 1;
2086d26a
CL
4353 }
4354
ce3712d7 4355 return ret;
2086d26a 4356}
2086d26a 4357
b9049e23
YG
4358static int slab_mem_going_offline_callback(void *arg)
4359{
4360 struct kmem_cache *s;
4361
18004c5d 4362 mutex_lock(&slab_mutex);
b9049e23 4363 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4364 __kmem_cache_shrink(s);
18004c5d 4365 mutex_unlock(&slab_mutex);
b9049e23
YG
4366
4367 return 0;
4368}
4369
4370static void slab_mem_offline_callback(void *arg)
4371{
b9049e23
YG
4372 struct memory_notify *marg = arg;
4373 int offline_node;
4374
b9d5ab25 4375 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4376
4377 /*
4378 * If the node still has available memory. we need kmem_cache_node
4379 * for it yet.
4380 */
4381 if (offline_node < 0)
4382 return;
4383
18004c5d 4384 mutex_lock(&slab_mutex);
7e1fa93d 4385 node_clear(offline_node, slab_nodes);
666716fd
VB
4386 /*
4387 * We no longer free kmem_cache_node structures here, as it would be
4388 * racy with all get_node() users, and infeasible to protect them with
4389 * slab_mutex.
4390 */
18004c5d 4391 mutex_unlock(&slab_mutex);
b9049e23
YG
4392}
4393
4394static int slab_mem_going_online_callback(void *arg)
4395{
4396 struct kmem_cache_node *n;
4397 struct kmem_cache *s;
4398 struct memory_notify *marg = arg;
b9d5ab25 4399 int nid = marg->status_change_nid_normal;
b9049e23
YG
4400 int ret = 0;
4401
4402 /*
4403 * If the node's memory is already available, then kmem_cache_node is
4404 * already created. Nothing to do.
4405 */
4406 if (nid < 0)
4407 return 0;
4408
4409 /*
0121c619 4410 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4411 * allocate a kmem_cache_node structure in order to bring the node
4412 * online.
4413 */
18004c5d 4414 mutex_lock(&slab_mutex);
b9049e23 4415 list_for_each_entry(s, &slab_caches, list) {
666716fd
VB
4416 /*
4417 * The structure may already exist if the node was previously
4418 * onlined and offlined.
4419 */
4420 if (get_node(s, nid))
4421 continue;
b9049e23
YG
4422 /*
4423 * XXX: kmem_cache_alloc_node will fallback to other nodes
4424 * since memory is not yet available from the node that
4425 * is brought up.
4426 */
8de66a0c 4427 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4428 if (!n) {
4429 ret = -ENOMEM;
4430 goto out;
4431 }
4053497d 4432 init_kmem_cache_node(n);
b9049e23
YG
4433 s->node[nid] = n;
4434 }
7e1fa93d
VB
4435 /*
4436 * Any cache created after this point will also have kmem_cache_node
4437 * initialized for the new node.
4438 */
4439 node_set(nid, slab_nodes);
b9049e23 4440out:
18004c5d 4441 mutex_unlock(&slab_mutex);
b9049e23
YG
4442 return ret;
4443}
4444
4445static int slab_memory_callback(struct notifier_block *self,
4446 unsigned long action, void *arg)
4447{
4448 int ret = 0;
4449
4450 switch (action) {
4451 case MEM_GOING_ONLINE:
4452 ret = slab_mem_going_online_callback(arg);
4453 break;
4454 case MEM_GOING_OFFLINE:
4455 ret = slab_mem_going_offline_callback(arg);
4456 break;
4457 case MEM_OFFLINE:
4458 case MEM_CANCEL_ONLINE:
4459 slab_mem_offline_callback(arg);
4460 break;
4461 case MEM_ONLINE:
4462 case MEM_CANCEL_OFFLINE:
4463 break;
4464 }
dc19f9db
KH
4465 if (ret)
4466 ret = notifier_from_errno(ret);
4467 else
4468 ret = NOTIFY_OK;
b9049e23
YG
4469 return ret;
4470}
4471
3ac38faa
AM
4472static struct notifier_block slab_memory_callback_nb = {
4473 .notifier_call = slab_memory_callback,
4474 .priority = SLAB_CALLBACK_PRI,
4475};
b9049e23 4476
81819f0f
CL
4477/********************************************************************
4478 * Basic setup of slabs
4479 *******************************************************************/
4480
51df1142
CL
4481/*
4482 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4483 * the page allocator. Allocate them properly then fix up the pointers
4484 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4485 */
4486
dffb4d60 4487static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4488{
4489 int node;
dffb4d60 4490 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4491 struct kmem_cache_node *n;
51df1142 4492
dffb4d60 4493 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4494
7d557b3c
GC
4495 /*
4496 * This runs very early, and only the boot processor is supposed to be
4497 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4498 * IPIs around.
4499 */
4500 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4501 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4502 struct page *p;
4503
916ac052 4504 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4505 p->slab_cache = s;
51df1142 4506
607bf324 4507#ifdef CONFIG_SLUB_DEBUG
916ac052 4508 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4509 p->slab_cache = s;
51df1142 4510#endif
51df1142 4511 }
dffb4d60
CL
4512 list_add(&s->list, &slab_caches);
4513 return s;
51df1142
CL
4514}
4515
81819f0f
CL
4516void __init kmem_cache_init(void)
4517{
dffb4d60
CL
4518 static __initdata struct kmem_cache boot_kmem_cache,
4519 boot_kmem_cache_node;
7e1fa93d 4520 int node;
51df1142 4521
fc8d8620
SG
4522 if (debug_guardpage_minorder())
4523 slub_max_order = 0;
4524
79270291
SB
4525 /* Print slub debugging pointers without hashing */
4526 if (__slub_debug_enabled())
4527 no_hash_pointers_enable(NULL);
4528
dffb4d60
CL
4529 kmem_cache_node = &boot_kmem_cache_node;
4530 kmem_cache = &boot_kmem_cache;
51df1142 4531
7e1fa93d
VB
4532 /*
4533 * Initialize the nodemask for which we will allocate per node
4534 * structures. Here we don't need taking slab_mutex yet.
4535 */
4536 for_each_node_state(node, N_NORMAL_MEMORY)
4537 node_set(node, slab_nodes);
4538
dffb4d60 4539 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4540 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4541
3ac38faa 4542 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4543
4544 /* Able to allocate the per node structures */
4545 slab_state = PARTIAL;
4546
dffb4d60
CL
4547 create_boot_cache(kmem_cache, "kmem_cache",
4548 offsetof(struct kmem_cache, node) +
4549 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4550 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4551
dffb4d60 4552 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4553 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4554
4555 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4556 setup_kmalloc_cache_index_table();
f97d5f63 4557 create_kmalloc_caches(0);
81819f0f 4558
210e7a43
TG
4559 /* Setup random freelists for each cache */
4560 init_freelist_randomization();
4561
a96a87bf
SAS
4562 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4563 slub_cpu_dead);
81819f0f 4564
b9726c26 4565 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4566 cache_line_size(),
81819f0f
CL
4567 slub_min_order, slub_max_order, slub_min_objects,
4568 nr_cpu_ids, nr_node_ids);
4569}
4570
7e85ee0c
PE
4571void __init kmem_cache_init_late(void)
4572{
7e85ee0c
PE
4573}
4574
2633d7a0 4575struct kmem_cache *
f4957d5b 4576__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4577 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4578{
10befea9 4579 struct kmem_cache *s;
81819f0f 4580
a44cb944 4581 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4582 if (s) {
4583 s->refcount++;
84d0ddd6 4584
81819f0f
CL
4585 /*
4586 * Adjust the object sizes so that we clear
4587 * the complete object on kzalloc.
4588 */
1b473f29 4589 s->object_size = max(s->object_size, size);
52ee6d74 4590 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4591
7b8f3b66 4592 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4593 s->refcount--;
cbb79694 4594 s = NULL;
7b8f3b66 4595 }
a0e1d1be 4596 }
6446faa2 4597
cbb79694
CL
4598 return s;
4599}
84c1cf62 4600
d50112ed 4601int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4602{
aac3a166
PE
4603 int err;
4604
4605 err = kmem_cache_open(s, flags);
4606 if (err)
4607 return err;
20cea968 4608
45530c44
CL
4609 /* Mutex is not taken during early boot */
4610 if (slab_state <= UP)
4611 return 0;
4612
aac3a166 4613 err = sysfs_slab_add(s);
aac3a166 4614 if (err)
52b4b950 4615 __kmem_cache_release(s);
20cea968 4616
64dd6849
FM
4617 if (s->flags & SLAB_STORE_USER)
4618 debugfs_slab_add(s);
4619
aac3a166 4620 return err;
81819f0f 4621}
81819f0f 4622
ce71e27c 4623void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4624{
aadb4bc4 4625 struct kmem_cache *s;
94b528d0 4626 void *ret;
aadb4bc4 4627
95a05b42 4628 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4629 return kmalloc_large(size, gfpflags);
4630
2c59dd65 4631 s = kmalloc_slab(size, gfpflags);
81819f0f 4632
2408c550 4633 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4634 return s;
81819f0f 4635
b89fb5ef 4636 ret = slab_alloc(s, gfpflags, caller, size);
94b528d0 4637
25985edc 4638 /* Honor the call site pointer we received. */
ca2b84cb 4639 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4640
4641 return ret;
81819f0f 4642}
fd7cb575 4643EXPORT_SYMBOL(__kmalloc_track_caller);
81819f0f 4644
5d1f57e4 4645#ifdef CONFIG_NUMA
81819f0f 4646void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4647 int node, unsigned long caller)
81819f0f 4648{
aadb4bc4 4649 struct kmem_cache *s;
94b528d0 4650 void *ret;
aadb4bc4 4651
95a05b42 4652 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4653 ret = kmalloc_large_node(size, gfpflags, node);
4654
4655 trace_kmalloc_node(caller, ret,
4656 size, PAGE_SIZE << get_order(size),
4657 gfpflags, node);
4658
4659 return ret;
4660 }
eada35ef 4661
2c59dd65 4662 s = kmalloc_slab(size, gfpflags);
81819f0f 4663
2408c550 4664 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4665 return s;
81819f0f 4666
b89fb5ef 4667 ret = slab_alloc_node(s, gfpflags, node, caller, size);
94b528d0 4668
25985edc 4669 /* Honor the call site pointer we received. */
ca2b84cb 4670 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4671
4672 return ret;
81819f0f 4673}
fd7cb575 4674EXPORT_SYMBOL(__kmalloc_node_track_caller);
5d1f57e4 4675#endif
81819f0f 4676
ab4d5ed5 4677#ifdef CONFIG_SYSFS
205ab99d
CL
4678static int count_inuse(struct page *page)
4679{
4680 return page->inuse;
4681}
4682
4683static int count_total(struct page *page)
4684{
4685 return page->objects;
4686}
ab4d5ed5 4687#endif
205ab99d 4688
ab4d5ed5 4689#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 4690static void validate_slab(struct kmem_cache *s, struct page *page)
53e15af0
CL
4691{
4692 void *p;
a973e9dd 4693 void *addr = page_address(page);
90e9f6a6
YZ
4694 unsigned long *map;
4695
4696 slab_lock(page);
53e15af0 4697
dd98afd4 4698 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
90e9f6a6 4699 goto unlock;
53e15af0
CL
4700
4701 /* Now we know that a valid freelist exists */
90e9f6a6 4702 map = get_map(s, page);
5f80b13a 4703 for_each_object(p, s, addr, page->objects) {
4138fdfc 4704 u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
dd98afd4 4705 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 4706
dd98afd4
YZ
4707 if (!check_object(s, page, p, val))
4708 break;
4709 }
90e9f6a6
YZ
4710 put_map(map);
4711unlock:
881db7fb 4712 slab_unlock(page);
53e15af0
CL
4713}
4714
434e245d 4715static int validate_slab_node(struct kmem_cache *s,
90e9f6a6 4716 struct kmem_cache_node *n)
53e15af0
CL
4717{
4718 unsigned long count = 0;
4719 struct page *page;
4720 unsigned long flags;
4721
4722 spin_lock_irqsave(&n->list_lock, flags);
4723
916ac052 4724 list_for_each_entry(page, &n->partial, slab_list) {
90e9f6a6 4725 validate_slab(s, page);
53e15af0
CL
4726 count++;
4727 }
1f9f78b1 4728 if (count != n->nr_partial) {
f9f58285
FF
4729 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4730 s->name, count, n->nr_partial);
1f9f78b1
OG
4731 slab_add_kunit_errors();
4732 }
53e15af0
CL
4733
4734 if (!(s->flags & SLAB_STORE_USER))
4735 goto out;
4736
916ac052 4737 list_for_each_entry(page, &n->full, slab_list) {
90e9f6a6 4738 validate_slab(s, page);
53e15af0
CL
4739 count++;
4740 }
1f9f78b1 4741 if (count != atomic_long_read(&n->nr_slabs)) {
f9f58285
FF
4742 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4743 s->name, count, atomic_long_read(&n->nr_slabs));
1f9f78b1
OG
4744 slab_add_kunit_errors();
4745 }
53e15af0
CL
4746
4747out:
4748 spin_unlock_irqrestore(&n->list_lock, flags);
4749 return count;
4750}
4751
1f9f78b1 4752long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4753{
4754 int node;
4755 unsigned long count = 0;
fa45dc25 4756 struct kmem_cache_node *n;
53e15af0
CL
4757
4758 flush_all(s);
fa45dc25 4759 for_each_kmem_cache_node(s, node, n)
90e9f6a6
YZ
4760 count += validate_slab_node(s, n);
4761
53e15af0
CL
4762 return count;
4763}
1f9f78b1
OG
4764EXPORT_SYMBOL(validate_slab_cache);
4765
64dd6849 4766#ifdef CONFIG_DEBUG_FS
88a420e4 4767/*
672bba3a 4768 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4769 * and freed.
4770 */
4771
4772struct location {
4773 unsigned long count;
ce71e27c 4774 unsigned long addr;
45edfa58
CL
4775 long long sum_time;
4776 long min_time;
4777 long max_time;
4778 long min_pid;
4779 long max_pid;
174596a0 4780 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4781 nodemask_t nodes;
88a420e4
CL
4782};
4783
4784struct loc_track {
4785 unsigned long max;
4786 unsigned long count;
4787 struct location *loc;
4788};
4789
64dd6849
FM
4790static struct dentry *slab_debugfs_root;
4791
88a420e4
CL
4792static void free_loc_track(struct loc_track *t)
4793{
4794 if (t->max)
4795 free_pages((unsigned long)t->loc,
4796 get_order(sizeof(struct location) * t->max));
4797}
4798
68dff6a9 4799static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4800{
4801 struct location *l;
4802 int order;
4803
88a420e4
CL
4804 order = get_order(sizeof(struct location) * max);
4805
68dff6a9 4806 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4807 if (!l)
4808 return 0;
4809
4810 if (t->count) {
4811 memcpy(l, t->loc, sizeof(struct location) * t->count);
4812 free_loc_track(t);
4813 }
4814 t->max = max;
4815 t->loc = l;
4816 return 1;
4817}
4818
4819static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4820 const struct track *track)
88a420e4
CL
4821{
4822 long start, end, pos;
4823 struct location *l;
ce71e27c 4824 unsigned long caddr;
45edfa58 4825 unsigned long age = jiffies - track->when;
88a420e4
CL
4826
4827 start = -1;
4828 end = t->count;
4829
4830 for ( ; ; ) {
4831 pos = start + (end - start + 1) / 2;
4832
4833 /*
4834 * There is nothing at "end". If we end up there
4835 * we need to add something to before end.
4836 */
4837 if (pos == end)
4838 break;
4839
4840 caddr = t->loc[pos].addr;
45edfa58
CL
4841 if (track->addr == caddr) {
4842
4843 l = &t->loc[pos];
4844 l->count++;
4845 if (track->when) {
4846 l->sum_time += age;
4847 if (age < l->min_time)
4848 l->min_time = age;
4849 if (age > l->max_time)
4850 l->max_time = age;
4851
4852 if (track->pid < l->min_pid)
4853 l->min_pid = track->pid;
4854 if (track->pid > l->max_pid)
4855 l->max_pid = track->pid;
4856
174596a0
RR
4857 cpumask_set_cpu(track->cpu,
4858 to_cpumask(l->cpus));
45edfa58
CL
4859 }
4860 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4861 return 1;
4862 }
4863
45edfa58 4864 if (track->addr < caddr)
88a420e4
CL
4865 end = pos;
4866 else
4867 start = pos;
4868 }
4869
4870 /*
672bba3a 4871 * Not found. Insert new tracking element.
88a420e4 4872 */
68dff6a9 4873 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4874 return 0;
4875
4876 l = t->loc + pos;
4877 if (pos < t->count)
4878 memmove(l + 1, l,
4879 (t->count - pos) * sizeof(struct location));
4880 t->count++;
4881 l->count = 1;
45edfa58
CL
4882 l->addr = track->addr;
4883 l->sum_time = age;
4884 l->min_time = age;
4885 l->max_time = age;
4886 l->min_pid = track->pid;
4887 l->max_pid = track->pid;
174596a0
RR
4888 cpumask_clear(to_cpumask(l->cpus));
4889 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4890 nodes_clear(l->nodes);
4891 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4892 return 1;
4893}
4894
4895static void process_slab(struct loc_track *t, struct kmem_cache *s,
90e9f6a6 4896 struct page *page, enum track_item alloc)
88a420e4 4897{
a973e9dd 4898 void *addr = page_address(page);
88a420e4 4899 void *p;
90e9f6a6 4900 unsigned long *map;
88a420e4 4901
90e9f6a6 4902 map = get_map(s, page);
224a88be 4903 for_each_object(p, s, addr, page->objects)
4138fdfc 4904 if (!test_bit(__obj_to_index(s, addr, p), map))
45edfa58 4905 add_location(t, s, get_track(s, p, alloc));
90e9f6a6 4906 put_map(map);
88a420e4 4907}
64dd6849 4908#endif /* CONFIG_DEBUG_FS */
6dfd1b65 4909#endif /* CONFIG_SLUB_DEBUG */
88a420e4 4910
ab4d5ed5 4911#ifdef CONFIG_SYSFS
81819f0f 4912enum slab_stat_type {
205ab99d
CL
4913 SL_ALL, /* All slabs */
4914 SL_PARTIAL, /* Only partially allocated slabs */
4915 SL_CPU, /* Only slabs used for cpu caches */
4916 SL_OBJECTS, /* Determine allocated objects not slabs */
4917 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4918};
4919
205ab99d 4920#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4921#define SO_PARTIAL (1 << SL_PARTIAL)
4922#define SO_CPU (1 << SL_CPU)
4923#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4924#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4925
62e5c4b4 4926static ssize_t show_slab_objects(struct kmem_cache *s,
bf16d19a 4927 char *buf, unsigned long flags)
81819f0f
CL
4928{
4929 unsigned long total = 0;
81819f0f
CL
4930 int node;
4931 int x;
4932 unsigned long *nodes;
bf16d19a 4933 int len = 0;
81819f0f 4934
6396bb22 4935 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
4936 if (!nodes)
4937 return -ENOMEM;
81819f0f 4938
205ab99d
CL
4939 if (flags & SO_CPU) {
4940 int cpu;
81819f0f 4941
205ab99d 4942 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4943 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4944 cpu);
ec3ab083 4945 int node;
49e22585 4946 struct page *page;
dfb4f096 4947
4db0c3c2 4948 page = READ_ONCE(c->page);
ec3ab083
CL
4949 if (!page)
4950 continue;
205ab99d 4951
ec3ab083
CL
4952 node = page_to_nid(page);
4953 if (flags & SO_TOTAL)
4954 x = page->objects;
4955 else if (flags & SO_OBJECTS)
4956 x = page->inuse;
4957 else
4958 x = 1;
49e22585 4959
ec3ab083
CL
4960 total += x;
4961 nodes[node] += x;
4962
a93cf07b 4963 page = slub_percpu_partial_read_once(c);
49e22585 4964 if (page) {
8afb1474
LZ
4965 node = page_to_nid(page);
4966 if (flags & SO_TOTAL)
4967 WARN_ON_ONCE(1);
4968 else if (flags & SO_OBJECTS)
4969 WARN_ON_ONCE(1);
4970 else
4971 x = page->pages;
bc6697d8
ED
4972 total += x;
4973 nodes[node] += x;
49e22585 4974 }
81819f0f
CL
4975 }
4976 }
4977
e4f8e513
QC
4978 /*
4979 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4980 * already held which will conflict with an existing lock order:
4981 *
4982 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4983 *
4984 * We don't really need mem_hotplug_lock (to hold off
4985 * slab_mem_going_offline_callback) here because slab's memory hot
4986 * unplug code doesn't destroy the kmem_cache->node[] data.
4987 */
4988
ab4d5ed5 4989#ifdef CONFIG_SLUB_DEBUG
205ab99d 4990 if (flags & SO_ALL) {
fa45dc25
CL
4991 struct kmem_cache_node *n;
4992
4993 for_each_kmem_cache_node(s, node, n) {
205ab99d 4994
d0e0ac97
CG
4995 if (flags & SO_TOTAL)
4996 x = atomic_long_read(&n->total_objects);
4997 else if (flags & SO_OBJECTS)
4998 x = atomic_long_read(&n->total_objects) -
4999 count_partial(n, count_free);
81819f0f 5000 else
205ab99d 5001 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
5002 total += x;
5003 nodes[node] += x;
5004 }
5005
ab4d5ed5
CL
5006 } else
5007#endif
5008 if (flags & SO_PARTIAL) {
fa45dc25 5009 struct kmem_cache_node *n;
81819f0f 5010
fa45dc25 5011 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
5012 if (flags & SO_TOTAL)
5013 x = count_partial(n, count_total);
5014 else if (flags & SO_OBJECTS)
5015 x = count_partial(n, count_inuse);
81819f0f 5016 else
205ab99d 5017 x = n->nr_partial;
81819f0f
CL
5018 total += x;
5019 nodes[node] += x;
5020 }
5021 }
bf16d19a
JP
5022
5023 len += sysfs_emit_at(buf, len, "%lu", total);
81819f0f 5024#ifdef CONFIG_NUMA
bf16d19a 5025 for (node = 0; node < nr_node_ids; node++) {
81819f0f 5026 if (nodes[node])
bf16d19a
JP
5027 len += sysfs_emit_at(buf, len, " N%d=%lu",
5028 node, nodes[node]);
5029 }
81819f0f 5030#endif
bf16d19a 5031 len += sysfs_emit_at(buf, len, "\n");
81819f0f 5032 kfree(nodes);
bf16d19a
JP
5033
5034 return len;
81819f0f
CL
5035}
5036
81819f0f 5037#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 5038#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
5039
5040struct slab_attribute {
5041 struct attribute attr;
5042 ssize_t (*show)(struct kmem_cache *s, char *buf);
5043 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5044};
5045
5046#define SLAB_ATTR_RO(_name) \
ab067e99
VK
5047 static struct slab_attribute _name##_attr = \
5048 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
5049
5050#define SLAB_ATTR(_name) \
5051 static struct slab_attribute _name##_attr = \
ab067e99 5052 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 5053
81819f0f
CL
5054static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5055{
bf16d19a 5056 return sysfs_emit(buf, "%u\n", s->size);
81819f0f
CL
5057}
5058SLAB_ATTR_RO(slab_size);
5059
5060static ssize_t align_show(struct kmem_cache *s, char *buf)
5061{
bf16d19a 5062 return sysfs_emit(buf, "%u\n", s->align);
81819f0f
CL
5063}
5064SLAB_ATTR_RO(align);
5065
5066static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5067{
bf16d19a 5068 return sysfs_emit(buf, "%u\n", s->object_size);
81819f0f
CL
5069}
5070SLAB_ATTR_RO(object_size);
5071
5072static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5073{
bf16d19a 5074 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
5075}
5076SLAB_ATTR_RO(objs_per_slab);
5077
5078static ssize_t order_show(struct kmem_cache *s, char *buf)
5079{
bf16d19a 5080 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
81819f0f 5081}
32a6f409 5082SLAB_ATTR_RO(order);
81819f0f 5083
73d342b1
DR
5084static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5085{
bf16d19a 5086 return sysfs_emit(buf, "%lu\n", s->min_partial);
73d342b1
DR
5087}
5088
5089static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5090 size_t length)
5091{
5092 unsigned long min;
5093 int err;
5094
3dbb95f7 5095 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5096 if (err)
5097 return err;
5098
c0bdb232 5099 set_min_partial(s, min);
73d342b1
DR
5100 return length;
5101}
5102SLAB_ATTR(min_partial);
5103
49e22585
CL
5104static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5105{
bf16d19a 5106 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
5107}
5108
5109static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5110 size_t length)
5111{
e5d9998f 5112 unsigned int objects;
49e22585
CL
5113 int err;
5114
e5d9998f 5115 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5116 if (err)
5117 return err;
345c905d 5118 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5119 return -EINVAL;
49e22585 5120
e6d0e1dc 5121 slub_set_cpu_partial(s, objects);
49e22585
CL
5122 flush_all(s);
5123 return length;
5124}
5125SLAB_ATTR(cpu_partial);
5126
81819f0f
CL
5127static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5128{
62c70bce
JP
5129 if (!s->ctor)
5130 return 0;
bf16d19a 5131 return sysfs_emit(buf, "%pS\n", s->ctor);
81819f0f
CL
5132}
5133SLAB_ATTR_RO(ctor);
5134
81819f0f
CL
5135static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5136{
bf16d19a 5137 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5138}
5139SLAB_ATTR_RO(aliases);
5140
81819f0f
CL
5141static ssize_t partial_show(struct kmem_cache *s, char *buf)
5142{
d9acf4b7 5143 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5144}
5145SLAB_ATTR_RO(partial);
5146
5147static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5148{
d9acf4b7 5149 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5150}
5151SLAB_ATTR_RO(cpu_slabs);
5152
5153static ssize_t objects_show(struct kmem_cache *s, char *buf)
5154{
205ab99d 5155 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5156}
5157SLAB_ATTR_RO(objects);
5158
205ab99d
CL
5159static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5160{
5161 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5162}
5163SLAB_ATTR_RO(objects_partial);
5164
49e22585
CL
5165static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5166{
5167 int objects = 0;
5168 int pages = 0;
5169 int cpu;
bf16d19a 5170 int len = 0;
49e22585
CL
5171
5172 for_each_online_cpu(cpu) {
a93cf07b
WY
5173 struct page *page;
5174
5175 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5176
5177 if (page) {
5178 pages += page->pages;
5179 objects += page->pobjects;
5180 }
5181 }
5182
bf16d19a 5183 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
49e22585
CL
5184
5185#ifdef CONFIG_SMP
5186 for_each_online_cpu(cpu) {
a93cf07b
WY
5187 struct page *page;
5188
5189 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
bf16d19a
JP
5190 if (page)
5191 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5192 cpu, page->pobjects, page->pages);
49e22585
CL
5193 }
5194#endif
bf16d19a
JP
5195 len += sysfs_emit_at(buf, len, "\n");
5196
5197 return len;
49e22585
CL
5198}
5199SLAB_ATTR_RO(slabs_cpu_partial);
5200
a5a84755
CL
5201static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5202{
bf16d19a 5203 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
a5a84755 5204}
8f58119a 5205SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
5206
5207static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5208{
bf16d19a 5209 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
a5a84755
CL
5210}
5211SLAB_ATTR_RO(hwcache_align);
5212
5213#ifdef CONFIG_ZONE_DMA
5214static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5215{
bf16d19a 5216 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
a5a84755
CL
5217}
5218SLAB_ATTR_RO(cache_dma);
5219#endif
5220
8eb8284b
DW
5221static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5222{
bf16d19a 5223 return sysfs_emit(buf, "%u\n", s->usersize);
8eb8284b
DW
5224}
5225SLAB_ATTR_RO(usersize);
5226
a5a84755
CL
5227static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5228{
bf16d19a 5229 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5230}
5231SLAB_ATTR_RO(destroy_by_rcu);
5232
ab4d5ed5 5233#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5234static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5235{
5236 return show_slab_objects(s, buf, SO_ALL);
5237}
5238SLAB_ATTR_RO(slabs);
5239
205ab99d
CL
5240static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5241{
5242 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5243}
5244SLAB_ATTR_RO(total_objects);
5245
81819f0f
CL
5246static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5247{
bf16d19a 5248 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 5249}
060807f8 5250SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
5251
5252static ssize_t trace_show(struct kmem_cache *s, char *buf)
5253{
bf16d19a 5254 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
81819f0f 5255}
060807f8 5256SLAB_ATTR_RO(trace);
81819f0f 5257
81819f0f
CL
5258static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5259{
bf16d19a 5260 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
81819f0f
CL
5261}
5262
ad38b5b1 5263SLAB_ATTR_RO(red_zone);
81819f0f
CL
5264
5265static ssize_t poison_show(struct kmem_cache *s, char *buf)
5266{
bf16d19a 5267 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
81819f0f
CL
5268}
5269
ad38b5b1 5270SLAB_ATTR_RO(poison);
81819f0f
CL
5271
5272static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5273{
bf16d19a 5274 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
81819f0f
CL
5275}
5276
ad38b5b1 5277SLAB_ATTR_RO(store_user);
81819f0f 5278
53e15af0
CL
5279static ssize_t validate_show(struct kmem_cache *s, char *buf)
5280{
5281 return 0;
5282}
5283
5284static ssize_t validate_store(struct kmem_cache *s,
5285 const char *buf, size_t length)
5286{
434e245d
CL
5287 int ret = -EINVAL;
5288
5289 if (buf[0] == '1') {
5290 ret = validate_slab_cache(s);
5291 if (ret >= 0)
5292 ret = length;
5293 }
5294 return ret;
53e15af0
CL
5295}
5296SLAB_ATTR(validate);
a5a84755 5297
a5a84755
CL
5298#endif /* CONFIG_SLUB_DEBUG */
5299
5300#ifdef CONFIG_FAILSLAB
5301static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5302{
bf16d19a 5303 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
a5a84755 5304}
060807f8 5305SLAB_ATTR_RO(failslab);
ab4d5ed5 5306#endif
53e15af0 5307
2086d26a
CL
5308static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5309{
5310 return 0;
5311}
5312
5313static ssize_t shrink_store(struct kmem_cache *s,
5314 const char *buf, size_t length)
5315{
832f37f5 5316 if (buf[0] == '1')
10befea9 5317 kmem_cache_shrink(s);
832f37f5 5318 else
2086d26a
CL
5319 return -EINVAL;
5320 return length;
5321}
5322SLAB_ATTR(shrink);
5323
81819f0f 5324#ifdef CONFIG_NUMA
9824601e 5325static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5326{
bf16d19a 5327 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5328}
5329
9824601e 5330static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5331 const char *buf, size_t length)
5332{
eb7235eb 5333 unsigned int ratio;
0121c619
CL
5334 int err;
5335
eb7235eb 5336 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5337 if (err)
5338 return err;
eb7235eb
AD
5339 if (ratio > 100)
5340 return -ERANGE;
0121c619 5341
eb7235eb 5342 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5343
81819f0f
CL
5344 return length;
5345}
9824601e 5346SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5347#endif
5348
8ff12cfc 5349#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5350static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5351{
5352 unsigned long sum = 0;
5353 int cpu;
bf16d19a 5354 int len = 0;
6da2ec56 5355 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5356
5357 if (!data)
5358 return -ENOMEM;
5359
5360 for_each_online_cpu(cpu) {
9dfc6e68 5361 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5362
5363 data[cpu] = x;
5364 sum += x;
5365 }
5366
bf16d19a 5367 len += sysfs_emit_at(buf, len, "%lu", sum);
8ff12cfc 5368
50ef37b9 5369#ifdef CONFIG_SMP
8ff12cfc 5370 for_each_online_cpu(cpu) {
bf16d19a
JP
5371 if (data[cpu])
5372 len += sysfs_emit_at(buf, len, " C%d=%u",
5373 cpu, data[cpu]);
8ff12cfc 5374 }
50ef37b9 5375#endif
8ff12cfc 5376 kfree(data);
bf16d19a
JP
5377 len += sysfs_emit_at(buf, len, "\n");
5378
5379 return len;
8ff12cfc
CL
5380}
5381
78eb00cc
DR
5382static void clear_stat(struct kmem_cache *s, enum stat_item si)
5383{
5384 int cpu;
5385
5386 for_each_online_cpu(cpu)
9dfc6e68 5387 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5388}
5389
8ff12cfc
CL
5390#define STAT_ATTR(si, text) \
5391static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5392{ \
5393 return show_stat(s, buf, si); \
5394} \
78eb00cc
DR
5395static ssize_t text##_store(struct kmem_cache *s, \
5396 const char *buf, size_t length) \
5397{ \
5398 if (buf[0] != '0') \
5399 return -EINVAL; \
5400 clear_stat(s, si); \
5401 return length; \
5402} \
5403SLAB_ATTR(text); \
8ff12cfc
CL
5404
5405STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5406STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5407STAT_ATTR(FREE_FASTPATH, free_fastpath);
5408STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5409STAT_ATTR(FREE_FROZEN, free_frozen);
5410STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5411STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5412STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5413STAT_ATTR(ALLOC_SLAB, alloc_slab);
5414STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5415STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5416STAT_ATTR(FREE_SLAB, free_slab);
5417STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5418STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5419STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5420STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5421STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5422STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5423STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5424STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5425STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5426STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5427STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5428STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5429STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5430STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5431#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5432
06428780 5433static struct attribute *slab_attrs[] = {
81819f0f
CL
5434 &slab_size_attr.attr,
5435 &object_size_attr.attr,
5436 &objs_per_slab_attr.attr,
5437 &order_attr.attr,
73d342b1 5438 &min_partial_attr.attr,
49e22585 5439 &cpu_partial_attr.attr,
81819f0f 5440 &objects_attr.attr,
205ab99d 5441 &objects_partial_attr.attr,
81819f0f
CL
5442 &partial_attr.attr,
5443 &cpu_slabs_attr.attr,
5444 &ctor_attr.attr,
81819f0f
CL
5445 &aliases_attr.attr,
5446 &align_attr.attr,
81819f0f
CL
5447 &hwcache_align_attr.attr,
5448 &reclaim_account_attr.attr,
5449 &destroy_by_rcu_attr.attr,
a5a84755 5450 &shrink_attr.attr,
49e22585 5451 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5452#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5453 &total_objects_attr.attr,
5454 &slabs_attr.attr,
5455 &sanity_checks_attr.attr,
5456 &trace_attr.attr,
81819f0f
CL
5457 &red_zone_attr.attr,
5458 &poison_attr.attr,
5459 &store_user_attr.attr,
53e15af0 5460 &validate_attr.attr,
ab4d5ed5 5461#endif
81819f0f
CL
5462#ifdef CONFIG_ZONE_DMA
5463 &cache_dma_attr.attr,
5464#endif
5465#ifdef CONFIG_NUMA
9824601e 5466 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5467#endif
5468#ifdef CONFIG_SLUB_STATS
5469 &alloc_fastpath_attr.attr,
5470 &alloc_slowpath_attr.attr,
5471 &free_fastpath_attr.attr,
5472 &free_slowpath_attr.attr,
5473 &free_frozen_attr.attr,
5474 &free_add_partial_attr.attr,
5475 &free_remove_partial_attr.attr,
5476 &alloc_from_partial_attr.attr,
5477 &alloc_slab_attr.attr,
5478 &alloc_refill_attr.attr,
e36a2652 5479 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5480 &free_slab_attr.attr,
5481 &cpuslab_flush_attr.attr,
5482 &deactivate_full_attr.attr,
5483 &deactivate_empty_attr.attr,
5484 &deactivate_to_head_attr.attr,
5485 &deactivate_to_tail_attr.attr,
5486 &deactivate_remote_frees_attr.attr,
03e404af 5487 &deactivate_bypass_attr.attr,
65c3376a 5488 &order_fallback_attr.attr,
b789ef51
CL
5489 &cmpxchg_double_fail_attr.attr,
5490 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5491 &cpu_partial_alloc_attr.attr,
5492 &cpu_partial_free_attr.attr,
8028dcea
AS
5493 &cpu_partial_node_attr.attr,
5494 &cpu_partial_drain_attr.attr,
81819f0f 5495#endif
4c13dd3b
DM
5496#ifdef CONFIG_FAILSLAB
5497 &failslab_attr.attr,
5498#endif
8eb8284b 5499 &usersize_attr.attr,
4c13dd3b 5500
81819f0f
CL
5501 NULL
5502};
5503
1fdaaa23 5504static const struct attribute_group slab_attr_group = {
81819f0f
CL
5505 .attrs = slab_attrs,
5506};
5507
5508static ssize_t slab_attr_show(struct kobject *kobj,
5509 struct attribute *attr,
5510 char *buf)
5511{
5512 struct slab_attribute *attribute;
5513 struct kmem_cache *s;
5514 int err;
5515
5516 attribute = to_slab_attr(attr);
5517 s = to_slab(kobj);
5518
5519 if (!attribute->show)
5520 return -EIO;
5521
5522 err = attribute->show(s, buf);
5523
5524 return err;
5525}
5526
5527static ssize_t slab_attr_store(struct kobject *kobj,
5528 struct attribute *attr,
5529 const char *buf, size_t len)
5530{
5531 struct slab_attribute *attribute;
5532 struct kmem_cache *s;
5533 int err;
5534
5535 attribute = to_slab_attr(attr);
5536 s = to_slab(kobj);
5537
5538 if (!attribute->store)
5539 return -EIO;
5540
5541 err = attribute->store(s, buf, len);
81819f0f
CL
5542 return err;
5543}
5544
41a21285
CL
5545static void kmem_cache_release(struct kobject *k)
5546{
5547 slab_kmem_cache_release(to_slab(k));
5548}
5549
52cf25d0 5550static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5551 .show = slab_attr_show,
5552 .store = slab_attr_store,
5553};
5554
5555static struct kobj_type slab_ktype = {
5556 .sysfs_ops = &slab_sysfs_ops,
41a21285 5557 .release = kmem_cache_release,
81819f0f
CL
5558};
5559
27c3a314 5560static struct kset *slab_kset;
81819f0f 5561
9a41707b
VD
5562static inline struct kset *cache_kset(struct kmem_cache *s)
5563{
9a41707b
VD
5564 return slab_kset;
5565}
5566
81819f0f
CL
5567#define ID_STR_LENGTH 64
5568
5569/* Create a unique string id for a slab cache:
6446faa2
CL
5570 *
5571 * Format :[flags-]size
81819f0f
CL
5572 */
5573static char *create_unique_id(struct kmem_cache *s)
5574{
5575 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5576 char *p = name;
5577
5578 BUG_ON(!name);
5579
5580 *p++ = ':';
5581 /*
5582 * First flags affecting slabcache operations. We will only
5583 * get here for aliasable slabs so we do not need to support
5584 * too many flags. The flags here must cover all flags that
5585 * are matched during merging to guarantee that the id is
5586 * unique.
5587 */
5588 if (s->flags & SLAB_CACHE_DMA)
5589 *p++ = 'd';
6d6ea1e9
NB
5590 if (s->flags & SLAB_CACHE_DMA32)
5591 *p++ = 'D';
81819f0f
CL
5592 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5593 *p++ = 'a';
becfda68 5594 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5595 *p++ = 'F';
230e9fc2
VD
5596 if (s->flags & SLAB_ACCOUNT)
5597 *p++ = 'A';
81819f0f
CL
5598 if (p != name + 1)
5599 *p++ = '-';
44065b2e 5600 p += sprintf(p, "%07u", s->size);
2633d7a0 5601
81819f0f
CL
5602 BUG_ON(p > name + ID_STR_LENGTH - 1);
5603 return name;
5604}
5605
5606static int sysfs_slab_add(struct kmem_cache *s)
5607{
5608 int err;
5609 const char *name;
1663f26d 5610 struct kset *kset = cache_kset(s);
45530c44 5611 int unmergeable = slab_unmergeable(s);
81819f0f 5612
1663f26d
TH
5613 if (!kset) {
5614 kobject_init(&s->kobj, &slab_ktype);
5615 return 0;
5616 }
5617
11066386
MC
5618 if (!unmergeable && disable_higher_order_debug &&
5619 (slub_debug & DEBUG_METADATA_FLAGS))
5620 unmergeable = 1;
5621
81819f0f
CL
5622 if (unmergeable) {
5623 /*
5624 * Slabcache can never be merged so we can use the name proper.
5625 * This is typically the case for debug situations. In that
5626 * case we can catch duplicate names easily.
5627 */
27c3a314 5628 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5629 name = s->name;
5630 } else {
5631 /*
5632 * Create a unique name for the slab as a target
5633 * for the symlinks.
5634 */
5635 name = create_unique_id(s);
5636 }
5637
1663f26d 5638 s->kobj.kset = kset;
26e4f205 5639 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
757fed1d 5640 if (err)
80da026a 5641 goto out;
81819f0f
CL
5642
5643 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5644 if (err)
5645 goto out_del_kobj;
9a41707b 5646
81819f0f
CL
5647 if (!unmergeable) {
5648 /* Setup first alias */
5649 sysfs_slab_alias(s, s->name);
81819f0f 5650 }
54b6a731
DJ
5651out:
5652 if (!unmergeable)
5653 kfree(name);
5654 return err;
5655out_del_kobj:
5656 kobject_del(&s->kobj);
54b6a731 5657 goto out;
81819f0f
CL
5658}
5659
d50d82fa
MP
5660void sysfs_slab_unlink(struct kmem_cache *s)
5661{
5662 if (slab_state >= FULL)
5663 kobject_del(&s->kobj);
5664}
5665
bf5eb3de
TH
5666void sysfs_slab_release(struct kmem_cache *s)
5667{
5668 if (slab_state >= FULL)
5669 kobject_put(&s->kobj);
81819f0f
CL
5670}
5671
5672/*
5673 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5674 * available lest we lose that information.
81819f0f
CL
5675 */
5676struct saved_alias {
5677 struct kmem_cache *s;
5678 const char *name;
5679 struct saved_alias *next;
5680};
5681
5af328a5 5682static struct saved_alias *alias_list;
81819f0f
CL
5683
5684static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5685{
5686 struct saved_alias *al;
5687
97d06609 5688 if (slab_state == FULL) {
81819f0f
CL
5689 /*
5690 * If we have a leftover link then remove it.
5691 */
27c3a314
GKH
5692 sysfs_remove_link(&slab_kset->kobj, name);
5693 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5694 }
5695
5696 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5697 if (!al)
5698 return -ENOMEM;
5699
5700 al->s = s;
5701 al->name = name;
5702 al->next = alias_list;
5703 alias_list = al;
5704 return 0;
5705}
5706
5707static int __init slab_sysfs_init(void)
5708{
5b95a4ac 5709 struct kmem_cache *s;
81819f0f
CL
5710 int err;
5711
18004c5d 5712 mutex_lock(&slab_mutex);
2bce6485 5713
d7660ce5 5714 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 5715 if (!slab_kset) {
18004c5d 5716 mutex_unlock(&slab_mutex);
f9f58285 5717 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5718 return -ENOSYS;
5719 }
5720
97d06609 5721 slab_state = FULL;
26a7bd03 5722
5b95a4ac 5723 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5724 err = sysfs_slab_add(s);
5d540fb7 5725 if (err)
f9f58285
FF
5726 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5727 s->name);
26a7bd03 5728 }
81819f0f
CL
5729
5730 while (alias_list) {
5731 struct saved_alias *al = alias_list;
5732
5733 alias_list = alias_list->next;
5734 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5735 if (err)
f9f58285
FF
5736 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5737 al->name);
81819f0f
CL
5738 kfree(al);
5739 }
5740
18004c5d 5741 mutex_unlock(&slab_mutex);
81819f0f
CL
5742 return 0;
5743}
5744
5745__initcall(slab_sysfs_init);
ab4d5ed5 5746#endif /* CONFIG_SYSFS */
57ed3eda 5747
64dd6849
FM
5748#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
5749static int slab_debugfs_show(struct seq_file *seq, void *v)
5750{
5751
5752 struct location *l;
5753 unsigned int idx = *(unsigned int *)v;
5754 struct loc_track *t = seq->private;
5755
5756 if (idx < t->count) {
5757 l = &t->loc[idx];
5758
5759 seq_printf(seq, "%7ld ", l->count);
5760
5761 if (l->addr)
5762 seq_printf(seq, "%pS", (void *)l->addr);
5763 else
5764 seq_puts(seq, "<not-available>");
5765
5766 if (l->sum_time != l->min_time) {
5767 seq_printf(seq, " age=%ld/%llu/%ld",
5768 l->min_time, div_u64(l->sum_time, l->count),
5769 l->max_time);
5770 } else
5771 seq_printf(seq, " age=%ld", l->min_time);
5772
5773 if (l->min_pid != l->max_pid)
5774 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
5775 else
5776 seq_printf(seq, " pid=%ld",
5777 l->min_pid);
5778
5779 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
5780 seq_printf(seq, " cpus=%*pbl",
5781 cpumask_pr_args(to_cpumask(l->cpus)));
5782
5783 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
5784 seq_printf(seq, " nodes=%*pbl",
5785 nodemask_pr_args(&l->nodes));
5786
5787 seq_puts(seq, "\n");
5788 }
5789
5790 if (!idx && !t->count)
5791 seq_puts(seq, "No data\n");
5792
5793 return 0;
5794}
5795
5796static void slab_debugfs_stop(struct seq_file *seq, void *v)
5797{
5798}
5799
5800static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
5801{
5802 struct loc_track *t = seq->private;
5803
5804 v = ppos;
5805 ++*ppos;
5806 if (*ppos <= t->count)
5807 return v;
5808
5809 return NULL;
5810}
5811
5812static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
5813{
5814 return ppos;
5815}
5816
5817static const struct seq_operations slab_debugfs_sops = {
5818 .start = slab_debugfs_start,
5819 .next = slab_debugfs_next,
5820 .stop = slab_debugfs_stop,
5821 .show = slab_debugfs_show,
5822};
5823
5824static int slab_debug_trace_open(struct inode *inode, struct file *filep)
5825{
5826
5827 struct kmem_cache_node *n;
5828 enum track_item alloc;
5829 int node;
5830 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
5831 sizeof(struct loc_track));
5832 struct kmem_cache *s = file_inode(filep)->i_private;
5833
5834 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
5835 alloc = TRACK_ALLOC;
5836 else
5837 alloc = TRACK_FREE;
5838
5839 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL))
5840 return -ENOMEM;
5841
5842 /* Push back cpu slabs */
5843 flush_all(s);
5844
5845 for_each_kmem_cache_node(s, node, n) {
5846 unsigned long flags;
5847 struct page *page;
5848
5849 if (!atomic_long_read(&n->nr_slabs))
5850 continue;
5851
5852 spin_lock_irqsave(&n->list_lock, flags);
5853 list_for_each_entry(page, &n->partial, slab_list)
5854 process_slab(t, s, page, alloc);
5855 list_for_each_entry(page, &n->full, slab_list)
5856 process_slab(t, s, page, alloc);
5857 spin_unlock_irqrestore(&n->list_lock, flags);
5858 }
5859
5860 return 0;
5861}
5862
5863static int slab_debug_trace_release(struct inode *inode, struct file *file)
5864{
5865 struct seq_file *seq = file->private_data;
5866 struct loc_track *t = seq->private;
5867
5868 free_loc_track(t);
5869 return seq_release_private(inode, file);
5870}
5871
5872static const struct file_operations slab_debugfs_fops = {
5873 .open = slab_debug_trace_open,
5874 .read = seq_read,
5875 .llseek = seq_lseek,
5876 .release = slab_debug_trace_release,
5877};
5878
5879static void debugfs_slab_add(struct kmem_cache *s)
5880{
5881 struct dentry *slab_cache_dir;
5882
5883 if (unlikely(!slab_debugfs_root))
5884 return;
5885
5886 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
5887
5888 debugfs_create_file("alloc_traces", 0400,
5889 slab_cache_dir, s, &slab_debugfs_fops);
5890
5891 debugfs_create_file("free_traces", 0400,
5892 slab_cache_dir, s, &slab_debugfs_fops);
5893}
5894
5895void debugfs_slab_release(struct kmem_cache *s)
5896{
5897 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
5898}
5899
5900static int __init slab_debugfs_init(void)
5901{
5902 struct kmem_cache *s;
5903
5904 slab_debugfs_root = debugfs_create_dir("slab", NULL);
5905
5906 list_for_each_entry(s, &slab_caches, list)
5907 if (s->flags & SLAB_STORE_USER)
5908 debugfs_slab_add(s);
5909
5910 return 0;
5911
5912}
5913__initcall(slab_debugfs_init);
5914#endif
57ed3eda
PE
5915/*
5916 * The /proc/slabinfo ABI
5917 */
5b365771 5918#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5919void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5920{
57ed3eda 5921 unsigned long nr_slabs = 0;
205ab99d
CL
5922 unsigned long nr_objs = 0;
5923 unsigned long nr_free = 0;
57ed3eda 5924 int node;
fa45dc25 5925 struct kmem_cache_node *n;
57ed3eda 5926
fa45dc25 5927 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5928 nr_slabs += node_nr_slabs(n);
5929 nr_objs += node_nr_objs(n);
205ab99d 5930 nr_free += count_partial(n, count_free);
57ed3eda
PE
5931 }
5932
0d7561c6
GC
5933 sinfo->active_objs = nr_objs - nr_free;
5934 sinfo->num_objs = nr_objs;
5935 sinfo->active_slabs = nr_slabs;
5936 sinfo->num_slabs = nr_slabs;
5937 sinfo->objects_per_slab = oo_objects(s->oo);
5938 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5939}
5940
0d7561c6 5941void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5942{
7b3c3a50
AD
5943}
5944
b7454ad3
GC
5945ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5946 size_t count, loff_t *ppos)
7b3c3a50 5947{
b7454ad3 5948 return -EIO;
7b3c3a50 5949}
5b365771 5950#endif /* CONFIG_SLUB_DEBUG */