]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - mm/slub.c
Merge tag 'f2fs-for-5.4-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk...
[mirror_ubuntu-eoan-kernel.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
881db7fb
CL
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
2482ddec 36#include <linux/random.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 54 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 55 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
881db7fb
CL
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
65 * page's freelist.
81819f0f
CL
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
81819f0f
CL
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
672bba3a
CL
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 88 * freed then the slab will show up again on the partial lists.
672bba3a
CL
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
81819f0f
CL
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
96 * Overloading of page flags that are otherwise used for LRU management.
97 *
4b6f0750
CL
98 * PageActive The slab is frozen and exempt from list processing.
99 * This means that the slab is dedicated to a purpose
100 * such as satisfying allocations for a specific
101 * processor. Objects may be freed in the slab while
102 * it is frozen but slab_free will then skip the usual
103 * list operations. It is up to the processor holding
104 * the slab to integrate the slab into the slab lists
105 * when the slab is no longer needed.
106 *
107 * One use of this flag is to mark slabs that are
108 * used for allocations. Then such a slab becomes a cpu
109 * slab. The cpu slab may be equipped with an additional
dfb4f096 110 * freelist that allows lockless access to
894b8788
CL
111 * free objects in addition to the regular freelist
112 * that requires the slab lock.
81819f0f
CL
113 *
114 * PageError Slab requires special handling due to debug
115 * options set. This moves slab handling out of
894b8788 116 * the fast path and disables lockless freelists.
81819f0f
CL
117 */
118
af537b0a
CL
119static inline int kmem_cache_debug(struct kmem_cache *s)
120{
5577bd8a 121#ifdef CONFIG_SLUB_DEBUG
af537b0a 122 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 123#else
af537b0a 124 return 0;
5577bd8a 125#endif
af537b0a 126}
5577bd8a 127
117d54df 128void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be
JK
129{
130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 p += s->red_left_pad;
132
133 return p;
134}
135
345c905d
JK
136static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137{
138#ifdef CONFIG_SLUB_CPU_PARTIAL
139 return !kmem_cache_debug(s);
140#else
141 return false;
142#endif
143}
144
81819f0f
CL
145/*
146 * Issues still to be resolved:
147 *
81819f0f
CL
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 *
81819f0f
CL
150 * - Variable sizing of the per node arrays
151 */
152
153/* Enable to test recovery from slab corruption on boot */
154#undef SLUB_RESILIENCY_TEST
155
b789ef51
CL
156/* Enable to log cmpxchg failures */
157#undef SLUB_DEBUG_CMPXCHG
158
2086d26a
CL
159/*
160 * Mininum number of partial slabs. These will be left on the partial
161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 */
76be8950 163#define MIN_PARTIAL 5
e95eed57 164
2086d26a
CL
165/*
166 * Maximum number of desirable partial slabs.
167 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 168 * sort the partial list by the number of objects in use.
2086d26a
CL
169 */
170#define MAX_PARTIAL 10
171
becfda68 172#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 173 SLAB_POISON | SLAB_STORE_USER)
672bba3a 174
149daaf3
LA
175/*
176 * These debug flags cannot use CMPXCHG because there might be consistency
177 * issues when checking or reading debug information
178 */
179#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 SLAB_TRACE)
181
182
fa5ec8a1 183/*
3de47213
DR
184 * Debugging flags that require metadata to be stored in the slab. These get
185 * disabled when slub_debug=O is used and a cache's min order increases with
186 * metadata.
fa5ec8a1 187 */
3de47213 188#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 189
210b5c06
CG
190#define OO_SHIFT 16
191#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 192#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 193
81819f0f 194/* Internal SLUB flags */
d50112ed 195/* Poison object */
4fd0b46e 196#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 197/* Use cmpxchg_double */
4fd0b46e 198#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 199
02cbc874
CL
200/*
201 * Tracking user of a slab.
202 */
d6543e39 203#define TRACK_ADDRS_COUNT 16
02cbc874 204struct track {
ce71e27c 205 unsigned long addr; /* Called from address */
d6543e39
BG
206#ifdef CONFIG_STACKTRACE
207 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
208#endif
02cbc874
CL
209 int cpu; /* Was running on cpu */
210 int pid; /* Pid context */
211 unsigned long when; /* When did the operation occur */
212};
213
214enum track_item { TRACK_ALLOC, TRACK_FREE };
215
ab4d5ed5 216#ifdef CONFIG_SYSFS
81819f0f
CL
217static int sysfs_slab_add(struct kmem_cache *);
218static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 219static void memcg_propagate_slab_attrs(struct kmem_cache *s);
bf5eb3de 220static void sysfs_slab_remove(struct kmem_cache *s);
81819f0f 221#else
0c710013
CL
222static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
107dab5c 225static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
bf5eb3de 226static inline void sysfs_slab_remove(struct kmem_cache *s) { }
81819f0f
CL
227#endif
228
4fdccdfb 229static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
230{
231#ifdef CONFIG_SLUB_STATS
88da03a6
CL
232 /*
233 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 * avoid this_cpu_add()'s irq-disable overhead.
235 */
236 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
237#endif
238}
239
81819f0f
CL
240/********************************************************************
241 * Core slab cache functions
242 *******************************************************************/
243
2482ddec
KC
244/*
245 * Returns freelist pointer (ptr). With hardening, this is obfuscated
246 * with an XOR of the address where the pointer is held and a per-cache
247 * random number.
248 */
249static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
250 unsigned long ptr_addr)
251{
252#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9
AK
253 /*
254 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
255 * Normally, this doesn't cause any issues, as both set_freepointer()
256 * and get_freepointer() are called with a pointer with the same tag.
257 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
258 * example, when __free_slub() iterates over objects in a cache, it
259 * passes untagged pointers to check_object(). check_object() in turns
260 * calls get_freepointer() with an untagged pointer, which causes the
261 * freepointer to be restored incorrectly.
262 */
263 return (void *)((unsigned long)ptr ^ s->random ^
264 (unsigned long)kasan_reset_tag((void *)ptr_addr));
2482ddec
KC
265#else
266 return ptr;
267#endif
268}
269
270/* Returns the freelist pointer recorded at location ptr_addr. */
271static inline void *freelist_dereference(const struct kmem_cache *s,
272 void *ptr_addr)
273{
274 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
275 (unsigned long)ptr_addr);
276}
277
7656c72b
CL
278static inline void *get_freepointer(struct kmem_cache *s, void *object)
279{
2482ddec 280 return freelist_dereference(s, object + s->offset);
7656c72b
CL
281}
282
0ad9500e
ED
283static void prefetch_freepointer(const struct kmem_cache *s, void *object)
284{
0882ff91 285 prefetch(object + s->offset);
0ad9500e
ED
286}
287
1393d9a1
CL
288static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
289{
2482ddec 290 unsigned long freepointer_addr;
1393d9a1
CL
291 void *p;
292
922d566c
JK
293 if (!debug_pagealloc_enabled())
294 return get_freepointer(s, object);
295
2482ddec
KC
296 freepointer_addr = (unsigned long)object + s->offset;
297 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
298 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
299}
300
7656c72b
CL
301static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
302{
2482ddec
KC
303 unsigned long freeptr_addr = (unsigned long)object + s->offset;
304
ce6fa91b
AP
305#ifdef CONFIG_SLAB_FREELIST_HARDENED
306 BUG_ON(object == fp); /* naive detection of double free or corruption */
307#endif
308
2482ddec 309 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
310}
311
312/* Loop over all objects in a slab */
224a88be 313#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
314 for (__p = fixup_red_left(__s, __addr); \
315 __p < (__addr) + (__objects) * (__s)->size; \
316 __p += (__s)->size)
7656c72b 317
7656c72b 318/* Determine object index from a given position */
284b50dd 319static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
7656c72b 320{
6373dca1 321 return (kasan_reset_tag(p) - addr) / s->size;
7656c72b
CL
322}
323
9736d2a9 324static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 325{
9736d2a9 326 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
327}
328
19af27af 329static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 330 unsigned int size)
834f3d11
CL
331{
332 struct kmem_cache_order_objects x = {
9736d2a9 333 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
334 };
335
336 return x;
337}
338
19af27af 339static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 340{
210b5c06 341 return x.x >> OO_SHIFT;
834f3d11
CL
342}
343
19af27af 344static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 345{
210b5c06 346 return x.x & OO_MASK;
834f3d11
CL
347}
348
881db7fb
CL
349/*
350 * Per slab locking using the pagelock
351 */
352static __always_inline void slab_lock(struct page *page)
353{
48c935ad 354 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
355 bit_spin_lock(PG_locked, &page->flags);
356}
357
358static __always_inline void slab_unlock(struct page *page)
359{
48c935ad 360 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
361 __bit_spin_unlock(PG_locked, &page->flags);
362}
363
1d07171c
CL
364/* Interrupts must be disabled (for the fallback code to work right) */
365static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 void *freelist_old, unsigned long counters_old,
367 void *freelist_new, unsigned long counters_new,
368 const char *n)
369{
370 VM_BUG_ON(!irqs_disabled());
2565409f
HC
371#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 373 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 374 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
375 freelist_old, counters_old,
376 freelist_new, counters_new))
6f6528a1 377 return true;
1d07171c
CL
378 } else
379#endif
380 {
381 slab_lock(page);
d0e0ac97
CG
382 if (page->freelist == freelist_old &&
383 page->counters == counters_old) {
1d07171c 384 page->freelist = freelist_new;
7d27a04b 385 page->counters = counters_new;
1d07171c 386 slab_unlock(page);
6f6528a1 387 return true;
1d07171c
CL
388 }
389 slab_unlock(page);
390 }
391
392 cpu_relax();
393 stat(s, CMPXCHG_DOUBLE_FAIL);
394
395#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 396 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
397#endif
398
6f6528a1 399 return false;
1d07171c
CL
400}
401
b789ef51
CL
402static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 void *freelist_old, unsigned long counters_old,
404 void *freelist_new, unsigned long counters_new,
405 const char *n)
406{
2565409f
HC
407#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 409 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 410 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
411 freelist_old, counters_old,
412 freelist_new, counters_new))
6f6528a1 413 return true;
b789ef51
CL
414 } else
415#endif
416 {
1d07171c
CL
417 unsigned long flags;
418
419 local_irq_save(flags);
881db7fb 420 slab_lock(page);
d0e0ac97
CG
421 if (page->freelist == freelist_old &&
422 page->counters == counters_old) {
b789ef51 423 page->freelist = freelist_new;
7d27a04b 424 page->counters = counters_new;
881db7fb 425 slab_unlock(page);
1d07171c 426 local_irq_restore(flags);
6f6528a1 427 return true;
b789ef51 428 }
881db7fb 429 slab_unlock(page);
1d07171c 430 local_irq_restore(flags);
b789ef51
CL
431 }
432
433 cpu_relax();
434 stat(s, CMPXCHG_DOUBLE_FAIL);
435
436#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 437 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
438#endif
439
6f6528a1 440 return false;
b789ef51
CL
441}
442
41ecc55b 443#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
444/*
445 * Determine a map of object in use on a page.
446 *
881db7fb 447 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
448 * not vanish from under us.
449 */
450static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451{
452 void *p;
453 void *addr = page_address(page);
454
455 for (p = page->freelist; p; p = get_freepointer(s, p))
456 set_bit(slab_index(p, s, addr), map);
457}
458
870b1fbb 459static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
460{
461 if (s->flags & SLAB_RED_ZONE)
462 return s->size - s->red_left_pad;
463
464 return s->size;
465}
466
467static inline void *restore_red_left(struct kmem_cache *s, void *p)
468{
469 if (s->flags & SLAB_RED_ZONE)
470 p -= s->red_left_pad;
471
472 return p;
473}
474
41ecc55b
CL
475/*
476 * Debug settings:
477 */
89d3c87e 478#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 479static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 480#else
d50112ed 481static slab_flags_t slub_debug;
f0630fff 482#endif
41ecc55b
CL
483
484static char *slub_debug_slabs;
fa5ec8a1 485static int disable_higher_order_debug;
41ecc55b 486
a79316c6
AR
487/*
488 * slub is about to manipulate internal object metadata. This memory lies
489 * outside the range of the allocated object, so accessing it would normally
490 * be reported by kasan as a bounds error. metadata_access_enable() is used
491 * to tell kasan that these accesses are OK.
492 */
493static inline void metadata_access_enable(void)
494{
495 kasan_disable_current();
496}
497
498static inline void metadata_access_disable(void)
499{
500 kasan_enable_current();
501}
502
81819f0f
CL
503/*
504 * Object debugging
505 */
d86bd1be
JK
506
507/* Verify that a pointer has an address that is valid within a slab page */
508static inline int check_valid_pointer(struct kmem_cache *s,
509 struct page *page, void *object)
510{
511 void *base;
512
513 if (!object)
514 return 1;
515
516 base = page_address(page);
338cfaad 517 object = kasan_reset_tag(object);
d86bd1be
JK
518 object = restore_red_left(s, object);
519 if (object < base || object >= base + page->objects * s->size ||
520 (object - base) % s->size) {
521 return 0;
522 }
523
524 return 1;
525}
526
aa2efd5e
DT
527static void print_section(char *level, char *text, u8 *addr,
528 unsigned int length)
81819f0f 529{
a79316c6 530 metadata_access_enable();
aa2efd5e 531 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 532 length, 1);
a79316c6 533 metadata_access_disable();
81819f0f
CL
534}
535
81819f0f
CL
536static struct track *get_track(struct kmem_cache *s, void *object,
537 enum track_item alloc)
538{
539 struct track *p;
540
541 if (s->offset)
542 p = object + s->offset + sizeof(void *);
543 else
544 p = object + s->inuse;
545
546 return p + alloc;
547}
548
549static void set_track(struct kmem_cache *s, void *object,
ce71e27c 550 enum track_item alloc, unsigned long addr)
81819f0f 551{
1a00df4a 552 struct track *p = get_track(s, object, alloc);
81819f0f 553
81819f0f 554 if (addr) {
d6543e39 555#ifdef CONFIG_STACKTRACE
79716799 556 unsigned int nr_entries;
d6543e39 557
a79316c6 558 metadata_access_enable();
79716799 559 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
a79316c6 560 metadata_access_disable();
d6543e39 561
79716799
TG
562 if (nr_entries < TRACK_ADDRS_COUNT)
563 p->addrs[nr_entries] = 0;
d6543e39 564#endif
81819f0f
CL
565 p->addr = addr;
566 p->cpu = smp_processor_id();
88e4ccf2 567 p->pid = current->pid;
81819f0f 568 p->when = jiffies;
b8ca7ff7 569 } else {
81819f0f 570 memset(p, 0, sizeof(struct track));
b8ca7ff7 571 }
81819f0f
CL
572}
573
81819f0f
CL
574static void init_tracking(struct kmem_cache *s, void *object)
575{
24922684
CL
576 if (!(s->flags & SLAB_STORE_USER))
577 return;
578
ce71e27c
EGM
579 set_track(s, object, TRACK_FREE, 0UL);
580 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
581}
582
86609d33 583static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
584{
585 if (!t->addr)
586 return;
587
f9f58285 588 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 589 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
d6543e39
BG
590#ifdef CONFIG_STACKTRACE
591 {
592 int i;
593 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
594 if (t->addrs[i])
f9f58285 595 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
596 else
597 break;
598 }
599#endif
24922684
CL
600}
601
602static void print_tracking(struct kmem_cache *s, void *object)
603{
86609d33 604 unsigned long pr_time = jiffies;
24922684
CL
605 if (!(s->flags & SLAB_STORE_USER))
606 return;
607
86609d33
CP
608 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
609 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
610}
611
612static void print_page_info(struct page *page)
613{
f9f58285 614 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 615 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
616
617}
618
619static void slab_bug(struct kmem_cache *s, char *fmt, ...)
620{
ecc42fbe 621 struct va_format vaf;
24922684 622 va_list args;
24922684
CL
623
624 va_start(args, fmt);
ecc42fbe
FF
625 vaf.fmt = fmt;
626 vaf.va = &args;
f9f58285 627 pr_err("=============================================================================\n");
ecc42fbe 628 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 629 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 630
373d4d09 631 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 632 va_end(args);
81819f0f
CL
633}
634
24922684
CL
635static void slab_fix(struct kmem_cache *s, char *fmt, ...)
636{
ecc42fbe 637 struct va_format vaf;
24922684 638 va_list args;
24922684
CL
639
640 va_start(args, fmt);
ecc42fbe
FF
641 vaf.fmt = fmt;
642 vaf.va = &args;
643 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 644 va_end(args);
24922684
CL
645}
646
647static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
648{
649 unsigned int off; /* Offset of last byte */
a973e9dd 650 u8 *addr = page_address(page);
24922684
CL
651
652 print_tracking(s, p);
653
654 print_page_info(page);
655
f9f58285
FF
656 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
657 p, p - addr, get_freepointer(s, p));
24922684 658
d86bd1be 659 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
660 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
661 s->red_left_pad);
d86bd1be 662 else if (p > addr + 16)
aa2efd5e 663 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 664
aa2efd5e 665 print_section(KERN_ERR, "Object ", p,
1b473f29 666 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 667 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 668 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 669 s->inuse - s->object_size);
81819f0f 670
81819f0f
CL
671 if (s->offset)
672 off = s->offset + sizeof(void *);
673 else
674 off = s->inuse;
675
24922684 676 if (s->flags & SLAB_STORE_USER)
81819f0f 677 off += 2 * sizeof(struct track);
81819f0f 678
80a9201a
AP
679 off += kasan_metadata_size(s);
680
d86bd1be 681 if (off != size_from_object(s))
81819f0f 682 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
683 print_section(KERN_ERR, "Padding ", p + off,
684 size_from_object(s) - off);
24922684
CL
685
686 dump_stack();
81819f0f
CL
687}
688
75c66def 689void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
690 u8 *object, char *reason)
691{
3dc50637 692 slab_bug(s, "%s", reason);
24922684 693 print_trailer(s, page, object);
81819f0f
CL
694}
695
a38965bf 696static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 697 const char *fmt, ...)
81819f0f
CL
698{
699 va_list args;
700 char buf[100];
701
24922684
CL
702 va_start(args, fmt);
703 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 704 va_end(args);
3dc50637 705 slab_bug(s, "%s", buf);
24922684 706 print_page_info(page);
81819f0f
CL
707 dump_stack();
708}
709
f7cb1933 710static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
711{
712 u8 *p = object;
713
d86bd1be
JK
714 if (s->flags & SLAB_RED_ZONE)
715 memset(p - s->red_left_pad, val, s->red_left_pad);
716
81819f0f 717 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
718 memset(p, POISON_FREE, s->object_size - 1);
719 p[s->object_size - 1] = POISON_END;
81819f0f
CL
720 }
721
722 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 723 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
724}
725
24922684
CL
726static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
727 void *from, void *to)
728{
729 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
730 memset(from, data, to - from);
731}
732
733static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
734 u8 *object, char *what,
06428780 735 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
736{
737 u8 *fault;
738 u8 *end;
739
a79316c6 740 metadata_access_enable();
79824820 741 fault = memchr_inv(start, value, bytes);
a79316c6 742 metadata_access_disable();
24922684
CL
743 if (!fault)
744 return 1;
745
746 end = start + bytes;
747 while (end > fault && end[-1] == value)
748 end--;
749
750 slab_bug(s, "%s overwritten", what);
f9f58285 751 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
752 fault, end - 1, fault[0], value);
753 print_trailer(s, page, object);
754
755 restore_bytes(s, what, value, fault, end);
756 return 0;
81819f0f
CL
757}
758
81819f0f
CL
759/*
760 * Object layout:
761 *
762 * object address
763 * Bytes of the object to be managed.
764 * If the freepointer may overlay the object then the free
765 * pointer is the first word of the object.
672bba3a 766 *
81819f0f
CL
767 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
768 * 0xa5 (POISON_END)
769 *
3b0efdfa 770 * object + s->object_size
81819f0f 771 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 772 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 773 * object_size == inuse.
672bba3a 774 *
81819f0f
CL
775 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
776 * 0xcc (RED_ACTIVE) for objects in use.
777 *
778 * object + s->inuse
672bba3a
CL
779 * Meta data starts here.
780 *
81819f0f
CL
781 * A. Free pointer (if we cannot overwrite object on free)
782 * B. Tracking data for SLAB_STORE_USER
672bba3a 783 * C. Padding to reach required alignment boundary or at mininum
6446faa2 784 * one word if debugging is on to be able to detect writes
672bba3a
CL
785 * before the word boundary.
786 *
787 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
788 *
789 * object + s->size
672bba3a 790 * Nothing is used beyond s->size.
81819f0f 791 *
3b0efdfa 792 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 793 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
794 * may be used with merged slabcaches.
795 */
796
81819f0f
CL
797static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
798{
799 unsigned long off = s->inuse; /* The end of info */
800
801 if (s->offset)
802 /* Freepointer is placed after the object. */
803 off += sizeof(void *);
804
805 if (s->flags & SLAB_STORE_USER)
806 /* We also have user information there */
807 off += 2 * sizeof(struct track);
808
80a9201a
AP
809 off += kasan_metadata_size(s);
810
d86bd1be 811 if (size_from_object(s) == off)
81819f0f
CL
812 return 1;
813
24922684 814 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 815 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
816}
817
39b26464 818/* Check the pad bytes at the end of a slab page */
81819f0f
CL
819static int slab_pad_check(struct kmem_cache *s, struct page *page)
820{
24922684
CL
821 u8 *start;
822 u8 *fault;
823 u8 *end;
5d682681 824 u8 *pad;
24922684
CL
825 int length;
826 int remainder;
81819f0f
CL
827
828 if (!(s->flags & SLAB_POISON))
829 return 1;
830
a973e9dd 831 start = page_address(page);
9736d2a9 832 length = PAGE_SIZE << compound_order(page);
39b26464
CL
833 end = start + length;
834 remainder = length % s->size;
81819f0f
CL
835 if (!remainder)
836 return 1;
837
5d682681 838 pad = end - remainder;
a79316c6 839 metadata_access_enable();
5d682681 840 fault = memchr_inv(pad, POISON_INUSE, remainder);
a79316c6 841 metadata_access_disable();
24922684
CL
842 if (!fault)
843 return 1;
844 while (end > fault && end[-1] == POISON_INUSE)
845 end--;
846
847 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
5d682681 848 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 849
5d682681 850 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 851 return 0;
81819f0f
CL
852}
853
854static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 855 void *object, u8 val)
81819f0f
CL
856{
857 u8 *p = object;
3b0efdfa 858 u8 *endobject = object + s->object_size;
81819f0f
CL
859
860 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
861 if (!check_bytes_and_report(s, page, object, "Redzone",
862 object - s->red_left_pad, val, s->red_left_pad))
863 return 0;
864
24922684 865 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 866 endobject, val, s->inuse - s->object_size))
81819f0f 867 return 0;
81819f0f 868 } else {
3b0efdfa 869 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 870 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
871 endobject, POISON_INUSE,
872 s->inuse - s->object_size);
3adbefee 873 }
81819f0f
CL
874 }
875
876 if (s->flags & SLAB_POISON) {
f7cb1933 877 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 878 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 879 POISON_FREE, s->object_size - 1) ||
24922684 880 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 881 p + s->object_size - 1, POISON_END, 1)))
81819f0f 882 return 0;
81819f0f
CL
883 /*
884 * check_pad_bytes cleans up on its own.
885 */
886 check_pad_bytes(s, page, p);
887 }
888
f7cb1933 889 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
890 /*
891 * Object and freepointer overlap. Cannot check
892 * freepointer while object is allocated.
893 */
894 return 1;
895
896 /* Check free pointer validity */
897 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
898 object_err(s, page, p, "Freepointer corrupt");
899 /*
9f6c708e 900 * No choice but to zap it and thus lose the remainder
81819f0f 901 * of the free objects in this slab. May cause
672bba3a 902 * another error because the object count is now wrong.
81819f0f 903 */
a973e9dd 904 set_freepointer(s, p, NULL);
81819f0f
CL
905 return 0;
906 }
907 return 1;
908}
909
910static int check_slab(struct kmem_cache *s, struct page *page)
911{
39b26464
CL
912 int maxobj;
913
81819f0f
CL
914 VM_BUG_ON(!irqs_disabled());
915
916 if (!PageSlab(page)) {
24922684 917 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
918 return 0;
919 }
39b26464 920
9736d2a9 921 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
922 if (page->objects > maxobj) {
923 slab_err(s, page, "objects %u > max %u",
f6edde9c 924 page->objects, maxobj);
39b26464
CL
925 return 0;
926 }
927 if (page->inuse > page->objects) {
24922684 928 slab_err(s, page, "inuse %u > max %u",
f6edde9c 929 page->inuse, page->objects);
81819f0f
CL
930 return 0;
931 }
932 /* Slab_pad_check fixes things up after itself */
933 slab_pad_check(s, page);
934 return 1;
935}
936
937/*
672bba3a
CL
938 * Determine if a certain object on a page is on the freelist. Must hold the
939 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
940 */
941static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
942{
943 int nr = 0;
881db7fb 944 void *fp;
81819f0f 945 void *object = NULL;
f6edde9c 946 int max_objects;
81819f0f 947
881db7fb 948 fp = page->freelist;
39b26464 949 while (fp && nr <= page->objects) {
81819f0f
CL
950 if (fp == search)
951 return 1;
952 if (!check_valid_pointer(s, page, fp)) {
953 if (object) {
954 object_err(s, page, object,
955 "Freechain corrupt");
a973e9dd 956 set_freepointer(s, object, NULL);
81819f0f 957 } else {
24922684 958 slab_err(s, page, "Freepointer corrupt");
a973e9dd 959 page->freelist = NULL;
39b26464 960 page->inuse = page->objects;
24922684 961 slab_fix(s, "Freelist cleared");
81819f0f
CL
962 return 0;
963 }
964 break;
965 }
966 object = fp;
967 fp = get_freepointer(s, object);
968 nr++;
969 }
970
9736d2a9 971 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
972 if (max_objects > MAX_OBJS_PER_PAGE)
973 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
974
975 if (page->objects != max_objects) {
756a025f
JP
976 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
977 page->objects, max_objects);
224a88be
CL
978 page->objects = max_objects;
979 slab_fix(s, "Number of objects adjusted.");
980 }
39b26464 981 if (page->inuse != page->objects - nr) {
756a025f
JP
982 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
983 page->inuse, page->objects - nr);
39b26464 984 page->inuse = page->objects - nr;
24922684 985 slab_fix(s, "Object count adjusted.");
81819f0f
CL
986 }
987 return search == NULL;
988}
989
0121c619
CL
990static void trace(struct kmem_cache *s, struct page *page, void *object,
991 int alloc)
3ec09742
CL
992{
993 if (s->flags & SLAB_TRACE) {
f9f58285 994 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
995 s->name,
996 alloc ? "alloc" : "free",
997 object, page->inuse,
998 page->freelist);
999
1000 if (!alloc)
aa2efd5e 1001 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1002 s->object_size);
3ec09742
CL
1003
1004 dump_stack();
1005 }
1006}
1007
643b1138 1008/*
672bba3a 1009 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1010 */
5cc6eee8
CL
1011static void add_full(struct kmem_cache *s,
1012 struct kmem_cache_node *n, struct page *page)
643b1138 1013{
5cc6eee8
CL
1014 if (!(s->flags & SLAB_STORE_USER))
1015 return;
1016
255d0884 1017 lockdep_assert_held(&n->list_lock);
916ac052 1018 list_add(&page->slab_list, &n->full);
643b1138
CL
1019}
1020
c65c1877 1021static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1022{
643b1138
CL
1023 if (!(s->flags & SLAB_STORE_USER))
1024 return;
1025
255d0884 1026 lockdep_assert_held(&n->list_lock);
916ac052 1027 list_del(&page->slab_list);
643b1138
CL
1028}
1029
0f389ec6
CL
1030/* Tracking of the number of slabs for debugging purposes */
1031static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1032{
1033 struct kmem_cache_node *n = get_node(s, node);
1034
1035 return atomic_long_read(&n->nr_slabs);
1036}
1037
26c02cf0
AB
1038static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1039{
1040 return atomic_long_read(&n->nr_slabs);
1041}
1042
205ab99d 1043static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1044{
1045 struct kmem_cache_node *n = get_node(s, node);
1046
1047 /*
1048 * May be called early in order to allocate a slab for the
1049 * kmem_cache_node structure. Solve the chicken-egg
1050 * dilemma by deferring the increment of the count during
1051 * bootstrap (see early_kmem_cache_node_alloc).
1052 */
338b2642 1053 if (likely(n)) {
0f389ec6 1054 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1055 atomic_long_add(objects, &n->total_objects);
1056 }
0f389ec6 1057}
205ab99d 1058static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1059{
1060 struct kmem_cache_node *n = get_node(s, node);
1061
1062 atomic_long_dec(&n->nr_slabs);
205ab99d 1063 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1064}
1065
1066/* Object debug checks for alloc/free paths */
3ec09742
CL
1067static void setup_object_debug(struct kmem_cache *s, struct page *page,
1068 void *object)
1069{
1070 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1071 return;
1072
f7cb1933 1073 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1074 init_tracking(s, object);
1075}
1076
a7101224
AK
1077static void setup_page_debug(struct kmem_cache *s, void *addr, int order)
1078{
1079 if (!(s->flags & SLAB_POISON))
1080 return;
1081
1082 metadata_access_enable();
1083 memset(addr, POISON_INUSE, PAGE_SIZE << order);
1084 metadata_access_disable();
1085}
1086
becfda68 1087static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1088 struct page *page, void *object)
81819f0f
CL
1089{
1090 if (!check_slab(s, page))
becfda68 1091 return 0;
81819f0f 1092
81819f0f
CL
1093 if (!check_valid_pointer(s, page, object)) {
1094 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1095 return 0;
81819f0f
CL
1096 }
1097
f7cb1933 1098 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1099 return 0;
1100
1101 return 1;
1102}
1103
1104static noinline int alloc_debug_processing(struct kmem_cache *s,
1105 struct page *page,
1106 void *object, unsigned long addr)
1107{
1108 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1109 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1110 goto bad;
1111 }
81819f0f 1112
3ec09742
CL
1113 /* Success perform special debug activities for allocs */
1114 if (s->flags & SLAB_STORE_USER)
1115 set_track(s, object, TRACK_ALLOC, addr);
1116 trace(s, page, object, 1);
f7cb1933 1117 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1118 return 1;
3ec09742 1119
81819f0f
CL
1120bad:
1121 if (PageSlab(page)) {
1122 /*
1123 * If this is a slab page then lets do the best we can
1124 * to avoid issues in the future. Marking all objects
672bba3a 1125 * as used avoids touching the remaining objects.
81819f0f 1126 */
24922684 1127 slab_fix(s, "Marking all objects used");
39b26464 1128 page->inuse = page->objects;
a973e9dd 1129 page->freelist = NULL;
81819f0f
CL
1130 }
1131 return 0;
1132}
1133
becfda68
LA
1134static inline int free_consistency_checks(struct kmem_cache *s,
1135 struct page *page, void *object, unsigned long addr)
81819f0f 1136{
81819f0f 1137 if (!check_valid_pointer(s, page, object)) {
70d71228 1138 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1139 return 0;
81819f0f
CL
1140 }
1141
1142 if (on_freelist(s, page, object)) {
24922684 1143 object_err(s, page, object, "Object already free");
becfda68 1144 return 0;
81819f0f
CL
1145 }
1146
f7cb1933 1147 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1148 return 0;
81819f0f 1149
1b4f59e3 1150 if (unlikely(s != page->slab_cache)) {
3adbefee 1151 if (!PageSlab(page)) {
756a025f
JP
1152 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1153 object);
1b4f59e3 1154 } else if (!page->slab_cache) {
f9f58285
FF
1155 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1156 object);
70d71228 1157 dump_stack();
06428780 1158 } else
24922684
CL
1159 object_err(s, page, object,
1160 "page slab pointer corrupt.");
becfda68
LA
1161 return 0;
1162 }
1163 return 1;
1164}
1165
1166/* Supports checking bulk free of a constructed freelist */
1167static noinline int free_debug_processing(
1168 struct kmem_cache *s, struct page *page,
1169 void *head, void *tail, int bulk_cnt,
1170 unsigned long addr)
1171{
1172 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1173 void *object = head;
1174 int cnt = 0;
1175 unsigned long uninitialized_var(flags);
1176 int ret = 0;
1177
1178 spin_lock_irqsave(&n->list_lock, flags);
1179 slab_lock(page);
1180
1181 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1182 if (!check_slab(s, page))
1183 goto out;
1184 }
1185
1186next_object:
1187 cnt++;
1188
1189 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1190 if (!free_consistency_checks(s, page, object, addr))
1191 goto out;
81819f0f 1192 }
3ec09742 1193
3ec09742
CL
1194 if (s->flags & SLAB_STORE_USER)
1195 set_track(s, object, TRACK_FREE, addr);
1196 trace(s, page, object, 0);
81084651 1197 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1198 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1199
1200 /* Reached end of constructed freelist yet? */
1201 if (object != tail) {
1202 object = get_freepointer(s, object);
1203 goto next_object;
1204 }
804aa132
LA
1205 ret = 1;
1206
5c2e4bbb 1207out:
81084651
JDB
1208 if (cnt != bulk_cnt)
1209 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1210 bulk_cnt, cnt);
1211
881db7fb 1212 slab_unlock(page);
282acb43 1213 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1214 if (!ret)
1215 slab_fix(s, "Object at 0x%p not freed", object);
1216 return ret;
81819f0f
CL
1217}
1218
41ecc55b
CL
1219static int __init setup_slub_debug(char *str)
1220{
f0630fff
CL
1221 slub_debug = DEBUG_DEFAULT_FLAGS;
1222 if (*str++ != '=' || !*str)
1223 /*
1224 * No options specified. Switch on full debugging.
1225 */
1226 goto out;
1227
1228 if (*str == ',')
1229 /*
1230 * No options but restriction on slabs. This means full
1231 * debugging for slabs matching a pattern.
1232 */
1233 goto check_slabs;
1234
1235 slub_debug = 0;
1236 if (*str == '-')
1237 /*
1238 * Switch off all debugging measures.
1239 */
1240 goto out;
1241
1242 /*
1243 * Determine which debug features should be switched on
1244 */
06428780 1245 for (; *str && *str != ','; str++) {
f0630fff
CL
1246 switch (tolower(*str)) {
1247 case 'f':
becfda68 1248 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1249 break;
1250 case 'z':
1251 slub_debug |= SLAB_RED_ZONE;
1252 break;
1253 case 'p':
1254 slub_debug |= SLAB_POISON;
1255 break;
1256 case 'u':
1257 slub_debug |= SLAB_STORE_USER;
1258 break;
1259 case 't':
1260 slub_debug |= SLAB_TRACE;
1261 break;
4c13dd3b
DM
1262 case 'a':
1263 slub_debug |= SLAB_FAILSLAB;
1264 break;
08303a73
CA
1265 case 'o':
1266 /*
1267 * Avoid enabling debugging on caches if its minimum
1268 * order would increase as a result.
1269 */
1270 disable_higher_order_debug = 1;
1271 break;
f0630fff 1272 default:
f9f58285
FF
1273 pr_err("slub_debug option '%c' unknown. skipped\n",
1274 *str);
f0630fff 1275 }
41ecc55b
CL
1276 }
1277
f0630fff 1278check_slabs:
41ecc55b
CL
1279 if (*str == ',')
1280 slub_debug_slabs = str + 1;
f0630fff 1281out:
6471384a
AP
1282 if ((static_branch_unlikely(&init_on_alloc) ||
1283 static_branch_unlikely(&init_on_free)) &&
1284 (slub_debug & SLAB_POISON))
1285 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1286 return 1;
1287}
1288
1289__setup("slub_debug", setup_slub_debug);
1290
c5fd3ca0
AT
1291/*
1292 * kmem_cache_flags - apply debugging options to the cache
1293 * @object_size: the size of an object without meta data
1294 * @flags: flags to set
1295 * @name: name of the cache
1296 * @ctor: constructor function
1297 *
1298 * Debug option(s) are applied to @flags. In addition to the debug
1299 * option(s), if a slab name (or multiple) is specified i.e.
1300 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1301 * then only the select slabs will receive the debug option(s).
1302 */
0293d1fd 1303slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1304 slab_flags_t flags, const char *name,
51cc5068 1305 void (*ctor)(void *))
41ecc55b 1306{
c5fd3ca0
AT
1307 char *iter;
1308 size_t len;
1309
1310 /* If slub_debug = 0, it folds into the if conditional. */
1311 if (!slub_debug_slabs)
1312 return flags | slub_debug;
1313
1314 len = strlen(name);
1315 iter = slub_debug_slabs;
1316 while (*iter) {
1317 char *end, *glob;
1318 size_t cmplen;
1319
9cf3a8d8 1320 end = strchrnul(iter, ',');
c5fd3ca0
AT
1321
1322 glob = strnchr(iter, end - iter, '*');
1323 if (glob)
1324 cmplen = glob - iter;
1325 else
1326 cmplen = max_t(size_t, len, (end - iter));
1327
1328 if (!strncmp(name, iter, cmplen)) {
1329 flags |= slub_debug;
1330 break;
1331 }
1332
1333 if (!*end)
1334 break;
1335 iter = end + 1;
1336 }
ba0268a8
CL
1337
1338 return flags;
41ecc55b 1339}
b4a64718 1340#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1341static inline void setup_object_debug(struct kmem_cache *s,
1342 struct page *page, void *object) {}
a7101224
AK
1343static inline void setup_page_debug(struct kmem_cache *s,
1344 void *addr, int order) {}
41ecc55b 1345
3ec09742 1346static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1347 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1348
282acb43 1349static inline int free_debug_processing(
81084651
JDB
1350 struct kmem_cache *s, struct page *page,
1351 void *head, void *tail, int bulk_cnt,
282acb43 1352 unsigned long addr) { return 0; }
41ecc55b 1353
41ecc55b
CL
1354static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1355 { return 1; }
1356static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1357 void *object, u8 val) { return 1; }
5cc6eee8
CL
1358static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1359 struct page *page) {}
c65c1877
PZ
1360static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1361 struct page *page) {}
0293d1fd 1362slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1363 slab_flags_t flags, const char *name,
51cc5068 1364 void (*ctor)(void *))
ba0268a8
CL
1365{
1366 return flags;
1367}
41ecc55b 1368#define slub_debug 0
0f389ec6 1369
fdaa45e9
IM
1370#define disable_higher_order_debug 0
1371
0f389ec6
CL
1372static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1373 { return 0; }
26c02cf0
AB
1374static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1375 { return 0; }
205ab99d
CL
1376static inline void inc_slabs_node(struct kmem_cache *s, int node,
1377 int objects) {}
1378static inline void dec_slabs_node(struct kmem_cache *s, int node,
1379 int objects) {}
7d550c56 1380
02e72cc6
AR
1381#endif /* CONFIG_SLUB_DEBUG */
1382
1383/*
1384 * Hooks for other subsystems that check memory allocations. In a typical
1385 * production configuration these hooks all should produce no code at all.
1386 */
0116523c 1387static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1388{
53128245 1389 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1390 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1391 kmemleak_alloc(ptr, size, 1, flags);
53128245 1392 return ptr;
d56791b3
RB
1393}
1394
ee3ce779 1395static __always_inline void kfree_hook(void *x)
d56791b3
RB
1396{
1397 kmemleak_free(x);
ee3ce779 1398 kasan_kfree_large(x, _RET_IP_);
d56791b3
RB
1399}
1400
c3895391 1401static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
d56791b3
RB
1402{
1403 kmemleak_free_recursive(x, s->flags);
7d550c56 1404
02e72cc6
AR
1405 /*
1406 * Trouble is that we may no longer disable interrupts in the fast path
1407 * So in order to make the debug calls that expect irqs to be
1408 * disabled we need to disable interrupts temporarily.
1409 */
4675ff05 1410#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1411 {
1412 unsigned long flags;
1413
1414 local_irq_save(flags);
02e72cc6
AR
1415 debug_check_no_locks_freed(x, s->object_size);
1416 local_irq_restore(flags);
1417 }
1418#endif
1419 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1420 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1421
c3895391
AK
1422 /* KASAN might put x into memory quarantine, delaying its reuse */
1423 return kasan_slab_free(s, x, _RET_IP_);
02e72cc6 1424}
205ab99d 1425
c3895391
AK
1426static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1427 void **head, void **tail)
81084651 1428{
6471384a
AP
1429
1430 void *object;
1431 void *next = *head;
1432 void *old_tail = *tail ? *tail : *head;
1433 int rsize;
1434
1435 if (slab_want_init_on_free(s))
1436 do {
1437 object = next;
1438 next = get_freepointer(s, object);
1439 /*
1440 * Clear the object and the metadata, but don't touch
1441 * the redzone.
1442 */
1443 memset(object, 0, s->object_size);
1444 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1445 : 0;
1446 memset((char *)object + s->inuse, 0,
1447 s->size - s->inuse - rsize);
1448 set_freepointer(s, object, next);
1449 } while (object != old_tail);
1450
81084651
JDB
1451/*
1452 * Compiler cannot detect this function can be removed if slab_free_hook()
1453 * evaluates to nothing. Thus, catch all relevant config debug options here.
1454 */
4675ff05 1455#if defined(CONFIG_LOCKDEP) || \
81084651
JDB
1456 defined(CONFIG_DEBUG_KMEMLEAK) || \
1457 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1458 defined(CONFIG_KASAN)
1459
6471384a 1460 next = *head;
c3895391
AK
1461
1462 /* Head and tail of the reconstructed freelist */
1463 *head = NULL;
1464 *tail = NULL;
81084651
JDB
1465
1466 do {
c3895391
AK
1467 object = next;
1468 next = get_freepointer(s, object);
1469 /* If object's reuse doesn't have to be delayed */
1470 if (!slab_free_hook(s, object)) {
1471 /* Move object to the new freelist */
1472 set_freepointer(s, object, *head);
1473 *head = object;
1474 if (!*tail)
1475 *tail = object;
1476 }
1477 } while (object != old_tail);
1478
1479 if (*head == *tail)
1480 *tail = NULL;
1481
1482 return *head != NULL;
1483#else
1484 return true;
81084651
JDB
1485#endif
1486}
1487
4d176711 1488static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1489 void *object)
1490{
1491 setup_object_debug(s, page, object);
4d176711 1492 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1493 if (unlikely(s->ctor)) {
1494 kasan_unpoison_object_data(s, object);
1495 s->ctor(object);
1496 kasan_poison_object_data(s, object);
1497 }
4d176711 1498 return object;
588f8ba9
TG
1499}
1500
81819f0f
CL
1501/*
1502 * Slab allocation and freeing
1503 */
5dfb4175
VD
1504static inline struct page *alloc_slab_page(struct kmem_cache *s,
1505 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1506{
5dfb4175 1507 struct page *page;
19af27af 1508 unsigned int order = oo_order(oo);
65c3376a 1509
2154a336 1510 if (node == NUMA_NO_NODE)
5dfb4175 1511 page = alloc_pages(flags, order);
65c3376a 1512 else
96db800f 1513 page = __alloc_pages_node(node, flags, order);
5dfb4175 1514
6cea1d56 1515 if (page && charge_slab_page(page, flags, order, s)) {
f3ccb2c4
VD
1516 __free_pages(page, order);
1517 page = NULL;
1518 }
5dfb4175
VD
1519
1520 return page;
65c3376a
CL
1521}
1522
210e7a43
TG
1523#ifdef CONFIG_SLAB_FREELIST_RANDOM
1524/* Pre-initialize the random sequence cache */
1525static int init_cache_random_seq(struct kmem_cache *s)
1526{
19af27af 1527 unsigned int count = oo_objects(s->oo);
210e7a43 1528 int err;
210e7a43 1529
a810007a
SR
1530 /* Bailout if already initialised */
1531 if (s->random_seq)
1532 return 0;
1533
210e7a43
TG
1534 err = cache_random_seq_create(s, count, GFP_KERNEL);
1535 if (err) {
1536 pr_err("SLUB: Unable to initialize free list for %s\n",
1537 s->name);
1538 return err;
1539 }
1540
1541 /* Transform to an offset on the set of pages */
1542 if (s->random_seq) {
19af27af
AD
1543 unsigned int i;
1544
210e7a43
TG
1545 for (i = 0; i < count; i++)
1546 s->random_seq[i] *= s->size;
1547 }
1548 return 0;
1549}
1550
1551/* Initialize each random sequence freelist per cache */
1552static void __init init_freelist_randomization(void)
1553{
1554 struct kmem_cache *s;
1555
1556 mutex_lock(&slab_mutex);
1557
1558 list_for_each_entry(s, &slab_caches, list)
1559 init_cache_random_seq(s);
1560
1561 mutex_unlock(&slab_mutex);
1562}
1563
1564/* Get the next entry on the pre-computed freelist randomized */
1565static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1566 unsigned long *pos, void *start,
1567 unsigned long page_limit,
1568 unsigned long freelist_count)
1569{
1570 unsigned int idx;
1571
1572 /*
1573 * If the target page allocation failed, the number of objects on the
1574 * page might be smaller than the usual size defined by the cache.
1575 */
1576 do {
1577 idx = s->random_seq[*pos];
1578 *pos += 1;
1579 if (*pos >= freelist_count)
1580 *pos = 0;
1581 } while (unlikely(idx >= page_limit));
1582
1583 return (char *)start + idx;
1584}
1585
1586/* Shuffle the single linked freelist based on a random pre-computed sequence */
1587static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1588{
1589 void *start;
1590 void *cur;
1591 void *next;
1592 unsigned long idx, pos, page_limit, freelist_count;
1593
1594 if (page->objects < 2 || !s->random_seq)
1595 return false;
1596
1597 freelist_count = oo_objects(s->oo);
1598 pos = get_random_int() % freelist_count;
1599
1600 page_limit = page->objects * s->size;
1601 start = fixup_red_left(s, page_address(page));
1602
1603 /* First entry is used as the base of the freelist */
1604 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1605 freelist_count);
4d176711 1606 cur = setup_object(s, page, cur);
210e7a43
TG
1607 page->freelist = cur;
1608
1609 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1610 next = next_freelist_entry(s, page, &pos, start, page_limit,
1611 freelist_count);
4d176711 1612 next = setup_object(s, page, next);
210e7a43
TG
1613 set_freepointer(s, cur, next);
1614 cur = next;
1615 }
210e7a43
TG
1616 set_freepointer(s, cur, NULL);
1617
1618 return true;
1619}
1620#else
1621static inline int init_cache_random_seq(struct kmem_cache *s)
1622{
1623 return 0;
1624}
1625static inline void init_freelist_randomization(void) { }
1626static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1627{
1628 return false;
1629}
1630#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1631
81819f0f
CL
1632static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1633{
06428780 1634 struct page *page;
834f3d11 1635 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1636 gfp_t alloc_gfp;
4d176711 1637 void *start, *p, *next;
588f8ba9 1638 int idx, order;
210e7a43 1639 bool shuffle;
81819f0f 1640
7e0528da
CL
1641 flags &= gfp_allowed_mask;
1642
d0164adc 1643 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1644 local_irq_enable();
1645
b7a49f0d 1646 flags |= s->allocflags;
e12ba74d 1647
ba52270d
PE
1648 /*
1649 * Let the initial higher-order allocation fail under memory pressure
1650 * so we fall-back to the minimum order allocation.
1651 */
1652 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1653 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1654 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1655
5dfb4175 1656 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1657 if (unlikely(!page)) {
1658 oo = s->min;
80c3a998 1659 alloc_gfp = flags;
65c3376a
CL
1660 /*
1661 * Allocation may have failed due to fragmentation.
1662 * Try a lower order alloc if possible
1663 */
5dfb4175 1664 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1665 if (unlikely(!page))
1666 goto out;
1667 stat(s, ORDER_FALLBACK);
65c3376a 1668 }
5a896d9e 1669
834f3d11 1670 page->objects = oo_objects(oo);
81819f0f 1671
1f458cbf 1672 order = compound_order(page);
1b4f59e3 1673 page->slab_cache = s;
c03f94cc 1674 __SetPageSlab(page);
2f064f34 1675 if (page_is_pfmemalloc(page))
072bb0aa 1676 SetPageSlabPfmemalloc(page);
81819f0f 1677
a7101224 1678 kasan_poison_slab(page);
81819f0f 1679
a7101224 1680 start = page_address(page);
81819f0f 1681
a7101224 1682 setup_page_debug(s, start, order);
0316bec2 1683
210e7a43
TG
1684 shuffle = shuffle_freelist(s, page);
1685
1686 if (!shuffle) {
4d176711
AK
1687 start = fixup_red_left(s, start);
1688 start = setup_object(s, page, start);
1689 page->freelist = start;
18e50661
AK
1690 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1691 next = p + s->size;
1692 next = setup_object(s, page, next);
1693 set_freepointer(s, p, next);
1694 p = next;
1695 }
1696 set_freepointer(s, p, NULL);
81819f0f 1697 }
81819f0f 1698
e6e82ea1 1699 page->inuse = page->objects;
8cb0a506 1700 page->frozen = 1;
588f8ba9 1701
81819f0f 1702out:
d0164adc 1703 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1704 local_irq_disable();
1705 if (!page)
1706 return NULL;
1707
588f8ba9
TG
1708 inc_slabs_node(s, page_to_nid(page), page->objects);
1709
81819f0f
CL
1710 return page;
1711}
1712
588f8ba9
TG
1713static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1714{
1715 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 1716 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
1717 flags &= ~GFP_SLAB_BUG_MASK;
1718 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1719 invalid_mask, &invalid_mask, flags, &flags);
65b9de75 1720 dump_stack();
588f8ba9
TG
1721 }
1722
1723 return allocate_slab(s,
1724 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1725}
1726
81819f0f
CL
1727static void __free_slab(struct kmem_cache *s, struct page *page)
1728{
834f3d11
CL
1729 int order = compound_order(page);
1730 int pages = 1 << order;
81819f0f 1731
becfda68 1732 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1733 void *p;
1734
1735 slab_pad_check(s, page);
224a88be
CL
1736 for_each_object(p, s, page_address(page),
1737 page->objects)
f7cb1933 1738 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1739 }
1740
072bb0aa 1741 __ClearPageSlabPfmemalloc(page);
49bd5221 1742 __ClearPageSlab(page);
1f458cbf 1743
d4fc5069 1744 page->mapping = NULL;
1eb5ac64
NP
1745 if (current->reclaim_state)
1746 current->reclaim_state->reclaimed_slab += pages;
6cea1d56 1747 uncharge_slab_page(page, order, s);
27ee57c9 1748 __free_pages(page, order);
81819f0f
CL
1749}
1750
1751static void rcu_free_slab(struct rcu_head *h)
1752{
bf68c214 1753 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1754
1b4f59e3 1755 __free_slab(page->slab_cache, page);
81819f0f
CL
1756}
1757
1758static void free_slab(struct kmem_cache *s, struct page *page)
1759{
5f0d5a3a 1760 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1761 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1762 } else
1763 __free_slab(s, page);
1764}
1765
1766static void discard_slab(struct kmem_cache *s, struct page *page)
1767{
205ab99d 1768 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1769 free_slab(s, page);
1770}
1771
1772/*
5cc6eee8 1773 * Management of partially allocated slabs.
81819f0f 1774 */
1e4dd946
SR
1775static inline void
1776__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1777{
e95eed57 1778 n->nr_partial++;
136333d1 1779 if (tail == DEACTIVATE_TO_TAIL)
916ac052 1780 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 1781 else
916ac052 1782 list_add(&page->slab_list, &n->partial);
81819f0f
CL
1783}
1784
1e4dd946
SR
1785static inline void add_partial(struct kmem_cache_node *n,
1786 struct page *page, int tail)
62e346a8 1787{
c65c1877 1788 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1789 __add_partial(n, page, tail);
1790}
c65c1877 1791
1e4dd946
SR
1792static inline void remove_partial(struct kmem_cache_node *n,
1793 struct page *page)
1794{
1795 lockdep_assert_held(&n->list_lock);
916ac052 1796 list_del(&page->slab_list);
52b4b950 1797 n->nr_partial--;
1e4dd946
SR
1798}
1799
81819f0f 1800/*
7ced3719
CL
1801 * Remove slab from the partial list, freeze it and
1802 * return the pointer to the freelist.
81819f0f 1803 *
497b66f2 1804 * Returns a list of objects or NULL if it fails.
81819f0f 1805 */
497b66f2 1806static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1807 struct kmem_cache_node *n, struct page *page,
633b0764 1808 int mode, int *objects)
81819f0f 1809{
2cfb7455
CL
1810 void *freelist;
1811 unsigned long counters;
1812 struct page new;
1813
c65c1877
PZ
1814 lockdep_assert_held(&n->list_lock);
1815
2cfb7455
CL
1816 /*
1817 * Zap the freelist and set the frozen bit.
1818 * The old freelist is the list of objects for the
1819 * per cpu allocation list.
1820 */
7ced3719
CL
1821 freelist = page->freelist;
1822 counters = page->counters;
1823 new.counters = counters;
633b0764 1824 *objects = new.objects - new.inuse;
23910c50 1825 if (mode) {
7ced3719 1826 new.inuse = page->objects;
23910c50
PE
1827 new.freelist = NULL;
1828 } else {
1829 new.freelist = freelist;
1830 }
2cfb7455 1831
a0132ac0 1832 VM_BUG_ON(new.frozen);
7ced3719 1833 new.frozen = 1;
2cfb7455 1834
7ced3719 1835 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1836 freelist, counters,
02d7633f 1837 new.freelist, new.counters,
7ced3719 1838 "acquire_slab"))
7ced3719 1839 return NULL;
2cfb7455
CL
1840
1841 remove_partial(n, page);
7ced3719 1842 WARN_ON(!freelist);
49e22585 1843 return freelist;
81819f0f
CL
1844}
1845
633b0764 1846static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1847static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1848
81819f0f 1849/*
672bba3a 1850 * Try to allocate a partial slab from a specific node.
81819f0f 1851 */
8ba00bb6
JK
1852static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1853 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1854{
49e22585
CL
1855 struct page *page, *page2;
1856 void *object = NULL;
e5d9998f 1857 unsigned int available = 0;
633b0764 1858 int objects;
81819f0f
CL
1859
1860 /*
1861 * Racy check. If we mistakenly see no partial slabs then we
1862 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1863 * partial slab and there is none available then get_partials()
1864 * will return NULL.
81819f0f
CL
1865 */
1866 if (!n || !n->nr_partial)
1867 return NULL;
1868
1869 spin_lock(&n->list_lock);
916ac052 1870 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 1871 void *t;
49e22585 1872
8ba00bb6
JK
1873 if (!pfmemalloc_match(page, flags))
1874 continue;
1875
633b0764 1876 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1877 if (!t)
1878 break;
1879
633b0764 1880 available += objects;
12d79634 1881 if (!object) {
49e22585 1882 c->page = page;
49e22585 1883 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1884 object = t;
49e22585 1885 } else {
633b0764 1886 put_cpu_partial(s, page, 0);
8028dcea 1887 stat(s, CPU_PARTIAL_NODE);
49e22585 1888 }
345c905d 1889 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 1890 || available > slub_cpu_partial(s) / 2)
49e22585
CL
1891 break;
1892
497b66f2 1893 }
81819f0f 1894 spin_unlock(&n->list_lock);
497b66f2 1895 return object;
81819f0f
CL
1896}
1897
1898/*
672bba3a 1899 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1900 */
de3ec035 1901static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1902 struct kmem_cache_cpu *c)
81819f0f
CL
1903{
1904#ifdef CONFIG_NUMA
1905 struct zonelist *zonelist;
dd1a239f 1906 struct zoneref *z;
54a6eb5c
MG
1907 struct zone *zone;
1908 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1909 void *object;
cc9a6c87 1910 unsigned int cpuset_mems_cookie;
81819f0f
CL
1911
1912 /*
672bba3a
CL
1913 * The defrag ratio allows a configuration of the tradeoffs between
1914 * inter node defragmentation and node local allocations. A lower
1915 * defrag_ratio increases the tendency to do local allocations
1916 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1917 *
672bba3a
CL
1918 * If the defrag_ratio is set to 0 then kmalloc() always
1919 * returns node local objects. If the ratio is higher then kmalloc()
1920 * may return off node objects because partial slabs are obtained
1921 * from other nodes and filled up.
81819f0f 1922 *
43efd3ea
LP
1923 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1924 * (which makes defrag_ratio = 1000) then every (well almost)
1925 * allocation will first attempt to defrag slab caches on other nodes.
1926 * This means scanning over all nodes to look for partial slabs which
1927 * may be expensive if we do it every time we are trying to find a slab
672bba3a 1928 * with available objects.
81819f0f 1929 */
9824601e
CL
1930 if (!s->remote_node_defrag_ratio ||
1931 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1932 return NULL;
1933
cc9a6c87 1934 do {
d26914d1 1935 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1936 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1937 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1938 struct kmem_cache_node *n;
1939
1940 n = get_node(s, zone_to_nid(zone));
1941
dee2f8aa 1942 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1943 n->nr_partial > s->min_partial) {
8ba00bb6 1944 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1945 if (object) {
1946 /*
d26914d1
MG
1947 * Don't check read_mems_allowed_retry()
1948 * here - if mems_allowed was updated in
1949 * parallel, that was a harmless race
1950 * between allocation and the cpuset
1951 * update
cc9a6c87 1952 */
cc9a6c87
MG
1953 return object;
1954 }
c0ff7453 1955 }
81819f0f 1956 }
d26914d1 1957 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 1958#endif /* CONFIG_NUMA */
81819f0f
CL
1959 return NULL;
1960}
1961
1962/*
1963 * Get a partial page, lock it and return it.
1964 */
497b66f2 1965static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1966 struct kmem_cache_cpu *c)
81819f0f 1967{
497b66f2 1968 void *object;
a561ce00
JK
1969 int searchnode = node;
1970
1971 if (node == NUMA_NO_NODE)
1972 searchnode = numa_mem_id();
1973 else if (!node_present_pages(node))
1974 searchnode = node_to_mem_node(node);
81819f0f 1975
8ba00bb6 1976 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1977 if (object || node != NUMA_NO_NODE)
1978 return object;
81819f0f 1979
acd19fd1 1980 return get_any_partial(s, flags, c);
81819f0f
CL
1981}
1982
8a5ec0ba
CL
1983#ifdef CONFIG_PREEMPT
1984/*
1985 * Calculate the next globally unique transaction for disambiguiation
1986 * during cmpxchg. The transactions start with the cpu number and are then
1987 * incremented by CONFIG_NR_CPUS.
1988 */
1989#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1990#else
1991/*
1992 * No preemption supported therefore also no need to check for
1993 * different cpus.
1994 */
1995#define TID_STEP 1
1996#endif
1997
1998static inline unsigned long next_tid(unsigned long tid)
1999{
2000 return tid + TID_STEP;
2001}
2002
2003static inline unsigned int tid_to_cpu(unsigned long tid)
2004{
2005 return tid % TID_STEP;
2006}
2007
2008static inline unsigned long tid_to_event(unsigned long tid)
2009{
2010 return tid / TID_STEP;
2011}
2012
2013static inline unsigned int init_tid(int cpu)
2014{
2015 return cpu;
2016}
2017
2018static inline void note_cmpxchg_failure(const char *n,
2019 const struct kmem_cache *s, unsigned long tid)
2020{
2021#ifdef SLUB_DEBUG_CMPXCHG
2022 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2023
f9f58285 2024 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
2025
2026#ifdef CONFIG_PREEMPT
2027 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2028 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2029 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2030 else
2031#endif
2032 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2033 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2034 tid_to_event(tid), tid_to_event(actual_tid));
2035 else
f9f58285 2036 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2037 actual_tid, tid, next_tid(tid));
2038#endif
4fdccdfb 2039 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2040}
2041
788e1aad 2042static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2043{
8a5ec0ba
CL
2044 int cpu;
2045
2046 for_each_possible_cpu(cpu)
2047 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2048}
2cfb7455 2049
81819f0f
CL
2050/*
2051 * Remove the cpu slab
2052 */
d0e0ac97 2053static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2054 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2055{
2cfb7455 2056 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
2057 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2058 int lock = 0;
2059 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2060 void *nextfree;
136333d1 2061 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2062 struct page new;
2063 struct page old;
2064
2065 if (page->freelist) {
84e554e6 2066 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2067 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2068 }
2069
894b8788 2070 /*
2cfb7455
CL
2071 * Stage one: Free all available per cpu objects back
2072 * to the page freelist while it is still frozen. Leave the
2073 * last one.
2074 *
2075 * There is no need to take the list->lock because the page
2076 * is still frozen.
2077 */
2078 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2079 void *prior;
2080 unsigned long counters;
2081
2082 do {
2083 prior = page->freelist;
2084 counters = page->counters;
2085 set_freepointer(s, freelist, prior);
2086 new.counters = counters;
2087 new.inuse--;
a0132ac0 2088 VM_BUG_ON(!new.frozen);
2cfb7455 2089
1d07171c 2090 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2091 prior, counters,
2092 freelist, new.counters,
2093 "drain percpu freelist"));
2094
2095 freelist = nextfree;
2096 }
2097
894b8788 2098 /*
2cfb7455
CL
2099 * Stage two: Ensure that the page is unfrozen while the
2100 * list presence reflects the actual number of objects
2101 * during unfreeze.
2102 *
2103 * We setup the list membership and then perform a cmpxchg
2104 * with the count. If there is a mismatch then the page
2105 * is not unfrozen but the page is on the wrong list.
2106 *
2107 * Then we restart the process which may have to remove
2108 * the page from the list that we just put it on again
2109 * because the number of objects in the slab may have
2110 * changed.
894b8788 2111 */
2cfb7455 2112redo:
894b8788 2113
2cfb7455
CL
2114 old.freelist = page->freelist;
2115 old.counters = page->counters;
a0132ac0 2116 VM_BUG_ON(!old.frozen);
7c2e132c 2117
2cfb7455
CL
2118 /* Determine target state of the slab */
2119 new.counters = old.counters;
2120 if (freelist) {
2121 new.inuse--;
2122 set_freepointer(s, freelist, old.freelist);
2123 new.freelist = freelist;
2124 } else
2125 new.freelist = old.freelist;
2126
2127 new.frozen = 0;
2128
8a5b20ae 2129 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2130 m = M_FREE;
2131 else if (new.freelist) {
2132 m = M_PARTIAL;
2133 if (!lock) {
2134 lock = 1;
2135 /*
8bb4e7a2 2136 * Taking the spinlock removes the possibility
2cfb7455
CL
2137 * that acquire_slab() will see a slab page that
2138 * is frozen
2139 */
2140 spin_lock(&n->list_lock);
2141 }
2142 } else {
2143 m = M_FULL;
2144 if (kmem_cache_debug(s) && !lock) {
2145 lock = 1;
2146 /*
2147 * This also ensures that the scanning of full
2148 * slabs from diagnostic functions will not see
2149 * any frozen slabs.
2150 */
2151 spin_lock(&n->list_lock);
2152 }
2153 }
2154
2155 if (l != m) {
2cfb7455 2156 if (l == M_PARTIAL)
2cfb7455 2157 remove_partial(n, page);
2cfb7455 2158 else if (l == M_FULL)
c65c1877 2159 remove_full(s, n, page);
2cfb7455 2160
88349a28 2161 if (m == M_PARTIAL)
2cfb7455 2162 add_partial(n, page, tail);
88349a28 2163 else if (m == M_FULL)
2cfb7455 2164 add_full(s, n, page);
2cfb7455
CL
2165 }
2166
2167 l = m;
1d07171c 2168 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2169 old.freelist, old.counters,
2170 new.freelist, new.counters,
2171 "unfreezing slab"))
2172 goto redo;
2173
2cfb7455
CL
2174 if (lock)
2175 spin_unlock(&n->list_lock);
2176
88349a28
WY
2177 if (m == M_PARTIAL)
2178 stat(s, tail);
2179 else if (m == M_FULL)
2180 stat(s, DEACTIVATE_FULL);
2181 else if (m == M_FREE) {
2cfb7455
CL
2182 stat(s, DEACTIVATE_EMPTY);
2183 discard_slab(s, page);
2184 stat(s, FREE_SLAB);
894b8788 2185 }
d4ff6d35
WY
2186
2187 c->page = NULL;
2188 c->freelist = NULL;
81819f0f
CL
2189}
2190
d24ac77f
JK
2191/*
2192 * Unfreeze all the cpu partial slabs.
2193 *
59a09917
CL
2194 * This function must be called with interrupts disabled
2195 * for the cpu using c (or some other guarantee must be there
2196 * to guarantee no concurrent accesses).
d24ac77f 2197 */
59a09917
CL
2198static void unfreeze_partials(struct kmem_cache *s,
2199 struct kmem_cache_cpu *c)
49e22585 2200{
345c905d 2201#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2202 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2203 struct page *page, *discard_page = NULL;
49e22585
CL
2204
2205 while ((page = c->partial)) {
49e22585
CL
2206 struct page new;
2207 struct page old;
2208
2209 c->partial = page->next;
43d77867
JK
2210
2211 n2 = get_node(s, page_to_nid(page));
2212 if (n != n2) {
2213 if (n)
2214 spin_unlock(&n->list_lock);
2215
2216 n = n2;
2217 spin_lock(&n->list_lock);
2218 }
49e22585
CL
2219
2220 do {
2221
2222 old.freelist = page->freelist;
2223 old.counters = page->counters;
a0132ac0 2224 VM_BUG_ON(!old.frozen);
49e22585
CL
2225
2226 new.counters = old.counters;
2227 new.freelist = old.freelist;
2228
2229 new.frozen = 0;
2230
d24ac77f 2231 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2232 old.freelist, old.counters,
2233 new.freelist, new.counters,
2234 "unfreezing slab"));
2235
8a5b20ae 2236 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2237 page->next = discard_page;
2238 discard_page = page;
43d77867
JK
2239 } else {
2240 add_partial(n, page, DEACTIVATE_TO_TAIL);
2241 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2242 }
2243 }
2244
2245 if (n)
2246 spin_unlock(&n->list_lock);
9ada1934
SL
2247
2248 while (discard_page) {
2249 page = discard_page;
2250 discard_page = discard_page->next;
2251
2252 stat(s, DEACTIVATE_EMPTY);
2253 discard_slab(s, page);
2254 stat(s, FREE_SLAB);
2255 }
6dfd1b65 2256#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2257}
2258
2259/*
9234bae9
WY
2260 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2261 * partial page slot if available.
49e22585
CL
2262 *
2263 * If we did not find a slot then simply move all the partials to the
2264 * per node partial list.
2265 */
633b0764 2266static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2267{
345c905d 2268#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2269 struct page *oldpage;
2270 int pages;
2271 int pobjects;
2272
d6e0b7fa 2273 preempt_disable();
49e22585
CL
2274 do {
2275 pages = 0;
2276 pobjects = 0;
2277 oldpage = this_cpu_read(s->cpu_slab->partial);
2278
2279 if (oldpage) {
2280 pobjects = oldpage->pobjects;
2281 pages = oldpage->pages;
2282 if (drain && pobjects > s->cpu_partial) {
2283 unsigned long flags;
2284 /*
2285 * partial array is full. Move the existing
2286 * set to the per node partial list.
2287 */
2288 local_irq_save(flags);
59a09917 2289 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2290 local_irq_restore(flags);
e24fc410 2291 oldpage = NULL;
49e22585
CL
2292 pobjects = 0;
2293 pages = 0;
8028dcea 2294 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2295 }
2296 }
2297
2298 pages++;
2299 pobjects += page->objects - page->inuse;
2300
2301 page->pages = pages;
2302 page->pobjects = pobjects;
2303 page->next = oldpage;
2304
d0e0ac97
CG
2305 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2306 != oldpage);
d6e0b7fa
VD
2307 if (unlikely(!s->cpu_partial)) {
2308 unsigned long flags;
2309
2310 local_irq_save(flags);
2311 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2312 local_irq_restore(flags);
2313 }
2314 preempt_enable();
6dfd1b65 2315#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2316}
2317
dfb4f096 2318static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2319{
84e554e6 2320 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2321 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2322
2323 c->tid = next_tid(c->tid);
81819f0f
CL
2324}
2325
2326/*
2327 * Flush cpu slab.
6446faa2 2328 *
81819f0f
CL
2329 * Called from IPI handler with interrupts disabled.
2330 */
0c710013 2331static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2332{
9dfc6e68 2333 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2334
1265ef2d
WY
2335 if (c->page)
2336 flush_slab(s, c);
49e22585 2337
1265ef2d 2338 unfreeze_partials(s, c);
81819f0f
CL
2339}
2340
2341static void flush_cpu_slab(void *d)
2342{
2343 struct kmem_cache *s = d;
81819f0f 2344
dfb4f096 2345 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2346}
2347
a8364d55
GBY
2348static bool has_cpu_slab(int cpu, void *info)
2349{
2350 struct kmem_cache *s = info;
2351 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2352
a93cf07b 2353 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2354}
2355
81819f0f
CL
2356static void flush_all(struct kmem_cache *s)
2357{
a8364d55 2358 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2359}
2360
a96a87bf
SAS
2361/*
2362 * Use the cpu notifier to insure that the cpu slabs are flushed when
2363 * necessary.
2364 */
2365static int slub_cpu_dead(unsigned int cpu)
2366{
2367 struct kmem_cache *s;
2368 unsigned long flags;
2369
2370 mutex_lock(&slab_mutex);
2371 list_for_each_entry(s, &slab_caches, list) {
2372 local_irq_save(flags);
2373 __flush_cpu_slab(s, cpu);
2374 local_irq_restore(flags);
2375 }
2376 mutex_unlock(&slab_mutex);
2377 return 0;
2378}
2379
dfb4f096
CL
2380/*
2381 * Check if the objects in a per cpu structure fit numa
2382 * locality expectations.
2383 */
57d437d2 2384static inline int node_match(struct page *page, int node)
dfb4f096
CL
2385{
2386#ifdef CONFIG_NUMA
6159d0f5 2387 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2388 return 0;
2389#endif
2390 return 1;
2391}
2392
9a02d699 2393#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2394static int count_free(struct page *page)
2395{
2396 return page->objects - page->inuse;
2397}
2398
9a02d699
DR
2399static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2400{
2401 return atomic_long_read(&n->total_objects);
2402}
2403#endif /* CONFIG_SLUB_DEBUG */
2404
2405#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2406static unsigned long count_partial(struct kmem_cache_node *n,
2407 int (*get_count)(struct page *))
2408{
2409 unsigned long flags;
2410 unsigned long x = 0;
2411 struct page *page;
2412
2413 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2414 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2415 x += get_count(page);
2416 spin_unlock_irqrestore(&n->list_lock, flags);
2417 return x;
2418}
9a02d699 2419#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2420
781b2ba6
PE
2421static noinline void
2422slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2423{
9a02d699
DR
2424#ifdef CONFIG_SLUB_DEBUG
2425 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2426 DEFAULT_RATELIMIT_BURST);
781b2ba6 2427 int node;
fa45dc25 2428 struct kmem_cache_node *n;
781b2ba6 2429
9a02d699
DR
2430 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2431 return;
2432
5b3810e5
VB
2433 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2434 nid, gfpflags, &gfpflags);
19af27af 2435 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2436 s->name, s->object_size, s->size, oo_order(s->oo),
2437 oo_order(s->min));
781b2ba6 2438
3b0efdfa 2439 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2440 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2441 s->name);
fa5ec8a1 2442
fa45dc25 2443 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2444 unsigned long nr_slabs;
2445 unsigned long nr_objs;
2446 unsigned long nr_free;
2447
26c02cf0
AB
2448 nr_free = count_partial(n, count_free);
2449 nr_slabs = node_nr_slabs(n);
2450 nr_objs = node_nr_objs(n);
781b2ba6 2451
f9f58285 2452 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2453 node, nr_slabs, nr_objs, nr_free);
2454 }
9a02d699 2455#endif
781b2ba6
PE
2456}
2457
497b66f2
CL
2458static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2459 int node, struct kmem_cache_cpu **pc)
2460{
6faa6833 2461 void *freelist;
188fd063
CL
2462 struct kmem_cache_cpu *c = *pc;
2463 struct page *page;
497b66f2 2464
128227e7
MW
2465 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2466
188fd063 2467 freelist = get_partial(s, flags, node, c);
497b66f2 2468
188fd063
CL
2469 if (freelist)
2470 return freelist;
2471
2472 page = new_slab(s, flags, node);
497b66f2 2473 if (page) {
7c8e0181 2474 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2475 if (c->page)
2476 flush_slab(s, c);
2477
2478 /*
2479 * No other reference to the page yet so we can
2480 * muck around with it freely without cmpxchg
2481 */
6faa6833 2482 freelist = page->freelist;
497b66f2
CL
2483 page->freelist = NULL;
2484
2485 stat(s, ALLOC_SLAB);
497b66f2
CL
2486 c->page = page;
2487 *pc = c;
edde82b6 2488 }
497b66f2 2489
6faa6833 2490 return freelist;
497b66f2
CL
2491}
2492
072bb0aa
MG
2493static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2494{
2495 if (unlikely(PageSlabPfmemalloc(page)))
2496 return gfp_pfmemalloc_allowed(gfpflags);
2497
2498 return true;
2499}
2500
213eeb9f 2501/*
d0e0ac97
CG
2502 * Check the page->freelist of a page and either transfer the freelist to the
2503 * per cpu freelist or deactivate the page.
213eeb9f
CL
2504 *
2505 * The page is still frozen if the return value is not NULL.
2506 *
2507 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2508 *
2509 * This function must be called with interrupt disabled.
213eeb9f
CL
2510 */
2511static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2512{
2513 struct page new;
2514 unsigned long counters;
2515 void *freelist;
2516
2517 do {
2518 freelist = page->freelist;
2519 counters = page->counters;
6faa6833 2520
213eeb9f 2521 new.counters = counters;
a0132ac0 2522 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2523
2524 new.inuse = page->objects;
2525 new.frozen = freelist != NULL;
2526
d24ac77f 2527 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2528 freelist, counters,
2529 NULL, new.counters,
2530 "get_freelist"));
2531
2532 return freelist;
2533}
2534
81819f0f 2535/*
894b8788
CL
2536 * Slow path. The lockless freelist is empty or we need to perform
2537 * debugging duties.
2538 *
894b8788
CL
2539 * Processing is still very fast if new objects have been freed to the
2540 * regular freelist. In that case we simply take over the regular freelist
2541 * as the lockless freelist and zap the regular freelist.
81819f0f 2542 *
894b8788
CL
2543 * If that is not working then we fall back to the partial lists. We take the
2544 * first element of the freelist as the object to allocate now and move the
2545 * rest of the freelist to the lockless freelist.
81819f0f 2546 *
894b8788 2547 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2548 * we need to allocate a new slab. This is the slowest path since it involves
2549 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2550 *
2551 * Version of __slab_alloc to use when we know that interrupts are
2552 * already disabled (which is the case for bulk allocation).
81819f0f 2553 */
a380a3c7 2554static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2555 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2556{
6faa6833 2557 void *freelist;
f6e7def7 2558 struct page *page;
81819f0f 2559
f6e7def7
CL
2560 page = c->page;
2561 if (!page)
81819f0f 2562 goto new_slab;
49e22585 2563redo:
6faa6833 2564
57d437d2 2565 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2566 int searchnode = node;
2567
2568 if (node != NUMA_NO_NODE && !node_present_pages(node))
2569 searchnode = node_to_mem_node(node);
2570
2571 if (unlikely(!node_match(page, searchnode))) {
2572 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2573 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2574 goto new_slab;
2575 }
fc59c053 2576 }
6446faa2 2577
072bb0aa
MG
2578 /*
2579 * By rights, we should be searching for a slab page that was
2580 * PFMEMALLOC but right now, we are losing the pfmemalloc
2581 * information when the page leaves the per-cpu allocator
2582 */
2583 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2584 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2585 goto new_slab;
2586 }
2587
73736e03 2588 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2589 freelist = c->freelist;
2590 if (freelist)
73736e03 2591 goto load_freelist;
03e404af 2592
f6e7def7 2593 freelist = get_freelist(s, page);
6446faa2 2594
6faa6833 2595 if (!freelist) {
03e404af
CL
2596 c->page = NULL;
2597 stat(s, DEACTIVATE_BYPASS);
fc59c053 2598 goto new_slab;
03e404af 2599 }
6446faa2 2600
84e554e6 2601 stat(s, ALLOC_REFILL);
6446faa2 2602
894b8788 2603load_freelist:
507effea
CL
2604 /*
2605 * freelist is pointing to the list of objects to be used.
2606 * page is pointing to the page from which the objects are obtained.
2607 * That page must be frozen for per cpu allocations to work.
2608 */
a0132ac0 2609 VM_BUG_ON(!c->page->frozen);
6faa6833 2610 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2611 c->tid = next_tid(c->tid);
6faa6833 2612 return freelist;
81819f0f 2613
81819f0f 2614new_slab:
2cfb7455 2615
a93cf07b
WY
2616 if (slub_percpu_partial(c)) {
2617 page = c->page = slub_percpu_partial(c);
2618 slub_set_percpu_partial(c, page);
49e22585 2619 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2620 goto redo;
81819f0f
CL
2621 }
2622
188fd063 2623 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2624
f4697436 2625 if (unlikely(!freelist)) {
9a02d699 2626 slab_out_of_memory(s, gfpflags, node);
f4697436 2627 return NULL;
81819f0f 2628 }
2cfb7455 2629
f6e7def7 2630 page = c->page;
5091b74a 2631 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2632 goto load_freelist;
2cfb7455 2633
497b66f2 2634 /* Only entered in the debug case */
d0e0ac97
CG
2635 if (kmem_cache_debug(s) &&
2636 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2637 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2638
d4ff6d35 2639 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2640 return freelist;
894b8788
CL
2641}
2642
a380a3c7
CL
2643/*
2644 * Another one that disabled interrupt and compensates for possible
2645 * cpu changes by refetching the per cpu area pointer.
2646 */
2647static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2648 unsigned long addr, struct kmem_cache_cpu *c)
2649{
2650 void *p;
2651 unsigned long flags;
2652
2653 local_irq_save(flags);
2654#ifdef CONFIG_PREEMPT
2655 /*
2656 * We may have been preempted and rescheduled on a different
2657 * cpu before disabling interrupts. Need to reload cpu area
2658 * pointer.
2659 */
2660 c = this_cpu_ptr(s->cpu_slab);
2661#endif
2662
2663 p = ___slab_alloc(s, gfpflags, node, addr, c);
2664 local_irq_restore(flags);
2665 return p;
2666}
2667
894b8788
CL
2668/*
2669 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2670 * have the fastpath folded into their functions. So no function call
2671 * overhead for requests that can be satisfied on the fastpath.
2672 *
2673 * The fastpath works by first checking if the lockless freelist can be used.
2674 * If not then __slab_alloc is called for slow processing.
2675 *
2676 * Otherwise we can simply pick the next object from the lockless free list.
2677 */
2b847c3c 2678static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2679 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2680{
03ec0ed5 2681 void *object;
dfb4f096 2682 struct kmem_cache_cpu *c;
57d437d2 2683 struct page *page;
8a5ec0ba 2684 unsigned long tid;
1f84260c 2685
8135be5a
VD
2686 s = slab_pre_alloc_hook(s, gfpflags);
2687 if (!s)
773ff60e 2688 return NULL;
8a5ec0ba 2689redo:
8a5ec0ba
CL
2690 /*
2691 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2692 * enabled. We may switch back and forth between cpus while
2693 * reading from one cpu area. That does not matter as long
2694 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2695 *
9aabf810
JK
2696 * We should guarantee that tid and kmem_cache are retrieved on
2697 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2698 * to check if it is matched or not.
8a5ec0ba 2699 */
9aabf810
JK
2700 do {
2701 tid = this_cpu_read(s->cpu_slab->tid);
2702 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2703 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2704 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2705
2706 /*
2707 * Irqless object alloc/free algorithm used here depends on sequence
2708 * of fetching cpu_slab's data. tid should be fetched before anything
2709 * on c to guarantee that object and page associated with previous tid
2710 * won't be used with current tid. If we fetch tid first, object and
2711 * page could be one associated with next tid and our alloc/free
2712 * request will be failed. In this case, we will retry. So, no problem.
2713 */
2714 barrier();
8a5ec0ba 2715
8a5ec0ba
CL
2716 /*
2717 * The transaction ids are globally unique per cpu and per operation on
2718 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2719 * occurs on the right processor and that there was no operation on the
2720 * linked list in between.
2721 */
8a5ec0ba 2722
9dfc6e68 2723 object = c->freelist;
57d437d2 2724 page = c->page;
8eae1492 2725 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2726 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2727 stat(s, ALLOC_SLOWPATH);
2728 } else {
0ad9500e
ED
2729 void *next_object = get_freepointer_safe(s, object);
2730
8a5ec0ba 2731 /*
25985edc 2732 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2733 * operation and if we are on the right processor.
2734 *
d0e0ac97
CG
2735 * The cmpxchg does the following atomically (without lock
2736 * semantics!)
8a5ec0ba
CL
2737 * 1. Relocate first pointer to the current per cpu area.
2738 * 2. Verify that tid and freelist have not been changed
2739 * 3. If they were not changed replace tid and freelist
2740 *
d0e0ac97
CG
2741 * Since this is without lock semantics the protection is only
2742 * against code executing on this cpu *not* from access by
2743 * other cpus.
8a5ec0ba 2744 */
933393f5 2745 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2746 s->cpu_slab->freelist, s->cpu_slab->tid,
2747 object, tid,
0ad9500e 2748 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2749
2750 note_cmpxchg_failure("slab_alloc", s, tid);
2751 goto redo;
2752 }
0ad9500e 2753 prefetch_freepointer(s, next_object);
84e554e6 2754 stat(s, ALLOC_FASTPATH);
894b8788 2755 }
6471384a
AP
2756 /*
2757 * If the object has been wiped upon free, make sure it's fully
2758 * initialized by zeroing out freelist pointer.
2759 */
2760 if (unlikely(slab_want_init_on_free(s)) && object)
2761 memset(object + s->offset, 0, sizeof(void *));
8a5ec0ba 2762
6471384a 2763 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
3b0efdfa 2764 memset(object, 0, s->object_size);
d07dbea4 2765
03ec0ed5 2766 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2767
894b8788 2768 return object;
81819f0f
CL
2769}
2770
2b847c3c
EG
2771static __always_inline void *slab_alloc(struct kmem_cache *s,
2772 gfp_t gfpflags, unsigned long addr)
2773{
2774 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2775}
2776
81819f0f
CL
2777void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2778{
2b847c3c 2779 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2780
d0e0ac97
CG
2781 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2782 s->size, gfpflags);
5b882be4
EGM
2783
2784 return ret;
81819f0f
CL
2785}
2786EXPORT_SYMBOL(kmem_cache_alloc);
2787
0f24f128 2788#ifdef CONFIG_TRACING
4a92379b
RK
2789void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2790{
2b847c3c 2791 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2792 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 2793 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2794 return ret;
2795}
2796EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2797#endif
2798
81819f0f
CL
2799#ifdef CONFIG_NUMA
2800void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2801{
2b847c3c 2802 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2803
ca2b84cb 2804 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2805 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2806
2807 return ret;
81819f0f
CL
2808}
2809EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2810
0f24f128 2811#ifdef CONFIG_TRACING
4a92379b 2812void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2813 gfp_t gfpflags,
4a92379b 2814 int node, size_t size)
5b882be4 2815{
2b847c3c 2816 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2817
2818 trace_kmalloc_node(_RET_IP_, ret,
2819 size, s->size, gfpflags, node);
0316bec2 2820
0116523c 2821 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2822 return ret;
5b882be4 2823}
4a92379b 2824EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2825#endif
6dfd1b65 2826#endif /* CONFIG_NUMA */
5b882be4 2827
81819f0f 2828/*
94e4d712 2829 * Slow path handling. This may still be called frequently since objects
894b8788 2830 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2831 *
894b8788
CL
2832 * So we still attempt to reduce cache line usage. Just take the slab
2833 * lock and free the item. If there is no additional partial page
2834 * handling required then we can return immediately.
81819f0f 2835 */
894b8788 2836static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2837 void *head, void *tail, int cnt,
2838 unsigned long addr)
2839
81819f0f
CL
2840{
2841 void *prior;
2cfb7455 2842 int was_frozen;
2cfb7455
CL
2843 struct page new;
2844 unsigned long counters;
2845 struct kmem_cache_node *n = NULL;
61728d1e 2846 unsigned long uninitialized_var(flags);
81819f0f 2847
8a5ec0ba 2848 stat(s, FREE_SLOWPATH);
81819f0f 2849
19c7ff9e 2850 if (kmem_cache_debug(s) &&
282acb43 2851 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2852 return;
6446faa2 2853
2cfb7455 2854 do {
837d678d
JK
2855 if (unlikely(n)) {
2856 spin_unlock_irqrestore(&n->list_lock, flags);
2857 n = NULL;
2858 }
2cfb7455
CL
2859 prior = page->freelist;
2860 counters = page->counters;
81084651 2861 set_freepointer(s, tail, prior);
2cfb7455
CL
2862 new.counters = counters;
2863 was_frozen = new.frozen;
81084651 2864 new.inuse -= cnt;
837d678d 2865 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2866
c65c1877 2867 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2868
2869 /*
d0e0ac97
CG
2870 * Slab was on no list before and will be
2871 * partially empty
2872 * We can defer the list move and instead
2873 * freeze it.
49e22585
CL
2874 */
2875 new.frozen = 1;
2876
c65c1877 2877 } else { /* Needs to be taken off a list */
49e22585 2878
b455def2 2879 n = get_node(s, page_to_nid(page));
49e22585
CL
2880 /*
2881 * Speculatively acquire the list_lock.
2882 * If the cmpxchg does not succeed then we may
2883 * drop the list_lock without any processing.
2884 *
2885 * Otherwise the list_lock will synchronize with
2886 * other processors updating the list of slabs.
2887 */
2888 spin_lock_irqsave(&n->list_lock, flags);
2889
2890 }
2cfb7455 2891 }
81819f0f 2892
2cfb7455
CL
2893 } while (!cmpxchg_double_slab(s, page,
2894 prior, counters,
81084651 2895 head, new.counters,
2cfb7455 2896 "__slab_free"));
81819f0f 2897
2cfb7455 2898 if (likely(!n)) {
49e22585
CL
2899
2900 /*
2901 * If we just froze the page then put it onto the
2902 * per cpu partial list.
2903 */
8028dcea 2904 if (new.frozen && !was_frozen) {
49e22585 2905 put_cpu_partial(s, page, 1);
8028dcea
AS
2906 stat(s, CPU_PARTIAL_FREE);
2907 }
49e22585 2908 /*
2cfb7455
CL
2909 * The list lock was not taken therefore no list
2910 * activity can be necessary.
2911 */
b455def2
L
2912 if (was_frozen)
2913 stat(s, FREE_FROZEN);
2914 return;
2915 }
81819f0f 2916
8a5b20ae 2917 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2918 goto slab_empty;
2919
81819f0f 2920 /*
837d678d
JK
2921 * Objects left in the slab. If it was not on the partial list before
2922 * then add it.
81819f0f 2923 */
345c905d 2924 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 2925 remove_full(s, n, page);
837d678d
JK
2926 add_partial(n, page, DEACTIVATE_TO_TAIL);
2927 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2928 }
80f08c19 2929 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2930 return;
2931
2932slab_empty:
a973e9dd 2933 if (prior) {
81819f0f 2934 /*
6fbabb20 2935 * Slab on the partial list.
81819f0f 2936 */
5cc6eee8 2937 remove_partial(n, page);
84e554e6 2938 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2939 } else {
6fbabb20 2940 /* Slab must be on the full list */
c65c1877
PZ
2941 remove_full(s, n, page);
2942 }
2cfb7455 2943
80f08c19 2944 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2945 stat(s, FREE_SLAB);
81819f0f 2946 discard_slab(s, page);
81819f0f
CL
2947}
2948
894b8788
CL
2949/*
2950 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2951 * can perform fastpath freeing without additional function calls.
2952 *
2953 * The fastpath is only possible if we are freeing to the current cpu slab
2954 * of this processor. This typically the case if we have just allocated
2955 * the item before.
2956 *
2957 * If fastpath is not possible then fall back to __slab_free where we deal
2958 * with all sorts of special processing.
81084651
JDB
2959 *
2960 * Bulk free of a freelist with several objects (all pointing to the
2961 * same page) possible by specifying head and tail ptr, plus objects
2962 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2963 */
80a9201a
AP
2964static __always_inline void do_slab_free(struct kmem_cache *s,
2965 struct page *page, void *head, void *tail,
2966 int cnt, unsigned long addr)
894b8788 2967{
81084651 2968 void *tail_obj = tail ? : head;
dfb4f096 2969 struct kmem_cache_cpu *c;
8a5ec0ba 2970 unsigned long tid;
8a5ec0ba
CL
2971redo:
2972 /*
2973 * Determine the currently cpus per cpu slab.
2974 * The cpu may change afterward. However that does not matter since
2975 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2976 * during the cmpxchg then the free will succeed.
8a5ec0ba 2977 */
9aabf810
JK
2978 do {
2979 tid = this_cpu_read(s->cpu_slab->tid);
2980 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2981 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2982 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2983
9aabf810
JK
2984 /* Same with comment on barrier() in slab_alloc_node() */
2985 barrier();
c016b0bd 2986
442b06bc 2987 if (likely(page == c->page)) {
81084651 2988 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2989
933393f5 2990 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2991 s->cpu_slab->freelist, s->cpu_slab->tid,
2992 c->freelist, tid,
81084651 2993 head, next_tid(tid)))) {
8a5ec0ba
CL
2994
2995 note_cmpxchg_failure("slab_free", s, tid);
2996 goto redo;
2997 }
84e554e6 2998 stat(s, FREE_FASTPATH);
894b8788 2999 } else
81084651 3000 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 3001
894b8788
CL
3002}
3003
80a9201a
AP
3004static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3005 void *head, void *tail, int cnt,
3006 unsigned long addr)
3007{
80a9201a 3008 /*
c3895391
AK
3009 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3010 * to remove objects, whose reuse must be delayed.
80a9201a 3011 */
c3895391
AK
3012 if (slab_free_freelist_hook(s, &head, &tail))
3013 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3014}
3015
2bd926b4 3016#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3017void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3018{
3019 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3020}
3021#endif
3022
81819f0f
CL
3023void kmem_cache_free(struct kmem_cache *s, void *x)
3024{
b9ce5ef4
GC
3025 s = cache_from_obj(s, x);
3026 if (!s)
79576102 3027 return;
81084651 3028 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 3029 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
3030}
3031EXPORT_SYMBOL(kmem_cache_free);
3032
d0ecd894 3033struct detached_freelist {
fbd02630 3034 struct page *page;
d0ecd894
JDB
3035 void *tail;
3036 void *freelist;
3037 int cnt;
376bf125 3038 struct kmem_cache *s;
d0ecd894 3039};
fbd02630 3040
d0ecd894
JDB
3041/*
3042 * This function progressively scans the array with free objects (with
3043 * a limited look ahead) and extract objects belonging to the same
3044 * page. It builds a detached freelist directly within the given
3045 * page/objects. This can happen without any need for
3046 * synchronization, because the objects are owned by running process.
3047 * The freelist is build up as a single linked list in the objects.
3048 * The idea is, that this detached freelist can then be bulk
3049 * transferred to the real freelist(s), but only requiring a single
3050 * synchronization primitive. Look ahead in the array is limited due
3051 * to performance reasons.
3052 */
376bf125
JDB
3053static inline
3054int build_detached_freelist(struct kmem_cache *s, size_t size,
3055 void **p, struct detached_freelist *df)
d0ecd894
JDB
3056{
3057 size_t first_skipped_index = 0;
3058 int lookahead = 3;
3059 void *object;
ca257195 3060 struct page *page;
fbd02630 3061
d0ecd894
JDB
3062 /* Always re-init detached_freelist */
3063 df->page = NULL;
fbd02630 3064
d0ecd894
JDB
3065 do {
3066 object = p[--size];
ca257195 3067 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3068 } while (!object && size);
3eed034d 3069
d0ecd894
JDB
3070 if (!object)
3071 return 0;
fbd02630 3072
ca257195
JDB
3073 page = virt_to_head_page(object);
3074 if (!s) {
3075 /* Handle kalloc'ed objects */
3076 if (unlikely(!PageSlab(page))) {
3077 BUG_ON(!PageCompound(page));
3078 kfree_hook(object);
4949148a 3079 __free_pages(page, compound_order(page));
ca257195
JDB
3080 p[size] = NULL; /* mark object processed */
3081 return size;
3082 }
3083 /* Derive kmem_cache from object */
3084 df->s = page->slab_cache;
3085 } else {
3086 df->s = cache_from_obj(s, object); /* Support for memcg */
3087 }
376bf125 3088
d0ecd894 3089 /* Start new detached freelist */
ca257195 3090 df->page = page;
376bf125 3091 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3092 df->tail = object;
3093 df->freelist = object;
3094 p[size] = NULL; /* mark object processed */
3095 df->cnt = 1;
3096
3097 while (size) {
3098 object = p[--size];
3099 if (!object)
3100 continue; /* Skip processed objects */
3101
3102 /* df->page is always set at this point */
3103 if (df->page == virt_to_head_page(object)) {
3104 /* Opportunity build freelist */
376bf125 3105 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3106 df->freelist = object;
3107 df->cnt++;
3108 p[size] = NULL; /* mark object processed */
3109
3110 continue;
fbd02630 3111 }
d0ecd894
JDB
3112
3113 /* Limit look ahead search */
3114 if (!--lookahead)
3115 break;
3116
3117 if (!first_skipped_index)
3118 first_skipped_index = size + 1;
fbd02630 3119 }
d0ecd894
JDB
3120
3121 return first_skipped_index;
3122}
3123
d0ecd894 3124/* Note that interrupts must be enabled when calling this function. */
376bf125 3125void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3126{
3127 if (WARN_ON(!size))
3128 return;
3129
3130 do {
3131 struct detached_freelist df;
3132
3133 size = build_detached_freelist(s, size, p, &df);
84582c8a 3134 if (!df.page)
d0ecd894
JDB
3135 continue;
3136
376bf125 3137 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3138 } while (likely(size));
484748f0
CL
3139}
3140EXPORT_SYMBOL(kmem_cache_free_bulk);
3141
994eb764 3142/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3143int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3144 void **p)
484748f0 3145{
994eb764
JDB
3146 struct kmem_cache_cpu *c;
3147 int i;
3148
03ec0ed5
JDB
3149 /* memcg and kmem_cache debug support */
3150 s = slab_pre_alloc_hook(s, flags);
3151 if (unlikely(!s))
3152 return false;
994eb764
JDB
3153 /*
3154 * Drain objects in the per cpu slab, while disabling local
3155 * IRQs, which protects against PREEMPT and interrupts
3156 * handlers invoking normal fastpath.
3157 */
3158 local_irq_disable();
3159 c = this_cpu_ptr(s->cpu_slab);
3160
3161 for (i = 0; i < size; i++) {
3162 void *object = c->freelist;
3163
ebe909e0 3164 if (unlikely(!object)) {
ebe909e0
JDB
3165 /*
3166 * Invoking slow path likely have side-effect
3167 * of re-populating per CPU c->freelist
3168 */
87098373 3169 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3170 _RET_IP_, c);
87098373
CL
3171 if (unlikely(!p[i]))
3172 goto error;
3173
ebe909e0
JDB
3174 c = this_cpu_ptr(s->cpu_slab);
3175 continue; /* goto for-loop */
3176 }
994eb764
JDB
3177 c->freelist = get_freepointer(s, object);
3178 p[i] = object;
3179 }
3180 c->tid = next_tid(c->tid);
3181 local_irq_enable();
3182
3183 /* Clear memory outside IRQ disabled fastpath loop */
6471384a 3184 if (unlikely(slab_want_init_on_alloc(flags, s))) {
994eb764
JDB
3185 int j;
3186
3187 for (j = 0; j < i; j++)
3188 memset(p[j], 0, s->object_size);
3189 }
3190
03ec0ed5
JDB
3191 /* memcg and kmem_cache debug support */
3192 slab_post_alloc_hook(s, flags, size, p);
865762a8 3193 return i;
87098373 3194error:
87098373 3195 local_irq_enable();
03ec0ed5
JDB
3196 slab_post_alloc_hook(s, flags, i, p);
3197 __kmem_cache_free_bulk(s, i, p);
865762a8 3198 return 0;
484748f0
CL
3199}
3200EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3201
3202
81819f0f 3203/*
672bba3a
CL
3204 * Object placement in a slab is made very easy because we always start at
3205 * offset 0. If we tune the size of the object to the alignment then we can
3206 * get the required alignment by putting one properly sized object after
3207 * another.
81819f0f
CL
3208 *
3209 * Notice that the allocation order determines the sizes of the per cpu
3210 * caches. Each processor has always one slab available for allocations.
3211 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3212 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3213 * locking overhead.
81819f0f
CL
3214 */
3215
3216/*
3217 * Mininum / Maximum order of slab pages. This influences locking overhead
3218 * and slab fragmentation. A higher order reduces the number of partial slabs
3219 * and increases the number of allocations possible without having to
3220 * take the list_lock.
3221 */
19af27af
AD
3222static unsigned int slub_min_order;
3223static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3224static unsigned int slub_min_objects;
81819f0f 3225
81819f0f
CL
3226/*
3227 * Calculate the order of allocation given an slab object size.
3228 *
672bba3a
CL
3229 * The order of allocation has significant impact on performance and other
3230 * system components. Generally order 0 allocations should be preferred since
3231 * order 0 does not cause fragmentation in the page allocator. Larger objects
3232 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3233 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3234 * would be wasted.
3235 *
3236 * In order to reach satisfactory performance we must ensure that a minimum
3237 * number of objects is in one slab. Otherwise we may generate too much
3238 * activity on the partial lists which requires taking the list_lock. This is
3239 * less a concern for large slabs though which are rarely used.
81819f0f 3240 *
672bba3a
CL
3241 * slub_max_order specifies the order where we begin to stop considering the
3242 * number of objects in a slab as critical. If we reach slub_max_order then
3243 * we try to keep the page order as low as possible. So we accept more waste
3244 * of space in favor of a small page order.
81819f0f 3245 *
672bba3a
CL
3246 * Higher order allocations also allow the placement of more objects in a
3247 * slab and thereby reduce object handling overhead. If the user has
3248 * requested a higher mininum order then we start with that one instead of
3249 * the smallest order which will fit the object.
81819f0f 3250 */
19af27af
AD
3251static inline unsigned int slab_order(unsigned int size,
3252 unsigned int min_objects, unsigned int max_order,
9736d2a9 3253 unsigned int fract_leftover)
81819f0f 3254{
19af27af
AD
3255 unsigned int min_order = slub_min_order;
3256 unsigned int order;
81819f0f 3257
9736d2a9 3258 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3259 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3260
9736d2a9 3261 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3262 order <= max_order; order++) {
81819f0f 3263
19af27af
AD
3264 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3265 unsigned int rem;
81819f0f 3266
9736d2a9 3267 rem = slab_size % size;
81819f0f 3268
5e6d444e 3269 if (rem <= slab_size / fract_leftover)
81819f0f 3270 break;
81819f0f 3271 }
672bba3a 3272
81819f0f
CL
3273 return order;
3274}
3275
9736d2a9 3276static inline int calculate_order(unsigned int size)
5e6d444e 3277{
19af27af
AD
3278 unsigned int order;
3279 unsigned int min_objects;
3280 unsigned int max_objects;
5e6d444e
CL
3281
3282 /*
3283 * Attempt to find best configuration for a slab. This
3284 * works by first attempting to generate a layout with
3285 * the best configuration and backing off gradually.
3286 *
422ff4d7 3287 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3288 * we reduce the minimum objects required in a slab.
3289 */
3290 min_objects = slub_min_objects;
9b2cd506
CL
3291 if (!min_objects)
3292 min_objects = 4 * (fls(nr_cpu_ids) + 1);
9736d2a9 3293 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3294 min_objects = min(min_objects, max_objects);
3295
5e6d444e 3296 while (min_objects > 1) {
19af27af
AD
3297 unsigned int fraction;
3298
c124f5b5 3299 fraction = 16;
5e6d444e
CL
3300 while (fraction >= 4) {
3301 order = slab_order(size, min_objects,
9736d2a9 3302 slub_max_order, fraction);
5e6d444e
CL
3303 if (order <= slub_max_order)
3304 return order;
3305 fraction /= 2;
3306 }
5086c389 3307 min_objects--;
5e6d444e
CL
3308 }
3309
3310 /*
3311 * We were unable to place multiple objects in a slab. Now
3312 * lets see if we can place a single object there.
3313 */
9736d2a9 3314 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3315 if (order <= slub_max_order)
3316 return order;
3317
3318 /*
3319 * Doh this slab cannot be placed using slub_max_order.
3320 */
9736d2a9 3321 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3322 if (order < MAX_ORDER)
5e6d444e
CL
3323 return order;
3324 return -ENOSYS;
3325}
3326
5595cffc 3327static void
4053497d 3328init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3329{
3330 n->nr_partial = 0;
81819f0f
CL
3331 spin_lock_init(&n->list_lock);
3332 INIT_LIST_HEAD(&n->partial);
8ab1372f 3333#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3334 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3335 atomic_long_set(&n->total_objects, 0);
643b1138 3336 INIT_LIST_HEAD(&n->full);
8ab1372f 3337#endif
81819f0f
CL
3338}
3339
55136592 3340static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3341{
6c182dc0 3342 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3343 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3344
8a5ec0ba 3345 /*
d4d84fef
CM
3346 * Must align to double word boundary for the double cmpxchg
3347 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3348 */
d4d84fef
CM
3349 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3350 2 * sizeof(void *));
8a5ec0ba
CL
3351
3352 if (!s->cpu_slab)
3353 return 0;
3354
3355 init_kmem_cache_cpus(s);
4c93c355 3356
8a5ec0ba 3357 return 1;
4c93c355 3358}
4c93c355 3359
51df1142
CL
3360static struct kmem_cache *kmem_cache_node;
3361
81819f0f
CL
3362/*
3363 * No kmalloc_node yet so do it by hand. We know that this is the first
3364 * slab on the node for this slabcache. There are no concurrent accesses
3365 * possible.
3366 *
721ae22a
ZYW
3367 * Note that this function only works on the kmem_cache_node
3368 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3369 * memory on a fresh node that has no slab structures yet.
81819f0f 3370 */
55136592 3371static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3372{
3373 struct page *page;
3374 struct kmem_cache_node *n;
3375
51df1142 3376 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3377
51df1142 3378 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3379
3380 BUG_ON(!page);
a2f92ee7 3381 if (page_to_nid(page) != node) {
f9f58285
FF
3382 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3383 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3384 }
3385
81819f0f
CL
3386 n = page->freelist;
3387 BUG_ON(!n);
8ab1372f 3388#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3389 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3390 init_tracking(kmem_cache_node, n);
8ab1372f 3391#endif
12b22386 3392 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
505f5dcb 3393 GFP_KERNEL);
12b22386
AK
3394 page->freelist = get_freepointer(kmem_cache_node, n);
3395 page->inuse = 1;
3396 page->frozen = 0;
3397 kmem_cache_node->node[node] = n;
4053497d 3398 init_kmem_cache_node(n);
51df1142 3399 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3400
67b6c900 3401 /*
1e4dd946
SR
3402 * No locks need to be taken here as it has just been
3403 * initialized and there is no concurrent access.
67b6c900 3404 */
1e4dd946 3405 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3406}
3407
3408static void free_kmem_cache_nodes(struct kmem_cache *s)
3409{
3410 int node;
fa45dc25 3411 struct kmem_cache_node *n;
81819f0f 3412
fa45dc25 3413 for_each_kmem_cache_node(s, node, n) {
81819f0f 3414 s->node[node] = NULL;
ea37df54 3415 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3416 }
3417}
3418
52b4b950
DS
3419void __kmem_cache_release(struct kmem_cache *s)
3420{
210e7a43 3421 cache_random_seq_destroy(s);
52b4b950
DS
3422 free_percpu(s->cpu_slab);
3423 free_kmem_cache_nodes(s);
3424}
3425
55136592 3426static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3427{
3428 int node;
81819f0f 3429
f64dc58c 3430 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3431 struct kmem_cache_node *n;
3432
73367bd8 3433 if (slab_state == DOWN) {
55136592 3434 early_kmem_cache_node_alloc(node);
73367bd8
AD
3435 continue;
3436 }
51df1142 3437 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3438 GFP_KERNEL, node);
81819f0f 3439
73367bd8
AD
3440 if (!n) {
3441 free_kmem_cache_nodes(s);
3442 return 0;
81819f0f 3443 }
73367bd8 3444
4053497d 3445 init_kmem_cache_node(n);
ea37df54 3446 s->node[node] = n;
81819f0f
CL
3447 }
3448 return 1;
3449}
81819f0f 3450
c0bdb232 3451static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3452{
3453 if (min < MIN_PARTIAL)
3454 min = MIN_PARTIAL;
3455 else if (min > MAX_PARTIAL)
3456 min = MAX_PARTIAL;
3457 s->min_partial = min;
3458}
3459
e6d0e1dc
WY
3460static void set_cpu_partial(struct kmem_cache *s)
3461{
3462#ifdef CONFIG_SLUB_CPU_PARTIAL
3463 /*
3464 * cpu_partial determined the maximum number of objects kept in the
3465 * per cpu partial lists of a processor.
3466 *
3467 * Per cpu partial lists mainly contain slabs that just have one
3468 * object freed. If they are used for allocation then they can be
3469 * filled up again with minimal effort. The slab will never hit the
3470 * per node partial lists and therefore no locking will be required.
3471 *
3472 * This setting also determines
3473 *
3474 * A) The number of objects from per cpu partial slabs dumped to the
3475 * per node list when we reach the limit.
3476 * B) The number of objects in cpu partial slabs to extract from the
3477 * per node list when we run out of per cpu objects. We only fetch
3478 * 50% to keep some capacity around for frees.
3479 */
3480 if (!kmem_cache_has_cpu_partial(s))
3481 s->cpu_partial = 0;
3482 else if (s->size >= PAGE_SIZE)
3483 s->cpu_partial = 2;
3484 else if (s->size >= 1024)
3485 s->cpu_partial = 6;
3486 else if (s->size >= 256)
3487 s->cpu_partial = 13;
3488 else
3489 s->cpu_partial = 30;
3490#endif
3491}
3492
81819f0f
CL
3493/*
3494 * calculate_sizes() determines the order and the distribution of data within
3495 * a slab object.
3496 */
06b285dc 3497static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3498{
d50112ed 3499 slab_flags_t flags = s->flags;
be4a7988 3500 unsigned int size = s->object_size;
19af27af 3501 unsigned int order;
81819f0f 3502
d8b42bf5
CL
3503 /*
3504 * Round up object size to the next word boundary. We can only
3505 * place the free pointer at word boundaries and this determines
3506 * the possible location of the free pointer.
3507 */
3508 size = ALIGN(size, sizeof(void *));
3509
3510#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3511 /*
3512 * Determine if we can poison the object itself. If the user of
3513 * the slab may touch the object after free or before allocation
3514 * then we should never poison the object itself.
3515 */
5f0d5a3a 3516 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3517 !s->ctor)
81819f0f
CL
3518 s->flags |= __OBJECT_POISON;
3519 else
3520 s->flags &= ~__OBJECT_POISON;
3521
81819f0f
CL
3522
3523 /*
672bba3a 3524 * If we are Redzoning then check if there is some space between the
81819f0f 3525 * end of the object and the free pointer. If not then add an
672bba3a 3526 * additional word to have some bytes to store Redzone information.
81819f0f 3527 */
3b0efdfa 3528 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3529 size += sizeof(void *);
41ecc55b 3530#endif
81819f0f
CL
3531
3532 /*
672bba3a
CL
3533 * With that we have determined the number of bytes in actual use
3534 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3535 */
3536 s->inuse = size;
3537
5f0d5a3a 3538 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3539 s->ctor)) {
81819f0f
CL
3540 /*
3541 * Relocate free pointer after the object if it is not
3542 * permitted to overwrite the first word of the object on
3543 * kmem_cache_free.
3544 *
3545 * This is the case if we do RCU, have a constructor or
3546 * destructor or are poisoning the objects.
3547 */
3548 s->offset = size;
3549 size += sizeof(void *);
3550 }
3551
c12b3c62 3552#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3553 if (flags & SLAB_STORE_USER)
3554 /*
3555 * Need to store information about allocs and frees after
3556 * the object.
3557 */
3558 size += 2 * sizeof(struct track);
80a9201a 3559#endif
81819f0f 3560
80a9201a
AP
3561 kasan_cache_create(s, &size, &s->flags);
3562#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3563 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3564 /*
3565 * Add some empty padding so that we can catch
3566 * overwrites from earlier objects rather than let
3567 * tracking information or the free pointer be
0211a9c8 3568 * corrupted if a user writes before the start
81819f0f
CL
3569 * of the object.
3570 */
3571 size += sizeof(void *);
d86bd1be
JK
3572
3573 s->red_left_pad = sizeof(void *);
3574 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3575 size += s->red_left_pad;
3576 }
41ecc55b 3577#endif
672bba3a 3578
81819f0f
CL
3579 /*
3580 * SLUB stores one object immediately after another beginning from
3581 * offset 0. In order to align the objects we have to simply size
3582 * each object to conform to the alignment.
3583 */
45906855 3584 size = ALIGN(size, s->align);
81819f0f 3585 s->size = size;
06b285dc
CL
3586 if (forced_order >= 0)
3587 order = forced_order;
3588 else
9736d2a9 3589 order = calculate_order(size);
81819f0f 3590
19af27af 3591 if ((int)order < 0)
81819f0f
CL
3592 return 0;
3593
b7a49f0d 3594 s->allocflags = 0;
834f3d11 3595 if (order)
b7a49f0d
CL
3596 s->allocflags |= __GFP_COMP;
3597
3598 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3599 s->allocflags |= GFP_DMA;
b7a49f0d 3600
6d6ea1e9
NB
3601 if (s->flags & SLAB_CACHE_DMA32)
3602 s->allocflags |= GFP_DMA32;
3603
b7a49f0d
CL
3604 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3605 s->allocflags |= __GFP_RECLAIMABLE;
3606
81819f0f
CL
3607 /*
3608 * Determine the number of objects per slab
3609 */
9736d2a9
MW
3610 s->oo = oo_make(order, size);
3611 s->min = oo_make(get_order(size), size);
205ab99d
CL
3612 if (oo_objects(s->oo) > oo_objects(s->max))
3613 s->max = s->oo;
81819f0f 3614
834f3d11 3615 return !!oo_objects(s->oo);
81819f0f
CL
3616}
3617
d50112ed 3618static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3619{
8a13a4cc 3620 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
2482ddec
KC
3621#ifdef CONFIG_SLAB_FREELIST_HARDENED
3622 s->random = get_random_long();
3623#endif
81819f0f 3624
06b285dc 3625 if (!calculate_sizes(s, -1))
81819f0f 3626 goto error;
3de47213
DR
3627 if (disable_higher_order_debug) {
3628 /*
3629 * Disable debugging flags that store metadata if the min slab
3630 * order increased.
3631 */
3b0efdfa 3632 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3633 s->flags &= ~DEBUG_METADATA_FLAGS;
3634 s->offset = 0;
3635 if (!calculate_sizes(s, -1))
3636 goto error;
3637 }
3638 }
81819f0f 3639
2565409f
HC
3640#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3641 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3642 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3643 /* Enable fast mode */
3644 s->flags |= __CMPXCHG_DOUBLE;
3645#endif
3646
3b89d7d8
DR
3647 /*
3648 * The larger the object size is, the more pages we want on the partial
3649 * list to avoid pounding the page allocator excessively.
3650 */
49e22585
CL
3651 set_min_partial(s, ilog2(s->size) / 2);
3652
e6d0e1dc 3653 set_cpu_partial(s);
49e22585 3654
81819f0f 3655#ifdef CONFIG_NUMA
e2cb96b7 3656 s->remote_node_defrag_ratio = 1000;
81819f0f 3657#endif
210e7a43
TG
3658
3659 /* Initialize the pre-computed randomized freelist if slab is up */
3660 if (slab_state >= UP) {
3661 if (init_cache_random_seq(s))
3662 goto error;
3663 }
3664
55136592 3665 if (!init_kmem_cache_nodes(s))
dfb4f096 3666 goto error;
81819f0f 3667
55136592 3668 if (alloc_kmem_cache_cpus(s))
278b1bb1 3669 return 0;
ff12059e 3670
4c93c355 3671 free_kmem_cache_nodes(s);
81819f0f 3672error:
278b1bb1 3673 return -EINVAL;
81819f0f 3674}
81819f0f 3675
33b12c38
CL
3676static void list_slab_objects(struct kmem_cache *s, struct page *page,
3677 const char *text)
3678{
3679#ifdef CONFIG_SLUB_DEBUG
3680 void *addr = page_address(page);
3681 void *p;
0684e652 3682 unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC);
bbd7d57b
ED
3683 if (!map)
3684 return;
945cf2b6 3685 slab_err(s, page, text, s->name);
33b12c38 3686 slab_lock(page);
33b12c38 3687
5f80b13a 3688 get_map(s, page, map);
33b12c38
CL
3689 for_each_object(p, s, addr, page->objects) {
3690
3691 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3692 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3693 print_tracking(s, p);
3694 }
3695 }
3696 slab_unlock(page);
0684e652 3697 bitmap_free(map);
33b12c38
CL
3698#endif
3699}
3700
81819f0f 3701/*
599870b1 3702 * Attempt to free all partial slabs on a node.
52b4b950
DS
3703 * This is called from __kmem_cache_shutdown(). We must take list_lock
3704 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3705 */
599870b1 3706static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3707{
60398923 3708 LIST_HEAD(discard);
81819f0f
CL
3709 struct page *page, *h;
3710
52b4b950
DS
3711 BUG_ON(irqs_disabled());
3712 spin_lock_irq(&n->list_lock);
916ac052 3713 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 3714 if (!page->inuse) {
52b4b950 3715 remove_partial(n, page);
916ac052 3716 list_add(&page->slab_list, &discard);
33b12c38
CL
3717 } else {
3718 list_slab_objects(s, page,
52b4b950 3719 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3720 }
33b12c38 3721 }
52b4b950 3722 spin_unlock_irq(&n->list_lock);
60398923 3723
916ac052 3724 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 3725 discard_slab(s, page);
81819f0f
CL
3726}
3727
f9e13c0a
SB
3728bool __kmem_cache_empty(struct kmem_cache *s)
3729{
3730 int node;
3731 struct kmem_cache_node *n;
3732
3733 for_each_kmem_cache_node(s, node, n)
3734 if (n->nr_partial || slabs_node(s, node))
3735 return false;
3736 return true;
3737}
3738
81819f0f 3739/*
672bba3a 3740 * Release all resources used by a slab cache.
81819f0f 3741 */
52b4b950 3742int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3743{
3744 int node;
fa45dc25 3745 struct kmem_cache_node *n;
81819f0f
CL
3746
3747 flush_all(s);
81819f0f 3748 /* Attempt to free all objects */
fa45dc25 3749 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3750 free_partial(s, n);
3751 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3752 return 1;
3753 }
bf5eb3de 3754 sysfs_slab_remove(s);
81819f0f
CL
3755 return 0;
3756}
3757
81819f0f
CL
3758/********************************************************************
3759 * Kmalloc subsystem
3760 *******************************************************************/
3761
81819f0f
CL
3762static int __init setup_slub_min_order(char *str)
3763{
19af27af 3764 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
3765
3766 return 1;
3767}
3768
3769__setup("slub_min_order=", setup_slub_min_order);
3770
3771static int __init setup_slub_max_order(char *str)
3772{
19af27af
AD
3773 get_option(&str, (int *)&slub_max_order);
3774 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
3775
3776 return 1;
3777}
3778
3779__setup("slub_max_order=", setup_slub_max_order);
3780
3781static int __init setup_slub_min_objects(char *str)
3782{
19af27af 3783 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
3784
3785 return 1;
3786}
3787
3788__setup("slub_min_objects=", setup_slub_min_objects);
3789
81819f0f
CL
3790void *__kmalloc(size_t size, gfp_t flags)
3791{
aadb4bc4 3792 struct kmem_cache *s;
5b882be4 3793 void *ret;
81819f0f 3794
95a05b42 3795 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3796 return kmalloc_large(size, flags);
aadb4bc4 3797
2c59dd65 3798 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3799
3800 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3801 return s;
3802
2b847c3c 3803 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3804
ca2b84cb 3805 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3806
0116523c 3807 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3808
5b882be4 3809 return ret;
81819f0f
CL
3810}
3811EXPORT_SYMBOL(__kmalloc);
3812
5d1f57e4 3813#ifdef CONFIG_NUMA
f619cfe1
CL
3814static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3815{
b1eeab67 3816 struct page *page;
e4f7c0b4 3817 void *ptr = NULL;
f619cfe1 3818
75f296d9 3819 flags |= __GFP_COMP;
4949148a 3820 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3821 if (page)
e4f7c0b4
CM
3822 ptr = page_address(page);
3823
0116523c 3824 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
3825}
3826
81819f0f
CL
3827void *__kmalloc_node(size_t size, gfp_t flags, int node)
3828{
aadb4bc4 3829 struct kmem_cache *s;
5b882be4 3830 void *ret;
81819f0f 3831
95a05b42 3832 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3833 ret = kmalloc_large_node(size, flags, node);
3834
ca2b84cb
EGM
3835 trace_kmalloc_node(_RET_IP_, ret,
3836 size, PAGE_SIZE << get_order(size),
3837 flags, node);
5b882be4
EGM
3838
3839 return ret;
3840 }
aadb4bc4 3841
2c59dd65 3842 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3843
3844 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3845 return s;
3846
2b847c3c 3847 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3848
ca2b84cb 3849 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3850
0116523c 3851 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3852
5b882be4 3853 return ret;
81819f0f
CL
3854}
3855EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 3856#endif /* CONFIG_NUMA */
81819f0f 3857
ed18adc1
KC
3858#ifdef CONFIG_HARDENED_USERCOPY
3859/*
afcc90f8
KC
3860 * Rejects incorrectly sized objects and objects that are to be copied
3861 * to/from userspace but do not fall entirely within the containing slab
3862 * cache's usercopy region.
ed18adc1
KC
3863 *
3864 * Returns NULL if check passes, otherwise const char * to name of cache
3865 * to indicate an error.
3866 */
f4e6e289
KC
3867void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3868 bool to_user)
ed18adc1
KC
3869{
3870 struct kmem_cache *s;
44065b2e 3871 unsigned int offset;
ed18adc1
KC
3872 size_t object_size;
3873
96fedce2
AK
3874 ptr = kasan_reset_tag(ptr);
3875
ed18adc1
KC
3876 /* Find object and usable object size. */
3877 s = page->slab_cache;
ed18adc1
KC
3878
3879 /* Reject impossible pointers. */
3880 if (ptr < page_address(page))
f4e6e289
KC
3881 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3882 to_user, 0, n);
ed18adc1
KC
3883
3884 /* Find offset within object. */
3885 offset = (ptr - page_address(page)) % s->size;
3886
3887 /* Adjust for redzone and reject if within the redzone. */
3888 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3889 if (offset < s->red_left_pad)
f4e6e289
KC
3890 usercopy_abort("SLUB object in left red zone",
3891 s->name, to_user, offset, n);
ed18adc1
KC
3892 offset -= s->red_left_pad;
3893 }
3894
afcc90f8
KC
3895 /* Allow address range falling entirely within usercopy region. */
3896 if (offset >= s->useroffset &&
3897 offset - s->useroffset <= s->usersize &&
3898 n <= s->useroffset - offset + s->usersize)
f4e6e289 3899 return;
ed18adc1 3900
afcc90f8
KC
3901 /*
3902 * If the copy is still within the allocated object, produce
3903 * a warning instead of rejecting the copy. This is intended
3904 * to be a temporary method to find any missing usercopy
3905 * whitelists.
3906 */
3907 object_size = slab_ksize(s);
2d891fbc
KC
3908 if (usercopy_fallback &&
3909 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
3910 usercopy_warn("SLUB object", s->name, to_user, offset, n);
3911 return;
3912 }
ed18adc1 3913
f4e6e289 3914 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
3915}
3916#endif /* CONFIG_HARDENED_USERCOPY */
3917
10d1f8cb 3918size_t __ksize(const void *object)
81819f0f 3919{
272c1d21 3920 struct page *page;
81819f0f 3921
ef8b4520 3922 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3923 return 0;
3924
294a80a8 3925 page = virt_to_head_page(object);
294a80a8 3926
76994412
PE
3927 if (unlikely(!PageSlab(page))) {
3928 WARN_ON(!PageCompound(page));
294a80a8 3929 return PAGE_SIZE << compound_order(page);
76994412 3930 }
81819f0f 3931
1b4f59e3 3932 return slab_ksize(page->slab_cache);
81819f0f 3933}
10d1f8cb 3934EXPORT_SYMBOL(__ksize);
81819f0f
CL
3935
3936void kfree(const void *x)
3937{
81819f0f 3938 struct page *page;
5bb983b0 3939 void *object = (void *)x;
81819f0f 3940
2121db74
PE
3941 trace_kfree(_RET_IP_, x);
3942
2408c550 3943 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3944 return;
3945
b49af68f 3946 page = virt_to_head_page(x);
aadb4bc4 3947 if (unlikely(!PageSlab(page))) {
0937502a 3948 BUG_ON(!PageCompound(page));
47adccce 3949 kfree_hook(object);
4949148a 3950 __free_pages(page, compound_order(page));
aadb4bc4
CL
3951 return;
3952 }
81084651 3953 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3954}
3955EXPORT_SYMBOL(kfree);
3956
832f37f5
VD
3957#define SHRINK_PROMOTE_MAX 32
3958
2086d26a 3959/*
832f37f5
VD
3960 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3961 * up most to the head of the partial lists. New allocations will then
3962 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3963 *
3964 * The slabs with the least items are placed last. This results in them
3965 * being allocated from last increasing the chance that the last objects
3966 * are freed in them.
2086d26a 3967 */
c9fc5864 3968int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
3969{
3970 int node;
3971 int i;
3972 struct kmem_cache_node *n;
3973 struct page *page;
3974 struct page *t;
832f37f5
VD
3975 struct list_head discard;
3976 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3977 unsigned long flags;
ce3712d7 3978 int ret = 0;
2086d26a 3979
2086d26a 3980 flush_all(s);
fa45dc25 3981 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3982 INIT_LIST_HEAD(&discard);
3983 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3984 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3985
3986 spin_lock_irqsave(&n->list_lock, flags);
3987
3988 /*
832f37f5 3989 * Build lists of slabs to discard or promote.
2086d26a 3990 *
672bba3a
CL
3991 * Note that concurrent frees may occur while we hold the
3992 * list_lock. page->inuse here is the upper limit.
2086d26a 3993 */
916ac052 3994 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
3995 int free = page->objects - page->inuse;
3996
3997 /* Do not reread page->inuse */
3998 barrier();
3999
4000 /* We do not keep full slabs on the list */
4001 BUG_ON(free <= 0);
4002
4003 if (free == page->objects) {
916ac052 4004 list_move(&page->slab_list, &discard);
69cb8e6b 4005 n->nr_partial--;
832f37f5 4006 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4007 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4008 }
4009
2086d26a 4010 /*
832f37f5
VD
4011 * Promote the slabs filled up most to the head of the
4012 * partial list.
2086d26a 4013 */
832f37f5
VD
4014 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4015 list_splice(promote + i, &n->partial);
2086d26a 4016
2086d26a 4017 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4018
4019 /* Release empty slabs */
916ac052 4020 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4021 discard_slab(s, page);
ce3712d7
VD
4022
4023 if (slabs_node(s, node))
4024 ret = 1;
2086d26a
CL
4025 }
4026
ce3712d7 4027 return ret;
2086d26a 4028}
2086d26a 4029
c9fc5864 4030#ifdef CONFIG_MEMCG
43486694 4031void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
01fb58bc 4032{
50862ce7
TH
4033 /*
4034 * Called with all the locks held after a sched RCU grace period.
4035 * Even if @s becomes empty after shrinking, we can't know that @s
4036 * doesn't have allocations already in-flight and thus can't
4037 * destroy @s until the associated memcg is released.
4038 *
4039 * However, let's remove the sysfs files for empty caches here.
4040 * Each cache has a lot of interface files which aren't
4041 * particularly useful for empty draining caches; otherwise, we can
4042 * easily end up with millions of unnecessary sysfs files on
4043 * systems which have a lot of memory and transient cgroups.
4044 */
4045 if (!__kmem_cache_shrink(s))
4046 sysfs_slab_remove(s);
01fb58bc
TH
4047}
4048
c9fc5864
TH
4049void __kmemcg_cache_deactivate(struct kmem_cache *s)
4050{
4051 /*
4052 * Disable empty slabs caching. Used to avoid pinning offline
4053 * memory cgroups by kmem pages that can be freed.
4054 */
e6d0e1dc 4055 slub_set_cpu_partial(s, 0);
c9fc5864 4056 s->min_partial = 0;
c9fc5864 4057}
6dfd1b65 4058#endif /* CONFIG_MEMCG */
c9fc5864 4059
b9049e23
YG
4060static int slab_mem_going_offline_callback(void *arg)
4061{
4062 struct kmem_cache *s;
4063
18004c5d 4064 mutex_lock(&slab_mutex);
b9049e23 4065 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4066 __kmem_cache_shrink(s);
18004c5d 4067 mutex_unlock(&slab_mutex);
b9049e23
YG
4068
4069 return 0;
4070}
4071
4072static void slab_mem_offline_callback(void *arg)
4073{
4074 struct kmem_cache_node *n;
4075 struct kmem_cache *s;
4076 struct memory_notify *marg = arg;
4077 int offline_node;
4078
b9d5ab25 4079 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4080
4081 /*
4082 * If the node still has available memory. we need kmem_cache_node
4083 * for it yet.
4084 */
4085 if (offline_node < 0)
4086 return;
4087
18004c5d 4088 mutex_lock(&slab_mutex);
b9049e23
YG
4089 list_for_each_entry(s, &slab_caches, list) {
4090 n = get_node(s, offline_node);
4091 if (n) {
4092 /*
4093 * if n->nr_slabs > 0, slabs still exist on the node
4094 * that is going down. We were unable to free them,
c9404c9c 4095 * and offline_pages() function shouldn't call this
b9049e23
YG
4096 * callback. So, we must fail.
4097 */
0f389ec6 4098 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4099
4100 s->node[offline_node] = NULL;
8de66a0c 4101 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4102 }
4103 }
18004c5d 4104 mutex_unlock(&slab_mutex);
b9049e23
YG
4105}
4106
4107static int slab_mem_going_online_callback(void *arg)
4108{
4109 struct kmem_cache_node *n;
4110 struct kmem_cache *s;
4111 struct memory_notify *marg = arg;
b9d5ab25 4112 int nid = marg->status_change_nid_normal;
b9049e23
YG
4113 int ret = 0;
4114
4115 /*
4116 * If the node's memory is already available, then kmem_cache_node is
4117 * already created. Nothing to do.
4118 */
4119 if (nid < 0)
4120 return 0;
4121
4122 /*
0121c619 4123 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4124 * allocate a kmem_cache_node structure in order to bring the node
4125 * online.
4126 */
18004c5d 4127 mutex_lock(&slab_mutex);
b9049e23
YG
4128 list_for_each_entry(s, &slab_caches, list) {
4129 /*
4130 * XXX: kmem_cache_alloc_node will fallback to other nodes
4131 * since memory is not yet available from the node that
4132 * is brought up.
4133 */
8de66a0c 4134 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4135 if (!n) {
4136 ret = -ENOMEM;
4137 goto out;
4138 }
4053497d 4139 init_kmem_cache_node(n);
b9049e23
YG
4140 s->node[nid] = n;
4141 }
4142out:
18004c5d 4143 mutex_unlock(&slab_mutex);
b9049e23
YG
4144 return ret;
4145}
4146
4147static int slab_memory_callback(struct notifier_block *self,
4148 unsigned long action, void *arg)
4149{
4150 int ret = 0;
4151
4152 switch (action) {
4153 case MEM_GOING_ONLINE:
4154 ret = slab_mem_going_online_callback(arg);
4155 break;
4156 case MEM_GOING_OFFLINE:
4157 ret = slab_mem_going_offline_callback(arg);
4158 break;
4159 case MEM_OFFLINE:
4160 case MEM_CANCEL_ONLINE:
4161 slab_mem_offline_callback(arg);
4162 break;
4163 case MEM_ONLINE:
4164 case MEM_CANCEL_OFFLINE:
4165 break;
4166 }
dc19f9db
KH
4167 if (ret)
4168 ret = notifier_from_errno(ret);
4169 else
4170 ret = NOTIFY_OK;
b9049e23
YG
4171 return ret;
4172}
4173
3ac38faa
AM
4174static struct notifier_block slab_memory_callback_nb = {
4175 .notifier_call = slab_memory_callback,
4176 .priority = SLAB_CALLBACK_PRI,
4177};
b9049e23 4178
81819f0f
CL
4179/********************************************************************
4180 * Basic setup of slabs
4181 *******************************************************************/
4182
51df1142
CL
4183/*
4184 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4185 * the page allocator. Allocate them properly then fix up the pointers
4186 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4187 */
4188
dffb4d60 4189static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4190{
4191 int node;
dffb4d60 4192 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4193 struct kmem_cache_node *n;
51df1142 4194
dffb4d60 4195 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4196
7d557b3c
GC
4197 /*
4198 * This runs very early, and only the boot processor is supposed to be
4199 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4200 * IPIs around.
4201 */
4202 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4203 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4204 struct page *p;
4205
916ac052 4206 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4207 p->slab_cache = s;
51df1142 4208
607bf324 4209#ifdef CONFIG_SLUB_DEBUG
916ac052 4210 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4211 p->slab_cache = s;
51df1142 4212#endif
51df1142 4213 }
f7ce3190 4214 slab_init_memcg_params(s);
dffb4d60 4215 list_add(&s->list, &slab_caches);
c03914b7 4216 memcg_link_cache(s, NULL);
dffb4d60 4217 return s;
51df1142
CL
4218}
4219
81819f0f
CL
4220void __init kmem_cache_init(void)
4221{
dffb4d60
CL
4222 static __initdata struct kmem_cache boot_kmem_cache,
4223 boot_kmem_cache_node;
51df1142 4224
fc8d8620
SG
4225 if (debug_guardpage_minorder())
4226 slub_max_order = 0;
4227
dffb4d60
CL
4228 kmem_cache_node = &boot_kmem_cache_node;
4229 kmem_cache = &boot_kmem_cache;
51df1142 4230
dffb4d60 4231 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4232 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4233
3ac38faa 4234 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4235
4236 /* Able to allocate the per node structures */
4237 slab_state = PARTIAL;
4238
dffb4d60
CL
4239 create_boot_cache(kmem_cache, "kmem_cache",
4240 offsetof(struct kmem_cache, node) +
4241 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4242 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4243
dffb4d60 4244 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4245 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4246
4247 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4248 setup_kmalloc_cache_index_table();
f97d5f63 4249 create_kmalloc_caches(0);
81819f0f 4250
210e7a43
TG
4251 /* Setup random freelists for each cache */
4252 init_freelist_randomization();
4253
a96a87bf
SAS
4254 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4255 slub_cpu_dead);
81819f0f 4256
b9726c26 4257 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4258 cache_line_size(),
81819f0f
CL
4259 slub_min_order, slub_max_order, slub_min_objects,
4260 nr_cpu_ids, nr_node_ids);
4261}
4262
7e85ee0c
PE
4263void __init kmem_cache_init_late(void)
4264{
7e85ee0c
PE
4265}
4266
2633d7a0 4267struct kmem_cache *
f4957d5b 4268__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4269 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4270{
426589f5 4271 struct kmem_cache *s, *c;
81819f0f 4272
a44cb944 4273 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4274 if (s) {
4275 s->refcount++;
84d0ddd6 4276
81819f0f
CL
4277 /*
4278 * Adjust the object sizes so that we clear
4279 * the complete object on kzalloc.
4280 */
1b473f29 4281 s->object_size = max(s->object_size, size);
52ee6d74 4282 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4283
426589f5 4284 for_each_memcg_cache(c, s) {
84d0ddd6 4285 c->object_size = s->object_size;
52ee6d74 4286 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
84d0ddd6
VD
4287 }
4288
7b8f3b66 4289 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4290 s->refcount--;
cbb79694 4291 s = NULL;
7b8f3b66 4292 }
a0e1d1be 4293 }
6446faa2 4294
cbb79694
CL
4295 return s;
4296}
84c1cf62 4297
d50112ed 4298int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4299{
aac3a166
PE
4300 int err;
4301
4302 err = kmem_cache_open(s, flags);
4303 if (err)
4304 return err;
20cea968 4305
45530c44
CL
4306 /* Mutex is not taken during early boot */
4307 if (slab_state <= UP)
4308 return 0;
4309
107dab5c 4310 memcg_propagate_slab_attrs(s);
aac3a166 4311 err = sysfs_slab_add(s);
aac3a166 4312 if (err)
52b4b950 4313 __kmem_cache_release(s);
20cea968 4314
aac3a166 4315 return err;
81819f0f 4316}
81819f0f 4317
ce71e27c 4318void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4319{
aadb4bc4 4320 struct kmem_cache *s;
94b528d0 4321 void *ret;
aadb4bc4 4322
95a05b42 4323 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4324 return kmalloc_large(size, gfpflags);
4325
2c59dd65 4326 s = kmalloc_slab(size, gfpflags);
81819f0f 4327
2408c550 4328 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4329 return s;
81819f0f 4330
2b847c3c 4331 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4332
25985edc 4333 /* Honor the call site pointer we received. */
ca2b84cb 4334 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4335
4336 return ret;
81819f0f
CL
4337}
4338
5d1f57e4 4339#ifdef CONFIG_NUMA
81819f0f 4340void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4341 int node, unsigned long caller)
81819f0f 4342{
aadb4bc4 4343 struct kmem_cache *s;
94b528d0 4344 void *ret;
aadb4bc4 4345
95a05b42 4346 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4347 ret = kmalloc_large_node(size, gfpflags, node);
4348
4349 trace_kmalloc_node(caller, ret,
4350 size, PAGE_SIZE << get_order(size),
4351 gfpflags, node);
4352
4353 return ret;
4354 }
eada35ef 4355
2c59dd65 4356 s = kmalloc_slab(size, gfpflags);
81819f0f 4357
2408c550 4358 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4359 return s;
81819f0f 4360
2b847c3c 4361 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4362
25985edc 4363 /* Honor the call site pointer we received. */
ca2b84cb 4364 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4365
4366 return ret;
81819f0f 4367}
5d1f57e4 4368#endif
81819f0f 4369
ab4d5ed5 4370#ifdef CONFIG_SYSFS
205ab99d
CL
4371static int count_inuse(struct page *page)
4372{
4373 return page->inuse;
4374}
4375
4376static int count_total(struct page *page)
4377{
4378 return page->objects;
4379}
ab4d5ed5 4380#endif
205ab99d 4381
ab4d5ed5 4382#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4383static int validate_slab(struct kmem_cache *s, struct page *page,
4384 unsigned long *map)
53e15af0
CL
4385{
4386 void *p;
a973e9dd 4387 void *addr = page_address(page);
53e15af0
CL
4388
4389 if (!check_slab(s, page) ||
4390 !on_freelist(s, page, NULL))
4391 return 0;
4392
4393 /* Now we know that a valid freelist exists */
39b26464 4394 bitmap_zero(map, page->objects);
53e15af0 4395
5f80b13a
CL
4396 get_map(s, page, map);
4397 for_each_object(p, s, addr, page->objects) {
4398 if (test_bit(slab_index(p, s, addr), map))
4399 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4400 return 0;
53e15af0
CL
4401 }
4402
224a88be 4403 for_each_object(p, s, addr, page->objects)
7656c72b 4404 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4405 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4406 return 0;
4407 return 1;
4408}
4409
434e245d
CL
4410static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4411 unsigned long *map)
53e15af0 4412{
881db7fb
CL
4413 slab_lock(page);
4414 validate_slab(s, page, map);
4415 slab_unlock(page);
53e15af0
CL
4416}
4417
434e245d
CL
4418static int validate_slab_node(struct kmem_cache *s,
4419 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4420{
4421 unsigned long count = 0;
4422 struct page *page;
4423 unsigned long flags;
4424
4425 spin_lock_irqsave(&n->list_lock, flags);
4426
916ac052 4427 list_for_each_entry(page, &n->partial, slab_list) {
434e245d 4428 validate_slab_slab(s, page, map);
53e15af0
CL
4429 count++;
4430 }
4431 if (count != n->nr_partial)
f9f58285
FF
4432 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4433 s->name, count, n->nr_partial);
53e15af0
CL
4434
4435 if (!(s->flags & SLAB_STORE_USER))
4436 goto out;
4437
916ac052 4438 list_for_each_entry(page, &n->full, slab_list) {
434e245d 4439 validate_slab_slab(s, page, map);
53e15af0
CL
4440 count++;
4441 }
4442 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4443 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4444 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4445
4446out:
4447 spin_unlock_irqrestore(&n->list_lock, flags);
4448 return count;
4449}
4450
434e245d 4451static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4452{
4453 int node;
4454 unsigned long count = 0;
fa45dc25 4455 struct kmem_cache_node *n;
0684e652 4456 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
434e245d
CL
4457
4458 if (!map)
4459 return -ENOMEM;
53e15af0
CL
4460
4461 flush_all(s);
fa45dc25 4462 for_each_kmem_cache_node(s, node, n)
434e245d 4463 count += validate_slab_node(s, n, map);
0684e652 4464 bitmap_free(map);
53e15af0
CL
4465 return count;
4466}
88a420e4 4467/*
672bba3a 4468 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4469 * and freed.
4470 */
4471
4472struct location {
4473 unsigned long count;
ce71e27c 4474 unsigned long addr;
45edfa58
CL
4475 long long sum_time;
4476 long min_time;
4477 long max_time;
4478 long min_pid;
4479 long max_pid;
174596a0 4480 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4481 nodemask_t nodes;
88a420e4
CL
4482};
4483
4484struct loc_track {
4485 unsigned long max;
4486 unsigned long count;
4487 struct location *loc;
4488};
4489
4490static void free_loc_track(struct loc_track *t)
4491{
4492 if (t->max)
4493 free_pages((unsigned long)t->loc,
4494 get_order(sizeof(struct location) * t->max));
4495}
4496
68dff6a9 4497static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4498{
4499 struct location *l;
4500 int order;
4501
88a420e4
CL
4502 order = get_order(sizeof(struct location) * max);
4503
68dff6a9 4504 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4505 if (!l)
4506 return 0;
4507
4508 if (t->count) {
4509 memcpy(l, t->loc, sizeof(struct location) * t->count);
4510 free_loc_track(t);
4511 }
4512 t->max = max;
4513 t->loc = l;
4514 return 1;
4515}
4516
4517static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4518 const struct track *track)
88a420e4
CL
4519{
4520 long start, end, pos;
4521 struct location *l;
ce71e27c 4522 unsigned long caddr;
45edfa58 4523 unsigned long age = jiffies - track->when;
88a420e4
CL
4524
4525 start = -1;
4526 end = t->count;
4527
4528 for ( ; ; ) {
4529 pos = start + (end - start + 1) / 2;
4530
4531 /*
4532 * There is nothing at "end". If we end up there
4533 * we need to add something to before end.
4534 */
4535 if (pos == end)
4536 break;
4537
4538 caddr = t->loc[pos].addr;
45edfa58
CL
4539 if (track->addr == caddr) {
4540
4541 l = &t->loc[pos];
4542 l->count++;
4543 if (track->when) {
4544 l->sum_time += age;
4545 if (age < l->min_time)
4546 l->min_time = age;
4547 if (age > l->max_time)
4548 l->max_time = age;
4549
4550 if (track->pid < l->min_pid)
4551 l->min_pid = track->pid;
4552 if (track->pid > l->max_pid)
4553 l->max_pid = track->pid;
4554
174596a0
RR
4555 cpumask_set_cpu(track->cpu,
4556 to_cpumask(l->cpus));
45edfa58
CL
4557 }
4558 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4559 return 1;
4560 }
4561
45edfa58 4562 if (track->addr < caddr)
88a420e4
CL
4563 end = pos;
4564 else
4565 start = pos;
4566 }
4567
4568 /*
672bba3a 4569 * Not found. Insert new tracking element.
88a420e4 4570 */
68dff6a9 4571 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4572 return 0;
4573
4574 l = t->loc + pos;
4575 if (pos < t->count)
4576 memmove(l + 1, l,
4577 (t->count - pos) * sizeof(struct location));
4578 t->count++;
4579 l->count = 1;
45edfa58
CL
4580 l->addr = track->addr;
4581 l->sum_time = age;
4582 l->min_time = age;
4583 l->max_time = age;
4584 l->min_pid = track->pid;
4585 l->max_pid = track->pid;
174596a0
RR
4586 cpumask_clear(to_cpumask(l->cpus));
4587 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4588 nodes_clear(l->nodes);
4589 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4590 return 1;
4591}
4592
4593static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4594 struct page *page, enum track_item alloc,
a5dd5c11 4595 unsigned long *map)
88a420e4 4596{
a973e9dd 4597 void *addr = page_address(page);
88a420e4
CL
4598 void *p;
4599
39b26464 4600 bitmap_zero(map, page->objects);
5f80b13a 4601 get_map(s, page, map);
88a420e4 4602
224a88be 4603 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4604 if (!test_bit(slab_index(p, s, addr), map))
4605 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4606}
4607
4608static int list_locations(struct kmem_cache *s, char *buf,
4609 enum track_item alloc)
4610{
e374d483 4611 int len = 0;
88a420e4 4612 unsigned long i;
68dff6a9 4613 struct loc_track t = { 0, 0, NULL };
88a420e4 4614 int node;
fa45dc25 4615 struct kmem_cache_node *n;
0684e652 4616 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
88a420e4 4617
bbd7d57b 4618 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
0ee931c4 4619 GFP_KERNEL)) {
0684e652 4620 bitmap_free(map);
68dff6a9 4621 return sprintf(buf, "Out of memory\n");
bbd7d57b 4622 }
88a420e4
CL
4623 /* Push back cpu slabs */
4624 flush_all(s);
4625
fa45dc25 4626 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4627 unsigned long flags;
4628 struct page *page;
4629
9e86943b 4630 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4631 continue;
4632
4633 spin_lock_irqsave(&n->list_lock, flags);
916ac052 4634 list_for_each_entry(page, &n->partial, slab_list)
bbd7d57b 4635 process_slab(&t, s, page, alloc, map);
916ac052 4636 list_for_each_entry(page, &n->full, slab_list)
bbd7d57b 4637 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4638 spin_unlock_irqrestore(&n->list_lock, flags);
4639 }
4640
4641 for (i = 0; i < t.count; i++) {
45edfa58 4642 struct location *l = &t.loc[i];
88a420e4 4643
9c246247 4644 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4645 break;
e374d483 4646 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4647
4648 if (l->addr)
62c70bce 4649 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4650 else
e374d483 4651 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4652
4653 if (l->sum_time != l->min_time) {
e374d483 4654 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4655 l->min_time,
4656 (long)div_u64(l->sum_time, l->count),
4657 l->max_time);
45edfa58 4658 } else
e374d483 4659 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4660 l->min_time);
4661
4662 if (l->min_pid != l->max_pid)
e374d483 4663 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4664 l->min_pid, l->max_pid);
4665 else
e374d483 4666 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4667 l->min_pid);
4668
174596a0
RR
4669 if (num_online_cpus() > 1 &&
4670 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4671 len < PAGE_SIZE - 60)
4672 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4673 " cpus=%*pbl",
4674 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4675
62bc62a8 4676 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4677 len < PAGE_SIZE - 60)
4678 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4679 " nodes=%*pbl",
4680 nodemask_pr_args(&l->nodes));
45edfa58 4681
e374d483 4682 len += sprintf(buf + len, "\n");
88a420e4
CL
4683 }
4684
4685 free_loc_track(&t);
0684e652 4686 bitmap_free(map);
88a420e4 4687 if (!t.count)
e374d483
HH
4688 len += sprintf(buf, "No data\n");
4689 return len;
88a420e4 4690}
6dfd1b65 4691#endif /* CONFIG_SLUB_DEBUG */
88a420e4 4692
a5a84755 4693#ifdef SLUB_RESILIENCY_TEST
c07b8183 4694static void __init resiliency_test(void)
a5a84755
CL
4695{
4696 u8 *p;
cc252eae 4697 int type = KMALLOC_NORMAL;
a5a84755 4698
95a05b42 4699 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4700
f9f58285
FF
4701 pr_err("SLUB resiliency testing\n");
4702 pr_err("-----------------------\n");
4703 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4704
4705 p = kzalloc(16, GFP_KERNEL);
4706 p[16] = 0x12;
f9f58285
FF
4707 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4708 p + 16);
a5a84755 4709
cc252eae 4710 validate_slab_cache(kmalloc_caches[type][4]);
a5a84755
CL
4711
4712 /* Hmmm... The next two are dangerous */
4713 p = kzalloc(32, GFP_KERNEL);
4714 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4715 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4716 p);
4717 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755 4718
cc252eae 4719 validate_slab_cache(kmalloc_caches[type][5]);
a5a84755
CL
4720 p = kzalloc(64, GFP_KERNEL);
4721 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4722 *p = 0x56;
f9f58285
FF
4723 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4724 p);
4725 pr_err("If allocated object is overwritten then not detectable\n\n");
cc252eae 4726 validate_slab_cache(kmalloc_caches[type][6]);
a5a84755 4727
f9f58285 4728 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4729 p = kzalloc(128, GFP_KERNEL);
4730 kfree(p);
4731 *p = 0x78;
f9f58285 4732 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
cc252eae 4733 validate_slab_cache(kmalloc_caches[type][7]);
a5a84755
CL
4734
4735 p = kzalloc(256, GFP_KERNEL);
4736 kfree(p);
4737 p[50] = 0x9a;
f9f58285 4738 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
cc252eae 4739 validate_slab_cache(kmalloc_caches[type][8]);
a5a84755
CL
4740
4741 p = kzalloc(512, GFP_KERNEL);
4742 kfree(p);
4743 p[512] = 0xab;
f9f58285 4744 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
cc252eae 4745 validate_slab_cache(kmalloc_caches[type][9]);
a5a84755
CL
4746}
4747#else
4748#ifdef CONFIG_SYSFS
4749static void resiliency_test(void) {};
4750#endif
6dfd1b65 4751#endif /* SLUB_RESILIENCY_TEST */
a5a84755 4752
ab4d5ed5 4753#ifdef CONFIG_SYSFS
81819f0f 4754enum slab_stat_type {
205ab99d
CL
4755 SL_ALL, /* All slabs */
4756 SL_PARTIAL, /* Only partially allocated slabs */
4757 SL_CPU, /* Only slabs used for cpu caches */
4758 SL_OBJECTS, /* Determine allocated objects not slabs */
4759 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4760};
4761
205ab99d 4762#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4763#define SO_PARTIAL (1 << SL_PARTIAL)
4764#define SO_CPU (1 << SL_CPU)
4765#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4766#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4767
1663f26d
TH
4768#ifdef CONFIG_MEMCG
4769static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4770
4771static int __init setup_slub_memcg_sysfs(char *str)
4772{
4773 int v;
4774
4775 if (get_option(&str, &v) > 0)
4776 memcg_sysfs_enabled = v;
4777
4778 return 1;
4779}
4780
4781__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4782#endif
4783
62e5c4b4
CG
4784static ssize_t show_slab_objects(struct kmem_cache *s,
4785 char *buf, unsigned long flags)
81819f0f
CL
4786{
4787 unsigned long total = 0;
81819f0f
CL
4788 int node;
4789 int x;
4790 unsigned long *nodes;
81819f0f 4791
6396bb22 4792 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
4793 if (!nodes)
4794 return -ENOMEM;
81819f0f 4795
205ab99d
CL
4796 if (flags & SO_CPU) {
4797 int cpu;
81819f0f 4798
205ab99d 4799 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4800 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4801 cpu);
ec3ab083 4802 int node;
49e22585 4803 struct page *page;
dfb4f096 4804
4db0c3c2 4805 page = READ_ONCE(c->page);
ec3ab083
CL
4806 if (!page)
4807 continue;
205ab99d 4808
ec3ab083
CL
4809 node = page_to_nid(page);
4810 if (flags & SO_TOTAL)
4811 x = page->objects;
4812 else if (flags & SO_OBJECTS)
4813 x = page->inuse;
4814 else
4815 x = 1;
49e22585 4816
ec3ab083
CL
4817 total += x;
4818 nodes[node] += x;
4819
a93cf07b 4820 page = slub_percpu_partial_read_once(c);
49e22585 4821 if (page) {
8afb1474
LZ
4822 node = page_to_nid(page);
4823 if (flags & SO_TOTAL)
4824 WARN_ON_ONCE(1);
4825 else if (flags & SO_OBJECTS)
4826 WARN_ON_ONCE(1);
4827 else
4828 x = page->pages;
bc6697d8
ED
4829 total += x;
4830 nodes[node] += x;
49e22585 4831 }
81819f0f
CL
4832 }
4833 }
4834
bfc8c901 4835 get_online_mems();
ab4d5ed5 4836#ifdef CONFIG_SLUB_DEBUG
205ab99d 4837 if (flags & SO_ALL) {
fa45dc25
CL
4838 struct kmem_cache_node *n;
4839
4840 for_each_kmem_cache_node(s, node, n) {
205ab99d 4841
d0e0ac97
CG
4842 if (flags & SO_TOTAL)
4843 x = atomic_long_read(&n->total_objects);
4844 else if (flags & SO_OBJECTS)
4845 x = atomic_long_read(&n->total_objects) -
4846 count_partial(n, count_free);
81819f0f 4847 else
205ab99d 4848 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4849 total += x;
4850 nodes[node] += x;
4851 }
4852
ab4d5ed5
CL
4853 } else
4854#endif
4855 if (flags & SO_PARTIAL) {
fa45dc25 4856 struct kmem_cache_node *n;
81819f0f 4857
fa45dc25 4858 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4859 if (flags & SO_TOTAL)
4860 x = count_partial(n, count_total);
4861 else if (flags & SO_OBJECTS)
4862 x = count_partial(n, count_inuse);
81819f0f 4863 else
205ab99d 4864 x = n->nr_partial;
81819f0f
CL
4865 total += x;
4866 nodes[node] += x;
4867 }
4868 }
81819f0f
CL
4869 x = sprintf(buf, "%lu", total);
4870#ifdef CONFIG_NUMA
fa45dc25 4871 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4872 if (nodes[node])
4873 x += sprintf(buf + x, " N%d=%lu",
4874 node, nodes[node]);
4875#endif
bfc8c901 4876 put_online_mems();
81819f0f
CL
4877 kfree(nodes);
4878 return x + sprintf(buf + x, "\n");
4879}
4880
ab4d5ed5 4881#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4882static int any_slab_objects(struct kmem_cache *s)
4883{
4884 int node;
fa45dc25 4885 struct kmem_cache_node *n;
81819f0f 4886
fa45dc25 4887 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4888 if (atomic_long_read(&n->total_objects))
81819f0f 4889 return 1;
fa45dc25 4890
81819f0f
CL
4891 return 0;
4892}
ab4d5ed5 4893#endif
81819f0f
CL
4894
4895#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4896#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4897
4898struct slab_attribute {
4899 struct attribute attr;
4900 ssize_t (*show)(struct kmem_cache *s, char *buf);
4901 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4902};
4903
4904#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4905 static struct slab_attribute _name##_attr = \
4906 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4907
4908#define SLAB_ATTR(_name) \
4909 static struct slab_attribute _name##_attr = \
ab067e99 4910 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4911
81819f0f
CL
4912static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4913{
44065b2e 4914 return sprintf(buf, "%u\n", s->size);
81819f0f
CL
4915}
4916SLAB_ATTR_RO(slab_size);
4917
4918static ssize_t align_show(struct kmem_cache *s, char *buf)
4919{
3a3791ec 4920 return sprintf(buf, "%u\n", s->align);
81819f0f
CL
4921}
4922SLAB_ATTR_RO(align);
4923
4924static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4925{
1b473f29 4926 return sprintf(buf, "%u\n", s->object_size);
81819f0f
CL
4927}
4928SLAB_ATTR_RO(object_size);
4929
4930static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4931{
19af27af 4932 return sprintf(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
4933}
4934SLAB_ATTR_RO(objs_per_slab);
4935
06b285dc
CL
4936static ssize_t order_store(struct kmem_cache *s,
4937 const char *buf, size_t length)
4938{
19af27af 4939 unsigned int order;
0121c619
CL
4940 int err;
4941
19af27af 4942 err = kstrtouint(buf, 10, &order);
0121c619
CL
4943 if (err)
4944 return err;
06b285dc
CL
4945
4946 if (order > slub_max_order || order < slub_min_order)
4947 return -EINVAL;
4948
4949 calculate_sizes(s, order);
4950 return length;
4951}
4952
81819f0f
CL
4953static ssize_t order_show(struct kmem_cache *s, char *buf)
4954{
19af27af 4955 return sprintf(buf, "%u\n", oo_order(s->oo));
81819f0f 4956}
06b285dc 4957SLAB_ATTR(order);
81819f0f 4958
73d342b1
DR
4959static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4960{
4961 return sprintf(buf, "%lu\n", s->min_partial);
4962}
4963
4964static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4965 size_t length)
4966{
4967 unsigned long min;
4968 int err;
4969
3dbb95f7 4970 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4971 if (err)
4972 return err;
4973
c0bdb232 4974 set_min_partial(s, min);
73d342b1
DR
4975 return length;
4976}
4977SLAB_ATTR(min_partial);
4978
49e22585
CL
4979static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4980{
e6d0e1dc 4981 return sprintf(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
4982}
4983
4984static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4985 size_t length)
4986{
e5d9998f 4987 unsigned int objects;
49e22585
CL
4988 int err;
4989
e5d9998f 4990 err = kstrtouint(buf, 10, &objects);
49e22585
CL
4991 if (err)
4992 return err;
345c905d 4993 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4994 return -EINVAL;
49e22585 4995
e6d0e1dc 4996 slub_set_cpu_partial(s, objects);
49e22585
CL
4997 flush_all(s);
4998 return length;
4999}
5000SLAB_ATTR(cpu_partial);
5001
81819f0f
CL
5002static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5003{
62c70bce
JP
5004 if (!s->ctor)
5005 return 0;
5006 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
5007}
5008SLAB_ATTR_RO(ctor);
5009
81819f0f
CL
5010static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5011{
4307c14f 5012 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5013}
5014SLAB_ATTR_RO(aliases);
5015
81819f0f
CL
5016static ssize_t partial_show(struct kmem_cache *s, char *buf)
5017{
d9acf4b7 5018 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5019}
5020SLAB_ATTR_RO(partial);
5021
5022static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5023{
d9acf4b7 5024 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5025}
5026SLAB_ATTR_RO(cpu_slabs);
5027
5028static ssize_t objects_show(struct kmem_cache *s, char *buf)
5029{
205ab99d 5030 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5031}
5032SLAB_ATTR_RO(objects);
5033
205ab99d
CL
5034static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5035{
5036 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5037}
5038SLAB_ATTR_RO(objects_partial);
5039
49e22585
CL
5040static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5041{
5042 int objects = 0;
5043 int pages = 0;
5044 int cpu;
5045 int len;
5046
5047 for_each_online_cpu(cpu) {
a93cf07b
WY
5048 struct page *page;
5049
5050 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5051
5052 if (page) {
5053 pages += page->pages;
5054 objects += page->pobjects;
5055 }
5056 }
5057
5058 len = sprintf(buf, "%d(%d)", objects, pages);
5059
5060#ifdef CONFIG_SMP
5061 for_each_online_cpu(cpu) {
a93cf07b
WY
5062 struct page *page;
5063
5064 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5065
5066 if (page && len < PAGE_SIZE - 20)
5067 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5068 page->pobjects, page->pages);
5069 }
5070#endif
5071 return len + sprintf(buf + len, "\n");
5072}
5073SLAB_ATTR_RO(slabs_cpu_partial);
5074
a5a84755
CL
5075static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5076{
5077 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5078}
5079
5080static ssize_t reclaim_account_store(struct kmem_cache *s,
5081 const char *buf, size_t length)
5082{
5083 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5084 if (buf[0] == '1')
5085 s->flags |= SLAB_RECLAIM_ACCOUNT;
5086 return length;
5087}
5088SLAB_ATTR(reclaim_account);
5089
5090static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5091{
5092 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5093}
5094SLAB_ATTR_RO(hwcache_align);
5095
5096#ifdef CONFIG_ZONE_DMA
5097static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5098{
5099 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5100}
5101SLAB_ATTR_RO(cache_dma);
5102#endif
5103
8eb8284b
DW
5104static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5105{
7bbdb81e 5106 return sprintf(buf, "%u\n", s->usersize);
8eb8284b
DW
5107}
5108SLAB_ATTR_RO(usersize);
5109
a5a84755
CL
5110static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5111{
5f0d5a3a 5112 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5113}
5114SLAB_ATTR_RO(destroy_by_rcu);
5115
ab4d5ed5 5116#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5117static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5118{
5119 return show_slab_objects(s, buf, SO_ALL);
5120}
5121SLAB_ATTR_RO(slabs);
5122
205ab99d
CL
5123static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5124{
5125 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5126}
5127SLAB_ATTR_RO(total_objects);
5128
81819f0f
CL
5129static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5130{
becfda68 5131 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
5132}
5133
5134static ssize_t sanity_checks_store(struct kmem_cache *s,
5135 const char *buf, size_t length)
5136{
becfda68 5137 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
5138 if (buf[0] == '1') {
5139 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 5140 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 5141 }
81819f0f
CL
5142 return length;
5143}
5144SLAB_ATTR(sanity_checks);
5145
5146static ssize_t trace_show(struct kmem_cache *s, char *buf)
5147{
5148 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5149}
5150
5151static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5152 size_t length)
5153{
c9e16131
CL
5154 /*
5155 * Tracing a merged cache is going to give confusing results
5156 * as well as cause other issues like converting a mergeable
5157 * cache into an umergeable one.
5158 */
5159 if (s->refcount > 1)
5160 return -EINVAL;
5161
81819f0f 5162 s->flags &= ~SLAB_TRACE;
b789ef51
CL
5163 if (buf[0] == '1') {
5164 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5165 s->flags |= SLAB_TRACE;
b789ef51 5166 }
81819f0f
CL
5167 return length;
5168}
5169SLAB_ATTR(trace);
5170
81819f0f
CL
5171static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5172{
5173 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5174}
5175
5176static ssize_t red_zone_store(struct kmem_cache *s,
5177 const char *buf, size_t length)
5178{
5179 if (any_slab_objects(s))
5180 return -EBUSY;
5181
5182 s->flags &= ~SLAB_RED_ZONE;
b789ef51 5183 if (buf[0] == '1') {
81819f0f 5184 s->flags |= SLAB_RED_ZONE;
b789ef51 5185 }
06b285dc 5186 calculate_sizes(s, -1);
81819f0f
CL
5187 return length;
5188}
5189SLAB_ATTR(red_zone);
5190
5191static ssize_t poison_show(struct kmem_cache *s, char *buf)
5192{
5193 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5194}
5195
5196static ssize_t poison_store(struct kmem_cache *s,
5197 const char *buf, size_t length)
5198{
5199 if (any_slab_objects(s))
5200 return -EBUSY;
5201
5202 s->flags &= ~SLAB_POISON;
b789ef51 5203 if (buf[0] == '1') {
81819f0f 5204 s->flags |= SLAB_POISON;
b789ef51 5205 }
06b285dc 5206 calculate_sizes(s, -1);
81819f0f
CL
5207 return length;
5208}
5209SLAB_ATTR(poison);
5210
5211static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5212{
5213 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5214}
5215
5216static ssize_t store_user_store(struct kmem_cache *s,
5217 const char *buf, size_t length)
5218{
5219 if (any_slab_objects(s))
5220 return -EBUSY;
5221
5222 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
5223 if (buf[0] == '1') {
5224 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5225 s->flags |= SLAB_STORE_USER;
b789ef51 5226 }
06b285dc 5227 calculate_sizes(s, -1);
81819f0f
CL
5228 return length;
5229}
5230SLAB_ATTR(store_user);
5231
53e15af0
CL
5232static ssize_t validate_show(struct kmem_cache *s, char *buf)
5233{
5234 return 0;
5235}
5236
5237static ssize_t validate_store(struct kmem_cache *s,
5238 const char *buf, size_t length)
5239{
434e245d
CL
5240 int ret = -EINVAL;
5241
5242 if (buf[0] == '1') {
5243 ret = validate_slab_cache(s);
5244 if (ret >= 0)
5245 ret = length;
5246 }
5247 return ret;
53e15af0
CL
5248}
5249SLAB_ATTR(validate);
a5a84755
CL
5250
5251static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5252{
5253 if (!(s->flags & SLAB_STORE_USER))
5254 return -ENOSYS;
5255 return list_locations(s, buf, TRACK_ALLOC);
5256}
5257SLAB_ATTR_RO(alloc_calls);
5258
5259static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5260{
5261 if (!(s->flags & SLAB_STORE_USER))
5262 return -ENOSYS;
5263 return list_locations(s, buf, TRACK_FREE);
5264}
5265SLAB_ATTR_RO(free_calls);
5266#endif /* CONFIG_SLUB_DEBUG */
5267
5268#ifdef CONFIG_FAILSLAB
5269static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5270{
5271 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5272}
5273
5274static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5275 size_t length)
5276{
c9e16131
CL
5277 if (s->refcount > 1)
5278 return -EINVAL;
5279
a5a84755
CL
5280 s->flags &= ~SLAB_FAILSLAB;
5281 if (buf[0] == '1')
5282 s->flags |= SLAB_FAILSLAB;
5283 return length;
5284}
5285SLAB_ATTR(failslab);
ab4d5ed5 5286#endif
53e15af0 5287
2086d26a
CL
5288static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5289{
5290 return 0;
5291}
5292
5293static ssize_t shrink_store(struct kmem_cache *s,
5294 const char *buf, size_t length)
5295{
832f37f5
VD
5296 if (buf[0] == '1')
5297 kmem_cache_shrink(s);
5298 else
2086d26a
CL
5299 return -EINVAL;
5300 return length;
5301}
5302SLAB_ATTR(shrink);
5303
81819f0f 5304#ifdef CONFIG_NUMA
9824601e 5305static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5306{
eb7235eb 5307 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5308}
5309
9824601e 5310static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5311 const char *buf, size_t length)
5312{
eb7235eb 5313 unsigned int ratio;
0121c619
CL
5314 int err;
5315
eb7235eb 5316 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5317 if (err)
5318 return err;
eb7235eb
AD
5319 if (ratio > 100)
5320 return -ERANGE;
0121c619 5321
eb7235eb 5322 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5323
81819f0f
CL
5324 return length;
5325}
9824601e 5326SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5327#endif
5328
8ff12cfc 5329#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5330static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5331{
5332 unsigned long sum = 0;
5333 int cpu;
5334 int len;
6da2ec56 5335 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5336
5337 if (!data)
5338 return -ENOMEM;
5339
5340 for_each_online_cpu(cpu) {
9dfc6e68 5341 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5342
5343 data[cpu] = x;
5344 sum += x;
5345 }
5346
5347 len = sprintf(buf, "%lu", sum);
5348
50ef37b9 5349#ifdef CONFIG_SMP
8ff12cfc
CL
5350 for_each_online_cpu(cpu) {
5351 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5352 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5353 }
50ef37b9 5354#endif
8ff12cfc
CL
5355 kfree(data);
5356 return len + sprintf(buf + len, "\n");
5357}
5358
78eb00cc
DR
5359static void clear_stat(struct kmem_cache *s, enum stat_item si)
5360{
5361 int cpu;
5362
5363 for_each_online_cpu(cpu)
9dfc6e68 5364 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5365}
5366
8ff12cfc
CL
5367#define STAT_ATTR(si, text) \
5368static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5369{ \
5370 return show_stat(s, buf, si); \
5371} \
78eb00cc
DR
5372static ssize_t text##_store(struct kmem_cache *s, \
5373 const char *buf, size_t length) \
5374{ \
5375 if (buf[0] != '0') \
5376 return -EINVAL; \
5377 clear_stat(s, si); \
5378 return length; \
5379} \
5380SLAB_ATTR(text); \
8ff12cfc
CL
5381
5382STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5383STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5384STAT_ATTR(FREE_FASTPATH, free_fastpath);
5385STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5386STAT_ATTR(FREE_FROZEN, free_frozen);
5387STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5388STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5389STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5390STAT_ATTR(ALLOC_SLAB, alloc_slab);
5391STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5392STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5393STAT_ATTR(FREE_SLAB, free_slab);
5394STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5395STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5396STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5397STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5398STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5399STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5400STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5401STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5402STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5403STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5404STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5405STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5406STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5407STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5408#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5409
06428780 5410static struct attribute *slab_attrs[] = {
81819f0f
CL
5411 &slab_size_attr.attr,
5412 &object_size_attr.attr,
5413 &objs_per_slab_attr.attr,
5414 &order_attr.attr,
73d342b1 5415 &min_partial_attr.attr,
49e22585 5416 &cpu_partial_attr.attr,
81819f0f 5417 &objects_attr.attr,
205ab99d 5418 &objects_partial_attr.attr,
81819f0f
CL
5419 &partial_attr.attr,
5420 &cpu_slabs_attr.attr,
5421 &ctor_attr.attr,
81819f0f
CL
5422 &aliases_attr.attr,
5423 &align_attr.attr,
81819f0f
CL
5424 &hwcache_align_attr.attr,
5425 &reclaim_account_attr.attr,
5426 &destroy_by_rcu_attr.attr,
a5a84755 5427 &shrink_attr.attr,
49e22585 5428 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5429#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5430 &total_objects_attr.attr,
5431 &slabs_attr.attr,
5432 &sanity_checks_attr.attr,
5433 &trace_attr.attr,
81819f0f
CL
5434 &red_zone_attr.attr,
5435 &poison_attr.attr,
5436 &store_user_attr.attr,
53e15af0 5437 &validate_attr.attr,
88a420e4
CL
5438 &alloc_calls_attr.attr,
5439 &free_calls_attr.attr,
ab4d5ed5 5440#endif
81819f0f
CL
5441#ifdef CONFIG_ZONE_DMA
5442 &cache_dma_attr.attr,
5443#endif
5444#ifdef CONFIG_NUMA
9824601e 5445 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5446#endif
5447#ifdef CONFIG_SLUB_STATS
5448 &alloc_fastpath_attr.attr,
5449 &alloc_slowpath_attr.attr,
5450 &free_fastpath_attr.attr,
5451 &free_slowpath_attr.attr,
5452 &free_frozen_attr.attr,
5453 &free_add_partial_attr.attr,
5454 &free_remove_partial_attr.attr,
5455 &alloc_from_partial_attr.attr,
5456 &alloc_slab_attr.attr,
5457 &alloc_refill_attr.attr,
e36a2652 5458 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5459 &free_slab_attr.attr,
5460 &cpuslab_flush_attr.attr,
5461 &deactivate_full_attr.attr,
5462 &deactivate_empty_attr.attr,
5463 &deactivate_to_head_attr.attr,
5464 &deactivate_to_tail_attr.attr,
5465 &deactivate_remote_frees_attr.attr,
03e404af 5466 &deactivate_bypass_attr.attr,
65c3376a 5467 &order_fallback_attr.attr,
b789ef51
CL
5468 &cmpxchg_double_fail_attr.attr,
5469 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5470 &cpu_partial_alloc_attr.attr,
5471 &cpu_partial_free_attr.attr,
8028dcea
AS
5472 &cpu_partial_node_attr.attr,
5473 &cpu_partial_drain_attr.attr,
81819f0f 5474#endif
4c13dd3b
DM
5475#ifdef CONFIG_FAILSLAB
5476 &failslab_attr.attr,
5477#endif
8eb8284b 5478 &usersize_attr.attr,
4c13dd3b 5479
81819f0f
CL
5480 NULL
5481};
5482
1fdaaa23 5483static const struct attribute_group slab_attr_group = {
81819f0f
CL
5484 .attrs = slab_attrs,
5485};
5486
5487static ssize_t slab_attr_show(struct kobject *kobj,
5488 struct attribute *attr,
5489 char *buf)
5490{
5491 struct slab_attribute *attribute;
5492 struct kmem_cache *s;
5493 int err;
5494
5495 attribute = to_slab_attr(attr);
5496 s = to_slab(kobj);
5497
5498 if (!attribute->show)
5499 return -EIO;
5500
5501 err = attribute->show(s, buf);
5502
5503 return err;
5504}
5505
5506static ssize_t slab_attr_store(struct kobject *kobj,
5507 struct attribute *attr,
5508 const char *buf, size_t len)
5509{
5510 struct slab_attribute *attribute;
5511 struct kmem_cache *s;
5512 int err;
5513
5514 attribute = to_slab_attr(attr);
5515 s = to_slab(kobj);
5516
5517 if (!attribute->store)
5518 return -EIO;
5519
5520 err = attribute->store(s, buf, len);
127424c8 5521#ifdef CONFIG_MEMCG
107dab5c 5522 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5523 struct kmem_cache *c;
81819f0f 5524
107dab5c
GC
5525 mutex_lock(&slab_mutex);
5526 if (s->max_attr_size < len)
5527 s->max_attr_size = len;
5528
ebe945c2
GC
5529 /*
5530 * This is a best effort propagation, so this function's return
5531 * value will be determined by the parent cache only. This is
5532 * basically because not all attributes will have a well
5533 * defined semantics for rollbacks - most of the actions will
5534 * have permanent effects.
5535 *
5536 * Returning the error value of any of the children that fail
5537 * is not 100 % defined, in the sense that users seeing the
5538 * error code won't be able to know anything about the state of
5539 * the cache.
5540 *
5541 * Only returning the error code for the parent cache at least
5542 * has well defined semantics. The cache being written to
5543 * directly either failed or succeeded, in which case we loop
5544 * through the descendants with best-effort propagation.
5545 */
426589f5
VD
5546 for_each_memcg_cache(c, s)
5547 attribute->store(c, buf, len);
107dab5c
GC
5548 mutex_unlock(&slab_mutex);
5549 }
5550#endif
81819f0f
CL
5551 return err;
5552}
5553
107dab5c
GC
5554static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5555{
127424c8 5556#ifdef CONFIG_MEMCG
107dab5c
GC
5557 int i;
5558 char *buffer = NULL;
93030d83 5559 struct kmem_cache *root_cache;
107dab5c 5560
93030d83 5561 if (is_root_cache(s))
107dab5c
GC
5562 return;
5563
f7ce3190 5564 root_cache = s->memcg_params.root_cache;
93030d83 5565
107dab5c
GC
5566 /*
5567 * This mean this cache had no attribute written. Therefore, no point
5568 * in copying default values around
5569 */
93030d83 5570 if (!root_cache->max_attr_size)
107dab5c
GC
5571 return;
5572
5573 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5574 char mbuf[64];
5575 char *buf;
5576 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
478fe303 5577 ssize_t len;
107dab5c
GC
5578
5579 if (!attr || !attr->store || !attr->show)
5580 continue;
5581
5582 /*
5583 * It is really bad that we have to allocate here, so we will
5584 * do it only as a fallback. If we actually allocate, though,
5585 * we can just use the allocated buffer until the end.
5586 *
5587 * Most of the slub attributes will tend to be very small in
5588 * size, but sysfs allows buffers up to a page, so they can
5589 * theoretically happen.
5590 */
5591 if (buffer)
5592 buf = buffer;
93030d83 5593 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5594 buf = mbuf;
5595 else {
5596 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5597 if (WARN_ON(!buffer))
5598 continue;
5599 buf = buffer;
5600 }
5601
478fe303
TG
5602 len = attr->show(root_cache, buf);
5603 if (len > 0)
5604 attr->store(s, buf, len);
107dab5c
GC
5605 }
5606
5607 if (buffer)
5608 free_page((unsigned long)buffer);
6dfd1b65 5609#endif /* CONFIG_MEMCG */
107dab5c
GC
5610}
5611
41a21285
CL
5612static void kmem_cache_release(struct kobject *k)
5613{
5614 slab_kmem_cache_release(to_slab(k));
5615}
5616
52cf25d0 5617static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5618 .show = slab_attr_show,
5619 .store = slab_attr_store,
5620};
5621
5622static struct kobj_type slab_ktype = {
5623 .sysfs_ops = &slab_sysfs_ops,
41a21285 5624 .release = kmem_cache_release,
81819f0f
CL
5625};
5626
5627static int uevent_filter(struct kset *kset, struct kobject *kobj)
5628{
5629 struct kobj_type *ktype = get_ktype(kobj);
5630
5631 if (ktype == &slab_ktype)
5632 return 1;
5633 return 0;
5634}
5635
9cd43611 5636static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5637 .filter = uevent_filter,
5638};
5639
27c3a314 5640static struct kset *slab_kset;
81819f0f 5641
9a41707b
VD
5642static inline struct kset *cache_kset(struct kmem_cache *s)
5643{
127424c8 5644#ifdef CONFIG_MEMCG
9a41707b 5645 if (!is_root_cache(s))
f7ce3190 5646 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5647#endif
5648 return slab_kset;
5649}
5650
81819f0f
CL
5651#define ID_STR_LENGTH 64
5652
5653/* Create a unique string id for a slab cache:
6446faa2
CL
5654 *
5655 * Format :[flags-]size
81819f0f
CL
5656 */
5657static char *create_unique_id(struct kmem_cache *s)
5658{
5659 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5660 char *p = name;
5661
5662 BUG_ON(!name);
5663
5664 *p++ = ':';
5665 /*
5666 * First flags affecting slabcache operations. We will only
5667 * get here for aliasable slabs so we do not need to support
5668 * too many flags. The flags here must cover all flags that
5669 * are matched during merging to guarantee that the id is
5670 * unique.
5671 */
5672 if (s->flags & SLAB_CACHE_DMA)
5673 *p++ = 'd';
6d6ea1e9
NB
5674 if (s->flags & SLAB_CACHE_DMA32)
5675 *p++ = 'D';
81819f0f
CL
5676 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5677 *p++ = 'a';
becfda68 5678 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5679 *p++ = 'F';
230e9fc2
VD
5680 if (s->flags & SLAB_ACCOUNT)
5681 *p++ = 'A';
81819f0f
CL
5682 if (p != name + 1)
5683 *p++ = '-';
44065b2e 5684 p += sprintf(p, "%07u", s->size);
2633d7a0 5685
81819f0f
CL
5686 BUG_ON(p > name + ID_STR_LENGTH - 1);
5687 return name;
5688}
5689
3b7b3140
TH
5690static void sysfs_slab_remove_workfn(struct work_struct *work)
5691{
5692 struct kmem_cache *s =
5693 container_of(work, struct kmem_cache, kobj_remove_work);
5694
5695 if (!s->kobj.state_in_sysfs)
5696 /*
5697 * For a memcg cache, this may be called during
5698 * deactivation and again on shutdown. Remove only once.
5699 * A cache is never shut down before deactivation is
5700 * complete, so no need to worry about synchronization.
5701 */
f6ba4880 5702 goto out;
3b7b3140
TH
5703
5704#ifdef CONFIG_MEMCG
5705 kset_unregister(s->memcg_kset);
5706#endif
5707 kobject_uevent(&s->kobj, KOBJ_REMOVE);
f6ba4880 5708out:
3b7b3140
TH
5709 kobject_put(&s->kobj);
5710}
5711
81819f0f
CL
5712static int sysfs_slab_add(struct kmem_cache *s)
5713{
5714 int err;
5715 const char *name;
1663f26d 5716 struct kset *kset = cache_kset(s);
45530c44 5717 int unmergeable = slab_unmergeable(s);
81819f0f 5718
3b7b3140
TH
5719 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5720
1663f26d
TH
5721 if (!kset) {
5722 kobject_init(&s->kobj, &slab_ktype);
5723 return 0;
5724 }
5725
11066386
MC
5726 if (!unmergeable && disable_higher_order_debug &&
5727 (slub_debug & DEBUG_METADATA_FLAGS))
5728 unmergeable = 1;
5729
81819f0f
CL
5730 if (unmergeable) {
5731 /*
5732 * Slabcache can never be merged so we can use the name proper.
5733 * This is typically the case for debug situations. In that
5734 * case we can catch duplicate names easily.
5735 */
27c3a314 5736 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5737 name = s->name;
5738 } else {
5739 /*
5740 * Create a unique name for the slab as a target
5741 * for the symlinks.
5742 */
5743 name = create_unique_id(s);
5744 }
5745
1663f26d 5746 s->kobj.kset = kset;
26e4f205 5747 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5748 if (err)
80da026a 5749 goto out;
81819f0f
CL
5750
5751 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5752 if (err)
5753 goto out_del_kobj;
9a41707b 5754
127424c8 5755#ifdef CONFIG_MEMCG
1663f26d 5756 if (is_root_cache(s) && memcg_sysfs_enabled) {
9a41707b
VD
5757 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5758 if (!s->memcg_kset) {
54b6a731
DJ
5759 err = -ENOMEM;
5760 goto out_del_kobj;
9a41707b
VD
5761 }
5762 }
5763#endif
5764
81819f0f
CL
5765 kobject_uevent(&s->kobj, KOBJ_ADD);
5766 if (!unmergeable) {
5767 /* Setup first alias */
5768 sysfs_slab_alias(s, s->name);
81819f0f 5769 }
54b6a731
DJ
5770out:
5771 if (!unmergeable)
5772 kfree(name);
5773 return err;
5774out_del_kobj:
5775 kobject_del(&s->kobj);
54b6a731 5776 goto out;
81819f0f
CL
5777}
5778
bf5eb3de 5779static void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5780{
97d06609 5781 if (slab_state < FULL)
2bce6485
CL
5782 /*
5783 * Sysfs has not been setup yet so no need to remove the
5784 * cache from sysfs.
5785 */
5786 return;
5787
3b7b3140
TH
5788 kobject_get(&s->kobj);
5789 schedule_work(&s->kobj_remove_work);
bf5eb3de
TH
5790}
5791
d50d82fa
MP
5792void sysfs_slab_unlink(struct kmem_cache *s)
5793{
5794 if (slab_state >= FULL)
5795 kobject_del(&s->kobj);
5796}
5797
bf5eb3de
TH
5798void sysfs_slab_release(struct kmem_cache *s)
5799{
5800 if (slab_state >= FULL)
5801 kobject_put(&s->kobj);
81819f0f
CL
5802}
5803
5804/*
5805 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5806 * available lest we lose that information.
81819f0f
CL
5807 */
5808struct saved_alias {
5809 struct kmem_cache *s;
5810 const char *name;
5811 struct saved_alias *next;
5812};
5813
5af328a5 5814static struct saved_alias *alias_list;
81819f0f
CL
5815
5816static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5817{
5818 struct saved_alias *al;
5819
97d06609 5820 if (slab_state == FULL) {
81819f0f
CL
5821 /*
5822 * If we have a leftover link then remove it.
5823 */
27c3a314
GKH
5824 sysfs_remove_link(&slab_kset->kobj, name);
5825 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5826 }
5827
5828 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5829 if (!al)
5830 return -ENOMEM;
5831
5832 al->s = s;
5833 al->name = name;
5834 al->next = alias_list;
5835 alias_list = al;
5836 return 0;
5837}
5838
5839static int __init slab_sysfs_init(void)
5840{
5b95a4ac 5841 struct kmem_cache *s;
81819f0f
CL
5842 int err;
5843
18004c5d 5844 mutex_lock(&slab_mutex);
2bce6485 5845
0ff21e46 5846 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5847 if (!slab_kset) {
18004c5d 5848 mutex_unlock(&slab_mutex);
f9f58285 5849 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5850 return -ENOSYS;
5851 }
5852
97d06609 5853 slab_state = FULL;
26a7bd03 5854
5b95a4ac 5855 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5856 err = sysfs_slab_add(s);
5d540fb7 5857 if (err)
f9f58285
FF
5858 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5859 s->name);
26a7bd03 5860 }
81819f0f
CL
5861
5862 while (alias_list) {
5863 struct saved_alias *al = alias_list;
5864
5865 alias_list = alias_list->next;
5866 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5867 if (err)
f9f58285
FF
5868 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5869 al->name);
81819f0f
CL
5870 kfree(al);
5871 }
5872
18004c5d 5873 mutex_unlock(&slab_mutex);
81819f0f
CL
5874 resiliency_test();
5875 return 0;
5876}
5877
5878__initcall(slab_sysfs_init);
ab4d5ed5 5879#endif /* CONFIG_SYSFS */
57ed3eda
PE
5880
5881/*
5882 * The /proc/slabinfo ABI
5883 */
5b365771 5884#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5885void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5886{
57ed3eda 5887 unsigned long nr_slabs = 0;
205ab99d
CL
5888 unsigned long nr_objs = 0;
5889 unsigned long nr_free = 0;
57ed3eda 5890 int node;
fa45dc25 5891 struct kmem_cache_node *n;
57ed3eda 5892
fa45dc25 5893 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5894 nr_slabs += node_nr_slabs(n);
5895 nr_objs += node_nr_objs(n);
205ab99d 5896 nr_free += count_partial(n, count_free);
57ed3eda
PE
5897 }
5898
0d7561c6
GC
5899 sinfo->active_objs = nr_objs - nr_free;
5900 sinfo->num_objs = nr_objs;
5901 sinfo->active_slabs = nr_slabs;
5902 sinfo->num_slabs = nr_slabs;
5903 sinfo->objects_per_slab = oo_objects(s->oo);
5904 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5905}
5906
0d7561c6 5907void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5908{
7b3c3a50
AD
5909}
5910
b7454ad3
GC
5911ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5912 size_t count, loff_t *ppos)
7b3c3a50 5913{
b7454ad3 5914 return -EIO;
7b3c3a50 5915}
5b365771 5916#endif /* CONFIG_SLUB_DEBUG */