]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/slub.c
Merge tag 'reset-fixes-for-v5.14' of git://git.pengutronix.de/pza/linux into arm...
[mirror_ubuntu-jammy-kernel.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
dc84207d 6 * The allocator synchronizes using per slab locks or atomic operations
881db7fb 7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
1b3865d0 18#include <linux/swab.h>
81819f0f
CL
19#include <linux/bitops.h>
20#include <linux/slab.h>
97d06609 21#include "slab.h"
7b3c3a50 22#include <linux/proc_fs.h>
81819f0f 23#include <linux/seq_file.h>
a79316c6 24#include <linux/kasan.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b89fb5ef 31#include <linux/kfence.h>
b9049e23 32#include <linux/memory.h>
f8bd2258 33#include <linux/math64.h>
773ff60e 34#include <linux/fault-inject.h>
bfa71457 35#include <linux/stacktrace.h>
4de900b4 36#include <linux/prefetch.h>
2633d7a0 37#include <linux/memcontrol.h>
2482ddec 38#include <linux/random.h>
1f9f78b1 39#include <kunit/test.h>
81819f0f 40
64dd6849 41#include <linux/debugfs.h>
4a92379b
RK
42#include <trace/events/kmem.h>
43
072bb0aa
MG
44#include "internal.h"
45
81819f0f
CL
46/*
47 * Lock order:
18004c5d 48 * 1. slab_mutex (Global Mutex)
881db7fb
CL
49 * 2. node->list_lock
50 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 51 *
18004c5d 52 * slab_mutex
881db7fb 53 *
18004c5d 54 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
55 * and to synchronize major metadata changes to slab cache structures.
56 *
57 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 58 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 59 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
60 * B. page->inuse -> Number of objects in use
61 * C. page->objects -> Number of objects in page
62 * D. page->frozen -> frozen state
881db7fb
CL
63 *
64 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
65 * on any list except per cpu partial list. The processor that froze the
66 * slab is the one who can perform list operations on the page. Other
67 * processors may put objects onto the freelist but the processor that
68 * froze the slab is the only one that can retrieve the objects from the
69 * page's freelist.
81819f0f
CL
70 *
71 * The list_lock protects the partial and full list on each node and
72 * the partial slab counter. If taken then no new slabs may be added or
73 * removed from the lists nor make the number of partial slabs be modified.
74 * (Note that the total number of slabs is an atomic value that may be
75 * modified without taking the list lock).
76 *
77 * The list_lock is a centralized lock and thus we avoid taking it as
78 * much as possible. As long as SLUB does not have to handle partial
79 * slabs, operations can continue without any centralized lock. F.e.
80 * allocating a long series of objects that fill up slabs does not require
81 * the list lock.
81819f0f
CL
82 * Interrupts are disabled during allocation and deallocation in order to
83 * make the slab allocator safe to use in the context of an irq. In addition
84 * interrupts are disabled to ensure that the processor does not change
85 * while handling per_cpu slabs, due to kernel preemption.
86 *
87 * SLUB assigns one slab for allocation to each processor.
88 * Allocations only occur from these slabs called cpu slabs.
89 *
672bba3a
CL
90 * Slabs with free elements are kept on a partial list and during regular
91 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 92 * freed then the slab will show up again on the partial lists.
672bba3a
CL
93 * We track full slabs for debugging purposes though because otherwise we
94 * cannot scan all objects.
81819f0f
CL
95 *
96 * Slabs are freed when they become empty. Teardown and setup is
97 * minimal so we rely on the page allocators per cpu caches for
98 * fast frees and allocs.
99 *
aed68148 100 * page->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
101 * This means that the slab is dedicated to a purpose
102 * such as satisfying allocations for a specific
103 * processor. Objects may be freed in the slab while
104 * it is frozen but slab_free will then skip the usual
105 * list operations. It is up to the processor holding
106 * the slab to integrate the slab into the slab lists
107 * when the slab is no longer needed.
108 *
109 * One use of this flag is to mark slabs that are
110 * used for allocations. Then such a slab becomes a cpu
111 * slab. The cpu slab may be equipped with an additional
dfb4f096 112 * freelist that allows lockless access to
894b8788
CL
113 * free objects in addition to the regular freelist
114 * that requires the slab lock.
81819f0f 115 *
aed68148 116 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 117 * options set. This moves slab handling out of
894b8788 118 * the fast path and disables lockless freelists.
81819f0f
CL
119 */
120
ca0cab65
VB
121#ifdef CONFIG_SLUB_DEBUG
122#ifdef CONFIG_SLUB_DEBUG_ON
123DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
124#else
125DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
126#endif
79270291 127#endif /* CONFIG_SLUB_DEBUG */
ca0cab65 128
59052e89
VB
129static inline bool kmem_cache_debug(struct kmem_cache *s)
130{
131 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 132}
5577bd8a 133
117d54df 134void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 135{
59052e89 136 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
137 p += s->red_left_pad;
138
139 return p;
140}
141
345c905d
JK
142static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
143{
144#ifdef CONFIG_SLUB_CPU_PARTIAL
145 return !kmem_cache_debug(s);
146#else
147 return false;
148#endif
149}
150
81819f0f
CL
151/*
152 * Issues still to be resolved:
153 *
81819f0f
CL
154 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
155 *
81819f0f
CL
156 * - Variable sizing of the per node arrays
157 */
158
b789ef51
CL
159/* Enable to log cmpxchg failures */
160#undef SLUB_DEBUG_CMPXCHG
161
2086d26a 162/*
dc84207d 163 * Minimum number of partial slabs. These will be left on the partial
2086d26a
CL
164 * lists even if they are empty. kmem_cache_shrink may reclaim them.
165 */
76be8950 166#define MIN_PARTIAL 5
e95eed57 167
2086d26a
CL
168/*
169 * Maximum number of desirable partial slabs.
170 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 171 * sort the partial list by the number of objects in use.
2086d26a
CL
172 */
173#define MAX_PARTIAL 10
174
becfda68 175#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 176 SLAB_POISON | SLAB_STORE_USER)
672bba3a 177
149daaf3
LA
178/*
179 * These debug flags cannot use CMPXCHG because there might be consistency
180 * issues when checking or reading debug information
181 */
182#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
183 SLAB_TRACE)
184
185
fa5ec8a1 186/*
3de47213
DR
187 * Debugging flags that require metadata to be stored in the slab. These get
188 * disabled when slub_debug=O is used and a cache's min order increases with
189 * metadata.
fa5ec8a1 190 */
3de47213 191#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 192
210b5c06
CG
193#define OO_SHIFT 16
194#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 195#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 196
81819f0f 197/* Internal SLUB flags */
d50112ed 198/* Poison object */
4fd0b46e 199#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 200/* Use cmpxchg_double */
4fd0b46e 201#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 202
02cbc874
CL
203/*
204 * Tracking user of a slab.
205 */
d6543e39 206#define TRACK_ADDRS_COUNT 16
02cbc874 207struct track {
ce71e27c 208 unsigned long addr; /* Called from address */
ae14c63a
LT
209#ifdef CONFIG_STACKTRACE
210 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
d6543e39 211#endif
02cbc874
CL
212 int cpu; /* Was running on cpu */
213 int pid; /* Pid context */
214 unsigned long when; /* When did the operation occur */
215};
216
217enum track_item { TRACK_ALLOC, TRACK_FREE };
218
ab4d5ed5 219#ifdef CONFIG_SYSFS
81819f0f
CL
220static int sysfs_slab_add(struct kmem_cache *);
221static int sysfs_slab_alias(struct kmem_cache *, const char *);
81819f0f 222#else
0c710013
CL
223static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
224static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
225 { return 0; }
81819f0f
CL
226#endif
227
64dd6849
FM
228#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
229static void debugfs_slab_add(struct kmem_cache *);
230#else
231static inline void debugfs_slab_add(struct kmem_cache *s) { }
232#endif
233
4fdccdfb 234static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
235{
236#ifdef CONFIG_SLUB_STATS
88da03a6
CL
237 /*
238 * The rmw is racy on a preemptible kernel but this is acceptable, so
239 * avoid this_cpu_add()'s irq-disable overhead.
240 */
241 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
242#endif
243}
244
7e1fa93d
VB
245/*
246 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
247 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
248 * differ during memory hotplug/hotremove operations.
249 * Protected by slab_mutex.
250 */
251static nodemask_t slab_nodes;
252
81819f0f
CL
253/********************************************************************
254 * Core slab cache functions
255 *******************************************************************/
256
2482ddec
KC
257/*
258 * Returns freelist pointer (ptr). With hardening, this is obfuscated
259 * with an XOR of the address where the pointer is held and a per-cache
260 * random number.
261 */
262static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
263 unsigned long ptr_addr)
264{
265#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9 266 /*
aa1ef4d7 267 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
d36a63a9
AK
268 * Normally, this doesn't cause any issues, as both set_freepointer()
269 * and get_freepointer() are called with a pointer with the same tag.
270 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
271 * example, when __free_slub() iterates over objects in a cache, it
272 * passes untagged pointers to check_object(). check_object() in turns
273 * calls get_freepointer() with an untagged pointer, which causes the
274 * freepointer to be restored incorrectly.
275 */
276 return (void *)((unsigned long)ptr ^ s->random ^
1ad53d9f 277 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
278#else
279 return ptr;
280#endif
281}
282
283/* Returns the freelist pointer recorded at location ptr_addr. */
284static inline void *freelist_dereference(const struct kmem_cache *s,
285 void *ptr_addr)
286{
287 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
288 (unsigned long)ptr_addr);
289}
290
7656c72b
CL
291static inline void *get_freepointer(struct kmem_cache *s, void *object)
292{
aa1ef4d7 293 object = kasan_reset_tag(object);
2482ddec 294 return freelist_dereference(s, object + s->offset);
7656c72b
CL
295}
296
0ad9500e
ED
297static void prefetch_freepointer(const struct kmem_cache *s, void *object)
298{
0882ff91 299 prefetch(object + s->offset);
0ad9500e
ED
300}
301
1393d9a1
CL
302static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
303{
2482ddec 304 unsigned long freepointer_addr;
1393d9a1
CL
305 void *p;
306
8e57f8ac 307 if (!debug_pagealloc_enabled_static())
922d566c
JK
308 return get_freepointer(s, object);
309
f70b0049 310 object = kasan_reset_tag(object);
2482ddec 311 freepointer_addr = (unsigned long)object + s->offset;
fe557319 312 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
2482ddec 313 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
314}
315
7656c72b
CL
316static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
317{
2482ddec
KC
318 unsigned long freeptr_addr = (unsigned long)object + s->offset;
319
ce6fa91b
AP
320#ifdef CONFIG_SLAB_FREELIST_HARDENED
321 BUG_ON(object == fp); /* naive detection of double free or corruption */
322#endif
323
aa1ef4d7 324 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
2482ddec 325 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
326}
327
328/* Loop over all objects in a slab */
224a88be 329#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
330 for (__p = fixup_red_left(__s, __addr); \
331 __p < (__addr) + (__objects) * (__s)->size; \
332 __p += (__s)->size)
7656c72b 333
9736d2a9 334static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 335{
9736d2a9 336 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
337}
338
19af27af 339static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 340 unsigned int size)
834f3d11
CL
341{
342 struct kmem_cache_order_objects x = {
9736d2a9 343 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
344 };
345
346 return x;
347}
348
19af27af 349static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 350{
210b5c06 351 return x.x >> OO_SHIFT;
834f3d11
CL
352}
353
19af27af 354static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 355{
210b5c06 356 return x.x & OO_MASK;
834f3d11
CL
357}
358
881db7fb
CL
359/*
360 * Per slab locking using the pagelock
361 */
362static __always_inline void slab_lock(struct page *page)
363{
48c935ad 364 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
365 bit_spin_lock(PG_locked, &page->flags);
366}
367
368static __always_inline void slab_unlock(struct page *page)
369{
48c935ad 370 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
371 __bit_spin_unlock(PG_locked, &page->flags);
372}
373
1d07171c
CL
374/* Interrupts must be disabled (for the fallback code to work right) */
375static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
378 const char *n)
379{
380 VM_BUG_ON(!irqs_disabled());
2565409f
HC
381#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 383 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 384 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
385 freelist_old, counters_old,
386 freelist_new, counters_new))
6f6528a1 387 return true;
1d07171c
CL
388 } else
389#endif
390 {
391 slab_lock(page);
d0e0ac97
CG
392 if (page->freelist == freelist_old &&
393 page->counters == counters_old) {
1d07171c 394 page->freelist = freelist_new;
7d27a04b 395 page->counters = counters_new;
1d07171c 396 slab_unlock(page);
6f6528a1 397 return true;
1d07171c
CL
398 }
399 slab_unlock(page);
400 }
401
402 cpu_relax();
403 stat(s, CMPXCHG_DOUBLE_FAIL);
404
405#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 406 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
407#endif
408
6f6528a1 409 return false;
1d07171c
CL
410}
411
b789ef51
CL
412static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 void *freelist_old, unsigned long counters_old,
414 void *freelist_new, unsigned long counters_new,
415 const char *n)
416{
2565409f
HC
417#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 419 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 420 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
421 freelist_old, counters_old,
422 freelist_new, counters_new))
6f6528a1 423 return true;
b789ef51
CL
424 } else
425#endif
426 {
1d07171c
CL
427 unsigned long flags;
428
429 local_irq_save(flags);
881db7fb 430 slab_lock(page);
d0e0ac97
CG
431 if (page->freelist == freelist_old &&
432 page->counters == counters_old) {
b789ef51 433 page->freelist = freelist_new;
7d27a04b 434 page->counters = counters_new;
881db7fb 435 slab_unlock(page);
1d07171c 436 local_irq_restore(flags);
6f6528a1 437 return true;
b789ef51 438 }
881db7fb 439 slab_unlock(page);
1d07171c 440 local_irq_restore(flags);
b789ef51
CL
441 }
442
443 cpu_relax();
444 stat(s, CMPXCHG_DOUBLE_FAIL);
445
446#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 447 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
448#endif
449
6f6528a1 450 return false;
b789ef51
CL
451}
452
41ecc55b 453#ifdef CONFIG_SLUB_DEBUG
90e9f6a6
YZ
454static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
455static DEFINE_SPINLOCK(object_map_lock);
456
1f9f78b1
OG
457#if IS_ENABLED(CONFIG_KUNIT)
458static bool slab_add_kunit_errors(void)
459{
460 struct kunit_resource *resource;
461
462 if (likely(!current->kunit_test))
463 return false;
464
465 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
466 if (!resource)
467 return false;
468
469 (*(int *)resource->data)++;
470 kunit_put_resource(resource);
471 return true;
472}
473#else
474static inline bool slab_add_kunit_errors(void) { return false; }
475#endif
476
5f80b13a
CL
477/*
478 * Determine a map of object in use on a page.
479 *
881db7fb 480 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
481 * not vanish from under us.
482 */
90e9f6a6 483static unsigned long *get_map(struct kmem_cache *s, struct page *page)
31364c2e 484 __acquires(&object_map_lock)
5f80b13a
CL
485{
486 void *p;
487 void *addr = page_address(page);
488
90e9f6a6
YZ
489 VM_BUG_ON(!irqs_disabled());
490
491 spin_lock(&object_map_lock);
492
493 bitmap_zero(object_map, page->objects);
494
5f80b13a 495 for (p = page->freelist; p; p = get_freepointer(s, p))
4138fdfc 496 set_bit(__obj_to_index(s, addr, p), object_map);
90e9f6a6
YZ
497
498 return object_map;
499}
500
81aba9e0 501static void put_map(unsigned long *map) __releases(&object_map_lock)
90e9f6a6
YZ
502{
503 VM_BUG_ON(map != object_map);
90e9f6a6 504 spin_unlock(&object_map_lock);
5f80b13a
CL
505}
506
870b1fbb 507static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
508{
509 if (s->flags & SLAB_RED_ZONE)
510 return s->size - s->red_left_pad;
511
512 return s->size;
513}
514
515static inline void *restore_red_left(struct kmem_cache *s, void *p)
516{
517 if (s->flags & SLAB_RED_ZONE)
518 p -= s->red_left_pad;
519
520 return p;
521}
522
41ecc55b
CL
523/*
524 * Debug settings:
525 */
89d3c87e 526#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 527static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 528#else
d50112ed 529static slab_flags_t slub_debug;
f0630fff 530#endif
41ecc55b 531
e17f1dfb 532static char *slub_debug_string;
fa5ec8a1 533static int disable_higher_order_debug;
41ecc55b 534
a79316c6
AR
535/*
536 * slub is about to manipulate internal object metadata. This memory lies
537 * outside the range of the allocated object, so accessing it would normally
538 * be reported by kasan as a bounds error. metadata_access_enable() is used
539 * to tell kasan that these accesses are OK.
540 */
541static inline void metadata_access_enable(void)
542{
543 kasan_disable_current();
544}
545
546static inline void metadata_access_disable(void)
547{
548 kasan_enable_current();
549}
550
81819f0f
CL
551/*
552 * Object debugging
553 */
d86bd1be
JK
554
555/* Verify that a pointer has an address that is valid within a slab page */
556static inline int check_valid_pointer(struct kmem_cache *s,
557 struct page *page, void *object)
558{
559 void *base;
560
561 if (!object)
562 return 1;
563
564 base = page_address(page);
338cfaad 565 object = kasan_reset_tag(object);
d86bd1be
JK
566 object = restore_red_left(s, object);
567 if (object < base || object >= base + page->objects * s->size ||
568 (object - base) % s->size) {
569 return 0;
570 }
571
572 return 1;
573}
574
aa2efd5e
DT
575static void print_section(char *level, char *text, u8 *addr,
576 unsigned int length)
81819f0f 577{
a79316c6 578 metadata_access_enable();
340caf17
KYL
579 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
580 16, 1, kasan_reset_tag((void *)addr), length, 1);
a79316c6 581 metadata_access_disable();
81819f0f
CL
582}
583
cbfc35a4
WL
584/*
585 * See comment in calculate_sizes().
586 */
587static inline bool freeptr_outside_object(struct kmem_cache *s)
588{
589 return s->offset >= s->inuse;
590}
591
592/*
593 * Return offset of the end of info block which is inuse + free pointer if
594 * not overlapping with object.
595 */
596static inline unsigned int get_info_end(struct kmem_cache *s)
597{
598 if (freeptr_outside_object(s))
599 return s->inuse + sizeof(void *);
600 else
601 return s->inuse;
602}
603
81819f0f
CL
604static struct track *get_track(struct kmem_cache *s, void *object,
605 enum track_item alloc)
606{
607 struct track *p;
608
cbfc35a4 609 p = object + get_info_end(s);
81819f0f 610
aa1ef4d7 611 return kasan_reset_tag(p + alloc);
81819f0f
CL
612}
613
614static void set_track(struct kmem_cache *s, void *object,
ce71e27c 615 enum track_item alloc, unsigned long addr)
81819f0f 616{
1a00df4a 617 struct track *p = get_track(s, object, alloc);
81819f0f 618
81819f0f 619 if (addr) {
ae14c63a
LT
620#ifdef CONFIG_STACKTRACE
621 unsigned int nr_entries;
622
623 metadata_access_enable();
624 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
625 TRACK_ADDRS_COUNT, 3);
626 metadata_access_disable();
627
628 if (nr_entries < TRACK_ADDRS_COUNT)
629 p->addrs[nr_entries] = 0;
d6543e39 630#endif
81819f0f
CL
631 p->addr = addr;
632 p->cpu = smp_processor_id();
88e4ccf2 633 p->pid = current->pid;
81819f0f 634 p->when = jiffies;
b8ca7ff7 635 } else {
81819f0f 636 memset(p, 0, sizeof(struct track));
b8ca7ff7 637 }
81819f0f
CL
638}
639
81819f0f
CL
640static void init_tracking(struct kmem_cache *s, void *object)
641{
24922684
CL
642 if (!(s->flags & SLAB_STORE_USER))
643 return;
644
ce71e27c
EGM
645 set_track(s, object, TRACK_FREE, 0UL);
646 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
647}
648
86609d33 649static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
650{
651 if (!t->addr)
652 return;
653
96b94abc 654 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 655 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
ae14c63a 656#ifdef CONFIG_STACKTRACE
d6543e39 657 {
ae14c63a
LT
658 int i;
659 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
660 if (t->addrs[i])
661 pr_err("\t%pS\n", (void *)t->addrs[i]);
662 else
663 break;
d6543e39
BG
664 }
665#endif
24922684
CL
666}
667
e42f174e 668void print_tracking(struct kmem_cache *s, void *object)
24922684 669{
86609d33 670 unsigned long pr_time = jiffies;
24922684
CL
671 if (!(s->flags & SLAB_STORE_USER))
672 return;
673
86609d33
CP
674 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
675 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
676}
677
678static void print_page_info(struct page *page)
679{
96b94abc 680 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n",
4a8ef190
YS
681 page, page->objects, page->inuse, page->freelist,
682 page->flags, &page->flags);
24922684
CL
683
684}
685
686static void slab_bug(struct kmem_cache *s, char *fmt, ...)
687{
ecc42fbe 688 struct va_format vaf;
24922684 689 va_list args;
24922684
CL
690
691 va_start(args, fmt);
ecc42fbe
FF
692 vaf.fmt = fmt;
693 vaf.va = &args;
f9f58285 694 pr_err("=============================================================================\n");
ecc42fbe 695 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 696 pr_err("-----------------------------------------------------------------------------\n\n");
ecc42fbe 697 va_end(args);
81819f0f
CL
698}
699
582d1212 700__printf(2, 3)
24922684
CL
701static void slab_fix(struct kmem_cache *s, char *fmt, ...)
702{
ecc42fbe 703 struct va_format vaf;
24922684 704 va_list args;
24922684 705
1f9f78b1
OG
706 if (slab_add_kunit_errors())
707 return;
708
24922684 709 va_start(args, fmt);
ecc42fbe
FF
710 vaf.fmt = fmt;
711 vaf.va = &args;
712 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 713 va_end(args);
24922684
CL
714}
715
52f23478 716static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 717 void **freelist, void *nextfree)
52f23478
DZ
718{
719 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
dc07a728
ER
720 !check_valid_pointer(s, page, nextfree) && freelist) {
721 object_err(s, page, *freelist, "Freechain corrupt");
722 *freelist = NULL;
52f23478
DZ
723 slab_fix(s, "Isolate corrupted freechain");
724 return true;
725 }
726
727 return false;
728}
729
24922684 730static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
731{
732 unsigned int off; /* Offset of last byte */
a973e9dd 733 u8 *addr = page_address(page);
24922684
CL
734
735 print_tracking(s, p);
736
737 print_page_info(page);
738
96b94abc 739 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
f9f58285 740 p, p - addr, get_freepointer(s, p));
24922684 741
d86bd1be 742 if (s->flags & SLAB_RED_ZONE)
8669dbab 743 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
aa2efd5e 744 s->red_left_pad);
d86bd1be 745 else if (p > addr + 16)
aa2efd5e 746 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 747
8669dbab 748 print_section(KERN_ERR, "Object ", p,
1b473f29 749 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 750 if (s->flags & SLAB_RED_ZONE)
8669dbab 751 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 752 s->inuse - s->object_size);
81819f0f 753
cbfc35a4 754 off = get_info_end(s);
81819f0f 755
24922684 756 if (s->flags & SLAB_STORE_USER)
81819f0f 757 off += 2 * sizeof(struct track);
81819f0f 758
80a9201a
AP
759 off += kasan_metadata_size(s);
760
d86bd1be 761 if (off != size_from_object(s))
81819f0f 762 /* Beginning of the filler is the free pointer */
8669dbab 763 print_section(KERN_ERR, "Padding ", p + off,
aa2efd5e 764 size_from_object(s) - off);
24922684
CL
765
766 dump_stack();
81819f0f
CL
767}
768
75c66def 769void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
770 u8 *object, char *reason)
771{
1f9f78b1
OG
772 if (slab_add_kunit_errors())
773 return;
774
3dc50637 775 slab_bug(s, "%s", reason);
24922684 776 print_trailer(s, page, object);
65ebdeef 777 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
778}
779
a38965bf 780static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 781 const char *fmt, ...)
81819f0f
CL
782{
783 va_list args;
784 char buf[100];
785
1f9f78b1
OG
786 if (slab_add_kunit_errors())
787 return;
788
24922684
CL
789 va_start(args, fmt);
790 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 791 va_end(args);
3dc50637 792 slab_bug(s, "%s", buf);
24922684 793 print_page_info(page);
81819f0f 794 dump_stack();
65ebdeef 795 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
796}
797
f7cb1933 798static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f 799{
aa1ef4d7 800 u8 *p = kasan_reset_tag(object);
81819f0f 801
d86bd1be
JK
802 if (s->flags & SLAB_RED_ZONE)
803 memset(p - s->red_left_pad, val, s->red_left_pad);
804
81819f0f 805 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
806 memset(p, POISON_FREE, s->object_size - 1);
807 p[s->object_size - 1] = POISON_END;
81819f0f
CL
808 }
809
810 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 811 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
812}
813
24922684
CL
814static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
815 void *from, void *to)
816{
582d1212 817 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
24922684
CL
818 memset(from, data, to - from);
819}
820
821static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
822 u8 *object, char *what,
06428780 823 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
824{
825 u8 *fault;
826 u8 *end;
e1b70dd1 827 u8 *addr = page_address(page);
24922684 828
a79316c6 829 metadata_access_enable();
aa1ef4d7 830 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
a79316c6 831 metadata_access_disable();
24922684
CL
832 if (!fault)
833 return 1;
834
835 end = start + bytes;
836 while (end > fault && end[-1] == value)
837 end--;
838
1f9f78b1
OG
839 if (slab_add_kunit_errors())
840 goto skip_bug_print;
841
24922684 842 slab_bug(s, "%s overwritten", what);
96b94abc 843 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
e1b70dd1
MC
844 fault, end - 1, fault - addr,
845 fault[0], value);
24922684 846 print_trailer(s, page, object);
65ebdeef 847 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
24922684 848
1f9f78b1 849skip_bug_print:
24922684
CL
850 restore_bytes(s, what, value, fault, end);
851 return 0;
81819f0f
CL
852}
853
81819f0f
CL
854/*
855 * Object layout:
856 *
857 * object address
858 * Bytes of the object to be managed.
859 * If the freepointer may overlay the object then the free
cbfc35a4 860 * pointer is at the middle of the object.
672bba3a 861 *
81819f0f
CL
862 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
863 * 0xa5 (POISON_END)
864 *
3b0efdfa 865 * object + s->object_size
81819f0f 866 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 867 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 868 * object_size == inuse.
672bba3a 869 *
81819f0f
CL
870 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
871 * 0xcc (RED_ACTIVE) for objects in use.
872 *
873 * object + s->inuse
672bba3a
CL
874 * Meta data starts here.
875 *
81819f0f
CL
876 * A. Free pointer (if we cannot overwrite object on free)
877 * B. Tracking data for SLAB_STORE_USER
dc84207d 878 * C. Padding to reach required alignment boundary or at minimum
6446faa2 879 * one word if debugging is on to be able to detect writes
672bba3a
CL
880 * before the word boundary.
881 *
882 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
883 *
884 * object + s->size
672bba3a 885 * Nothing is used beyond s->size.
81819f0f 886 *
3b0efdfa 887 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 888 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
889 * may be used with merged slabcaches.
890 */
891
81819f0f
CL
892static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
893{
cbfc35a4 894 unsigned long off = get_info_end(s); /* The end of info */
81819f0f
CL
895
896 if (s->flags & SLAB_STORE_USER)
897 /* We also have user information there */
898 off += 2 * sizeof(struct track);
899
80a9201a
AP
900 off += kasan_metadata_size(s);
901
d86bd1be 902 if (size_from_object(s) == off)
81819f0f
CL
903 return 1;
904
24922684 905 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 906 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
907}
908
39b26464 909/* Check the pad bytes at the end of a slab page */
81819f0f
CL
910static int slab_pad_check(struct kmem_cache *s, struct page *page)
911{
24922684
CL
912 u8 *start;
913 u8 *fault;
914 u8 *end;
5d682681 915 u8 *pad;
24922684
CL
916 int length;
917 int remainder;
81819f0f
CL
918
919 if (!(s->flags & SLAB_POISON))
920 return 1;
921
a973e9dd 922 start = page_address(page);
a50b854e 923 length = page_size(page);
39b26464
CL
924 end = start + length;
925 remainder = length % s->size;
81819f0f
CL
926 if (!remainder)
927 return 1;
928
5d682681 929 pad = end - remainder;
a79316c6 930 metadata_access_enable();
aa1ef4d7 931 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
a79316c6 932 metadata_access_disable();
24922684
CL
933 if (!fault)
934 return 1;
935 while (end > fault && end[-1] == POISON_INUSE)
936 end--;
937
e1b70dd1
MC
938 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
939 fault, end - 1, fault - start);
5d682681 940 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 941
5d682681 942 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 943 return 0;
81819f0f
CL
944}
945
946static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 947 void *object, u8 val)
81819f0f
CL
948{
949 u8 *p = object;
3b0efdfa 950 u8 *endobject = object + s->object_size;
81819f0f
CL
951
952 if (s->flags & SLAB_RED_ZONE) {
8669dbab 953 if (!check_bytes_and_report(s, page, object, "Left Redzone",
d86bd1be
JK
954 object - s->red_left_pad, val, s->red_left_pad))
955 return 0;
956
8669dbab 957 if (!check_bytes_and_report(s, page, object, "Right Redzone",
3b0efdfa 958 endobject, val, s->inuse - s->object_size))
81819f0f 959 return 0;
81819f0f 960 } else {
3b0efdfa 961 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 962 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
963 endobject, POISON_INUSE,
964 s->inuse - s->object_size);
3adbefee 965 }
81819f0f
CL
966 }
967
968 if (s->flags & SLAB_POISON) {
f7cb1933 969 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 970 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 971 POISON_FREE, s->object_size - 1) ||
8669dbab 972 !check_bytes_and_report(s, page, p, "End Poison",
3b0efdfa 973 p + s->object_size - 1, POISON_END, 1)))
81819f0f 974 return 0;
81819f0f
CL
975 /*
976 * check_pad_bytes cleans up on its own.
977 */
978 check_pad_bytes(s, page, p);
979 }
980
cbfc35a4 981 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
982 /*
983 * Object and freepointer overlap. Cannot check
984 * freepointer while object is allocated.
985 */
986 return 1;
987
988 /* Check free pointer validity */
989 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
990 object_err(s, page, p, "Freepointer corrupt");
991 /*
9f6c708e 992 * No choice but to zap it and thus lose the remainder
81819f0f 993 * of the free objects in this slab. May cause
672bba3a 994 * another error because the object count is now wrong.
81819f0f 995 */
a973e9dd 996 set_freepointer(s, p, NULL);
81819f0f
CL
997 return 0;
998 }
999 return 1;
1000}
1001
1002static int check_slab(struct kmem_cache *s, struct page *page)
1003{
39b26464
CL
1004 int maxobj;
1005
81819f0f
CL
1006 VM_BUG_ON(!irqs_disabled());
1007
1008 if (!PageSlab(page)) {
24922684 1009 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
1010 return 0;
1011 }
39b26464 1012
9736d2a9 1013 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
1014 if (page->objects > maxobj) {
1015 slab_err(s, page, "objects %u > max %u",
f6edde9c 1016 page->objects, maxobj);
39b26464
CL
1017 return 0;
1018 }
1019 if (page->inuse > page->objects) {
24922684 1020 slab_err(s, page, "inuse %u > max %u",
f6edde9c 1021 page->inuse, page->objects);
81819f0f
CL
1022 return 0;
1023 }
1024 /* Slab_pad_check fixes things up after itself */
1025 slab_pad_check(s, page);
1026 return 1;
1027}
1028
1029/*
672bba3a
CL
1030 * Determine if a certain object on a page is on the freelist. Must hold the
1031 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
1032 */
1033static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
1034{
1035 int nr = 0;
881db7fb 1036 void *fp;
81819f0f 1037 void *object = NULL;
f6edde9c 1038 int max_objects;
81819f0f 1039
881db7fb 1040 fp = page->freelist;
39b26464 1041 while (fp && nr <= page->objects) {
81819f0f
CL
1042 if (fp == search)
1043 return 1;
1044 if (!check_valid_pointer(s, page, fp)) {
1045 if (object) {
1046 object_err(s, page, object,
1047 "Freechain corrupt");
a973e9dd 1048 set_freepointer(s, object, NULL);
81819f0f 1049 } else {
24922684 1050 slab_err(s, page, "Freepointer corrupt");
a973e9dd 1051 page->freelist = NULL;
39b26464 1052 page->inuse = page->objects;
24922684 1053 slab_fix(s, "Freelist cleared");
81819f0f
CL
1054 return 0;
1055 }
1056 break;
1057 }
1058 object = fp;
1059 fp = get_freepointer(s, object);
1060 nr++;
1061 }
1062
9736d2a9 1063 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
1064 if (max_objects > MAX_OBJS_PER_PAGE)
1065 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
1066
1067 if (page->objects != max_objects) {
756a025f
JP
1068 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1069 page->objects, max_objects);
224a88be 1070 page->objects = max_objects;
582d1212 1071 slab_fix(s, "Number of objects adjusted");
224a88be 1072 }
39b26464 1073 if (page->inuse != page->objects - nr) {
756a025f
JP
1074 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1075 page->inuse, page->objects - nr);
39b26464 1076 page->inuse = page->objects - nr;
582d1212 1077 slab_fix(s, "Object count adjusted");
81819f0f
CL
1078 }
1079 return search == NULL;
1080}
1081
0121c619
CL
1082static void trace(struct kmem_cache *s, struct page *page, void *object,
1083 int alloc)
3ec09742
CL
1084{
1085 if (s->flags & SLAB_TRACE) {
f9f58285 1086 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1087 s->name,
1088 alloc ? "alloc" : "free",
1089 object, page->inuse,
1090 page->freelist);
1091
1092 if (!alloc)
aa2efd5e 1093 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1094 s->object_size);
3ec09742
CL
1095
1096 dump_stack();
1097 }
1098}
1099
643b1138 1100/*
672bba3a 1101 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1102 */
5cc6eee8
CL
1103static void add_full(struct kmem_cache *s,
1104 struct kmem_cache_node *n, struct page *page)
643b1138 1105{
5cc6eee8
CL
1106 if (!(s->flags & SLAB_STORE_USER))
1107 return;
1108
255d0884 1109 lockdep_assert_held(&n->list_lock);
916ac052 1110 list_add(&page->slab_list, &n->full);
643b1138
CL
1111}
1112
c65c1877 1113static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1114{
643b1138
CL
1115 if (!(s->flags & SLAB_STORE_USER))
1116 return;
1117
255d0884 1118 lockdep_assert_held(&n->list_lock);
916ac052 1119 list_del(&page->slab_list);
643b1138
CL
1120}
1121
0f389ec6
CL
1122/* Tracking of the number of slabs for debugging purposes */
1123static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1124{
1125 struct kmem_cache_node *n = get_node(s, node);
1126
1127 return atomic_long_read(&n->nr_slabs);
1128}
1129
26c02cf0
AB
1130static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1131{
1132 return atomic_long_read(&n->nr_slabs);
1133}
1134
205ab99d 1135static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1136{
1137 struct kmem_cache_node *n = get_node(s, node);
1138
1139 /*
1140 * May be called early in order to allocate a slab for the
1141 * kmem_cache_node structure. Solve the chicken-egg
1142 * dilemma by deferring the increment of the count during
1143 * bootstrap (see early_kmem_cache_node_alloc).
1144 */
338b2642 1145 if (likely(n)) {
0f389ec6 1146 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1147 atomic_long_add(objects, &n->total_objects);
1148 }
0f389ec6 1149}
205ab99d 1150static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1151{
1152 struct kmem_cache_node *n = get_node(s, node);
1153
1154 atomic_long_dec(&n->nr_slabs);
205ab99d 1155 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1156}
1157
1158/* Object debug checks for alloc/free paths */
3ec09742
CL
1159static void setup_object_debug(struct kmem_cache *s, struct page *page,
1160 void *object)
1161{
8fc8d666 1162 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1163 return;
1164
f7cb1933 1165 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1166 init_tracking(s, object);
1167}
1168
a50b854e
MWO
1169static
1170void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
a7101224 1171{
8fc8d666 1172 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1173 return;
1174
1175 metadata_access_enable();
aa1ef4d7 1176 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
a7101224
AK
1177 metadata_access_disable();
1178}
1179
becfda68 1180static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1181 struct page *page, void *object)
81819f0f
CL
1182{
1183 if (!check_slab(s, page))
becfda68 1184 return 0;
81819f0f 1185
81819f0f
CL
1186 if (!check_valid_pointer(s, page, object)) {
1187 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1188 return 0;
81819f0f
CL
1189 }
1190
f7cb1933 1191 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1192 return 0;
1193
1194 return 1;
1195}
1196
1197static noinline int alloc_debug_processing(struct kmem_cache *s,
1198 struct page *page,
1199 void *object, unsigned long addr)
1200{
1201 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1202 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1203 goto bad;
1204 }
81819f0f 1205
3ec09742
CL
1206 /* Success perform special debug activities for allocs */
1207 if (s->flags & SLAB_STORE_USER)
1208 set_track(s, object, TRACK_ALLOC, addr);
1209 trace(s, page, object, 1);
f7cb1933 1210 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1211 return 1;
3ec09742 1212
81819f0f
CL
1213bad:
1214 if (PageSlab(page)) {
1215 /*
1216 * If this is a slab page then lets do the best we can
1217 * to avoid issues in the future. Marking all objects
672bba3a 1218 * as used avoids touching the remaining objects.
81819f0f 1219 */
24922684 1220 slab_fix(s, "Marking all objects used");
39b26464 1221 page->inuse = page->objects;
a973e9dd 1222 page->freelist = NULL;
81819f0f
CL
1223 }
1224 return 0;
1225}
1226
becfda68
LA
1227static inline int free_consistency_checks(struct kmem_cache *s,
1228 struct page *page, void *object, unsigned long addr)
81819f0f 1229{
81819f0f 1230 if (!check_valid_pointer(s, page, object)) {
70d71228 1231 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1232 return 0;
81819f0f
CL
1233 }
1234
1235 if (on_freelist(s, page, object)) {
24922684 1236 object_err(s, page, object, "Object already free");
becfda68 1237 return 0;
81819f0f
CL
1238 }
1239
f7cb1933 1240 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1241 return 0;
81819f0f 1242
1b4f59e3 1243 if (unlikely(s != page->slab_cache)) {
3adbefee 1244 if (!PageSlab(page)) {
756a025f
JP
1245 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1246 object);
1b4f59e3 1247 } else if (!page->slab_cache) {
f9f58285
FF
1248 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1249 object);
70d71228 1250 dump_stack();
06428780 1251 } else
24922684
CL
1252 object_err(s, page, object,
1253 "page slab pointer corrupt.");
becfda68
LA
1254 return 0;
1255 }
1256 return 1;
1257}
1258
1259/* Supports checking bulk free of a constructed freelist */
1260static noinline int free_debug_processing(
1261 struct kmem_cache *s, struct page *page,
1262 void *head, void *tail, int bulk_cnt,
1263 unsigned long addr)
1264{
1265 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1266 void *object = head;
1267 int cnt = 0;
3f649ab7 1268 unsigned long flags;
becfda68
LA
1269 int ret = 0;
1270
1271 spin_lock_irqsave(&n->list_lock, flags);
1272 slab_lock(page);
1273
1274 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1275 if (!check_slab(s, page))
1276 goto out;
1277 }
1278
1279next_object:
1280 cnt++;
1281
1282 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1283 if (!free_consistency_checks(s, page, object, addr))
1284 goto out;
81819f0f 1285 }
3ec09742 1286
3ec09742
CL
1287 if (s->flags & SLAB_STORE_USER)
1288 set_track(s, object, TRACK_FREE, addr);
1289 trace(s, page, object, 0);
81084651 1290 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1291 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1292
1293 /* Reached end of constructed freelist yet? */
1294 if (object != tail) {
1295 object = get_freepointer(s, object);
1296 goto next_object;
1297 }
804aa132
LA
1298 ret = 1;
1299
5c2e4bbb 1300out:
81084651
JDB
1301 if (cnt != bulk_cnt)
1302 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1303 bulk_cnt, cnt);
1304
881db7fb 1305 slab_unlock(page);
282acb43 1306 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1307 if (!ret)
1308 slab_fix(s, "Object at 0x%p not freed", object);
1309 return ret;
81819f0f
CL
1310}
1311
e17f1dfb
VB
1312/*
1313 * Parse a block of slub_debug options. Blocks are delimited by ';'
1314 *
1315 * @str: start of block
1316 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1317 * @slabs: return start of list of slabs, or NULL when there's no list
1318 * @init: assume this is initial parsing and not per-kmem-create parsing
1319 *
1320 * returns the start of next block if there's any, or NULL
1321 */
1322static char *
1323parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1324{
e17f1dfb 1325 bool higher_order_disable = false;
f0630fff 1326
e17f1dfb
VB
1327 /* Skip any completely empty blocks */
1328 while (*str && *str == ';')
1329 str++;
1330
1331 if (*str == ',') {
f0630fff
CL
1332 /*
1333 * No options but restriction on slabs. This means full
1334 * debugging for slabs matching a pattern.
1335 */
e17f1dfb 1336 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1337 goto check_slabs;
e17f1dfb
VB
1338 }
1339 *flags = 0;
f0630fff 1340
e17f1dfb
VB
1341 /* Determine which debug features should be switched on */
1342 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1343 switch (tolower(*str)) {
e17f1dfb
VB
1344 case '-':
1345 *flags = 0;
1346 break;
f0630fff 1347 case 'f':
e17f1dfb 1348 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1349 break;
1350 case 'z':
e17f1dfb 1351 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1352 break;
1353 case 'p':
e17f1dfb 1354 *flags |= SLAB_POISON;
f0630fff
CL
1355 break;
1356 case 'u':
e17f1dfb 1357 *flags |= SLAB_STORE_USER;
f0630fff
CL
1358 break;
1359 case 't':
e17f1dfb 1360 *flags |= SLAB_TRACE;
f0630fff 1361 break;
4c13dd3b 1362 case 'a':
e17f1dfb 1363 *flags |= SLAB_FAILSLAB;
4c13dd3b 1364 break;
08303a73
CA
1365 case 'o':
1366 /*
1367 * Avoid enabling debugging on caches if its minimum
1368 * order would increase as a result.
1369 */
e17f1dfb 1370 higher_order_disable = true;
08303a73 1371 break;
f0630fff 1372 default:
e17f1dfb
VB
1373 if (init)
1374 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
f0630fff 1375 }
41ecc55b 1376 }
f0630fff 1377check_slabs:
41ecc55b 1378 if (*str == ',')
e17f1dfb
VB
1379 *slabs = ++str;
1380 else
1381 *slabs = NULL;
1382
1383 /* Skip over the slab list */
1384 while (*str && *str != ';')
1385 str++;
1386
1387 /* Skip any completely empty blocks */
1388 while (*str && *str == ';')
1389 str++;
1390
1391 if (init && higher_order_disable)
1392 disable_higher_order_debug = 1;
1393
1394 if (*str)
1395 return str;
1396 else
1397 return NULL;
1398}
1399
1400static int __init setup_slub_debug(char *str)
1401{
1402 slab_flags_t flags;
a7f1d485 1403 slab_flags_t global_flags;
e17f1dfb
VB
1404 char *saved_str;
1405 char *slab_list;
1406 bool global_slub_debug_changed = false;
1407 bool slab_list_specified = false;
1408
a7f1d485 1409 global_flags = DEBUG_DEFAULT_FLAGS;
e17f1dfb
VB
1410 if (*str++ != '=' || !*str)
1411 /*
1412 * No options specified. Switch on full debugging.
1413 */
1414 goto out;
1415
1416 saved_str = str;
1417 while (str) {
1418 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1419
1420 if (!slab_list) {
a7f1d485 1421 global_flags = flags;
e17f1dfb
VB
1422 global_slub_debug_changed = true;
1423 } else {
1424 slab_list_specified = true;
1425 }
1426 }
1427
1428 /*
1429 * For backwards compatibility, a single list of flags with list of
a7f1d485
VB
1430 * slabs means debugging is only changed for those slabs, so the global
1431 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1432 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
e17f1dfb
VB
1433 * long as there is no option specifying flags without a slab list.
1434 */
1435 if (slab_list_specified) {
1436 if (!global_slub_debug_changed)
a7f1d485 1437 global_flags = slub_debug;
e17f1dfb
VB
1438 slub_debug_string = saved_str;
1439 }
f0630fff 1440out:
a7f1d485 1441 slub_debug = global_flags;
ca0cab65
VB
1442 if (slub_debug != 0 || slub_debug_string)
1443 static_branch_enable(&slub_debug_enabled);
02ac47d0
SB
1444 else
1445 static_branch_disable(&slub_debug_enabled);
6471384a
AP
1446 if ((static_branch_unlikely(&init_on_alloc) ||
1447 static_branch_unlikely(&init_on_free)) &&
1448 (slub_debug & SLAB_POISON))
1449 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1450 return 1;
1451}
1452
1453__setup("slub_debug", setup_slub_debug);
1454
c5fd3ca0
AT
1455/*
1456 * kmem_cache_flags - apply debugging options to the cache
1457 * @object_size: the size of an object without meta data
1458 * @flags: flags to set
1459 * @name: name of the cache
c5fd3ca0
AT
1460 *
1461 * Debug option(s) are applied to @flags. In addition to the debug
1462 * option(s), if a slab name (or multiple) is specified i.e.
1463 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1464 * then only the select slabs will receive the debug option(s).
1465 */
0293d1fd 1466slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1467 slab_flags_t flags, const char *name)
41ecc55b 1468{
c5fd3ca0
AT
1469 char *iter;
1470 size_t len;
e17f1dfb
VB
1471 char *next_block;
1472 slab_flags_t block_flags;
ca220593
JB
1473 slab_flags_t slub_debug_local = slub_debug;
1474
1475 /*
1476 * If the slab cache is for debugging (e.g. kmemleak) then
1477 * don't store user (stack trace) information by default,
1478 * but let the user enable it via the command line below.
1479 */
1480 if (flags & SLAB_NOLEAKTRACE)
1481 slub_debug_local &= ~SLAB_STORE_USER;
c5fd3ca0 1482
c5fd3ca0 1483 len = strlen(name);
e17f1dfb
VB
1484 next_block = slub_debug_string;
1485 /* Go through all blocks of debug options, see if any matches our slab's name */
1486 while (next_block) {
1487 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1488 if (!iter)
1489 continue;
1490 /* Found a block that has a slab list, search it */
1491 while (*iter) {
1492 char *end, *glob;
1493 size_t cmplen;
1494
1495 end = strchrnul(iter, ',');
1496 if (next_block && next_block < end)
1497 end = next_block - 1;
1498
1499 glob = strnchr(iter, end - iter, '*');
1500 if (glob)
1501 cmplen = glob - iter;
1502 else
1503 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1504
e17f1dfb
VB
1505 if (!strncmp(name, iter, cmplen)) {
1506 flags |= block_flags;
1507 return flags;
1508 }
c5fd3ca0 1509
e17f1dfb
VB
1510 if (!*end || *end == ';')
1511 break;
1512 iter = end + 1;
c5fd3ca0 1513 }
c5fd3ca0 1514 }
ba0268a8 1515
ca220593 1516 return flags | slub_debug_local;
41ecc55b 1517}
b4a64718 1518#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1519static inline void setup_object_debug(struct kmem_cache *s,
1520 struct page *page, void *object) {}
a50b854e
MWO
1521static inline
1522void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
41ecc55b 1523
3ec09742 1524static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1525 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1526
282acb43 1527static inline int free_debug_processing(
81084651
JDB
1528 struct kmem_cache *s, struct page *page,
1529 void *head, void *tail, int bulk_cnt,
282acb43 1530 unsigned long addr) { return 0; }
41ecc55b 1531
41ecc55b
CL
1532static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1533 { return 1; }
1534static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1535 void *object, u8 val) { return 1; }
5cc6eee8
CL
1536static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1537 struct page *page) {}
c65c1877
PZ
1538static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1539 struct page *page) {}
0293d1fd 1540slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1541 slab_flags_t flags, const char *name)
ba0268a8
CL
1542{
1543 return flags;
1544}
41ecc55b 1545#define slub_debug 0
0f389ec6 1546
fdaa45e9
IM
1547#define disable_higher_order_debug 0
1548
0f389ec6
CL
1549static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1550 { return 0; }
26c02cf0
AB
1551static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1552 { return 0; }
205ab99d
CL
1553static inline void inc_slabs_node(struct kmem_cache *s, int node,
1554 int objects) {}
1555static inline void dec_slabs_node(struct kmem_cache *s, int node,
1556 int objects) {}
7d550c56 1557
52f23478 1558static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 1559 void **freelist, void *nextfree)
52f23478
DZ
1560{
1561 return false;
1562}
02e72cc6
AR
1563#endif /* CONFIG_SLUB_DEBUG */
1564
1565/*
1566 * Hooks for other subsystems that check memory allocations. In a typical
1567 * production configuration these hooks all should produce no code at all.
1568 */
0116523c 1569static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1570{
53128245 1571 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1572 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1573 kmemleak_alloc(ptr, size, 1, flags);
53128245 1574 return ptr;
d56791b3
RB
1575}
1576
ee3ce779 1577static __always_inline void kfree_hook(void *x)
d56791b3
RB
1578{
1579 kmemleak_free(x);
027b37b5 1580 kasan_kfree_large(x);
d56791b3
RB
1581}
1582
d57a964e
AK
1583static __always_inline bool slab_free_hook(struct kmem_cache *s,
1584 void *x, bool init)
d56791b3
RB
1585{
1586 kmemleak_free_recursive(x, s->flags);
7d550c56 1587
02e72cc6
AR
1588 /*
1589 * Trouble is that we may no longer disable interrupts in the fast path
1590 * So in order to make the debug calls that expect irqs to be
1591 * disabled we need to disable interrupts temporarily.
1592 */
4675ff05 1593#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1594 {
1595 unsigned long flags;
1596
1597 local_irq_save(flags);
02e72cc6
AR
1598 debug_check_no_locks_freed(x, s->object_size);
1599 local_irq_restore(flags);
1600 }
1601#endif
1602 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1603 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1604
cfbe1636
ME
1605 /* Use KCSAN to help debug racy use-after-free. */
1606 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1607 __kcsan_check_access(x, s->object_size,
1608 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1609
d57a964e
AK
1610 /*
1611 * As memory initialization might be integrated into KASAN,
1612 * kasan_slab_free and initialization memset's must be
1613 * kept together to avoid discrepancies in behavior.
1614 *
1615 * The initialization memset's clear the object and the metadata,
1616 * but don't touch the SLAB redzone.
1617 */
1618 if (init) {
1619 int rsize;
1620
1621 if (!kasan_has_integrated_init())
1622 memset(kasan_reset_tag(x), 0, s->object_size);
1623 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1624 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1625 s->size - s->inuse - rsize);
1626 }
1627 /* KASAN might put x into memory quarantine, delaying its reuse. */
1628 return kasan_slab_free(s, x, init);
02e72cc6 1629}
205ab99d 1630
c3895391
AK
1631static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1632 void **head, void **tail)
81084651 1633{
6471384a
AP
1634
1635 void *object;
1636 void *next = *head;
1637 void *old_tail = *tail ? *tail : *head;
6471384a 1638
b89fb5ef 1639 if (is_kfence_address(next)) {
d57a964e 1640 slab_free_hook(s, next, false);
b89fb5ef
AP
1641 return true;
1642 }
1643
aea4df4c
LA
1644 /* Head and tail of the reconstructed freelist */
1645 *head = NULL;
1646 *tail = NULL;
1b7e816f 1647
aea4df4c
LA
1648 do {
1649 object = next;
1650 next = get_freepointer(s, object);
1651
c3895391 1652 /* If object's reuse doesn't have to be delayed */
d57a964e 1653 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
c3895391
AK
1654 /* Move object to the new freelist */
1655 set_freepointer(s, object, *head);
1656 *head = object;
1657 if (!*tail)
1658 *tail = object;
1659 }
1660 } while (object != old_tail);
1661
1662 if (*head == *tail)
1663 *tail = NULL;
1664
1665 return *head != NULL;
81084651
JDB
1666}
1667
4d176711 1668static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1669 void *object)
1670{
1671 setup_object_debug(s, page, object);
4d176711 1672 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1673 if (unlikely(s->ctor)) {
1674 kasan_unpoison_object_data(s, object);
1675 s->ctor(object);
1676 kasan_poison_object_data(s, object);
1677 }
4d176711 1678 return object;
588f8ba9
TG
1679}
1680
81819f0f
CL
1681/*
1682 * Slab allocation and freeing
1683 */
5dfb4175
VD
1684static inline struct page *alloc_slab_page(struct kmem_cache *s,
1685 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1686{
5dfb4175 1687 struct page *page;
19af27af 1688 unsigned int order = oo_order(oo);
65c3376a 1689
2154a336 1690 if (node == NUMA_NO_NODE)
5dfb4175 1691 page = alloc_pages(flags, order);
65c3376a 1692 else
96db800f 1693 page = __alloc_pages_node(node, flags, order);
5dfb4175 1694
5dfb4175 1695 return page;
65c3376a
CL
1696}
1697
210e7a43
TG
1698#ifdef CONFIG_SLAB_FREELIST_RANDOM
1699/* Pre-initialize the random sequence cache */
1700static int init_cache_random_seq(struct kmem_cache *s)
1701{
19af27af 1702 unsigned int count = oo_objects(s->oo);
210e7a43 1703 int err;
210e7a43 1704
a810007a
SR
1705 /* Bailout if already initialised */
1706 if (s->random_seq)
1707 return 0;
1708
210e7a43
TG
1709 err = cache_random_seq_create(s, count, GFP_KERNEL);
1710 if (err) {
1711 pr_err("SLUB: Unable to initialize free list for %s\n",
1712 s->name);
1713 return err;
1714 }
1715
1716 /* Transform to an offset on the set of pages */
1717 if (s->random_seq) {
19af27af
AD
1718 unsigned int i;
1719
210e7a43
TG
1720 for (i = 0; i < count; i++)
1721 s->random_seq[i] *= s->size;
1722 }
1723 return 0;
1724}
1725
1726/* Initialize each random sequence freelist per cache */
1727static void __init init_freelist_randomization(void)
1728{
1729 struct kmem_cache *s;
1730
1731 mutex_lock(&slab_mutex);
1732
1733 list_for_each_entry(s, &slab_caches, list)
1734 init_cache_random_seq(s);
1735
1736 mutex_unlock(&slab_mutex);
1737}
1738
1739/* Get the next entry on the pre-computed freelist randomized */
1740static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1741 unsigned long *pos, void *start,
1742 unsigned long page_limit,
1743 unsigned long freelist_count)
1744{
1745 unsigned int idx;
1746
1747 /*
1748 * If the target page allocation failed, the number of objects on the
1749 * page might be smaller than the usual size defined by the cache.
1750 */
1751 do {
1752 idx = s->random_seq[*pos];
1753 *pos += 1;
1754 if (*pos >= freelist_count)
1755 *pos = 0;
1756 } while (unlikely(idx >= page_limit));
1757
1758 return (char *)start + idx;
1759}
1760
1761/* Shuffle the single linked freelist based on a random pre-computed sequence */
1762static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1763{
1764 void *start;
1765 void *cur;
1766 void *next;
1767 unsigned long idx, pos, page_limit, freelist_count;
1768
1769 if (page->objects < 2 || !s->random_seq)
1770 return false;
1771
1772 freelist_count = oo_objects(s->oo);
1773 pos = get_random_int() % freelist_count;
1774
1775 page_limit = page->objects * s->size;
1776 start = fixup_red_left(s, page_address(page));
1777
1778 /* First entry is used as the base of the freelist */
1779 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1780 freelist_count);
4d176711 1781 cur = setup_object(s, page, cur);
210e7a43
TG
1782 page->freelist = cur;
1783
1784 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1785 next = next_freelist_entry(s, page, &pos, start, page_limit,
1786 freelist_count);
4d176711 1787 next = setup_object(s, page, next);
210e7a43
TG
1788 set_freepointer(s, cur, next);
1789 cur = next;
1790 }
210e7a43
TG
1791 set_freepointer(s, cur, NULL);
1792
1793 return true;
1794}
1795#else
1796static inline int init_cache_random_seq(struct kmem_cache *s)
1797{
1798 return 0;
1799}
1800static inline void init_freelist_randomization(void) { }
1801static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1802{
1803 return false;
1804}
1805#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1806
81819f0f
CL
1807static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1808{
06428780 1809 struct page *page;
834f3d11 1810 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1811 gfp_t alloc_gfp;
4d176711 1812 void *start, *p, *next;
a50b854e 1813 int idx;
210e7a43 1814 bool shuffle;
81819f0f 1815
7e0528da
CL
1816 flags &= gfp_allowed_mask;
1817
d0164adc 1818 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1819 local_irq_enable();
1820
b7a49f0d 1821 flags |= s->allocflags;
e12ba74d 1822
ba52270d
PE
1823 /*
1824 * Let the initial higher-order allocation fail under memory pressure
1825 * so we fall-back to the minimum order allocation.
1826 */
1827 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1828 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1829 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1830
5dfb4175 1831 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1832 if (unlikely(!page)) {
1833 oo = s->min;
80c3a998 1834 alloc_gfp = flags;
65c3376a
CL
1835 /*
1836 * Allocation may have failed due to fragmentation.
1837 * Try a lower order alloc if possible
1838 */
5dfb4175 1839 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1840 if (unlikely(!page))
1841 goto out;
1842 stat(s, ORDER_FALLBACK);
65c3376a 1843 }
5a896d9e 1844
834f3d11 1845 page->objects = oo_objects(oo);
81819f0f 1846
2e9bd483 1847 account_slab_page(page, oo_order(oo), s, flags);
1f3147b4 1848
1b4f59e3 1849 page->slab_cache = s;
c03f94cc 1850 __SetPageSlab(page);
2f064f34 1851 if (page_is_pfmemalloc(page))
072bb0aa 1852 SetPageSlabPfmemalloc(page);
81819f0f 1853
a7101224 1854 kasan_poison_slab(page);
81819f0f 1855
a7101224 1856 start = page_address(page);
81819f0f 1857
a50b854e 1858 setup_page_debug(s, page, start);
0316bec2 1859
210e7a43
TG
1860 shuffle = shuffle_freelist(s, page);
1861
1862 if (!shuffle) {
4d176711
AK
1863 start = fixup_red_left(s, start);
1864 start = setup_object(s, page, start);
1865 page->freelist = start;
18e50661
AK
1866 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1867 next = p + s->size;
1868 next = setup_object(s, page, next);
1869 set_freepointer(s, p, next);
1870 p = next;
1871 }
1872 set_freepointer(s, p, NULL);
81819f0f 1873 }
81819f0f 1874
e6e82ea1 1875 page->inuse = page->objects;
8cb0a506 1876 page->frozen = 1;
588f8ba9 1877
81819f0f 1878out:
d0164adc 1879 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1880 local_irq_disable();
1881 if (!page)
1882 return NULL;
1883
588f8ba9
TG
1884 inc_slabs_node(s, page_to_nid(page), page->objects);
1885
81819f0f
CL
1886 return page;
1887}
1888
588f8ba9
TG
1889static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1890{
44405099
LL
1891 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1892 flags = kmalloc_fix_flags(flags);
588f8ba9
TG
1893
1894 return allocate_slab(s,
1895 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1896}
1897
81819f0f
CL
1898static void __free_slab(struct kmem_cache *s, struct page *page)
1899{
834f3d11
CL
1900 int order = compound_order(page);
1901 int pages = 1 << order;
81819f0f 1902
8fc8d666 1903 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
81819f0f
CL
1904 void *p;
1905
1906 slab_pad_check(s, page);
224a88be
CL
1907 for_each_object(p, s, page_address(page),
1908 page->objects)
f7cb1933 1909 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1910 }
1911
072bb0aa 1912 __ClearPageSlabPfmemalloc(page);
49bd5221 1913 __ClearPageSlab(page);
0c06dd75
VB
1914 /* In union with page->mapping where page allocator expects NULL */
1915 page->slab_cache = NULL;
1eb5ac64
NP
1916 if (current->reclaim_state)
1917 current->reclaim_state->reclaimed_slab += pages;
74d555be 1918 unaccount_slab_page(page, order, s);
27ee57c9 1919 __free_pages(page, order);
81819f0f
CL
1920}
1921
1922static void rcu_free_slab(struct rcu_head *h)
1923{
bf68c214 1924 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1925
1b4f59e3 1926 __free_slab(page->slab_cache, page);
81819f0f
CL
1927}
1928
1929static void free_slab(struct kmem_cache *s, struct page *page)
1930{
5f0d5a3a 1931 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1932 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1933 } else
1934 __free_slab(s, page);
1935}
1936
1937static void discard_slab(struct kmem_cache *s, struct page *page)
1938{
205ab99d 1939 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1940 free_slab(s, page);
1941}
1942
1943/*
5cc6eee8 1944 * Management of partially allocated slabs.
81819f0f 1945 */
1e4dd946
SR
1946static inline void
1947__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1948{
e95eed57 1949 n->nr_partial++;
136333d1 1950 if (tail == DEACTIVATE_TO_TAIL)
916ac052 1951 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 1952 else
916ac052 1953 list_add(&page->slab_list, &n->partial);
81819f0f
CL
1954}
1955
1e4dd946
SR
1956static inline void add_partial(struct kmem_cache_node *n,
1957 struct page *page, int tail)
62e346a8 1958{
c65c1877 1959 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1960 __add_partial(n, page, tail);
1961}
c65c1877 1962
1e4dd946
SR
1963static inline void remove_partial(struct kmem_cache_node *n,
1964 struct page *page)
1965{
1966 lockdep_assert_held(&n->list_lock);
916ac052 1967 list_del(&page->slab_list);
52b4b950 1968 n->nr_partial--;
1e4dd946
SR
1969}
1970
81819f0f 1971/*
7ced3719
CL
1972 * Remove slab from the partial list, freeze it and
1973 * return the pointer to the freelist.
81819f0f 1974 *
497b66f2 1975 * Returns a list of objects or NULL if it fails.
81819f0f 1976 */
497b66f2 1977static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1978 struct kmem_cache_node *n, struct page *page,
633b0764 1979 int mode, int *objects)
81819f0f 1980{
2cfb7455
CL
1981 void *freelist;
1982 unsigned long counters;
1983 struct page new;
1984
c65c1877
PZ
1985 lockdep_assert_held(&n->list_lock);
1986
2cfb7455
CL
1987 /*
1988 * Zap the freelist and set the frozen bit.
1989 * The old freelist is the list of objects for the
1990 * per cpu allocation list.
1991 */
7ced3719
CL
1992 freelist = page->freelist;
1993 counters = page->counters;
1994 new.counters = counters;
633b0764 1995 *objects = new.objects - new.inuse;
23910c50 1996 if (mode) {
7ced3719 1997 new.inuse = page->objects;
23910c50
PE
1998 new.freelist = NULL;
1999 } else {
2000 new.freelist = freelist;
2001 }
2cfb7455 2002
a0132ac0 2003 VM_BUG_ON(new.frozen);
7ced3719 2004 new.frozen = 1;
2cfb7455 2005
7ced3719 2006 if (!__cmpxchg_double_slab(s, page,
2cfb7455 2007 freelist, counters,
02d7633f 2008 new.freelist, new.counters,
7ced3719 2009 "acquire_slab"))
7ced3719 2010 return NULL;
2cfb7455
CL
2011
2012 remove_partial(n, page);
7ced3719 2013 WARN_ON(!freelist);
49e22585 2014 return freelist;
81819f0f
CL
2015}
2016
633b0764 2017static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 2018static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 2019
81819f0f 2020/*
672bba3a 2021 * Try to allocate a partial slab from a specific node.
81819f0f 2022 */
8ba00bb6
JK
2023static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2024 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 2025{
49e22585
CL
2026 struct page *page, *page2;
2027 void *object = NULL;
e5d9998f 2028 unsigned int available = 0;
633b0764 2029 int objects;
81819f0f
CL
2030
2031 /*
2032 * Racy check. If we mistakenly see no partial slabs then we
2033 * just allocate an empty slab. If we mistakenly try to get a
70b6d25e 2034 * partial slab and there is none available then get_partial()
672bba3a 2035 * will return NULL.
81819f0f
CL
2036 */
2037 if (!n || !n->nr_partial)
2038 return NULL;
2039
2040 spin_lock(&n->list_lock);
916ac052 2041 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 2042 void *t;
49e22585 2043
8ba00bb6
JK
2044 if (!pfmemalloc_match(page, flags))
2045 continue;
2046
633b0764 2047 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585 2048 if (!t)
9b1ea29b 2049 break;
49e22585 2050
633b0764 2051 available += objects;
12d79634 2052 if (!object) {
49e22585 2053 c->page = page;
49e22585 2054 stat(s, ALLOC_FROM_PARTIAL);
49e22585 2055 object = t;
49e22585 2056 } else {
633b0764 2057 put_cpu_partial(s, page, 0);
8028dcea 2058 stat(s, CPU_PARTIAL_NODE);
49e22585 2059 }
345c905d 2060 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 2061 || available > slub_cpu_partial(s) / 2)
49e22585
CL
2062 break;
2063
497b66f2 2064 }
81819f0f 2065 spin_unlock(&n->list_lock);
497b66f2 2066 return object;
81819f0f
CL
2067}
2068
2069/*
672bba3a 2070 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 2071 */
de3ec035 2072static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 2073 struct kmem_cache_cpu *c)
81819f0f
CL
2074{
2075#ifdef CONFIG_NUMA
2076 struct zonelist *zonelist;
dd1a239f 2077 struct zoneref *z;
54a6eb5c 2078 struct zone *zone;
97a225e6 2079 enum zone_type highest_zoneidx = gfp_zone(flags);
497b66f2 2080 void *object;
cc9a6c87 2081 unsigned int cpuset_mems_cookie;
81819f0f
CL
2082
2083 /*
672bba3a
CL
2084 * The defrag ratio allows a configuration of the tradeoffs between
2085 * inter node defragmentation and node local allocations. A lower
2086 * defrag_ratio increases the tendency to do local allocations
2087 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2088 *
672bba3a
CL
2089 * If the defrag_ratio is set to 0 then kmalloc() always
2090 * returns node local objects. If the ratio is higher then kmalloc()
2091 * may return off node objects because partial slabs are obtained
2092 * from other nodes and filled up.
81819f0f 2093 *
43efd3ea
LP
2094 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2095 * (which makes defrag_ratio = 1000) then every (well almost)
2096 * allocation will first attempt to defrag slab caches on other nodes.
2097 * This means scanning over all nodes to look for partial slabs which
2098 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2099 * with available objects.
81819f0f 2100 */
9824601e
CL
2101 if (!s->remote_node_defrag_ratio ||
2102 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2103 return NULL;
2104
cc9a6c87 2105 do {
d26914d1 2106 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 2107 zonelist = node_zonelist(mempolicy_slab_node(), flags);
97a225e6 2108 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2109 struct kmem_cache_node *n;
2110
2111 n = get_node(s, zone_to_nid(zone));
2112
dee2f8aa 2113 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 2114 n->nr_partial > s->min_partial) {
8ba00bb6 2115 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
2116 if (object) {
2117 /*
d26914d1
MG
2118 * Don't check read_mems_allowed_retry()
2119 * here - if mems_allowed was updated in
2120 * parallel, that was a harmless race
2121 * between allocation and the cpuset
2122 * update
cc9a6c87 2123 */
cc9a6c87
MG
2124 return object;
2125 }
c0ff7453 2126 }
81819f0f 2127 }
d26914d1 2128 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2129#endif /* CONFIG_NUMA */
81819f0f
CL
2130 return NULL;
2131}
2132
2133/*
2134 * Get a partial page, lock it and return it.
2135 */
497b66f2 2136static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 2137 struct kmem_cache_cpu *c)
81819f0f 2138{
497b66f2 2139 void *object;
a561ce00
JK
2140 int searchnode = node;
2141
2142 if (node == NUMA_NO_NODE)
2143 searchnode = numa_mem_id();
81819f0f 2144
8ba00bb6 2145 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
2146 if (object || node != NUMA_NO_NODE)
2147 return object;
81819f0f 2148
acd19fd1 2149 return get_any_partial(s, flags, c);
81819f0f
CL
2150}
2151
923717cb 2152#ifdef CONFIG_PREEMPTION
8a5ec0ba 2153/*
0d645ed1 2154 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2155 * during cmpxchg. The transactions start with the cpu number and are then
2156 * incremented by CONFIG_NR_CPUS.
2157 */
2158#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2159#else
2160/*
2161 * No preemption supported therefore also no need to check for
2162 * different cpus.
2163 */
2164#define TID_STEP 1
2165#endif
2166
2167static inline unsigned long next_tid(unsigned long tid)
2168{
2169 return tid + TID_STEP;
2170}
2171
9d5f0be0 2172#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2173static inline unsigned int tid_to_cpu(unsigned long tid)
2174{
2175 return tid % TID_STEP;
2176}
2177
2178static inline unsigned long tid_to_event(unsigned long tid)
2179{
2180 return tid / TID_STEP;
2181}
9d5f0be0 2182#endif
8a5ec0ba
CL
2183
2184static inline unsigned int init_tid(int cpu)
2185{
2186 return cpu;
2187}
2188
2189static inline void note_cmpxchg_failure(const char *n,
2190 const struct kmem_cache *s, unsigned long tid)
2191{
2192#ifdef SLUB_DEBUG_CMPXCHG
2193 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2194
f9f58285 2195 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2196
923717cb 2197#ifdef CONFIG_PREEMPTION
8a5ec0ba 2198 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2199 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2200 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2201 else
2202#endif
2203 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2204 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2205 tid_to_event(tid), tid_to_event(actual_tid));
2206 else
f9f58285 2207 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2208 actual_tid, tid, next_tid(tid));
2209#endif
4fdccdfb 2210 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2211}
2212
788e1aad 2213static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2214{
8a5ec0ba
CL
2215 int cpu;
2216
2217 for_each_possible_cpu(cpu)
2218 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2219}
2cfb7455 2220
81819f0f
CL
2221/*
2222 * Remove the cpu slab
2223 */
d0e0ac97 2224static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2225 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2226{
2cfb7455 2227 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455 2228 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
d930ff03 2229 int lock = 0, free_delta = 0;
2cfb7455 2230 enum slab_modes l = M_NONE, m = M_NONE;
d930ff03 2231 void *nextfree, *freelist_iter, *freelist_tail;
136333d1 2232 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2233 struct page new;
2234 struct page old;
2235
2236 if (page->freelist) {
84e554e6 2237 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2238 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2239 }
2240
894b8788 2241 /*
d930ff03
VB
2242 * Stage one: Count the objects on cpu's freelist as free_delta and
2243 * remember the last object in freelist_tail for later splicing.
2cfb7455 2244 */
d930ff03
VB
2245 freelist_tail = NULL;
2246 freelist_iter = freelist;
2247 while (freelist_iter) {
2248 nextfree = get_freepointer(s, freelist_iter);
2cfb7455 2249
52f23478
DZ
2250 /*
2251 * If 'nextfree' is invalid, it is possible that the object at
d930ff03
VB
2252 * 'freelist_iter' is already corrupted. So isolate all objects
2253 * starting at 'freelist_iter' by skipping them.
52f23478 2254 */
d930ff03 2255 if (freelist_corrupted(s, page, &freelist_iter, nextfree))
52f23478
DZ
2256 break;
2257
d930ff03
VB
2258 freelist_tail = freelist_iter;
2259 free_delta++;
2cfb7455 2260
d930ff03 2261 freelist_iter = nextfree;
2cfb7455
CL
2262 }
2263
894b8788 2264 /*
d930ff03
VB
2265 * Stage two: Unfreeze the page while splicing the per-cpu
2266 * freelist to the head of page's freelist.
2267 *
2268 * Ensure that the page is unfrozen while the list presence
2269 * reflects the actual number of objects during unfreeze.
2cfb7455
CL
2270 *
2271 * We setup the list membership and then perform a cmpxchg
2272 * with the count. If there is a mismatch then the page
2273 * is not unfrozen but the page is on the wrong list.
2274 *
2275 * Then we restart the process which may have to remove
2276 * the page from the list that we just put it on again
2277 * because the number of objects in the slab may have
2278 * changed.
894b8788 2279 */
2cfb7455 2280redo:
894b8788 2281
d930ff03
VB
2282 old.freelist = READ_ONCE(page->freelist);
2283 old.counters = READ_ONCE(page->counters);
a0132ac0 2284 VM_BUG_ON(!old.frozen);
7c2e132c 2285
2cfb7455
CL
2286 /* Determine target state of the slab */
2287 new.counters = old.counters;
d930ff03
VB
2288 if (freelist_tail) {
2289 new.inuse -= free_delta;
2290 set_freepointer(s, freelist_tail, old.freelist);
2cfb7455
CL
2291 new.freelist = freelist;
2292 } else
2293 new.freelist = old.freelist;
2294
2295 new.frozen = 0;
2296
8a5b20ae 2297 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2298 m = M_FREE;
2299 else if (new.freelist) {
2300 m = M_PARTIAL;
2301 if (!lock) {
2302 lock = 1;
2303 /*
8bb4e7a2 2304 * Taking the spinlock removes the possibility
2cfb7455
CL
2305 * that acquire_slab() will see a slab page that
2306 * is frozen
2307 */
2308 spin_lock(&n->list_lock);
2309 }
2310 } else {
2311 m = M_FULL;
965c4848 2312 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2cfb7455
CL
2313 lock = 1;
2314 /*
2315 * This also ensures that the scanning of full
2316 * slabs from diagnostic functions will not see
2317 * any frozen slabs.
2318 */
2319 spin_lock(&n->list_lock);
2320 }
2321 }
2322
2323 if (l != m) {
2cfb7455 2324 if (l == M_PARTIAL)
2cfb7455 2325 remove_partial(n, page);
2cfb7455 2326 else if (l == M_FULL)
c65c1877 2327 remove_full(s, n, page);
2cfb7455 2328
88349a28 2329 if (m == M_PARTIAL)
2cfb7455 2330 add_partial(n, page, tail);
88349a28 2331 else if (m == M_FULL)
2cfb7455 2332 add_full(s, n, page);
2cfb7455
CL
2333 }
2334
2335 l = m;
1d07171c 2336 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2337 old.freelist, old.counters,
2338 new.freelist, new.counters,
2339 "unfreezing slab"))
2340 goto redo;
2341
2cfb7455
CL
2342 if (lock)
2343 spin_unlock(&n->list_lock);
2344
88349a28
WY
2345 if (m == M_PARTIAL)
2346 stat(s, tail);
2347 else if (m == M_FULL)
2348 stat(s, DEACTIVATE_FULL);
2349 else if (m == M_FREE) {
2cfb7455
CL
2350 stat(s, DEACTIVATE_EMPTY);
2351 discard_slab(s, page);
2352 stat(s, FREE_SLAB);
894b8788 2353 }
d4ff6d35
WY
2354
2355 c->page = NULL;
2356 c->freelist = NULL;
81819f0f
CL
2357}
2358
d24ac77f
JK
2359/*
2360 * Unfreeze all the cpu partial slabs.
2361 *
59a09917
CL
2362 * This function must be called with interrupts disabled
2363 * for the cpu using c (or some other guarantee must be there
2364 * to guarantee no concurrent accesses).
d24ac77f 2365 */
59a09917
CL
2366static void unfreeze_partials(struct kmem_cache *s,
2367 struct kmem_cache_cpu *c)
49e22585 2368{
345c905d 2369#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2370 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2371 struct page *page, *discard_page = NULL;
49e22585 2372
4c7ba22e 2373 while ((page = slub_percpu_partial(c))) {
49e22585
CL
2374 struct page new;
2375 struct page old;
2376
4c7ba22e 2377 slub_set_percpu_partial(c, page);
43d77867
JK
2378
2379 n2 = get_node(s, page_to_nid(page));
2380 if (n != n2) {
2381 if (n)
2382 spin_unlock(&n->list_lock);
2383
2384 n = n2;
2385 spin_lock(&n->list_lock);
2386 }
49e22585
CL
2387
2388 do {
2389
2390 old.freelist = page->freelist;
2391 old.counters = page->counters;
a0132ac0 2392 VM_BUG_ON(!old.frozen);
49e22585
CL
2393
2394 new.counters = old.counters;
2395 new.freelist = old.freelist;
2396
2397 new.frozen = 0;
2398
d24ac77f 2399 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2400 old.freelist, old.counters,
2401 new.freelist, new.counters,
2402 "unfreezing slab"));
2403
8a5b20ae 2404 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2405 page->next = discard_page;
2406 discard_page = page;
43d77867
JK
2407 } else {
2408 add_partial(n, page, DEACTIVATE_TO_TAIL);
2409 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2410 }
2411 }
2412
2413 if (n)
2414 spin_unlock(&n->list_lock);
9ada1934
SL
2415
2416 while (discard_page) {
2417 page = discard_page;
2418 discard_page = discard_page->next;
2419
2420 stat(s, DEACTIVATE_EMPTY);
2421 discard_slab(s, page);
2422 stat(s, FREE_SLAB);
2423 }
6dfd1b65 2424#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2425}
2426
2427/*
9234bae9
WY
2428 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2429 * partial page slot if available.
49e22585
CL
2430 *
2431 * If we did not find a slot then simply move all the partials to the
2432 * per node partial list.
2433 */
633b0764 2434static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2435{
345c905d 2436#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2437 struct page *oldpage;
2438 int pages;
2439 int pobjects;
2440
d6e0b7fa 2441 preempt_disable();
49e22585
CL
2442 do {
2443 pages = 0;
2444 pobjects = 0;
2445 oldpage = this_cpu_read(s->cpu_slab->partial);
2446
2447 if (oldpage) {
2448 pobjects = oldpage->pobjects;
2449 pages = oldpage->pages;
bbd4e305 2450 if (drain && pobjects > slub_cpu_partial(s)) {
49e22585
CL
2451 unsigned long flags;
2452 /*
2453 * partial array is full. Move the existing
2454 * set to the per node partial list.
2455 */
2456 local_irq_save(flags);
59a09917 2457 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2458 local_irq_restore(flags);
e24fc410 2459 oldpage = NULL;
49e22585
CL
2460 pobjects = 0;
2461 pages = 0;
8028dcea 2462 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2463 }
2464 }
2465
2466 pages++;
2467 pobjects += page->objects - page->inuse;
2468
2469 page->pages = pages;
2470 page->pobjects = pobjects;
2471 page->next = oldpage;
2472
d0e0ac97
CG
2473 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2474 != oldpage);
bbd4e305 2475 if (unlikely(!slub_cpu_partial(s))) {
d6e0b7fa
VD
2476 unsigned long flags;
2477
2478 local_irq_save(flags);
2479 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2480 local_irq_restore(flags);
2481 }
2482 preempt_enable();
6dfd1b65 2483#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2484}
2485
dfb4f096 2486static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2487{
84e554e6 2488 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2489 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2490
2491 c->tid = next_tid(c->tid);
81819f0f
CL
2492}
2493
2494/*
2495 * Flush cpu slab.
6446faa2 2496 *
81819f0f
CL
2497 * Called from IPI handler with interrupts disabled.
2498 */
0c710013 2499static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2500{
9dfc6e68 2501 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2502
1265ef2d
WY
2503 if (c->page)
2504 flush_slab(s, c);
49e22585 2505
1265ef2d 2506 unfreeze_partials(s, c);
81819f0f
CL
2507}
2508
2509static void flush_cpu_slab(void *d)
2510{
2511 struct kmem_cache *s = d;
81819f0f 2512
dfb4f096 2513 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2514}
2515
a8364d55
GBY
2516static bool has_cpu_slab(int cpu, void *info)
2517{
2518 struct kmem_cache *s = info;
2519 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2520
a93cf07b 2521 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2522}
2523
81819f0f
CL
2524static void flush_all(struct kmem_cache *s)
2525{
cb923159 2526 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
81819f0f
CL
2527}
2528
a96a87bf
SAS
2529/*
2530 * Use the cpu notifier to insure that the cpu slabs are flushed when
2531 * necessary.
2532 */
2533static int slub_cpu_dead(unsigned int cpu)
2534{
2535 struct kmem_cache *s;
2536 unsigned long flags;
2537
2538 mutex_lock(&slab_mutex);
2539 list_for_each_entry(s, &slab_caches, list) {
2540 local_irq_save(flags);
2541 __flush_cpu_slab(s, cpu);
2542 local_irq_restore(flags);
2543 }
2544 mutex_unlock(&slab_mutex);
2545 return 0;
2546}
2547
dfb4f096
CL
2548/*
2549 * Check if the objects in a per cpu structure fit numa
2550 * locality expectations.
2551 */
57d437d2 2552static inline int node_match(struct page *page, int node)
dfb4f096
CL
2553{
2554#ifdef CONFIG_NUMA
6159d0f5 2555 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2556 return 0;
2557#endif
2558 return 1;
2559}
2560
9a02d699 2561#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2562static int count_free(struct page *page)
2563{
2564 return page->objects - page->inuse;
2565}
2566
9a02d699
DR
2567static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2568{
2569 return atomic_long_read(&n->total_objects);
2570}
2571#endif /* CONFIG_SLUB_DEBUG */
2572
2573#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2574static unsigned long count_partial(struct kmem_cache_node *n,
2575 int (*get_count)(struct page *))
2576{
2577 unsigned long flags;
2578 unsigned long x = 0;
2579 struct page *page;
2580
2581 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2582 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2583 x += get_count(page);
2584 spin_unlock_irqrestore(&n->list_lock, flags);
2585 return x;
2586}
9a02d699 2587#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2588
781b2ba6
PE
2589static noinline void
2590slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2591{
9a02d699
DR
2592#ifdef CONFIG_SLUB_DEBUG
2593 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2594 DEFAULT_RATELIMIT_BURST);
781b2ba6 2595 int node;
fa45dc25 2596 struct kmem_cache_node *n;
781b2ba6 2597
9a02d699
DR
2598 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2599 return;
2600
5b3810e5
VB
2601 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2602 nid, gfpflags, &gfpflags);
19af27af 2603 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2604 s->name, s->object_size, s->size, oo_order(s->oo),
2605 oo_order(s->min));
781b2ba6 2606
3b0efdfa 2607 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2608 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2609 s->name);
fa5ec8a1 2610
fa45dc25 2611 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2612 unsigned long nr_slabs;
2613 unsigned long nr_objs;
2614 unsigned long nr_free;
2615
26c02cf0
AB
2616 nr_free = count_partial(n, count_free);
2617 nr_slabs = node_nr_slabs(n);
2618 nr_objs = node_nr_objs(n);
781b2ba6 2619
f9f58285 2620 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2621 node, nr_slabs, nr_objs, nr_free);
2622 }
9a02d699 2623#endif
781b2ba6
PE
2624}
2625
497b66f2
CL
2626static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2627 int node, struct kmem_cache_cpu **pc)
2628{
6faa6833 2629 void *freelist;
188fd063
CL
2630 struct kmem_cache_cpu *c = *pc;
2631 struct page *page;
497b66f2 2632
128227e7
MW
2633 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2634
188fd063 2635 freelist = get_partial(s, flags, node, c);
497b66f2 2636
188fd063
CL
2637 if (freelist)
2638 return freelist;
2639
2640 page = new_slab(s, flags, node);
497b66f2 2641 if (page) {
7c8e0181 2642 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2643 if (c->page)
2644 flush_slab(s, c);
2645
2646 /*
2647 * No other reference to the page yet so we can
2648 * muck around with it freely without cmpxchg
2649 */
6faa6833 2650 freelist = page->freelist;
497b66f2
CL
2651 page->freelist = NULL;
2652
2653 stat(s, ALLOC_SLAB);
497b66f2
CL
2654 c->page = page;
2655 *pc = c;
edde82b6 2656 }
497b66f2 2657
6faa6833 2658 return freelist;
497b66f2
CL
2659}
2660
072bb0aa
MG
2661static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2662{
2663 if (unlikely(PageSlabPfmemalloc(page)))
2664 return gfp_pfmemalloc_allowed(gfpflags);
2665
2666 return true;
2667}
2668
213eeb9f 2669/*
d0e0ac97
CG
2670 * Check the page->freelist of a page and either transfer the freelist to the
2671 * per cpu freelist or deactivate the page.
213eeb9f
CL
2672 *
2673 * The page is still frozen if the return value is not NULL.
2674 *
2675 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2676 *
2677 * This function must be called with interrupt disabled.
213eeb9f
CL
2678 */
2679static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2680{
2681 struct page new;
2682 unsigned long counters;
2683 void *freelist;
2684
2685 do {
2686 freelist = page->freelist;
2687 counters = page->counters;
6faa6833 2688
213eeb9f 2689 new.counters = counters;
a0132ac0 2690 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2691
2692 new.inuse = page->objects;
2693 new.frozen = freelist != NULL;
2694
d24ac77f 2695 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2696 freelist, counters,
2697 NULL, new.counters,
2698 "get_freelist"));
2699
2700 return freelist;
2701}
2702
81819f0f 2703/*
894b8788
CL
2704 * Slow path. The lockless freelist is empty or we need to perform
2705 * debugging duties.
2706 *
894b8788
CL
2707 * Processing is still very fast if new objects have been freed to the
2708 * regular freelist. In that case we simply take over the regular freelist
2709 * as the lockless freelist and zap the regular freelist.
81819f0f 2710 *
894b8788
CL
2711 * If that is not working then we fall back to the partial lists. We take the
2712 * first element of the freelist as the object to allocate now and move the
2713 * rest of the freelist to the lockless freelist.
81819f0f 2714 *
894b8788 2715 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2716 * we need to allocate a new slab. This is the slowest path since it involves
2717 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2718 *
2719 * Version of __slab_alloc to use when we know that interrupts are
2720 * already disabled (which is the case for bulk allocation).
81819f0f 2721 */
a380a3c7 2722static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2723 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2724{
6faa6833 2725 void *freelist;
f6e7def7 2726 struct page *page;
81819f0f 2727
9f986d99
AW
2728 stat(s, ALLOC_SLOWPATH);
2729
f6e7def7 2730 page = c->page;
0715e6c5
VB
2731 if (!page) {
2732 /*
2733 * if the node is not online or has no normal memory, just
2734 * ignore the node constraint
2735 */
2736 if (unlikely(node != NUMA_NO_NODE &&
7e1fa93d 2737 !node_isset(node, slab_nodes)))
0715e6c5 2738 node = NUMA_NO_NODE;
81819f0f 2739 goto new_slab;
0715e6c5 2740 }
49e22585 2741redo:
6faa6833 2742
57d437d2 2743 if (unlikely(!node_match(page, node))) {
0715e6c5
VB
2744 /*
2745 * same as above but node_match() being false already
2746 * implies node != NUMA_NO_NODE
2747 */
7e1fa93d 2748 if (!node_isset(node, slab_nodes)) {
0715e6c5
VB
2749 node = NUMA_NO_NODE;
2750 goto redo;
2751 } else {
a561ce00 2752 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2753 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2754 goto new_slab;
2755 }
fc59c053 2756 }
6446faa2 2757
072bb0aa
MG
2758 /*
2759 * By rights, we should be searching for a slab page that was
2760 * PFMEMALLOC but right now, we are losing the pfmemalloc
2761 * information when the page leaves the per-cpu allocator
2762 */
2763 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2764 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2765 goto new_slab;
2766 }
2767
73736e03 2768 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2769 freelist = c->freelist;
2770 if (freelist)
73736e03 2771 goto load_freelist;
03e404af 2772
f6e7def7 2773 freelist = get_freelist(s, page);
6446faa2 2774
6faa6833 2775 if (!freelist) {
03e404af
CL
2776 c->page = NULL;
2777 stat(s, DEACTIVATE_BYPASS);
fc59c053 2778 goto new_slab;
03e404af 2779 }
6446faa2 2780
84e554e6 2781 stat(s, ALLOC_REFILL);
6446faa2 2782
894b8788 2783load_freelist:
507effea
CL
2784 /*
2785 * freelist is pointing to the list of objects to be used.
2786 * page is pointing to the page from which the objects are obtained.
2787 * That page must be frozen for per cpu allocations to work.
2788 */
a0132ac0 2789 VM_BUG_ON(!c->page->frozen);
6faa6833 2790 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2791 c->tid = next_tid(c->tid);
6faa6833 2792 return freelist;
81819f0f 2793
81819f0f 2794new_slab:
2cfb7455 2795
a93cf07b
WY
2796 if (slub_percpu_partial(c)) {
2797 page = c->page = slub_percpu_partial(c);
2798 slub_set_percpu_partial(c, page);
49e22585 2799 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2800 goto redo;
81819f0f
CL
2801 }
2802
188fd063 2803 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2804
f4697436 2805 if (unlikely(!freelist)) {
9a02d699 2806 slab_out_of_memory(s, gfpflags, node);
f4697436 2807 return NULL;
81819f0f 2808 }
2cfb7455 2809
f6e7def7 2810 page = c->page;
5091b74a 2811 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2812 goto load_freelist;
2cfb7455 2813
497b66f2 2814 /* Only entered in the debug case */
d0e0ac97
CG
2815 if (kmem_cache_debug(s) &&
2816 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2817 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2818
d4ff6d35 2819 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2820 return freelist;
894b8788
CL
2821}
2822
a380a3c7
CL
2823/*
2824 * Another one that disabled interrupt and compensates for possible
2825 * cpu changes by refetching the per cpu area pointer.
2826 */
2827static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2828 unsigned long addr, struct kmem_cache_cpu *c)
2829{
2830 void *p;
2831 unsigned long flags;
2832
2833 local_irq_save(flags);
923717cb 2834#ifdef CONFIG_PREEMPTION
a380a3c7
CL
2835 /*
2836 * We may have been preempted and rescheduled on a different
2837 * cpu before disabling interrupts. Need to reload cpu area
2838 * pointer.
2839 */
2840 c = this_cpu_ptr(s->cpu_slab);
2841#endif
2842
2843 p = ___slab_alloc(s, gfpflags, node, addr, c);
2844 local_irq_restore(flags);
2845 return p;
2846}
2847
0f181f9f
AP
2848/*
2849 * If the object has been wiped upon free, make sure it's fully initialized by
2850 * zeroing out freelist pointer.
2851 */
2852static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2853 void *obj)
2854{
2855 if (unlikely(slab_want_init_on_free(s)) && obj)
ce5716c6
AK
2856 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
2857 0, sizeof(void *));
0f181f9f
AP
2858}
2859
894b8788
CL
2860/*
2861 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2862 * have the fastpath folded into their functions. So no function call
2863 * overhead for requests that can be satisfied on the fastpath.
2864 *
2865 * The fastpath works by first checking if the lockless freelist can be used.
2866 * If not then __slab_alloc is called for slow processing.
2867 *
2868 * Otherwise we can simply pick the next object from the lockless free list.
2869 */
2b847c3c 2870static __always_inline void *slab_alloc_node(struct kmem_cache *s,
b89fb5ef 2871 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
894b8788 2872{
03ec0ed5 2873 void *object;
dfb4f096 2874 struct kmem_cache_cpu *c;
57d437d2 2875 struct page *page;
8a5ec0ba 2876 unsigned long tid;
964d4bd3 2877 struct obj_cgroup *objcg = NULL;
da844b78 2878 bool init = false;
1f84260c 2879
964d4bd3 2880 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
8135be5a 2881 if (!s)
773ff60e 2882 return NULL;
b89fb5ef
AP
2883
2884 object = kfence_alloc(s, orig_size, gfpflags);
2885 if (unlikely(object))
2886 goto out;
2887
8a5ec0ba 2888redo:
8a5ec0ba
CL
2889 /*
2890 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2891 * enabled. We may switch back and forth between cpus while
2892 * reading from one cpu area. That does not matter as long
2893 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2894 *
9aabf810 2895 * We should guarantee that tid and kmem_cache are retrieved on
923717cb 2896 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
9aabf810 2897 * to check if it is matched or not.
8a5ec0ba 2898 */
9aabf810
JK
2899 do {
2900 tid = this_cpu_read(s->cpu_slab->tid);
2901 c = raw_cpu_ptr(s->cpu_slab);
923717cb 2902 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 2903 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2904
2905 /*
2906 * Irqless object alloc/free algorithm used here depends on sequence
2907 * of fetching cpu_slab's data. tid should be fetched before anything
2908 * on c to guarantee that object and page associated with previous tid
2909 * won't be used with current tid. If we fetch tid first, object and
2910 * page could be one associated with next tid and our alloc/free
2911 * request will be failed. In this case, we will retry. So, no problem.
2912 */
2913 barrier();
8a5ec0ba 2914
8a5ec0ba
CL
2915 /*
2916 * The transaction ids are globally unique per cpu and per operation on
2917 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2918 * occurs on the right processor and that there was no operation on the
2919 * linked list in between.
2920 */
8a5ec0ba 2921
9dfc6e68 2922 object = c->freelist;
57d437d2 2923 page = c->page;
22e4663e 2924 if (unlikely(!object || !page || !node_match(page, node))) {
dfb4f096 2925 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492 2926 } else {
0ad9500e
ED
2927 void *next_object = get_freepointer_safe(s, object);
2928
8a5ec0ba 2929 /*
25985edc 2930 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2931 * operation and if we are on the right processor.
2932 *
d0e0ac97
CG
2933 * The cmpxchg does the following atomically (without lock
2934 * semantics!)
8a5ec0ba
CL
2935 * 1. Relocate first pointer to the current per cpu area.
2936 * 2. Verify that tid and freelist have not been changed
2937 * 3. If they were not changed replace tid and freelist
2938 *
d0e0ac97
CG
2939 * Since this is without lock semantics the protection is only
2940 * against code executing on this cpu *not* from access by
2941 * other cpus.
8a5ec0ba 2942 */
933393f5 2943 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2944 s->cpu_slab->freelist, s->cpu_slab->tid,
2945 object, tid,
0ad9500e 2946 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2947
2948 note_cmpxchg_failure("slab_alloc", s, tid);
2949 goto redo;
2950 }
0ad9500e 2951 prefetch_freepointer(s, next_object);
84e554e6 2952 stat(s, ALLOC_FASTPATH);
894b8788 2953 }
0f181f9f 2954
ce5716c6 2955 maybe_wipe_obj_freeptr(s, object);
da844b78 2956 init = slab_want_init_on_alloc(gfpflags, s);
d07dbea4 2957
b89fb5ef 2958out:
da844b78 2959 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
5a896d9e 2960
894b8788 2961 return object;
81819f0f
CL
2962}
2963
2b847c3c 2964static __always_inline void *slab_alloc(struct kmem_cache *s,
b89fb5ef 2965 gfp_t gfpflags, unsigned long addr, size_t orig_size)
2b847c3c 2966{
b89fb5ef 2967 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
2b847c3c
EG
2968}
2969
81819f0f
CL
2970void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2971{
b89fb5ef 2972 void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
5b882be4 2973
d0e0ac97
CG
2974 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2975 s->size, gfpflags);
5b882be4
EGM
2976
2977 return ret;
81819f0f
CL
2978}
2979EXPORT_SYMBOL(kmem_cache_alloc);
2980
0f24f128 2981#ifdef CONFIG_TRACING
4a92379b
RK
2982void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2983{
b89fb5ef 2984 void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
4a92379b 2985 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 2986 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2987 return ret;
2988}
2989EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2990#endif
2991
81819f0f
CL
2992#ifdef CONFIG_NUMA
2993void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2994{
b89fb5ef 2995 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
5b882be4 2996
ca2b84cb 2997 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2998 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2999
3000 return ret;
81819f0f
CL
3001}
3002EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 3003
0f24f128 3004#ifdef CONFIG_TRACING
4a92379b 3005void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 3006 gfp_t gfpflags,
4a92379b 3007 int node, size_t size)
5b882be4 3008{
b89fb5ef 3009 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
4a92379b
RK
3010
3011 trace_kmalloc_node(_RET_IP_, ret,
3012 size, s->size, gfpflags, node);
0316bec2 3013
0116523c 3014 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 3015 return ret;
5b882be4 3016}
4a92379b 3017EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 3018#endif
6dfd1b65 3019#endif /* CONFIG_NUMA */
5b882be4 3020
81819f0f 3021/*
94e4d712 3022 * Slow path handling. This may still be called frequently since objects
894b8788 3023 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 3024 *
894b8788
CL
3025 * So we still attempt to reduce cache line usage. Just take the slab
3026 * lock and free the item. If there is no additional partial page
3027 * handling required then we can return immediately.
81819f0f 3028 */
894b8788 3029static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
3030 void *head, void *tail, int cnt,
3031 unsigned long addr)
3032
81819f0f
CL
3033{
3034 void *prior;
2cfb7455 3035 int was_frozen;
2cfb7455
CL
3036 struct page new;
3037 unsigned long counters;
3038 struct kmem_cache_node *n = NULL;
3f649ab7 3039 unsigned long flags;
81819f0f 3040
8a5ec0ba 3041 stat(s, FREE_SLOWPATH);
81819f0f 3042
b89fb5ef
AP
3043 if (kfence_free(head))
3044 return;
3045
19c7ff9e 3046 if (kmem_cache_debug(s) &&
282acb43 3047 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 3048 return;
6446faa2 3049
2cfb7455 3050 do {
837d678d
JK
3051 if (unlikely(n)) {
3052 spin_unlock_irqrestore(&n->list_lock, flags);
3053 n = NULL;
3054 }
2cfb7455
CL
3055 prior = page->freelist;
3056 counters = page->counters;
81084651 3057 set_freepointer(s, tail, prior);
2cfb7455
CL
3058 new.counters = counters;
3059 was_frozen = new.frozen;
81084651 3060 new.inuse -= cnt;
837d678d 3061 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 3062
c65c1877 3063 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
3064
3065 /*
d0e0ac97
CG
3066 * Slab was on no list before and will be
3067 * partially empty
3068 * We can defer the list move and instead
3069 * freeze it.
49e22585
CL
3070 */
3071 new.frozen = 1;
3072
c65c1877 3073 } else { /* Needs to be taken off a list */
49e22585 3074
b455def2 3075 n = get_node(s, page_to_nid(page));
49e22585
CL
3076 /*
3077 * Speculatively acquire the list_lock.
3078 * If the cmpxchg does not succeed then we may
3079 * drop the list_lock without any processing.
3080 *
3081 * Otherwise the list_lock will synchronize with
3082 * other processors updating the list of slabs.
3083 */
3084 spin_lock_irqsave(&n->list_lock, flags);
3085
3086 }
2cfb7455 3087 }
81819f0f 3088
2cfb7455
CL
3089 } while (!cmpxchg_double_slab(s, page,
3090 prior, counters,
81084651 3091 head, new.counters,
2cfb7455 3092 "__slab_free"));
81819f0f 3093
2cfb7455 3094 if (likely(!n)) {
49e22585 3095
c270cf30
AW
3096 if (likely(was_frozen)) {
3097 /*
3098 * The list lock was not taken therefore no list
3099 * activity can be necessary.
3100 */
3101 stat(s, FREE_FROZEN);
3102 } else if (new.frozen) {
3103 /*
3104 * If we just froze the page then put it onto the
3105 * per cpu partial list.
3106 */
49e22585 3107 put_cpu_partial(s, page, 1);
8028dcea
AS
3108 stat(s, CPU_PARTIAL_FREE);
3109 }
c270cf30 3110
b455def2
L
3111 return;
3112 }
81819f0f 3113
8a5b20ae 3114 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
3115 goto slab_empty;
3116
81819f0f 3117 /*
837d678d
JK
3118 * Objects left in the slab. If it was not on the partial list before
3119 * then add it.
81819f0f 3120 */
345c905d 3121 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 3122 remove_full(s, n, page);
837d678d
JK
3123 add_partial(n, page, DEACTIVATE_TO_TAIL);
3124 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 3125 }
80f08c19 3126 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
3127 return;
3128
3129slab_empty:
a973e9dd 3130 if (prior) {
81819f0f 3131 /*
6fbabb20 3132 * Slab on the partial list.
81819f0f 3133 */
5cc6eee8 3134 remove_partial(n, page);
84e554e6 3135 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 3136 } else {
6fbabb20 3137 /* Slab must be on the full list */
c65c1877
PZ
3138 remove_full(s, n, page);
3139 }
2cfb7455 3140
80f08c19 3141 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 3142 stat(s, FREE_SLAB);
81819f0f 3143 discard_slab(s, page);
81819f0f
CL
3144}
3145
894b8788
CL
3146/*
3147 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3148 * can perform fastpath freeing without additional function calls.
3149 *
3150 * The fastpath is only possible if we are freeing to the current cpu slab
3151 * of this processor. This typically the case if we have just allocated
3152 * the item before.
3153 *
3154 * If fastpath is not possible then fall back to __slab_free where we deal
3155 * with all sorts of special processing.
81084651
JDB
3156 *
3157 * Bulk free of a freelist with several objects (all pointing to the
3158 * same page) possible by specifying head and tail ptr, plus objects
3159 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 3160 */
80a9201a
AP
3161static __always_inline void do_slab_free(struct kmem_cache *s,
3162 struct page *page, void *head, void *tail,
3163 int cnt, unsigned long addr)
894b8788 3164{
81084651 3165 void *tail_obj = tail ? : head;
dfb4f096 3166 struct kmem_cache_cpu *c;
8a5ec0ba 3167 unsigned long tid;
964d4bd3 3168
d1b2cf6c 3169 memcg_slab_free_hook(s, &head, 1);
8a5ec0ba
CL
3170redo:
3171 /*
3172 * Determine the currently cpus per cpu slab.
3173 * The cpu may change afterward. However that does not matter since
3174 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3175 * during the cmpxchg then the free will succeed.
8a5ec0ba 3176 */
9aabf810
JK
3177 do {
3178 tid = this_cpu_read(s->cpu_slab->tid);
3179 c = raw_cpu_ptr(s->cpu_slab);
923717cb 3180 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 3181 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 3182
9aabf810
JK
3183 /* Same with comment on barrier() in slab_alloc_node() */
3184 barrier();
c016b0bd 3185
442b06bc 3186 if (likely(page == c->page)) {
5076190d
LT
3187 void **freelist = READ_ONCE(c->freelist);
3188
3189 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3190
933393f5 3191 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba 3192 s->cpu_slab->freelist, s->cpu_slab->tid,
5076190d 3193 freelist, tid,
81084651 3194 head, next_tid(tid)))) {
8a5ec0ba
CL
3195
3196 note_cmpxchg_failure("slab_free", s, tid);
3197 goto redo;
3198 }
84e554e6 3199 stat(s, FREE_FASTPATH);
894b8788 3200 } else
81084651 3201 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 3202
894b8788
CL
3203}
3204
80a9201a
AP
3205static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3206 void *head, void *tail, int cnt,
3207 unsigned long addr)
3208{
80a9201a 3209 /*
c3895391
AK
3210 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3211 * to remove objects, whose reuse must be delayed.
80a9201a 3212 */
c3895391
AK
3213 if (slab_free_freelist_hook(s, &head, &tail))
3214 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3215}
3216
2bd926b4 3217#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3218void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3219{
3220 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3221}
3222#endif
3223
81819f0f
CL
3224void kmem_cache_free(struct kmem_cache *s, void *x)
3225{
b9ce5ef4
GC
3226 s = cache_from_obj(s, x);
3227 if (!s)
79576102 3228 return;
81084651 3229 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3544de8e 3230 trace_kmem_cache_free(_RET_IP_, x, s->name);
81819f0f
CL
3231}
3232EXPORT_SYMBOL(kmem_cache_free);
3233
d0ecd894 3234struct detached_freelist {
fbd02630 3235 struct page *page;
d0ecd894
JDB
3236 void *tail;
3237 void *freelist;
3238 int cnt;
376bf125 3239 struct kmem_cache *s;
d0ecd894 3240};
fbd02630 3241
1ed7ce57 3242static inline void free_nonslab_page(struct page *page, void *object)
f227f0fa
SB
3243{
3244 unsigned int order = compound_order(page);
3245
3246 VM_BUG_ON_PAGE(!PageCompound(page), page);
1ed7ce57 3247 kfree_hook(object);
f227f0fa
SB
3248 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, -(PAGE_SIZE << order));
3249 __free_pages(page, order);
3250}
3251
d0ecd894
JDB
3252/*
3253 * This function progressively scans the array with free objects (with
3254 * a limited look ahead) and extract objects belonging to the same
3255 * page. It builds a detached freelist directly within the given
3256 * page/objects. This can happen without any need for
3257 * synchronization, because the objects are owned by running process.
3258 * The freelist is build up as a single linked list in the objects.
3259 * The idea is, that this detached freelist can then be bulk
3260 * transferred to the real freelist(s), but only requiring a single
3261 * synchronization primitive. Look ahead in the array is limited due
3262 * to performance reasons.
3263 */
376bf125
JDB
3264static inline
3265int build_detached_freelist(struct kmem_cache *s, size_t size,
3266 void **p, struct detached_freelist *df)
d0ecd894
JDB
3267{
3268 size_t first_skipped_index = 0;
3269 int lookahead = 3;
3270 void *object;
ca257195 3271 struct page *page;
fbd02630 3272
d0ecd894
JDB
3273 /* Always re-init detached_freelist */
3274 df->page = NULL;
fbd02630 3275
d0ecd894
JDB
3276 do {
3277 object = p[--size];
ca257195 3278 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3279 } while (!object && size);
3eed034d 3280
d0ecd894
JDB
3281 if (!object)
3282 return 0;
fbd02630 3283
ca257195
JDB
3284 page = virt_to_head_page(object);
3285 if (!s) {
3286 /* Handle kalloc'ed objects */
3287 if (unlikely(!PageSlab(page))) {
1ed7ce57 3288 free_nonslab_page(page, object);
ca257195
JDB
3289 p[size] = NULL; /* mark object processed */
3290 return size;
3291 }
3292 /* Derive kmem_cache from object */
3293 df->s = page->slab_cache;
3294 } else {
3295 df->s = cache_from_obj(s, object); /* Support for memcg */
3296 }
376bf125 3297
b89fb5ef 3298 if (is_kfence_address(object)) {
d57a964e 3299 slab_free_hook(df->s, object, false);
b89fb5ef
AP
3300 __kfence_free(object);
3301 p[size] = NULL; /* mark object processed */
3302 return size;
3303 }
3304
d0ecd894 3305 /* Start new detached freelist */
ca257195 3306 df->page = page;
376bf125 3307 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3308 df->tail = object;
3309 df->freelist = object;
3310 p[size] = NULL; /* mark object processed */
3311 df->cnt = 1;
3312
3313 while (size) {
3314 object = p[--size];
3315 if (!object)
3316 continue; /* Skip processed objects */
3317
3318 /* df->page is always set at this point */
3319 if (df->page == virt_to_head_page(object)) {
3320 /* Opportunity build freelist */
376bf125 3321 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3322 df->freelist = object;
3323 df->cnt++;
3324 p[size] = NULL; /* mark object processed */
3325
3326 continue;
fbd02630 3327 }
d0ecd894
JDB
3328
3329 /* Limit look ahead search */
3330 if (!--lookahead)
3331 break;
3332
3333 if (!first_skipped_index)
3334 first_skipped_index = size + 1;
fbd02630 3335 }
d0ecd894
JDB
3336
3337 return first_skipped_index;
3338}
3339
d0ecd894 3340/* Note that interrupts must be enabled when calling this function. */
376bf125 3341void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3342{
3343 if (WARN_ON(!size))
3344 return;
3345
d1b2cf6c 3346 memcg_slab_free_hook(s, p, size);
d0ecd894
JDB
3347 do {
3348 struct detached_freelist df;
3349
3350 size = build_detached_freelist(s, size, p, &df);
84582c8a 3351 if (!df.page)
d0ecd894
JDB
3352 continue;
3353
457c82c3 3354 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
d0ecd894 3355 } while (likely(size));
484748f0
CL
3356}
3357EXPORT_SYMBOL(kmem_cache_free_bulk);
3358
994eb764 3359/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3360int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3361 void **p)
484748f0 3362{
994eb764
JDB
3363 struct kmem_cache_cpu *c;
3364 int i;
964d4bd3 3365 struct obj_cgroup *objcg = NULL;
994eb764 3366
03ec0ed5 3367 /* memcg and kmem_cache debug support */
964d4bd3 3368 s = slab_pre_alloc_hook(s, &objcg, size, flags);
03ec0ed5
JDB
3369 if (unlikely(!s))
3370 return false;
994eb764
JDB
3371 /*
3372 * Drain objects in the per cpu slab, while disabling local
3373 * IRQs, which protects against PREEMPT and interrupts
3374 * handlers invoking normal fastpath.
3375 */
3376 local_irq_disable();
3377 c = this_cpu_ptr(s->cpu_slab);
3378
3379 for (i = 0; i < size; i++) {
b89fb5ef 3380 void *object = kfence_alloc(s, s->object_size, flags);
994eb764 3381
b89fb5ef
AP
3382 if (unlikely(object)) {
3383 p[i] = object;
3384 continue;
3385 }
3386
3387 object = c->freelist;
ebe909e0 3388 if (unlikely(!object)) {
fd4d9c7d
JH
3389 /*
3390 * We may have removed an object from c->freelist using
3391 * the fastpath in the previous iteration; in that case,
3392 * c->tid has not been bumped yet.
3393 * Since ___slab_alloc() may reenable interrupts while
3394 * allocating memory, we should bump c->tid now.
3395 */
3396 c->tid = next_tid(c->tid);
3397
ebe909e0
JDB
3398 /*
3399 * Invoking slow path likely have side-effect
3400 * of re-populating per CPU c->freelist
3401 */
87098373 3402 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3403 _RET_IP_, c);
87098373
CL
3404 if (unlikely(!p[i]))
3405 goto error;
3406
ebe909e0 3407 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3408 maybe_wipe_obj_freeptr(s, p[i]);
3409
ebe909e0
JDB
3410 continue; /* goto for-loop */
3411 }
994eb764
JDB
3412 c->freelist = get_freepointer(s, object);
3413 p[i] = object;
0f181f9f 3414 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3415 }
3416 c->tid = next_tid(c->tid);
3417 local_irq_enable();
3418
da844b78
AK
3419 /*
3420 * memcg and kmem_cache debug support and memory initialization.
3421 * Done outside of the IRQ disabled fastpath loop.
3422 */
3423 slab_post_alloc_hook(s, objcg, flags, size, p,
3424 slab_want_init_on_alloc(flags, s));
865762a8 3425 return i;
87098373 3426error:
87098373 3427 local_irq_enable();
da844b78 3428 slab_post_alloc_hook(s, objcg, flags, i, p, false);
03ec0ed5 3429 __kmem_cache_free_bulk(s, i, p);
865762a8 3430 return 0;
484748f0
CL
3431}
3432EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3433
3434
81819f0f 3435/*
672bba3a
CL
3436 * Object placement in a slab is made very easy because we always start at
3437 * offset 0. If we tune the size of the object to the alignment then we can
3438 * get the required alignment by putting one properly sized object after
3439 * another.
81819f0f
CL
3440 *
3441 * Notice that the allocation order determines the sizes of the per cpu
3442 * caches. Each processor has always one slab available for allocations.
3443 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3444 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3445 * locking overhead.
81819f0f
CL
3446 */
3447
3448/*
f0953a1b 3449 * Minimum / Maximum order of slab pages. This influences locking overhead
81819f0f
CL
3450 * and slab fragmentation. A higher order reduces the number of partial slabs
3451 * and increases the number of allocations possible without having to
3452 * take the list_lock.
3453 */
19af27af
AD
3454static unsigned int slub_min_order;
3455static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3456static unsigned int slub_min_objects;
81819f0f 3457
81819f0f
CL
3458/*
3459 * Calculate the order of allocation given an slab object size.
3460 *
672bba3a
CL
3461 * The order of allocation has significant impact on performance and other
3462 * system components. Generally order 0 allocations should be preferred since
3463 * order 0 does not cause fragmentation in the page allocator. Larger objects
3464 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3465 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3466 * would be wasted.
3467 *
3468 * In order to reach satisfactory performance we must ensure that a minimum
3469 * number of objects is in one slab. Otherwise we may generate too much
3470 * activity on the partial lists which requires taking the list_lock. This is
3471 * less a concern for large slabs though which are rarely used.
81819f0f 3472 *
672bba3a
CL
3473 * slub_max_order specifies the order where we begin to stop considering the
3474 * number of objects in a slab as critical. If we reach slub_max_order then
3475 * we try to keep the page order as low as possible. So we accept more waste
3476 * of space in favor of a small page order.
81819f0f 3477 *
672bba3a
CL
3478 * Higher order allocations also allow the placement of more objects in a
3479 * slab and thereby reduce object handling overhead. If the user has
dc84207d 3480 * requested a higher minimum order then we start with that one instead of
672bba3a 3481 * the smallest order which will fit the object.
81819f0f 3482 */
19af27af
AD
3483static inline unsigned int slab_order(unsigned int size,
3484 unsigned int min_objects, unsigned int max_order,
9736d2a9 3485 unsigned int fract_leftover)
81819f0f 3486{
19af27af
AD
3487 unsigned int min_order = slub_min_order;
3488 unsigned int order;
81819f0f 3489
9736d2a9 3490 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3491 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3492
9736d2a9 3493 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3494 order <= max_order; order++) {
81819f0f 3495
19af27af
AD
3496 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3497 unsigned int rem;
81819f0f 3498
9736d2a9 3499 rem = slab_size % size;
81819f0f 3500
5e6d444e 3501 if (rem <= slab_size / fract_leftover)
81819f0f 3502 break;
81819f0f 3503 }
672bba3a 3504
81819f0f
CL
3505 return order;
3506}
3507
9736d2a9 3508static inline int calculate_order(unsigned int size)
5e6d444e 3509{
19af27af
AD
3510 unsigned int order;
3511 unsigned int min_objects;
3512 unsigned int max_objects;
3286222f 3513 unsigned int nr_cpus;
5e6d444e
CL
3514
3515 /*
3516 * Attempt to find best configuration for a slab. This
3517 * works by first attempting to generate a layout with
3518 * the best configuration and backing off gradually.
3519 *
422ff4d7 3520 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3521 * we reduce the minimum objects required in a slab.
3522 */
3523 min_objects = slub_min_objects;
3286222f
VB
3524 if (!min_objects) {
3525 /*
3526 * Some architectures will only update present cpus when
3527 * onlining them, so don't trust the number if it's just 1. But
3528 * we also don't want to use nr_cpu_ids always, as on some other
3529 * architectures, there can be many possible cpus, but never
3530 * onlined. Here we compromise between trying to avoid too high
3531 * order on systems that appear larger than they are, and too
3532 * low order on systems that appear smaller than they are.
3533 */
3534 nr_cpus = num_present_cpus();
3535 if (nr_cpus <= 1)
3536 nr_cpus = nr_cpu_ids;
3537 min_objects = 4 * (fls(nr_cpus) + 1);
3538 }
9736d2a9 3539 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3540 min_objects = min(min_objects, max_objects);
3541
5e6d444e 3542 while (min_objects > 1) {
19af27af
AD
3543 unsigned int fraction;
3544
c124f5b5 3545 fraction = 16;
5e6d444e
CL
3546 while (fraction >= 4) {
3547 order = slab_order(size, min_objects,
9736d2a9 3548 slub_max_order, fraction);
5e6d444e
CL
3549 if (order <= slub_max_order)
3550 return order;
3551 fraction /= 2;
3552 }
5086c389 3553 min_objects--;
5e6d444e
CL
3554 }
3555
3556 /*
3557 * We were unable to place multiple objects in a slab. Now
3558 * lets see if we can place a single object there.
3559 */
9736d2a9 3560 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3561 if (order <= slub_max_order)
3562 return order;
3563
3564 /*
3565 * Doh this slab cannot be placed using slub_max_order.
3566 */
9736d2a9 3567 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3568 if (order < MAX_ORDER)
5e6d444e
CL
3569 return order;
3570 return -ENOSYS;
3571}
3572
5595cffc 3573static void
4053497d 3574init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3575{
3576 n->nr_partial = 0;
81819f0f
CL
3577 spin_lock_init(&n->list_lock);
3578 INIT_LIST_HEAD(&n->partial);
8ab1372f 3579#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3580 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3581 atomic_long_set(&n->total_objects, 0);
643b1138 3582 INIT_LIST_HEAD(&n->full);
8ab1372f 3583#endif
81819f0f
CL
3584}
3585
55136592 3586static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3587{
6c182dc0 3588 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3589 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3590
8a5ec0ba 3591 /*
d4d84fef
CM
3592 * Must align to double word boundary for the double cmpxchg
3593 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3594 */
d4d84fef
CM
3595 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3596 2 * sizeof(void *));
8a5ec0ba
CL
3597
3598 if (!s->cpu_slab)
3599 return 0;
3600
3601 init_kmem_cache_cpus(s);
4c93c355 3602
8a5ec0ba 3603 return 1;
4c93c355 3604}
4c93c355 3605
51df1142
CL
3606static struct kmem_cache *kmem_cache_node;
3607
81819f0f
CL
3608/*
3609 * No kmalloc_node yet so do it by hand. We know that this is the first
3610 * slab on the node for this slabcache. There are no concurrent accesses
3611 * possible.
3612 *
721ae22a
ZYW
3613 * Note that this function only works on the kmem_cache_node
3614 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3615 * memory on a fresh node that has no slab structures yet.
81819f0f 3616 */
55136592 3617static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3618{
3619 struct page *page;
3620 struct kmem_cache_node *n;
3621
51df1142 3622 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3623
51df1142 3624 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3625
3626 BUG_ON(!page);
a2f92ee7 3627 if (page_to_nid(page) != node) {
f9f58285
FF
3628 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3629 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3630 }
3631
81819f0f
CL
3632 n = page->freelist;
3633 BUG_ON(!n);
8ab1372f 3634#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3635 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3636 init_tracking(kmem_cache_node, n);
8ab1372f 3637#endif
da844b78 3638 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
12b22386
AK
3639 page->freelist = get_freepointer(kmem_cache_node, n);
3640 page->inuse = 1;
3641 page->frozen = 0;
3642 kmem_cache_node->node[node] = n;
4053497d 3643 init_kmem_cache_node(n);
51df1142 3644 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3645
67b6c900 3646 /*
1e4dd946
SR
3647 * No locks need to be taken here as it has just been
3648 * initialized and there is no concurrent access.
67b6c900 3649 */
1e4dd946 3650 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3651}
3652
3653static void free_kmem_cache_nodes(struct kmem_cache *s)
3654{
3655 int node;
fa45dc25 3656 struct kmem_cache_node *n;
81819f0f 3657
fa45dc25 3658 for_each_kmem_cache_node(s, node, n) {
81819f0f 3659 s->node[node] = NULL;
ea37df54 3660 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3661 }
3662}
3663
52b4b950
DS
3664void __kmem_cache_release(struct kmem_cache *s)
3665{
210e7a43 3666 cache_random_seq_destroy(s);
52b4b950
DS
3667 free_percpu(s->cpu_slab);
3668 free_kmem_cache_nodes(s);
3669}
3670
55136592 3671static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3672{
3673 int node;
81819f0f 3674
7e1fa93d 3675 for_each_node_mask(node, slab_nodes) {
81819f0f
CL
3676 struct kmem_cache_node *n;
3677
73367bd8 3678 if (slab_state == DOWN) {
55136592 3679 early_kmem_cache_node_alloc(node);
73367bd8
AD
3680 continue;
3681 }
51df1142 3682 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3683 GFP_KERNEL, node);
81819f0f 3684
73367bd8
AD
3685 if (!n) {
3686 free_kmem_cache_nodes(s);
3687 return 0;
81819f0f 3688 }
73367bd8 3689
4053497d 3690 init_kmem_cache_node(n);
ea37df54 3691 s->node[node] = n;
81819f0f
CL
3692 }
3693 return 1;
3694}
81819f0f 3695
c0bdb232 3696static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3697{
3698 if (min < MIN_PARTIAL)
3699 min = MIN_PARTIAL;
3700 else if (min > MAX_PARTIAL)
3701 min = MAX_PARTIAL;
3702 s->min_partial = min;
3703}
3704
e6d0e1dc
WY
3705static void set_cpu_partial(struct kmem_cache *s)
3706{
3707#ifdef CONFIG_SLUB_CPU_PARTIAL
3708 /*
3709 * cpu_partial determined the maximum number of objects kept in the
3710 * per cpu partial lists of a processor.
3711 *
3712 * Per cpu partial lists mainly contain slabs that just have one
3713 * object freed. If they are used for allocation then they can be
3714 * filled up again with minimal effort. The slab will never hit the
3715 * per node partial lists and therefore no locking will be required.
3716 *
3717 * This setting also determines
3718 *
3719 * A) The number of objects from per cpu partial slabs dumped to the
3720 * per node list when we reach the limit.
3721 * B) The number of objects in cpu partial slabs to extract from the
3722 * per node list when we run out of per cpu objects. We only fetch
3723 * 50% to keep some capacity around for frees.
3724 */
3725 if (!kmem_cache_has_cpu_partial(s))
bbd4e305 3726 slub_set_cpu_partial(s, 0);
e6d0e1dc 3727 else if (s->size >= PAGE_SIZE)
bbd4e305 3728 slub_set_cpu_partial(s, 2);
e6d0e1dc 3729 else if (s->size >= 1024)
bbd4e305 3730 slub_set_cpu_partial(s, 6);
e6d0e1dc 3731 else if (s->size >= 256)
bbd4e305 3732 slub_set_cpu_partial(s, 13);
e6d0e1dc 3733 else
bbd4e305 3734 slub_set_cpu_partial(s, 30);
e6d0e1dc
WY
3735#endif
3736}
3737
81819f0f
CL
3738/*
3739 * calculate_sizes() determines the order and the distribution of data within
3740 * a slab object.
3741 */
06b285dc 3742static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3743{
d50112ed 3744 slab_flags_t flags = s->flags;
be4a7988 3745 unsigned int size = s->object_size;
19af27af 3746 unsigned int order;
81819f0f 3747
d8b42bf5
CL
3748 /*
3749 * Round up object size to the next word boundary. We can only
3750 * place the free pointer at word boundaries and this determines
3751 * the possible location of the free pointer.
3752 */
3753 size = ALIGN(size, sizeof(void *));
3754
3755#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3756 /*
3757 * Determine if we can poison the object itself. If the user of
3758 * the slab may touch the object after free or before allocation
3759 * then we should never poison the object itself.
3760 */
5f0d5a3a 3761 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3762 !s->ctor)
81819f0f
CL
3763 s->flags |= __OBJECT_POISON;
3764 else
3765 s->flags &= ~__OBJECT_POISON;
3766
81819f0f
CL
3767
3768 /*
672bba3a 3769 * If we are Redzoning then check if there is some space between the
81819f0f 3770 * end of the object and the free pointer. If not then add an
672bba3a 3771 * additional word to have some bytes to store Redzone information.
81819f0f 3772 */
3b0efdfa 3773 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3774 size += sizeof(void *);
41ecc55b 3775#endif
81819f0f
CL
3776
3777 /*
672bba3a 3778 * With that we have determined the number of bytes in actual use
e41a49fa 3779 * by the object and redzoning.
81819f0f
CL
3780 */
3781 s->inuse = size;
3782
74c1d3e0
KC
3783 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3784 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
3785 s->ctor) {
81819f0f
CL
3786 /*
3787 * Relocate free pointer after the object if it is not
3788 * permitted to overwrite the first word of the object on
3789 * kmem_cache_free.
3790 *
3791 * This is the case if we do RCU, have a constructor or
74c1d3e0
KC
3792 * destructor, are poisoning the objects, or are
3793 * redzoning an object smaller than sizeof(void *).
cbfc35a4
WL
3794 *
3795 * The assumption that s->offset >= s->inuse means free
3796 * pointer is outside of the object is used in the
3797 * freeptr_outside_object() function. If that is no
3798 * longer true, the function needs to be modified.
81819f0f
CL
3799 */
3800 s->offset = size;
3801 size += sizeof(void *);
e41a49fa 3802 } else {
3202fa62
KC
3803 /*
3804 * Store freelist pointer near middle of object to keep
3805 * it away from the edges of the object to avoid small
3806 * sized over/underflows from neighboring allocations.
3807 */
e41a49fa 3808 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
81819f0f
CL
3809 }
3810
c12b3c62 3811#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3812 if (flags & SLAB_STORE_USER)
3813 /*
3814 * Need to store information about allocs and frees after
3815 * the object.
3816 */
3817 size += 2 * sizeof(struct track);
80a9201a 3818#endif
81819f0f 3819
80a9201a
AP
3820 kasan_cache_create(s, &size, &s->flags);
3821#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3822 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3823 /*
3824 * Add some empty padding so that we can catch
3825 * overwrites from earlier objects rather than let
3826 * tracking information or the free pointer be
0211a9c8 3827 * corrupted if a user writes before the start
81819f0f
CL
3828 * of the object.
3829 */
3830 size += sizeof(void *);
d86bd1be
JK
3831
3832 s->red_left_pad = sizeof(void *);
3833 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3834 size += s->red_left_pad;
3835 }
41ecc55b 3836#endif
672bba3a 3837
81819f0f
CL
3838 /*
3839 * SLUB stores one object immediately after another beginning from
3840 * offset 0. In order to align the objects we have to simply size
3841 * each object to conform to the alignment.
3842 */
45906855 3843 size = ALIGN(size, s->align);
81819f0f 3844 s->size = size;
4138fdfc 3845 s->reciprocal_size = reciprocal_value(size);
06b285dc
CL
3846 if (forced_order >= 0)
3847 order = forced_order;
3848 else
9736d2a9 3849 order = calculate_order(size);
81819f0f 3850
19af27af 3851 if ((int)order < 0)
81819f0f
CL
3852 return 0;
3853
b7a49f0d 3854 s->allocflags = 0;
834f3d11 3855 if (order)
b7a49f0d
CL
3856 s->allocflags |= __GFP_COMP;
3857
3858 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3859 s->allocflags |= GFP_DMA;
b7a49f0d 3860
6d6ea1e9
NB
3861 if (s->flags & SLAB_CACHE_DMA32)
3862 s->allocflags |= GFP_DMA32;
3863
b7a49f0d
CL
3864 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3865 s->allocflags |= __GFP_RECLAIMABLE;
3866
81819f0f
CL
3867 /*
3868 * Determine the number of objects per slab
3869 */
9736d2a9
MW
3870 s->oo = oo_make(order, size);
3871 s->min = oo_make(get_order(size), size);
205ab99d
CL
3872 if (oo_objects(s->oo) > oo_objects(s->max))
3873 s->max = s->oo;
81819f0f 3874
834f3d11 3875 return !!oo_objects(s->oo);
81819f0f
CL
3876}
3877
d50112ed 3878static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3879{
37540008 3880 s->flags = kmem_cache_flags(s->size, flags, s->name);
2482ddec
KC
3881#ifdef CONFIG_SLAB_FREELIST_HARDENED
3882 s->random = get_random_long();
3883#endif
81819f0f 3884
06b285dc 3885 if (!calculate_sizes(s, -1))
81819f0f 3886 goto error;
3de47213
DR
3887 if (disable_higher_order_debug) {
3888 /*
3889 * Disable debugging flags that store metadata if the min slab
3890 * order increased.
3891 */
3b0efdfa 3892 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3893 s->flags &= ~DEBUG_METADATA_FLAGS;
3894 s->offset = 0;
3895 if (!calculate_sizes(s, -1))
3896 goto error;
3897 }
3898 }
81819f0f 3899
2565409f
HC
3900#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3901 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3902 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3903 /* Enable fast mode */
3904 s->flags |= __CMPXCHG_DOUBLE;
3905#endif
3906
3b89d7d8
DR
3907 /*
3908 * The larger the object size is, the more pages we want on the partial
3909 * list to avoid pounding the page allocator excessively.
3910 */
49e22585
CL
3911 set_min_partial(s, ilog2(s->size) / 2);
3912
e6d0e1dc 3913 set_cpu_partial(s);
49e22585 3914
81819f0f 3915#ifdef CONFIG_NUMA
e2cb96b7 3916 s->remote_node_defrag_ratio = 1000;
81819f0f 3917#endif
210e7a43
TG
3918
3919 /* Initialize the pre-computed randomized freelist if slab is up */
3920 if (slab_state >= UP) {
3921 if (init_cache_random_seq(s))
3922 goto error;
3923 }
3924
55136592 3925 if (!init_kmem_cache_nodes(s))
dfb4f096 3926 goto error;
81819f0f 3927
55136592 3928 if (alloc_kmem_cache_cpus(s))
278b1bb1 3929 return 0;
ff12059e 3930
4c93c355 3931 free_kmem_cache_nodes(s);
81819f0f 3932error:
278b1bb1 3933 return -EINVAL;
81819f0f 3934}
81819f0f 3935
33b12c38 3936static void list_slab_objects(struct kmem_cache *s, struct page *page,
55860d96 3937 const char *text)
33b12c38
CL
3938{
3939#ifdef CONFIG_SLUB_DEBUG
3940 void *addr = page_address(page);
55860d96 3941 unsigned long *map;
33b12c38 3942 void *p;
aa456c7a 3943
945cf2b6 3944 slab_err(s, page, text, s->name);
33b12c38 3945 slab_lock(page);
33b12c38 3946
90e9f6a6 3947 map = get_map(s, page);
33b12c38
CL
3948 for_each_object(p, s, addr, page->objects) {
3949
4138fdfc 3950 if (!test_bit(__obj_to_index(s, addr, p), map)) {
96b94abc 3951 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3952 print_tracking(s, p);
3953 }
3954 }
55860d96 3955 put_map(map);
33b12c38
CL
3956 slab_unlock(page);
3957#endif
3958}
3959
81819f0f 3960/*
599870b1 3961 * Attempt to free all partial slabs on a node.
52b4b950
DS
3962 * This is called from __kmem_cache_shutdown(). We must take list_lock
3963 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3964 */
599870b1 3965static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3966{
60398923 3967 LIST_HEAD(discard);
81819f0f
CL
3968 struct page *page, *h;
3969
52b4b950
DS
3970 BUG_ON(irqs_disabled());
3971 spin_lock_irq(&n->list_lock);
916ac052 3972 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 3973 if (!page->inuse) {
52b4b950 3974 remove_partial(n, page);
916ac052 3975 list_add(&page->slab_list, &discard);
33b12c38
CL
3976 } else {
3977 list_slab_objects(s, page,
55860d96 3978 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3979 }
33b12c38 3980 }
52b4b950 3981 spin_unlock_irq(&n->list_lock);
60398923 3982
916ac052 3983 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 3984 discard_slab(s, page);
81819f0f
CL
3985}
3986
f9e13c0a
SB
3987bool __kmem_cache_empty(struct kmem_cache *s)
3988{
3989 int node;
3990 struct kmem_cache_node *n;
3991
3992 for_each_kmem_cache_node(s, node, n)
3993 if (n->nr_partial || slabs_node(s, node))
3994 return false;
3995 return true;
3996}
3997
81819f0f 3998/*
672bba3a 3999 * Release all resources used by a slab cache.
81819f0f 4000 */
52b4b950 4001int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
4002{
4003 int node;
fa45dc25 4004 struct kmem_cache_node *n;
81819f0f
CL
4005
4006 flush_all(s);
81819f0f 4007 /* Attempt to free all objects */
fa45dc25 4008 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
4009 free_partial(s, n);
4010 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
4011 return 1;
4012 }
81819f0f
CL
4013 return 0;
4014}
4015
5bb1bb35 4016#ifdef CONFIG_PRINTK
8e7f37f2
PM
4017void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
4018{
4019 void *base;
4020 int __maybe_unused i;
4021 unsigned int objnr;
4022 void *objp;
4023 void *objp0;
4024 struct kmem_cache *s = page->slab_cache;
4025 struct track __maybe_unused *trackp;
4026
4027 kpp->kp_ptr = object;
4028 kpp->kp_page = page;
4029 kpp->kp_slab_cache = s;
4030 base = page_address(page);
4031 objp0 = kasan_reset_tag(object);
4032#ifdef CONFIG_SLUB_DEBUG
4033 objp = restore_red_left(s, objp0);
4034#else
4035 objp = objp0;
4036#endif
4037 objnr = obj_to_index(s, page, objp);
4038 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4039 objp = base + s->size * objnr;
4040 kpp->kp_objp = objp;
4041 if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
4042 !(s->flags & SLAB_STORE_USER))
4043 return;
4044#ifdef CONFIG_SLUB_DEBUG
0cbc124b 4045 objp = fixup_red_left(s, objp);
8e7f37f2
PM
4046 trackp = get_track(s, objp, TRACK_ALLOC);
4047 kpp->kp_ret = (void *)trackp->addr;
ae14c63a
LT
4048#ifdef CONFIG_STACKTRACE
4049 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4050 kpp->kp_stack[i] = (void *)trackp->addrs[i];
4051 if (!kpp->kp_stack[i])
4052 break;
4053 }
78869146 4054
ae14c63a
LT
4055 trackp = get_track(s, objp, TRACK_FREE);
4056 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4057 kpp->kp_free_stack[i] = (void *)trackp->addrs[i];
4058 if (!kpp->kp_free_stack[i])
4059 break;
e548eaa1 4060 }
8e7f37f2
PM
4061#endif
4062#endif
4063}
5bb1bb35 4064#endif
8e7f37f2 4065
81819f0f
CL
4066/********************************************************************
4067 * Kmalloc subsystem
4068 *******************************************************************/
4069
81819f0f
CL
4070static int __init setup_slub_min_order(char *str)
4071{
19af27af 4072 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
4073
4074 return 1;
4075}
4076
4077__setup("slub_min_order=", setup_slub_min_order);
4078
4079static int __init setup_slub_max_order(char *str)
4080{
19af27af
AD
4081 get_option(&str, (int *)&slub_max_order);
4082 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
4083
4084 return 1;
4085}
4086
4087__setup("slub_max_order=", setup_slub_max_order);
4088
4089static int __init setup_slub_min_objects(char *str)
4090{
19af27af 4091 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
4092
4093 return 1;
4094}
4095
4096__setup("slub_min_objects=", setup_slub_min_objects);
4097
81819f0f
CL
4098void *__kmalloc(size_t size, gfp_t flags)
4099{
aadb4bc4 4100 struct kmem_cache *s;
5b882be4 4101 void *ret;
81819f0f 4102
95a05b42 4103 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 4104 return kmalloc_large(size, flags);
aadb4bc4 4105
2c59dd65 4106 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4107
4108 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4109 return s;
4110
b89fb5ef 4111 ret = slab_alloc(s, flags, _RET_IP_, size);
5b882be4 4112
ca2b84cb 4113 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 4114
0116523c 4115 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4116
5b882be4 4117 return ret;
81819f0f
CL
4118}
4119EXPORT_SYMBOL(__kmalloc);
4120
5d1f57e4 4121#ifdef CONFIG_NUMA
f619cfe1
CL
4122static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4123{
b1eeab67 4124 struct page *page;
e4f7c0b4 4125 void *ptr = NULL;
6a486c0a 4126 unsigned int order = get_order(size);
f619cfe1 4127
75f296d9 4128 flags |= __GFP_COMP;
6a486c0a
VB
4129 page = alloc_pages_node(node, flags, order);
4130 if (page) {
e4f7c0b4 4131 ptr = page_address(page);
96403bfe
MS
4132 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4133 PAGE_SIZE << order);
6a486c0a 4134 }
e4f7c0b4 4135
0116523c 4136 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
4137}
4138
81819f0f
CL
4139void *__kmalloc_node(size_t size, gfp_t flags, int node)
4140{
aadb4bc4 4141 struct kmem_cache *s;
5b882be4 4142 void *ret;
81819f0f 4143
95a05b42 4144 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
4145 ret = kmalloc_large_node(size, flags, node);
4146
ca2b84cb
EGM
4147 trace_kmalloc_node(_RET_IP_, ret,
4148 size, PAGE_SIZE << get_order(size),
4149 flags, node);
5b882be4
EGM
4150
4151 return ret;
4152 }
aadb4bc4 4153
2c59dd65 4154 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4155
4156 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4157 return s;
4158
b89fb5ef 4159 ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
5b882be4 4160
ca2b84cb 4161 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 4162
0116523c 4163 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4164
5b882be4 4165 return ret;
81819f0f
CL
4166}
4167EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 4168#endif /* CONFIG_NUMA */
81819f0f 4169
ed18adc1
KC
4170#ifdef CONFIG_HARDENED_USERCOPY
4171/*
afcc90f8
KC
4172 * Rejects incorrectly sized objects and objects that are to be copied
4173 * to/from userspace but do not fall entirely within the containing slab
4174 * cache's usercopy region.
ed18adc1
KC
4175 *
4176 * Returns NULL if check passes, otherwise const char * to name of cache
4177 * to indicate an error.
4178 */
f4e6e289
KC
4179void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4180 bool to_user)
ed18adc1
KC
4181{
4182 struct kmem_cache *s;
44065b2e 4183 unsigned int offset;
ed18adc1 4184 size_t object_size;
b89fb5ef 4185 bool is_kfence = is_kfence_address(ptr);
ed18adc1 4186
96fedce2
AK
4187 ptr = kasan_reset_tag(ptr);
4188
ed18adc1
KC
4189 /* Find object and usable object size. */
4190 s = page->slab_cache;
ed18adc1
KC
4191
4192 /* Reject impossible pointers. */
4193 if (ptr < page_address(page))
f4e6e289
KC
4194 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4195 to_user, 0, n);
ed18adc1
KC
4196
4197 /* Find offset within object. */
b89fb5ef
AP
4198 if (is_kfence)
4199 offset = ptr - kfence_object_start(ptr);
4200 else
4201 offset = (ptr - page_address(page)) % s->size;
ed18adc1
KC
4202
4203 /* Adjust for redzone and reject if within the redzone. */
b89fb5ef 4204 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 4205 if (offset < s->red_left_pad)
f4e6e289
KC
4206 usercopy_abort("SLUB object in left red zone",
4207 s->name, to_user, offset, n);
ed18adc1
KC
4208 offset -= s->red_left_pad;
4209 }
4210
afcc90f8
KC
4211 /* Allow address range falling entirely within usercopy region. */
4212 if (offset >= s->useroffset &&
4213 offset - s->useroffset <= s->usersize &&
4214 n <= s->useroffset - offset + s->usersize)
f4e6e289 4215 return;
ed18adc1 4216
afcc90f8
KC
4217 /*
4218 * If the copy is still within the allocated object, produce
4219 * a warning instead of rejecting the copy. This is intended
4220 * to be a temporary method to find any missing usercopy
4221 * whitelists.
4222 */
4223 object_size = slab_ksize(s);
2d891fbc
KC
4224 if (usercopy_fallback &&
4225 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
4226 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4227 return;
4228 }
ed18adc1 4229
f4e6e289 4230 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
4231}
4232#endif /* CONFIG_HARDENED_USERCOPY */
4233
10d1f8cb 4234size_t __ksize(const void *object)
81819f0f 4235{
272c1d21 4236 struct page *page;
81819f0f 4237
ef8b4520 4238 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
4239 return 0;
4240
294a80a8 4241 page = virt_to_head_page(object);
294a80a8 4242
76994412
PE
4243 if (unlikely(!PageSlab(page))) {
4244 WARN_ON(!PageCompound(page));
a50b854e 4245 return page_size(page);
76994412 4246 }
81819f0f 4247
1b4f59e3 4248 return slab_ksize(page->slab_cache);
81819f0f 4249}
10d1f8cb 4250EXPORT_SYMBOL(__ksize);
81819f0f
CL
4251
4252void kfree(const void *x)
4253{
81819f0f 4254 struct page *page;
5bb983b0 4255 void *object = (void *)x;
81819f0f 4256
2121db74
PE
4257 trace_kfree(_RET_IP_, x);
4258
2408c550 4259 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
4260 return;
4261
b49af68f 4262 page = virt_to_head_page(x);
aadb4bc4 4263 if (unlikely(!PageSlab(page))) {
1ed7ce57 4264 free_nonslab_page(page, object);
aadb4bc4
CL
4265 return;
4266 }
81084651 4267 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
4268}
4269EXPORT_SYMBOL(kfree);
4270
832f37f5
VD
4271#define SHRINK_PROMOTE_MAX 32
4272
2086d26a 4273/*
832f37f5
VD
4274 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4275 * up most to the head of the partial lists. New allocations will then
4276 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4277 *
4278 * The slabs with the least items are placed last. This results in them
4279 * being allocated from last increasing the chance that the last objects
4280 * are freed in them.
2086d26a 4281 */
c9fc5864 4282int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
4283{
4284 int node;
4285 int i;
4286 struct kmem_cache_node *n;
4287 struct page *page;
4288 struct page *t;
832f37f5
VD
4289 struct list_head discard;
4290 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4291 unsigned long flags;
ce3712d7 4292 int ret = 0;
2086d26a 4293
2086d26a 4294 flush_all(s);
fa45dc25 4295 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4296 INIT_LIST_HEAD(&discard);
4297 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4298 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4299
4300 spin_lock_irqsave(&n->list_lock, flags);
4301
4302 /*
832f37f5 4303 * Build lists of slabs to discard or promote.
2086d26a 4304 *
672bba3a
CL
4305 * Note that concurrent frees may occur while we hold the
4306 * list_lock. page->inuse here is the upper limit.
2086d26a 4307 */
916ac052 4308 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
4309 int free = page->objects - page->inuse;
4310
4311 /* Do not reread page->inuse */
4312 barrier();
4313
4314 /* We do not keep full slabs on the list */
4315 BUG_ON(free <= 0);
4316
4317 if (free == page->objects) {
916ac052 4318 list_move(&page->slab_list, &discard);
69cb8e6b 4319 n->nr_partial--;
832f37f5 4320 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4321 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4322 }
4323
2086d26a 4324 /*
832f37f5
VD
4325 * Promote the slabs filled up most to the head of the
4326 * partial list.
2086d26a 4327 */
832f37f5
VD
4328 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4329 list_splice(promote + i, &n->partial);
2086d26a 4330
2086d26a 4331 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4332
4333 /* Release empty slabs */
916ac052 4334 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4335 discard_slab(s, page);
ce3712d7
VD
4336
4337 if (slabs_node(s, node))
4338 ret = 1;
2086d26a
CL
4339 }
4340
ce3712d7 4341 return ret;
2086d26a 4342}
2086d26a 4343
b9049e23
YG
4344static int slab_mem_going_offline_callback(void *arg)
4345{
4346 struct kmem_cache *s;
4347
18004c5d 4348 mutex_lock(&slab_mutex);
b9049e23 4349 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4350 __kmem_cache_shrink(s);
18004c5d 4351 mutex_unlock(&slab_mutex);
b9049e23
YG
4352
4353 return 0;
4354}
4355
4356static void slab_mem_offline_callback(void *arg)
4357{
b9049e23
YG
4358 struct memory_notify *marg = arg;
4359 int offline_node;
4360
b9d5ab25 4361 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4362
4363 /*
4364 * If the node still has available memory. we need kmem_cache_node
4365 * for it yet.
4366 */
4367 if (offline_node < 0)
4368 return;
4369
18004c5d 4370 mutex_lock(&slab_mutex);
7e1fa93d 4371 node_clear(offline_node, slab_nodes);
666716fd
VB
4372 /*
4373 * We no longer free kmem_cache_node structures here, as it would be
4374 * racy with all get_node() users, and infeasible to protect them with
4375 * slab_mutex.
4376 */
18004c5d 4377 mutex_unlock(&slab_mutex);
b9049e23
YG
4378}
4379
4380static int slab_mem_going_online_callback(void *arg)
4381{
4382 struct kmem_cache_node *n;
4383 struct kmem_cache *s;
4384 struct memory_notify *marg = arg;
b9d5ab25 4385 int nid = marg->status_change_nid_normal;
b9049e23
YG
4386 int ret = 0;
4387
4388 /*
4389 * If the node's memory is already available, then kmem_cache_node is
4390 * already created. Nothing to do.
4391 */
4392 if (nid < 0)
4393 return 0;
4394
4395 /*
0121c619 4396 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4397 * allocate a kmem_cache_node structure in order to bring the node
4398 * online.
4399 */
18004c5d 4400 mutex_lock(&slab_mutex);
b9049e23 4401 list_for_each_entry(s, &slab_caches, list) {
666716fd
VB
4402 /*
4403 * The structure may already exist if the node was previously
4404 * onlined and offlined.
4405 */
4406 if (get_node(s, nid))
4407 continue;
b9049e23
YG
4408 /*
4409 * XXX: kmem_cache_alloc_node will fallback to other nodes
4410 * since memory is not yet available from the node that
4411 * is brought up.
4412 */
8de66a0c 4413 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4414 if (!n) {
4415 ret = -ENOMEM;
4416 goto out;
4417 }
4053497d 4418 init_kmem_cache_node(n);
b9049e23
YG
4419 s->node[nid] = n;
4420 }
7e1fa93d
VB
4421 /*
4422 * Any cache created after this point will also have kmem_cache_node
4423 * initialized for the new node.
4424 */
4425 node_set(nid, slab_nodes);
b9049e23 4426out:
18004c5d 4427 mutex_unlock(&slab_mutex);
b9049e23
YG
4428 return ret;
4429}
4430
4431static int slab_memory_callback(struct notifier_block *self,
4432 unsigned long action, void *arg)
4433{
4434 int ret = 0;
4435
4436 switch (action) {
4437 case MEM_GOING_ONLINE:
4438 ret = slab_mem_going_online_callback(arg);
4439 break;
4440 case MEM_GOING_OFFLINE:
4441 ret = slab_mem_going_offline_callback(arg);
4442 break;
4443 case MEM_OFFLINE:
4444 case MEM_CANCEL_ONLINE:
4445 slab_mem_offline_callback(arg);
4446 break;
4447 case MEM_ONLINE:
4448 case MEM_CANCEL_OFFLINE:
4449 break;
4450 }
dc19f9db
KH
4451 if (ret)
4452 ret = notifier_from_errno(ret);
4453 else
4454 ret = NOTIFY_OK;
b9049e23
YG
4455 return ret;
4456}
4457
3ac38faa
AM
4458static struct notifier_block slab_memory_callback_nb = {
4459 .notifier_call = slab_memory_callback,
4460 .priority = SLAB_CALLBACK_PRI,
4461};
b9049e23 4462
81819f0f
CL
4463/********************************************************************
4464 * Basic setup of slabs
4465 *******************************************************************/
4466
51df1142
CL
4467/*
4468 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4469 * the page allocator. Allocate them properly then fix up the pointers
4470 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4471 */
4472
dffb4d60 4473static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4474{
4475 int node;
dffb4d60 4476 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4477 struct kmem_cache_node *n;
51df1142 4478
dffb4d60 4479 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4480
7d557b3c
GC
4481 /*
4482 * This runs very early, and only the boot processor is supposed to be
4483 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4484 * IPIs around.
4485 */
4486 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4487 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4488 struct page *p;
4489
916ac052 4490 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4491 p->slab_cache = s;
51df1142 4492
607bf324 4493#ifdef CONFIG_SLUB_DEBUG
916ac052 4494 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4495 p->slab_cache = s;
51df1142 4496#endif
51df1142 4497 }
dffb4d60
CL
4498 list_add(&s->list, &slab_caches);
4499 return s;
51df1142
CL
4500}
4501
81819f0f
CL
4502void __init kmem_cache_init(void)
4503{
dffb4d60
CL
4504 static __initdata struct kmem_cache boot_kmem_cache,
4505 boot_kmem_cache_node;
7e1fa93d 4506 int node;
51df1142 4507
fc8d8620
SG
4508 if (debug_guardpage_minorder())
4509 slub_max_order = 0;
4510
79270291
SB
4511 /* Print slub debugging pointers without hashing */
4512 if (__slub_debug_enabled())
4513 no_hash_pointers_enable(NULL);
4514
dffb4d60
CL
4515 kmem_cache_node = &boot_kmem_cache_node;
4516 kmem_cache = &boot_kmem_cache;
51df1142 4517
7e1fa93d
VB
4518 /*
4519 * Initialize the nodemask for which we will allocate per node
4520 * structures. Here we don't need taking slab_mutex yet.
4521 */
4522 for_each_node_state(node, N_NORMAL_MEMORY)
4523 node_set(node, slab_nodes);
4524
dffb4d60 4525 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4526 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4527
3ac38faa 4528 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4529
4530 /* Able to allocate the per node structures */
4531 slab_state = PARTIAL;
4532
dffb4d60
CL
4533 create_boot_cache(kmem_cache, "kmem_cache",
4534 offsetof(struct kmem_cache, node) +
4535 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4536 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4537
dffb4d60 4538 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4539 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4540
4541 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4542 setup_kmalloc_cache_index_table();
f97d5f63 4543 create_kmalloc_caches(0);
81819f0f 4544
210e7a43
TG
4545 /* Setup random freelists for each cache */
4546 init_freelist_randomization();
4547
a96a87bf
SAS
4548 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4549 slub_cpu_dead);
81819f0f 4550
b9726c26 4551 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4552 cache_line_size(),
81819f0f
CL
4553 slub_min_order, slub_max_order, slub_min_objects,
4554 nr_cpu_ids, nr_node_ids);
4555}
4556
7e85ee0c
PE
4557void __init kmem_cache_init_late(void)
4558{
7e85ee0c
PE
4559}
4560
2633d7a0 4561struct kmem_cache *
f4957d5b 4562__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4563 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4564{
10befea9 4565 struct kmem_cache *s;
81819f0f 4566
a44cb944 4567 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4568 if (s) {
4569 s->refcount++;
84d0ddd6 4570
81819f0f
CL
4571 /*
4572 * Adjust the object sizes so that we clear
4573 * the complete object on kzalloc.
4574 */
1b473f29 4575 s->object_size = max(s->object_size, size);
52ee6d74 4576 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4577
7b8f3b66 4578 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4579 s->refcount--;
cbb79694 4580 s = NULL;
7b8f3b66 4581 }
a0e1d1be 4582 }
6446faa2 4583
cbb79694
CL
4584 return s;
4585}
84c1cf62 4586
d50112ed 4587int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4588{
aac3a166
PE
4589 int err;
4590
4591 err = kmem_cache_open(s, flags);
4592 if (err)
4593 return err;
20cea968 4594
45530c44
CL
4595 /* Mutex is not taken during early boot */
4596 if (slab_state <= UP)
4597 return 0;
4598
aac3a166 4599 err = sysfs_slab_add(s);
aac3a166 4600 if (err)
52b4b950 4601 __kmem_cache_release(s);
20cea968 4602
64dd6849
FM
4603 if (s->flags & SLAB_STORE_USER)
4604 debugfs_slab_add(s);
4605
aac3a166 4606 return err;
81819f0f 4607}
81819f0f 4608
ce71e27c 4609void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4610{
aadb4bc4 4611 struct kmem_cache *s;
94b528d0 4612 void *ret;
aadb4bc4 4613
95a05b42 4614 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4615 return kmalloc_large(size, gfpflags);
4616
2c59dd65 4617 s = kmalloc_slab(size, gfpflags);
81819f0f 4618
2408c550 4619 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4620 return s;
81819f0f 4621
b89fb5ef 4622 ret = slab_alloc(s, gfpflags, caller, size);
94b528d0 4623
25985edc 4624 /* Honor the call site pointer we received. */
ca2b84cb 4625 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4626
4627 return ret;
81819f0f 4628}
fd7cb575 4629EXPORT_SYMBOL(__kmalloc_track_caller);
81819f0f 4630
5d1f57e4 4631#ifdef CONFIG_NUMA
81819f0f 4632void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4633 int node, unsigned long caller)
81819f0f 4634{
aadb4bc4 4635 struct kmem_cache *s;
94b528d0 4636 void *ret;
aadb4bc4 4637
95a05b42 4638 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4639 ret = kmalloc_large_node(size, gfpflags, node);
4640
4641 trace_kmalloc_node(caller, ret,
4642 size, PAGE_SIZE << get_order(size),
4643 gfpflags, node);
4644
4645 return ret;
4646 }
eada35ef 4647
2c59dd65 4648 s = kmalloc_slab(size, gfpflags);
81819f0f 4649
2408c550 4650 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4651 return s;
81819f0f 4652
b89fb5ef 4653 ret = slab_alloc_node(s, gfpflags, node, caller, size);
94b528d0 4654
25985edc 4655 /* Honor the call site pointer we received. */
ca2b84cb 4656 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4657
4658 return ret;
81819f0f 4659}
fd7cb575 4660EXPORT_SYMBOL(__kmalloc_node_track_caller);
5d1f57e4 4661#endif
81819f0f 4662
ab4d5ed5 4663#ifdef CONFIG_SYSFS
205ab99d
CL
4664static int count_inuse(struct page *page)
4665{
4666 return page->inuse;
4667}
4668
4669static int count_total(struct page *page)
4670{
4671 return page->objects;
4672}
ab4d5ed5 4673#endif
205ab99d 4674
ab4d5ed5 4675#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 4676static void validate_slab(struct kmem_cache *s, struct page *page)
53e15af0
CL
4677{
4678 void *p;
a973e9dd 4679 void *addr = page_address(page);
90e9f6a6
YZ
4680 unsigned long *map;
4681
4682 slab_lock(page);
53e15af0 4683
dd98afd4 4684 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
90e9f6a6 4685 goto unlock;
53e15af0
CL
4686
4687 /* Now we know that a valid freelist exists */
90e9f6a6 4688 map = get_map(s, page);
5f80b13a 4689 for_each_object(p, s, addr, page->objects) {
4138fdfc 4690 u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
dd98afd4 4691 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 4692
dd98afd4
YZ
4693 if (!check_object(s, page, p, val))
4694 break;
4695 }
90e9f6a6
YZ
4696 put_map(map);
4697unlock:
881db7fb 4698 slab_unlock(page);
53e15af0
CL
4699}
4700
434e245d 4701static int validate_slab_node(struct kmem_cache *s,
90e9f6a6 4702 struct kmem_cache_node *n)
53e15af0
CL
4703{
4704 unsigned long count = 0;
4705 struct page *page;
4706 unsigned long flags;
4707
4708 spin_lock_irqsave(&n->list_lock, flags);
4709
916ac052 4710 list_for_each_entry(page, &n->partial, slab_list) {
90e9f6a6 4711 validate_slab(s, page);
53e15af0
CL
4712 count++;
4713 }
1f9f78b1 4714 if (count != n->nr_partial) {
f9f58285
FF
4715 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4716 s->name, count, n->nr_partial);
1f9f78b1
OG
4717 slab_add_kunit_errors();
4718 }
53e15af0
CL
4719
4720 if (!(s->flags & SLAB_STORE_USER))
4721 goto out;
4722
916ac052 4723 list_for_each_entry(page, &n->full, slab_list) {
90e9f6a6 4724 validate_slab(s, page);
53e15af0
CL
4725 count++;
4726 }
1f9f78b1 4727 if (count != atomic_long_read(&n->nr_slabs)) {
f9f58285
FF
4728 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4729 s->name, count, atomic_long_read(&n->nr_slabs));
1f9f78b1
OG
4730 slab_add_kunit_errors();
4731 }
53e15af0
CL
4732
4733out:
4734 spin_unlock_irqrestore(&n->list_lock, flags);
4735 return count;
4736}
4737
1f9f78b1 4738long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4739{
4740 int node;
4741 unsigned long count = 0;
fa45dc25 4742 struct kmem_cache_node *n;
53e15af0
CL
4743
4744 flush_all(s);
fa45dc25 4745 for_each_kmem_cache_node(s, node, n)
90e9f6a6
YZ
4746 count += validate_slab_node(s, n);
4747
53e15af0
CL
4748 return count;
4749}
1f9f78b1
OG
4750EXPORT_SYMBOL(validate_slab_cache);
4751
64dd6849 4752#ifdef CONFIG_DEBUG_FS
88a420e4 4753/*
672bba3a 4754 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4755 * and freed.
4756 */
4757
4758struct location {
4759 unsigned long count;
ce71e27c 4760 unsigned long addr;
45edfa58
CL
4761 long long sum_time;
4762 long min_time;
4763 long max_time;
4764 long min_pid;
4765 long max_pid;
174596a0 4766 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4767 nodemask_t nodes;
88a420e4
CL
4768};
4769
4770struct loc_track {
4771 unsigned long max;
4772 unsigned long count;
4773 struct location *loc;
4774};
4775
64dd6849
FM
4776static struct dentry *slab_debugfs_root;
4777
88a420e4
CL
4778static void free_loc_track(struct loc_track *t)
4779{
4780 if (t->max)
4781 free_pages((unsigned long)t->loc,
4782 get_order(sizeof(struct location) * t->max));
4783}
4784
68dff6a9 4785static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4786{
4787 struct location *l;
4788 int order;
4789
88a420e4
CL
4790 order = get_order(sizeof(struct location) * max);
4791
68dff6a9 4792 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4793 if (!l)
4794 return 0;
4795
4796 if (t->count) {
4797 memcpy(l, t->loc, sizeof(struct location) * t->count);
4798 free_loc_track(t);
4799 }
4800 t->max = max;
4801 t->loc = l;
4802 return 1;
4803}
4804
4805static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4806 const struct track *track)
88a420e4
CL
4807{
4808 long start, end, pos;
4809 struct location *l;
ce71e27c 4810 unsigned long caddr;
45edfa58 4811 unsigned long age = jiffies - track->when;
88a420e4
CL
4812
4813 start = -1;
4814 end = t->count;
4815
4816 for ( ; ; ) {
4817 pos = start + (end - start + 1) / 2;
4818
4819 /*
4820 * There is nothing at "end". If we end up there
4821 * we need to add something to before end.
4822 */
4823 if (pos == end)
4824 break;
4825
4826 caddr = t->loc[pos].addr;
45edfa58
CL
4827 if (track->addr == caddr) {
4828
4829 l = &t->loc[pos];
4830 l->count++;
4831 if (track->when) {
4832 l->sum_time += age;
4833 if (age < l->min_time)
4834 l->min_time = age;
4835 if (age > l->max_time)
4836 l->max_time = age;
4837
4838 if (track->pid < l->min_pid)
4839 l->min_pid = track->pid;
4840 if (track->pid > l->max_pid)
4841 l->max_pid = track->pid;
4842
174596a0
RR
4843 cpumask_set_cpu(track->cpu,
4844 to_cpumask(l->cpus));
45edfa58
CL
4845 }
4846 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4847 return 1;
4848 }
4849
45edfa58 4850 if (track->addr < caddr)
88a420e4
CL
4851 end = pos;
4852 else
4853 start = pos;
4854 }
4855
4856 /*
672bba3a 4857 * Not found. Insert new tracking element.
88a420e4 4858 */
68dff6a9 4859 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4860 return 0;
4861
4862 l = t->loc + pos;
4863 if (pos < t->count)
4864 memmove(l + 1, l,
4865 (t->count - pos) * sizeof(struct location));
4866 t->count++;
4867 l->count = 1;
45edfa58
CL
4868 l->addr = track->addr;
4869 l->sum_time = age;
4870 l->min_time = age;
4871 l->max_time = age;
4872 l->min_pid = track->pid;
4873 l->max_pid = track->pid;
174596a0
RR
4874 cpumask_clear(to_cpumask(l->cpus));
4875 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4876 nodes_clear(l->nodes);
4877 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4878 return 1;
4879}
4880
4881static void process_slab(struct loc_track *t, struct kmem_cache *s,
90e9f6a6 4882 struct page *page, enum track_item alloc)
88a420e4 4883{
a973e9dd 4884 void *addr = page_address(page);
88a420e4 4885 void *p;
90e9f6a6 4886 unsigned long *map;
88a420e4 4887
90e9f6a6 4888 map = get_map(s, page);
224a88be 4889 for_each_object(p, s, addr, page->objects)
4138fdfc 4890 if (!test_bit(__obj_to_index(s, addr, p), map))
45edfa58 4891 add_location(t, s, get_track(s, p, alloc));
90e9f6a6 4892 put_map(map);
88a420e4 4893}
64dd6849 4894#endif /* CONFIG_DEBUG_FS */
6dfd1b65 4895#endif /* CONFIG_SLUB_DEBUG */
88a420e4 4896
ab4d5ed5 4897#ifdef CONFIG_SYSFS
81819f0f 4898enum slab_stat_type {
205ab99d
CL
4899 SL_ALL, /* All slabs */
4900 SL_PARTIAL, /* Only partially allocated slabs */
4901 SL_CPU, /* Only slabs used for cpu caches */
4902 SL_OBJECTS, /* Determine allocated objects not slabs */
4903 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4904};
4905
205ab99d 4906#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4907#define SO_PARTIAL (1 << SL_PARTIAL)
4908#define SO_CPU (1 << SL_CPU)
4909#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4910#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4911
62e5c4b4 4912static ssize_t show_slab_objects(struct kmem_cache *s,
bf16d19a 4913 char *buf, unsigned long flags)
81819f0f
CL
4914{
4915 unsigned long total = 0;
81819f0f
CL
4916 int node;
4917 int x;
4918 unsigned long *nodes;
bf16d19a 4919 int len = 0;
81819f0f 4920
6396bb22 4921 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
4922 if (!nodes)
4923 return -ENOMEM;
81819f0f 4924
205ab99d
CL
4925 if (flags & SO_CPU) {
4926 int cpu;
81819f0f 4927
205ab99d 4928 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4929 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4930 cpu);
ec3ab083 4931 int node;
49e22585 4932 struct page *page;
dfb4f096 4933
4db0c3c2 4934 page = READ_ONCE(c->page);
ec3ab083
CL
4935 if (!page)
4936 continue;
205ab99d 4937
ec3ab083
CL
4938 node = page_to_nid(page);
4939 if (flags & SO_TOTAL)
4940 x = page->objects;
4941 else if (flags & SO_OBJECTS)
4942 x = page->inuse;
4943 else
4944 x = 1;
49e22585 4945
ec3ab083
CL
4946 total += x;
4947 nodes[node] += x;
4948
a93cf07b 4949 page = slub_percpu_partial_read_once(c);
49e22585 4950 if (page) {
8afb1474
LZ
4951 node = page_to_nid(page);
4952 if (flags & SO_TOTAL)
4953 WARN_ON_ONCE(1);
4954 else if (flags & SO_OBJECTS)
4955 WARN_ON_ONCE(1);
4956 else
4957 x = page->pages;
bc6697d8
ED
4958 total += x;
4959 nodes[node] += x;
49e22585 4960 }
81819f0f
CL
4961 }
4962 }
4963
e4f8e513
QC
4964 /*
4965 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4966 * already held which will conflict with an existing lock order:
4967 *
4968 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4969 *
4970 * We don't really need mem_hotplug_lock (to hold off
4971 * slab_mem_going_offline_callback) here because slab's memory hot
4972 * unplug code doesn't destroy the kmem_cache->node[] data.
4973 */
4974
ab4d5ed5 4975#ifdef CONFIG_SLUB_DEBUG
205ab99d 4976 if (flags & SO_ALL) {
fa45dc25
CL
4977 struct kmem_cache_node *n;
4978
4979 for_each_kmem_cache_node(s, node, n) {
205ab99d 4980
d0e0ac97
CG
4981 if (flags & SO_TOTAL)
4982 x = atomic_long_read(&n->total_objects);
4983 else if (flags & SO_OBJECTS)
4984 x = atomic_long_read(&n->total_objects) -
4985 count_partial(n, count_free);
81819f0f 4986 else
205ab99d 4987 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4988 total += x;
4989 nodes[node] += x;
4990 }
4991
ab4d5ed5
CL
4992 } else
4993#endif
4994 if (flags & SO_PARTIAL) {
fa45dc25 4995 struct kmem_cache_node *n;
81819f0f 4996
fa45dc25 4997 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4998 if (flags & SO_TOTAL)
4999 x = count_partial(n, count_total);
5000 else if (flags & SO_OBJECTS)
5001 x = count_partial(n, count_inuse);
81819f0f 5002 else
205ab99d 5003 x = n->nr_partial;
81819f0f
CL
5004 total += x;
5005 nodes[node] += x;
5006 }
5007 }
bf16d19a
JP
5008
5009 len += sysfs_emit_at(buf, len, "%lu", total);
81819f0f 5010#ifdef CONFIG_NUMA
bf16d19a 5011 for (node = 0; node < nr_node_ids; node++) {
81819f0f 5012 if (nodes[node])
bf16d19a
JP
5013 len += sysfs_emit_at(buf, len, " N%d=%lu",
5014 node, nodes[node]);
5015 }
81819f0f 5016#endif
bf16d19a 5017 len += sysfs_emit_at(buf, len, "\n");
81819f0f 5018 kfree(nodes);
bf16d19a
JP
5019
5020 return len;
81819f0f
CL
5021}
5022
81819f0f 5023#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 5024#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
5025
5026struct slab_attribute {
5027 struct attribute attr;
5028 ssize_t (*show)(struct kmem_cache *s, char *buf);
5029 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5030};
5031
5032#define SLAB_ATTR_RO(_name) \
ab067e99
VK
5033 static struct slab_attribute _name##_attr = \
5034 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
5035
5036#define SLAB_ATTR(_name) \
5037 static struct slab_attribute _name##_attr = \
ab067e99 5038 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 5039
81819f0f
CL
5040static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5041{
bf16d19a 5042 return sysfs_emit(buf, "%u\n", s->size);
81819f0f
CL
5043}
5044SLAB_ATTR_RO(slab_size);
5045
5046static ssize_t align_show(struct kmem_cache *s, char *buf)
5047{
bf16d19a 5048 return sysfs_emit(buf, "%u\n", s->align);
81819f0f
CL
5049}
5050SLAB_ATTR_RO(align);
5051
5052static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5053{
bf16d19a 5054 return sysfs_emit(buf, "%u\n", s->object_size);
81819f0f
CL
5055}
5056SLAB_ATTR_RO(object_size);
5057
5058static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5059{
bf16d19a 5060 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
5061}
5062SLAB_ATTR_RO(objs_per_slab);
5063
5064static ssize_t order_show(struct kmem_cache *s, char *buf)
5065{
bf16d19a 5066 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
81819f0f 5067}
32a6f409 5068SLAB_ATTR_RO(order);
81819f0f 5069
73d342b1
DR
5070static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5071{
bf16d19a 5072 return sysfs_emit(buf, "%lu\n", s->min_partial);
73d342b1
DR
5073}
5074
5075static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5076 size_t length)
5077{
5078 unsigned long min;
5079 int err;
5080
3dbb95f7 5081 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5082 if (err)
5083 return err;
5084
c0bdb232 5085 set_min_partial(s, min);
73d342b1
DR
5086 return length;
5087}
5088SLAB_ATTR(min_partial);
5089
49e22585
CL
5090static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5091{
bf16d19a 5092 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
5093}
5094
5095static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5096 size_t length)
5097{
e5d9998f 5098 unsigned int objects;
49e22585
CL
5099 int err;
5100
e5d9998f 5101 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5102 if (err)
5103 return err;
345c905d 5104 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5105 return -EINVAL;
49e22585 5106
e6d0e1dc 5107 slub_set_cpu_partial(s, objects);
49e22585
CL
5108 flush_all(s);
5109 return length;
5110}
5111SLAB_ATTR(cpu_partial);
5112
81819f0f
CL
5113static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5114{
62c70bce
JP
5115 if (!s->ctor)
5116 return 0;
bf16d19a 5117 return sysfs_emit(buf, "%pS\n", s->ctor);
81819f0f
CL
5118}
5119SLAB_ATTR_RO(ctor);
5120
81819f0f
CL
5121static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5122{
bf16d19a 5123 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5124}
5125SLAB_ATTR_RO(aliases);
5126
81819f0f
CL
5127static ssize_t partial_show(struct kmem_cache *s, char *buf)
5128{
d9acf4b7 5129 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5130}
5131SLAB_ATTR_RO(partial);
5132
5133static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5134{
d9acf4b7 5135 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5136}
5137SLAB_ATTR_RO(cpu_slabs);
5138
5139static ssize_t objects_show(struct kmem_cache *s, char *buf)
5140{
205ab99d 5141 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5142}
5143SLAB_ATTR_RO(objects);
5144
205ab99d
CL
5145static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5146{
5147 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5148}
5149SLAB_ATTR_RO(objects_partial);
5150
49e22585
CL
5151static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5152{
5153 int objects = 0;
5154 int pages = 0;
5155 int cpu;
bf16d19a 5156 int len = 0;
49e22585
CL
5157
5158 for_each_online_cpu(cpu) {
a93cf07b
WY
5159 struct page *page;
5160
5161 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5162
5163 if (page) {
5164 pages += page->pages;
5165 objects += page->pobjects;
5166 }
5167 }
5168
bf16d19a 5169 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
49e22585
CL
5170
5171#ifdef CONFIG_SMP
5172 for_each_online_cpu(cpu) {
a93cf07b
WY
5173 struct page *page;
5174
5175 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
bf16d19a
JP
5176 if (page)
5177 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5178 cpu, page->pobjects, page->pages);
49e22585
CL
5179 }
5180#endif
bf16d19a
JP
5181 len += sysfs_emit_at(buf, len, "\n");
5182
5183 return len;
49e22585
CL
5184}
5185SLAB_ATTR_RO(slabs_cpu_partial);
5186
a5a84755
CL
5187static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5188{
bf16d19a 5189 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
a5a84755 5190}
8f58119a 5191SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
5192
5193static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5194{
bf16d19a 5195 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
a5a84755
CL
5196}
5197SLAB_ATTR_RO(hwcache_align);
5198
5199#ifdef CONFIG_ZONE_DMA
5200static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5201{
bf16d19a 5202 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
a5a84755
CL
5203}
5204SLAB_ATTR_RO(cache_dma);
5205#endif
5206
8eb8284b
DW
5207static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5208{
bf16d19a 5209 return sysfs_emit(buf, "%u\n", s->usersize);
8eb8284b
DW
5210}
5211SLAB_ATTR_RO(usersize);
5212
a5a84755
CL
5213static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5214{
bf16d19a 5215 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5216}
5217SLAB_ATTR_RO(destroy_by_rcu);
5218
ab4d5ed5 5219#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5220static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5221{
5222 return show_slab_objects(s, buf, SO_ALL);
5223}
5224SLAB_ATTR_RO(slabs);
5225
205ab99d
CL
5226static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5227{
5228 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5229}
5230SLAB_ATTR_RO(total_objects);
5231
81819f0f
CL
5232static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5233{
bf16d19a 5234 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 5235}
060807f8 5236SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
5237
5238static ssize_t trace_show(struct kmem_cache *s, char *buf)
5239{
bf16d19a 5240 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
81819f0f 5241}
060807f8 5242SLAB_ATTR_RO(trace);
81819f0f 5243
81819f0f
CL
5244static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5245{
bf16d19a 5246 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
81819f0f
CL
5247}
5248
ad38b5b1 5249SLAB_ATTR_RO(red_zone);
81819f0f
CL
5250
5251static ssize_t poison_show(struct kmem_cache *s, char *buf)
5252{
bf16d19a 5253 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
81819f0f
CL
5254}
5255
ad38b5b1 5256SLAB_ATTR_RO(poison);
81819f0f
CL
5257
5258static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5259{
bf16d19a 5260 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
81819f0f
CL
5261}
5262
ad38b5b1 5263SLAB_ATTR_RO(store_user);
81819f0f 5264
53e15af0
CL
5265static ssize_t validate_show(struct kmem_cache *s, char *buf)
5266{
5267 return 0;
5268}
5269
5270static ssize_t validate_store(struct kmem_cache *s,
5271 const char *buf, size_t length)
5272{
434e245d
CL
5273 int ret = -EINVAL;
5274
5275 if (buf[0] == '1') {
5276 ret = validate_slab_cache(s);
5277 if (ret >= 0)
5278 ret = length;
5279 }
5280 return ret;
53e15af0
CL
5281}
5282SLAB_ATTR(validate);
a5a84755 5283
a5a84755
CL
5284#endif /* CONFIG_SLUB_DEBUG */
5285
5286#ifdef CONFIG_FAILSLAB
5287static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5288{
bf16d19a 5289 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
a5a84755 5290}
060807f8 5291SLAB_ATTR_RO(failslab);
ab4d5ed5 5292#endif
53e15af0 5293
2086d26a
CL
5294static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5295{
5296 return 0;
5297}
5298
5299static ssize_t shrink_store(struct kmem_cache *s,
5300 const char *buf, size_t length)
5301{
832f37f5 5302 if (buf[0] == '1')
10befea9 5303 kmem_cache_shrink(s);
832f37f5 5304 else
2086d26a
CL
5305 return -EINVAL;
5306 return length;
5307}
5308SLAB_ATTR(shrink);
5309
81819f0f 5310#ifdef CONFIG_NUMA
9824601e 5311static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5312{
bf16d19a 5313 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5314}
5315
9824601e 5316static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5317 const char *buf, size_t length)
5318{
eb7235eb 5319 unsigned int ratio;
0121c619
CL
5320 int err;
5321
eb7235eb 5322 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5323 if (err)
5324 return err;
eb7235eb
AD
5325 if (ratio > 100)
5326 return -ERANGE;
0121c619 5327
eb7235eb 5328 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5329
81819f0f
CL
5330 return length;
5331}
9824601e 5332SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5333#endif
5334
8ff12cfc 5335#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5336static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5337{
5338 unsigned long sum = 0;
5339 int cpu;
bf16d19a 5340 int len = 0;
6da2ec56 5341 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5342
5343 if (!data)
5344 return -ENOMEM;
5345
5346 for_each_online_cpu(cpu) {
9dfc6e68 5347 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5348
5349 data[cpu] = x;
5350 sum += x;
5351 }
5352
bf16d19a 5353 len += sysfs_emit_at(buf, len, "%lu", sum);
8ff12cfc 5354
50ef37b9 5355#ifdef CONFIG_SMP
8ff12cfc 5356 for_each_online_cpu(cpu) {
bf16d19a
JP
5357 if (data[cpu])
5358 len += sysfs_emit_at(buf, len, " C%d=%u",
5359 cpu, data[cpu]);
8ff12cfc 5360 }
50ef37b9 5361#endif
8ff12cfc 5362 kfree(data);
bf16d19a
JP
5363 len += sysfs_emit_at(buf, len, "\n");
5364
5365 return len;
8ff12cfc
CL
5366}
5367
78eb00cc
DR
5368static void clear_stat(struct kmem_cache *s, enum stat_item si)
5369{
5370 int cpu;
5371
5372 for_each_online_cpu(cpu)
9dfc6e68 5373 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5374}
5375
8ff12cfc
CL
5376#define STAT_ATTR(si, text) \
5377static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5378{ \
5379 return show_stat(s, buf, si); \
5380} \
78eb00cc
DR
5381static ssize_t text##_store(struct kmem_cache *s, \
5382 const char *buf, size_t length) \
5383{ \
5384 if (buf[0] != '0') \
5385 return -EINVAL; \
5386 clear_stat(s, si); \
5387 return length; \
5388} \
5389SLAB_ATTR(text); \
8ff12cfc
CL
5390
5391STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5392STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5393STAT_ATTR(FREE_FASTPATH, free_fastpath);
5394STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5395STAT_ATTR(FREE_FROZEN, free_frozen);
5396STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5397STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5398STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5399STAT_ATTR(ALLOC_SLAB, alloc_slab);
5400STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5401STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5402STAT_ATTR(FREE_SLAB, free_slab);
5403STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5404STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5405STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5406STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5407STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5408STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5409STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5410STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5411STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5412STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5413STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5414STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5415STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5416STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5417#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5418
06428780 5419static struct attribute *slab_attrs[] = {
81819f0f
CL
5420 &slab_size_attr.attr,
5421 &object_size_attr.attr,
5422 &objs_per_slab_attr.attr,
5423 &order_attr.attr,
73d342b1 5424 &min_partial_attr.attr,
49e22585 5425 &cpu_partial_attr.attr,
81819f0f 5426 &objects_attr.attr,
205ab99d 5427 &objects_partial_attr.attr,
81819f0f
CL
5428 &partial_attr.attr,
5429 &cpu_slabs_attr.attr,
5430 &ctor_attr.attr,
81819f0f
CL
5431 &aliases_attr.attr,
5432 &align_attr.attr,
81819f0f
CL
5433 &hwcache_align_attr.attr,
5434 &reclaim_account_attr.attr,
5435 &destroy_by_rcu_attr.attr,
a5a84755 5436 &shrink_attr.attr,
49e22585 5437 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5438#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5439 &total_objects_attr.attr,
5440 &slabs_attr.attr,
5441 &sanity_checks_attr.attr,
5442 &trace_attr.attr,
81819f0f
CL
5443 &red_zone_attr.attr,
5444 &poison_attr.attr,
5445 &store_user_attr.attr,
53e15af0 5446 &validate_attr.attr,
ab4d5ed5 5447#endif
81819f0f
CL
5448#ifdef CONFIG_ZONE_DMA
5449 &cache_dma_attr.attr,
5450#endif
5451#ifdef CONFIG_NUMA
9824601e 5452 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5453#endif
5454#ifdef CONFIG_SLUB_STATS
5455 &alloc_fastpath_attr.attr,
5456 &alloc_slowpath_attr.attr,
5457 &free_fastpath_attr.attr,
5458 &free_slowpath_attr.attr,
5459 &free_frozen_attr.attr,
5460 &free_add_partial_attr.attr,
5461 &free_remove_partial_attr.attr,
5462 &alloc_from_partial_attr.attr,
5463 &alloc_slab_attr.attr,
5464 &alloc_refill_attr.attr,
e36a2652 5465 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5466 &free_slab_attr.attr,
5467 &cpuslab_flush_attr.attr,
5468 &deactivate_full_attr.attr,
5469 &deactivate_empty_attr.attr,
5470 &deactivate_to_head_attr.attr,
5471 &deactivate_to_tail_attr.attr,
5472 &deactivate_remote_frees_attr.attr,
03e404af 5473 &deactivate_bypass_attr.attr,
65c3376a 5474 &order_fallback_attr.attr,
b789ef51
CL
5475 &cmpxchg_double_fail_attr.attr,
5476 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5477 &cpu_partial_alloc_attr.attr,
5478 &cpu_partial_free_attr.attr,
8028dcea
AS
5479 &cpu_partial_node_attr.attr,
5480 &cpu_partial_drain_attr.attr,
81819f0f 5481#endif
4c13dd3b
DM
5482#ifdef CONFIG_FAILSLAB
5483 &failslab_attr.attr,
5484#endif
8eb8284b 5485 &usersize_attr.attr,
4c13dd3b 5486
81819f0f
CL
5487 NULL
5488};
5489
1fdaaa23 5490static const struct attribute_group slab_attr_group = {
81819f0f
CL
5491 .attrs = slab_attrs,
5492};
5493
5494static ssize_t slab_attr_show(struct kobject *kobj,
5495 struct attribute *attr,
5496 char *buf)
5497{
5498 struct slab_attribute *attribute;
5499 struct kmem_cache *s;
5500 int err;
5501
5502 attribute = to_slab_attr(attr);
5503 s = to_slab(kobj);
5504
5505 if (!attribute->show)
5506 return -EIO;
5507
5508 err = attribute->show(s, buf);
5509
5510 return err;
5511}
5512
5513static ssize_t slab_attr_store(struct kobject *kobj,
5514 struct attribute *attr,
5515 const char *buf, size_t len)
5516{
5517 struct slab_attribute *attribute;
5518 struct kmem_cache *s;
5519 int err;
5520
5521 attribute = to_slab_attr(attr);
5522 s = to_slab(kobj);
5523
5524 if (!attribute->store)
5525 return -EIO;
5526
5527 err = attribute->store(s, buf, len);
81819f0f
CL
5528 return err;
5529}
5530
41a21285
CL
5531static void kmem_cache_release(struct kobject *k)
5532{
5533 slab_kmem_cache_release(to_slab(k));
5534}
5535
52cf25d0 5536static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5537 .show = slab_attr_show,
5538 .store = slab_attr_store,
5539};
5540
5541static struct kobj_type slab_ktype = {
5542 .sysfs_ops = &slab_sysfs_ops,
41a21285 5543 .release = kmem_cache_release,
81819f0f
CL
5544};
5545
27c3a314 5546static struct kset *slab_kset;
81819f0f 5547
9a41707b
VD
5548static inline struct kset *cache_kset(struct kmem_cache *s)
5549{
9a41707b
VD
5550 return slab_kset;
5551}
5552
81819f0f
CL
5553#define ID_STR_LENGTH 64
5554
5555/* Create a unique string id for a slab cache:
6446faa2
CL
5556 *
5557 * Format :[flags-]size
81819f0f
CL
5558 */
5559static char *create_unique_id(struct kmem_cache *s)
5560{
5561 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5562 char *p = name;
5563
5564 BUG_ON(!name);
5565
5566 *p++ = ':';
5567 /*
5568 * First flags affecting slabcache operations. We will only
5569 * get here for aliasable slabs so we do not need to support
5570 * too many flags. The flags here must cover all flags that
5571 * are matched during merging to guarantee that the id is
5572 * unique.
5573 */
5574 if (s->flags & SLAB_CACHE_DMA)
5575 *p++ = 'd';
6d6ea1e9
NB
5576 if (s->flags & SLAB_CACHE_DMA32)
5577 *p++ = 'D';
81819f0f
CL
5578 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5579 *p++ = 'a';
becfda68 5580 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5581 *p++ = 'F';
230e9fc2
VD
5582 if (s->flags & SLAB_ACCOUNT)
5583 *p++ = 'A';
81819f0f
CL
5584 if (p != name + 1)
5585 *p++ = '-';
44065b2e 5586 p += sprintf(p, "%07u", s->size);
2633d7a0 5587
81819f0f
CL
5588 BUG_ON(p > name + ID_STR_LENGTH - 1);
5589 return name;
5590}
5591
5592static int sysfs_slab_add(struct kmem_cache *s)
5593{
5594 int err;
5595 const char *name;
1663f26d 5596 struct kset *kset = cache_kset(s);
45530c44 5597 int unmergeable = slab_unmergeable(s);
81819f0f 5598
1663f26d
TH
5599 if (!kset) {
5600 kobject_init(&s->kobj, &slab_ktype);
5601 return 0;
5602 }
5603
11066386
MC
5604 if (!unmergeable && disable_higher_order_debug &&
5605 (slub_debug & DEBUG_METADATA_FLAGS))
5606 unmergeable = 1;
5607
81819f0f
CL
5608 if (unmergeable) {
5609 /*
5610 * Slabcache can never be merged so we can use the name proper.
5611 * This is typically the case for debug situations. In that
5612 * case we can catch duplicate names easily.
5613 */
27c3a314 5614 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5615 name = s->name;
5616 } else {
5617 /*
5618 * Create a unique name for the slab as a target
5619 * for the symlinks.
5620 */
5621 name = create_unique_id(s);
5622 }
5623
1663f26d 5624 s->kobj.kset = kset;
26e4f205 5625 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
757fed1d 5626 if (err)
80da026a 5627 goto out;
81819f0f
CL
5628
5629 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5630 if (err)
5631 goto out_del_kobj;
9a41707b 5632
81819f0f
CL
5633 if (!unmergeable) {
5634 /* Setup first alias */
5635 sysfs_slab_alias(s, s->name);
81819f0f 5636 }
54b6a731
DJ
5637out:
5638 if (!unmergeable)
5639 kfree(name);
5640 return err;
5641out_del_kobj:
5642 kobject_del(&s->kobj);
54b6a731 5643 goto out;
81819f0f
CL
5644}
5645
d50d82fa
MP
5646void sysfs_slab_unlink(struct kmem_cache *s)
5647{
5648 if (slab_state >= FULL)
5649 kobject_del(&s->kobj);
5650}
5651
bf5eb3de
TH
5652void sysfs_slab_release(struct kmem_cache *s)
5653{
5654 if (slab_state >= FULL)
5655 kobject_put(&s->kobj);
81819f0f
CL
5656}
5657
5658/*
5659 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5660 * available lest we lose that information.
81819f0f
CL
5661 */
5662struct saved_alias {
5663 struct kmem_cache *s;
5664 const char *name;
5665 struct saved_alias *next;
5666};
5667
5af328a5 5668static struct saved_alias *alias_list;
81819f0f
CL
5669
5670static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5671{
5672 struct saved_alias *al;
5673
97d06609 5674 if (slab_state == FULL) {
81819f0f
CL
5675 /*
5676 * If we have a leftover link then remove it.
5677 */
27c3a314
GKH
5678 sysfs_remove_link(&slab_kset->kobj, name);
5679 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5680 }
5681
5682 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5683 if (!al)
5684 return -ENOMEM;
5685
5686 al->s = s;
5687 al->name = name;
5688 al->next = alias_list;
5689 alias_list = al;
5690 return 0;
5691}
5692
5693static int __init slab_sysfs_init(void)
5694{
5b95a4ac 5695 struct kmem_cache *s;
81819f0f
CL
5696 int err;
5697
18004c5d 5698 mutex_lock(&slab_mutex);
2bce6485 5699
d7660ce5 5700 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 5701 if (!slab_kset) {
18004c5d 5702 mutex_unlock(&slab_mutex);
f9f58285 5703 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5704 return -ENOSYS;
5705 }
5706
97d06609 5707 slab_state = FULL;
26a7bd03 5708
5b95a4ac 5709 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5710 err = sysfs_slab_add(s);
5d540fb7 5711 if (err)
f9f58285
FF
5712 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5713 s->name);
26a7bd03 5714 }
81819f0f
CL
5715
5716 while (alias_list) {
5717 struct saved_alias *al = alias_list;
5718
5719 alias_list = alias_list->next;
5720 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5721 if (err)
f9f58285
FF
5722 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5723 al->name);
81819f0f
CL
5724 kfree(al);
5725 }
5726
18004c5d 5727 mutex_unlock(&slab_mutex);
81819f0f
CL
5728 return 0;
5729}
5730
5731__initcall(slab_sysfs_init);
ab4d5ed5 5732#endif /* CONFIG_SYSFS */
57ed3eda 5733
64dd6849
FM
5734#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
5735static int slab_debugfs_show(struct seq_file *seq, void *v)
5736{
5737
5738 struct location *l;
5739 unsigned int idx = *(unsigned int *)v;
5740 struct loc_track *t = seq->private;
5741
5742 if (idx < t->count) {
5743 l = &t->loc[idx];
5744
5745 seq_printf(seq, "%7ld ", l->count);
5746
5747 if (l->addr)
5748 seq_printf(seq, "%pS", (void *)l->addr);
5749 else
5750 seq_puts(seq, "<not-available>");
5751
5752 if (l->sum_time != l->min_time) {
5753 seq_printf(seq, " age=%ld/%llu/%ld",
5754 l->min_time, div_u64(l->sum_time, l->count),
5755 l->max_time);
5756 } else
5757 seq_printf(seq, " age=%ld", l->min_time);
5758
5759 if (l->min_pid != l->max_pid)
5760 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
5761 else
5762 seq_printf(seq, " pid=%ld",
5763 l->min_pid);
5764
5765 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
5766 seq_printf(seq, " cpus=%*pbl",
5767 cpumask_pr_args(to_cpumask(l->cpus)));
5768
5769 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
5770 seq_printf(seq, " nodes=%*pbl",
5771 nodemask_pr_args(&l->nodes));
5772
5773 seq_puts(seq, "\n");
5774 }
5775
5776 if (!idx && !t->count)
5777 seq_puts(seq, "No data\n");
5778
5779 return 0;
5780}
5781
5782static void slab_debugfs_stop(struct seq_file *seq, void *v)
5783{
5784}
5785
5786static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
5787{
5788 struct loc_track *t = seq->private;
5789
5790 v = ppos;
5791 ++*ppos;
5792 if (*ppos <= t->count)
5793 return v;
5794
5795 return NULL;
5796}
5797
5798static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
5799{
5800 return ppos;
5801}
5802
5803static const struct seq_operations slab_debugfs_sops = {
5804 .start = slab_debugfs_start,
5805 .next = slab_debugfs_next,
5806 .stop = slab_debugfs_stop,
5807 .show = slab_debugfs_show,
5808};
5809
5810static int slab_debug_trace_open(struct inode *inode, struct file *filep)
5811{
5812
5813 struct kmem_cache_node *n;
5814 enum track_item alloc;
5815 int node;
5816 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
5817 sizeof(struct loc_track));
5818 struct kmem_cache *s = file_inode(filep)->i_private;
5819
5820 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
5821 alloc = TRACK_ALLOC;
5822 else
5823 alloc = TRACK_FREE;
5824
5825 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL))
5826 return -ENOMEM;
5827
5828 /* Push back cpu slabs */
5829 flush_all(s);
5830
5831 for_each_kmem_cache_node(s, node, n) {
5832 unsigned long flags;
5833 struct page *page;
5834
5835 if (!atomic_long_read(&n->nr_slabs))
5836 continue;
5837
5838 spin_lock_irqsave(&n->list_lock, flags);
5839 list_for_each_entry(page, &n->partial, slab_list)
5840 process_slab(t, s, page, alloc);
5841 list_for_each_entry(page, &n->full, slab_list)
5842 process_slab(t, s, page, alloc);
5843 spin_unlock_irqrestore(&n->list_lock, flags);
5844 }
5845
5846 return 0;
5847}
5848
5849static int slab_debug_trace_release(struct inode *inode, struct file *file)
5850{
5851 struct seq_file *seq = file->private_data;
5852 struct loc_track *t = seq->private;
5853
5854 free_loc_track(t);
5855 return seq_release_private(inode, file);
5856}
5857
5858static const struct file_operations slab_debugfs_fops = {
5859 .open = slab_debug_trace_open,
5860 .read = seq_read,
5861 .llseek = seq_lseek,
5862 .release = slab_debug_trace_release,
5863};
5864
5865static void debugfs_slab_add(struct kmem_cache *s)
5866{
5867 struct dentry *slab_cache_dir;
5868
5869 if (unlikely(!slab_debugfs_root))
5870 return;
5871
5872 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
5873
5874 debugfs_create_file("alloc_traces", 0400,
5875 slab_cache_dir, s, &slab_debugfs_fops);
5876
5877 debugfs_create_file("free_traces", 0400,
5878 slab_cache_dir, s, &slab_debugfs_fops);
5879}
5880
5881void debugfs_slab_release(struct kmem_cache *s)
5882{
5883 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
5884}
5885
5886static int __init slab_debugfs_init(void)
5887{
5888 struct kmem_cache *s;
5889
5890 slab_debugfs_root = debugfs_create_dir("slab", NULL);
5891
5892 list_for_each_entry(s, &slab_caches, list)
5893 if (s->flags & SLAB_STORE_USER)
5894 debugfs_slab_add(s);
5895
5896 return 0;
5897
5898}
5899__initcall(slab_debugfs_init);
5900#endif
57ed3eda
PE
5901/*
5902 * The /proc/slabinfo ABI
5903 */
5b365771 5904#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5905void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5906{
57ed3eda 5907 unsigned long nr_slabs = 0;
205ab99d
CL
5908 unsigned long nr_objs = 0;
5909 unsigned long nr_free = 0;
57ed3eda 5910 int node;
fa45dc25 5911 struct kmem_cache_node *n;
57ed3eda 5912
fa45dc25 5913 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5914 nr_slabs += node_nr_slabs(n);
5915 nr_objs += node_nr_objs(n);
205ab99d 5916 nr_free += count_partial(n, count_free);
57ed3eda
PE
5917 }
5918
0d7561c6
GC
5919 sinfo->active_objs = nr_objs - nr_free;
5920 sinfo->num_objs = nr_objs;
5921 sinfo->active_slabs = nr_slabs;
5922 sinfo->num_slabs = nr_slabs;
5923 sinfo->objects_per_slab = oo_objects(s->oo);
5924 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5925}
5926
0d7561c6 5927void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5928{
7b3c3a50
AD
5929}
5930
b7454ad3
GC
5931ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5932 size_t count, loff_t *ppos)
7b3c3a50 5933{
b7454ad3 5934 return -EIO;
7b3c3a50 5935}
5b365771 5936#endif /* CONFIG_SLUB_DEBUG */