]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/slub.c
mm, sl[aou]b: Extract common code for kmem_cache_create()
[mirror_ubuntu-zesty-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
7b3c3a50 19#include <linux/proc_fs.h>
81819f0f 20#include <linux/seq_file.h>
5a896d9e 21#include <linux/kmemcheck.h>
81819f0f
CL
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
3ac7fe5a 26#include <linux/debugobjects.h>
81819f0f 27#include <linux/kallsyms.h>
b9049e23 28#include <linux/memory.h>
f8bd2258 29#include <linux/math64.h>
773ff60e 30#include <linux/fault-inject.h>
bfa71457 31#include <linux/stacktrace.h>
4de900b4 32#include <linux/prefetch.h>
81819f0f 33
4a92379b
RK
34#include <trace/events/kmem.h>
35
81819f0f
CL
36/*
37 * Lock order:
881db7fb
CL
38 * 1. slub_lock (Global Semaphore)
39 * 2. node->list_lock
40 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 41 *
881db7fb
CL
42 * slub_lock
43 *
44 * The role of the slub_lock is to protect the list of all the slabs
45 * and to synchronize major metadata changes to slab cache structures.
46 *
47 * The slab_lock is only used for debugging and on arches that do not
48 * have the ability to do a cmpxchg_double. It only protects the second
49 * double word in the page struct. Meaning
50 * A. page->freelist -> List of object free in a page
51 * B. page->counters -> Counters of objects
52 * C. page->frozen -> frozen state
53 *
54 * If a slab is frozen then it is exempt from list management. It is not
55 * on any list. The processor that froze the slab is the one who can
56 * perform list operations on the page. Other processors may put objects
57 * onto the freelist but the processor that froze the slab is the only
58 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
59 *
60 * The list_lock protects the partial and full list on each node and
61 * the partial slab counter. If taken then no new slabs may be added or
62 * removed from the lists nor make the number of partial slabs be modified.
63 * (Note that the total number of slabs is an atomic value that may be
64 * modified without taking the list lock).
65 *
66 * The list_lock is a centralized lock and thus we avoid taking it as
67 * much as possible. As long as SLUB does not have to handle partial
68 * slabs, operations can continue without any centralized lock. F.e.
69 * allocating a long series of objects that fill up slabs does not require
70 * the list lock.
81819f0f
CL
71 * Interrupts are disabled during allocation and deallocation in order to
72 * make the slab allocator safe to use in the context of an irq. In addition
73 * interrupts are disabled to ensure that the processor does not change
74 * while handling per_cpu slabs, due to kernel preemption.
75 *
76 * SLUB assigns one slab for allocation to each processor.
77 * Allocations only occur from these slabs called cpu slabs.
78 *
672bba3a
CL
79 * Slabs with free elements are kept on a partial list and during regular
80 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 81 * freed then the slab will show up again on the partial lists.
672bba3a
CL
82 * We track full slabs for debugging purposes though because otherwise we
83 * cannot scan all objects.
81819f0f
CL
84 *
85 * Slabs are freed when they become empty. Teardown and setup is
86 * minimal so we rely on the page allocators per cpu caches for
87 * fast frees and allocs.
88 *
89 * Overloading of page flags that are otherwise used for LRU management.
90 *
4b6f0750
CL
91 * PageActive The slab is frozen and exempt from list processing.
92 * This means that the slab is dedicated to a purpose
93 * such as satisfying allocations for a specific
94 * processor. Objects may be freed in the slab while
95 * it is frozen but slab_free will then skip the usual
96 * list operations. It is up to the processor holding
97 * the slab to integrate the slab into the slab lists
98 * when the slab is no longer needed.
99 *
100 * One use of this flag is to mark slabs that are
101 * used for allocations. Then such a slab becomes a cpu
102 * slab. The cpu slab may be equipped with an additional
dfb4f096 103 * freelist that allows lockless access to
894b8788
CL
104 * free objects in addition to the regular freelist
105 * that requires the slab lock.
81819f0f
CL
106 *
107 * PageError Slab requires special handling due to debug
108 * options set. This moves slab handling out of
894b8788 109 * the fast path and disables lockless freelists.
81819f0f
CL
110 */
111
af537b0a
CL
112#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
113 SLAB_TRACE | SLAB_DEBUG_FREE)
114
115static inline int kmem_cache_debug(struct kmem_cache *s)
116{
5577bd8a 117#ifdef CONFIG_SLUB_DEBUG
af537b0a 118 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 119#else
af537b0a 120 return 0;
5577bd8a 121#endif
af537b0a 122}
5577bd8a 123
81819f0f
CL
124/*
125 * Issues still to be resolved:
126 *
81819f0f
CL
127 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
128 *
81819f0f
CL
129 * - Variable sizing of the per node arrays
130 */
131
132/* Enable to test recovery from slab corruption on boot */
133#undef SLUB_RESILIENCY_TEST
134
b789ef51
CL
135/* Enable to log cmpxchg failures */
136#undef SLUB_DEBUG_CMPXCHG
137
2086d26a
CL
138/*
139 * Mininum number of partial slabs. These will be left on the partial
140 * lists even if they are empty. kmem_cache_shrink may reclaim them.
141 */
76be8950 142#define MIN_PARTIAL 5
e95eed57 143
2086d26a
CL
144/*
145 * Maximum number of desirable partial slabs.
146 * The existence of more partial slabs makes kmem_cache_shrink
147 * sort the partial list by the number of objects in the.
148 */
149#define MAX_PARTIAL 10
150
81819f0f
CL
151#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
152 SLAB_POISON | SLAB_STORE_USER)
672bba3a 153
fa5ec8a1 154/*
3de47213
DR
155 * Debugging flags that require metadata to be stored in the slab. These get
156 * disabled when slub_debug=O is used and a cache's min order increases with
157 * metadata.
fa5ec8a1 158 */
3de47213 159#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 160
81819f0f
CL
161/*
162 * Set of flags that will prevent slab merging
163 */
164#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
165 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
166 SLAB_FAILSLAB)
81819f0f
CL
167
168#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 169 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 170
210b5c06
CG
171#define OO_SHIFT 16
172#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 173#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 174
81819f0f 175/* Internal SLUB flags */
f90ec390 176#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 177#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f
CL
178
179static int kmem_size = sizeof(struct kmem_cache);
180
181#ifdef CONFIG_SMP
182static struct notifier_block slab_notifier;
183#endif
184
185static enum {
186 DOWN, /* No slab functionality available */
51df1142 187 PARTIAL, /* Kmem_cache_node works */
672bba3a 188 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
189 SYSFS /* Sysfs up */
190} slab_state = DOWN;
191
192/* A list of all slab caches on the system */
193static DECLARE_RWSEM(slub_lock);
5af328a5 194static LIST_HEAD(slab_caches);
81819f0f 195
02cbc874
CL
196/*
197 * Tracking user of a slab.
198 */
d6543e39 199#define TRACK_ADDRS_COUNT 16
02cbc874 200struct track {
ce71e27c 201 unsigned long addr; /* Called from address */
d6543e39
BG
202#ifdef CONFIG_STACKTRACE
203 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
204#endif
02cbc874
CL
205 int cpu; /* Was running on cpu */
206 int pid; /* Pid context */
207 unsigned long when; /* When did the operation occur */
208};
209
210enum track_item { TRACK_ALLOC, TRACK_FREE };
211
ab4d5ed5 212#ifdef CONFIG_SYSFS
81819f0f
CL
213static int sysfs_slab_add(struct kmem_cache *);
214static int sysfs_slab_alias(struct kmem_cache *, const char *);
215static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 216
81819f0f 217#else
0c710013
CL
218static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
219static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
220 { return 0; }
151c602f
CL
221static inline void sysfs_slab_remove(struct kmem_cache *s)
222{
84c1cf62 223 kfree(s->name);
151c602f
CL
224 kfree(s);
225}
8ff12cfc 226
81819f0f
CL
227#endif
228
4fdccdfb 229static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
230{
231#ifdef CONFIG_SLUB_STATS
84e554e6 232 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
233#endif
234}
235
81819f0f
CL
236/********************************************************************
237 * Core slab cache functions
238 *******************************************************************/
239
240int slab_is_available(void)
241{
242 return slab_state >= UP;
243}
244
245static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
246{
81819f0f 247 return s->node[node];
81819f0f
CL
248}
249
6446faa2 250/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
251static inline int check_valid_pointer(struct kmem_cache *s,
252 struct page *page, const void *object)
253{
254 void *base;
255
a973e9dd 256 if (!object)
02cbc874
CL
257 return 1;
258
a973e9dd 259 base = page_address(page);
39b26464 260 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
261 (object - base) % s->size) {
262 return 0;
263 }
264
265 return 1;
266}
267
7656c72b
CL
268static inline void *get_freepointer(struct kmem_cache *s, void *object)
269{
270 return *(void **)(object + s->offset);
271}
272
0ad9500e
ED
273static void prefetch_freepointer(const struct kmem_cache *s, void *object)
274{
275 prefetch(object + s->offset);
276}
277
1393d9a1
CL
278static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
279{
280 void *p;
281
282#ifdef CONFIG_DEBUG_PAGEALLOC
283 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
284#else
285 p = get_freepointer(s, object);
286#endif
287 return p;
288}
289
7656c72b
CL
290static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
291{
292 *(void **)(object + s->offset) = fp;
293}
294
295/* Loop over all objects in a slab */
224a88be
CL
296#define for_each_object(__p, __s, __addr, __objects) \
297 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
298 __p += (__s)->size)
299
7656c72b
CL
300/* Determine object index from a given position */
301static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
302{
303 return (p - addr) / s->size;
304}
305
d71f606f
MK
306static inline size_t slab_ksize(const struct kmem_cache *s)
307{
308#ifdef CONFIG_SLUB_DEBUG
309 /*
310 * Debugging requires use of the padding between object
311 * and whatever may come after it.
312 */
313 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 314 return s->object_size;
d71f606f
MK
315
316#endif
317 /*
318 * If we have the need to store the freelist pointer
319 * back there or track user information then we can
320 * only use the space before that information.
321 */
322 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
323 return s->inuse;
324 /*
325 * Else we can use all the padding etc for the allocation
326 */
327 return s->size;
328}
329
ab9a0f19
LJ
330static inline int order_objects(int order, unsigned long size, int reserved)
331{
332 return ((PAGE_SIZE << order) - reserved) / size;
333}
334
834f3d11 335static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 336 unsigned long size, int reserved)
834f3d11
CL
337{
338 struct kmem_cache_order_objects x = {
ab9a0f19 339 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
340 };
341
342 return x;
343}
344
345static inline int oo_order(struct kmem_cache_order_objects x)
346{
210b5c06 347 return x.x >> OO_SHIFT;
834f3d11
CL
348}
349
350static inline int oo_objects(struct kmem_cache_order_objects x)
351{
210b5c06 352 return x.x & OO_MASK;
834f3d11
CL
353}
354
881db7fb
CL
355/*
356 * Per slab locking using the pagelock
357 */
358static __always_inline void slab_lock(struct page *page)
359{
360 bit_spin_lock(PG_locked, &page->flags);
361}
362
363static __always_inline void slab_unlock(struct page *page)
364{
365 __bit_spin_unlock(PG_locked, &page->flags);
366}
367
1d07171c
CL
368/* Interrupts must be disabled (for the fallback code to work right) */
369static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
370 void *freelist_old, unsigned long counters_old,
371 void *freelist_new, unsigned long counters_new,
372 const char *n)
373{
374 VM_BUG_ON(!irqs_disabled());
2565409f
HC
375#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
376 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 377 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 378 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
379 freelist_old, counters_old,
380 freelist_new, counters_new))
381 return 1;
382 } else
383#endif
384 {
385 slab_lock(page);
386 if (page->freelist == freelist_old && page->counters == counters_old) {
387 page->freelist = freelist_new;
388 page->counters = counters_new;
389 slab_unlock(page);
390 return 1;
391 }
392 slab_unlock(page);
393 }
394
395 cpu_relax();
396 stat(s, CMPXCHG_DOUBLE_FAIL);
397
398#ifdef SLUB_DEBUG_CMPXCHG
399 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
400#endif
401
402 return 0;
403}
404
b789ef51
CL
405static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
406 void *freelist_old, unsigned long counters_old,
407 void *freelist_new, unsigned long counters_new,
408 const char *n)
409{
2565409f
HC
410#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
411 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 412 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 413 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
414 freelist_old, counters_old,
415 freelist_new, counters_new))
416 return 1;
417 } else
418#endif
419 {
1d07171c
CL
420 unsigned long flags;
421
422 local_irq_save(flags);
881db7fb 423 slab_lock(page);
b789ef51
CL
424 if (page->freelist == freelist_old && page->counters == counters_old) {
425 page->freelist = freelist_new;
426 page->counters = counters_new;
881db7fb 427 slab_unlock(page);
1d07171c 428 local_irq_restore(flags);
b789ef51
CL
429 return 1;
430 }
881db7fb 431 slab_unlock(page);
1d07171c 432 local_irq_restore(flags);
b789ef51
CL
433 }
434
435 cpu_relax();
436 stat(s, CMPXCHG_DOUBLE_FAIL);
437
438#ifdef SLUB_DEBUG_CMPXCHG
439 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
440#endif
441
442 return 0;
443}
444
41ecc55b 445#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
446/*
447 * Determine a map of object in use on a page.
448 *
881db7fb 449 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
450 * not vanish from under us.
451 */
452static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
453{
454 void *p;
455 void *addr = page_address(page);
456
457 for (p = page->freelist; p; p = get_freepointer(s, p))
458 set_bit(slab_index(p, s, addr), map);
459}
460
41ecc55b
CL
461/*
462 * Debug settings:
463 */
f0630fff
CL
464#ifdef CONFIG_SLUB_DEBUG_ON
465static int slub_debug = DEBUG_DEFAULT_FLAGS;
466#else
41ecc55b 467static int slub_debug;
f0630fff 468#endif
41ecc55b
CL
469
470static char *slub_debug_slabs;
fa5ec8a1 471static int disable_higher_order_debug;
41ecc55b 472
81819f0f
CL
473/*
474 * Object debugging
475 */
476static void print_section(char *text, u8 *addr, unsigned int length)
477{
ffc79d28
SAS
478 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
479 length, 1);
81819f0f
CL
480}
481
81819f0f
CL
482static struct track *get_track(struct kmem_cache *s, void *object,
483 enum track_item alloc)
484{
485 struct track *p;
486
487 if (s->offset)
488 p = object + s->offset + sizeof(void *);
489 else
490 p = object + s->inuse;
491
492 return p + alloc;
493}
494
495static void set_track(struct kmem_cache *s, void *object,
ce71e27c 496 enum track_item alloc, unsigned long addr)
81819f0f 497{
1a00df4a 498 struct track *p = get_track(s, object, alloc);
81819f0f 499
81819f0f 500 if (addr) {
d6543e39
BG
501#ifdef CONFIG_STACKTRACE
502 struct stack_trace trace;
503 int i;
504
505 trace.nr_entries = 0;
506 trace.max_entries = TRACK_ADDRS_COUNT;
507 trace.entries = p->addrs;
508 trace.skip = 3;
509 save_stack_trace(&trace);
510
511 /* See rant in lockdep.c */
512 if (trace.nr_entries != 0 &&
513 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
514 trace.nr_entries--;
515
516 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
517 p->addrs[i] = 0;
518#endif
81819f0f
CL
519 p->addr = addr;
520 p->cpu = smp_processor_id();
88e4ccf2 521 p->pid = current->pid;
81819f0f
CL
522 p->when = jiffies;
523 } else
524 memset(p, 0, sizeof(struct track));
525}
526
81819f0f
CL
527static void init_tracking(struct kmem_cache *s, void *object)
528{
24922684
CL
529 if (!(s->flags & SLAB_STORE_USER))
530 return;
531
ce71e27c
EGM
532 set_track(s, object, TRACK_FREE, 0UL);
533 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
534}
535
536static void print_track(const char *s, struct track *t)
537{
538 if (!t->addr)
539 return;
540
7daf705f 541 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 542 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
543#ifdef CONFIG_STACKTRACE
544 {
545 int i;
546 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
547 if (t->addrs[i])
548 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
549 else
550 break;
551 }
552#endif
24922684
CL
553}
554
555static void print_tracking(struct kmem_cache *s, void *object)
556{
557 if (!(s->flags & SLAB_STORE_USER))
558 return;
559
560 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
561 print_track("Freed", get_track(s, object, TRACK_FREE));
562}
563
564static void print_page_info(struct page *page)
565{
39b26464
CL
566 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
567 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
568
569}
570
571static void slab_bug(struct kmem_cache *s, char *fmt, ...)
572{
573 va_list args;
574 char buf[100];
575
576 va_start(args, fmt);
577 vsnprintf(buf, sizeof(buf), fmt, args);
578 va_end(args);
579 printk(KERN_ERR "========================================"
580 "=====================================\n");
265d47e7 581 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
24922684
CL
582 printk(KERN_ERR "----------------------------------------"
583 "-------------------------------------\n\n");
81819f0f
CL
584}
585
24922684
CL
586static void slab_fix(struct kmem_cache *s, char *fmt, ...)
587{
588 va_list args;
589 char buf[100];
590
591 va_start(args, fmt);
592 vsnprintf(buf, sizeof(buf), fmt, args);
593 va_end(args);
594 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
595}
596
597static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
598{
599 unsigned int off; /* Offset of last byte */
a973e9dd 600 u8 *addr = page_address(page);
24922684
CL
601
602 print_tracking(s, p);
603
604 print_page_info(page);
605
606 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
607 p, p - addr, get_freepointer(s, p));
608
609 if (p > addr + 16)
ffc79d28 610 print_section("Bytes b4 ", p - 16, 16);
81819f0f 611
3b0efdfa 612 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 613 PAGE_SIZE));
81819f0f 614 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
615 print_section("Redzone ", p + s->object_size,
616 s->inuse - s->object_size);
81819f0f 617
81819f0f
CL
618 if (s->offset)
619 off = s->offset + sizeof(void *);
620 else
621 off = s->inuse;
622
24922684 623 if (s->flags & SLAB_STORE_USER)
81819f0f 624 off += 2 * sizeof(struct track);
81819f0f
CL
625
626 if (off != s->size)
627 /* Beginning of the filler is the free pointer */
ffc79d28 628 print_section("Padding ", p + off, s->size - off);
24922684
CL
629
630 dump_stack();
81819f0f
CL
631}
632
633static void object_err(struct kmem_cache *s, struct page *page,
634 u8 *object, char *reason)
635{
3dc50637 636 slab_bug(s, "%s", reason);
24922684 637 print_trailer(s, page, object);
81819f0f
CL
638}
639
24922684 640static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
641{
642 va_list args;
643 char buf[100];
644
24922684
CL
645 va_start(args, fmt);
646 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 647 va_end(args);
3dc50637 648 slab_bug(s, "%s", buf);
24922684 649 print_page_info(page);
81819f0f
CL
650 dump_stack();
651}
652
f7cb1933 653static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
654{
655 u8 *p = object;
656
657 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
658 memset(p, POISON_FREE, s->object_size - 1);
659 p[s->object_size - 1] = POISON_END;
81819f0f
CL
660 }
661
662 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 663 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
664}
665
24922684
CL
666static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
667 void *from, void *to)
668{
669 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
670 memset(from, data, to - from);
671}
672
673static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
674 u8 *object, char *what,
06428780 675 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
676{
677 u8 *fault;
678 u8 *end;
679
79824820 680 fault = memchr_inv(start, value, bytes);
24922684
CL
681 if (!fault)
682 return 1;
683
684 end = start + bytes;
685 while (end > fault && end[-1] == value)
686 end--;
687
688 slab_bug(s, "%s overwritten", what);
689 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
690 fault, end - 1, fault[0], value);
691 print_trailer(s, page, object);
692
693 restore_bytes(s, what, value, fault, end);
694 return 0;
81819f0f
CL
695}
696
81819f0f
CL
697/*
698 * Object layout:
699 *
700 * object address
701 * Bytes of the object to be managed.
702 * If the freepointer may overlay the object then the free
703 * pointer is the first word of the object.
672bba3a 704 *
81819f0f
CL
705 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
706 * 0xa5 (POISON_END)
707 *
3b0efdfa 708 * object + s->object_size
81819f0f 709 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 710 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 711 * object_size == inuse.
672bba3a 712 *
81819f0f
CL
713 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
714 * 0xcc (RED_ACTIVE) for objects in use.
715 *
716 * object + s->inuse
672bba3a
CL
717 * Meta data starts here.
718 *
81819f0f
CL
719 * A. Free pointer (if we cannot overwrite object on free)
720 * B. Tracking data for SLAB_STORE_USER
672bba3a 721 * C. Padding to reach required alignment boundary or at mininum
6446faa2 722 * one word if debugging is on to be able to detect writes
672bba3a
CL
723 * before the word boundary.
724 *
725 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
726 *
727 * object + s->size
672bba3a 728 * Nothing is used beyond s->size.
81819f0f 729 *
3b0efdfa 730 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 731 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
732 * may be used with merged slabcaches.
733 */
734
81819f0f
CL
735static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
736{
737 unsigned long off = s->inuse; /* The end of info */
738
739 if (s->offset)
740 /* Freepointer is placed after the object. */
741 off += sizeof(void *);
742
743 if (s->flags & SLAB_STORE_USER)
744 /* We also have user information there */
745 off += 2 * sizeof(struct track);
746
747 if (s->size == off)
748 return 1;
749
24922684
CL
750 return check_bytes_and_report(s, page, p, "Object padding",
751 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
752}
753
39b26464 754/* Check the pad bytes at the end of a slab page */
81819f0f
CL
755static int slab_pad_check(struct kmem_cache *s, struct page *page)
756{
24922684
CL
757 u8 *start;
758 u8 *fault;
759 u8 *end;
760 int length;
761 int remainder;
81819f0f
CL
762
763 if (!(s->flags & SLAB_POISON))
764 return 1;
765
a973e9dd 766 start = page_address(page);
ab9a0f19 767 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
768 end = start + length;
769 remainder = length % s->size;
81819f0f
CL
770 if (!remainder)
771 return 1;
772
79824820 773 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
774 if (!fault)
775 return 1;
776 while (end > fault && end[-1] == POISON_INUSE)
777 end--;
778
779 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 780 print_section("Padding ", end - remainder, remainder);
24922684 781
8a3d271d 782 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 783 return 0;
81819f0f
CL
784}
785
786static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 787 void *object, u8 val)
81819f0f
CL
788{
789 u8 *p = object;
3b0efdfa 790 u8 *endobject = object + s->object_size;
81819f0f
CL
791
792 if (s->flags & SLAB_RED_ZONE) {
24922684 793 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 794 endobject, val, s->inuse - s->object_size))
81819f0f 795 return 0;
81819f0f 796 } else {
3b0efdfa 797 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 798 check_bytes_and_report(s, page, p, "Alignment padding",
3b0efdfa 799 endobject, POISON_INUSE, s->inuse - s->object_size);
3adbefee 800 }
81819f0f
CL
801 }
802
803 if (s->flags & SLAB_POISON) {
f7cb1933 804 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 805 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 806 POISON_FREE, s->object_size - 1) ||
24922684 807 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 808 p + s->object_size - 1, POISON_END, 1)))
81819f0f 809 return 0;
81819f0f
CL
810 /*
811 * check_pad_bytes cleans up on its own.
812 */
813 check_pad_bytes(s, page, p);
814 }
815
f7cb1933 816 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
817 /*
818 * Object and freepointer overlap. Cannot check
819 * freepointer while object is allocated.
820 */
821 return 1;
822
823 /* Check free pointer validity */
824 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
825 object_err(s, page, p, "Freepointer corrupt");
826 /*
9f6c708e 827 * No choice but to zap it and thus lose the remainder
81819f0f 828 * of the free objects in this slab. May cause
672bba3a 829 * another error because the object count is now wrong.
81819f0f 830 */
a973e9dd 831 set_freepointer(s, p, NULL);
81819f0f
CL
832 return 0;
833 }
834 return 1;
835}
836
837static int check_slab(struct kmem_cache *s, struct page *page)
838{
39b26464
CL
839 int maxobj;
840
81819f0f
CL
841 VM_BUG_ON(!irqs_disabled());
842
843 if (!PageSlab(page)) {
24922684 844 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
845 return 0;
846 }
39b26464 847
ab9a0f19 848 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
849 if (page->objects > maxobj) {
850 slab_err(s, page, "objects %u > max %u",
851 s->name, page->objects, maxobj);
852 return 0;
853 }
854 if (page->inuse > page->objects) {
24922684 855 slab_err(s, page, "inuse %u > max %u",
39b26464 856 s->name, page->inuse, page->objects);
81819f0f
CL
857 return 0;
858 }
859 /* Slab_pad_check fixes things up after itself */
860 slab_pad_check(s, page);
861 return 1;
862}
863
864/*
672bba3a
CL
865 * Determine if a certain object on a page is on the freelist. Must hold the
866 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
867 */
868static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
869{
870 int nr = 0;
881db7fb 871 void *fp;
81819f0f 872 void *object = NULL;
224a88be 873 unsigned long max_objects;
81819f0f 874
881db7fb 875 fp = page->freelist;
39b26464 876 while (fp && nr <= page->objects) {
81819f0f
CL
877 if (fp == search)
878 return 1;
879 if (!check_valid_pointer(s, page, fp)) {
880 if (object) {
881 object_err(s, page, object,
882 "Freechain corrupt");
a973e9dd 883 set_freepointer(s, object, NULL);
81819f0f
CL
884 break;
885 } else {
24922684 886 slab_err(s, page, "Freepointer corrupt");
a973e9dd 887 page->freelist = NULL;
39b26464 888 page->inuse = page->objects;
24922684 889 slab_fix(s, "Freelist cleared");
81819f0f
CL
890 return 0;
891 }
892 break;
893 }
894 object = fp;
895 fp = get_freepointer(s, object);
896 nr++;
897 }
898
ab9a0f19 899 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
900 if (max_objects > MAX_OBJS_PER_PAGE)
901 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
902
903 if (page->objects != max_objects) {
904 slab_err(s, page, "Wrong number of objects. Found %d but "
905 "should be %d", page->objects, max_objects);
906 page->objects = max_objects;
907 slab_fix(s, "Number of objects adjusted.");
908 }
39b26464 909 if (page->inuse != page->objects - nr) {
70d71228 910 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
911 "counted were %d", page->inuse, page->objects - nr);
912 page->inuse = page->objects - nr;
24922684 913 slab_fix(s, "Object count adjusted.");
81819f0f
CL
914 }
915 return search == NULL;
916}
917
0121c619
CL
918static void trace(struct kmem_cache *s, struct page *page, void *object,
919 int alloc)
3ec09742
CL
920{
921 if (s->flags & SLAB_TRACE) {
922 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
923 s->name,
924 alloc ? "alloc" : "free",
925 object, page->inuse,
926 page->freelist);
927
928 if (!alloc)
3b0efdfa 929 print_section("Object ", (void *)object, s->object_size);
3ec09742
CL
930
931 dump_stack();
932 }
933}
934
c016b0bd
CL
935/*
936 * Hooks for other subsystems that check memory allocations. In a typical
937 * production configuration these hooks all should produce no code at all.
938 */
939static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
940{
c1d50836 941 flags &= gfp_allowed_mask;
c016b0bd
CL
942 lockdep_trace_alloc(flags);
943 might_sleep_if(flags & __GFP_WAIT);
944
3b0efdfa 945 return should_failslab(s->object_size, flags, s->flags);
c016b0bd
CL
946}
947
948static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
949{
c1d50836 950 flags &= gfp_allowed_mask;
b3d41885 951 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
3b0efdfa 952 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
c016b0bd
CL
953}
954
955static inline void slab_free_hook(struct kmem_cache *s, void *x)
956{
957 kmemleak_free_recursive(x, s->flags);
c016b0bd 958
d3f661d6
CL
959 /*
960 * Trouble is that we may no longer disable interupts in the fast path
961 * So in order to make the debug calls that expect irqs to be
962 * disabled we need to disable interrupts temporarily.
963 */
964#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
965 {
966 unsigned long flags;
967
968 local_irq_save(flags);
3b0efdfa
CL
969 kmemcheck_slab_free(s, x, s->object_size);
970 debug_check_no_locks_freed(x, s->object_size);
d3f661d6
CL
971 local_irq_restore(flags);
972 }
973#endif
f9b615de 974 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3b0efdfa 975 debug_check_no_obj_freed(x, s->object_size);
c016b0bd
CL
976}
977
643b1138 978/*
672bba3a 979 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
980 *
981 * list_lock must be held.
643b1138 982 */
5cc6eee8
CL
983static void add_full(struct kmem_cache *s,
984 struct kmem_cache_node *n, struct page *page)
643b1138 985{
5cc6eee8
CL
986 if (!(s->flags & SLAB_STORE_USER))
987 return;
988
643b1138 989 list_add(&page->lru, &n->full);
643b1138
CL
990}
991
5cc6eee8
CL
992/*
993 * list_lock must be held.
994 */
643b1138
CL
995static void remove_full(struct kmem_cache *s, struct page *page)
996{
643b1138
CL
997 if (!(s->flags & SLAB_STORE_USER))
998 return;
999
643b1138 1000 list_del(&page->lru);
643b1138
CL
1001}
1002
0f389ec6
CL
1003/* Tracking of the number of slabs for debugging purposes */
1004static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1005{
1006 struct kmem_cache_node *n = get_node(s, node);
1007
1008 return atomic_long_read(&n->nr_slabs);
1009}
1010
26c02cf0
AB
1011static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1012{
1013 return atomic_long_read(&n->nr_slabs);
1014}
1015
205ab99d 1016static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1017{
1018 struct kmem_cache_node *n = get_node(s, node);
1019
1020 /*
1021 * May be called early in order to allocate a slab for the
1022 * kmem_cache_node structure. Solve the chicken-egg
1023 * dilemma by deferring the increment of the count during
1024 * bootstrap (see early_kmem_cache_node_alloc).
1025 */
7340cc84 1026 if (n) {
0f389ec6 1027 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1028 atomic_long_add(objects, &n->total_objects);
1029 }
0f389ec6 1030}
205ab99d 1031static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1032{
1033 struct kmem_cache_node *n = get_node(s, node);
1034
1035 atomic_long_dec(&n->nr_slabs);
205ab99d 1036 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1037}
1038
1039/* Object debug checks for alloc/free paths */
3ec09742
CL
1040static void setup_object_debug(struct kmem_cache *s, struct page *page,
1041 void *object)
1042{
1043 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1044 return;
1045
f7cb1933 1046 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1047 init_tracking(s, object);
1048}
1049
1537066c 1050static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1051 void *object, unsigned long addr)
81819f0f
CL
1052{
1053 if (!check_slab(s, page))
1054 goto bad;
1055
81819f0f
CL
1056 if (!check_valid_pointer(s, page, object)) {
1057 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1058 goto bad;
81819f0f
CL
1059 }
1060
f7cb1933 1061 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1062 goto bad;
81819f0f 1063
3ec09742
CL
1064 /* Success perform special debug activities for allocs */
1065 if (s->flags & SLAB_STORE_USER)
1066 set_track(s, object, TRACK_ALLOC, addr);
1067 trace(s, page, object, 1);
f7cb1933 1068 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1069 return 1;
3ec09742 1070
81819f0f
CL
1071bad:
1072 if (PageSlab(page)) {
1073 /*
1074 * If this is a slab page then lets do the best we can
1075 * to avoid issues in the future. Marking all objects
672bba3a 1076 * as used avoids touching the remaining objects.
81819f0f 1077 */
24922684 1078 slab_fix(s, "Marking all objects used");
39b26464 1079 page->inuse = page->objects;
a973e9dd 1080 page->freelist = NULL;
81819f0f
CL
1081 }
1082 return 0;
1083}
1084
1537066c
CL
1085static noinline int free_debug_processing(struct kmem_cache *s,
1086 struct page *page, void *object, unsigned long addr)
81819f0f 1087{
5c2e4bbb
CL
1088 unsigned long flags;
1089 int rc = 0;
1090
1091 local_irq_save(flags);
881db7fb
CL
1092 slab_lock(page);
1093
81819f0f
CL
1094 if (!check_slab(s, page))
1095 goto fail;
1096
1097 if (!check_valid_pointer(s, page, object)) {
70d71228 1098 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1099 goto fail;
1100 }
1101
1102 if (on_freelist(s, page, object)) {
24922684 1103 object_err(s, page, object, "Object already free");
81819f0f
CL
1104 goto fail;
1105 }
1106
f7cb1933 1107 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1108 goto out;
81819f0f
CL
1109
1110 if (unlikely(s != page->slab)) {
3adbefee 1111 if (!PageSlab(page)) {
70d71228
CL
1112 slab_err(s, page, "Attempt to free object(0x%p) "
1113 "outside of slab", object);
3adbefee 1114 } else if (!page->slab) {
81819f0f 1115 printk(KERN_ERR
70d71228 1116 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1117 object);
70d71228 1118 dump_stack();
06428780 1119 } else
24922684
CL
1120 object_err(s, page, object,
1121 "page slab pointer corrupt.");
81819f0f
CL
1122 goto fail;
1123 }
3ec09742 1124
3ec09742
CL
1125 if (s->flags & SLAB_STORE_USER)
1126 set_track(s, object, TRACK_FREE, addr);
1127 trace(s, page, object, 0);
f7cb1933 1128 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb
CL
1129 rc = 1;
1130out:
881db7fb 1131 slab_unlock(page);
5c2e4bbb
CL
1132 local_irq_restore(flags);
1133 return rc;
3ec09742 1134
81819f0f 1135fail:
24922684 1136 slab_fix(s, "Object at 0x%p not freed", object);
5c2e4bbb 1137 goto out;
81819f0f
CL
1138}
1139
41ecc55b
CL
1140static int __init setup_slub_debug(char *str)
1141{
f0630fff
CL
1142 slub_debug = DEBUG_DEFAULT_FLAGS;
1143 if (*str++ != '=' || !*str)
1144 /*
1145 * No options specified. Switch on full debugging.
1146 */
1147 goto out;
1148
1149 if (*str == ',')
1150 /*
1151 * No options but restriction on slabs. This means full
1152 * debugging for slabs matching a pattern.
1153 */
1154 goto check_slabs;
1155
fa5ec8a1
DR
1156 if (tolower(*str) == 'o') {
1157 /*
1158 * Avoid enabling debugging on caches if its minimum order
1159 * would increase as a result.
1160 */
1161 disable_higher_order_debug = 1;
1162 goto out;
1163 }
1164
f0630fff
CL
1165 slub_debug = 0;
1166 if (*str == '-')
1167 /*
1168 * Switch off all debugging measures.
1169 */
1170 goto out;
1171
1172 /*
1173 * Determine which debug features should be switched on
1174 */
06428780 1175 for (; *str && *str != ','; str++) {
f0630fff
CL
1176 switch (tolower(*str)) {
1177 case 'f':
1178 slub_debug |= SLAB_DEBUG_FREE;
1179 break;
1180 case 'z':
1181 slub_debug |= SLAB_RED_ZONE;
1182 break;
1183 case 'p':
1184 slub_debug |= SLAB_POISON;
1185 break;
1186 case 'u':
1187 slub_debug |= SLAB_STORE_USER;
1188 break;
1189 case 't':
1190 slub_debug |= SLAB_TRACE;
1191 break;
4c13dd3b
DM
1192 case 'a':
1193 slub_debug |= SLAB_FAILSLAB;
1194 break;
f0630fff
CL
1195 default:
1196 printk(KERN_ERR "slub_debug option '%c' "
06428780 1197 "unknown. skipped\n", *str);
f0630fff 1198 }
41ecc55b
CL
1199 }
1200
f0630fff 1201check_slabs:
41ecc55b
CL
1202 if (*str == ',')
1203 slub_debug_slabs = str + 1;
f0630fff 1204out:
41ecc55b
CL
1205 return 1;
1206}
1207
1208__setup("slub_debug", setup_slub_debug);
1209
3b0efdfa 1210static unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1211 unsigned long flags, const char *name,
51cc5068 1212 void (*ctor)(void *))
41ecc55b
CL
1213{
1214 /*
e153362a 1215 * Enable debugging if selected on the kernel commandline.
41ecc55b 1216 */
e153362a 1217 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1218 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1219 flags |= slub_debug;
ba0268a8
CL
1220
1221 return flags;
41ecc55b
CL
1222}
1223#else
3ec09742
CL
1224static inline void setup_object_debug(struct kmem_cache *s,
1225 struct page *page, void *object) {}
41ecc55b 1226
3ec09742 1227static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1228 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1229
3ec09742 1230static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1231 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1232
41ecc55b
CL
1233static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1234 { return 1; }
1235static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1236 void *object, u8 val) { return 1; }
5cc6eee8
CL
1237static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1238 struct page *page) {}
2cfb7455 1239static inline void remove_full(struct kmem_cache *s, struct page *page) {}
3b0efdfa 1240static inline unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1241 unsigned long flags, const char *name,
51cc5068 1242 void (*ctor)(void *))
ba0268a8
CL
1243{
1244 return flags;
1245}
41ecc55b 1246#define slub_debug 0
0f389ec6 1247
fdaa45e9
IM
1248#define disable_higher_order_debug 0
1249
0f389ec6
CL
1250static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1251 { return 0; }
26c02cf0
AB
1252static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1253 { return 0; }
205ab99d
CL
1254static inline void inc_slabs_node(struct kmem_cache *s, int node,
1255 int objects) {}
1256static inline void dec_slabs_node(struct kmem_cache *s, int node,
1257 int objects) {}
7d550c56
CL
1258
1259static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1260 { return 0; }
1261
1262static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1263 void *object) {}
1264
1265static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1266
ab4d5ed5 1267#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1268
81819f0f
CL
1269/*
1270 * Slab allocation and freeing
1271 */
65c3376a
CL
1272static inline struct page *alloc_slab_page(gfp_t flags, int node,
1273 struct kmem_cache_order_objects oo)
1274{
1275 int order = oo_order(oo);
1276
b1eeab67
VN
1277 flags |= __GFP_NOTRACK;
1278
2154a336 1279 if (node == NUMA_NO_NODE)
65c3376a
CL
1280 return alloc_pages(flags, order);
1281 else
6b65aaf3 1282 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1283}
1284
81819f0f
CL
1285static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1286{
06428780 1287 struct page *page;
834f3d11 1288 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1289 gfp_t alloc_gfp;
81819f0f 1290
7e0528da
CL
1291 flags &= gfp_allowed_mask;
1292
1293 if (flags & __GFP_WAIT)
1294 local_irq_enable();
1295
b7a49f0d 1296 flags |= s->allocflags;
e12ba74d 1297
ba52270d
PE
1298 /*
1299 * Let the initial higher-order allocation fail under memory pressure
1300 * so we fall-back to the minimum order allocation.
1301 */
1302 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1303
1304 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1305 if (unlikely(!page)) {
1306 oo = s->min;
1307 /*
1308 * Allocation may have failed due to fragmentation.
1309 * Try a lower order alloc if possible
1310 */
1311 page = alloc_slab_page(flags, node, oo);
81819f0f 1312
7e0528da
CL
1313 if (page)
1314 stat(s, ORDER_FALLBACK);
65c3376a 1315 }
5a896d9e 1316
7e0528da
CL
1317 if (flags & __GFP_WAIT)
1318 local_irq_disable();
1319
1320 if (!page)
1321 return NULL;
1322
5a896d9e 1323 if (kmemcheck_enabled
5086c389 1324 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1325 int pages = 1 << oo_order(oo);
1326
1327 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1328
1329 /*
1330 * Objects from caches that have a constructor don't get
1331 * cleared when they're allocated, so we need to do it here.
1332 */
1333 if (s->ctor)
1334 kmemcheck_mark_uninitialized_pages(page, pages);
1335 else
1336 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1337 }
1338
834f3d11 1339 page->objects = oo_objects(oo);
81819f0f
CL
1340 mod_zone_page_state(page_zone(page),
1341 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1342 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1343 1 << oo_order(oo));
81819f0f
CL
1344
1345 return page;
1346}
1347
1348static void setup_object(struct kmem_cache *s, struct page *page,
1349 void *object)
1350{
3ec09742 1351 setup_object_debug(s, page, object);
4f104934 1352 if (unlikely(s->ctor))
51cc5068 1353 s->ctor(object);
81819f0f
CL
1354}
1355
1356static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1357{
1358 struct page *page;
81819f0f 1359 void *start;
81819f0f
CL
1360 void *last;
1361 void *p;
1362
6cb06229 1363 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1364
6cb06229
CL
1365 page = allocate_slab(s,
1366 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1367 if (!page)
1368 goto out;
1369
205ab99d 1370 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f 1371 page->slab = s;
c03f94cc 1372 __SetPageSlab(page);
81819f0f
CL
1373
1374 start = page_address(page);
81819f0f
CL
1375
1376 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1377 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1378
1379 last = start;
224a88be 1380 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1381 setup_object(s, page, last);
1382 set_freepointer(s, last, p);
1383 last = p;
1384 }
1385 setup_object(s, page, last);
a973e9dd 1386 set_freepointer(s, last, NULL);
81819f0f
CL
1387
1388 page->freelist = start;
e6e82ea1 1389 page->inuse = page->objects;
8cb0a506 1390 page->frozen = 1;
81819f0f 1391out:
81819f0f
CL
1392 return page;
1393}
1394
1395static void __free_slab(struct kmem_cache *s, struct page *page)
1396{
834f3d11
CL
1397 int order = compound_order(page);
1398 int pages = 1 << order;
81819f0f 1399
af537b0a 1400 if (kmem_cache_debug(s)) {
81819f0f
CL
1401 void *p;
1402
1403 slab_pad_check(s, page);
224a88be
CL
1404 for_each_object(p, s, page_address(page),
1405 page->objects)
f7cb1933 1406 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1407 }
1408
b1eeab67 1409 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1410
81819f0f
CL
1411 mod_zone_page_state(page_zone(page),
1412 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1413 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1414 -pages);
81819f0f 1415
49bd5221
CL
1416 __ClearPageSlab(page);
1417 reset_page_mapcount(page);
1eb5ac64
NP
1418 if (current->reclaim_state)
1419 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1420 __free_pages(page, order);
81819f0f
CL
1421}
1422
da9a638c
LJ
1423#define need_reserve_slab_rcu \
1424 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1425
81819f0f
CL
1426static void rcu_free_slab(struct rcu_head *h)
1427{
1428 struct page *page;
1429
da9a638c
LJ
1430 if (need_reserve_slab_rcu)
1431 page = virt_to_head_page(h);
1432 else
1433 page = container_of((struct list_head *)h, struct page, lru);
1434
81819f0f
CL
1435 __free_slab(page->slab, page);
1436}
1437
1438static void free_slab(struct kmem_cache *s, struct page *page)
1439{
1440 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1441 struct rcu_head *head;
1442
1443 if (need_reserve_slab_rcu) {
1444 int order = compound_order(page);
1445 int offset = (PAGE_SIZE << order) - s->reserved;
1446
1447 VM_BUG_ON(s->reserved != sizeof(*head));
1448 head = page_address(page) + offset;
1449 } else {
1450 /*
1451 * RCU free overloads the RCU head over the LRU
1452 */
1453 head = (void *)&page->lru;
1454 }
81819f0f
CL
1455
1456 call_rcu(head, rcu_free_slab);
1457 } else
1458 __free_slab(s, page);
1459}
1460
1461static void discard_slab(struct kmem_cache *s, struct page *page)
1462{
205ab99d 1463 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1464 free_slab(s, page);
1465}
1466
1467/*
5cc6eee8
CL
1468 * Management of partially allocated slabs.
1469 *
1470 * list_lock must be held.
81819f0f 1471 */
5cc6eee8 1472static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1473 struct page *page, int tail)
81819f0f 1474{
e95eed57 1475 n->nr_partial++;
136333d1 1476 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1477 list_add_tail(&page->lru, &n->partial);
1478 else
1479 list_add(&page->lru, &n->partial);
81819f0f
CL
1480}
1481
5cc6eee8
CL
1482/*
1483 * list_lock must be held.
1484 */
1485static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1486 struct page *page)
1487{
1488 list_del(&page->lru);
1489 n->nr_partial--;
1490}
1491
81819f0f 1492/*
7ced3719
CL
1493 * Remove slab from the partial list, freeze it and
1494 * return the pointer to the freelist.
81819f0f 1495 *
497b66f2
CL
1496 * Returns a list of objects or NULL if it fails.
1497 *
7ced3719 1498 * Must hold list_lock since we modify the partial list.
81819f0f 1499 */
497b66f2 1500static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1501 struct kmem_cache_node *n, struct page *page,
49e22585 1502 int mode)
81819f0f 1503{
2cfb7455
CL
1504 void *freelist;
1505 unsigned long counters;
1506 struct page new;
1507
2cfb7455
CL
1508 /*
1509 * Zap the freelist and set the frozen bit.
1510 * The old freelist is the list of objects for the
1511 * per cpu allocation list.
1512 */
7ced3719
CL
1513 freelist = page->freelist;
1514 counters = page->counters;
1515 new.counters = counters;
23910c50 1516 if (mode) {
7ced3719 1517 new.inuse = page->objects;
23910c50
PE
1518 new.freelist = NULL;
1519 } else {
1520 new.freelist = freelist;
1521 }
2cfb7455 1522
7ced3719
CL
1523 VM_BUG_ON(new.frozen);
1524 new.frozen = 1;
2cfb7455 1525
7ced3719 1526 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1527 freelist, counters,
02d7633f 1528 new.freelist, new.counters,
7ced3719 1529 "acquire_slab"))
7ced3719 1530 return NULL;
2cfb7455
CL
1531
1532 remove_partial(n, page);
7ced3719 1533 WARN_ON(!freelist);
49e22585 1534 return freelist;
81819f0f
CL
1535}
1536
49e22585
CL
1537static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1538
81819f0f 1539/*
672bba3a 1540 * Try to allocate a partial slab from a specific node.
81819f0f 1541 */
497b66f2 1542static void *get_partial_node(struct kmem_cache *s,
acd19fd1 1543 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
81819f0f 1544{
49e22585
CL
1545 struct page *page, *page2;
1546 void *object = NULL;
81819f0f
CL
1547
1548 /*
1549 * Racy check. If we mistakenly see no partial slabs then we
1550 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1551 * partial slab and there is none available then get_partials()
1552 * will return NULL.
81819f0f
CL
1553 */
1554 if (!n || !n->nr_partial)
1555 return NULL;
1556
1557 spin_lock(&n->list_lock);
49e22585 1558 list_for_each_entry_safe(page, page2, &n->partial, lru) {
12d79634 1559 void *t = acquire_slab(s, n, page, object == NULL);
49e22585
CL
1560 int available;
1561
1562 if (!t)
1563 break;
1564
12d79634 1565 if (!object) {
49e22585 1566 c->page = page;
49e22585 1567 stat(s, ALLOC_FROM_PARTIAL);
49e22585
CL
1568 object = t;
1569 available = page->objects - page->inuse;
1570 } else {
49e22585 1571 available = put_cpu_partial(s, page, 0);
8028dcea 1572 stat(s, CPU_PARTIAL_NODE);
49e22585
CL
1573 }
1574 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1575 break;
1576
497b66f2 1577 }
81819f0f 1578 spin_unlock(&n->list_lock);
497b66f2 1579 return object;
81819f0f
CL
1580}
1581
1582/*
672bba3a 1583 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1584 */
de3ec035 1585static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1586 struct kmem_cache_cpu *c)
81819f0f
CL
1587{
1588#ifdef CONFIG_NUMA
1589 struct zonelist *zonelist;
dd1a239f 1590 struct zoneref *z;
54a6eb5c
MG
1591 struct zone *zone;
1592 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1593 void *object;
cc9a6c87 1594 unsigned int cpuset_mems_cookie;
81819f0f
CL
1595
1596 /*
672bba3a
CL
1597 * The defrag ratio allows a configuration of the tradeoffs between
1598 * inter node defragmentation and node local allocations. A lower
1599 * defrag_ratio increases the tendency to do local allocations
1600 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1601 *
672bba3a
CL
1602 * If the defrag_ratio is set to 0 then kmalloc() always
1603 * returns node local objects. If the ratio is higher then kmalloc()
1604 * may return off node objects because partial slabs are obtained
1605 * from other nodes and filled up.
81819f0f 1606 *
6446faa2 1607 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1608 * defrag_ratio = 1000) then every (well almost) allocation will
1609 * first attempt to defrag slab caches on other nodes. This means
1610 * scanning over all nodes to look for partial slabs which may be
1611 * expensive if we do it every time we are trying to find a slab
1612 * with available objects.
81819f0f 1613 */
9824601e
CL
1614 if (!s->remote_node_defrag_ratio ||
1615 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1616 return NULL;
1617
cc9a6c87
MG
1618 do {
1619 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 1620 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87
MG
1621 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1622 struct kmem_cache_node *n;
1623
1624 n = get_node(s, zone_to_nid(zone));
1625
1626 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1627 n->nr_partial > s->min_partial) {
1628 object = get_partial_node(s, n, c);
1629 if (object) {
1630 /*
1631 * Return the object even if
1632 * put_mems_allowed indicated that
1633 * the cpuset mems_allowed was
1634 * updated in parallel. It's a
1635 * harmless race between the alloc
1636 * and the cpuset update.
1637 */
1638 put_mems_allowed(cpuset_mems_cookie);
1639 return object;
1640 }
c0ff7453 1641 }
81819f0f 1642 }
cc9a6c87 1643 } while (!put_mems_allowed(cpuset_mems_cookie));
81819f0f
CL
1644#endif
1645 return NULL;
1646}
1647
1648/*
1649 * Get a partial page, lock it and return it.
1650 */
497b66f2 1651static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1652 struct kmem_cache_cpu *c)
81819f0f 1653{
497b66f2 1654 void *object;
2154a336 1655 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1656
497b66f2
CL
1657 object = get_partial_node(s, get_node(s, searchnode), c);
1658 if (object || node != NUMA_NO_NODE)
1659 return object;
81819f0f 1660
acd19fd1 1661 return get_any_partial(s, flags, c);
81819f0f
CL
1662}
1663
8a5ec0ba
CL
1664#ifdef CONFIG_PREEMPT
1665/*
1666 * Calculate the next globally unique transaction for disambiguiation
1667 * during cmpxchg. The transactions start with the cpu number and are then
1668 * incremented by CONFIG_NR_CPUS.
1669 */
1670#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1671#else
1672/*
1673 * No preemption supported therefore also no need to check for
1674 * different cpus.
1675 */
1676#define TID_STEP 1
1677#endif
1678
1679static inline unsigned long next_tid(unsigned long tid)
1680{
1681 return tid + TID_STEP;
1682}
1683
1684static inline unsigned int tid_to_cpu(unsigned long tid)
1685{
1686 return tid % TID_STEP;
1687}
1688
1689static inline unsigned long tid_to_event(unsigned long tid)
1690{
1691 return tid / TID_STEP;
1692}
1693
1694static inline unsigned int init_tid(int cpu)
1695{
1696 return cpu;
1697}
1698
1699static inline void note_cmpxchg_failure(const char *n,
1700 const struct kmem_cache *s, unsigned long tid)
1701{
1702#ifdef SLUB_DEBUG_CMPXCHG
1703 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1704
1705 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1706
1707#ifdef CONFIG_PREEMPT
1708 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1709 printk("due to cpu change %d -> %d\n",
1710 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1711 else
1712#endif
1713 if (tid_to_event(tid) != tid_to_event(actual_tid))
1714 printk("due to cpu running other code. Event %ld->%ld\n",
1715 tid_to_event(tid), tid_to_event(actual_tid));
1716 else
1717 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1718 actual_tid, tid, next_tid(tid));
1719#endif
4fdccdfb 1720 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1721}
1722
8a5ec0ba
CL
1723void init_kmem_cache_cpus(struct kmem_cache *s)
1724{
8a5ec0ba
CL
1725 int cpu;
1726
1727 for_each_possible_cpu(cpu)
1728 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1729}
2cfb7455 1730
81819f0f
CL
1731/*
1732 * Remove the cpu slab
1733 */
c17dda40 1734static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
81819f0f 1735{
2cfb7455 1736 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1737 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1738 int lock = 0;
1739 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1740 void *nextfree;
136333d1 1741 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1742 struct page new;
1743 struct page old;
1744
1745 if (page->freelist) {
84e554e6 1746 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1747 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1748 }
1749
894b8788 1750 /*
2cfb7455
CL
1751 * Stage one: Free all available per cpu objects back
1752 * to the page freelist while it is still frozen. Leave the
1753 * last one.
1754 *
1755 * There is no need to take the list->lock because the page
1756 * is still frozen.
1757 */
1758 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1759 void *prior;
1760 unsigned long counters;
1761
1762 do {
1763 prior = page->freelist;
1764 counters = page->counters;
1765 set_freepointer(s, freelist, prior);
1766 new.counters = counters;
1767 new.inuse--;
1768 VM_BUG_ON(!new.frozen);
1769
1d07171c 1770 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1771 prior, counters,
1772 freelist, new.counters,
1773 "drain percpu freelist"));
1774
1775 freelist = nextfree;
1776 }
1777
894b8788 1778 /*
2cfb7455
CL
1779 * Stage two: Ensure that the page is unfrozen while the
1780 * list presence reflects the actual number of objects
1781 * during unfreeze.
1782 *
1783 * We setup the list membership and then perform a cmpxchg
1784 * with the count. If there is a mismatch then the page
1785 * is not unfrozen but the page is on the wrong list.
1786 *
1787 * Then we restart the process which may have to remove
1788 * the page from the list that we just put it on again
1789 * because the number of objects in the slab may have
1790 * changed.
894b8788 1791 */
2cfb7455 1792redo:
894b8788 1793
2cfb7455
CL
1794 old.freelist = page->freelist;
1795 old.counters = page->counters;
1796 VM_BUG_ON(!old.frozen);
7c2e132c 1797
2cfb7455
CL
1798 /* Determine target state of the slab */
1799 new.counters = old.counters;
1800 if (freelist) {
1801 new.inuse--;
1802 set_freepointer(s, freelist, old.freelist);
1803 new.freelist = freelist;
1804 } else
1805 new.freelist = old.freelist;
1806
1807 new.frozen = 0;
1808
81107188 1809 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1810 m = M_FREE;
1811 else if (new.freelist) {
1812 m = M_PARTIAL;
1813 if (!lock) {
1814 lock = 1;
1815 /*
1816 * Taking the spinlock removes the possiblity
1817 * that acquire_slab() will see a slab page that
1818 * is frozen
1819 */
1820 spin_lock(&n->list_lock);
1821 }
1822 } else {
1823 m = M_FULL;
1824 if (kmem_cache_debug(s) && !lock) {
1825 lock = 1;
1826 /*
1827 * This also ensures that the scanning of full
1828 * slabs from diagnostic functions will not see
1829 * any frozen slabs.
1830 */
1831 spin_lock(&n->list_lock);
1832 }
1833 }
1834
1835 if (l != m) {
1836
1837 if (l == M_PARTIAL)
1838
1839 remove_partial(n, page);
1840
1841 else if (l == M_FULL)
894b8788 1842
2cfb7455
CL
1843 remove_full(s, page);
1844
1845 if (m == M_PARTIAL) {
1846
1847 add_partial(n, page, tail);
136333d1 1848 stat(s, tail);
2cfb7455
CL
1849
1850 } else if (m == M_FULL) {
894b8788 1851
2cfb7455
CL
1852 stat(s, DEACTIVATE_FULL);
1853 add_full(s, n, page);
1854
1855 }
1856 }
1857
1858 l = m;
1d07171c 1859 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1860 old.freelist, old.counters,
1861 new.freelist, new.counters,
1862 "unfreezing slab"))
1863 goto redo;
1864
2cfb7455
CL
1865 if (lock)
1866 spin_unlock(&n->list_lock);
1867
1868 if (m == M_FREE) {
1869 stat(s, DEACTIVATE_EMPTY);
1870 discard_slab(s, page);
1871 stat(s, FREE_SLAB);
894b8788 1872 }
81819f0f
CL
1873}
1874
d24ac77f
JK
1875/*
1876 * Unfreeze all the cpu partial slabs.
1877 *
1878 * This function must be called with interrupt disabled.
1879 */
49e22585
CL
1880static void unfreeze_partials(struct kmem_cache *s)
1881{
43d77867 1882 struct kmem_cache_node *n = NULL, *n2 = NULL;
49e22585 1883 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
9ada1934 1884 struct page *page, *discard_page = NULL;
49e22585
CL
1885
1886 while ((page = c->partial)) {
49e22585
CL
1887 struct page new;
1888 struct page old;
1889
1890 c->partial = page->next;
43d77867
JK
1891
1892 n2 = get_node(s, page_to_nid(page));
1893 if (n != n2) {
1894 if (n)
1895 spin_unlock(&n->list_lock);
1896
1897 n = n2;
1898 spin_lock(&n->list_lock);
1899 }
49e22585
CL
1900
1901 do {
1902
1903 old.freelist = page->freelist;
1904 old.counters = page->counters;
1905 VM_BUG_ON(!old.frozen);
1906
1907 new.counters = old.counters;
1908 new.freelist = old.freelist;
1909
1910 new.frozen = 0;
1911
d24ac77f 1912 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1913 old.freelist, old.counters,
1914 new.freelist, new.counters,
1915 "unfreezing slab"));
1916
43d77867 1917 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
9ada1934
SL
1918 page->next = discard_page;
1919 discard_page = page;
43d77867
JK
1920 } else {
1921 add_partial(n, page, DEACTIVATE_TO_TAIL);
1922 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1923 }
1924 }
1925
1926 if (n)
1927 spin_unlock(&n->list_lock);
9ada1934
SL
1928
1929 while (discard_page) {
1930 page = discard_page;
1931 discard_page = discard_page->next;
1932
1933 stat(s, DEACTIVATE_EMPTY);
1934 discard_slab(s, page);
1935 stat(s, FREE_SLAB);
1936 }
49e22585
CL
1937}
1938
1939/*
1940 * Put a page that was just frozen (in __slab_free) into a partial page
1941 * slot if available. This is done without interrupts disabled and without
1942 * preemption disabled. The cmpxchg is racy and may put the partial page
1943 * onto a random cpus partial slot.
1944 *
1945 * If we did not find a slot then simply move all the partials to the
1946 * per node partial list.
1947 */
1948int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1949{
1950 struct page *oldpage;
1951 int pages;
1952 int pobjects;
1953
1954 do {
1955 pages = 0;
1956 pobjects = 0;
1957 oldpage = this_cpu_read(s->cpu_slab->partial);
1958
1959 if (oldpage) {
1960 pobjects = oldpage->pobjects;
1961 pages = oldpage->pages;
1962 if (drain && pobjects > s->cpu_partial) {
1963 unsigned long flags;
1964 /*
1965 * partial array is full. Move the existing
1966 * set to the per node partial list.
1967 */
1968 local_irq_save(flags);
1969 unfreeze_partials(s);
1970 local_irq_restore(flags);
1971 pobjects = 0;
1972 pages = 0;
8028dcea 1973 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
1974 }
1975 }
1976
1977 pages++;
1978 pobjects += page->objects - page->inuse;
1979
1980 page->pages = pages;
1981 page->pobjects = pobjects;
1982 page->next = oldpage;
1983
933393f5 1984 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
49e22585
CL
1985 return pobjects;
1986}
1987
dfb4f096 1988static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1989{
84e554e6 1990 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
1991 deactivate_slab(s, c->page, c->freelist);
1992
1993 c->tid = next_tid(c->tid);
1994 c->page = NULL;
1995 c->freelist = NULL;
81819f0f
CL
1996}
1997
1998/*
1999 * Flush cpu slab.
6446faa2 2000 *
81819f0f
CL
2001 * Called from IPI handler with interrupts disabled.
2002 */
0c710013 2003static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2004{
9dfc6e68 2005 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2006
49e22585
CL
2007 if (likely(c)) {
2008 if (c->page)
2009 flush_slab(s, c);
2010
2011 unfreeze_partials(s);
2012 }
81819f0f
CL
2013}
2014
2015static void flush_cpu_slab(void *d)
2016{
2017 struct kmem_cache *s = d;
81819f0f 2018
dfb4f096 2019 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2020}
2021
a8364d55
GBY
2022static bool has_cpu_slab(int cpu, void *info)
2023{
2024 struct kmem_cache *s = info;
2025 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2026
02e1a9cd 2027 return c->page || c->partial;
a8364d55
GBY
2028}
2029
81819f0f
CL
2030static void flush_all(struct kmem_cache *s)
2031{
a8364d55 2032 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2033}
2034
dfb4f096
CL
2035/*
2036 * Check if the objects in a per cpu structure fit numa
2037 * locality expectations.
2038 */
57d437d2 2039static inline int node_match(struct page *page, int node)
dfb4f096
CL
2040{
2041#ifdef CONFIG_NUMA
57d437d2 2042 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2043 return 0;
2044#endif
2045 return 1;
2046}
2047
781b2ba6
PE
2048static int count_free(struct page *page)
2049{
2050 return page->objects - page->inuse;
2051}
2052
2053static unsigned long count_partial(struct kmem_cache_node *n,
2054 int (*get_count)(struct page *))
2055{
2056 unsigned long flags;
2057 unsigned long x = 0;
2058 struct page *page;
2059
2060 spin_lock_irqsave(&n->list_lock, flags);
2061 list_for_each_entry(page, &n->partial, lru)
2062 x += get_count(page);
2063 spin_unlock_irqrestore(&n->list_lock, flags);
2064 return x;
2065}
2066
26c02cf0
AB
2067static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2068{
2069#ifdef CONFIG_SLUB_DEBUG
2070 return atomic_long_read(&n->total_objects);
2071#else
2072 return 0;
2073#endif
2074}
2075
781b2ba6
PE
2076static noinline void
2077slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2078{
2079 int node;
2080
2081 printk(KERN_WARNING
2082 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2083 nid, gfpflags);
2084 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
3b0efdfa 2085 "default order: %d, min order: %d\n", s->name, s->object_size,
781b2ba6
PE
2086 s->size, oo_order(s->oo), oo_order(s->min));
2087
3b0efdfa 2088 if (oo_order(s->min) > get_order(s->object_size))
fa5ec8a1
DR
2089 printk(KERN_WARNING " %s debugging increased min order, use "
2090 "slub_debug=O to disable.\n", s->name);
2091
781b2ba6
PE
2092 for_each_online_node(node) {
2093 struct kmem_cache_node *n = get_node(s, node);
2094 unsigned long nr_slabs;
2095 unsigned long nr_objs;
2096 unsigned long nr_free;
2097
2098 if (!n)
2099 continue;
2100
26c02cf0
AB
2101 nr_free = count_partial(n, count_free);
2102 nr_slabs = node_nr_slabs(n);
2103 nr_objs = node_nr_objs(n);
781b2ba6
PE
2104
2105 printk(KERN_WARNING
2106 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2107 node, nr_slabs, nr_objs, nr_free);
2108 }
2109}
2110
497b66f2
CL
2111static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2112 int node, struct kmem_cache_cpu **pc)
2113{
6faa6833 2114 void *freelist;
188fd063
CL
2115 struct kmem_cache_cpu *c = *pc;
2116 struct page *page;
497b66f2 2117
188fd063 2118 freelist = get_partial(s, flags, node, c);
497b66f2 2119
188fd063
CL
2120 if (freelist)
2121 return freelist;
2122
2123 page = new_slab(s, flags, node);
497b66f2
CL
2124 if (page) {
2125 c = __this_cpu_ptr(s->cpu_slab);
2126 if (c->page)
2127 flush_slab(s, c);
2128
2129 /*
2130 * No other reference to the page yet so we can
2131 * muck around with it freely without cmpxchg
2132 */
6faa6833 2133 freelist = page->freelist;
497b66f2
CL
2134 page->freelist = NULL;
2135
2136 stat(s, ALLOC_SLAB);
497b66f2
CL
2137 c->page = page;
2138 *pc = c;
2139 } else
6faa6833 2140 freelist = NULL;
497b66f2 2141
6faa6833 2142 return freelist;
497b66f2
CL
2143}
2144
213eeb9f
CL
2145/*
2146 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2147 * or deactivate the page.
2148 *
2149 * The page is still frozen if the return value is not NULL.
2150 *
2151 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2152 *
2153 * This function must be called with interrupt disabled.
213eeb9f
CL
2154 */
2155static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2156{
2157 struct page new;
2158 unsigned long counters;
2159 void *freelist;
2160
2161 do {
2162 freelist = page->freelist;
2163 counters = page->counters;
6faa6833 2164
213eeb9f
CL
2165 new.counters = counters;
2166 VM_BUG_ON(!new.frozen);
2167
2168 new.inuse = page->objects;
2169 new.frozen = freelist != NULL;
2170
d24ac77f 2171 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2172 freelist, counters,
2173 NULL, new.counters,
2174 "get_freelist"));
2175
2176 return freelist;
2177}
2178
81819f0f 2179/*
894b8788
CL
2180 * Slow path. The lockless freelist is empty or we need to perform
2181 * debugging duties.
2182 *
894b8788
CL
2183 * Processing is still very fast if new objects have been freed to the
2184 * regular freelist. In that case we simply take over the regular freelist
2185 * as the lockless freelist and zap the regular freelist.
81819f0f 2186 *
894b8788
CL
2187 * If that is not working then we fall back to the partial lists. We take the
2188 * first element of the freelist as the object to allocate now and move the
2189 * rest of the freelist to the lockless freelist.
81819f0f 2190 *
894b8788 2191 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2192 * we need to allocate a new slab. This is the slowest path since it involves
2193 * a call to the page allocator and the setup of a new slab.
81819f0f 2194 */
ce71e27c
EGM
2195static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2196 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2197{
6faa6833 2198 void *freelist;
f6e7def7 2199 struct page *page;
8a5ec0ba
CL
2200 unsigned long flags;
2201
2202 local_irq_save(flags);
2203#ifdef CONFIG_PREEMPT
2204 /*
2205 * We may have been preempted and rescheduled on a different
2206 * cpu before disabling interrupts. Need to reload cpu area
2207 * pointer.
2208 */
2209 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2210#endif
81819f0f 2211
f6e7def7
CL
2212 page = c->page;
2213 if (!page)
81819f0f 2214 goto new_slab;
49e22585 2215redo:
6faa6833 2216
57d437d2 2217 if (unlikely(!node_match(page, node))) {
e36a2652 2218 stat(s, ALLOC_NODE_MISMATCH);
f6e7def7 2219 deactivate_slab(s, page, c->freelist);
c17dda40
CL
2220 c->page = NULL;
2221 c->freelist = NULL;
fc59c053
CL
2222 goto new_slab;
2223 }
6446faa2 2224
73736e03 2225 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2226 freelist = c->freelist;
2227 if (freelist)
73736e03 2228 goto load_freelist;
03e404af 2229
2cfb7455 2230 stat(s, ALLOC_SLOWPATH);
03e404af 2231
f6e7def7 2232 freelist = get_freelist(s, page);
6446faa2 2233
6faa6833 2234 if (!freelist) {
03e404af
CL
2235 c->page = NULL;
2236 stat(s, DEACTIVATE_BYPASS);
fc59c053 2237 goto new_slab;
03e404af 2238 }
6446faa2 2239
84e554e6 2240 stat(s, ALLOC_REFILL);
6446faa2 2241
894b8788 2242load_freelist:
507effea
CL
2243 /*
2244 * freelist is pointing to the list of objects to be used.
2245 * page is pointing to the page from which the objects are obtained.
2246 * That page must be frozen for per cpu allocations to work.
2247 */
2248 VM_BUG_ON(!c->page->frozen);
6faa6833 2249 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2250 c->tid = next_tid(c->tid);
2251 local_irq_restore(flags);
6faa6833 2252 return freelist;
81819f0f 2253
81819f0f 2254new_slab:
2cfb7455 2255
49e22585 2256 if (c->partial) {
f6e7def7
CL
2257 page = c->page = c->partial;
2258 c->partial = page->next;
49e22585
CL
2259 stat(s, CPU_PARTIAL_ALLOC);
2260 c->freelist = NULL;
2261 goto redo;
81819f0f
CL
2262 }
2263
188fd063 2264 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2265
f4697436
CL
2266 if (unlikely(!freelist)) {
2267 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2268 slab_out_of_memory(s, gfpflags, node);
2cfb7455 2269
f4697436
CL
2270 local_irq_restore(flags);
2271 return NULL;
81819f0f 2272 }
2cfb7455 2273
f6e7def7 2274 page = c->page;
497b66f2 2275 if (likely(!kmem_cache_debug(s)))
4b6f0750 2276 goto load_freelist;
2cfb7455 2277
497b66f2 2278 /* Only entered in the debug case */
f6e7def7 2279 if (!alloc_debug_processing(s, page, freelist, addr))
497b66f2 2280 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2281
f6e7def7 2282 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2283 c->page = NULL;
2284 c->freelist = NULL;
a71ae47a 2285 local_irq_restore(flags);
6faa6833 2286 return freelist;
894b8788
CL
2287}
2288
2289/*
2290 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2291 * have the fastpath folded into their functions. So no function call
2292 * overhead for requests that can be satisfied on the fastpath.
2293 *
2294 * The fastpath works by first checking if the lockless freelist can be used.
2295 * If not then __slab_alloc is called for slow processing.
2296 *
2297 * Otherwise we can simply pick the next object from the lockless free list.
2298 */
06428780 2299static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 2300 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2301{
894b8788 2302 void **object;
dfb4f096 2303 struct kmem_cache_cpu *c;
57d437d2 2304 struct page *page;
8a5ec0ba 2305 unsigned long tid;
1f84260c 2306
c016b0bd 2307 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2308 return NULL;
1f84260c 2309
8a5ec0ba 2310redo:
8a5ec0ba
CL
2311
2312 /*
2313 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2314 * enabled. We may switch back and forth between cpus while
2315 * reading from one cpu area. That does not matter as long
2316 * as we end up on the original cpu again when doing the cmpxchg.
2317 */
9dfc6e68 2318 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2319
8a5ec0ba
CL
2320 /*
2321 * The transaction ids are globally unique per cpu and per operation on
2322 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2323 * occurs on the right processor and that there was no operation on the
2324 * linked list in between.
2325 */
2326 tid = c->tid;
2327 barrier();
8a5ec0ba 2328
9dfc6e68 2329 object = c->freelist;
57d437d2
CL
2330 page = c->page;
2331 if (unlikely(!object || !node_match(page, node)))
894b8788 2332
dfb4f096 2333 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2334
2335 else {
0ad9500e
ED
2336 void *next_object = get_freepointer_safe(s, object);
2337
8a5ec0ba 2338 /*
25985edc 2339 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2340 * operation and if we are on the right processor.
2341 *
2342 * The cmpxchg does the following atomically (without lock semantics!)
2343 * 1. Relocate first pointer to the current per cpu area.
2344 * 2. Verify that tid and freelist have not been changed
2345 * 3. If they were not changed replace tid and freelist
2346 *
2347 * Since this is without lock semantics the protection is only against
2348 * code executing on this cpu *not* from access by other cpus.
2349 */
933393f5 2350 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2351 s->cpu_slab->freelist, s->cpu_slab->tid,
2352 object, tid,
0ad9500e 2353 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2354
2355 note_cmpxchg_failure("slab_alloc", s, tid);
2356 goto redo;
2357 }
0ad9500e 2358 prefetch_freepointer(s, next_object);
84e554e6 2359 stat(s, ALLOC_FASTPATH);
894b8788 2360 }
8a5ec0ba 2361
74e2134f 2362 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2363 memset(object, 0, s->object_size);
d07dbea4 2364
c016b0bd 2365 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2366
894b8788 2367 return object;
81819f0f
CL
2368}
2369
2370void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2371{
2154a336 2372 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2373
3b0efdfa 2374 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
5b882be4
EGM
2375
2376 return ret;
81819f0f
CL
2377}
2378EXPORT_SYMBOL(kmem_cache_alloc);
2379
0f24f128 2380#ifdef CONFIG_TRACING
4a92379b
RK
2381void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2382{
2383 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2384 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2385 return ret;
2386}
2387EXPORT_SYMBOL(kmem_cache_alloc_trace);
2388
2389void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2390{
4a92379b
RK
2391 void *ret = kmalloc_order(size, flags, order);
2392 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2393 return ret;
5b882be4 2394}
4a92379b 2395EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2396#endif
2397
81819f0f
CL
2398#ifdef CONFIG_NUMA
2399void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2400{
5b882be4
EGM
2401 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2402
ca2b84cb 2403 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2404 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2405
2406 return ret;
81819f0f
CL
2407}
2408EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2409
0f24f128 2410#ifdef CONFIG_TRACING
4a92379b 2411void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2412 gfp_t gfpflags,
4a92379b 2413 int node, size_t size)
5b882be4 2414{
4a92379b
RK
2415 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2416
2417 trace_kmalloc_node(_RET_IP_, ret,
2418 size, s->size, gfpflags, node);
2419 return ret;
5b882be4 2420}
4a92379b 2421EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2422#endif
5d1f57e4 2423#endif
5b882be4 2424
81819f0f 2425/*
894b8788
CL
2426 * Slow patch handling. This may still be called frequently since objects
2427 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2428 *
894b8788
CL
2429 * So we still attempt to reduce cache line usage. Just take the slab
2430 * lock and free the item. If there is no additional partial page
2431 * handling required then we can return immediately.
81819f0f 2432 */
894b8788 2433static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2434 void *x, unsigned long addr)
81819f0f
CL
2435{
2436 void *prior;
2437 void **object = (void *)x;
2cfb7455
CL
2438 int was_frozen;
2439 int inuse;
2440 struct page new;
2441 unsigned long counters;
2442 struct kmem_cache_node *n = NULL;
61728d1e 2443 unsigned long uninitialized_var(flags);
81819f0f 2444
8a5ec0ba 2445 stat(s, FREE_SLOWPATH);
81819f0f 2446
8dc16c6c 2447 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
80f08c19 2448 return;
6446faa2 2449
2cfb7455
CL
2450 do {
2451 prior = page->freelist;
2452 counters = page->counters;
2453 set_freepointer(s, object, prior);
2454 new.counters = counters;
2455 was_frozen = new.frozen;
2456 new.inuse--;
2457 if ((!new.inuse || !prior) && !was_frozen && !n) {
49e22585
CL
2458
2459 if (!kmem_cache_debug(s) && !prior)
2460
2461 /*
2462 * Slab was on no list before and will be partially empty
2463 * We can defer the list move and instead freeze it.
2464 */
2465 new.frozen = 1;
2466
2467 else { /* Needs to be taken off a list */
2468
2469 n = get_node(s, page_to_nid(page));
2470 /*
2471 * Speculatively acquire the list_lock.
2472 * If the cmpxchg does not succeed then we may
2473 * drop the list_lock without any processing.
2474 *
2475 * Otherwise the list_lock will synchronize with
2476 * other processors updating the list of slabs.
2477 */
2478 spin_lock_irqsave(&n->list_lock, flags);
2479
2480 }
2cfb7455
CL
2481 }
2482 inuse = new.inuse;
81819f0f 2483
2cfb7455
CL
2484 } while (!cmpxchg_double_slab(s, page,
2485 prior, counters,
2486 object, new.counters,
2487 "__slab_free"));
81819f0f 2488
2cfb7455 2489 if (likely(!n)) {
49e22585
CL
2490
2491 /*
2492 * If we just froze the page then put it onto the
2493 * per cpu partial list.
2494 */
8028dcea 2495 if (new.frozen && !was_frozen) {
49e22585 2496 put_cpu_partial(s, page, 1);
8028dcea
AS
2497 stat(s, CPU_PARTIAL_FREE);
2498 }
49e22585 2499 /*
2cfb7455
CL
2500 * The list lock was not taken therefore no list
2501 * activity can be necessary.
2502 */
2503 if (was_frozen)
2504 stat(s, FREE_FROZEN);
80f08c19 2505 return;
2cfb7455 2506 }
81819f0f
CL
2507
2508 /*
2cfb7455
CL
2509 * was_frozen may have been set after we acquired the list_lock in
2510 * an earlier loop. So we need to check it here again.
81819f0f 2511 */
2cfb7455
CL
2512 if (was_frozen)
2513 stat(s, FREE_FROZEN);
2514 else {
2515 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2516 goto slab_empty;
81819f0f 2517
2cfb7455
CL
2518 /*
2519 * Objects left in the slab. If it was not on the partial list before
2520 * then add it.
2521 */
2522 if (unlikely(!prior)) {
2523 remove_full(s, page);
136333d1 2524 add_partial(n, page, DEACTIVATE_TO_TAIL);
2cfb7455
CL
2525 stat(s, FREE_ADD_PARTIAL);
2526 }
8ff12cfc 2527 }
80f08c19 2528 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2529 return;
2530
2531slab_empty:
a973e9dd 2532 if (prior) {
81819f0f 2533 /*
6fbabb20 2534 * Slab on the partial list.
81819f0f 2535 */
5cc6eee8 2536 remove_partial(n, page);
84e554e6 2537 stat(s, FREE_REMOVE_PARTIAL);
6fbabb20
CL
2538 } else
2539 /* Slab must be on the full list */
2540 remove_full(s, page);
2cfb7455 2541
80f08c19 2542 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2543 stat(s, FREE_SLAB);
81819f0f 2544 discard_slab(s, page);
81819f0f
CL
2545}
2546
894b8788
CL
2547/*
2548 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2549 * can perform fastpath freeing without additional function calls.
2550 *
2551 * The fastpath is only possible if we are freeing to the current cpu slab
2552 * of this processor. This typically the case if we have just allocated
2553 * the item before.
2554 *
2555 * If fastpath is not possible then fall back to __slab_free where we deal
2556 * with all sorts of special processing.
2557 */
06428780 2558static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2559 struct page *page, void *x, unsigned long addr)
894b8788
CL
2560{
2561 void **object = (void *)x;
dfb4f096 2562 struct kmem_cache_cpu *c;
8a5ec0ba 2563 unsigned long tid;
1f84260c 2564
c016b0bd
CL
2565 slab_free_hook(s, x);
2566
8a5ec0ba
CL
2567redo:
2568 /*
2569 * Determine the currently cpus per cpu slab.
2570 * The cpu may change afterward. However that does not matter since
2571 * data is retrieved via this pointer. If we are on the same cpu
2572 * during the cmpxchg then the free will succedd.
2573 */
9dfc6e68 2574 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2575
8a5ec0ba
CL
2576 tid = c->tid;
2577 barrier();
c016b0bd 2578
442b06bc 2579 if (likely(page == c->page)) {
ff12059e 2580 set_freepointer(s, object, c->freelist);
8a5ec0ba 2581
933393f5 2582 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2583 s->cpu_slab->freelist, s->cpu_slab->tid,
2584 c->freelist, tid,
2585 object, next_tid(tid)))) {
2586
2587 note_cmpxchg_failure("slab_free", s, tid);
2588 goto redo;
2589 }
84e554e6 2590 stat(s, FREE_FASTPATH);
894b8788 2591 } else
ff12059e 2592 __slab_free(s, page, x, addr);
894b8788 2593
894b8788
CL
2594}
2595
81819f0f
CL
2596void kmem_cache_free(struct kmem_cache *s, void *x)
2597{
77c5e2d0 2598 struct page *page;
81819f0f 2599
b49af68f 2600 page = virt_to_head_page(x);
81819f0f 2601
ce71e27c 2602 slab_free(s, page, x, _RET_IP_);
5b882be4 2603
ca2b84cb 2604 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2605}
2606EXPORT_SYMBOL(kmem_cache_free);
2607
81819f0f 2608/*
672bba3a
CL
2609 * Object placement in a slab is made very easy because we always start at
2610 * offset 0. If we tune the size of the object to the alignment then we can
2611 * get the required alignment by putting one properly sized object after
2612 * another.
81819f0f
CL
2613 *
2614 * Notice that the allocation order determines the sizes of the per cpu
2615 * caches. Each processor has always one slab available for allocations.
2616 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2617 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2618 * locking overhead.
81819f0f
CL
2619 */
2620
2621/*
2622 * Mininum / Maximum order of slab pages. This influences locking overhead
2623 * and slab fragmentation. A higher order reduces the number of partial slabs
2624 * and increases the number of allocations possible without having to
2625 * take the list_lock.
2626 */
2627static int slub_min_order;
114e9e89 2628static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2629static int slub_min_objects;
81819f0f
CL
2630
2631/*
2632 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2633 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2634 */
2635static int slub_nomerge;
2636
81819f0f
CL
2637/*
2638 * Calculate the order of allocation given an slab object size.
2639 *
672bba3a
CL
2640 * The order of allocation has significant impact on performance and other
2641 * system components. Generally order 0 allocations should be preferred since
2642 * order 0 does not cause fragmentation in the page allocator. Larger objects
2643 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2644 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2645 * would be wasted.
2646 *
2647 * In order to reach satisfactory performance we must ensure that a minimum
2648 * number of objects is in one slab. Otherwise we may generate too much
2649 * activity on the partial lists which requires taking the list_lock. This is
2650 * less a concern for large slabs though which are rarely used.
81819f0f 2651 *
672bba3a
CL
2652 * slub_max_order specifies the order where we begin to stop considering the
2653 * number of objects in a slab as critical. If we reach slub_max_order then
2654 * we try to keep the page order as low as possible. So we accept more waste
2655 * of space in favor of a small page order.
81819f0f 2656 *
672bba3a
CL
2657 * Higher order allocations also allow the placement of more objects in a
2658 * slab and thereby reduce object handling overhead. If the user has
2659 * requested a higher mininum order then we start with that one instead of
2660 * the smallest order which will fit the object.
81819f0f 2661 */
5e6d444e 2662static inline int slab_order(int size, int min_objects,
ab9a0f19 2663 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2664{
2665 int order;
2666 int rem;
6300ea75 2667 int min_order = slub_min_order;
81819f0f 2668
ab9a0f19 2669 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2670 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2671
6300ea75 2672 for (order = max(min_order,
5e6d444e
CL
2673 fls(min_objects * size - 1) - PAGE_SHIFT);
2674 order <= max_order; order++) {
81819f0f 2675
5e6d444e 2676 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2677
ab9a0f19 2678 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2679 continue;
2680
ab9a0f19 2681 rem = (slab_size - reserved) % size;
81819f0f 2682
5e6d444e 2683 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2684 break;
2685
2686 }
672bba3a 2687
81819f0f
CL
2688 return order;
2689}
2690
ab9a0f19 2691static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2692{
2693 int order;
2694 int min_objects;
2695 int fraction;
e8120ff1 2696 int max_objects;
5e6d444e
CL
2697
2698 /*
2699 * Attempt to find best configuration for a slab. This
2700 * works by first attempting to generate a layout with
2701 * the best configuration and backing off gradually.
2702 *
2703 * First we reduce the acceptable waste in a slab. Then
2704 * we reduce the minimum objects required in a slab.
2705 */
2706 min_objects = slub_min_objects;
9b2cd506
CL
2707 if (!min_objects)
2708 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2709 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2710 min_objects = min(min_objects, max_objects);
2711
5e6d444e 2712 while (min_objects > 1) {
c124f5b5 2713 fraction = 16;
5e6d444e
CL
2714 while (fraction >= 4) {
2715 order = slab_order(size, min_objects,
ab9a0f19 2716 slub_max_order, fraction, reserved);
5e6d444e
CL
2717 if (order <= slub_max_order)
2718 return order;
2719 fraction /= 2;
2720 }
5086c389 2721 min_objects--;
5e6d444e
CL
2722 }
2723
2724 /*
2725 * We were unable to place multiple objects in a slab. Now
2726 * lets see if we can place a single object there.
2727 */
ab9a0f19 2728 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2729 if (order <= slub_max_order)
2730 return order;
2731
2732 /*
2733 * Doh this slab cannot be placed using slub_max_order.
2734 */
ab9a0f19 2735 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2736 if (order < MAX_ORDER)
5e6d444e
CL
2737 return order;
2738 return -ENOSYS;
2739}
2740
81819f0f 2741/*
672bba3a 2742 * Figure out what the alignment of the objects will be.
81819f0f
CL
2743 */
2744static unsigned long calculate_alignment(unsigned long flags,
2745 unsigned long align, unsigned long size)
2746{
2747 /*
6446faa2
CL
2748 * If the user wants hardware cache aligned objects then follow that
2749 * suggestion if the object is sufficiently large.
81819f0f 2750 *
6446faa2
CL
2751 * The hardware cache alignment cannot override the specified
2752 * alignment though. If that is greater then use it.
81819f0f 2753 */
b6210386
NP
2754 if (flags & SLAB_HWCACHE_ALIGN) {
2755 unsigned long ralign = cache_line_size();
2756 while (size <= ralign / 2)
2757 ralign /= 2;
2758 align = max(align, ralign);
2759 }
81819f0f
CL
2760
2761 if (align < ARCH_SLAB_MINALIGN)
b6210386 2762 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2763
2764 return ALIGN(align, sizeof(void *));
2765}
2766
5595cffc 2767static void
4053497d 2768init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2769{
2770 n->nr_partial = 0;
81819f0f
CL
2771 spin_lock_init(&n->list_lock);
2772 INIT_LIST_HEAD(&n->partial);
8ab1372f 2773#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2774 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2775 atomic_long_set(&n->total_objects, 0);
643b1138 2776 INIT_LIST_HEAD(&n->full);
8ab1372f 2777#endif
81819f0f
CL
2778}
2779
55136592 2780static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2781{
6c182dc0
CL
2782 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2783 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2784
8a5ec0ba 2785 /*
d4d84fef
CM
2786 * Must align to double word boundary for the double cmpxchg
2787 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2788 */
d4d84fef
CM
2789 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2790 2 * sizeof(void *));
8a5ec0ba
CL
2791
2792 if (!s->cpu_slab)
2793 return 0;
2794
2795 init_kmem_cache_cpus(s);
4c93c355 2796
8a5ec0ba 2797 return 1;
4c93c355 2798}
4c93c355 2799
51df1142
CL
2800static struct kmem_cache *kmem_cache_node;
2801
81819f0f
CL
2802/*
2803 * No kmalloc_node yet so do it by hand. We know that this is the first
2804 * slab on the node for this slabcache. There are no concurrent accesses
2805 * possible.
2806 *
2807 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2808 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2809 * memory on a fresh node that has no slab structures yet.
81819f0f 2810 */
55136592 2811static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2812{
2813 struct page *page;
2814 struct kmem_cache_node *n;
2815
51df1142 2816 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2817
51df1142 2818 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2819
2820 BUG_ON(!page);
a2f92ee7
CL
2821 if (page_to_nid(page) != node) {
2822 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2823 "node %d\n", node);
2824 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2825 "in order to be able to continue\n");
2826 }
2827
81819f0f
CL
2828 n = page->freelist;
2829 BUG_ON(!n);
51df1142 2830 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2831 page->inuse = 1;
8cb0a506 2832 page->frozen = 0;
51df1142 2833 kmem_cache_node->node[node] = n;
8ab1372f 2834#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2835 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2836 init_tracking(kmem_cache_node, n);
8ab1372f 2837#endif
4053497d 2838 init_kmem_cache_node(n);
51df1142 2839 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2840
136333d1 2841 add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2842}
2843
2844static void free_kmem_cache_nodes(struct kmem_cache *s)
2845{
2846 int node;
2847
f64dc58c 2848 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2849 struct kmem_cache_node *n = s->node[node];
51df1142 2850
73367bd8 2851 if (n)
51df1142
CL
2852 kmem_cache_free(kmem_cache_node, n);
2853
81819f0f
CL
2854 s->node[node] = NULL;
2855 }
2856}
2857
55136592 2858static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2859{
2860 int node;
81819f0f 2861
f64dc58c 2862 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2863 struct kmem_cache_node *n;
2864
73367bd8 2865 if (slab_state == DOWN) {
55136592 2866 early_kmem_cache_node_alloc(node);
73367bd8
AD
2867 continue;
2868 }
51df1142 2869 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2870 GFP_KERNEL, node);
81819f0f 2871
73367bd8
AD
2872 if (!n) {
2873 free_kmem_cache_nodes(s);
2874 return 0;
81819f0f 2875 }
73367bd8 2876
81819f0f 2877 s->node[node] = n;
4053497d 2878 init_kmem_cache_node(n);
81819f0f
CL
2879 }
2880 return 1;
2881}
81819f0f 2882
c0bdb232 2883static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2884{
2885 if (min < MIN_PARTIAL)
2886 min = MIN_PARTIAL;
2887 else if (min > MAX_PARTIAL)
2888 min = MAX_PARTIAL;
2889 s->min_partial = min;
2890}
2891
81819f0f
CL
2892/*
2893 * calculate_sizes() determines the order and the distribution of data within
2894 * a slab object.
2895 */
06b285dc 2896static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2897{
2898 unsigned long flags = s->flags;
3b0efdfa 2899 unsigned long size = s->object_size;
81819f0f 2900 unsigned long align = s->align;
834f3d11 2901 int order;
81819f0f 2902
d8b42bf5
CL
2903 /*
2904 * Round up object size to the next word boundary. We can only
2905 * place the free pointer at word boundaries and this determines
2906 * the possible location of the free pointer.
2907 */
2908 size = ALIGN(size, sizeof(void *));
2909
2910#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2911 /*
2912 * Determine if we can poison the object itself. If the user of
2913 * the slab may touch the object after free or before allocation
2914 * then we should never poison the object itself.
2915 */
2916 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2917 !s->ctor)
81819f0f
CL
2918 s->flags |= __OBJECT_POISON;
2919 else
2920 s->flags &= ~__OBJECT_POISON;
2921
81819f0f
CL
2922
2923 /*
672bba3a 2924 * If we are Redzoning then check if there is some space between the
81819f0f 2925 * end of the object and the free pointer. If not then add an
672bba3a 2926 * additional word to have some bytes to store Redzone information.
81819f0f 2927 */
3b0efdfa 2928 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 2929 size += sizeof(void *);
41ecc55b 2930#endif
81819f0f
CL
2931
2932 /*
672bba3a
CL
2933 * With that we have determined the number of bytes in actual use
2934 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2935 */
2936 s->inuse = size;
2937
2938 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2939 s->ctor)) {
81819f0f
CL
2940 /*
2941 * Relocate free pointer after the object if it is not
2942 * permitted to overwrite the first word of the object on
2943 * kmem_cache_free.
2944 *
2945 * This is the case if we do RCU, have a constructor or
2946 * destructor or are poisoning the objects.
2947 */
2948 s->offset = size;
2949 size += sizeof(void *);
2950 }
2951
c12b3c62 2952#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2953 if (flags & SLAB_STORE_USER)
2954 /*
2955 * Need to store information about allocs and frees after
2956 * the object.
2957 */
2958 size += 2 * sizeof(struct track);
2959
be7b3fbc 2960 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2961 /*
2962 * Add some empty padding so that we can catch
2963 * overwrites from earlier objects rather than let
2964 * tracking information or the free pointer be
0211a9c8 2965 * corrupted if a user writes before the start
81819f0f
CL
2966 * of the object.
2967 */
2968 size += sizeof(void *);
41ecc55b 2969#endif
672bba3a 2970
81819f0f
CL
2971 /*
2972 * Determine the alignment based on various parameters that the
65c02d4c
CL
2973 * user specified and the dynamic determination of cache line size
2974 * on bootup.
81819f0f 2975 */
3b0efdfa 2976 align = calculate_alignment(flags, align, s->object_size);
dcb0ce1b 2977 s->align = align;
81819f0f
CL
2978
2979 /*
2980 * SLUB stores one object immediately after another beginning from
2981 * offset 0. In order to align the objects we have to simply size
2982 * each object to conform to the alignment.
2983 */
2984 size = ALIGN(size, align);
2985 s->size = size;
06b285dc
CL
2986 if (forced_order >= 0)
2987 order = forced_order;
2988 else
ab9a0f19 2989 order = calculate_order(size, s->reserved);
81819f0f 2990
834f3d11 2991 if (order < 0)
81819f0f
CL
2992 return 0;
2993
b7a49f0d 2994 s->allocflags = 0;
834f3d11 2995 if (order)
b7a49f0d
CL
2996 s->allocflags |= __GFP_COMP;
2997
2998 if (s->flags & SLAB_CACHE_DMA)
2999 s->allocflags |= SLUB_DMA;
3000
3001 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3002 s->allocflags |= __GFP_RECLAIMABLE;
3003
81819f0f
CL
3004 /*
3005 * Determine the number of objects per slab
3006 */
ab9a0f19
LJ
3007 s->oo = oo_make(order, size, s->reserved);
3008 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3009 if (oo_objects(s->oo) > oo_objects(s->max))
3010 s->max = s->oo;
81819f0f 3011
834f3d11 3012 return !!oo_objects(s->oo);
81819f0f
CL
3013
3014}
3015
55136592 3016static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
3017 const char *name, size_t size,
3018 size_t align, unsigned long flags,
51cc5068 3019 void (*ctor)(void *))
81819f0f
CL
3020{
3021 memset(s, 0, kmem_size);
3022 s->name = name;
3023 s->ctor = ctor;
3b0efdfa 3024 s->object_size = size;
81819f0f 3025 s->align = align;
ba0268a8 3026 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 3027 s->reserved = 0;
81819f0f 3028
da9a638c
LJ
3029 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3030 s->reserved = sizeof(struct rcu_head);
81819f0f 3031
06b285dc 3032 if (!calculate_sizes(s, -1))
81819f0f 3033 goto error;
3de47213
DR
3034 if (disable_higher_order_debug) {
3035 /*
3036 * Disable debugging flags that store metadata if the min slab
3037 * order increased.
3038 */
3b0efdfa 3039 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3040 s->flags &= ~DEBUG_METADATA_FLAGS;
3041 s->offset = 0;
3042 if (!calculate_sizes(s, -1))
3043 goto error;
3044 }
3045 }
81819f0f 3046
2565409f
HC
3047#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3048 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3049 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3050 /* Enable fast mode */
3051 s->flags |= __CMPXCHG_DOUBLE;
3052#endif
3053
3b89d7d8
DR
3054 /*
3055 * The larger the object size is, the more pages we want on the partial
3056 * list to avoid pounding the page allocator excessively.
3057 */
49e22585
CL
3058 set_min_partial(s, ilog2(s->size) / 2);
3059
3060 /*
3061 * cpu_partial determined the maximum number of objects kept in the
3062 * per cpu partial lists of a processor.
3063 *
3064 * Per cpu partial lists mainly contain slabs that just have one
3065 * object freed. If they are used for allocation then they can be
3066 * filled up again with minimal effort. The slab will never hit the
3067 * per node partial lists and therefore no locking will be required.
3068 *
3069 * This setting also determines
3070 *
3071 * A) The number of objects from per cpu partial slabs dumped to the
3072 * per node list when we reach the limit.
9f264904 3073 * B) The number of objects in cpu partial slabs to extract from the
49e22585
CL
3074 * per node list when we run out of per cpu objects. We only fetch 50%
3075 * to keep some capacity around for frees.
3076 */
8f1e33da
CL
3077 if (kmem_cache_debug(s))
3078 s->cpu_partial = 0;
3079 else if (s->size >= PAGE_SIZE)
49e22585
CL
3080 s->cpu_partial = 2;
3081 else if (s->size >= 1024)
3082 s->cpu_partial = 6;
3083 else if (s->size >= 256)
3084 s->cpu_partial = 13;
3085 else
3086 s->cpu_partial = 30;
3087
81819f0f
CL
3088 s->refcount = 1;
3089#ifdef CONFIG_NUMA
e2cb96b7 3090 s->remote_node_defrag_ratio = 1000;
81819f0f 3091#endif
55136592 3092 if (!init_kmem_cache_nodes(s))
dfb4f096 3093 goto error;
81819f0f 3094
55136592 3095 if (alloc_kmem_cache_cpus(s))
81819f0f 3096 return 1;
ff12059e 3097
4c93c355 3098 free_kmem_cache_nodes(s);
81819f0f
CL
3099error:
3100 if (flags & SLAB_PANIC)
3101 panic("Cannot create slab %s size=%lu realsize=%u "
3102 "order=%u offset=%u flags=%lx\n",
834f3d11 3103 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
3104 s->offset, flags);
3105 return 0;
3106}
81819f0f 3107
81819f0f
CL
3108/*
3109 * Determine the size of a slab object
3110 */
3111unsigned int kmem_cache_size(struct kmem_cache *s)
3112{
3b0efdfa 3113 return s->object_size;
81819f0f
CL
3114}
3115EXPORT_SYMBOL(kmem_cache_size);
3116
33b12c38
CL
3117static void list_slab_objects(struct kmem_cache *s, struct page *page,
3118 const char *text)
3119{
3120#ifdef CONFIG_SLUB_DEBUG
3121 void *addr = page_address(page);
3122 void *p;
a5dd5c11
NK
3123 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3124 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3125 if (!map)
3126 return;
33b12c38
CL
3127 slab_err(s, page, "%s", text);
3128 slab_lock(page);
33b12c38 3129
5f80b13a 3130 get_map(s, page, map);
33b12c38
CL
3131 for_each_object(p, s, addr, page->objects) {
3132
3133 if (!test_bit(slab_index(p, s, addr), map)) {
3134 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3135 p, p - addr);
3136 print_tracking(s, p);
3137 }
3138 }
3139 slab_unlock(page);
bbd7d57b 3140 kfree(map);
33b12c38
CL
3141#endif
3142}
3143
81819f0f 3144/*
599870b1 3145 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3146 * This is called from kmem_cache_close(). We must be the last thread
3147 * using the cache and therefore we do not need to lock anymore.
81819f0f 3148 */
599870b1 3149static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3150{
81819f0f
CL
3151 struct page *page, *h;
3152
33b12c38 3153 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3154 if (!page->inuse) {
5cc6eee8 3155 remove_partial(n, page);
81819f0f 3156 discard_slab(s, page);
33b12c38
CL
3157 } else {
3158 list_slab_objects(s, page,
3159 "Objects remaining on kmem_cache_close()");
599870b1 3160 }
33b12c38 3161 }
81819f0f
CL
3162}
3163
3164/*
672bba3a 3165 * Release all resources used by a slab cache.
81819f0f 3166 */
0c710013 3167static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3168{
3169 int node;
3170
3171 flush_all(s);
9dfc6e68 3172 free_percpu(s->cpu_slab);
81819f0f 3173 /* Attempt to free all objects */
f64dc58c 3174 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3175 struct kmem_cache_node *n = get_node(s, node);
3176
599870b1
CL
3177 free_partial(s, n);
3178 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3179 return 1;
3180 }
3181 free_kmem_cache_nodes(s);
3182 return 0;
3183}
3184
3185/*
3186 * Close a cache and release the kmem_cache structure
3187 * (must be used for caches created using kmem_cache_create)
3188 */
3189void kmem_cache_destroy(struct kmem_cache *s)
3190{
3191 down_write(&slub_lock);
3192 s->refcount--;
3193 if (!s->refcount) {
3194 list_del(&s->list);
69cb8e6b 3195 up_write(&slub_lock);
d629d819
PE
3196 if (kmem_cache_close(s)) {
3197 printk(KERN_ERR "SLUB %s: %s called for cache that "
3198 "still has objects.\n", s->name, __func__);
3199 dump_stack();
3200 }
d76b1590
ED
3201 if (s->flags & SLAB_DESTROY_BY_RCU)
3202 rcu_barrier();
81819f0f 3203 sysfs_slab_remove(s);
69cb8e6b
CL
3204 } else
3205 up_write(&slub_lock);
81819f0f
CL
3206}
3207EXPORT_SYMBOL(kmem_cache_destroy);
3208
3209/********************************************************************
3210 * Kmalloc subsystem
3211 *******************************************************************/
3212
51df1142 3213struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
3214EXPORT_SYMBOL(kmalloc_caches);
3215
51df1142
CL
3216static struct kmem_cache *kmem_cache;
3217
55136592 3218#ifdef CONFIG_ZONE_DMA
51df1142 3219static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
3220#endif
3221
81819f0f
CL
3222static int __init setup_slub_min_order(char *str)
3223{
06428780 3224 get_option(&str, &slub_min_order);
81819f0f
CL
3225
3226 return 1;
3227}
3228
3229__setup("slub_min_order=", setup_slub_min_order);
3230
3231static int __init setup_slub_max_order(char *str)
3232{
06428780 3233 get_option(&str, &slub_max_order);
818cf590 3234 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3235
3236 return 1;
3237}
3238
3239__setup("slub_max_order=", setup_slub_max_order);
3240
3241static int __init setup_slub_min_objects(char *str)
3242{
06428780 3243 get_option(&str, &slub_min_objects);
81819f0f
CL
3244
3245 return 1;
3246}
3247
3248__setup("slub_min_objects=", setup_slub_min_objects);
3249
3250static int __init setup_slub_nomerge(char *str)
3251{
3252 slub_nomerge = 1;
3253 return 1;
3254}
3255
3256__setup("slub_nomerge", setup_slub_nomerge);
3257
51df1142
CL
3258static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3259 int size, unsigned int flags)
81819f0f 3260{
51df1142
CL
3261 struct kmem_cache *s;
3262
3263 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3264
83b519e8
PE
3265 /*
3266 * This function is called with IRQs disabled during early-boot on
3267 * single CPU so there's no need to take slub_lock here.
3268 */
55136592 3269 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 3270 flags, NULL))
81819f0f
CL
3271 goto panic;
3272
3273 list_add(&s->list, &slab_caches);
51df1142 3274 return s;
81819f0f
CL
3275
3276panic:
3277 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 3278 return NULL;
81819f0f
CL
3279}
3280
f1b26339
CL
3281/*
3282 * Conversion table for small slabs sizes / 8 to the index in the
3283 * kmalloc array. This is necessary for slabs < 192 since we have non power
3284 * of two cache sizes there. The size of larger slabs can be determined using
3285 * fls.
3286 */
3287static s8 size_index[24] = {
3288 3, /* 8 */
3289 4, /* 16 */
3290 5, /* 24 */
3291 5, /* 32 */
3292 6, /* 40 */
3293 6, /* 48 */
3294 6, /* 56 */
3295 6, /* 64 */
3296 1, /* 72 */
3297 1, /* 80 */
3298 1, /* 88 */
3299 1, /* 96 */
3300 7, /* 104 */
3301 7, /* 112 */
3302 7, /* 120 */
3303 7, /* 128 */
3304 2, /* 136 */
3305 2, /* 144 */
3306 2, /* 152 */
3307 2, /* 160 */
3308 2, /* 168 */
3309 2, /* 176 */
3310 2, /* 184 */
3311 2 /* 192 */
3312};
3313
acdfcd04
AK
3314static inline int size_index_elem(size_t bytes)
3315{
3316 return (bytes - 1) / 8;
3317}
3318
81819f0f
CL
3319static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3320{
f1b26339 3321 int index;
81819f0f 3322
f1b26339
CL
3323 if (size <= 192) {
3324 if (!size)
3325 return ZERO_SIZE_PTR;
81819f0f 3326
acdfcd04 3327 index = size_index[size_index_elem(size)];
aadb4bc4 3328 } else
f1b26339 3329 index = fls(size - 1);
81819f0f
CL
3330
3331#ifdef CONFIG_ZONE_DMA
f1b26339 3332 if (unlikely((flags & SLUB_DMA)))
51df1142 3333 return kmalloc_dma_caches[index];
f1b26339 3334
81819f0f 3335#endif
51df1142 3336 return kmalloc_caches[index];
81819f0f
CL
3337}
3338
3339void *__kmalloc(size_t size, gfp_t flags)
3340{
aadb4bc4 3341 struct kmem_cache *s;
5b882be4 3342 void *ret;
81819f0f 3343
ffadd4d0 3344 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 3345 return kmalloc_large(size, flags);
aadb4bc4
CL
3346
3347 s = get_slab(size, flags);
3348
3349 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3350 return s;
3351
2154a336 3352 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 3353
ca2b84cb 3354 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3355
3356 return ret;
81819f0f
CL
3357}
3358EXPORT_SYMBOL(__kmalloc);
3359
5d1f57e4 3360#ifdef CONFIG_NUMA
f619cfe1
CL
3361static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3362{
b1eeab67 3363 struct page *page;
e4f7c0b4 3364 void *ptr = NULL;
f619cfe1 3365
b1eeab67
VN
3366 flags |= __GFP_COMP | __GFP_NOTRACK;
3367 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3368 if (page)
e4f7c0b4
CM
3369 ptr = page_address(page);
3370
3371 kmemleak_alloc(ptr, size, 1, flags);
3372 return ptr;
f619cfe1
CL
3373}
3374
81819f0f
CL
3375void *__kmalloc_node(size_t size, gfp_t flags, int node)
3376{
aadb4bc4 3377 struct kmem_cache *s;
5b882be4 3378 void *ret;
81819f0f 3379
057685cf 3380 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
3381 ret = kmalloc_large_node(size, flags, node);
3382
ca2b84cb
EGM
3383 trace_kmalloc_node(_RET_IP_, ret,
3384 size, PAGE_SIZE << get_order(size),
3385 flags, node);
5b882be4
EGM
3386
3387 return ret;
3388 }
aadb4bc4
CL
3389
3390 s = get_slab(size, flags);
3391
3392 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3393 return s;
3394
5b882be4
EGM
3395 ret = slab_alloc(s, flags, node, _RET_IP_);
3396
ca2b84cb 3397 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3398
3399 return ret;
81819f0f
CL
3400}
3401EXPORT_SYMBOL(__kmalloc_node);
3402#endif
3403
3404size_t ksize(const void *object)
3405{
272c1d21 3406 struct page *page;
81819f0f 3407
ef8b4520 3408 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3409 return 0;
3410
294a80a8 3411 page = virt_to_head_page(object);
294a80a8 3412
76994412
PE
3413 if (unlikely(!PageSlab(page))) {
3414 WARN_ON(!PageCompound(page));
294a80a8 3415 return PAGE_SIZE << compound_order(page);
76994412 3416 }
81819f0f 3417
b3d41885 3418 return slab_ksize(page->slab);
81819f0f 3419}
b1aabecd 3420EXPORT_SYMBOL(ksize);
81819f0f 3421
d18a90dd
BG
3422#ifdef CONFIG_SLUB_DEBUG
3423bool verify_mem_not_deleted(const void *x)
3424{
3425 struct page *page;
3426 void *object = (void *)x;
3427 unsigned long flags;
3428 bool rv;
3429
3430 if (unlikely(ZERO_OR_NULL_PTR(x)))
3431 return false;
3432
3433 local_irq_save(flags);
3434
3435 page = virt_to_head_page(x);
3436 if (unlikely(!PageSlab(page))) {
3437 /* maybe it was from stack? */
3438 rv = true;
3439 goto out_unlock;
3440 }
3441
3442 slab_lock(page);
3443 if (on_freelist(page->slab, page, object)) {
3444 object_err(page->slab, page, object, "Object is on free-list");
3445 rv = false;
3446 } else {
3447 rv = true;
3448 }
3449 slab_unlock(page);
3450
3451out_unlock:
3452 local_irq_restore(flags);
3453 return rv;
3454}
3455EXPORT_SYMBOL(verify_mem_not_deleted);
3456#endif
3457
81819f0f
CL
3458void kfree(const void *x)
3459{
81819f0f 3460 struct page *page;
5bb983b0 3461 void *object = (void *)x;
81819f0f 3462
2121db74
PE
3463 trace_kfree(_RET_IP_, x);
3464
2408c550 3465 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3466 return;
3467
b49af68f 3468 page = virt_to_head_page(x);
aadb4bc4 3469 if (unlikely(!PageSlab(page))) {
0937502a 3470 BUG_ON(!PageCompound(page));
e4f7c0b4 3471 kmemleak_free(x);
aadb4bc4
CL
3472 put_page(page);
3473 return;
3474 }
ce71e27c 3475 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
3476}
3477EXPORT_SYMBOL(kfree);
3478
2086d26a 3479/*
672bba3a
CL
3480 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3481 * the remaining slabs by the number of items in use. The slabs with the
3482 * most items in use come first. New allocations will then fill those up
3483 * and thus they can be removed from the partial lists.
3484 *
3485 * The slabs with the least items are placed last. This results in them
3486 * being allocated from last increasing the chance that the last objects
3487 * are freed in them.
2086d26a
CL
3488 */
3489int kmem_cache_shrink(struct kmem_cache *s)
3490{
3491 int node;
3492 int i;
3493 struct kmem_cache_node *n;
3494 struct page *page;
3495 struct page *t;
205ab99d 3496 int objects = oo_objects(s->max);
2086d26a 3497 struct list_head *slabs_by_inuse =
834f3d11 3498 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3499 unsigned long flags;
3500
3501 if (!slabs_by_inuse)
3502 return -ENOMEM;
3503
3504 flush_all(s);
f64dc58c 3505 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3506 n = get_node(s, node);
3507
3508 if (!n->nr_partial)
3509 continue;
3510
834f3d11 3511 for (i = 0; i < objects; i++)
2086d26a
CL
3512 INIT_LIST_HEAD(slabs_by_inuse + i);
3513
3514 spin_lock_irqsave(&n->list_lock, flags);
3515
3516 /*
672bba3a 3517 * Build lists indexed by the items in use in each slab.
2086d26a 3518 *
672bba3a
CL
3519 * Note that concurrent frees may occur while we hold the
3520 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3521 */
3522 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3523 list_move(&page->lru, slabs_by_inuse + page->inuse);
3524 if (!page->inuse)
3525 n->nr_partial--;
2086d26a
CL
3526 }
3527
2086d26a 3528 /*
672bba3a
CL
3529 * Rebuild the partial list with the slabs filled up most
3530 * first and the least used slabs at the end.
2086d26a 3531 */
69cb8e6b 3532 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3533 list_splice(slabs_by_inuse + i, n->partial.prev);
3534
2086d26a 3535 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3536
3537 /* Release empty slabs */
3538 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3539 discard_slab(s, page);
2086d26a
CL
3540 }
3541
3542 kfree(slabs_by_inuse);
3543 return 0;
3544}
3545EXPORT_SYMBOL(kmem_cache_shrink);
3546
92a5bbc1 3547#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3548static int slab_mem_going_offline_callback(void *arg)
3549{
3550 struct kmem_cache *s;
3551
3552 down_read(&slub_lock);
3553 list_for_each_entry(s, &slab_caches, list)
3554 kmem_cache_shrink(s);
3555 up_read(&slub_lock);
3556
3557 return 0;
3558}
3559
3560static void slab_mem_offline_callback(void *arg)
3561{
3562 struct kmem_cache_node *n;
3563 struct kmem_cache *s;
3564 struct memory_notify *marg = arg;
3565 int offline_node;
3566
3567 offline_node = marg->status_change_nid;
3568
3569 /*
3570 * If the node still has available memory. we need kmem_cache_node
3571 * for it yet.
3572 */
3573 if (offline_node < 0)
3574 return;
3575
3576 down_read(&slub_lock);
3577 list_for_each_entry(s, &slab_caches, list) {
3578 n = get_node(s, offline_node);
3579 if (n) {
3580 /*
3581 * if n->nr_slabs > 0, slabs still exist on the node
3582 * that is going down. We were unable to free them,
c9404c9c 3583 * and offline_pages() function shouldn't call this
b9049e23
YG
3584 * callback. So, we must fail.
3585 */
0f389ec6 3586 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3587
3588 s->node[offline_node] = NULL;
8de66a0c 3589 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3590 }
3591 }
3592 up_read(&slub_lock);
3593}
3594
3595static int slab_mem_going_online_callback(void *arg)
3596{
3597 struct kmem_cache_node *n;
3598 struct kmem_cache *s;
3599 struct memory_notify *marg = arg;
3600 int nid = marg->status_change_nid;
3601 int ret = 0;
3602
3603 /*
3604 * If the node's memory is already available, then kmem_cache_node is
3605 * already created. Nothing to do.
3606 */
3607 if (nid < 0)
3608 return 0;
3609
3610 /*
0121c619 3611 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3612 * allocate a kmem_cache_node structure in order to bring the node
3613 * online.
3614 */
3615 down_read(&slub_lock);
3616 list_for_each_entry(s, &slab_caches, list) {
3617 /*
3618 * XXX: kmem_cache_alloc_node will fallback to other nodes
3619 * since memory is not yet available from the node that
3620 * is brought up.
3621 */
8de66a0c 3622 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3623 if (!n) {
3624 ret = -ENOMEM;
3625 goto out;
3626 }
4053497d 3627 init_kmem_cache_node(n);
b9049e23
YG
3628 s->node[nid] = n;
3629 }
3630out:
3631 up_read(&slub_lock);
3632 return ret;
3633}
3634
3635static int slab_memory_callback(struct notifier_block *self,
3636 unsigned long action, void *arg)
3637{
3638 int ret = 0;
3639
3640 switch (action) {
3641 case MEM_GOING_ONLINE:
3642 ret = slab_mem_going_online_callback(arg);
3643 break;
3644 case MEM_GOING_OFFLINE:
3645 ret = slab_mem_going_offline_callback(arg);
3646 break;
3647 case MEM_OFFLINE:
3648 case MEM_CANCEL_ONLINE:
3649 slab_mem_offline_callback(arg);
3650 break;
3651 case MEM_ONLINE:
3652 case MEM_CANCEL_OFFLINE:
3653 break;
3654 }
dc19f9db
KH
3655 if (ret)
3656 ret = notifier_from_errno(ret);
3657 else
3658 ret = NOTIFY_OK;
b9049e23
YG
3659 return ret;
3660}
3661
3662#endif /* CONFIG_MEMORY_HOTPLUG */
3663
81819f0f
CL
3664/********************************************************************
3665 * Basic setup of slabs
3666 *******************************************************************/
3667
51df1142
CL
3668/*
3669 * Used for early kmem_cache structures that were allocated using
3670 * the page allocator
3671 */
3672
3673static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3674{
3675 int node;
3676
3677 list_add(&s->list, &slab_caches);
3678 s->refcount = -1;
3679
3680 for_each_node_state(node, N_NORMAL_MEMORY) {
3681 struct kmem_cache_node *n = get_node(s, node);
3682 struct page *p;
3683
3684 if (n) {
3685 list_for_each_entry(p, &n->partial, lru)
3686 p->slab = s;
3687
607bf324 3688#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3689 list_for_each_entry(p, &n->full, lru)
3690 p->slab = s;
3691#endif
3692 }
3693 }
3694}
3695
81819f0f
CL
3696void __init kmem_cache_init(void)
3697{
3698 int i;
4b356be0 3699 int caches = 0;
51df1142
CL
3700 struct kmem_cache *temp_kmem_cache;
3701 int order;
51df1142
CL
3702 struct kmem_cache *temp_kmem_cache_node;
3703 unsigned long kmalloc_size;
3704
fc8d8620
SG
3705 if (debug_guardpage_minorder())
3706 slub_max_order = 0;
3707
51df1142
CL
3708 kmem_size = offsetof(struct kmem_cache, node) +
3709 nr_node_ids * sizeof(struct kmem_cache_node *);
3710
3711 /* Allocate two kmem_caches from the page allocator */
3712 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3713 order = get_order(2 * kmalloc_size);
3714 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3715
81819f0f
CL
3716 /*
3717 * Must first have the slab cache available for the allocations of the
672bba3a 3718 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3719 * kmem_cache_open for slab_state == DOWN.
3720 */
51df1142
CL
3721 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3722
3723 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3724 sizeof(struct kmem_cache_node),
3725 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3726
0c40ba4f 3727 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3728
3729 /* Able to allocate the per node structures */
3730 slab_state = PARTIAL;
3731
51df1142
CL
3732 temp_kmem_cache = kmem_cache;
3733 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3734 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3735 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3736 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3737
51df1142
CL
3738 /*
3739 * Allocate kmem_cache_node properly from the kmem_cache slab.
3740 * kmem_cache_node is separately allocated so no need to
3741 * update any list pointers.
3742 */
3743 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3744
51df1142
CL
3745 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3746 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3747
3748 kmem_cache_bootstrap_fixup(kmem_cache_node);
3749
3750 caches++;
51df1142
CL
3751 kmem_cache_bootstrap_fixup(kmem_cache);
3752 caches++;
3753 /* Free temporary boot structure */
3754 free_pages((unsigned long)temp_kmem_cache, order);
3755
3756 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3757
3758 /*
3759 * Patch up the size_index table if we have strange large alignment
3760 * requirements for the kmalloc array. This is only the case for
6446faa2 3761 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3762 *
3763 * Largest permitted alignment is 256 bytes due to the way we
3764 * handle the index determination for the smaller caches.
3765 *
3766 * Make sure that nothing crazy happens if someone starts tinkering
3767 * around with ARCH_KMALLOC_MINALIGN
3768 */
3769 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3770 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3771
acdfcd04
AK
3772 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3773 int elem = size_index_elem(i);
3774 if (elem >= ARRAY_SIZE(size_index))
3775 break;
3776 size_index[elem] = KMALLOC_SHIFT_LOW;
3777 }
f1b26339 3778
acdfcd04
AK
3779 if (KMALLOC_MIN_SIZE == 64) {
3780 /*
3781 * The 96 byte size cache is not used if the alignment
3782 * is 64 byte.
3783 */
3784 for (i = 64 + 8; i <= 96; i += 8)
3785 size_index[size_index_elem(i)] = 7;
3786 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3787 /*
3788 * The 192 byte sized cache is not used if the alignment
3789 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3790 * instead.
3791 */
3792 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3793 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3794 }
3795
51df1142
CL
3796 /* Caches that are not of the two-to-the-power-of size */
3797 if (KMALLOC_MIN_SIZE <= 32) {
3798 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3799 caches++;
3800 }
3801
3802 if (KMALLOC_MIN_SIZE <= 64) {
3803 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3804 caches++;
3805 }
3806
3807 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3808 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3809 caches++;
3810 }
3811
81819f0f
CL
3812 slab_state = UP;
3813
3814 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3815 if (KMALLOC_MIN_SIZE <= 32) {
3816 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3817 BUG_ON(!kmalloc_caches[1]->name);
3818 }
3819
3820 if (KMALLOC_MIN_SIZE <= 64) {
3821 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3822 BUG_ON(!kmalloc_caches[2]->name);
3823 }
3824
d7278bd7
CL
3825 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3826 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3827
3828 BUG_ON(!s);
51df1142 3829 kmalloc_caches[i]->name = s;
d7278bd7 3830 }
81819f0f
CL
3831
3832#ifdef CONFIG_SMP
3833 register_cpu_notifier(&slab_notifier);
9dfc6e68 3834#endif
81819f0f 3835
55136592 3836#ifdef CONFIG_ZONE_DMA
51df1142
CL
3837 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3838 struct kmem_cache *s = kmalloc_caches[i];
55136592 3839
51df1142 3840 if (s && s->size) {
55136592 3841 char *name = kasprintf(GFP_NOWAIT,
3b0efdfa 3842 "dma-kmalloc-%d", s->object_size);
55136592
CL
3843
3844 BUG_ON(!name);
51df1142 3845 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3b0efdfa 3846 s->object_size, SLAB_CACHE_DMA);
55136592
CL
3847 }
3848 }
3849#endif
3adbefee
IM
3850 printk(KERN_INFO
3851 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3852 " CPUs=%d, Nodes=%d\n",
3853 caches, cache_line_size(),
81819f0f
CL
3854 slub_min_order, slub_max_order, slub_min_objects,
3855 nr_cpu_ids, nr_node_ids);
3856}
3857
7e85ee0c
PE
3858void __init kmem_cache_init_late(void)
3859{
7e85ee0c
PE
3860}
3861
81819f0f
CL
3862/*
3863 * Find a mergeable slab cache
3864 */
3865static int slab_unmergeable(struct kmem_cache *s)
3866{
3867 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3868 return 1;
3869
c59def9f 3870 if (s->ctor)
81819f0f
CL
3871 return 1;
3872
8ffa6875
CL
3873 /*
3874 * We may have set a slab to be unmergeable during bootstrap.
3875 */
3876 if (s->refcount < 0)
3877 return 1;
3878
81819f0f
CL
3879 return 0;
3880}
3881
3882static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3883 size_t align, unsigned long flags, const char *name,
51cc5068 3884 void (*ctor)(void *))
81819f0f 3885{
5b95a4ac 3886 struct kmem_cache *s;
81819f0f
CL
3887
3888 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3889 return NULL;
3890
c59def9f 3891 if (ctor)
81819f0f
CL
3892 return NULL;
3893
3894 size = ALIGN(size, sizeof(void *));
3895 align = calculate_alignment(flags, align, size);
3896 size = ALIGN(size, align);
ba0268a8 3897 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3898
5b95a4ac 3899 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3900 if (slab_unmergeable(s))
3901 continue;
3902
3903 if (size > s->size)
3904 continue;
3905
ba0268a8 3906 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3907 continue;
3908 /*
3909 * Check if alignment is compatible.
3910 * Courtesy of Adrian Drzewiecki
3911 */
06428780 3912 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3913 continue;
3914
3915 if (s->size - size >= sizeof(void *))
3916 continue;
3917
3918 return s;
3919 }
3920 return NULL;
3921}
3922
039363f3 3923struct kmem_cache *__kmem_cache_create(const char *name, size_t size,
51cc5068 3924 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3925{
3926 struct kmem_cache *s;
84c1cf62 3927 char *n;
81819f0f
CL
3928
3929 down_write(&slub_lock);
ba0268a8 3930 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3931 if (s) {
3932 s->refcount++;
3933 /*
3934 * Adjust the object sizes so that we clear
3935 * the complete object on kzalloc.
3936 */
3b0efdfa 3937 s->object_size = max(s->object_size, (int)size);
81819f0f 3938 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3939
7b8f3b66 3940 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3941 s->refcount--;
81819f0f 3942 goto err;
7b8f3b66 3943 }
2bce6485 3944 up_write(&slub_lock);
a0e1d1be
CL
3945 return s;
3946 }
6446faa2 3947
84c1cf62
PE
3948 n = kstrdup(name, GFP_KERNEL);
3949 if (!n)
3950 goto err;
3951
a0e1d1be
CL
3952 s = kmalloc(kmem_size, GFP_KERNEL);
3953 if (s) {
84c1cf62 3954 if (kmem_cache_open(s, n,
c59def9f 3955 size, align, flags, ctor)) {
81819f0f 3956 list_add(&s->list, &slab_caches);
66c4c35c 3957 up_write(&slub_lock);
7b8f3b66 3958 if (sysfs_slab_add(s)) {
66c4c35c 3959 down_write(&slub_lock);
7b8f3b66 3960 list_del(&s->list);
84c1cf62 3961 kfree(n);
7b8f3b66 3962 kfree(s);
a0e1d1be 3963 goto err;
7b8f3b66 3964 }
a0e1d1be
CL
3965 return s;
3966 }
3967 kfree(s);
81819f0f 3968 }
601d39d0 3969 kfree(n);
68cee4f1 3970err:
81819f0f 3971 up_write(&slub_lock);
81819f0f
CL
3972 return s;
3973}
81819f0f 3974
81819f0f 3975#ifdef CONFIG_SMP
81819f0f 3976/*
672bba3a
CL
3977 * Use the cpu notifier to insure that the cpu slabs are flushed when
3978 * necessary.
81819f0f
CL
3979 */
3980static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3981 unsigned long action, void *hcpu)
3982{
3983 long cpu = (long)hcpu;
5b95a4ac
CL
3984 struct kmem_cache *s;
3985 unsigned long flags;
81819f0f
CL
3986
3987 switch (action) {
3988 case CPU_UP_CANCELED:
8bb78442 3989 case CPU_UP_CANCELED_FROZEN:
81819f0f 3990 case CPU_DEAD:
8bb78442 3991 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3992 down_read(&slub_lock);
3993 list_for_each_entry(s, &slab_caches, list) {
3994 local_irq_save(flags);
3995 __flush_cpu_slab(s, cpu);
3996 local_irq_restore(flags);
3997 }
3998 up_read(&slub_lock);
81819f0f
CL
3999 break;
4000 default:
4001 break;
4002 }
4003 return NOTIFY_OK;
4004}
4005
06428780 4006static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 4007 .notifier_call = slab_cpuup_callback
06428780 4008};
81819f0f
CL
4009
4010#endif
4011
ce71e27c 4012void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4013{
aadb4bc4 4014 struct kmem_cache *s;
94b528d0 4015 void *ret;
aadb4bc4 4016
ffadd4d0 4017 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
4018 return kmalloc_large(size, gfpflags);
4019
aadb4bc4 4020 s = get_slab(size, gfpflags);
81819f0f 4021
2408c550 4022 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4023 return s;
81819f0f 4024
2154a336 4025 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 4026
25985edc 4027 /* Honor the call site pointer we received. */
ca2b84cb 4028 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4029
4030 return ret;
81819f0f
CL
4031}
4032
5d1f57e4 4033#ifdef CONFIG_NUMA
81819f0f 4034void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4035 int node, unsigned long caller)
81819f0f 4036{
aadb4bc4 4037 struct kmem_cache *s;
94b528d0 4038 void *ret;
aadb4bc4 4039
d3e14aa3
XF
4040 if (unlikely(size > SLUB_MAX_SIZE)) {
4041 ret = kmalloc_large_node(size, gfpflags, node);
4042
4043 trace_kmalloc_node(caller, ret,
4044 size, PAGE_SIZE << get_order(size),
4045 gfpflags, node);
4046
4047 return ret;
4048 }
eada35ef 4049
aadb4bc4 4050 s = get_slab(size, gfpflags);
81819f0f 4051
2408c550 4052 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4053 return s;
81819f0f 4054
94b528d0
EGM
4055 ret = slab_alloc(s, gfpflags, node, caller);
4056
25985edc 4057 /* Honor the call site pointer we received. */
ca2b84cb 4058 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4059
4060 return ret;
81819f0f 4061}
5d1f57e4 4062#endif
81819f0f 4063
ab4d5ed5 4064#ifdef CONFIG_SYSFS
205ab99d
CL
4065static int count_inuse(struct page *page)
4066{
4067 return page->inuse;
4068}
4069
4070static int count_total(struct page *page)
4071{
4072 return page->objects;
4073}
ab4d5ed5 4074#endif
205ab99d 4075
ab4d5ed5 4076#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4077static int validate_slab(struct kmem_cache *s, struct page *page,
4078 unsigned long *map)
53e15af0
CL
4079{
4080 void *p;
a973e9dd 4081 void *addr = page_address(page);
53e15af0
CL
4082
4083 if (!check_slab(s, page) ||
4084 !on_freelist(s, page, NULL))
4085 return 0;
4086
4087 /* Now we know that a valid freelist exists */
39b26464 4088 bitmap_zero(map, page->objects);
53e15af0 4089
5f80b13a
CL
4090 get_map(s, page, map);
4091 for_each_object(p, s, addr, page->objects) {
4092 if (test_bit(slab_index(p, s, addr), map))
4093 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4094 return 0;
53e15af0
CL
4095 }
4096
224a88be 4097 for_each_object(p, s, addr, page->objects)
7656c72b 4098 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4099 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4100 return 0;
4101 return 1;
4102}
4103
434e245d
CL
4104static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4105 unsigned long *map)
53e15af0 4106{
881db7fb
CL
4107 slab_lock(page);
4108 validate_slab(s, page, map);
4109 slab_unlock(page);
53e15af0
CL
4110}
4111
434e245d
CL
4112static int validate_slab_node(struct kmem_cache *s,
4113 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4114{
4115 unsigned long count = 0;
4116 struct page *page;
4117 unsigned long flags;
4118
4119 spin_lock_irqsave(&n->list_lock, flags);
4120
4121 list_for_each_entry(page, &n->partial, lru) {
434e245d 4122 validate_slab_slab(s, page, map);
53e15af0
CL
4123 count++;
4124 }
4125 if (count != n->nr_partial)
4126 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4127 "counter=%ld\n", s->name, count, n->nr_partial);
4128
4129 if (!(s->flags & SLAB_STORE_USER))
4130 goto out;
4131
4132 list_for_each_entry(page, &n->full, lru) {
434e245d 4133 validate_slab_slab(s, page, map);
53e15af0
CL
4134 count++;
4135 }
4136 if (count != atomic_long_read(&n->nr_slabs))
4137 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4138 "counter=%ld\n", s->name, count,
4139 atomic_long_read(&n->nr_slabs));
4140
4141out:
4142 spin_unlock_irqrestore(&n->list_lock, flags);
4143 return count;
4144}
4145
434e245d 4146static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4147{
4148 int node;
4149 unsigned long count = 0;
205ab99d 4150 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
4151 sizeof(unsigned long), GFP_KERNEL);
4152
4153 if (!map)
4154 return -ENOMEM;
53e15af0
CL
4155
4156 flush_all(s);
f64dc58c 4157 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
4158 struct kmem_cache_node *n = get_node(s, node);
4159
434e245d 4160 count += validate_slab_node(s, n, map);
53e15af0 4161 }
434e245d 4162 kfree(map);
53e15af0
CL
4163 return count;
4164}
88a420e4 4165/*
672bba3a 4166 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4167 * and freed.
4168 */
4169
4170struct location {
4171 unsigned long count;
ce71e27c 4172 unsigned long addr;
45edfa58
CL
4173 long long sum_time;
4174 long min_time;
4175 long max_time;
4176 long min_pid;
4177 long max_pid;
174596a0 4178 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4179 nodemask_t nodes;
88a420e4
CL
4180};
4181
4182struct loc_track {
4183 unsigned long max;
4184 unsigned long count;
4185 struct location *loc;
4186};
4187
4188static void free_loc_track(struct loc_track *t)
4189{
4190 if (t->max)
4191 free_pages((unsigned long)t->loc,
4192 get_order(sizeof(struct location) * t->max));
4193}
4194
68dff6a9 4195static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4196{
4197 struct location *l;
4198 int order;
4199
88a420e4
CL
4200 order = get_order(sizeof(struct location) * max);
4201
68dff6a9 4202 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4203 if (!l)
4204 return 0;
4205
4206 if (t->count) {
4207 memcpy(l, t->loc, sizeof(struct location) * t->count);
4208 free_loc_track(t);
4209 }
4210 t->max = max;
4211 t->loc = l;
4212 return 1;
4213}
4214
4215static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4216 const struct track *track)
88a420e4
CL
4217{
4218 long start, end, pos;
4219 struct location *l;
ce71e27c 4220 unsigned long caddr;
45edfa58 4221 unsigned long age = jiffies - track->when;
88a420e4
CL
4222
4223 start = -1;
4224 end = t->count;
4225
4226 for ( ; ; ) {
4227 pos = start + (end - start + 1) / 2;
4228
4229 /*
4230 * There is nothing at "end". If we end up there
4231 * we need to add something to before end.
4232 */
4233 if (pos == end)
4234 break;
4235
4236 caddr = t->loc[pos].addr;
45edfa58
CL
4237 if (track->addr == caddr) {
4238
4239 l = &t->loc[pos];
4240 l->count++;
4241 if (track->when) {
4242 l->sum_time += age;
4243 if (age < l->min_time)
4244 l->min_time = age;
4245 if (age > l->max_time)
4246 l->max_time = age;
4247
4248 if (track->pid < l->min_pid)
4249 l->min_pid = track->pid;
4250 if (track->pid > l->max_pid)
4251 l->max_pid = track->pid;
4252
174596a0
RR
4253 cpumask_set_cpu(track->cpu,
4254 to_cpumask(l->cpus));
45edfa58
CL
4255 }
4256 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4257 return 1;
4258 }
4259
45edfa58 4260 if (track->addr < caddr)
88a420e4
CL
4261 end = pos;
4262 else
4263 start = pos;
4264 }
4265
4266 /*
672bba3a 4267 * Not found. Insert new tracking element.
88a420e4 4268 */
68dff6a9 4269 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4270 return 0;
4271
4272 l = t->loc + pos;
4273 if (pos < t->count)
4274 memmove(l + 1, l,
4275 (t->count - pos) * sizeof(struct location));
4276 t->count++;
4277 l->count = 1;
45edfa58
CL
4278 l->addr = track->addr;
4279 l->sum_time = age;
4280 l->min_time = age;
4281 l->max_time = age;
4282 l->min_pid = track->pid;
4283 l->max_pid = track->pid;
174596a0
RR
4284 cpumask_clear(to_cpumask(l->cpus));
4285 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4286 nodes_clear(l->nodes);
4287 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4288 return 1;
4289}
4290
4291static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4292 struct page *page, enum track_item alloc,
a5dd5c11 4293 unsigned long *map)
88a420e4 4294{
a973e9dd 4295 void *addr = page_address(page);
88a420e4
CL
4296 void *p;
4297
39b26464 4298 bitmap_zero(map, page->objects);
5f80b13a 4299 get_map(s, page, map);
88a420e4 4300
224a88be 4301 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4302 if (!test_bit(slab_index(p, s, addr), map))
4303 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4304}
4305
4306static int list_locations(struct kmem_cache *s, char *buf,
4307 enum track_item alloc)
4308{
e374d483 4309 int len = 0;
88a420e4 4310 unsigned long i;
68dff6a9 4311 struct loc_track t = { 0, 0, NULL };
88a420e4 4312 int node;
bbd7d57b
ED
4313 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4314 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4315
bbd7d57b
ED
4316 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4317 GFP_TEMPORARY)) {
4318 kfree(map);
68dff6a9 4319 return sprintf(buf, "Out of memory\n");
bbd7d57b 4320 }
88a420e4
CL
4321 /* Push back cpu slabs */
4322 flush_all(s);
4323
f64dc58c 4324 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4325 struct kmem_cache_node *n = get_node(s, node);
4326 unsigned long flags;
4327 struct page *page;
4328
9e86943b 4329 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4330 continue;
4331
4332 spin_lock_irqsave(&n->list_lock, flags);
4333 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4334 process_slab(&t, s, page, alloc, map);
88a420e4 4335 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4336 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4337 spin_unlock_irqrestore(&n->list_lock, flags);
4338 }
4339
4340 for (i = 0; i < t.count; i++) {
45edfa58 4341 struct location *l = &t.loc[i];
88a420e4 4342
9c246247 4343 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4344 break;
e374d483 4345 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4346
4347 if (l->addr)
62c70bce 4348 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4349 else
e374d483 4350 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4351
4352 if (l->sum_time != l->min_time) {
e374d483 4353 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4354 l->min_time,
4355 (long)div_u64(l->sum_time, l->count),
4356 l->max_time);
45edfa58 4357 } else
e374d483 4358 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4359 l->min_time);
4360
4361 if (l->min_pid != l->max_pid)
e374d483 4362 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4363 l->min_pid, l->max_pid);
4364 else
e374d483 4365 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4366 l->min_pid);
4367
174596a0
RR
4368 if (num_online_cpus() > 1 &&
4369 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4370 len < PAGE_SIZE - 60) {
4371 len += sprintf(buf + len, " cpus=");
4372 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4373 to_cpumask(l->cpus));
45edfa58
CL
4374 }
4375
62bc62a8 4376 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4377 len < PAGE_SIZE - 60) {
4378 len += sprintf(buf + len, " nodes=");
4379 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4380 l->nodes);
4381 }
4382
e374d483 4383 len += sprintf(buf + len, "\n");
88a420e4
CL
4384 }
4385
4386 free_loc_track(&t);
bbd7d57b 4387 kfree(map);
88a420e4 4388 if (!t.count)
e374d483
HH
4389 len += sprintf(buf, "No data\n");
4390 return len;
88a420e4 4391}
ab4d5ed5 4392#endif
88a420e4 4393
a5a84755
CL
4394#ifdef SLUB_RESILIENCY_TEST
4395static void resiliency_test(void)
4396{
4397 u8 *p;
4398
4399 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4400
4401 printk(KERN_ERR "SLUB resiliency testing\n");
4402 printk(KERN_ERR "-----------------------\n");
4403 printk(KERN_ERR "A. Corruption after allocation\n");
4404
4405 p = kzalloc(16, GFP_KERNEL);
4406 p[16] = 0x12;
4407 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4408 " 0x12->0x%p\n\n", p + 16);
4409
4410 validate_slab_cache(kmalloc_caches[4]);
4411
4412 /* Hmmm... The next two are dangerous */
4413 p = kzalloc(32, GFP_KERNEL);
4414 p[32 + sizeof(void *)] = 0x34;
4415 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4416 " 0x34 -> -0x%p\n", p);
4417 printk(KERN_ERR
4418 "If allocated object is overwritten then not detectable\n\n");
4419
4420 validate_slab_cache(kmalloc_caches[5]);
4421 p = kzalloc(64, GFP_KERNEL);
4422 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4423 *p = 0x56;
4424 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4425 p);
4426 printk(KERN_ERR
4427 "If allocated object is overwritten then not detectable\n\n");
4428 validate_slab_cache(kmalloc_caches[6]);
4429
4430 printk(KERN_ERR "\nB. Corruption after free\n");
4431 p = kzalloc(128, GFP_KERNEL);
4432 kfree(p);
4433 *p = 0x78;
4434 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4435 validate_slab_cache(kmalloc_caches[7]);
4436
4437 p = kzalloc(256, GFP_KERNEL);
4438 kfree(p);
4439 p[50] = 0x9a;
4440 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4441 p);
4442 validate_slab_cache(kmalloc_caches[8]);
4443
4444 p = kzalloc(512, GFP_KERNEL);
4445 kfree(p);
4446 p[512] = 0xab;
4447 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4448 validate_slab_cache(kmalloc_caches[9]);
4449}
4450#else
4451#ifdef CONFIG_SYSFS
4452static void resiliency_test(void) {};
4453#endif
4454#endif
4455
ab4d5ed5 4456#ifdef CONFIG_SYSFS
81819f0f 4457enum slab_stat_type {
205ab99d
CL
4458 SL_ALL, /* All slabs */
4459 SL_PARTIAL, /* Only partially allocated slabs */
4460 SL_CPU, /* Only slabs used for cpu caches */
4461 SL_OBJECTS, /* Determine allocated objects not slabs */
4462 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4463};
4464
205ab99d 4465#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4466#define SO_PARTIAL (1 << SL_PARTIAL)
4467#define SO_CPU (1 << SL_CPU)
4468#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4469#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4470
62e5c4b4
CG
4471static ssize_t show_slab_objects(struct kmem_cache *s,
4472 char *buf, unsigned long flags)
81819f0f
CL
4473{
4474 unsigned long total = 0;
81819f0f
CL
4475 int node;
4476 int x;
4477 unsigned long *nodes;
4478 unsigned long *per_cpu;
4479
4480 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4481 if (!nodes)
4482 return -ENOMEM;
81819f0f
CL
4483 per_cpu = nodes + nr_node_ids;
4484
205ab99d
CL
4485 if (flags & SO_CPU) {
4486 int cpu;
81819f0f 4487
205ab99d 4488 for_each_possible_cpu(cpu) {
9dfc6e68 4489 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
ec3ab083 4490 int node;
49e22585 4491 struct page *page;
dfb4f096 4492
bc6697d8 4493 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4494 if (!page)
4495 continue;
205ab99d 4496
ec3ab083
CL
4497 node = page_to_nid(page);
4498 if (flags & SO_TOTAL)
4499 x = page->objects;
4500 else if (flags & SO_OBJECTS)
4501 x = page->inuse;
4502 else
4503 x = 1;
49e22585 4504
ec3ab083
CL
4505 total += x;
4506 nodes[node] += x;
4507
4508 page = ACCESS_ONCE(c->partial);
49e22585
CL
4509 if (page) {
4510 x = page->pobjects;
bc6697d8
ED
4511 total += x;
4512 nodes[node] += x;
49e22585 4513 }
ec3ab083 4514
bc6697d8 4515 per_cpu[node]++;
81819f0f
CL
4516 }
4517 }
4518
04d94879 4519 lock_memory_hotplug();
ab4d5ed5 4520#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4521 if (flags & SO_ALL) {
4522 for_each_node_state(node, N_NORMAL_MEMORY) {
4523 struct kmem_cache_node *n = get_node(s, node);
4524
4525 if (flags & SO_TOTAL)
4526 x = atomic_long_read(&n->total_objects);
4527 else if (flags & SO_OBJECTS)
4528 x = atomic_long_read(&n->total_objects) -
4529 count_partial(n, count_free);
81819f0f 4530
81819f0f 4531 else
205ab99d 4532 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4533 total += x;
4534 nodes[node] += x;
4535 }
4536
ab4d5ed5
CL
4537 } else
4538#endif
4539 if (flags & SO_PARTIAL) {
205ab99d
CL
4540 for_each_node_state(node, N_NORMAL_MEMORY) {
4541 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4542
205ab99d
CL
4543 if (flags & SO_TOTAL)
4544 x = count_partial(n, count_total);
4545 else if (flags & SO_OBJECTS)
4546 x = count_partial(n, count_inuse);
81819f0f 4547 else
205ab99d 4548 x = n->nr_partial;
81819f0f
CL
4549 total += x;
4550 nodes[node] += x;
4551 }
4552 }
81819f0f
CL
4553 x = sprintf(buf, "%lu", total);
4554#ifdef CONFIG_NUMA
f64dc58c 4555 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4556 if (nodes[node])
4557 x += sprintf(buf + x, " N%d=%lu",
4558 node, nodes[node]);
4559#endif
04d94879 4560 unlock_memory_hotplug();
81819f0f
CL
4561 kfree(nodes);
4562 return x + sprintf(buf + x, "\n");
4563}
4564
ab4d5ed5 4565#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4566static int any_slab_objects(struct kmem_cache *s)
4567{
4568 int node;
81819f0f 4569
dfb4f096 4570 for_each_online_node(node) {
81819f0f
CL
4571 struct kmem_cache_node *n = get_node(s, node);
4572
dfb4f096
CL
4573 if (!n)
4574 continue;
4575
4ea33e2d 4576 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4577 return 1;
4578 }
4579 return 0;
4580}
ab4d5ed5 4581#endif
81819f0f
CL
4582
4583#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4584#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4585
4586struct slab_attribute {
4587 struct attribute attr;
4588 ssize_t (*show)(struct kmem_cache *s, char *buf);
4589 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4590};
4591
4592#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4593 static struct slab_attribute _name##_attr = \
4594 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4595
4596#define SLAB_ATTR(_name) \
4597 static struct slab_attribute _name##_attr = \
ab067e99 4598 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4599
81819f0f
CL
4600static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4601{
4602 return sprintf(buf, "%d\n", s->size);
4603}
4604SLAB_ATTR_RO(slab_size);
4605
4606static ssize_t align_show(struct kmem_cache *s, char *buf)
4607{
4608 return sprintf(buf, "%d\n", s->align);
4609}
4610SLAB_ATTR_RO(align);
4611
4612static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4613{
3b0efdfa 4614 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4615}
4616SLAB_ATTR_RO(object_size);
4617
4618static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4619{
834f3d11 4620 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4621}
4622SLAB_ATTR_RO(objs_per_slab);
4623
06b285dc
CL
4624static ssize_t order_store(struct kmem_cache *s,
4625 const char *buf, size_t length)
4626{
0121c619
CL
4627 unsigned long order;
4628 int err;
4629
4630 err = strict_strtoul(buf, 10, &order);
4631 if (err)
4632 return err;
06b285dc
CL
4633
4634 if (order > slub_max_order || order < slub_min_order)
4635 return -EINVAL;
4636
4637 calculate_sizes(s, order);
4638 return length;
4639}
4640
81819f0f
CL
4641static ssize_t order_show(struct kmem_cache *s, char *buf)
4642{
834f3d11 4643 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4644}
06b285dc 4645SLAB_ATTR(order);
81819f0f 4646
73d342b1
DR
4647static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4648{
4649 return sprintf(buf, "%lu\n", s->min_partial);
4650}
4651
4652static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4653 size_t length)
4654{
4655 unsigned long min;
4656 int err;
4657
4658 err = strict_strtoul(buf, 10, &min);
4659 if (err)
4660 return err;
4661
c0bdb232 4662 set_min_partial(s, min);
73d342b1
DR
4663 return length;
4664}
4665SLAB_ATTR(min_partial);
4666
49e22585
CL
4667static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4668{
4669 return sprintf(buf, "%u\n", s->cpu_partial);
4670}
4671
4672static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4673 size_t length)
4674{
4675 unsigned long objects;
4676 int err;
4677
4678 err = strict_strtoul(buf, 10, &objects);
4679 if (err)
4680 return err;
74ee4ef1
DR
4681 if (objects && kmem_cache_debug(s))
4682 return -EINVAL;
49e22585
CL
4683
4684 s->cpu_partial = objects;
4685 flush_all(s);
4686 return length;
4687}
4688SLAB_ATTR(cpu_partial);
4689
81819f0f
CL
4690static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4691{
62c70bce
JP
4692 if (!s->ctor)
4693 return 0;
4694 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4695}
4696SLAB_ATTR_RO(ctor);
4697
81819f0f
CL
4698static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4699{
4700 return sprintf(buf, "%d\n", s->refcount - 1);
4701}
4702SLAB_ATTR_RO(aliases);
4703
81819f0f
CL
4704static ssize_t partial_show(struct kmem_cache *s, char *buf)
4705{
d9acf4b7 4706 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4707}
4708SLAB_ATTR_RO(partial);
4709
4710static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4711{
d9acf4b7 4712 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4713}
4714SLAB_ATTR_RO(cpu_slabs);
4715
4716static ssize_t objects_show(struct kmem_cache *s, char *buf)
4717{
205ab99d 4718 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4719}
4720SLAB_ATTR_RO(objects);
4721
205ab99d
CL
4722static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4723{
4724 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4725}
4726SLAB_ATTR_RO(objects_partial);
4727
49e22585
CL
4728static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4729{
4730 int objects = 0;
4731 int pages = 0;
4732 int cpu;
4733 int len;
4734
4735 for_each_online_cpu(cpu) {
4736 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4737
4738 if (page) {
4739 pages += page->pages;
4740 objects += page->pobjects;
4741 }
4742 }
4743
4744 len = sprintf(buf, "%d(%d)", objects, pages);
4745
4746#ifdef CONFIG_SMP
4747 for_each_online_cpu(cpu) {
4748 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4749
4750 if (page && len < PAGE_SIZE - 20)
4751 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4752 page->pobjects, page->pages);
4753 }
4754#endif
4755 return len + sprintf(buf + len, "\n");
4756}
4757SLAB_ATTR_RO(slabs_cpu_partial);
4758
a5a84755
CL
4759static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4760{
4761 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4762}
4763
4764static ssize_t reclaim_account_store(struct kmem_cache *s,
4765 const char *buf, size_t length)
4766{
4767 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4768 if (buf[0] == '1')
4769 s->flags |= SLAB_RECLAIM_ACCOUNT;
4770 return length;
4771}
4772SLAB_ATTR(reclaim_account);
4773
4774static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4775{
4776 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4777}
4778SLAB_ATTR_RO(hwcache_align);
4779
4780#ifdef CONFIG_ZONE_DMA
4781static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4782{
4783 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4784}
4785SLAB_ATTR_RO(cache_dma);
4786#endif
4787
4788static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4789{
4790 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4791}
4792SLAB_ATTR_RO(destroy_by_rcu);
4793
ab9a0f19
LJ
4794static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4795{
4796 return sprintf(buf, "%d\n", s->reserved);
4797}
4798SLAB_ATTR_RO(reserved);
4799
ab4d5ed5 4800#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4801static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4802{
4803 return show_slab_objects(s, buf, SO_ALL);
4804}
4805SLAB_ATTR_RO(slabs);
4806
205ab99d
CL
4807static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4808{
4809 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4810}
4811SLAB_ATTR_RO(total_objects);
4812
81819f0f
CL
4813static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4814{
4815 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4816}
4817
4818static ssize_t sanity_checks_store(struct kmem_cache *s,
4819 const char *buf, size_t length)
4820{
4821 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4822 if (buf[0] == '1') {
4823 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4824 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4825 }
81819f0f
CL
4826 return length;
4827}
4828SLAB_ATTR(sanity_checks);
4829
4830static ssize_t trace_show(struct kmem_cache *s, char *buf)
4831{
4832 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4833}
4834
4835static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4836 size_t length)
4837{
4838 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4839 if (buf[0] == '1') {
4840 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4841 s->flags |= SLAB_TRACE;
b789ef51 4842 }
81819f0f
CL
4843 return length;
4844}
4845SLAB_ATTR(trace);
4846
81819f0f
CL
4847static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4848{
4849 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4850}
4851
4852static ssize_t red_zone_store(struct kmem_cache *s,
4853 const char *buf, size_t length)
4854{
4855 if (any_slab_objects(s))
4856 return -EBUSY;
4857
4858 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4859 if (buf[0] == '1') {
4860 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4861 s->flags |= SLAB_RED_ZONE;
b789ef51 4862 }
06b285dc 4863 calculate_sizes(s, -1);
81819f0f
CL
4864 return length;
4865}
4866SLAB_ATTR(red_zone);
4867
4868static ssize_t poison_show(struct kmem_cache *s, char *buf)
4869{
4870 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4871}
4872
4873static ssize_t poison_store(struct kmem_cache *s,
4874 const char *buf, size_t length)
4875{
4876 if (any_slab_objects(s))
4877 return -EBUSY;
4878
4879 s->flags &= ~SLAB_POISON;
b789ef51
CL
4880 if (buf[0] == '1') {
4881 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4882 s->flags |= SLAB_POISON;
b789ef51 4883 }
06b285dc 4884 calculate_sizes(s, -1);
81819f0f
CL
4885 return length;
4886}
4887SLAB_ATTR(poison);
4888
4889static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4890{
4891 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4892}
4893
4894static ssize_t store_user_store(struct kmem_cache *s,
4895 const char *buf, size_t length)
4896{
4897 if (any_slab_objects(s))
4898 return -EBUSY;
4899
4900 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4901 if (buf[0] == '1') {
4902 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4903 s->flags |= SLAB_STORE_USER;
b789ef51 4904 }
06b285dc 4905 calculate_sizes(s, -1);
81819f0f
CL
4906 return length;
4907}
4908SLAB_ATTR(store_user);
4909
53e15af0
CL
4910static ssize_t validate_show(struct kmem_cache *s, char *buf)
4911{
4912 return 0;
4913}
4914
4915static ssize_t validate_store(struct kmem_cache *s,
4916 const char *buf, size_t length)
4917{
434e245d
CL
4918 int ret = -EINVAL;
4919
4920 if (buf[0] == '1') {
4921 ret = validate_slab_cache(s);
4922 if (ret >= 0)
4923 ret = length;
4924 }
4925 return ret;
53e15af0
CL
4926}
4927SLAB_ATTR(validate);
a5a84755
CL
4928
4929static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4930{
4931 if (!(s->flags & SLAB_STORE_USER))
4932 return -ENOSYS;
4933 return list_locations(s, buf, TRACK_ALLOC);
4934}
4935SLAB_ATTR_RO(alloc_calls);
4936
4937static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4938{
4939 if (!(s->flags & SLAB_STORE_USER))
4940 return -ENOSYS;
4941 return list_locations(s, buf, TRACK_FREE);
4942}
4943SLAB_ATTR_RO(free_calls);
4944#endif /* CONFIG_SLUB_DEBUG */
4945
4946#ifdef CONFIG_FAILSLAB
4947static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4948{
4949 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4950}
4951
4952static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4953 size_t length)
4954{
4955 s->flags &= ~SLAB_FAILSLAB;
4956 if (buf[0] == '1')
4957 s->flags |= SLAB_FAILSLAB;
4958 return length;
4959}
4960SLAB_ATTR(failslab);
ab4d5ed5 4961#endif
53e15af0 4962
2086d26a
CL
4963static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4964{
4965 return 0;
4966}
4967
4968static ssize_t shrink_store(struct kmem_cache *s,
4969 const char *buf, size_t length)
4970{
4971 if (buf[0] == '1') {
4972 int rc = kmem_cache_shrink(s);
4973
4974 if (rc)
4975 return rc;
4976 } else
4977 return -EINVAL;
4978 return length;
4979}
4980SLAB_ATTR(shrink);
4981
81819f0f 4982#ifdef CONFIG_NUMA
9824601e 4983static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4984{
9824601e 4985 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4986}
4987
9824601e 4988static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4989 const char *buf, size_t length)
4990{
0121c619
CL
4991 unsigned long ratio;
4992 int err;
4993
4994 err = strict_strtoul(buf, 10, &ratio);
4995 if (err)
4996 return err;
4997
e2cb96b7 4998 if (ratio <= 100)
0121c619 4999 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5000
81819f0f
CL
5001 return length;
5002}
9824601e 5003SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5004#endif
5005
8ff12cfc 5006#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5007static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5008{
5009 unsigned long sum = 0;
5010 int cpu;
5011 int len;
5012 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5013
5014 if (!data)
5015 return -ENOMEM;
5016
5017 for_each_online_cpu(cpu) {
9dfc6e68 5018 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5019
5020 data[cpu] = x;
5021 sum += x;
5022 }
5023
5024 len = sprintf(buf, "%lu", sum);
5025
50ef37b9 5026#ifdef CONFIG_SMP
8ff12cfc
CL
5027 for_each_online_cpu(cpu) {
5028 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5029 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5030 }
50ef37b9 5031#endif
8ff12cfc
CL
5032 kfree(data);
5033 return len + sprintf(buf + len, "\n");
5034}
5035
78eb00cc
DR
5036static void clear_stat(struct kmem_cache *s, enum stat_item si)
5037{
5038 int cpu;
5039
5040 for_each_online_cpu(cpu)
9dfc6e68 5041 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5042}
5043
8ff12cfc
CL
5044#define STAT_ATTR(si, text) \
5045static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5046{ \
5047 return show_stat(s, buf, si); \
5048} \
78eb00cc
DR
5049static ssize_t text##_store(struct kmem_cache *s, \
5050 const char *buf, size_t length) \
5051{ \
5052 if (buf[0] != '0') \
5053 return -EINVAL; \
5054 clear_stat(s, si); \
5055 return length; \
5056} \
5057SLAB_ATTR(text); \
8ff12cfc
CL
5058
5059STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5060STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5061STAT_ATTR(FREE_FASTPATH, free_fastpath);
5062STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5063STAT_ATTR(FREE_FROZEN, free_frozen);
5064STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5065STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5066STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5067STAT_ATTR(ALLOC_SLAB, alloc_slab);
5068STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5069STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5070STAT_ATTR(FREE_SLAB, free_slab);
5071STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5072STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5073STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5074STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5075STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5076STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5077STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5078STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5079STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5080STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5081STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5082STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5083STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5084STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5085#endif
5086
06428780 5087static struct attribute *slab_attrs[] = {
81819f0f
CL
5088 &slab_size_attr.attr,
5089 &object_size_attr.attr,
5090 &objs_per_slab_attr.attr,
5091 &order_attr.attr,
73d342b1 5092 &min_partial_attr.attr,
49e22585 5093 &cpu_partial_attr.attr,
81819f0f 5094 &objects_attr.attr,
205ab99d 5095 &objects_partial_attr.attr,
81819f0f
CL
5096 &partial_attr.attr,
5097 &cpu_slabs_attr.attr,
5098 &ctor_attr.attr,
81819f0f
CL
5099 &aliases_attr.attr,
5100 &align_attr.attr,
81819f0f
CL
5101 &hwcache_align_attr.attr,
5102 &reclaim_account_attr.attr,
5103 &destroy_by_rcu_attr.attr,
a5a84755 5104 &shrink_attr.attr,
ab9a0f19 5105 &reserved_attr.attr,
49e22585 5106 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5107#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5108 &total_objects_attr.attr,
5109 &slabs_attr.attr,
5110 &sanity_checks_attr.attr,
5111 &trace_attr.attr,
81819f0f
CL
5112 &red_zone_attr.attr,
5113 &poison_attr.attr,
5114 &store_user_attr.attr,
53e15af0 5115 &validate_attr.attr,
88a420e4
CL
5116 &alloc_calls_attr.attr,
5117 &free_calls_attr.attr,
ab4d5ed5 5118#endif
81819f0f
CL
5119#ifdef CONFIG_ZONE_DMA
5120 &cache_dma_attr.attr,
5121#endif
5122#ifdef CONFIG_NUMA
9824601e 5123 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5124#endif
5125#ifdef CONFIG_SLUB_STATS
5126 &alloc_fastpath_attr.attr,
5127 &alloc_slowpath_attr.attr,
5128 &free_fastpath_attr.attr,
5129 &free_slowpath_attr.attr,
5130 &free_frozen_attr.attr,
5131 &free_add_partial_attr.attr,
5132 &free_remove_partial_attr.attr,
5133 &alloc_from_partial_attr.attr,
5134 &alloc_slab_attr.attr,
5135 &alloc_refill_attr.attr,
e36a2652 5136 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5137 &free_slab_attr.attr,
5138 &cpuslab_flush_attr.attr,
5139 &deactivate_full_attr.attr,
5140 &deactivate_empty_attr.attr,
5141 &deactivate_to_head_attr.attr,
5142 &deactivate_to_tail_attr.attr,
5143 &deactivate_remote_frees_attr.attr,
03e404af 5144 &deactivate_bypass_attr.attr,
65c3376a 5145 &order_fallback_attr.attr,
b789ef51
CL
5146 &cmpxchg_double_fail_attr.attr,
5147 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5148 &cpu_partial_alloc_attr.attr,
5149 &cpu_partial_free_attr.attr,
8028dcea
AS
5150 &cpu_partial_node_attr.attr,
5151 &cpu_partial_drain_attr.attr,
81819f0f 5152#endif
4c13dd3b
DM
5153#ifdef CONFIG_FAILSLAB
5154 &failslab_attr.attr,
5155#endif
5156
81819f0f
CL
5157 NULL
5158};
5159
5160static struct attribute_group slab_attr_group = {
5161 .attrs = slab_attrs,
5162};
5163
5164static ssize_t slab_attr_show(struct kobject *kobj,
5165 struct attribute *attr,
5166 char *buf)
5167{
5168 struct slab_attribute *attribute;
5169 struct kmem_cache *s;
5170 int err;
5171
5172 attribute = to_slab_attr(attr);
5173 s = to_slab(kobj);
5174
5175 if (!attribute->show)
5176 return -EIO;
5177
5178 err = attribute->show(s, buf);
5179
5180 return err;
5181}
5182
5183static ssize_t slab_attr_store(struct kobject *kobj,
5184 struct attribute *attr,
5185 const char *buf, size_t len)
5186{
5187 struct slab_attribute *attribute;
5188 struct kmem_cache *s;
5189 int err;
5190
5191 attribute = to_slab_attr(attr);
5192 s = to_slab(kobj);
5193
5194 if (!attribute->store)
5195 return -EIO;
5196
5197 err = attribute->store(s, buf, len);
5198
5199 return err;
5200}
5201
151c602f
CL
5202static void kmem_cache_release(struct kobject *kobj)
5203{
5204 struct kmem_cache *s = to_slab(kobj);
5205
84c1cf62 5206 kfree(s->name);
151c602f
CL
5207 kfree(s);
5208}
5209
52cf25d0 5210static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5211 .show = slab_attr_show,
5212 .store = slab_attr_store,
5213};
5214
5215static struct kobj_type slab_ktype = {
5216 .sysfs_ops = &slab_sysfs_ops,
151c602f 5217 .release = kmem_cache_release
81819f0f
CL
5218};
5219
5220static int uevent_filter(struct kset *kset, struct kobject *kobj)
5221{
5222 struct kobj_type *ktype = get_ktype(kobj);
5223
5224 if (ktype == &slab_ktype)
5225 return 1;
5226 return 0;
5227}
5228
9cd43611 5229static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5230 .filter = uevent_filter,
5231};
5232
27c3a314 5233static struct kset *slab_kset;
81819f0f
CL
5234
5235#define ID_STR_LENGTH 64
5236
5237/* Create a unique string id for a slab cache:
6446faa2
CL
5238 *
5239 * Format :[flags-]size
81819f0f
CL
5240 */
5241static char *create_unique_id(struct kmem_cache *s)
5242{
5243 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5244 char *p = name;
5245
5246 BUG_ON(!name);
5247
5248 *p++ = ':';
5249 /*
5250 * First flags affecting slabcache operations. We will only
5251 * get here for aliasable slabs so we do not need to support
5252 * too many flags. The flags here must cover all flags that
5253 * are matched during merging to guarantee that the id is
5254 * unique.
5255 */
5256 if (s->flags & SLAB_CACHE_DMA)
5257 *p++ = 'd';
5258 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5259 *p++ = 'a';
5260 if (s->flags & SLAB_DEBUG_FREE)
5261 *p++ = 'F';
5a896d9e
VN
5262 if (!(s->flags & SLAB_NOTRACK))
5263 *p++ = 't';
81819f0f
CL
5264 if (p != name + 1)
5265 *p++ = '-';
5266 p += sprintf(p, "%07d", s->size);
5267 BUG_ON(p > name + ID_STR_LENGTH - 1);
5268 return name;
5269}
5270
5271static int sysfs_slab_add(struct kmem_cache *s)
5272{
5273 int err;
5274 const char *name;
5275 int unmergeable;
5276
5277 if (slab_state < SYSFS)
5278 /* Defer until later */
5279 return 0;
5280
5281 unmergeable = slab_unmergeable(s);
5282 if (unmergeable) {
5283 /*
5284 * Slabcache can never be merged so we can use the name proper.
5285 * This is typically the case for debug situations. In that
5286 * case we can catch duplicate names easily.
5287 */
27c3a314 5288 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5289 name = s->name;
5290 } else {
5291 /*
5292 * Create a unique name for the slab as a target
5293 * for the symlinks.
5294 */
5295 name = create_unique_id(s);
5296 }
5297
27c3a314 5298 s->kobj.kset = slab_kset;
1eada11c
GKH
5299 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5300 if (err) {
5301 kobject_put(&s->kobj);
81819f0f 5302 return err;
1eada11c 5303 }
81819f0f
CL
5304
5305 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5306 if (err) {
5307 kobject_del(&s->kobj);
5308 kobject_put(&s->kobj);
81819f0f 5309 return err;
5788d8ad 5310 }
81819f0f
CL
5311 kobject_uevent(&s->kobj, KOBJ_ADD);
5312 if (!unmergeable) {
5313 /* Setup first alias */
5314 sysfs_slab_alias(s, s->name);
5315 kfree(name);
5316 }
5317 return 0;
5318}
5319
5320static void sysfs_slab_remove(struct kmem_cache *s)
5321{
2bce6485
CL
5322 if (slab_state < SYSFS)
5323 /*
5324 * Sysfs has not been setup yet so no need to remove the
5325 * cache from sysfs.
5326 */
5327 return;
5328
81819f0f
CL
5329 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5330 kobject_del(&s->kobj);
151c602f 5331 kobject_put(&s->kobj);
81819f0f
CL
5332}
5333
5334/*
5335 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5336 * available lest we lose that information.
81819f0f
CL
5337 */
5338struct saved_alias {
5339 struct kmem_cache *s;
5340 const char *name;
5341 struct saved_alias *next;
5342};
5343
5af328a5 5344static struct saved_alias *alias_list;
81819f0f
CL
5345
5346static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5347{
5348 struct saved_alias *al;
5349
5350 if (slab_state == SYSFS) {
5351 /*
5352 * If we have a leftover link then remove it.
5353 */
27c3a314
GKH
5354 sysfs_remove_link(&slab_kset->kobj, name);
5355 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5356 }
5357
5358 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5359 if (!al)
5360 return -ENOMEM;
5361
5362 al->s = s;
5363 al->name = name;
5364 al->next = alias_list;
5365 alias_list = al;
5366 return 0;
5367}
5368
5369static int __init slab_sysfs_init(void)
5370{
5b95a4ac 5371 struct kmem_cache *s;
81819f0f
CL
5372 int err;
5373
2bce6485
CL
5374 down_write(&slub_lock);
5375
0ff21e46 5376 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5377 if (!slab_kset) {
2bce6485 5378 up_write(&slub_lock);
81819f0f
CL
5379 printk(KERN_ERR "Cannot register slab subsystem.\n");
5380 return -ENOSYS;
5381 }
5382
26a7bd03
CL
5383 slab_state = SYSFS;
5384
5b95a4ac 5385 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5386 err = sysfs_slab_add(s);
5d540fb7
CL
5387 if (err)
5388 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5389 " to sysfs\n", s->name);
26a7bd03 5390 }
81819f0f
CL
5391
5392 while (alias_list) {
5393 struct saved_alias *al = alias_list;
5394
5395 alias_list = alias_list->next;
5396 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5397 if (err)
5398 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
068ce415 5399 " %s to sysfs\n", al->name);
81819f0f
CL
5400 kfree(al);
5401 }
5402
2bce6485 5403 up_write(&slub_lock);
81819f0f
CL
5404 resiliency_test();
5405 return 0;
5406}
5407
5408__initcall(slab_sysfs_init);
ab4d5ed5 5409#endif /* CONFIG_SYSFS */
57ed3eda
PE
5410
5411/*
5412 * The /proc/slabinfo ABI
5413 */
158a9624 5414#ifdef CONFIG_SLABINFO
57ed3eda
PE
5415static void print_slabinfo_header(struct seq_file *m)
5416{
5417 seq_puts(m, "slabinfo - version: 2.1\n");
3b0efdfa 5418 seq_puts(m, "# name <active_objs> <num_objs> <object_size> "
57ed3eda
PE
5419 "<objperslab> <pagesperslab>");
5420 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5421 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5422 seq_putc(m, '\n');
5423}
5424
5425static void *s_start(struct seq_file *m, loff_t *pos)
5426{
5427 loff_t n = *pos;
5428
5429 down_read(&slub_lock);
5430 if (!n)
5431 print_slabinfo_header(m);
5432
5433 return seq_list_start(&slab_caches, *pos);
5434}
5435
5436static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5437{
5438 return seq_list_next(p, &slab_caches, pos);
5439}
5440
5441static void s_stop(struct seq_file *m, void *p)
5442{
5443 up_read(&slub_lock);
5444}
5445
5446static int s_show(struct seq_file *m, void *p)
5447{
5448 unsigned long nr_partials = 0;
5449 unsigned long nr_slabs = 0;
5450 unsigned long nr_inuse = 0;
205ab99d
CL
5451 unsigned long nr_objs = 0;
5452 unsigned long nr_free = 0;
57ed3eda
PE
5453 struct kmem_cache *s;
5454 int node;
5455
5456 s = list_entry(p, struct kmem_cache, list);
5457
5458 for_each_online_node(node) {
5459 struct kmem_cache_node *n = get_node(s, node);
5460
5461 if (!n)
5462 continue;
5463
5464 nr_partials += n->nr_partial;
5465 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5466 nr_objs += atomic_long_read(&n->total_objects);
5467 nr_free += count_partial(n, count_free);
57ed3eda
PE
5468 }
5469
205ab99d 5470 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
5471
5472 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
5473 nr_objs, s->size, oo_objects(s->oo),
5474 (1 << oo_order(s->oo)));
57ed3eda
PE
5475 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5476 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5477 0UL);
5478 seq_putc(m, '\n');
5479 return 0;
5480}
5481
7b3c3a50 5482static const struct seq_operations slabinfo_op = {
57ed3eda
PE
5483 .start = s_start,
5484 .next = s_next,
5485 .stop = s_stop,
5486 .show = s_show,
5487};
5488
7b3c3a50
AD
5489static int slabinfo_open(struct inode *inode, struct file *file)
5490{
5491 return seq_open(file, &slabinfo_op);
5492}
5493
5494static const struct file_operations proc_slabinfo_operations = {
5495 .open = slabinfo_open,
5496 .read = seq_read,
5497 .llseek = seq_lseek,
5498 .release = seq_release,
5499};
5500
5501static int __init slab_proc_init(void)
5502{
ab067e99 5503 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
5504 return 0;
5505}
5506module_init(slab_proc_init);
158a9624 5507#endif /* CONFIG_SLABINFO */