]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/slub.c
mm, slab: split out the cpu offline variant of flush_slab()
[mirror_ubuntu-jammy-kernel.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
dc84207d 6 * The allocator synchronizes using per slab locks or atomic operations
881db7fb 7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
1b3865d0 18#include <linux/swab.h>
81819f0f
CL
19#include <linux/bitops.h>
20#include <linux/slab.h>
97d06609 21#include "slab.h"
7b3c3a50 22#include <linux/proc_fs.h>
81819f0f 23#include <linux/seq_file.h>
a79316c6 24#include <linux/kasan.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b89fb5ef 31#include <linux/kfence.h>
b9049e23 32#include <linux/memory.h>
f8bd2258 33#include <linux/math64.h>
773ff60e 34#include <linux/fault-inject.h>
bfa71457 35#include <linux/stacktrace.h>
4de900b4 36#include <linux/prefetch.h>
2633d7a0 37#include <linux/memcontrol.h>
2482ddec 38#include <linux/random.h>
1f9f78b1 39#include <kunit/test.h>
81819f0f 40
64dd6849 41#include <linux/debugfs.h>
4a92379b
RK
42#include <trace/events/kmem.h>
43
072bb0aa
MG
44#include "internal.h"
45
81819f0f
CL
46/*
47 * Lock order:
18004c5d 48 * 1. slab_mutex (Global Mutex)
881db7fb
CL
49 * 2. node->list_lock
50 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 51 *
18004c5d 52 * slab_mutex
881db7fb 53 *
18004c5d 54 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
55 * and to synchronize major metadata changes to slab cache structures.
56 *
57 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 58 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 59 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
60 * B. page->inuse -> Number of objects in use
61 * C. page->objects -> Number of objects in page
62 * D. page->frozen -> frozen state
881db7fb
CL
63 *
64 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
65 * on any list except per cpu partial list. The processor that froze the
66 * slab is the one who can perform list operations on the page. Other
67 * processors may put objects onto the freelist but the processor that
68 * froze the slab is the only one that can retrieve the objects from the
69 * page's freelist.
81819f0f
CL
70 *
71 * The list_lock protects the partial and full list on each node and
72 * the partial slab counter. If taken then no new slabs may be added or
73 * removed from the lists nor make the number of partial slabs be modified.
74 * (Note that the total number of slabs is an atomic value that may be
75 * modified without taking the list lock).
76 *
77 * The list_lock is a centralized lock and thus we avoid taking it as
78 * much as possible. As long as SLUB does not have to handle partial
79 * slabs, operations can continue without any centralized lock. F.e.
80 * allocating a long series of objects that fill up slabs does not require
81 * the list lock.
81819f0f
CL
82 * Interrupts are disabled during allocation and deallocation in order to
83 * make the slab allocator safe to use in the context of an irq. In addition
84 * interrupts are disabled to ensure that the processor does not change
85 * while handling per_cpu slabs, due to kernel preemption.
86 *
87 * SLUB assigns one slab for allocation to each processor.
88 * Allocations only occur from these slabs called cpu slabs.
89 *
672bba3a
CL
90 * Slabs with free elements are kept on a partial list and during regular
91 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 92 * freed then the slab will show up again on the partial lists.
672bba3a
CL
93 * We track full slabs for debugging purposes though because otherwise we
94 * cannot scan all objects.
81819f0f
CL
95 *
96 * Slabs are freed when they become empty. Teardown and setup is
97 * minimal so we rely on the page allocators per cpu caches for
98 * fast frees and allocs.
99 *
aed68148 100 * page->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
101 * This means that the slab is dedicated to a purpose
102 * such as satisfying allocations for a specific
103 * processor. Objects may be freed in the slab while
104 * it is frozen but slab_free will then skip the usual
105 * list operations. It is up to the processor holding
106 * the slab to integrate the slab into the slab lists
107 * when the slab is no longer needed.
108 *
109 * One use of this flag is to mark slabs that are
110 * used for allocations. Then such a slab becomes a cpu
111 * slab. The cpu slab may be equipped with an additional
dfb4f096 112 * freelist that allows lockless access to
894b8788
CL
113 * free objects in addition to the regular freelist
114 * that requires the slab lock.
81819f0f 115 *
aed68148 116 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 117 * options set. This moves slab handling out of
894b8788 118 * the fast path and disables lockless freelists.
81819f0f
CL
119 */
120
ca0cab65
VB
121#ifdef CONFIG_SLUB_DEBUG
122#ifdef CONFIG_SLUB_DEBUG_ON
123DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
124#else
125DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
126#endif
79270291 127#endif /* CONFIG_SLUB_DEBUG */
ca0cab65 128
59052e89
VB
129static inline bool kmem_cache_debug(struct kmem_cache *s)
130{
131 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 132}
5577bd8a 133
117d54df 134void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 135{
59052e89 136 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
137 p += s->red_left_pad;
138
139 return p;
140}
141
345c905d
JK
142static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
143{
144#ifdef CONFIG_SLUB_CPU_PARTIAL
145 return !kmem_cache_debug(s);
146#else
147 return false;
148#endif
149}
150
81819f0f
CL
151/*
152 * Issues still to be resolved:
153 *
81819f0f
CL
154 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
155 *
81819f0f
CL
156 * - Variable sizing of the per node arrays
157 */
158
b789ef51
CL
159/* Enable to log cmpxchg failures */
160#undef SLUB_DEBUG_CMPXCHG
161
2086d26a 162/*
dc84207d 163 * Minimum number of partial slabs. These will be left on the partial
2086d26a
CL
164 * lists even if they are empty. kmem_cache_shrink may reclaim them.
165 */
76be8950 166#define MIN_PARTIAL 5
e95eed57 167
2086d26a
CL
168/*
169 * Maximum number of desirable partial slabs.
170 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 171 * sort the partial list by the number of objects in use.
2086d26a
CL
172 */
173#define MAX_PARTIAL 10
174
becfda68 175#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 176 SLAB_POISON | SLAB_STORE_USER)
672bba3a 177
149daaf3
LA
178/*
179 * These debug flags cannot use CMPXCHG because there might be consistency
180 * issues when checking or reading debug information
181 */
182#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
183 SLAB_TRACE)
184
185
fa5ec8a1 186/*
3de47213
DR
187 * Debugging flags that require metadata to be stored in the slab. These get
188 * disabled when slub_debug=O is used and a cache's min order increases with
189 * metadata.
fa5ec8a1 190 */
3de47213 191#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 192
210b5c06
CG
193#define OO_SHIFT 16
194#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 195#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 196
81819f0f 197/* Internal SLUB flags */
d50112ed 198/* Poison object */
4fd0b46e 199#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 200/* Use cmpxchg_double */
4fd0b46e 201#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 202
02cbc874
CL
203/*
204 * Tracking user of a slab.
205 */
d6543e39 206#define TRACK_ADDRS_COUNT 16
02cbc874 207struct track {
ce71e27c 208 unsigned long addr; /* Called from address */
ae14c63a
LT
209#ifdef CONFIG_STACKTRACE
210 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
d6543e39 211#endif
02cbc874
CL
212 int cpu; /* Was running on cpu */
213 int pid; /* Pid context */
214 unsigned long when; /* When did the operation occur */
215};
216
217enum track_item { TRACK_ALLOC, TRACK_FREE };
218
ab4d5ed5 219#ifdef CONFIG_SYSFS
81819f0f
CL
220static int sysfs_slab_add(struct kmem_cache *);
221static int sysfs_slab_alias(struct kmem_cache *, const char *);
81819f0f 222#else
0c710013
CL
223static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
224static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
225 { return 0; }
81819f0f
CL
226#endif
227
64dd6849
FM
228#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
229static void debugfs_slab_add(struct kmem_cache *);
230#else
231static inline void debugfs_slab_add(struct kmem_cache *s) { }
232#endif
233
4fdccdfb 234static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
235{
236#ifdef CONFIG_SLUB_STATS
88da03a6
CL
237 /*
238 * The rmw is racy on a preemptible kernel but this is acceptable, so
239 * avoid this_cpu_add()'s irq-disable overhead.
240 */
241 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
242#endif
243}
244
7e1fa93d
VB
245/*
246 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
247 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
248 * differ during memory hotplug/hotremove operations.
249 * Protected by slab_mutex.
250 */
251static nodemask_t slab_nodes;
252
81819f0f
CL
253/********************************************************************
254 * Core slab cache functions
255 *******************************************************************/
256
2482ddec
KC
257/*
258 * Returns freelist pointer (ptr). With hardening, this is obfuscated
259 * with an XOR of the address where the pointer is held and a per-cache
260 * random number.
261 */
262static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
263 unsigned long ptr_addr)
264{
265#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9 266 /*
aa1ef4d7 267 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
d36a63a9
AK
268 * Normally, this doesn't cause any issues, as both set_freepointer()
269 * and get_freepointer() are called with a pointer with the same tag.
270 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
271 * example, when __free_slub() iterates over objects in a cache, it
272 * passes untagged pointers to check_object(). check_object() in turns
273 * calls get_freepointer() with an untagged pointer, which causes the
274 * freepointer to be restored incorrectly.
275 */
276 return (void *)((unsigned long)ptr ^ s->random ^
1ad53d9f 277 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
278#else
279 return ptr;
280#endif
281}
282
283/* Returns the freelist pointer recorded at location ptr_addr. */
284static inline void *freelist_dereference(const struct kmem_cache *s,
285 void *ptr_addr)
286{
287 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
288 (unsigned long)ptr_addr);
289}
290
7656c72b
CL
291static inline void *get_freepointer(struct kmem_cache *s, void *object)
292{
aa1ef4d7 293 object = kasan_reset_tag(object);
2482ddec 294 return freelist_dereference(s, object + s->offset);
7656c72b
CL
295}
296
0ad9500e
ED
297static void prefetch_freepointer(const struct kmem_cache *s, void *object)
298{
0882ff91 299 prefetch(object + s->offset);
0ad9500e
ED
300}
301
1393d9a1
CL
302static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
303{
2482ddec 304 unsigned long freepointer_addr;
1393d9a1
CL
305 void *p;
306
8e57f8ac 307 if (!debug_pagealloc_enabled_static())
922d566c
JK
308 return get_freepointer(s, object);
309
f70b0049 310 object = kasan_reset_tag(object);
2482ddec 311 freepointer_addr = (unsigned long)object + s->offset;
fe557319 312 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
2482ddec 313 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
314}
315
7656c72b
CL
316static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
317{
2482ddec
KC
318 unsigned long freeptr_addr = (unsigned long)object + s->offset;
319
ce6fa91b
AP
320#ifdef CONFIG_SLAB_FREELIST_HARDENED
321 BUG_ON(object == fp); /* naive detection of double free or corruption */
322#endif
323
aa1ef4d7 324 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
2482ddec 325 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
326}
327
328/* Loop over all objects in a slab */
224a88be 329#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
330 for (__p = fixup_red_left(__s, __addr); \
331 __p < (__addr) + (__objects) * (__s)->size; \
332 __p += (__s)->size)
7656c72b 333
9736d2a9 334static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 335{
9736d2a9 336 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
337}
338
19af27af 339static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 340 unsigned int size)
834f3d11
CL
341{
342 struct kmem_cache_order_objects x = {
9736d2a9 343 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
344 };
345
346 return x;
347}
348
19af27af 349static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 350{
210b5c06 351 return x.x >> OO_SHIFT;
834f3d11
CL
352}
353
19af27af 354static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 355{
210b5c06 356 return x.x & OO_MASK;
834f3d11
CL
357}
358
881db7fb
CL
359/*
360 * Per slab locking using the pagelock
361 */
362static __always_inline void slab_lock(struct page *page)
363{
48c935ad 364 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
365 bit_spin_lock(PG_locked, &page->flags);
366}
367
368static __always_inline void slab_unlock(struct page *page)
369{
48c935ad 370 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
371 __bit_spin_unlock(PG_locked, &page->flags);
372}
373
1d07171c
CL
374/* Interrupts must be disabled (for the fallback code to work right) */
375static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
378 const char *n)
379{
380 VM_BUG_ON(!irqs_disabled());
2565409f
HC
381#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 383 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 384 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
385 freelist_old, counters_old,
386 freelist_new, counters_new))
6f6528a1 387 return true;
1d07171c
CL
388 } else
389#endif
390 {
391 slab_lock(page);
d0e0ac97
CG
392 if (page->freelist == freelist_old &&
393 page->counters == counters_old) {
1d07171c 394 page->freelist = freelist_new;
7d27a04b 395 page->counters = counters_new;
1d07171c 396 slab_unlock(page);
6f6528a1 397 return true;
1d07171c
CL
398 }
399 slab_unlock(page);
400 }
401
402 cpu_relax();
403 stat(s, CMPXCHG_DOUBLE_FAIL);
404
405#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 406 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
407#endif
408
6f6528a1 409 return false;
1d07171c
CL
410}
411
b789ef51
CL
412static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 void *freelist_old, unsigned long counters_old,
414 void *freelist_new, unsigned long counters_new,
415 const char *n)
416{
2565409f
HC
417#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 419 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 420 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
421 freelist_old, counters_old,
422 freelist_new, counters_new))
6f6528a1 423 return true;
b789ef51
CL
424 } else
425#endif
426 {
1d07171c
CL
427 unsigned long flags;
428
429 local_irq_save(flags);
881db7fb 430 slab_lock(page);
d0e0ac97
CG
431 if (page->freelist == freelist_old &&
432 page->counters == counters_old) {
b789ef51 433 page->freelist = freelist_new;
7d27a04b 434 page->counters = counters_new;
881db7fb 435 slab_unlock(page);
1d07171c 436 local_irq_restore(flags);
6f6528a1 437 return true;
b789ef51 438 }
881db7fb 439 slab_unlock(page);
1d07171c 440 local_irq_restore(flags);
b789ef51
CL
441 }
442
443 cpu_relax();
444 stat(s, CMPXCHG_DOUBLE_FAIL);
445
446#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 447 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
448#endif
449
6f6528a1 450 return false;
b789ef51
CL
451}
452
41ecc55b 453#ifdef CONFIG_SLUB_DEBUG
90e9f6a6
YZ
454static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
455static DEFINE_SPINLOCK(object_map_lock);
456
b3fd64e1
VB
457static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
458 struct page *page)
459{
460 void *addr = page_address(page);
461 void *p;
462
463 bitmap_zero(obj_map, page->objects);
464
465 for (p = page->freelist; p; p = get_freepointer(s, p))
466 set_bit(__obj_to_index(s, addr, p), obj_map);
467}
468
1f9f78b1
OG
469#if IS_ENABLED(CONFIG_KUNIT)
470static bool slab_add_kunit_errors(void)
471{
472 struct kunit_resource *resource;
473
474 if (likely(!current->kunit_test))
475 return false;
476
477 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
478 if (!resource)
479 return false;
480
481 (*(int *)resource->data)++;
482 kunit_put_resource(resource);
483 return true;
484}
485#else
486static inline bool slab_add_kunit_errors(void) { return false; }
487#endif
488
5f80b13a
CL
489/*
490 * Determine a map of object in use on a page.
491 *
881db7fb 492 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
493 * not vanish from under us.
494 */
90e9f6a6 495static unsigned long *get_map(struct kmem_cache *s, struct page *page)
31364c2e 496 __acquires(&object_map_lock)
5f80b13a 497{
90e9f6a6
YZ
498 VM_BUG_ON(!irqs_disabled());
499
500 spin_lock(&object_map_lock);
501
b3fd64e1 502 __fill_map(object_map, s, page);
90e9f6a6
YZ
503
504 return object_map;
505}
506
81aba9e0 507static void put_map(unsigned long *map) __releases(&object_map_lock)
90e9f6a6
YZ
508{
509 VM_BUG_ON(map != object_map);
90e9f6a6 510 spin_unlock(&object_map_lock);
5f80b13a
CL
511}
512
870b1fbb 513static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
514{
515 if (s->flags & SLAB_RED_ZONE)
516 return s->size - s->red_left_pad;
517
518 return s->size;
519}
520
521static inline void *restore_red_left(struct kmem_cache *s, void *p)
522{
523 if (s->flags & SLAB_RED_ZONE)
524 p -= s->red_left_pad;
525
526 return p;
527}
528
41ecc55b
CL
529/*
530 * Debug settings:
531 */
89d3c87e 532#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 533static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 534#else
d50112ed 535static slab_flags_t slub_debug;
f0630fff 536#endif
41ecc55b 537
e17f1dfb 538static char *slub_debug_string;
fa5ec8a1 539static int disable_higher_order_debug;
41ecc55b 540
a79316c6
AR
541/*
542 * slub is about to manipulate internal object metadata. This memory lies
543 * outside the range of the allocated object, so accessing it would normally
544 * be reported by kasan as a bounds error. metadata_access_enable() is used
545 * to tell kasan that these accesses are OK.
546 */
547static inline void metadata_access_enable(void)
548{
549 kasan_disable_current();
550}
551
552static inline void metadata_access_disable(void)
553{
554 kasan_enable_current();
555}
556
81819f0f
CL
557/*
558 * Object debugging
559 */
d86bd1be
JK
560
561/* Verify that a pointer has an address that is valid within a slab page */
562static inline int check_valid_pointer(struct kmem_cache *s,
563 struct page *page, void *object)
564{
565 void *base;
566
567 if (!object)
568 return 1;
569
570 base = page_address(page);
338cfaad 571 object = kasan_reset_tag(object);
d86bd1be
JK
572 object = restore_red_left(s, object);
573 if (object < base || object >= base + page->objects * s->size ||
574 (object - base) % s->size) {
575 return 0;
576 }
577
578 return 1;
579}
580
aa2efd5e
DT
581static void print_section(char *level, char *text, u8 *addr,
582 unsigned int length)
81819f0f 583{
a79316c6 584 metadata_access_enable();
340caf17
KYL
585 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
586 16, 1, kasan_reset_tag((void *)addr), length, 1);
a79316c6 587 metadata_access_disable();
81819f0f
CL
588}
589
cbfc35a4
WL
590/*
591 * See comment in calculate_sizes().
592 */
593static inline bool freeptr_outside_object(struct kmem_cache *s)
594{
595 return s->offset >= s->inuse;
596}
597
598/*
599 * Return offset of the end of info block which is inuse + free pointer if
600 * not overlapping with object.
601 */
602static inline unsigned int get_info_end(struct kmem_cache *s)
603{
604 if (freeptr_outside_object(s))
605 return s->inuse + sizeof(void *);
606 else
607 return s->inuse;
608}
609
81819f0f
CL
610static struct track *get_track(struct kmem_cache *s, void *object,
611 enum track_item alloc)
612{
613 struct track *p;
614
cbfc35a4 615 p = object + get_info_end(s);
81819f0f 616
aa1ef4d7 617 return kasan_reset_tag(p + alloc);
81819f0f
CL
618}
619
620static void set_track(struct kmem_cache *s, void *object,
ce71e27c 621 enum track_item alloc, unsigned long addr)
81819f0f 622{
1a00df4a 623 struct track *p = get_track(s, object, alloc);
81819f0f 624
81819f0f 625 if (addr) {
ae14c63a
LT
626#ifdef CONFIG_STACKTRACE
627 unsigned int nr_entries;
628
629 metadata_access_enable();
630 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
631 TRACK_ADDRS_COUNT, 3);
632 metadata_access_disable();
633
634 if (nr_entries < TRACK_ADDRS_COUNT)
635 p->addrs[nr_entries] = 0;
d6543e39 636#endif
81819f0f
CL
637 p->addr = addr;
638 p->cpu = smp_processor_id();
88e4ccf2 639 p->pid = current->pid;
81819f0f 640 p->when = jiffies;
b8ca7ff7 641 } else {
81819f0f 642 memset(p, 0, sizeof(struct track));
b8ca7ff7 643 }
81819f0f
CL
644}
645
81819f0f
CL
646static void init_tracking(struct kmem_cache *s, void *object)
647{
24922684
CL
648 if (!(s->flags & SLAB_STORE_USER))
649 return;
650
ce71e27c
EGM
651 set_track(s, object, TRACK_FREE, 0UL);
652 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
653}
654
86609d33 655static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
656{
657 if (!t->addr)
658 return;
659
96b94abc 660 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 661 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
ae14c63a 662#ifdef CONFIG_STACKTRACE
d6543e39 663 {
ae14c63a
LT
664 int i;
665 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
666 if (t->addrs[i])
667 pr_err("\t%pS\n", (void *)t->addrs[i]);
668 else
669 break;
d6543e39
BG
670 }
671#endif
24922684
CL
672}
673
e42f174e 674void print_tracking(struct kmem_cache *s, void *object)
24922684 675{
86609d33 676 unsigned long pr_time = jiffies;
24922684
CL
677 if (!(s->flags & SLAB_STORE_USER))
678 return;
679
86609d33
CP
680 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
681 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
682}
683
684static void print_page_info(struct page *page)
685{
96b94abc 686 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n",
4a8ef190
YS
687 page, page->objects, page->inuse, page->freelist,
688 page->flags, &page->flags);
24922684
CL
689
690}
691
692static void slab_bug(struct kmem_cache *s, char *fmt, ...)
693{
ecc42fbe 694 struct va_format vaf;
24922684 695 va_list args;
24922684
CL
696
697 va_start(args, fmt);
ecc42fbe
FF
698 vaf.fmt = fmt;
699 vaf.va = &args;
f9f58285 700 pr_err("=============================================================================\n");
ecc42fbe 701 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 702 pr_err("-----------------------------------------------------------------------------\n\n");
ecc42fbe 703 va_end(args);
81819f0f
CL
704}
705
582d1212 706__printf(2, 3)
24922684
CL
707static void slab_fix(struct kmem_cache *s, char *fmt, ...)
708{
ecc42fbe 709 struct va_format vaf;
24922684 710 va_list args;
24922684 711
1f9f78b1
OG
712 if (slab_add_kunit_errors())
713 return;
714
24922684 715 va_start(args, fmt);
ecc42fbe
FF
716 vaf.fmt = fmt;
717 vaf.va = &args;
718 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 719 va_end(args);
24922684
CL
720}
721
52f23478 722static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 723 void **freelist, void *nextfree)
52f23478
DZ
724{
725 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
dc07a728
ER
726 !check_valid_pointer(s, page, nextfree) && freelist) {
727 object_err(s, page, *freelist, "Freechain corrupt");
728 *freelist = NULL;
52f23478
DZ
729 slab_fix(s, "Isolate corrupted freechain");
730 return true;
731 }
732
733 return false;
734}
735
24922684 736static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
737{
738 unsigned int off; /* Offset of last byte */
a973e9dd 739 u8 *addr = page_address(page);
24922684
CL
740
741 print_tracking(s, p);
742
743 print_page_info(page);
744
96b94abc 745 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
f9f58285 746 p, p - addr, get_freepointer(s, p));
24922684 747
d86bd1be 748 if (s->flags & SLAB_RED_ZONE)
8669dbab 749 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
aa2efd5e 750 s->red_left_pad);
d86bd1be 751 else if (p > addr + 16)
aa2efd5e 752 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 753
8669dbab 754 print_section(KERN_ERR, "Object ", p,
1b473f29 755 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 756 if (s->flags & SLAB_RED_ZONE)
8669dbab 757 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 758 s->inuse - s->object_size);
81819f0f 759
cbfc35a4 760 off = get_info_end(s);
81819f0f 761
24922684 762 if (s->flags & SLAB_STORE_USER)
81819f0f 763 off += 2 * sizeof(struct track);
81819f0f 764
80a9201a
AP
765 off += kasan_metadata_size(s);
766
d86bd1be 767 if (off != size_from_object(s))
81819f0f 768 /* Beginning of the filler is the free pointer */
8669dbab 769 print_section(KERN_ERR, "Padding ", p + off,
aa2efd5e 770 size_from_object(s) - off);
24922684
CL
771
772 dump_stack();
81819f0f
CL
773}
774
75c66def 775void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
776 u8 *object, char *reason)
777{
1f9f78b1
OG
778 if (slab_add_kunit_errors())
779 return;
780
3dc50637 781 slab_bug(s, "%s", reason);
24922684 782 print_trailer(s, page, object);
65ebdeef 783 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
784}
785
a38965bf 786static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 787 const char *fmt, ...)
81819f0f
CL
788{
789 va_list args;
790 char buf[100];
791
1f9f78b1
OG
792 if (slab_add_kunit_errors())
793 return;
794
24922684
CL
795 va_start(args, fmt);
796 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 797 va_end(args);
3dc50637 798 slab_bug(s, "%s", buf);
24922684 799 print_page_info(page);
81819f0f 800 dump_stack();
65ebdeef 801 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
802}
803
f7cb1933 804static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f 805{
aa1ef4d7 806 u8 *p = kasan_reset_tag(object);
81819f0f 807
d86bd1be
JK
808 if (s->flags & SLAB_RED_ZONE)
809 memset(p - s->red_left_pad, val, s->red_left_pad);
810
81819f0f 811 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
812 memset(p, POISON_FREE, s->object_size - 1);
813 p[s->object_size - 1] = POISON_END;
81819f0f
CL
814 }
815
816 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 817 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
818}
819
24922684
CL
820static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
821 void *from, void *to)
822{
582d1212 823 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
24922684
CL
824 memset(from, data, to - from);
825}
826
827static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
828 u8 *object, char *what,
06428780 829 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
830{
831 u8 *fault;
832 u8 *end;
e1b70dd1 833 u8 *addr = page_address(page);
24922684 834
a79316c6 835 metadata_access_enable();
aa1ef4d7 836 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
a79316c6 837 metadata_access_disable();
24922684
CL
838 if (!fault)
839 return 1;
840
841 end = start + bytes;
842 while (end > fault && end[-1] == value)
843 end--;
844
1f9f78b1
OG
845 if (slab_add_kunit_errors())
846 goto skip_bug_print;
847
24922684 848 slab_bug(s, "%s overwritten", what);
96b94abc 849 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
e1b70dd1
MC
850 fault, end - 1, fault - addr,
851 fault[0], value);
24922684 852 print_trailer(s, page, object);
65ebdeef 853 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
24922684 854
1f9f78b1 855skip_bug_print:
24922684
CL
856 restore_bytes(s, what, value, fault, end);
857 return 0;
81819f0f
CL
858}
859
81819f0f
CL
860/*
861 * Object layout:
862 *
863 * object address
864 * Bytes of the object to be managed.
865 * If the freepointer may overlay the object then the free
cbfc35a4 866 * pointer is at the middle of the object.
672bba3a 867 *
81819f0f
CL
868 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
869 * 0xa5 (POISON_END)
870 *
3b0efdfa 871 * object + s->object_size
81819f0f 872 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 873 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 874 * object_size == inuse.
672bba3a 875 *
81819f0f
CL
876 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
877 * 0xcc (RED_ACTIVE) for objects in use.
878 *
879 * object + s->inuse
672bba3a
CL
880 * Meta data starts here.
881 *
81819f0f
CL
882 * A. Free pointer (if we cannot overwrite object on free)
883 * B. Tracking data for SLAB_STORE_USER
dc84207d 884 * C. Padding to reach required alignment boundary or at minimum
6446faa2 885 * one word if debugging is on to be able to detect writes
672bba3a
CL
886 * before the word boundary.
887 *
888 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
889 *
890 * object + s->size
672bba3a 891 * Nothing is used beyond s->size.
81819f0f 892 *
3b0efdfa 893 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 894 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
895 * may be used with merged slabcaches.
896 */
897
81819f0f
CL
898static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
899{
cbfc35a4 900 unsigned long off = get_info_end(s); /* The end of info */
81819f0f
CL
901
902 if (s->flags & SLAB_STORE_USER)
903 /* We also have user information there */
904 off += 2 * sizeof(struct track);
905
80a9201a
AP
906 off += kasan_metadata_size(s);
907
d86bd1be 908 if (size_from_object(s) == off)
81819f0f
CL
909 return 1;
910
24922684 911 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 912 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
913}
914
39b26464 915/* Check the pad bytes at the end of a slab page */
81819f0f
CL
916static int slab_pad_check(struct kmem_cache *s, struct page *page)
917{
24922684
CL
918 u8 *start;
919 u8 *fault;
920 u8 *end;
5d682681 921 u8 *pad;
24922684
CL
922 int length;
923 int remainder;
81819f0f
CL
924
925 if (!(s->flags & SLAB_POISON))
926 return 1;
927
a973e9dd 928 start = page_address(page);
a50b854e 929 length = page_size(page);
39b26464
CL
930 end = start + length;
931 remainder = length % s->size;
81819f0f
CL
932 if (!remainder)
933 return 1;
934
5d682681 935 pad = end - remainder;
a79316c6 936 metadata_access_enable();
aa1ef4d7 937 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
a79316c6 938 metadata_access_disable();
24922684
CL
939 if (!fault)
940 return 1;
941 while (end > fault && end[-1] == POISON_INUSE)
942 end--;
943
e1b70dd1
MC
944 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
945 fault, end - 1, fault - start);
5d682681 946 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 947
5d682681 948 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 949 return 0;
81819f0f
CL
950}
951
952static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 953 void *object, u8 val)
81819f0f
CL
954{
955 u8 *p = object;
3b0efdfa 956 u8 *endobject = object + s->object_size;
81819f0f
CL
957
958 if (s->flags & SLAB_RED_ZONE) {
8669dbab 959 if (!check_bytes_and_report(s, page, object, "Left Redzone",
d86bd1be
JK
960 object - s->red_left_pad, val, s->red_left_pad))
961 return 0;
962
8669dbab 963 if (!check_bytes_and_report(s, page, object, "Right Redzone",
3b0efdfa 964 endobject, val, s->inuse - s->object_size))
81819f0f 965 return 0;
81819f0f 966 } else {
3b0efdfa 967 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 968 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
969 endobject, POISON_INUSE,
970 s->inuse - s->object_size);
3adbefee 971 }
81819f0f
CL
972 }
973
974 if (s->flags & SLAB_POISON) {
f7cb1933 975 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 976 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 977 POISON_FREE, s->object_size - 1) ||
8669dbab 978 !check_bytes_and_report(s, page, p, "End Poison",
3b0efdfa 979 p + s->object_size - 1, POISON_END, 1)))
81819f0f 980 return 0;
81819f0f
CL
981 /*
982 * check_pad_bytes cleans up on its own.
983 */
984 check_pad_bytes(s, page, p);
985 }
986
cbfc35a4 987 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
988 /*
989 * Object and freepointer overlap. Cannot check
990 * freepointer while object is allocated.
991 */
992 return 1;
993
994 /* Check free pointer validity */
995 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
996 object_err(s, page, p, "Freepointer corrupt");
997 /*
9f6c708e 998 * No choice but to zap it and thus lose the remainder
81819f0f 999 * of the free objects in this slab. May cause
672bba3a 1000 * another error because the object count is now wrong.
81819f0f 1001 */
a973e9dd 1002 set_freepointer(s, p, NULL);
81819f0f
CL
1003 return 0;
1004 }
1005 return 1;
1006}
1007
1008static int check_slab(struct kmem_cache *s, struct page *page)
1009{
39b26464
CL
1010 int maxobj;
1011
81819f0f 1012 if (!PageSlab(page)) {
24922684 1013 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
1014 return 0;
1015 }
39b26464 1016
9736d2a9 1017 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
1018 if (page->objects > maxobj) {
1019 slab_err(s, page, "objects %u > max %u",
f6edde9c 1020 page->objects, maxobj);
39b26464
CL
1021 return 0;
1022 }
1023 if (page->inuse > page->objects) {
24922684 1024 slab_err(s, page, "inuse %u > max %u",
f6edde9c 1025 page->inuse, page->objects);
81819f0f
CL
1026 return 0;
1027 }
1028 /* Slab_pad_check fixes things up after itself */
1029 slab_pad_check(s, page);
1030 return 1;
1031}
1032
1033/*
672bba3a
CL
1034 * Determine if a certain object on a page is on the freelist. Must hold the
1035 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
1036 */
1037static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
1038{
1039 int nr = 0;
881db7fb 1040 void *fp;
81819f0f 1041 void *object = NULL;
f6edde9c 1042 int max_objects;
81819f0f 1043
881db7fb 1044 fp = page->freelist;
39b26464 1045 while (fp && nr <= page->objects) {
81819f0f
CL
1046 if (fp == search)
1047 return 1;
1048 if (!check_valid_pointer(s, page, fp)) {
1049 if (object) {
1050 object_err(s, page, object,
1051 "Freechain corrupt");
a973e9dd 1052 set_freepointer(s, object, NULL);
81819f0f 1053 } else {
24922684 1054 slab_err(s, page, "Freepointer corrupt");
a973e9dd 1055 page->freelist = NULL;
39b26464 1056 page->inuse = page->objects;
24922684 1057 slab_fix(s, "Freelist cleared");
81819f0f
CL
1058 return 0;
1059 }
1060 break;
1061 }
1062 object = fp;
1063 fp = get_freepointer(s, object);
1064 nr++;
1065 }
1066
9736d2a9 1067 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
1068 if (max_objects > MAX_OBJS_PER_PAGE)
1069 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
1070
1071 if (page->objects != max_objects) {
756a025f
JP
1072 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1073 page->objects, max_objects);
224a88be 1074 page->objects = max_objects;
582d1212 1075 slab_fix(s, "Number of objects adjusted");
224a88be 1076 }
39b26464 1077 if (page->inuse != page->objects - nr) {
756a025f
JP
1078 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1079 page->inuse, page->objects - nr);
39b26464 1080 page->inuse = page->objects - nr;
582d1212 1081 slab_fix(s, "Object count adjusted");
81819f0f
CL
1082 }
1083 return search == NULL;
1084}
1085
0121c619
CL
1086static void trace(struct kmem_cache *s, struct page *page, void *object,
1087 int alloc)
3ec09742
CL
1088{
1089 if (s->flags & SLAB_TRACE) {
f9f58285 1090 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1091 s->name,
1092 alloc ? "alloc" : "free",
1093 object, page->inuse,
1094 page->freelist);
1095
1096 if (!alloc)
aa2efd5e 1097 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1098 s->object_size);
3ec09742
CL
1099
1100 dump_stack();
1101 }
1102}
1103
643b1138 1104/*
672bba3a 1105 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1106 */
5cc6eee8
CL
1107static void add_full(struct kmem_cache *s,
1108 struct kmem_cache_node *n, struct page *page)
643b1138 1109{
5cc6eee8
CL
1110 if (!(s->flags & SLAB_STORE_USER))
1111 return;
1112
255d0884 1113 lockdep_assert_held(&n->list_lock);
916ac052 1114 list_add(&page->slab_list, &n->full);
643b1138
CL
1115}
1116
c65c1877 1117static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1118{
643b1138
CL
1119 if (!(s->flags & SLAB_STORE_USER))
1120 return;
1121
255d0884 1122 lockdep_assert_held(&n->list_lock);
916ac052 1123 list_del(&page->slab_list);
643b1138
CL
1124}
1125
0f389ec6
CL
1126/* Tracking of the number of slabs for debugging purposes */
1127static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1128{
1129 struct kmem_cache_node *n = get_node(s, node);
1130
1131 return atomic_long_read(&n->nr_slabs);
1132}
1133
26c02cf0
AB
1134static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1135{
1136 return atomic_long_read(&n->nr_slabs);
1137}
1138
205ab99d 1139static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1140{
1141 struct kmem_cache_node *n = get_node(s, node);
1142
1143 /*
1144 * May be called early in order to allocate a slab for the
1145 * kmem_cache_node structure. Solve the chicken-egg
1146 * dilemma by deferring the increment of the count during
1147 * bootstrap (see early_kmem_cache_node_alloc).
1148 */
338b2642 1149 if (likely(n)) {
0f389ec6 1150 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1151 atomic_long_add(objects, &n->total_objects);
1152 }
0f389ec6 1153}
205ab99d 1154static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1155{
1156 struct kmem_cache_node *n = get_node(s, node);
1157
1158 atomic_long_dec(&n->nr_slabs);
205ab99d 1159 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1160}
1161
1162/* Object debug checks for alloc/free paths */
3ec09742
CL
1163static void setup_object_debug(struct kmem_cache *s, struct page *page,
1164 void *object)
1165{
8fc8d666 1166 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1167 return;
1168
f7cb1933 1169 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1170 init_tracking(s, object);
1171}
1172
a50b854e
MWO
1173static
1174void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
a7101224 1175{
8fc8d666 1176 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1177 return;
1178
1179 metadata_access_enable();
aa1ef4d7 1180 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
a7101224
AK
1181 metadata_access_disable();
1182}
1183
becfda68 1184static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1185 struct page *page, void *object)
81819f0f
CL
1186{
1187 if (!check_slab(s, page))
becfda68 1188 return 0;
81819f0f 1189
81819f0f
CL
1190 if (!check_valid_pointer(s, page, object)) {
1191 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1192 return 0;
81819f0f
CL
1193 }
1194
f7cb1933 1195 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1196 return 0;
1197
1198 return 1;
1199}
1200
1201static noinline int alloc_debug_processing(struct kmem_cache *s,
1202 struct page *page,
1203 void *object, unsigned long addr)
1204{
1205 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1206 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1207 goto bad;
1208 }
81819f0f 1209
3ec09742
CL
1210 /* Success perform special debug activities for allocs */
1211 if (s->flags & SLAB_STORE_USER)
1212 set_track(s, object, TRACK_ALLOC, addr);
1213 trace(s, page, object, 1);
f7cb1933 1214 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1215 return 1;
3ec09742 1216
81819f0f
CL
1217bad:
1218 if (PageSlab(page)) {
1219 /*
1220 * If this is a slab page then lets do the best we can
1221 * to avoid issues in the future. Marking all objects
672bba3a 1222 * as used avoids touching the remaining objects.
81819f0f 1223 */
24922684 1224 slab_fix(s, "Marking all objects used");
39b26464 1225 page->inuse = page->objects;
a973e9dd 1226 page->freelist = NULL;
81819f0f
CL
1227 }
1228 return 0;
1229}
1230
becfda68
LA
1231static inline int free_consistency_checks(struct kmem_cache *s,
1232 struct page *page, void *object, unsigned long addr)
81819f0f 1233{
81819f0f 1234 if (!check_valid_pointer(s, page, object)) {
70d71228 1235 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1236 return 0;
81819f0f
CL
1237 }
1238
1239 if (on_freelist(s, page, object)) {
24922684 1240 object_err(s, page, object, "Object already free");
becfda68 1241 return 0;
81819f0f
CL
1242 }
1243
f7cb1933 1244 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1245 return 0;
81819f0f 1246
1b4f59e3 1247 if (unlikely(s != page->slab_cache)) {
3adbefee 1248 if (!PageSlab(page)) {
756a025f
JP
1249 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1250 object);
1b4f59e3 1251 } else if (!page->slab_cache) {
f9f58285
FF
1252 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1253 object);
70d71228 1254 dump_stack();
06428780 1255 } else
24922684
CL
1256 object_err(s, page, object,
1257 "page slab pointer corrupt.");
becfda68
LA
1258 return 0;
1259 }
1260 return 1;
1261}
1262
1263/* Supports checking bulk free of a constructed freelist */
1264static noinline int free_debug_processing(
1265 struct kmem_cache *s, struct page *page,
1266 void *head, void *tail, int bulk_cnt,
1267 unsigned long addr)
1268{
1269 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1270 void *object = head;
1271 int cnt = 0;
3f649ab7 1272 unsigned long flags;
becfda68
LA
1273 int ret = 0;
1274
1275 spin_lock_irqsave(&n->list_lock, flags);
1276 slab_lock(page);
1277
1278 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1279 if (!check_slab(s, page))
1280 goto out;
1281 }
1282
1283next_object:
1284 cnt++;
1285
1286 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1287 if (!free_consistency_checks(s, page, object, addr))
1288 goto out;
81819f0f 1289 }
3ec09742 1290
3ec09742
CL
1291 if (s->flags & SLAB_STORE_USER)
1292 set_track(s, object, TRACK_FREE, addr);
1293 trace(s, page, object, 0);
81084651 1294 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1295 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1296
1297 /* Reached end of constructed freelist yet? */
1298 if (object != tail) {
1299 object = get_freepointer(s, object);
1300 goto next_object;
1301 }
804aa132
LA
1302 ret = 1;
1303
5c2e4bbb 1304out:
81084651
JDB
1305 if (cnt != bulk_cnt)
1306 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1307 bulk_cnt, cnt);
1308
881db7fb 1309 slab_unlock(page);
282acb43 1310 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1311 if (!ret)
1312 slab_fix(s, "Object at 0x%p not freed", object);
1313 return ret;
81819f0f
CL
1314}
1315
e17f1dfb
VB
1316/*
1317 * Parse a block of slub_debug options. Blocks are delimited by ';'
1318 *
1319 * @str: start of block
1320 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1321 * @slabs: return start of list of slabs, or NULL when there's no list
1322 * @init: assume this is initial parsing and not per-kmem-create parsing
1323 *
1324 * returns the start of next block if there's any, or NULL
1325 */
1326static char *
1327parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1328{
e17f1dfb 1329 bool higher_order_disable = false;
f0630fff 1330
e17f1dfb
VB
1331 /* Skip any completely empty blocks */
1332 while (*str && *str == ';')
1333 str++;
1334
1335 if (*str == ',') {
f0630fff
CL
1336 /*
1337 * No options but restriction on slabs. This means full
1338 * debugging for slabs matching a pattern.
1339 */
e17f1dfb 1340 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1341 goto check_slabs;
e17f1dfb
VB
1342 }
1343 *flags = 0;
f0630fff 1344
e17f1dfb
VB
1345 /* Determine which debug features should be switched on */
1346 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1347 switch (tolower(*str)) {
e17f1dfb
VB
1348 case '-':
1349 *flags = 0;
1350 break;
f0630fff 1351 case 'f':
e17f1dfb 1352 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1353 break;
1354 case 'z':
e17f1dfb 1355 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1356 break;
1357 case 'p':
e17f1dfb 1358 *flags |= SLAB_POISON;
f0630fff
CL
1359 break;
1360 case 'u':
e17f1dfb 1361 *flags |= SLAB_STORE_USER;
f0630fff
CL
1362 break;
1363 case 't':
e17f1dfb 1364 *flags |= SLAB_TRACE;
f0630fff 1365 break;
4c13dd3b 1366 case 'a':
e17f1dfb 1367 *flags |= SLAB_FAILSLAB;
4c13dd3b 1368 break;
08303a73
CA
1369 case 'o':
1370 /*
1371 * Avoid enabling debugging on caches if its minimum
1372 * order would increase as a result.
1373 */
e17f1dfb 1374 higher_order_disable = true;
08303a73 1375 break;
f0630fff 1376 default:
e17f1dfb
VB
1377 if (init)
1378 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
f0630fff 1379 }
41ecc55b 1380 }
f0630fff 1381check_slabs:
41ecc55b 1382 if (*str == ',')
e17f1dfb
VB
1383 *slabs = ++str;
1384 else
1385 *slabs = NULL;
1386
1387 /* Skip over the slab list */
1388 while (*str && *str != ';')
1389 str++;
1390
1391 /* Skip any completely empty blocks */
1392 while (*str && *str == ';')
1393 str++;
1394
1395 if (init && higher_order_disable)
1396 disable_higher_order_debug = 1;
1397
1398 if (*str)
1399 return str;
1400 else
1401 return NULL;
1402}
1403
1404static int __init setup_slub_debug(char *str)
1405{
1406 slab_flags_t flags;
a7f1d485 1407 slab_flags_t global_flags;
e17f1dfb
VB
1408 char *saved_str;
1409 char *slab_list;
1410 bool global_slub_debug_changed = false;
1411 bool slab_list_specified = false;
1412
a7f1d485 1413 global_flags = DEBUG_DEFAULT_FLAGS;
e17f1dfb
VB
1414 if (*str++ != '=' || !*str)
1415 /*
1416 * No options specified. Switch on full debugging.
1417 */
1418 goto out;
1419
1420 saved_str = str;
1421 while (str) {
1422 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1423
1424 if (!slab_list) {
a7f1d485 1425 global_flags = flags;
e17f1dfb
VB
1426 global_slub_debug_changed = true;
1427 } else {
1428 slab_list_specified = true;
1429 }
1430 }
1431
1432 /*
1433 * For backwards compatibility, a single list of flags with list of
a7f1d485
VB
1434 * slabs means debugging is only changed for those slabs, so the global
1435 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1436 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
e17f1dfb
VB
1437 * long as there is no option specifying flags without a slab list.
1438 */
1439 if (slab_list_specified) {
1440 if (!global_slub_debug_changed)
a7f1d485 1441 global_flags = slub_debug;
e17f1dfb
VB
1442 slub_debug_string = saved_str;
1443 }
f0630fff 1444out:
a7f1d485 1445 slub_debug = global_flags;
ca0cab65
VB
1446 if (slub_debug != 0 || slub_debug_string)
1447 static_branch_enable(&slub_debug_enabled);
02ac47d0
SB
1448 else
1449 static_branch_disable(&slub_debug_enabled);
6471384a
AP
1450 if ((static_branch_unlikely(&init_on_alloc) ||
1451 static_branch_unlikely(&init_on_free)) &&
1452 (slub_debug & SLAB_POISON))
1453 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1454 return 1;
1455}
1456
1457__setup("slub_debug", setup_slub_debug);
1458
c5fd3ca0
AT
1459/*
1460 * kmem_cache_flags - apply debugging options to the cache
1461 * @object_size: the size of an object without meta data
1462 * @flags: flags to set
1463 * @name: name of the cache
c5fd3ca0
AT
1464 *
1465 * Debug option(s) are applied to @flags. In addition to the debug
1466 * option(s), if a slab name (or multiple) is specified i.e.
1467 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1468 * then only the select slabs will receive the debug option(s).
1469 */
0293d1fd 1470slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1471 slab_flags_t flags, const char *name)
41ecc55b 1472{
c5fd3ca0
AT
1473 char *iter;
1474 size_t len;
e17f1dfb
VB
1475 char *next_block;
1476 slab_flags_t block_flags;
ca220593
JB
1477 slab_flags_t slub_debug_local = slub_debug;
1478
1479 /*
1480 * If the slab cache is for debugging (e.g. kmemleak) then
1481 * don't store user (stack trace) information by default,
1482 * but let the user enable it via the command line below.
1483 */
1484 if (flags & SLAB_NOLEAKTRACE)
1485 slub_debug_local &= ~SLAB_STORE_USER;
c5fd3ca0 1486
c5fd3ca0 1487 len = strlen(name);
e17f1dfb
VB
1488 next_block = slub_debug_string;
1489 /* Go through all blocks of debug options, see if any matches our slab's name */
1490 while (next_block) {
1491 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1492 if (!iter)
1493 continue;
1494 /* Found a block that has a slab list, search it */
1495 while (*iter) {
1496 char *end, *glob;
1497 size_t cmplen;
1498
1499 end = strchrnul(iter, ',');
1500 if (next_block && next_block < end)
1501 end = next_block - 1;
1502
1503 glob = strnchr(iter, end - iter, '*');
1504 if (glob)
1505 cmplen = glob - iter;
1506 else
1507 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1508
e17f1dfb
VB
1509 if (!strncmp(name, iter, cmplen)) {
1510 flags |= block_flags;
1511 return flags;
1512 }
c5fd3ca0 1513
e17f1dfb
VB
1514 if (!*end || *end == ';')
1515 break;
1516 iter = end + 1;
c5fd3ca0 1517 }
c5fd3ca0 1518 }
ba0268a8 1519
ca220593 1520 return flags | slub_debug_local;
41ecc55b 1521}
b4a64718 1522#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1523static inline void setup_object_debug(struct kmem_cache *s,
1524 struct page *page, void *object) {}
a50b854e
MWO
1525static inline
1526void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
41ecc55b 1527
3ec09742 1528static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1529 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1530
282acb43 1531static inline int free_debug_processing(
81084651
JDB
1532 struct kmem_cache *s, struct page *page,
1533 void *head, void *tail, int bulk_cnt,
282acb43 1534 unsigned long addr) { return 0; }
41ecc55b 1535
41ecc55b
CL
1536static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1537 { return 1; }
1538static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1539 void *object, u8 val) { return 1; }
5cc6eee8
CL
1540static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1541 struct page *page) {}
c65c1877
PZ
1542static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1543 struct page *page) {}
0293d1fd 1544slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1545 slab_flags_t flags, const char *name)
ba0268a8
CL
1546{
1547 return flags;
1548}
41ecc55b 1549#define slub_debug 0
0f389ec6 1550
fdaa45e9
IM
1551#define disable_higher_order_debug 0
1552
0f389ec6
CL
1553static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1554 { return 0; }
26c02cf0
AB
1555static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1556 { return 0; }
205ab99d
CL
1557static inline void inc_slabs_node(struct kmem_cache *s, int node,
1558 int objects) {}
1559static inline void dec_slabs_node(struct kmem_cache *s, int node,
1560 int objects) {}
7d550c56 1561
52f23478 1562static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 1563 void **freelist, void *nextfree)
52f23478
DZ
1564{
1565 return false;
1566}
02e72cc6
AR
1567#endif /* CONFIG_SLUB_DEBUG */
1568
1569/*
1570 * Hooks for other subsystems that check memory allocations. In a typical
1571 * production configuration these hooks all should produce no code at all.
1572 */
0116523c 1573static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1574{
53128245 1575 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1576 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1577 kmemleak_alloc(ptr, size, 1, flags);
53128245 1578 return ptr;
d56791b3
RB
1579}
1580
ee3ce779 1581static __always_inline void kfree_hook(void *x)
d56791b3
RB
1582{
1583 kmemleak_free(x);
027b37b5 1584 kasan_kfree_large(x);
d56791b3
RB
1585}
1586
d57a964e
AK
1587static __always_inline bool slab_free_hook(struct kmem_cache *s,
1588 void *x, bool init)
d56791b3
RB
1589{
1590 kmemleak_free_recursive(x, s->flags);
7d550c56 1591
84048039 1592 debug_check_no_locks_freed(x, s->object_size);
02e72cc6 1593
02e72cc6
AR
1594 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1595 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1596
cfbe1636
ME
1597 /* Use KCSAN to help debug racy use-after-free. */
1598 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1599 __kcsan_check_access(x, s->object_size,
1600 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1601
d57a964e
AK
1602 /*
1603 * As memory initialization might be integrated into KASAN,
1604 * kasan_slab_free and initialization memset's must be
1605 * kept together to avoid discrepancies in behavior.
1606 *
1607 * The initialization memset's clear the object and the metadata,
1608 * but don't touch the SLAB redzone.
1609 */
1610 if (init) {
1611 int rsize;
1612
1613 if (!kasan_has_integrated_init())
1614 memset(kasan_reset_tag(x), 0, s->object_size);
1615 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1616 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1617 s->size - s->inuse - rsize);
1618 }
1619 /* KASAN might put x into memory quarantine, delaying its reuse. */
1620 return kasan_slab_free(s, x, init);
02e72cc6 1621}
205ab99d 1622
c3895391
AK
1623static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1624 void **head, void **tail)
81084651 1625{
6471384a
AP
1626
1627 void *object;
1628 void *next = *head;
1629 void *old_tail = *tail ? *tail : *head;
6471384a 1630
b89fb5ef 1631 if (is_kfence_address(next)) {
d57a964e 1632 slab_free_hook(s, next, false);
b89fb5ef
AP
1633 return true;
1634 }
1635
aea4df4c
LA
1636 /* Head and tail of the reconstructed freelist */
1637 *head = NULL;
1638 *tail = NULL;
1b7e816f 1639
aea4df4c
LA
1640 do {
1641 object = next;
1642 next = get_freepointer(s, object);
1643
c3895391 1644 /* If object's reuse doesn't have to be delayed */
d57a964e 1645 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
c3895391
AK
1646 /* Move object to the new freelist */
1647 set_freepointer(s, object, *head);
1648 *head = object;
1649 if (!*tail)
1650 *tail = object;
1651 }
1652 } while (object != old_tail);
1653
1654 if (*head == *tail)
1655 *tail = NULL;
1656
1657 return *head != NULL;
81084651
JDB
1658}
1659
4d176711 1660static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1661 void *object)
1662{
1663 setup_object_debug(s, page, object);
4d176711 1664 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1665 if (unlikely(s->ctor)) {
1666 kasan_unpoison_object_data(s, object);
1667 s->ctor(object);
1668 kasan_poison_object_data(s, object);
1669 }
4d176711 1670 return object;
588f8ba9
TG
1671}
1672
81819f0f
CL
1673/*
1674 * Slab allocation and freeing
1675 */
5dfb4175
VD
1676static inline struct page *alloc_slab_page(struct kmem_cache *s,
1677 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1678{
5dfb4175 1679 struct page *page;
19af27af 1680 unsigned int order = oo_order(oo);
65c3376a 1681
2154a336 1682 if (node == NUMA_NO_NODE)
5dfb4175 1683 page = alloc_pages(flags, order);
65c3376a 1684 else
96db800f 1685 page = __alloc_pages_node(node, flags, order);
5dfb4175 1686
5dfb4175 1687 return page;
65c3376a
CL
1688}
1689
210e7a43
TG
1690#ifdef CONFIG_SLAB_FREELIST_RANDOM
1691/* Pre-initialize the random sequence cache */
1692static int init_cache_random_seq(struct kmem_cache *s)
1693{
19af27af 1694 unsigned int count = oo_objects(s->oo);
210e7a43 1695 int err;
210e7a43 1696
a810007a
SR
1697 /* Bailout if already initialised */
1698 if (s->random_seq)
1699 return 0;
1700
210e7a43
TG
1701 err = cache_random_seq_create(s, count, GFP_KERNEL);
1702 if (err) {
1703 pr_err("SLUB: Unable to initialize free list for %s\n",
1704 s->name);
1705 return err;
1706 }
1707
1708 /* Transform to an offset on the set of pages */
1709 if (s->random_seq) {
19af27af
AD
1710 unsigned int i;
1711
210e7a43
TG
1712 for (i = 0; i < count; i++)
1713 s->random_seq[i] *= s->size;
1714 }
1715 return 0;
1716}
1717
1718/* Initialize each random sequence freelist per cache */
1719static void __init init_freelist_randomization(void)
1720{
1721 struct kmem_cache *s;
1722
1723 mutex_lock(&slab_mutex);
1724
1725 list_for_each_entry(s, &slab_caches, list)
1726 init_cache_random_seq(s);
1727
1728 mutex_unlock(&slab_mutex);
1729}
1730
1731/* Get the next entry on the pre-computed freelist randomized */
1732static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1733 unsigned long *pos, void *start,
1734 unsigned long page_limit,
1735 unsigned long freelist_count)
1736{
1737 unsigned int idx;
1738
1739 /*
1740 * If the target page allocation failed, the number of objects on the
1741 * page might be smaller than the usual size defined by the cache.
1742 */
1743 do {
1744 idx = s->random_seq[*pos];
1745 *pos += 1;
1746 if (*pos >= freelist_count)
1747 *pos = 0;
1748 } while (unlikely(idx >= page_limit));
1749
1750 return (char *)start + idx;
1751}
1752
1753/* Shuffle the single linked freelist based on a random pre-computed sequence */
1754static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1755{
1756 void *start;
1757 void *cur;
1758 void *next;
1759 unsigned long idx, pos, page_limit, freelist_count;
1760
1761 if (page->objects < 2 || !s->random_seq)
1762 return false;
1763
1764 freelist_count = oo_objects(s->oo);
1765 pos = get_random_int() % freelist_count;
1766
1767 page_limit = page->objects * s->size;
1768 start = fixup_red_left(s, page_address(page));
1769
1770 /* First entry is used as the base of the freelist */
1771 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1772 freelist_count);
4d176711 1773 cur = setup_object(s, page, cur);
210e7a43
TG
1774 page->freelist = cur;
1775
1776 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1777 next = next_freelist_entry(s, page, &pos, start, page_limit,
1778 freelist_count);
4d176711 1779 next = setup_object(s, page, next);
210e7a43
TG
1780 set_freepointer(s, cur, next);
1781 cur = next;
1782 }
210e7a43
TG
1783 set_freepointer(s, cur, NULL);
1784
1785 return true;
1786}
1787#else
1788static inline int init_cache_random_seq(struct kmem_cache *s)
1789{
1790 return 0;
1791}
1792static inline void init_freelist_randomization(void) { }
1793static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1794{
1795 return false;
1796}
1797#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1798
81819f0f
CL
1799static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1800{
06428780 1801 struct page *page;
834f3d11 1802 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1803 gfp_t alloc_gfp;
4d176711 1804 void *start, *p, *next;
a50b854e 1805 int idx;
210e7a43 1806 bool shuffle;
81819f0f 1807
7e0528da
CL
1808 flags &= gfp_allowed_mask;
1809
b7a49f0d 1810 flags |= s->allocflags;
e12ba74d 1811
ba52270d
PE
1812 /*
1813 * Let the initial higher-order allocation fail under memory pressure
1814 * so we fall-back to the minimum order allocation.
1815 */
1816 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1817 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1818 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1819
5dfb4175 1820 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1821 if (unlikely(!page)) {
1822 oo = s->min;
80c3a998 1823 alloc_gfp = flags;
65c3376a
CL
1824 /*
1825 * Allocation may have failed due to fragmentation.
1826 * Try a lower order alloc if possible
1827 */
5dfb4175 1828 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1829 if (unlikely(!page))
1830 goto out;
1831 stat(s, ORDER_FALLBACK);
65c3376a 1832 }
5a896d9e 1833
834f3d11 1834 page->objects = oo_objects(oo);
81819f0f 1835
2e9bd483 1836 account_slab_page(page, oo_order(oo), s, flags);
1f3147b4 1837
1b4f59e3 1838 page->slab_cache = s;
c03f94cc 1839 __SetPageSlab(page);
2f064f34 1840 if (page_is_pfmemalloc(page))
072bb0aa 1841 SetPageSlabPfmemalloc(page);
81819f0f 1842
a7101224 1843 kasan_poison_slab(page);
81819f0f 1844
a7101224 1845 start = page_address(page);
81819f0f 1846
a50b854e 1847 setup_page_debug(s, page, start);
0316bec2 1848
210e7a43
TG
1849 shuffle = shuffle_freelist(s, page);
1850
1851 if (!shuffle) {
4d176711
AK
1852 start = fixup_red_left(s, start);
1853 start = setup_object(s, page, start);
1854 page->freelist = start;
18e50661
AK
1855 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1856 next = p + s->size;
1857 next = setup_object(s, page, next);
1858 set_freepointer(s, p, next);
1859 p = next;
1860 }
1861 set_freepointer(s, p, NULL);
81819f0f 1862 }
81819f0f 1863
e6e82ea1 1864 page->inuse = page->objects;
8cb0a506 1865 page->frozen = 1;
588f8ba9 1866
81819f0f 1867out:
588f8ba9
TG
1868 if (!page)
1869 return NULL;
1870
588f8ba9
TG
1871 inc_slabs_node(s, page_to_nid(page), page->objects);
1872
81819f0f
CL
1873 return page;
1874}
1875
588f8ba9
TG
1876static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1877{
44405099
LL
1878 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1879 flags = kmalloc_fix_flags(flags);
588f8ba9 1880
53a0de06
VB
1881 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
1882
588f8ba9
TG
1883 return allocate_slab(s,
1884 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1885}
1886
81819f0f
CL
1887static void __free_slab(struct kmem_cache *s, struct page *page)
1888{
834f3d11
CL
1889 int order = compound_order(page);
1890 int pages = 1 << order;
81819f0f 1891
8fc8d666 1892 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
81819f0f
CL
1893 void *p;
1894
1895 slab_pad_check(s, page);
224a88be
CL
1896 for_each_object(p, s, page_address(page),
1897 page->objects)
f7cb1933 1898 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1899 }
1900
072bb0aa 1901 __ClearPageSlabPfmemalloc(page);
49bd5221 1902 __ClearPageSlab(page);
0c06dd75
VB
1903 /* In union with page->mapping where page allocator expects NULL */
1904 page->slab_cache = NULL;
1eb5ac64
NP
1905 if (current->reclaim_state)
1906 current->reclaim_state->reclaimed_slab += pages;
74d555be 1907 unaccount_slab_page(page, order, s);
27ee57c9 1908 __free_pages(page, order);
81819f0f
CL
1909}
1910
1911static void rcu_free_slab(struct rcu_head *h)
1912{
bf68c214 1913 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1914
1b4f59e3 1915 __free_slab(page->slab_cache, page);
81819f0f
CL
1916}
1917
1918static void free_slab(struct kmem_cache *s, struct page *page)
1919{
5f0d5a3a 1920 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1921 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1922 } else
1923 __free_slab(s, page);
1924}
1925
1926static void discard_slab(struct kmem_cache *s, struct page *page)
1927{
205ab99d 1928 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1929 free_slab(s, page);
1930}
1931
1932/*
5cc6eee8 1933 * Management of partially allocated slabs.
81819f0f 1934 */
1e4dd946
SR
1935static inline void
1936__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1937{
e95eed57 1938 n->nr_partial++;
136333d1 1939 if (tail == DEACTIVATE_TO_TAIL)
916ac052 1940 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 1941 else
916ac052 1942 list_add(&page->slab_list, &n->partial);
81819f0f
CL
1943}
1944
1e4dd946
SR
1945static inline void add_partial(struct kmem_cache_node *n,
1946 struct page *page, int tail)
62e346a8 1947{
c65c1877 1948 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1949 __add_partial(n, page, tail);
1950}
c65c1877 1951
1e4dd946
SR
1952static inline void remove_partial(struct kmem_cache_node *n,
1953 struct page *page)
1954{
1955 lockdep_assert_held(&n->list_lock);
916ac052 1956 list_del(&page->slab_list);
52b4b950 1957 n->nr_partial--;
1e4dd946
SR
1958}
1959
81819f0f 1960/*
7ced3719
CL
1961 * Remove slab from the partial list, freeze it and
1962 * return the pointer to the freelist.
81819f0f 1963 *
497b66f2 1964 * Returns a list of objects or NULL if it fails.
81819f0f 1965 */
497b66f2 1966static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1967 struct kmem_cache_node *n, struct page *page,
633b0764 1968 int mode, int *objects)
81819f0f 1969{
2cfb7455
CL
1970 void *freelist;
1971 unsigned long counters;
1972 struct page new;
1973
c65c1877
PZ
1974 lockdep_assert_held(&n->list_lock);
1975
2cfb7455
CL
1976 /*
1977 * Zap the freelist and set the frozen bit.
1978 * The old freelist is the list of objects for the
1979 * per cpu allocation list.
1980 */
7ced3719
CL
1981 freelist = page->freelist;
1982 counters = page->counters;
1983 new.counters = counters;
633b0764 1984 *objects = new.objects - new.inuse;
23910c50 1985 if (mode) {
7ced3719 1986 new.inuse = page->objects;
23910c50
PE
1987 new.freelist = NULL;
1988 } else {
1989 new.freelist = freelist;
1990 }
2cfb7455 1991
a0132ac0 1992 VM_BUG_ON(new.frozen);
7ced3719 1993 new.frozen = 1;
2cfb7455 1994
7ced3719 1995 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1996 freelist, counters,
02d7633f 1997 new.freelist, new.counters,
7ced3719 1998 "acquire_slab"))
7ced3719 1999 return NULL;
2cfb7455
CL
2000
2001 remove_partial(n, page);
7ced3719 2002 WARN_ON(!freelist);
49e22585 2003 return freelist;
81819f0f
CL
2004}
2005
633b0764 2006static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 2007static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 2008
81819f0f 2009/*
672bba3a 2010 * Try to allocate a partial slab from a specific node.
81819f0f 2011 */
8ba00bb6 2012static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
4b1f449d 2013 struct page **ret_page, gfp_t gfpflags)
81819f0f 2014{
49e22585
CL
2015 struct page *page, *page2;
2016 void *object = NULL;
e5d9998f 2017 unsigned int available = 0;
4b1f449d 2018 unsigned long flags;
633b0764 2019 int objects;
81819f0f
CL
2020
2021 /*
2022 * Racy check. If we mistakenly see no partial slabs then we
2023 * just allocate an empty slab. If we mistakenly try to get a
70b6d25e 2024 * partial slab and there is none available then get_partial()
672bba3a 2025 * will return NULL.
81819f0f
CL
2026 */
2027 if (!n || !n->nr_partial)
2028 return NULL;
2029
4b1f449d 2030 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2031 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 2032 void *t;
49e22585 2033
4b1f449d 2034 if (!pfmemalloc_match(page, gfpflags))
8ba00bb6
JK
2035 continue;
2036
633b0764 2037 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585 2038 if (!t)
9b1ea29b 2039 break;
49e22585 2040
633b0764 2041 available += objects;
12d79634 2042 if (!object) {
75c8ff28 2043 *ret_page = page;
49e22585 2044 stat(s, ALLOC_FROM_PARTIAL);
49e22585 2045 object = t;
49e22585 2046 } else {
633b0764 2047 put_cpu_partial(s, page, 0);
8028dcea 2048 stat(s, CPU_PARTIAL_NODE);
49e22585 2049 }
345c905d 2050 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 2051 || available > slub_cpu_partial(s) / 2)
49e22585
CL
2052 break;
2053
497b66f2 2054 }
4b1f449d 2055 spin_unlock_irqrestore(&n->list_lock, flags);
497b66f2 2056 return object;
81819f0f
CL
2057}
2058
2059/*
672bba3a 2060 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 2061 */
de3ec035 2062static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
75c8ff28 2063 struct page **ret_page)
81819f0f
CL
2064{
2065#ifdef CONFIG_NUMA
2066 struct zonelist *zonelist;
dd1a239f 2067 struct zoneref *z;
54a6eb5c 2068 struct zone *zone;
97a225e6 2069 enum zone_type highest_zoneidx = gfp_zone(flags);
497b66f2 2070 void *object;
cc9a6c87 2071 unsigned int cpuset_mems_cookie;
81819f0f
CL
2072
2073 /*
672bba3a
CL
2074 * The defrag ratio allows a configuration of the tradeoffs between
2075 * inter node defragmentation and node local allocations. A lower
2076 * defrag_ratio increases the tendency to do local allocations
2077 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2078 *
672bba3a
CL
2079 * If the defrag_ratio is set to 0 then kmalloc() always
2080 * returns node local objects. If the ratio is higher then kmalloc()
2081 * may return off node objects because partial slabs are obtained
2082 * from other nodes and filled up.
81819f0f 2083 *
43efd3ea
LP
2084 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2085 * (which makes defrag_ratio = 1000) then every (well almost)
2086 * allocation will first attempt to defrag slab caches on other nodes.
2087 * This means scanning over all nodes to look for partial slabs which
2088 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2089 * with available objects.
81819f0f 2090 */
9824601e
CL
2091 if (!s->remote_node_defrag_ratio ||
2092 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2093 return NULL;
2094
cc9a6c87 2095 do {
d26914d1 2096 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 2097 zonelist = node_zonelist(mempolicy_slab_node(), flags);
97a225e6 2098 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2099 struct kmem_cache_node *n;
2100
2101 n = get_node(s, zone_to_nid(zone));
2102
dee2f8aa 2103 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 2104 n->nr_partial > s->min_partial) {
75c8ff28 2105 object = get_partial_node(s, n, ret_page, flags);
cc9a6c87
MG
2106 if (object) {
2107 /*
d26914d1
MG
2108 * Don't check read_mems_allowed_retry()
2109 * here - if mems_allowed was updated in
2110 * parallel, that was a harmless race
2111 * between allocation and the cpuset
2112 * update
cc9a6c87 2113 */
cc9a6c87
MG
2114 return object;
2115 }
c0ff7453 2116 }
81819f0f 2117 }
d26914d1 2118 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2119#endif /* CONFIG_NUMA */
81819f0f
CL
2120 return NULL;
2121}
2122
2123/*
2124 * Get a partial page, lock it and return it.
2125 */
497b66f2 2126static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
75c8ff28 2127 struct page **ret_page)
81819f0f 2128{
497b66f2 2129 void *object;
a561ce00
JK
2130 int searchnode = node;
2131
2132 if (node == NUMA_NO_NODE)
2133 searchnode = numa_mem_id();
81819f0f 2134
75c8ff28 2135 object = get_partial_node(s, get_node(s, searchnode), ret_page, flags);
497b66f2
CL
2136 if (object || node != NUMA_NO_NODE)
2137 return object;
81819f0f 2138
75c8ff28 2139 return get_any_partial(s, flags, ret_page);
81819f0f
CL
2140}
2141
923717cb 2142#ifdef CONFIG_PREEMPTION
8a5ec0ba 2143/*
0d645ed1 2144 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2145 * during cmpxchg. The transactions start with the cpu number and are then
2146 * incremented by CONFIG_NR_CPUS.
2147 */
2148#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2149#else
2150/*
2151 * No preemption supported therefore also no need to check for
2152 * different cpus.
2153 */
2154#define TID_STEP 1
2155#endif
2156
2157static inline unsigned long next_tid(unsigned long tid)
2158{
2159 return tid + TID_STEP;
2160}
2161
9d5f0be0 2162#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2163static inline unsigned int tid_to_cpu(unsigned long tid)
2164{
2165 return tid % TID_STEP;
2166}
2167
2168static inline unsigned long tid_to_event(unsigned long tid)
2169{
2170 return tid / TID_STEP;
2171}
9d5f0be0 2172#endif
8a5ec0ba
CL
2173
2174static inline unsigned int init_tid(int cpu)
2175{
2176 return cpu;
2177}
2178
2179static inline void note_cmpxchg_failure(const char *n,
2180 const struct kmem_cache *s, unsigned long tid)
2181{
2182#ifdef SLUB_DEBUG_CMPXCHG
2183 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2184
f9f58285 2185 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2186
923717cb 2187#ifdef CONFIG_PREEMPTION
8a5ec0ba 2188 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2189 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2190 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2191 else
2192#endif
2193 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2194 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2195 tid_to_event(tid), tid_to_event(actual_tid));
2196 else
f9f58285 2197 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2198 actual_tid, tid, next_tid(tid));
2199#endif
4fdccdfb 2200 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2201}
2202
788e1aad 2203static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2204{
8a5ec0ba
CL
2205 int cpu;
2206
2207 for_each_possible_cpu(cpu)
2208 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2209}
2cfb7455 2210
81819f0f 2211/*
a019d201
VB
2212 * Finishes removing the cpu slab. Merges cpu's freelist with page's freelist,
2213 * unfreezes the slabs and puts it on the proper list.
2214 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2215 * by the caller.
81819f0f 2216 */
d0e0ac97 2217static void deactivate_slab(struct kmem_cache *s, struct page *page,
a019d201 2218 void *freelist)
81819f0f 2219{
2cfb7455 2220 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455 2221 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
d930ff03 2222 int lock = 0, free_delta = 0;
2cfb7455 2223 enum slab_modes l = M_NONE, m = M_NONE;
d930ff03 2224 void *nextfree, *freelist_iter, *freelist_tail;
136333d1 2225 int tail = DEACTIVATE_TO_HEAD;
3406e91b 2226 unsigned long flags = 0;
2cfb7455
CL
2227 struct page new;
2228 struct page old;
2229
2230 if (page->freelist) {
84e554e6 2231 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2232 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2233 }
2234
894b8788 2235 /*
d930ff03
VB
2236 * Stage one: Count the objects on cpu's freelist as free_delta and
2237 * remember the last object in freelist_tail for later splicing.
2cfb7455 2238 */
d930ff03
VB
2239 freelist_tail = NULL;
2240 freelist_iter = freelist;
2241 while (freelist_iter) {
2242 nextfree = get_freepointer(s, freelist_iter);
2cfb7455 2243
52f23478
DZ
2244 /*
2245 * If 'nextfree' is invalid, it is possible that the object at
d930ff03
VB
2246 * 'freelist_iter' is already corrupted. So isolate all objects
2247 * starting at 'freelist_iter' by skipping them.
52f23478 2248 */
d930ff03 2249 if (freelist_corrupted(s, page, &freelist_iter, nextfree))
52f23478
DZ
2250 break;
2251
d930ff03
VB
2252 freelist_tail = freelist_iter;
2253 free_delta++;
2cfb7455 2254
d930ff03 2255 freelist_iter = nextfree;
2cfb7455
CL
2256 }
2257
894b8788 2258 /*
d930ff03
VB
2259 * Stage two: Unfreeze the page while splicing the per-cpu
2260 * freelist to the head of page's freelist.
2261 *
2262 * Ensure that the page is unfrozen while the list presence
2263 * reflects the actual number of objects during unfreeze.
2cfb7455
CL
2264 *
2265 * We setup the list membership and then perform a cmpxchg
2266 * with the count. If there is a mismatch then the page
2267 * is not unfrozen but the page is on the wrong list.
2268 *
2269 * Then we restart the process which may have to remove
2270 * the page from the list that we just put it on again
2271 * because the number of objects in the slab may have
2272 * changed.
894b8788 2273 */
2cfb7455 2274redo:
894b8788 2275
d930ff03
VB
2276 old.freelist = READ_ONCE(page->freelist);
2277 old.counters = READ_ONCE(page->counters);
a0132ac0 2278 VM_BUG_ON(!old.frozen);
7c2e132c 2279
2cfb7455
CL
2280 /* Determine target state of the slab */
2281 new.counters = old.counters;
d930ff03
VB
2282 if (freelist_tail) {
2283 new.inuse -= free_delta;
2284 set_freepointer(s, freelist_tail, old.freelist);
2cfb7455
CL
2285 new.freelist = freelist;
2286 } else
2287 new.freelist = old.freelist;
2288
2289 new.frozen = 0;
2290
8a5b20ae 2291 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2292 m = M_FREE;
2293 else if (new.freelist) {
2294 m = M_PARTIAL;
2295 if (!lock) {
2296 lock = 1;
2297 /*
8bb4e7a2 2298 * Taking the spinlock removes the possibility
2cfb7455
CL
2299 * that acquire_slab() will see a slab page that
2300 * is frozen
2301 */
3406e91b 2302 spin_lock_irqsave(&n->list_lock, flags);
2cfb7455
CL
2303 }
2304 } else {
2305 m = M_FULL;
965c4848 2306 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2cfb7455
CL
2307 lock = 1;
2308 /*
2309 * This also ensures that the scanning of full
2310 * slabs from diagnostic functions will not see
2311 * any frozen slabs.
2312 */
3406e91b 2313 spin_lock_irqsave(&n->list_lock, flags);
2cfb7455
CL
2314 }
2315 }
2316
2317 if (l != m) {
2cfb7455 2318 if (l == M_PARTIAL)
2cfb7455 2319 remove_partial(n, page);
2cfb7455 2320 else if (l == M_FULL)
c65c1877 2321 remove_full(s, n, page);
2cfb7455 2322
88349a28 2323 if (m == M_PARTIAL)
2cfb7455 2324 add_partial(n, page, tail);
88349a28 2325 else if (m == M_FULL)
2cfb7455 2326 add_full(s, n, page);
2cfb7455
CL
2327 }
2328
2329 l = m;
3406e91b 2330 if (!cmpxchg_double_slab(s, page,
2cfb7455
CL
2331 old.freelist, old.counters,
2332 new.freelist, new.counters,
2333 "unfreezing slab"))
2334 goto redo;
2335
2cfb7455 2336 if (lock)
3406e91b 2337 spin_unlock_irqrestore(&n->list_lock, flags);
2cfb7455 2338
88349a28
WY
2339 if (m == M_PARTIAL)
2340 stat(s, tail);
2341 else if (m == M_FULL)
2342 stat(s, DEACTIVATE_FULL);
2343 else if (m == M_FREE) {
2cfb7455
CL
2344 stat(s, DEACTIVATE_EMPTY);
2345 discard_slab(s, page);
2346 stat(s, FREE_SLAB);
894b8788 2347 }
81819f0f
CL
2348}
2349
345c905d 2350#ifdef CONFIG_SLUB_CPU_PARTIAL
fc1455f4
VB
2351static void __unfreeze_partials(struct kmem_cache *s, struct page *partial_page)
2352{
43d77867 2353 struct kmem_cache_node *n = NULL, *n2 = NULL;
fc1455f4 2354 struct page *page, *discard_page = NULL;
7cf9f3ba 2355 unsigned long flags = 0;
49e22585 2356
c2f973ba 2357 while (partial_page) {
49e22585
CL
2358 struct page new;
2359 struct page old;
2360
c2f973ba
VB
2361 page = partial_page;
2362 partial_page = page->next;
43d77867
JK
2363
2364 n2 = get_node(s, page_to_nid(page));
2365 if (n != n2) {
2366 if (n)
7cf9f3ba 2367 spin_unlock_irqrestore(&n->list_lock, flags);
43d77867
JK
2368
2369 n = n2;
7cf9f3ba 2370 spin_lock_irqsave(&n->list_lock, flags);
43d77867 2371 }
49e22585
CL
2372
2373 do {
2374
2375 old.freelist = page->freelist;
2376 old.counters = page->counters;
a0132ac0 2377 VM_BUG_ON(!old.frozen);
49e22585
CL
2378
2379 new.counters = old.counters;
2380 new.freelist = old.freelist;
2381
2382 new.frozen = 0;
2383
d24ac77f 2384 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2385 old.freelist, old.counters,
2386 new.freelist, new.counters,
2387 "unfreezing slab"));
2388
8a5b20ae 2389 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2390 page->next = discard_page;
2391 discard_page = page;
43d77867
JK
2392 } else {
2393 add_partial(n, page, DEACTIVATE_TO_TAIL);
2394 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2395 }
2396 }
2397
2398 if (n)
7cf9f3ba 2399 spin_unlock_irqrestore(&n->list_lock, flags);
8de06a6f 2400
9ada1934
SL
2401 while (discard_page) {
2402 page = discard_page;
2403 discard_page = discard_page->next;
2404
2405 stat(s, DEACTIVATE_EMPTY);
2406 discard_slab(s, page);
2407 stat(s, FREE_SLAB);
2408 }
fc1455f4 2409}
f3ab8b6b 2410
fc1455f4
VB
2411/*
2412 * Unfreeze all the cpu partial slabs.
2413 */
2414static void unfreeze_partials(struct kmem_cache *s)
2415{
2416 struct page *partial_page;
2417 unsigned long flags;
2418
2419 local_irq_save(flags);
2420 partial_page = this_cpu_read(s->cpu_slab->partial);
2421 this_cpu_write(s->cpu_slab->partial, NULL);
2422 local_irq_restore(flags);
2423
2424 if (partial_page)
2425 __unfreeze_partials(s, partial_page);
2426}
2427
2428static void unfreeze_partials_cpu(struct kmem_cache *s,
2429 struct kmem_cache_cpu *c)
2430{
2431 struct page *partial_page;
2432
2433 partial_page = slub_percpu_partial(c);
2434 c->partial = NULL;
2435
2436 if (partial_page)
2437 __unfreeze_partials(s, partial_page);
49e22585
CL
2438}
2439
fc1455f4
VB
2440#else /* CONFIG_SLUB_CPU_PARTIAL */
2441
2442static inline void unfreeze_partials(struct kmem_cache *s) { }
2443static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2444 struct kmem_cache_cpu *c) { }
2445
2446#endif /* CONFIG_SLUB_CPU_PARTIAL */
2447
49e22585 2448/*
9234bae9
WY
2449 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2450 * partial page slot if available.
49e22585
CL
2451 *
2452 * If we did not find a slot then simply move all the partials to the
2453 * per node partial list.
2454 */
633b0764 2455static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2456{
345c905d 2457#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2458 struct page *oldpage;
2459 int pages;
2460 int pobjects;
2461
d6e0b7fa 2462 preempt_disable();
49e22585
CL
2463 do {
2464 pages = 0;
2465 pobjects = 0;
2466 oldpage = this_cpu_read(s->cpu_slab->partial);
2467
2468 if (oldpage) {
2469 pobjects = oldpage->pobjects;
2470 pages = oldpage->pages;
bbd4e305 2471 if (drain && pobjects > slub_cpu_partial(s)) {
49e22585
CL
2472 /*
2473 * partial array is full. Move the existing
2474 * set to the per node partial list.
2475 */
fc1455f4 2476 unfreeze_partials(s);
e24fc410 2477 oldpage = NULL;
49e22585
CL
2478 pobjects = 0;
2479 pages = 0;
8028dcea 2480 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2481 }
2482 }
2483
2484 pages++;
2485 pobjects += page->objects - page->inuse;
2486
2487 page->pages = pages;
2488 page->pobjects = pobjects;
2489 page->next = oldpage;
2490
d0e0ac97
CG
2491 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2492 != oldpage);
d6e0b7fa 2493 preempt_enable();
6dfd1b65 2494#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2495}
2496
dfb4f096 2497static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2498{
a019d201
VB
2499 void *freelist = c->freelist;
2500 struct page *page = c->page;
c17dda40 2501
a019d201
VB
2502 c->page = NULL;
2503 c->freelist = NULL;
c17dda40 2504 c->tid = next_tid(c->tid);
a019d201
VB
2505
2506 deactivate_slab(s, page, freelist);
2507
2508 stat(s, CPUSLAB_FLUSH);
81819f0f
CL
2509}
2510
0c710013 2511static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2512{
9dfc6e68 2513 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
08beb547
VB
2514 void *freelist = c->freelist;
2515 struct page *page = c->page;
81819f0f 2516
08beb547
VB
2517 c->page = NULL;
2518 c->freelist = NULL;
2519 c->tid = next_tid(c->tid);
2520
2521 if (page) {
2522 deactivate_slab(s, page, freelist);
2523 stat(s, CPUSLAB_FLUSH);
2524 }
49e22585 2525
fc1455f4 2526 unfreeze_partials_cpu(s, c);
81819f0f
CL
2527}
2528
fc1455f4
VB
2529/*
2530 * Flush cpu slab.
2531 *
2532 * Called from IPI handler with interrupts disabled.
2533 */
81819f0f
CL
2534static void flush_cpu_slab(void *d)
2535{
2536 struct kmem_cache *s = d;
fc1455f4
VB
2537 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
2538
2539 if (c->page)
2540 flush_slab(s, c);
81819f0f 2541
fc1455f4 2542 unfreeze_partials(s);
81819f0f
CL
2543}
2544
a8364d55
GBY
2545static bool has_cpu_slab(int cpu, void *info)
2546{
2547 struct kmem_cache *s = info;
2548 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2549
a93cf07b 2550 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2551}
2552
81819f0f
CL
2553static void flush_all(struct kmem_cache *s)
2554{
cb923159 2555 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
81819f0f
CL
2556}
2557
a96a87bf
SAS
2558/*
2559 * Use the cpu notifier to insure that the cpu slabs are flushed when
2560 * necessary.
2561 */
2562static int slub_cpu_dead(unsigned int cpu)
2563{
2564 struct kmem_cache *s;
a96a87bf
SAS
2565
2566 mutex_lock(&slab_mutex);
0e7ac738 2567 list_for_each_entry(s, &slab_caches, list)
a96a87bf 2568 __flush_cpu_slab(s, cpu);
a96a87bf
SAS
2569 mutex_unlock(&slab_mutex);
2570 return 0;
2571}
2572
dfb4f096
CL
2573/*
2574 * Check if the objects in a per cpu structure fit numa
2575 * locality expectations.
2576 */
57d437d2 2577static inline int node_match(struct page *page, int node)
dfb4f096
CL
2578{
2579#ifdef CONFIG_NUMA
6159d0f5 2580 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2581 return 0;
2582#endif
2583 return 1;
2584}
2585
9a02d699 2586#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2587static int count_free(struct page *page)
2588{
2589 return page->objects - page->inuse;
2590}
2591
9a02d699
DR
2592static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2593{
2594 return atomic_long_read(&n->total_objects);
2595}
2596#endif /* CONFIG_SLUB_DEBUG */
2597
2598#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2599static unsigned long count_partial(struct kmem_cache_node *n,
2600 int (*get_count)(struct page *))
2601{
2602 unsigned long flags;
2603 unsigned long x = 0;
2604 struct page *page;
2605
2606 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2607 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2608 x += get_count(page);
2609 spin_unlock_irqrestore(&n->list_lock, flags);
2610 return x;
2611}
9a02d699 2612#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2613
781b2ba6
PE
2614static noinline void
2615slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2616{
9a02d699
DR
2617#ifdef CONFIG_SLUB_DEBUG
2618 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2619 DEFAULT_RATELIMIT_BURST);
781b2ba6 2620 int node;
fa45dc25 2621 struct kmem_cache_node *n;
781b2ba6 2622
9a02d699
DR
2623 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2624 return;
2625
5b3810e5
VB
2626 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2627 nid, gfpflags, &gfpflags);
19af27af 2628 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2629 s->name, s->object_size, s->size, oo_order(s->oo),
2630 oo_order(s->min));
781b2ba6 2631
3b0efdfa 2632 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2633 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2634 s->name);
fa5ec8a1 2635
fa45dc25 2636 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2637 unsigned long nr_slabs;
2638 unsigned long nr_objs;
2639 unsigned long nr_free;
2640
26c02cf0
AB
2641 nr_free = count_partial(n, count_free);
2642 nr_slabs = node_nr_slabs(n);
2643 nr_objs = node_nr_objs(n);
781b2ba6 2644
f9f58285 2645 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2646 node, nr_slabs, nr_objs, nr_free);
2647 }
9a02d699 2648#endif
781b2ba6
PE
2649}
2650
072bb0aa
MG
2651static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2652{
2653 if (unlikely(PageSlabPfmemalloc(page)))
2654 return gfp_pfmemalloc_allowed(gfpflags);
2655
2656 return true;
2657}
2658
0b303fb4
VB
2659/*
2660 * A variant of pfmemalloc_match() that tests page flags without asserting
2661 * PageSlab. Intended for opportunistic checks before taking a lock and
2662 * rechecking that nobody else freed the page under us.
2663 */
2664static inline bool pfmemalloc_match_unsafe(struct page *page, gfp_t gfpflags)
2665{
2666 if (unlikely(__PageSlabPfmemalloc(page)))
2667 return gfp_pfmemalloc_allowed(gfpflags);
2668
2669 return true;
2670}
2671
213eeb9f 2672/*
d0e0ac97
CG
2673 * Check the page->freelist of a page and either transfer the freelist to the
2674 * per cpu freelist or deactivate the page.
213eeb9f
CL
2675 *
2676 * The page is still frozen if the return value is not NULL.
2677 *
2678 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2679 *
2680 * This function must be called with interrupt disabled.
213eeb9f
CL
2681 */
2682static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2683{
2684 struct page new;
2685 unsigned long counters;
2686 void *freelist;
2687
2688 do {
2689 freelist = page->freelist;
2690 counters = page->counters;
6faa6833 2691
213eeb9f 2692 new.counters = counters;
a0132ac0 2693 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2694
2695 new.inuse = page->objects;
2696 new.frozen = freelist != NULL;
2697
d24ac77f 2698 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2699 freelist, counters,
2700 NULL, new.counters,
2701 "get_freelist"));
2702
2703 return freelist;
2704}
2705
81819f0f 2706/*
894b8788
CL
2707 * Slow path. The lockless freelist is empty or we need to perform
2708 * debugging duties.
2709 *
894b8788
CL
2710 * Processing is still very fast if new objects have been freed to the
2711 * regular freelist. In that case we simply take over the regular freelist
2712 * as the lockless freelist and zap the regular freelist.
81819f0f 2713 *
894b8788
CL
2714 * If that is not working then we fall back to the partial lists. We take the
2715 * first element of the freelist as the object to allocate now and move the
2716 * rest of the freelist to the lockless freelist.
81819f0f 2717 *
894b8788 2718 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2719 * we need to allocate a new slab. This is the slowest path since it involves
2720 * a call to the page allocator and the setup of a new slab.
a380a3c7 2721 *
e500059b 2722 * Version of __slab_alloc to use when we know that preemption is
a380a3c7 2723 * already disabled (which is the case for bulk allocation).
81819f0f 2724 */
a380a3c7 2725static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2726 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2727{
6faa6833 2728 void *freelist;
f6e7def7 2729 struct page *page;
e500059b 2730 unsigned long flags;
81819f0f 2731
9f986d99
AW
2732 stat(s, ALLOC_SLOWPATH);
2733
0b303fb4
VB
2734reread_page:
2735
2736 page = READ_ONCE(c->page);
0715e6c5
VB
2737 if (!page) {
2738 /*
2739 * if the node is not online or has no normal memory, just
2740 * ignore the node constraint
2741 */
2742 if (unlikely(node != NUMA_NO_NODE &&
7e1fa93d 2743 !node_isset(node, slab_nodes)))
0715e6c5 2744 node = NUMA_NO_NODE;
81819f0f 2745 goto new_slab;
0715e6c5 2746 }
49e22585 2747redo:
6faa6833 2748
57d437d2 2749 if (unlikely(!node_match(page, node))) {
0715e6c5
VB
2750 /*
2751 * same as above but node_match() being false already
2752 * implies node != NUMA_NO_NODE
2753 */
7e1fa93d 2754 if (!node_isset(node, slab_nodes)) {
0715e6c5
VB
2755 node = NUMA_NO_NODE;
2756 goto redo;
2757 } else {
a561ce00 2758 stat(s, ALLOC_NODE_MISMATCH);
0b303fb4 2759 goto deactivate_slab;
a561ce00 2760 }
fc59c053 2761 }
6446faa2 2762
072bb0aa
MG
2763 /*
2764 * By rights, we should be searching for a slab page that was
2765 * PFMEMALLOC but right now, we are losing the pfmemalloc
2766 * information when the page leaves the per-cpu allocator
2767 */
0b303fb4
VB
2768 if (unlikely(!pfmemalloc_match_unsafe(page, gfpflags)))
2769 goto deactivate_slab;
072bb0aa 2770
0b303fb4
VB
2771 /* must check again c->page in case IRQ handler changed it */
2772 local_irq_save(flags);
2773 if (unlikely(page != c->page)) {
2774 local_irq_restore(flags);
2775 goto reread_page;
2776 }
6faa6833
CL
2777 freelist = c->freelist;
2778 if (freelist)
73736e03 2779 goto load_freelist;
03e404af 2780
f6e7def7 2781 freelist = get_freelist(s, page);
6446faa2 2782
6faa6833 2783 if (!freelist) {
03e404af 2784 c->page = NULL;
fa417ab7 2785 local_irq_restore(flags);
03e404af 2786 stat(s, DEACTIVATE_BYPASS);
fc59c053 2787 goto new_slab;
03e404af 2788 }
6446faa2 2789
84e554e6 2790 stat(s, ALLOC_REFILL);
6446faa2 2791
894b8788 2792load_freelist:
0b303fb4
VB
2793
2794 lockdep_assert_irqs_disabled();
2795
507effea
CL
2796 /*
2797 * freelist is pointing to the list of objects to be used.
2798 * page is pointing to the page from which the objects are obtained.
2799 * That page must be frozen for per cpu allocations to work.
2800 */
a0132ac0 2801 VM_BUG_ON(!c->page->frozen);
6faa6833 2802 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2803 c->tid = next_tid(c->tid);
e500059b 2804 local_irq_restore(flags);
6faa6833 2805 return freelist;
81819f0f 2806
0b303fb4
VB
2807deactivate_slab:
2808
2809 local_irq_save(flags);
2810 if (page != c->page) {
2811 local_irq_restore(flags);
2812 goto reread_page;
2813 }
a019d201
VB
2814 freelist = c->freelist;
2815 c->page = NULL;
2816 c->freelist = NULL;
fa417ab7 2817 local_irq_restore(flags);
cfdf836e 2818 deactivate_slab(s, page, freelist);
0b303fb4 2819
81819f0f 2820new_slab:
2cfb7455 2821
a93cf07b 2822 if (slub_percpu_partial(c)) {
fa417ab7
VB
2823 local_irq_save(flags);
2824 if (unlikely(c->page)) {
2825 local_irq_restore(flags);
2826 goto reread_page;
2827 }
4b1f449d
VB
2828 if (unlikely(!slub_percpu_partial(c))) {
2829 local_irq_restore(flags);
fa417ab7 2830 goto new_objects; /* stolen by an IRQ handler */
4b1f449d 2831 }
fa417ab7 2832
a93cf07b
WY
2833 page = c->page = slub_percpu_partial(c);
2834 slub_set_percpu_partial(c, page);
0b303fb4 2835 local_irq_restore(flags);
49e22585 2836 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2837 goto redo;
81819f0f
CL
2838 }
2839
fa417ab7
VB
2840new_objects:
2841
75c8ff28 2842 freelist = get_partial(s, gfpflags, node, &page);
3f2b77e3 2843 if (freelist)
2a904905
VB
2844 goto check_new_page;
2845
e500059b 2846 put_cpu_ptr(s->cpu_slab);
53a0de06 2847 page = new_slab(s, gfpflags, node);
e500059b 2848 c = get_cpu_ptr(s->cpu_slab);
01ad8a7b 2849
53a0de06 2850 if (unlikely(!page)) {
9a02d699 2851 slab_out_of_memory(s, gfpflags, node);
f4697436 2852 return NULL;
81819f0f 2853 }
2cfb7455 2854
53a0de06
VB
2855 /*
2856 * No other reference to the page yet so we can
2857 * muck around with it freely without cmpxchg
2858 */
2859 freelist = page->freelist;
2860 page->freelist = NULL;
2861
2862 stat(s, ALLOC_SLAB);
53a0de06 2863
2a904905 2864check_new_page:
2cfb7455 2865
1572df7c 2866 if (kmem_cache_debug(s)) {
fa417ab7 2867 if (!alloc_debug_processing(s, page, freelist, addr)) {
1572df7c
VB
2868 /* Slab failed checks. Next slab needed */
2869 goto new_slab;
fa417ab7 2870 } else {
1572df7c
VB
2871 /*
2872 * For debug case, we don't load freelist so that all
2873 * allocations go through alloc_debug_processing()
2874 */
2875 goto return_single;
fa417ab7 2876 }
1572df7c
VB
2877 }
2878
2879 if (unlikely(!pfmemalloc_match(page, gfpflags)))
2880 /*
2881 * For !pfmemalloc_match() case we don't load freelist so that
2882 * we don't make further mismatched allocations easier.
2883 */
2884 goto return_single;
2885
cfdf836e
VB
2886retry_load_page:
2887
9f101ee8 2888 local_irq_save(flags);
cfdf836e
VB
2889 if (unlikely(c->page)) {
2890 void *flush_freelist = c->freelist;
2891 struct page *flush_page = c->page;
2892
2893 c->page = NULL;
2894 c->freelist = NULL;
2895 c->tid = next_tid(c->tid);
2896
2897 local_irq_restore(flags);
2898
2899 deactivate_slab(s, flush_page, flush_freelist);
2900
2901 stat(s, CPUSLAB_FLUSH);
2902
2903 goto retry_load_page;
2904 }
3f2b77e3
VB
2905 c->page = page;
2906
1572df7c
VB
2907 goto load_freelist;
2908
2909return_single:
894b8788 2910
a019d201 2911 deactivate_slab(s, page, get_freepointer(s, freelist));
6faa6833 2912 return freelist;
894b8788
CL
2913}
2914
a380a3c7 2915/*
e500059b
VB
2916 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
2917 * disabled. Compensates for possible cpu changes by refetching the per cpu area
2918 * pointer.
a380a3c7
CL
2919 */
2920static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2921 unsigned long addr, struct kmem_cache_cpu *c)
2922{
2923 void *p;
a380a3c7 2924
e500059b 2925#ifdef CONFIG_PREEMPT_COUNT
a380a3c7
CL
2926 /*
2927 * We may have been preempted and rescheduled on a different
e500059b 2928 * cpu before disabling preemption. Need to reload cpu area
a380a3c7
CL
2929 * pointer.
2930 */
e500059b 2931 c = get_cpu_ptr(s->cpu_slab);
a380a3c7
CL
2932#endif
2933
2934 p = ___slab_alloc(s, gfpflags, node, addr, c);
e500059b
VB
2935#ifdef CONFIG_PREEMPT_COUNT
2936 put_cpu_ptr(s->cpu_slab);
2937#endif
a380a3c7
CL
2938 return p;
2939}
2940
0f181f9f
AP
2941/*
2942 * If the object has been wiped upon free, make sure it's fully initialized by
2943 * zeroing out freelist pointer.
2944 */
2945static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2946 void *obj)
2947{
2948 if (unlikely(slab_want_init_on_free(s)) && obj)
ce5716c6
AK
2949 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
2950 0, sizeof(void *));
0f181f9f
AP
2951}
2952
894b8788
CL
2953/*
2954 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2955 * have the fastpath folded into their functions. So no function call
2956 * overhead for requests that can be satisfied on the fastpath.
2957 *
2958 * The fastpath works by first checking if the lockless freelist can be used.
2959 * If not then __slab_alloc is called for slow processing.
2960 *
2961 * Otherwise we can simply pick the next object from the lockless free list.
2962 */
2b847c3c 2963static __always_inline void *slab_alloc_node(struct kmem_cache *s,
b89fb5ef 2964 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
894b8788 2965{
03ec0ed5 2966 void *object;
dfb4f096 2967 struct kmem_cache_cpu *c;
57d437d2 2968 struct page *page;
8a5ec0ba 2969 unsigned long tid;
964d4bd3 2970 struct obj_cgroup *objcg = NULL;
da844b78 2971 bool init = false;
1f84260c 2972
964d4bd3 2973 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
8135be5a 2974 if (!s)
773ff60e 2975 return NULL;
b89fb5ef
AP
2976
2977 object = kfence_alloc(s, orig_size, gfpflags);
2978 if (unlikely(object))
2979 goto out;
2980
8a5ec0ba 2981redo:
8a5ec0ba
CL
2982 /*
2983 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2984 * enabled. We may switch back and forth between cpus while
2985 * reading from one cpu area. That does not matter as long
2986 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2987 *
9b4bc85a
VB
2988 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
2989 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
2990 * the tid. If we are preempted and switched to another cpu between the
2991 * two reads, it's OK as the two are still associated with the same cpu
2992 * and cmpxchg later will validate the cpu.
8a5ec0ba 2993 */
9b4bc85a
VB
2994 c = raw_cpu_ptr(s->cpu_slab);
2995 tid = READ_ONCE(c->tid);
9aabf810
JK
2996
2997 /*
2998 * Irqless object alloc/free algorithm used here depends on sequence
2999 * of fetching cpu_slab's data. tid should be fetched before anything
3000 * on c to guarantee that object and page associated with previous tid
3001 * won't be used with current tid. If we fetch tid first, object and
3002 * page could be one associated with next tid and our alloc/free
3003 * request will be failed. In this case, we will retry. So, no problem.
3004 */
3005 barrier();
8a5ec0ba 3006
8a5ec0ba
CL
3007 /*
3008 * The transaction ids are globally unique per cpu and per operation on
3009 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3010 * occurs on the right processor and that there was no operation on the
3011 * linked list in between.
3012 */
8a5ec0ba 3013
9dfc6e68 3014 object = c->freelist;
57d437d2 3015 page = c->page;
22e4663e 3016 if (unlikely(!object || !page || !node_match(page, node))) {
dfb4f096 3017 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492 3018 } else {
0ad9500e
ED
3019 void *next_object = get_freepointer_safe(s, object);
3020
8a5ec0ba 3021 /*
25985edc 3022 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
3023 * operation and if we are on the right processor.
3024 *
d0e0ac97
CG
3025 * The cmpxchg does the following atomically (without lock
3026 * semantics!)
8a5ec0ba
CL
3027 * 1. Relocate first pointer to the current per cpu area.
3028 * 2. Verify that tid and freelist have not been changed
3029 * 3. If they were not changed replace tid and freelist
3030 *
d0e0ac97
CG
3031 * Since this is without lock semantics the protection is only
3032 * against code executing on this cpu *not* from access by
3033 * other cpus.
8a5ec0ba 3034 */
933393f5 3035 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
3036 s->cpu_slab->freelist, s->cpu_slab->tid,
3037 object, tid,
0ad9500e 3038 next_object, next_tid(tid)))) {
8a5ec0ba
CL
3039
3040 note_cmpxchg_failure("slab_alloc", s, tid);
3041 goto redo;
3042 }
0ad9500e 3043 prefetch_freepointer(s, next_object);
84e554e6 3044 stat(s, ALLOC_FASTPATH);
894b8788 3045 }
0f181f9f 3046
ce5716c6 3047 maybe_wipe_obj_freeptr(s, object);
da844b78 3048 init = slab_want_init_on_alloc(gfpflags, s);
d07dbea4 3049
b89fb5ef 3050out:
da844b78 3051 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
5a896d9e 3052
894b8788 3053 return object;
81819f0f
CL
3054}
3055
2b847c3c 3056static __always_inline void *slab_alloc(struct kmem_cache *s,
b89fb5ef 3057 gfp_t gfpflags, unsigned long addr, size_t orig_size)
2b847c3c 3058{
b89fb5ef 3059 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
2b847c3c
EG
3060}
3061
81819f0f
CL
3062void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3063{
b89fb5ef 3064 void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
5b882be4 3065
d0e0ac97
CG
3066 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
3067 s->size, gfpflags);
5b882be4
EGM
3068
3069 return ret;
81819f0f
CL
3070}
3071EXPORT_SYMBOL(kmem_cache_alloc);
3072
0f24f128 3073#ifdef CONFIG_TRACING
4a92379b
RK
3074void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
3075{
b89fb5ef 3076 void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
4a92379b 3077 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 3078 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
3079 return ret;
3080}
3081EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
3082#endif
3083
81819f0f
CL
3084#ifdef CONFIG_NUMA
3085void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3086{
b89fb5ef 3087 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
5b882be4 3088
ca2b84cb 3089 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 3090 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
3091
3092 return ret;
81819f0f
CL
3093}
3094EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 3095
0f24f128 3096#ifdef CONFIG_TRACING
4a92379b 3097void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 3098 gfp_t gfpflags,
4a92379b 3099 int node, size_t size)
5b882be4 3100{
b89fb5ef 3101 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
4a92379b
RK
3102
3103 trace_kmalloc_node(_RET_IP_, ret,
3104 size, s->size, gfpflags, node);
0316bec2 3105
0116523c 3106 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 3107 return ret;
5b882be4 3108}
4a92379b 3109EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 3110#endif
6dfd1b65 3111#endif /* CONFIG_NUMA */
5b882be4 3112
81819f0f 3113/*
94e4d712 3114 * Slow path handling. This may still be called frequently since objects
894b8788 3115 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 3116 *
894b8788
CL
3117 * So we still attempt to reduce cache line usage. Just take the slab
3118 * lock and free the item. If there is no additional partial page
3119 * handling required then we can return immediately.
81819f0f 3120 */
894b8788 3121static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
3122 void *head, void *tail, int cnt,
3123 unsigned long addr)
3124
81819f0f
CL
3125{
3126 void *prior;
2cfb7455 3127 int was_frozen;
2cfb7455
CL
3128 struct page new;
3129 unsigned long counters;
3130 struct kmem_cache_node *n = NULL;
3f649ab7 3131 unsigned long flags;
81819f0f 3132
8a5ec0ba 3133 stat(s, FREE_SLOWPATH);
81819f0f 3134
b89fb5ef
AP
3135 if (kfence_free(head))
3136 return;
3137
19c7ff9e 3138 if (kmem_cache_debug(s) &&
282acb43 3139 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 3140 return;
6446faa2 3141
2cfb7455 3142 do {
837d678d
JK
3143 if (unlikely(n)) {
3144 spin_unlock_irqrestore(&n->list_lock, flags);
3145 n = NULL;
3146 }
2cfb7455
CL
3147 prior = page->freelist;
3148 counters = page->counters;
81084651 3149 set_freepointer(s, tail, prior);
2cfb7455
CL
3150 new.counters = counters;
3151 was_frozen = new.frozen;
81084651 3152 new.inuse -= cnt;
837d678d 3153 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 3154
c65c1877 3155 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
3156
3157 /*
d0e0ac97
CG
3158 * Slab was on no list before and will be
3159 * partially empty
3160 * We can defer the list move and instead
3161 * freeze it.
49e22585
CL
3162 */
3163 new.frozen = 1;
3164
c65c1877 3165 } else { /* Needs to be taken off a list */
49e22585 3166
b455def2 3167 n = get_node(s, page_to_nid(page));
49e22585
CL
3168 /*
3169 * Speculatively acquire the list_lock.
3170 * If the cmpxchg does not succeed then we may
3171 * drop the list_lock without any processing.
3172 *
3173 * Otherwise the list_lock will synchronize with
3174 * other processors updating the list of slabs.
3175 */
3176 spin_lock_irqsave(&n->list_lock, flags);
3177
3178 }
2cfb7455 3179 }
81819f0f 3180
2cfb7455
CL
3181 } while (!cmpxchg_double_slab(s, page,
3182 prior, counters,
81084651 3183 head, new.counters,
2cfb7455 3184 "__slab_free"));
81819f0f 3185
2cfb7455 3186 if (likely(!n)) {
49e22585 3187
c270cf30
AW
3188 if (likely(was_frozen)) {
3189 /*
3190 * The list lock was not taken therefore no list
3191 * activity can be necessary.
3192 */
3193 stat(s, FREE_FROZEN);
3194 } else if (new.frozen) {
3195 /*
3196 * If we just froze the page then put it onto the
3197 * per cpu partial list.
3198 */
49e22585 3199 put_cpu_partial(s, page, 1);
8028dcea
AS
3200 stat(s, CPU_PARTIAL_FREE);
3201 }
c270cf30 3202
b455def2
L
3203 return;
3204 }
81819f0f 3205
8a5b20ae 3206 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
3207 goto slab_empty;
3208
81819f0f 3209 /*
837d678d
JK
3210 * Objects left in the slab. If it was not on the partial list before
3211 * then add it.
81819f0f 3212 */
345c905d 3213 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 3214 remove_full(s, n, page);
837d678d
JK
3215 add_partial(n, page, DEACTIVATE_TO_TAIL);
3216 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 3217 }
80f08c19 3218 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
3219 return;
3220
3221slab_empty:
a973e9dd 3222 if (prior) {
81819f0f 3223 /*
6fbabb20 3224 * Slab on the partial list.
81819f0f 3225 */
5cc6eee8 3226 remove_partial(n, page);
84e554e6 3227 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 3228 } else {
6fbabb20 3229 /* Slab must be on the full list */
c65c1877
PZ
3230 remove_full(s, n, page);
3231 }
2cfb7455 3232
80f08c19 3233 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 3234 stat(s, FREE_SLAB);
81819f0f 3235 discard_slab(s, page);
81819f0f
CL
3236}
3237
894b8788
CL
3238/*
3239 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3240 * can perform fastpath freeing without additional function calls.
3241 *
3242 * The fastpath is only possible if we are freeing to the current cpu slab
3243 * of this processor. This typically the case if we have just allocated
3244 * the item before.
3245 *
3246 * If fastpath is not possible then fall back to __slab_free where we deal
3247 * with all sorts of special processing.
81084651
JDB
3248 *
3249 * Bulk free of a freelist with several objects (all pointing to the
3250 * same page) possible by specifying head and tail ptr, plus objects
3251 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 3252 */
80a9201a
AP
3253static __always_inline void do_slab_free(struct kmem_cache *s,
3254 struct page *page, void *head, void *tail,
3255 int cnt, unsigned long addr)
894b8788 3256{
81084651 3257 void *tail_obj = tail ? : head;
dfb4f096 3258 struct kmem_cache_cpu *c;
8a5ec0ba 3259 unsigned long tid;
964d4bd3 3260
d1b2cf6c 3261 memcg_slab_free_hook(s, &head, 1);
8a5ec0ba
CL
3262redo:
3263 /*
3264 * Determine the currently cpus per cpu slab.
3265 * The cpu may change afterward. However that does not matter since
3266 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3267 * during the cmpxchg then the free will succeed.
8a5ec0ba 3268 */
9b4bc85a
VB
3269 c = raw_cpu_ptr(s->cpu_slab);
3270 tid = READ_ONCE(c->tid);
c016b0bd 3271
9aabf810
JK
3272 /* Same with comment on barrier() in slab_alloc_node() */
3273 barrier();
c016b0bd 3274
442b06bc 3275 if (likely(page == c->page)) {
5076190d
LT
3276 void **freelist = READ_ONCE(c->freelist);
3277
3278 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3279
933393f5 3280 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba 3281 s->cpu_slab->freelist, s->cpu_slab->tid,
5076190d 3282 freelist, tid,
81084651 3283 head, next_tid(tid)))) {
8a5ec0ba
CL
3284
3285 note_cmpxchg_failure("slab_free", s, tid);
3286 goto redo;
3287 }
84e554e6 3288 stat(s, FREE_FASTPATH);
894b8788 3289 } else
81084651 3290 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 3291
894b8788
CL
3292}
3293
80a9201a
AP
3294static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3295 void *head, void *tail, int cnt,
3296 unsigned long addr)
3297{
80a9201a 3298 /*
c3895391
AK
3299 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3300 * to remove objects, whose reuse must be delayed.
80a9201a 3301 */
c3895391
AK
3302 if (slab_free_freelist_hook(s, &head, &tail))
3303 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3304}
3305
2bd926b4 3306#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3307void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3308{
3309 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3310}
3311#endif
3312
81819f0f
CL
3313void kmem_cache_free(struct kmem_cache *s, void *x)
3314{
b9ce5ef4
GC
3315 s = cache_from_obj(s, x);
3316 if (!s)
79576102 3317 return;
81084651 3318 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3544de8e 3319 trace_kmem_cache_free(_RET_IP_, x, s->name);
81819f0f
CL
3320}
3321EXPORT_SYMBOL(kmem_cache_free);
3322
d0ecd894 3323struct detached_freelist {
fbd02630 3324 struct page *page;
d0ecd894
JDB
3325 void *tail;
3326 void *freelist;
3327 int cnt;
376bf125 3328 struct kmem_cache *s;
d0ecd894 3329};
fbd02630 3330
1ed7ce57 3331static inline void free_nonslab_page(struct page *page, void *object)
f227f0fa
SB
3332{
3333 unsigned int order = compound_order(page);
3334
3335 VM_BUG_ON_PAGE(!PageCompound(page), page);
1ed7ce57 3336 kfree_hook(object);
f227f0fa
SB
3337 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, -(PAGE_SIZE << order));
3338 __free_pages(page, order);
3339}
3340
d0ecd894
JDB
3341/*
3342 * This function progressively scans the array with free objects (with
3343 * a limited look ahead) and extract objects belonging to the same
3344 * page. It builds a detached freelist directly within the given
3345 * page/objects. This can happen without any need for
3346 * synchronization, because the objects are owned by running process.
3347 * The freelist is build up as a single linked list in the objects.
3348 * The idea is, that this detached freelist can then be bulk
3349 * transferred to the real freelist(s), but only requiring a single
3350 * synchronization primitive. Look ahead in the array is limited due
3351 * to performance reasons.
3352 */
376bf125
JDB
3353static inline
3354int build_detached_freelist(struct kmem_cache *s, size_t size,
3355 void **p, struct detached_freelist *df)
d0ecd894
JDB
3356{
3357 size_t first_skipped_index = 0;
3358 int lookahead = 3;
3359 void *object;
ca257195 3360 struct page *page;
fbd02630 3361
d0ecd894
JDB
3362 /* Always re-init detached_freelist */
3363 df->page = NULL;
fbd02630 3364
d0ecd894
JDB
3365 do {
3366 object = p[--size];
ca257195 3367 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3368 } while (!object && size);
3eed034d 3369
d0ecd894
JDB
3370 if (!object)
3371 return 0;
fbd02630 3372
ca257195
JDB
3373 page = virt_to_head_page(object);
3374 if (!s) {
3375 /* Handle kalloc'ed objects */
3376 if (unlikely(!PageSlab(page))) {
1ed7ce57 3377 free_nonslab_page(page, object);
ca257195
JDB
3378 p[size] = NULL; /* mark object processed */
3379 return size;
3380 }
3381 /* Derive kmem_cache from object */
3382 df->s = page->slab_cache;
3383 } else {
3384 df->s = cache_from_obj(s, object); /* Support for memcg */
3385 }
376bf125 3386
b89fb5ef 3387 if (is_kfence_address(object)) {
d57a964e 3388 slab_free_hook(df->s, object, false);
b89fb5ef
AP
3389 __kfence_free(object);
3390 p[size] = NULL; /* mark object processed */
3391 return size;
3392 }
3393
d0ecd894 3394 /* Start new detached freelist */
ca257195 3395 df->page = page;
376bf125 3396 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3397 df->tail = object;
3398 df->freelist = object;
3399 p[size] = NULL; /* mark object processed */
3400 df->cnt = 1;
3401
3402 while (size) {
3403 object = p[--size];
3404 if (!object)
3405 continue; /* Skip processed objects */
3406
3407 /* df->page is always set at this point */
3408 if (df->page == virt_to_head_page(object)) {
3409 /* Opportunity build freelist */
376bf125 3410 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3411 df->freelist = object;
3412 df->cnt++;
3413 p[size] = NULL; /* mark object processed */
3414
3415 continue;
fbd02630 3416 }
d0ecd894
JDB
3417
3418 /* Limit look ahead search */
3419 if (!--lookahead)
3420 break;
3421
3422 if (!first_skipped_index)
3423 first_skipped_index = size + 1;
fbd02630 3424 }
d0ecd894
JDB
3425
3426 return first_skipped_index;
3427}
3428
d0ecd894 3429/* Note that interrupts must be enabled when calling this function. */
376bf125 3430void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3431{
3432 if (WARN_ON(!size))
3433 return;
3434
d1b2cf6c 3435 memcg_slab_free_hook(s, p, size);
d0ecd894
JDB
3436 do {
3437 struct detached_freelist df;
3438
3439 size = build_detached_freelist(s, size, p, &df);
84582c8a 3440 if (!df.page)
d0ecd894
JDB
3441 continue;
3442
457c82c3 3443 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
d0ecd894 3444 } while (likely(size));
484748f0
CL
3445}
3446EXPORT_SYMBOL(kmem_cache_free_bulk);
3447
994eb764 3448/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3449int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3450 void **p)
484748f0 3451{
994eb764
JDB
3452 struct kmem_cache_cpu *c;
3453 int i;
964d4bd3 3454 struct obj_cgroup *objcg = NULL;
994eb764 3455
03ec0ed5 3456 /* memcg and kmem_cache debug support */
964d4bd3 3457 s = slab_pre_alloc_hook(s, &objcg, size, flags);
03ec0ed5
JDB
3458 if (unlikely(!s))
3459 return false;
994eb764
JDB
3460 /*
3461 * Drain objects in the per cpu slab, while disabling local
3462 * IRQs, which protects against PREEMPT and interrupts
3463 * handlers invoking normal fastpath.
3464 */
e500059b 3465 c = get_cpu_ptr(s->cpu_slab);
994eb764 3466 local_irq_disable();
994eb764
JDB
3467
3468 for (i = 0; i < size; i++) {
b89fb5ef 3469 void *object = kfence_alloc(s, s->object_size, flags);
994eb764 3470
b89fb5ef
AP
3471 if (unlikely(object)) {
3472 p[i] = object;
3473 continue;
3474 }
3475
3476 object = c->freelist;
ebe909e0 3477 if (unlikely(!object)) {
fd4d9c7d
JH
3478 /*
3479 * We may have removed an object from c->freelist using
3480 * the fastpath in the previous iteration; in that case,
3481 * c->tid has not been bumped yet.
3482 * Since ___slab_alloc() may reenable interrupts while
3483 * allocating memory, we should bump c->tid now.
3484 */
3485 c->tid = next_tid(c->tid);
3486
e500059b
VB
3487 local_irq_enable();
3488
ebe909e0
JDB
3489 /*
3490 * Invoking slow path likely have side-effect
3491 * of re-populating per CPU c->freelist
3492 */
87098373 3493 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3494 _RET_IP_, c);
87098373
CL
3495 if (unlikely(!p[i]))
3496 goto error;
3497
ebe909e0 3498 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3499 maybe_wipe_obj_freeptr(s, p[i]);
3500
e500059b
VB
3501 local_irq_disable();
3502
ebe909e0
JDB
3503 continue; /* goto for-loop */
3504 }
994eb764
JDB
3505 c->freelist = get_freepointer(s, object);
3506 p[i] = object;
0f181f9f 3507 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3508 }
3509 c->tid = next_tid(c->tid);
3510 local_irq_enable();
e500059b 3511 put_cpu_ptr(s->cpu_slab);
994eb764 3512
da844b78
AK
3513 /*
3514 * memcg and kmem_cache debug support and memory initialization.
3515 * Done outside of the IRQ disabled fastpath loop.
3516 */
3517 slab_post_alloc_hook(s, objcg, flags, size, p,
3518 slab_want_init_on_alloc(flags, s));
865762a8 3519 return i;
87098373 3520error:
e500059b 3521 put_cpu_ptr(s->cpu_slab);
da844b78 3522 slab_post_alloc_hook(s, objcg, flags, i, p, false);
03ec0ed5 3523 __kmem_cache_free_bulk(s, i, p);
865762a8 3524 return 0;
484748f0
CL
3525}
3526EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3527
3528
81819f0f 3529/*
672bba3a
CL
3530 * Object placement in a slab is made very easy because we always start at
3531 * offset 0. If we tune the size of the object to the alignment then we can
3532 * get the required alignment by putting one properly sized object after
3533 * another.
81819f0f
CL
3534 *
3535 * Notice that the allocation order determines the sizes of the per cpu
3536 * caches. Each processor has always one slab available for allocations.
3537 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3538 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3539 * locking overhead.
81819f0f
CL
3540 */
3541
3542/*
f0953a1b 3543 * Minimum / Maximum order of slab pages. This influences locking overhead
81819f0f
CL
3544 * and slab fragmentation. A higher order reduces the number of partial slabs
3545 * and increases the number of allocations possible without having to
3546 * take the list_lock.
3547 */
19af27af
AD
3548static unsigned int slub_min_order;
3549static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3550static unsigned int slub_min_objects;
81819f0f 3551
81819f0f
CL
3552/*
3553 * Calculate the order of allocation given an slab object size.
3554 *
672bba3a
CL
3555 * The order of allocation has significant impact on performance and other
3556 * system components. Generally order 0 allocations should be preferred since
3557 * order 0 does not cause fragmentation in the page allocator. Larger objects
3558 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3559 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3560 * would be wasted.
3561 *
3562 * In order to reach satisfactory performance we must ensure that a minimum
3563 * number of objects is in one slab. Otherwise we may generate too much
3564 * activity on the partial lists which requires taking the list_lock. This is
3565 * less a concern for large slabs though which are rarely used.
81819f0f 3566 *
672bba3a
CL
3567 * slub_max_order specifies the order where we begin to stop considering the
3568 * number of objects in a slab as critical. If we reach slub_max_order then
3569 * we try to keep the page order as low as possible. So we accept more waste
3570 * of space in favor of a small page order.
81819f0f 3571 *
672bba3a
CL
3572 * Higher order allocations also allow the placement of more objects in a
3573 * slab and thereby reduce object handling overhead. If the user has
dc84207d 3574 * requested a higher minimum order then we start with that one instead of
672bba3a 3575 * the smallest order which will fit the object.
81819f0f 3576 */
19af27af
AD
3577static inline unsigned int slab_order(unsigned int size,
3578 unsigned int min_objects, unsigned int max_order,
9736d2a9 3579 unsigned int fract_leftover)
81819f0f 3580{
19af27af
AD
3581 unsigned int min_order = slub_min_order;
3582 unsigned int order;
81819f0f 3583
9736d2a9 3584 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3585 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3586
9736d2a9 3587 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3588 order <= max_order; order++) {
81819f0f 3589
19af27af
AD
3590 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3591 unsigned int rem;
81819f0f 3592
9736d2a9 3593 rem = slab_size % size;
81819f0f 3594
5e6d444e 3595 if (rem <= slab_size / fract_leftover)
81819f0f 3596 break;
81819f0f 3597 }
672bba3a 3598
81819f0f
CL
3599 return order;
3600}
3601
9736d2a9 3602static inline int calculate_order(unsigned int size)
5e6d444e 3603{
19af27af
AD
3604 unsigned int order;
3605 unsigned int min_objects;
3606 unsigned int max_objects;
3286222f 3607 unsigned int nr_cpus;
5e6d444e
CL
3608
3609 /*
3610 * Attempt to find best configuration for a slab. This
3611 * works by first attempting to generate a layout with
3612 * the best configuration and backing off gradually.
3613 *
422ff4d7 3614 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3615 * we reduce the minimum objects required in a slab.
3616 */
3617 min_objects = slub_min_objects;
3286222f
VB
3618 if (!min_objects) {
3619 /*
3620 * Some architectures will only update present cpus when
3621 * onlining them, so don't trust the number if it's just 1. But
3622 * we also don't want to use nr_cpu_ids always, as on some other
3623 * architectures, there can be many possible cpus, but never
3624 * onlined. Here we compromise between trying to avoid too high
3625 * order on systems that appear larger than they are, and too
3626 * low order on systems that appear smaller than they are.
3627 */
3628 nr_cpus = num_present_cpus();
3629 if (nr_cpus <= 1)
3630 nr_cpus = nr_cpu_ids;
3631 min_objects = 4 * (fls(nr_cpus) + 1);
3632 }
9736d2a9 3633 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3634 min_objects = min(min_objects, max_objects);
3635
5e6d444e 3636 while (min_objects > 1) {
19af27af
AD
3637 unsigned int fraction;
3638
c124f5b5 3639 fraction = 16;
5e6d444e
CL
3640 while (fraction >= 4) {
3641 order = slab_order(size, min_objects,
9736d2a9 3642 slub_max_order, fraction);
5e6d444e
CL
3643 if (order <= slub_max_order)
3644 return order;
3645 fraction /= 2;
3646 }
5086c389 3647 min_objects--;
5e6d444e
CL
3648 }
3649
3650 /*
3651 * We were unable to place multiple objects in a slab. Now
3652 * lets see if we can place a single object there.
3653 */
9736d2a9 3654 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3655 if (order <= slub_max_order)
3656 return order;
3657
3658 /*
3659 * Doh this slab cannot be placed using slub_max_order.
3660 */
9736d2a9 3661 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3662 if (order < MAX_ORDER)
5e6d444e
CL
3663 return order;
3664 return -ENOSYS;
3665}
3666
5595cffc 3667static void
4053497d 3668init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3669{
3670 n->nr_partial = 0;
81819f0f
CL
3671 spin_lock_init(&n->list_lock);
3672 INIT_LIST_HEAD(&n->partial);
8ab1372f 3673#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3674 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3675 atomic_long_set(&n->total_objects, 0);
643b1138 3676 INIT_LIST_HEAD(&n->full);
8ab1372f 3677#endif
81819f0f
CL
3678}
3679
55136592 3680static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3681{
6c182dc0 3682 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3683 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3684
8a5ec0ba 3685 /*
d4d84fef
CM
3686 * Must align to double word boundary for the double cmpxchg
3687 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3688 */
d4d84fef
CM
3689 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3690 2 * sizeof(void *));
8a5ec0ba
CL
3691
3692 if (!s->cpu_slab)
3693 return 0;
3694
3695 init_kmem_cache_cpus(s);
4c93c355 3696
8a5ec0ba 3697 return 1;
4c93c355 3698}
4c93c355 3699
51df1142
CL
3700static struct kmem_cache *kmem_cache_node;
3701
81819f0f
CL
3702/*
3703 * No kmalloc_node yet so do it by hand. We know that this is the first
3704 * slab on the node for this slabcache. There are no concurrent accesses
3705 * possible.
3706 *
721ae22a
ZYW
3707 * Note that this function only works on the kmem_cache_node
3708 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3709 * memory on a fresh node that has no slab structures yet.
81819f0f 3710 */
55136592 3711static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3712{
3713 struct page *page;
3714 struct kmem_cache_node *n;
3715
51df1142 3716 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3717
51df1142 3718 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3719
3720 BUG_ON(!page);
a2f92ee7 3721 if (page_to_nid(page) != node) {
f9f58285
FF
3722 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3723 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3724 }
3725
81819f0f
CL
3726 n = page->freelist;
3727 BUG_ON(!n);
8ab1372f 3728#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3729 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3730 init_tracking(kmem_cache_node, n);
8ab1372f 3731#endif
da844b78 3732 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
12b22386
AK
3733 page->freelist = get_freepointer(kmem_cache_node, n);
3734 page->inuse = 1;
3735 page->frozen = 0;
3736 kmem_cache_node->node[node] = n;
4053497d 3737 init_kmem_cache_node(n);
51df1142 3738 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3739
67b6c900 3740 /*
1e4dd946
SR
3741 * No locks need to be taken here as it has just been
3742 * initialized and there is no concurrent access.
67b6c900 3743 */
1e4dd946 3744 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3745}
3746
3747static void free_kmem_cache_nodes(struct kmem_cache *s)
3748{
3749 int node;
fa45dc25 3750 struct kmem_cache_node *n;
81819f0f 3751
fa45dc25 3752 for_each_kmem_cache_node(s, node, n) {
81819f0f 3753 s->node[node] = NULL;
ea37df54 3754 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3755 }
3756}
3757
52b4b950
DS
3758void __kmem_cache_release(struct kmem_cache *s)
3759{
210e7a43 3760 cache_random_seq_destroy(s);
52b4b950
DS
3761 free_percpu(s->cpu_slab);
3762 free_kmem_cache_nodes(s);
3763}
3764
55136592 3765static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3766{
3767 int node;
81819f0f 3768
7e1fa93d 3769 for_each_node_mask(node, slab_nodes) {
81819f0f
CL
3770 struct kmem_cache_node *n;
3771
73367bd8 3772 if (slab_state == DOWN) {
55136592 3773 early_kmem_cache_node_alloc(node);
73367bd8
AD
3774 continue;
3775 }
51df1142 3776 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3777 GFP_KERNEL, node);
81819f0f 3778
73367bd8
AD
3779 if (!n) {
3780 free_kmem_cache_nodes(s);
3781 return 0;
81819f0f 3782 }
73367bd8 3783
4053497d 3784 init_kmem_cache_node(n);
ea37df54 3785 s->node[node] = n;
81819f0f
CL
3786 }
3787 return 1;
3788}
81819f0f 3789
c0bdb232 3790static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3791{
3792 if (min < MIN_PARTIAL)
3793 min = MIN_PARTIAL;
3794 else if (min > MAX_PARTIAL)
3795 min = MAX_PARTIAL;
3796 s->min_partial = min;
3797}
3798
e6d0e1dc
WY
3799static void set_cpu_partial(struct kmem_cache *s)
3800{
3801#ifdef CONFIG_SLUB_CPU_PARTIAL
3802 /*
3803 * cpu_partial determined the maximum number of objects kept in the
3804 * per cpu partial lists of a processor.
3805 *
3806 * Per cpu partial lists mainly contain slabs that just have one
3807 * object freed. If they are used for allocation then they can be
3808 * filled up again with minimal effort. The slab will never hit the
3809 * per node partial lists and therefore no locking will be required.
3810 *
3811 * This setting also determines
3812 *
3813 * A) The number of objects from per cpu partial slabs dumped to the
3814 * per node list when we reach the limit.
3815 * B) The number of objects in cpu partial slabs to extract from the
3816 * per node list when we run out of per cpu objects. We only fetch
3817 * 50% to keep some capacity around for frees.
3818 */
3819 if (!kmem_cache_has_cpu_partial(s))
bbd4e305 3820 slub_set_cpu_partial(s, 0);
e6d0e1dc 3821 else if (s->size >= PAGE_SIZE)
bbd4e305 3822 slub_set_cpu_partial(s, 2);
e6d0e1dc 3823 else if (s->size >= 1024)
bbd4e305 3824 slub_set_cpu_partial(s, 6);
e6d0e1dc 3825 else if (s->size >= 256)
bbd4e305 3826 slub_set_cpu_partial(s, 13);
e6d0e1dc 3827 else
bbd4e305 3828 slub_set_cpu_partial(s, 30);
e6d0e1dc
WY
3829#endif
3830}
3831
81819f0f
CL
3832/*
3833 * calculate_sizes() determines the order and the distribution of data within
3834 * a slab object.
3835 */
06b285dc 3836static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3837{
d50112ed 3838 slab_flags_t flags = s->flags;
be4a7988 3839 unsigned int size = s->object_size;
19af27af 3840 unsigned int order;
81819f0f 3841
d8b42bf5
CL
3842 /*
3843 * Round up object size to the next word boundary. We can only
3844 * place the free pointer at word boundaries and this determines
3845 * the possible location of the free pointer.
3846 */
3847 size = ALIGN(size, sizeof(void *));
3848
3849#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3850 /*
3851 * Determine if we can poison the object itself. If the user of
3852 * the slab may touch the object after free or before allocation
3853 * then we should never poison the object itself.
3854 */
5f0d5a3a 3855 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3856 !s->ctor)
81819f0f
CL
3857 s->flags |= __OBJECT_POISON;
3858 else
3859 s->flags &= ~__OBJECT_POISON;
3860
81819f0f
CL
3861
3862 /*
672bba3a 3863 * If we are Redzoning then check if there is some space between the
81819f0f 3864 * end of the object and the free pointer. If not then add an
672bba3a 3865 * additional word to have some bytes to store Redzone information.
81819f0f 3866 */
3b0efdfa 3867 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3868 size += sizeof(void *);
41ecc55b 3869#endif
81819f0f
CL
3870
3871 /*
672bba3a 3872 * With that we have determined the number of bytes in actual use
e41a49fa 3873 * by the object and redzoning.
81819f0f
CL
3874 */
3875 s->inuse = size;
3876
74c1d3e0
KC
3877 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3878 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
3879 s->ctor) {
81819f0f
CL
3880 /*
3881 * Relocate free pointer after the object if it is not
3882 * permitted to overwrite the first word of the object on
3883 * kmem_cache_free.
3884 *
3885 * This is the case if we do RCU, have a constructor or
74c1d3e0
KC
3886 * destructor, are poisoning the objects, or are
3887 * redzoning an object smaller than sizeof(void *).
cbfc35a4
WL
3888 *
3889 * The assumption that s->offset >= s->inuse means free
3890 * pointer is outside of the object is used in the
3891 * freeptr_outside_object() function. If that is no
3892 * longer true, the function needs to be modified.
81819f0f
CL
3893 */
3894 s->offset = size;
3895 size += sizeof(void *);
e41a49fa 3896 } else {
3202fa62
KC
3897 /*
3898 * Store freelist pointer near middle of object to keep
3899 * it away from the edges of the object to avoid small
3900 * sized over/underflows from neighboring allocations.
3901 */
e41a49fa 3902 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
81819f0f
CL
3903 }
3904
c12b3c62 3905#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3906 if (flags & SLAB_STORE_USER)
3907 /*
3908 * Need to store information about allocs and frees after
3909 * the object.
3910 */
3911 size += 2 * sizeof(struct track);
80a9201a 3912#endif
81819f0f 3913
80a9201a
AP
3914 kasan_cache_create(s, &size, &s->flags);
3915#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3916 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3917 /*
3918 * Add some empty padding so that we can catch
3919 * overwrites from earlier objects rather than let
3920 * tracking information or the free pointer be
0211a9c8 3921 * corrupted if a user writes before the start
81819f0f
CL
3922 * of the object.
3923 */
3924 size += sizeof(void *);
d86bd1be
JK
3925
3926 s->red_left_pad = sizeof(void *);
3927 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3928 size += s->red_left_pad;
3929 }
41ecc55b 3930#endif
672bba3a 3931
81819f0f
CL
3932 /*
3933 * SLUB stores one object immediately after another beginning from
3934 * offset 0. In order to align the objects we have to simply size
3935 * each object to conform to the alignment.
3936 */
45906855 3937 size = ALIGN(size, s->align);
81819f0f 3938 s->size = size;
4138fdfc 3939 s->reciprocal_size = reciprocal_value(size);
06b285dc
CL
3940 if (forced_order >= 0)
3941 order = forced_order;
3942 else
9736d2a9 3943 order = calculate_order(size);
81819f0f 3944
19af27af 3945 if ((int)order < 0)
81819f0f
CL
3946 return 0;
3947
b7a49f0d 3948 s->allocflags = 0;
834f3d11 3949 if (order)
b7a49f0d
CL
3950 s->allocflags |= __GFP_COMP;
3951
3952 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3953 s->allocflags |= GFP_DMA;
b7a49f0d 3954
6d6ea1e9
NB
3955 if (s->flags & SLAB_CACHE_DMA32)
3956 s->allocflags |= GFP_DMA32;
3957
b7a49f0d
CL
3958 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3959 s->allocflags |= __GFP_RECLAIMABLE;
3960
81819f0f
CL
3961 /*
3962 * Determine the number of objects per slab
3963 */
9736d2a9
MW
3964 s->oo = oo_make(order, size);
3965 s->min = oo_make(get_order(size), size);
205ab99d
CL
3966 if (oo_objects(s->oo) > oo_objects(s->max))
3967 s->max = s->oo;
81819f0f 3968
834f3d11 3969 return !!oo_objects(s->oo);
81819f0f
CL
3970}
3971
d50112ed 3972static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3973{
37540008 3974 s->flags = kmem_cache_flags(s->size, flags, s->name);
2482ddec
KC
3975#ifdef CONFIG_SLAB_FREELIST_HARDENED
3976 s->random = get_random_long();
3977#endif
81819f0f 3978
06b285dc 3979 if (!calculate_sizes(s, -1))
81819f0f 3980 goto error;
3de47213
DR
3981 if (disable_higher_order_debug) {
3982 /*
3983 * Disable debugging flags that store metadata if the min slab
3984 * order increased.
3985 */
3b0efdfa 3986 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3987 s->flags &= ~DEBUG_METADATA_FLAGS;
3988 s->offset = 0;
3989 if (!calculate_sizes(s, -1))
3990 goto error;
3991 }
3992 }
81819f0f 3993
2565409f
HC
3994#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3995 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3996 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3997 /* Enable fast mode */
3998 s->flags |= __CMPXCHG_DOUBLE;
3999#endif
4000
3b89d7d8
DR
4001 /*
4002 * The larger the object size is, the more pages we want on the partial
4003 * list to avoid pounding the page allocator excessively.
4004 */
49e22585
CL
4005 set_min_partial(s, ilog2(s->size) / 2);
4006
e6d0e1dc 4007 set_cpu_partial(s);
49e22585 4008
81819f0f 4009#ifdef CONFIG_NUMA
e2cb96b7 4010 s->remote_node_defrag_ratio = 1000;
81819f0f 4011#endif
210e7a43
TG
4012
4013 /* Initialize the pre-computed randomized freelist if slab is up */
4014 if (slab_state >= UP) {
4015 if (init_cache_random_seq(s))
4016 goto error;
4017 }
4018
55136592 4019 if (!init_kmem_cache_nodes(s))
dfb4f096 4020 goto error;
81819f0f 4021
55136592 4022 if (alloc_kmem_cache_cpus(s))
278b1bb1 4023 return 0;
ff12059e 4024
4c93c355 4025 free_kmem_cache_nodes(s);
81819f0f 4026error:
278b1bb1 4027 return -EINVAL;
81819f0f 4028}
81819f0f 4029
33b12c38 4030static void list_slab_objects(struct kmem_cache *s, struct page *page,
55860d96 4031 const char *text)
33b12c38
CL
4032{
4033#ifdef CONFIG_SLUB_DEBUG
4034 void *addr = page_address(page);
55860d96 4035 unsigned long *map;
33b12c38 4036 void *p;
aa456c7a 4037
945cf2b6 4038 slab_err(s, page, text, s->name);
33b12c38 4039 slab_lock(page);
33b12c38 4040
90e9f6a6 4041 map = get_map(s, page);
33b12c38
CL
4042 for_each_object(p, s, addr, page->objects) {
4043
4138fdfc 4044 if (!test_bit(__obj_to_index(s, addr, p), map)) {
96b94abc 4045 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
4046 print_tracking(s, p);
4047 }
4048 }
55860d96 4049 put_map(map);
33b12c38
CL
4050 slab_unlock(page);
4051#endif
4052}
4053
81819f0f 4054/*
599870b1 4055 * Attempt to free all partial slabs on a node.
52b4b950
DS
4056 * This is called from __kmem_cache_shutdown(). We must take list_lock
4057 * because sysfs file might still access partial list after the shutdowning.
81819f0f 4058 */
599870b1 4059static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 4060{
60398923 4061 LIST_HEAD(discard);
81819f0f
CL
4062 struct page *page, *h;
4063
52b4b950
DS
4064 BUG_ON(irqs_disabled());
4065 spin_lock_irq(&n->list_lock);
916ac052 4066 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 4067 if (!page->inuse) {
52b4b950 4068 remove_partial(n, page);
916ac052 4069 list_add(&page->slab_list, &discard);
33b12c38
CL
4070 } else {
4071 list_slab_objects(s, page,
55860d96 4072 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 4073 }
33b12c38 4074 }
52b4b950 4075 spin_unlock_irq(&n->list_lock);
60398923 4076
916ac052 4077 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 4078 discard_slab(s, page);
81819f0f
CL
4079}
4080
f9e13c0a
SB
4081bool __kmem_cache_empty(struct kmem_cache *s)
4082{
4083 int node;
4084 struct kmem_cache_node *n;
4085
4086 for_each_kmem_cache_node(s, node, n)
4087 if (n->nr_partial || slabs_node(s, node))
4088 return false;
4089 return true;
4090}
4091
81819f0f 4092/*
672bba3a 4093 * Release all resources used by a slab cache.
81819f0f 4094 */
52b4b950 4095int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
4096{
4097 int node;
fa45dc25 4098 struct kmem_cache_node *n;
81819f0f
CL
4099
4100 flush_all(s);
81819f0f 4101 /* Attempt to free all objects */
fa45dc25 4102 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
4103 free_partial(s, n);
4104 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
4105 return 1;
4106 }
81819f0f
CL
4107 return 0;
4108}
4109
5bb1bb35 4110#ifdef CONFIG_PRINTK
8e7f37f2
PM
4111void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
4112{
4113 void *base;
4114 int __maybe_unused i;
4115 unsigned int objnr;
4116 void *objp;
4117 void *objp0;
4118 struct kmem_cache *s = page->slab_cache;
4119 struct track __maybe_unused *trackp;
4120
4121 kpp->kp_ptr = object;
4122 kpp->kp_page = page;
4123 kpp->kp_slab_cache = s;
4124 base = page_address(page);
4125 objp0 = kasan_reset_tag(object);
4126#ifdef CONFIG_SLUB_DEBUG
4127 objp = restore_red_left(s, objp0);
4128#else
4129 objp = objp0;
4130#endif
4131 objnr = obj_to_index(s, page, objp);
4132 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4133 objp = base + s->size * objnr;
4134 kpp->kp_objp = objp;
4135 if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
4136 !(s->flags & SLAB_STORE_USER))
4137 return;
4138#ifdef CONFIG_SLUB_DEBUG
0cbc124b 4139 objp = fixup_red_left(s, objp);
8e7f37f2
PM
4140 trackp = get_track(s, objp, TRACK_ALLOC);
4141 kpp->kp_ret = (void *)trackp->addr;
ae14c63a
LT
4142#ifdef CONFIG_STACKTRACE
4143 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4144 kpp->kp_stack[i] = (void *)trackp->addrs[i];
4145 if (!kpp->kp_stack[i])
4146 break;
4147 }
78869146 4148
ae14c63a
LT
4149 trackp = get_track(s, objp, TRACK_FREE);
4150 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4151 kpp->kp_free_stack[i] = (void *)trackp->addrs[i];
4152 if (!kpp->kp_free_stack[i])
4153 break;
e548eaa1 4154 }
8e7f37f2
PM
4155#endif
4156#endif
4157}
5bb1bb35 4158#endif
8e7f37f2 4159
81819f0f
CL
4160/********************************************************************
4161 * Kmalloc subsystem
4162 *******************************************************************/
4163
81819f0f
CL
4164static int __init setup_slub_min_order(char *str)
4165{
19af27af 4166 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
4167
4168 return 1;
4169}
4170
4171__setup("slub_min_order=", setup_slub_min_order);
4172
4173static int __init setup_slub_max_order(char *str)
4174{
19af27af
AD
4175 get_option(&str, (int *)&slub_max_order);
4176 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
4177
4178 return 1;
4179}
4180
4181__setup("slub_max_order=", setup_slub_max_order);
4182
4183static int __init setup_slub_min_objects(char *str)
4184{
19af27af 4185 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
4186
4187 return 1;
4188}
4189
4190__setup("slub_min_objects=", setup_slub_min_objects);
4191
81819f0f
CL
4192void *__kmalloc(size_t size, gfp_t flags)
4193{
aadb4bc4 4194 struct kmem_cache *s;
5b882be4 4195 void *ret;
81819f0f 4196
95a05b42 4197 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 4198 return kmalloc_large(size, flags);
aadb4bc4 4199
2c59dd65 4200 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4201
4202 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4203 return s;
4204
b89fb5ef 4205 ret = slab_alloc(s, flags, _RET_IP_, size);
5b882be4 4206
ca2b84cb 4207 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 4208
0116523c 4209 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4210
5b882be4 4211 return ret;
81819f0f
CL
4212}
4213EXPORT_SYMBOL(__kmalloc);
4214
5d1f57e4 4215#ifdef CONFIG_NUMA
f619cfe1
CL
4216static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4217{
b1eeab67 4218 struct page *page;
e4f7c0b4 4219 void *ptr = NULL;
6a486c0a 4220 unsigned int order = get_order(size);
f619cfe1 4221
75f296d9 4222 flags |= __GFP_COMP;
6a486c0a
VB
4223 page = alloc_pages_node(node, flags, order);
4224 if (page) {
e4f7c0b4 4225 ptr = page_address(page);
96403bfe
MS
4226 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4227 PAGE_SIZE << order);
6a486c0a 4228 }
e4f7c0b4 4229
0116523c 4230 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
4231}
4232
81819f0f
CL
4233void *__kmalloc_node(size_t size, gfp_t flags, int node)
4234{
aadb4bc4 4235 struct kmem_cache *s;
5b882be4 4236 void *ret;
81819f0f 4237
95a05b42 4238 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
4239 ret = kmalloc_large_node(size, flags, node);
4240
ca2b84cb
EGM
4241 trace_kmalloc_node(_RET_IP_, ret,
4242 size, PAGE_SIZE << get_order(size),
4243 flags, node);
5b882be4
EGM
4244
4245 return ret;
4246 }
aadb4bc4 4247
2c59dd65 4248 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4249
4250 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4251 return s;
4252
b89fb5ef 4253 ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
5b882be4 4254
ca2b84cb 4255 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 4256
0116523c 4257 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4258
5b882be4 4259 return ret;
81819f0f
CL
4260}
4261EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 4262#endif /* CONFIG_NUMA */
81819f0f 4263
ed18adc1
KC
4264#ifdef CONFIG_HARDENED_USERCOPY
4265/*
afcc90f8
KC
4266 * Rejects incorrectly sized objects and objects that are to be copied
4267 * to/from userspace but do not fall entirely within the containing slab
4268 * cache's usercopy region.
ed18adc1
KC
4269 *
4270 * Returns NULL if check passes, otherwise const char * to name of cache
4271 * to indicate an error.
4272 */
f4e6e289
KC
4273void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4274 bool to_user)
ed18adc1
KC
4275{
4276 struct kmem_cache *s;
44065b2e 4277 unsigned int offset;
ed18adc1 4278 size_t object_size;
b89fb5ef 4279 bool is_kfence = is_kfence_address(ptr);
ed18adc1 4280
96fedce2
AK
4281 ptr = kasan_reset_tag(ptr);
4282
ed18adc1
KC
4283 /* Find object and usable object size. */
4284 s = page->slab_cache;
ed18adc1
KC
4285
4286 /* Reject impossible pointers. */
4287 if (ptr < page_address(page))
f4e6e289
KC
4288 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4289 to_user, 0, n);
ed18adc1
KC
4290
4291 /* Find offset within object. */
b89fb5ef
AP
4292 if (is_kfence)
4293 offset = ptr - kfence_object_start(ptr);
4294 else
4295 offset = (ptr - page_address(page)) % s->size;
ed18adc1
KC
4296
4297 /* Adjust for redzone and reject if within the redzone. */
b89fb5ef 4298 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 4299 if (offset < s->red_left_pad)
f4e6e289
KC
4300 usercopy_abort("SLUB object in left red zone",
4301 s->name, to_user, offset, n);
ed18adc1
KC
4302 offset -= s->red_left_pad;
4303 }
4304
afcc90f8
KC
4305 /* Allow address range falling entirely within usercopy region. */
4306 if (offset >= s->useroffset &&
4307 offset - s->useroffset <= s->usersize &&
4308 n <= s->useroffset - offset + s->usersize)
f4e6e289 4309 return;
ed18adc1 4310
afcc90f8
KC
4311 /*
4312 * If the copy is still within the allocated object, produce
4313 * a warning instead of rejecting the copy. This is intended
4314 * to be a temporary method to find any missing usercopy
4315 * whitelists.
4316 */
4317 object_size = slab_ksize(s);
2d891fbc
KC
4318 if (usercopy_fallback &&
4319 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
4320 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4321 return;
4322 }
ed18adc1 4323
f4e6e289 4324 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
4325}
4326#endif /* CONFIG_HARDENED_USERCOPY */
4327
10d1f8cb 4328size_t __ksize(const void *object)
81819f0f 4329{
272c1d21 4330 struct page *page;
81819f0f 4331
ef8b4520 4332 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
4333 return 0;
4334
294a80a8 4335 page = virt_to_head_page(object);
294a80a8 4336
76994412
PE
4337 if (unlikely(!PageSlab(page))) {
4338 WARN_ON(!PageCompound(page));
a50b854e 4339 return page_size(page);
76994412 4340 }
81819f0f 4341
1b4f59e3 4342 return slab_ksize(page->slab_cache);
81819f0f 4343}
10d1f8cb 4344EXPORT_SYMBOL(__ksize);
81819f0f
CL
4345
4346void kfree(const void *x)
4347{
81819f0f 4348 struct page *page;
5bb983b0 4349 void *object = (void *)x;
81819f0f 4350
2121db74
PE
4351 trace_kfree(_RET_IP_, x);
4352
2408c550 4353 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
4354 return;
4355
b49af68f 4356 page = virt_to_head_page(x);
aadb4bc4 4357 if (unlikely(!PageSlab(page))) {
1ed7ce57 4358 free_nonslab_page(page, object);
aadb4bc4
CL
4359 return;
4360 }
81084651 4361 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
4362}
4363EXPORT_SYMBOL(kfree);
4364
832f37f5
VD
4365#define SHRINK_PROMOTE_MAX 32
4366
2086d26a 4367/*
832f37f5
VD
4368 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4369 * up most to the head of the partial lists. New allocations will then
4370 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4371 *
4372 * The slabs with the least items are placed last. This results in them
4373 * being allocated from last increasing the chance that the last objects
4374 * are freed in them.
2086d26a 4375 */
c9fc5864 4376int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
4377{
4378 int node;
4379 int i;
4380 struct kmem_cache_node *n;
4381 struct page *page;
4382 struct page *t;
832f37f5
VD
4383 struct list_head discard;
4384 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4385 unsigned long flags;
ce3712d7 4386 int ret = 0;
2086d26a 4387
2086d26a 4388 flush_all(s);
fa45dc25 4389 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4390 INIT_LIST_HEAD(&discard);
4391 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4392 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4393
4394 spin_lock_irqsave(&n->list_lock, flags);
4395
4396 /*
832f37f5 4397 * Build lists of slabs to discard or promote.
2086d26a 4398 *
672bba3a
CL
4399 * Note that concurrent frees may occur while we hold the
4400 * list_lock. page->inuse here is the upper limit.
2086d26a 4401 */
916ac052 4402 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
4403 int free = page->objects - page->inuse;
4404
4405 /* Do not reread page->inuse */
4406 barrier();
4407
4408 /* We do not keep full slabs on the list */
4409 BUG_ON(free <= 0);
4410
4411 if (free == page->objects) {
916ac052 4412 list_move(&page->slab_list, &discard);
69cb8e6b 4413 n->nr_partial--;
832f37f5 4414 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4415 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4416 }
4417
2086d26a 4418 /*
832f37f5
VD
4419 * Promote the slabs filled up most to the head of the
4420 * partial list.
2086d26a 4421 */
832f37f5
VD
4422 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4423 list_splice(promote + i, &n->partial);
2086d26a 4424
2086d26a 4425 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4426
4427 /* Release empty slabs */
916ac052 4428 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4429 discard_slab(s, page);
ce3712d7
VD
4430
4431 if (slabs_node(s, node))
4432 ret = 1;
2086d26a
CL
4433 }
4434
ce3712d7 4435 return ret;
2086d26a 4436}
2086d26a 4437
b9049e23
YG
4438static int slab_mem_going_offline_callback(void *arg)
4439{
4440 struct kmem_cache *s;
4441
18004c5d 4442 mutex_lock(&slab_mutex);
b9049e23 4443 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4444 __kmem_cache_shrink(s);
18004c5d 4445 mutex_unlock(&slab_mutex);
b9049e23
YG
4446
4447 return 0;
4448}
4449
4450static void slab_mem_offline_callback(void *arg)
4451{
b9049e23
YG
4452 struct memory_notify *marg = arg;
4453 int offline_node;
4454
b9d5ab25 4455 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4456
4457 /*
4458 * If the node still has available memory. we need kmem_cache_node
4459 * for it yet.
4460 */
4461 if (offline_node < 0)
4462 return;
4463
18004c5d 4464 mutex_lock(&slab_mutex);
7e1fa93d 4465 node_clear(offline_node, slab_nodes);
666716fd
VB
4466 /*
4467 * We no longer free kmem_cache_node structures here, as it would be
4468 * racy with all get_node() users, and infeasible to protect them with
4469 * slab_mutex.
4470 */
18004c5d 4471 mutex_unlock(&slab_mutex);
b9049e23
YG
4472}
4473
4474static int slab_mem_going_online_callback(void *arg)
4475{
4476 struct kmem_cache_node *n;
4477 struct kmem_cache *s;
4478 struct memory_notify *marg = arg;
b9d5ab25 4479 int nid = marg->status_change_nid_normal;
b9049e23
YG
4480 int ret = 0;
4481
4482 /*
4483 * If the node's memory is already available, then kmem_cache_node is
4484 * already created. Nothing to do.
4485 */
4486 if (nid < 0)
4487 return 0;
4488
4489 /*
0121c619 4490 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4491 * allocate a kmem_cache_node structure in order to bring the node
4492 * online.
4493 */
18004c5d 4494 mutex_lock(&slab_mutex);
b9049e23 4495 list_for_each_entry(s, &slab_caches, list) {
666716fd
VB
4496 /*
4497 * The structure may already exist if the node was previously
4498 * onlined and offlined.
4499 */
4500 if (get_node(s, nid))
4501 continue;
b9049e23
YG
4502 /*
4503 * XXX: kmem_cache_alloc_node will fallback to other nodes
4504 * since memory is not yet available from the node that
4505 * is brought up.
4506 */
8de66a0c 4507 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4508 if (!n) {
4509 ret = -ENOMEM;
4510 goto out;
4511 }
4053497d 4512 init_kmem_cache_node(n);
b9049e23
YG
4513 s->node[nid] = n;
4514 }
7e1fa93d
VB
4515 /*
4516 * Any cache created after this point will also have kmem_cache_node
4517 * initialized for the new node.
4518 */
4519 node_set(nid, slab_nodes);
b9049e23 4520out:
18004c5d 4521 mutex_unlock(&slab_mutex);
b9049e23
YG
4522 return ret;
4523}
4524
4525static int slab_memory_callback(struct notifier_block *self,
4526 unsigned long action, void *arg)
4527{
4528 int ret = 0;
4529
4530 switch (action) {
4531 case MEM_GOING_ONLINE:
4532 ret = slab_mem_going_online_callback(arg);
4533 break;
4534 case MEM_GOING_OFFLINE:
4535 ret = slab_mem_going_offline_callback(arg);
4536 break;
4537 case MEM_OFFLINE:
4538 case MEM_CANCEL_ONLINE:
4539 slab_mem_offline_callback(arg);
4540 break;
4541 case MEM_ONLINE:
4542 case MEM_CANCEL_OFFLINE:
4543 break;
4544 }
dc19f9db
KH
4545 if (ret)
4546 ret = notifier_from_errno(ret);
4547 else
4548 ret = NOTIFY_OK;
b9049e23
YG
4549 return ret;
4550}
4551
3ac38faa
AM
4552static struct notifier_block slab_memory_callback_nb = {
4553 .notifier_call = slab_memory_callback,
4554 .priority = SLAB_CALLBACK_PRI,
4555};
b9049e23 4556
81819f0f
CL
4557/********************************************************************
4558 * Basic setup of slabs
4559 *******************************************************************/
4560
51df1142
CL
4561/*
4562 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4563 * the page allocator. Allocate them properly then fix up the pointers
4564 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4565 */
4566
dffb4d60 4567static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4568{
4569 int node;
dffb4d60 4570 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4571 struct kmem_cache_node *n;
51df1142 4572
dffb4d60 4573 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4574
7d557b3c
GC
4575 /*
4576 * This runs very early, and only the boot processor is supposed to be
4577 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4578 * IPIs around.
4579 */
4580 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4581 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4582 struct page *p;
4583
916ac052 4584 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4585 p->slab_cache = s;
51df1142 4586
607bf324 4587#ifdef CONFIG_SLUB_DEBUG
916ac052 4588 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4589 p->slab_cache = s;
51df1142 4590#endif
51df1142 4591 }
dffb4d60
CL
4592 list_add(&s->list, &slab_caches);
4593 return s;
51df1142
CL
4594}
4595
81819f0f
CL
4596void __init kmem_cache_init(void)
4597{
dffb4d60
CL
4598 static __initdata struct kmem_cache boot_kmem_cache,
4599 boot_kmem_cache_node;
7e1fa93d 4600 int node;
51df1142 4601
fc8d8620
SG
4602 if (debug_guardpage_minorder())
4603 slub_max_order = 0;
4604
79270291
SB
4605 /* Print slub debugging pointers without hashing */
4606 if (__slub_debug_enabled())
4607 no_hash_pointers_enable(NULL);
4608
dffb4d60
CL
4609 kmem_cache_node = &boot_kmem_cache_node;
4610 kmem_cache = &boot_kmem_cache;
51df1142 4611
7e1fa93d
VB
4612 /*
4613 * Initialize the nodemask for which we will allocate per node
4614 * structures. Here we don't need taking slab_mutex yet.
4615 */
4616 for_each_node_state(node, N_NORMAL_MEMORY)
4617 node_set(node, slab_nodes);
4618
dffb4d60 4619 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4620 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4621
3ac38faa 4622 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4623
4624 /* Able to allocate the per node structures */
4625 slab_state = PARTIAL;
4626
dffb4d60
CL
4627 create_boot_cache(kmem_cache, "kmem_cache",
4628 offsetof(struct kmem_cache, node) +
4629 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4630 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4631
dffb4d60 4632 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4633 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4634
4635 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4636 setup_kmalloc_cache_index_table();
f97d5f63 4637 create_kmalloc_caches(0);
81819f0f 4638
210e7a43
TG
4639 /* Setup random freelists for each cache */
4640 init_freelist_randomization();
4641
a96a87bf
SAS
4642 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4643 slub_cpu_dead);
81819f0f 4644
b9726c26 4645 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4646 cache_line_size(),
81819f0f
CL
4647 slub_min_order, slub_max_order, slub_min_objects,
4648 nr_cpu_ids, nr_node_ids);
4649}
4650
7e85ee0c
PE
4651void __init kmem_cache_init_late(void)
4652{
7e85ee0c
PE
4653}
4654
2633d7a0 4655struct kmem_cache *
f4957d5b 4656__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4657 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4658{
10befea9 4659 struct kmem_cache *s;
81819f0f 4660
a44cb944 4661 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4662 if (s) {
4663 s->refcount++;
84d0ddd6 4664
81819f0f
CL
4665 /*
4666 * Adjust the object sizes so that we clear
4667 * the complete object on kzalloc.
4668 */
1b473f29 4669 s->object_size = max(s->object_size, size);
52ee6d74 4670 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4671
7b8f3b66 4672 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4673 s->refcount--;
cbb79694 4674 s = NULL;
7b8f3b66 4675 }
a0e1d1be 4676 }
6446faa2 4677
cbb79694
CL
4678 return s;
4679}
84c1cf62 4680
d50112ed 4681int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4682{
aac3a166
PE
4683 int err;
4684
4685 err = kmem_cache_open(s, flags);
4686 if (err)
4687 return err;
20cea968 4688
45530c44
CL
4689 /* Mutex is not taken during early boot */
4690 if (slab_state <= UP)
4691 return 0;
4692
aac3a166 4693 err = sysfs_slab_add(s);
aac3a166 4694 if (err)
52b4b950 4695 __kmem_cache_release(s);
20cea968 4696
64dd6849
FM
4697 if (s->flags & SLAB_STORE_USER)
4698 debugfs_slab_add(s);
4699
aac3a166 4700 return err;
81819f0f 4701}
81819f0f 4702
ce71e27c 4703void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4704{
aadb4bc4 4705 struct kmem_cache *s;
94b528d0 4706 void *ret;
aadb4bc4 4707
95a05b42 4708 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4709 return kmalloc_large(size, gfpflags);
4710
2c59dd65 4711 s = kmalloc_slab(size, gfpflags);
81819f0f 4712
2408c550 4713 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4714 return s;
81819f0f 4715
b89fb5ef 4716 ret = slab_alloc(s, gfpflags, caller, size);
94b528d0 4717
25985edc 4718 /* Honor the call site pointer we received. */
ca2b84cb 4719 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4720
4721 return ret;
81819f0f 4722}
fd7cb575 4723EXPORT_SYMBOL(__kmalloc_track_caller);
81819f0f 4724
5d1f57e4 4725#ifdef CONFIG_NUMA
81819f0f 4726void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4727 int node, unsigned long caller)
81819f0f 4728{
aadb4bc4 4729 struct kmem_cache *s;
94b528d0 4730 void *ret;
aadb4bc4 4731
95a05b42 4732 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4733 ret = kmalloc_large_node(size, gfpflags, node);
4734
4735 trace_kmalloc_node(caller, ret,
4736 size, PAGE_SIZE << get_order(size),
4737 gfpflags, node);
4738
4739 return ret;
4740 }
eada35ef 4741
2c59dd65 4742 s = kmalloc_slab(size, gfpflags);
81819f0f 4743
2408c550 4744 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4745 return s;
81819f0f 4746
b89fb5ef 4747 ret = slab_alloc_node(s, gfpflags, node, caller, size);
94b528d0 4748
25985edc 4749 /* Honor the call site pointer we received. */
ca2b84cb 4750 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4751
4752 return ret;
81819f0f 4753}
fd7cb575 4754EXPORT_SYMBOL(__kmalloc_node_track_caller);
5d1f57e4 4755#endif
81819f0f 4756
ab4d5ed5 4757#ifdef CONFIG_SYSFS
205ab99d
CL
4758static int count_inuse(struct page *page)
4759{
4760 return page->inuse;
4761}
4762
4763static int count_total(struct page *page)
4764{
4765 return page->objects;
4766}
ab4d5ed5 4767#endif
205ab99d 4768
ab4d5ed5 4769#ifdef CONFIG_SLUB_DEBUG
0a19e7dd
VB
4770static void validate_slab(struct kmem_cache *s, struct page *page,
4771 unsigned long *obj_map)
53e15af0
CL
4772{
4773 void *p;
a973e9dd 4774 void *addr = page_address(page);
90e9f6a6
YZ
4775
4776 slab_lock(page);
53e15af0 4777
dd98afd4 4778 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
90e9f6a6 4779 goto unlock;
53e15af0
CL
4780
4781 /* Now we know that a valid freelist exists */
0a19e7dd 4782 __fill_map(obj_map, s, page);
5f80b13a 4783 for_each_object(p, s, addr, page->objects) {
0a19e7dd 4784 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
dd98afd4 4785 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 4786
dd98afd4
YZ
4787 if (!check_object(s, page, p, val))
4788 break;
4789 }
90e9f6a6 4790unlock:
881db7fb 4791 slab_unlock(page);
53e15af0
CL
4792}
4793
434e245d 4794static int validate_slab_node(struct kmem_cache *s,
0a19e7dd 4795 struct kmem_cache_node *n, unsigned long *obj_map)
53e15af0
CL
4796{
4797 unsigned long count = 0;
4798 struct page *page;
4799 unsigned long flags;
4800
4801 spin_lock_irqsave(&n->list_lock, flags);
4802
916ac052 4803 list_for_each_entry(page, &n->partial, slab_list) {
0a19e7dd 4804 validate_slab(s, page, obj_map);
53e15af0
CL
4805 count++;
4806 }
1f9f78b1 4807 if (count != n->nr_partial) {
f9f58285
FF
4808 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4809 s->name, count, n->nr_partial);
1f9f78b1
OG
4810 slab_add_kunit_errors();
4811 }
53e15af0
CL
4812
4813 if (!(s->flags & SLAB_STORE_USER))
4814 goto out;
4815
916ac052 4816 list_for_each_entry(page, &n->full, slab_list) {
0a19e7dd 4817 validate_slab(s, page, obj_map);
53e15af0
CL
4818 count++;
4819 }
1f9f78b1 4820 if (count != atomic_long_read(&n->nr_slabs)) {
f9f58285
FF
4821 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4822 s->name, count, atomic_long_read(&n->nr_slabs));
1f9f78b1
OG
4823 slab_add_kunit_errors();
4824 }
53e15af0
CL
4825
4826out:
4827 spin_unlock_irqrestore(&n->list_lock, flags);
4828 return count;
4829}
4830
1f9f78b1 4831long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4832{
4833 int node;
4834 unsigned long count = 0;
fa45dc25 4835 struct kmem_cache_node *n;
0a19e7dd
VB
4836 unsigned long *obj_map;
4837
4838 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
4839 if (!obj_map)
4840 return -ENOMEM;
53e15af0
CL
4841
4842 flush_all(s);
fa45dc25 4843 for_each_kmem_cache_node(s, node, n)
0a19e7dd
VB
4844 count += validate_slab_node(s, n, obj_map);
4845
4846 bitmap_free(obj_map);
90e9f6a6 4847
53e15af0
CL
4848 return count;
4849}
1f9f78b1
OG
4850EXPORT_SYMBOL(validate_slab_cache);
4851
64dd6849 4852#ifdef CONFIG_DEBUG_FS
88a420e4 4853/*
672bba3a 4854 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4855 * and freed.
4856 */
4857
4858struct location {
4859 unsigned long count;
ce71e27c 4860 unsigned long addr;
45edfa58
CL
4861 long long sum_time;
4862 long min_time;
4863 long max_time;
4864 long min_pid;
4865 long max_pid;
174596a0 4866 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4867 nodemask_t nodes;
88a420e4
CL
4868};
4869
4870struct loc_track {
4871 unsigned long max;
4872 unsigned long count;
4873 struct location *loc;
4874};
4875
64dd6849
FM
4876static struct dentry *slab_debugfs_root;
4877
88a420e4
CL
4878static void free_loc_track(struct loc_track *t)
4879{
4880 if (t->max)
4881 free_pages((unsigned long)t->loc,
4882 get_order(sizeof(struct location) * t->max));
4883}
4884
68dff6a9 4885static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4886{
4887 struct location *l;
4888 int order;
4889
88a420e4
CL
4890 order = get_order(sizeof(struct location) * max);
4891
68dff6a9 4892 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4893 if (!l)
4894 return 0;
4895
4896 if (t->count) {
4897 memcpy(l, t->loc, sizeof(struct location) * t->count);
4898 free_loc_track(t);
4899 }
4900 t->max = max;
4901 t->loc = l;
4902 return 1;
4903}
4904
4905static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4906 const struct track *track)
88a420e4
CL
4907{
4908 long start, end, pos;
4909 struct location *l;
ce71e27c 4910 unsigned long caddr;
45edfa58 4911 unsigned long age = jiffies - track->when;
88a420e4
CL
4912
4913 start = -1;
4914 end = t->count;
4915
4916 for ( ; ; ) {
4917 pos = start + (end - start + 1) / 2;
4918
4919 /*
4920 * There is nothing at "end". If we end up there
4921 * we need to add something to before end.
4922 */
4923 if (pos == end)
4924 break;
4925
4926 caddr = t->loc[pos].addr;
45edfa58
CL
4927 if (track->addr == caddr) {
4928
4929 l = &t->loc[pos];
4930 l->count++;
4931 if (track->when) {
4932 l->sum_time += age;
4933 if (age < l->min_time)
4934 l->min_time = age;
4935 if (age > l->max_time)
4936 l->max_time = age;
4937
4938 if (track->pid < l->min_pid)
4939 l->min_pid = track->pid;
4940 if (track->pid > l->max_pid)
4941 l->max_pid = track->pid;
4942
174596a0
RR
4943 cpumask_set_cpu(track->cpu,
4944 to_cpumask(l->cpus));
45edfa58
CL
4945 }
4946 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4947 return 1;
4948 }
4949
45edfa58 4950 if (track->addr < caddr)
88a420e4
CL
4951 end = pos;
4952 else
4953 start = pos;
4954 }
4955
4956 /*
672bba3a 4957 * Not found. Insert new tracking element.
88a420e4 4958 */
68dff6a9 4959 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4960 return 0;
4961
4962 l = t->loc + pos;
4963 if (pos < t->count)
4964 memmove(l + 1, l,
4965 (t->count - pos) * sizeof(struct location));
4966 t->count++;
4967 l->count = 1;
45edfa58
CL
4968 l->addr = track->addr;
4969 l->sum_time = age;
4970 l->min_time = age;
4971 l->max_time = age;
4972 l->min_pid = track->pid;
4973 l->max_pid = track->pid;
174596a0
RR
4974 cpumask_clear(to_cpumask(l->cpus));
4975 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4976 nodes_clear(l->nodes);
4977 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4978 return 1;
4979}
4980
4981static void process_slab(struct loc_track *t, struct kmem_cache *s,
b3fd64e1
VB
4982 struct page *page, enum track_item alloc,
4983 unsigned long *obj_map)
88a420e4 4984{
a973e9dd 4985 void *addr = page_address(page);
88a420e4
CL
4986 void *p;
4987
b3fd64e1
VB
4988 __fill_map(obj_map, s, page);
4989
224a88be 4990 for_each_object(p, s, addr, page->objects)
b3fd64e1 4991 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
45edfa58 4992 add_location(t, s, get_track(s, p, alloc));
88a420e4 4993}
64dd6849 4994#endif /* CONFIG_DEBUG_FS */
6dfd1b65 4995#endif /* CONFIG_SLUB_DEBUG */
88a420e4 4996
ab4d5ed5 4997#ifdef CONFIG_SYSFS
81819f0f 4998enum slab_stat_type {
205ab99d
CL
4999 SL_ALL, /* All slabs */
5000 SL_PARTIAL, /* Only partially allocated slabs */
5001 SL_CPU, /* Only slabs used for cpu caches */
5002 SL_OBJECTS, /* Determine allocated objects not slabs */
5003 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
5004};
5005
205ab99d 5006#define SO_ALL (1 << SL_ALL)
81819f0f
CL
5007#define SO_PARTIAL (1 << SL_PARTIAL)
5008#define SO_CPU (1 << SL_CPU)
5009#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 5010#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 5011
62e5c4b4 5012static ssize_t show_slab_objects(struct kmem_cache *s,
bf16d19a 5013 char *buf, unsigned long flags)
81819f0f
CL
5014{
5015 unsigned long total = 0;
81819f0f
CL
5016 int node;
5017 int x;
5018 unsigned long *nodes;
bf16d19a 5019 int len = 0;
81819f0f 5020
6396bb22 5021 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
5022 if (!nodes)
5023 return -ENOMEM;
81819f0f 5024
205ab99d
CL
5025 if (flags & SO_CPU) {
5026 int cpu;
81819f0f 5027
205ab99d 5028 for_each_possible_cpu(cpu) {
d0e0ac97
CG
5029 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5030 cpu);
ec3ab083 5031 int node;
49e22585 5032 struct page *page;
dfb4f096 5033
4db0c3c2 5034 page = READ_ONCE(c->page);
ec3ab083
CL
5035 if (!page)
5036 continue;
205ab99d 5037
ec3ab083
CL
5038 node = page_to_nid(page);
5039 if (flags & SO_TOTAL)
5040 x = page->objects;
5041 else if (flags & SO_OBJECTS)
5042 x = page->inuse;
5043 else
5044 x = 1;
49e22585 5045
ec3ab083
CL
5046 total += x;
5047 nodes[node] += x;
5048
a93cf07b 5049 page = slub_percpu_partial_read_once(c);
49e22585 5050 if (page) {
8afb1474
LZ
5051 node = page_to_nid(page);
5052 if (flags & SO_TOTAL)
5053 WARN_ON_ONCE(1);
5054 else if (flags & SO_OBJECTS)
5055 WARN_ON_ONCE(1);
5056 else
5057 x = page->pages;
bc6697d8
ED
5058 total += x;
5059 nodes[node] += x;
49e22585 5060 }
81819f0f
CL
5061 }
5062 }
5063
e4f8e513
QC
5064 /*
5065 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5066 * already held which will conflict with an existing lock order:
5067 *
5068 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5069 *
5070 * We don't really need mem_hotplug_lock (to hold off
5071 * slab_mem_going_offline_callback) here because slab's memory hot
5072 * unplug code doesn't destroy the kmem_cache->node[] data.
5073 */
5074
ab4d5ed5 5075#ifdef CONFIG_SLUB_DEBUG
205ab99d 5076 if (flags & SO_ALL) {
fa45dc25
CL
5077 struct kmem_cache_node *n;
5078
5079 for_each_kmem_cache_node(s, node, n) {
205ab99d 5080
d0e0ac97
CG
5081 if (flags & SO_TOTAL)
5082 x = atomic_long_read(&n->total_objects);
5083 else if (flags & SO_OBJECTS)
5084 x = atomic_long_read(&n->total_objects) -
5085 count_partial(n, count_free);
81819f0f 5086 else
205ab99d 5087 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
5088 total += x;
5089 nodes[node] += x;
5090 }
5091
ab4d5ed5
CL
5092 } else
5093#endif
5094 if (flags & SO_PARTIAL) {
fa45dc25 5095 struct kmem_cache_node *n;
81819f0f 5096
fa45dc25 5097 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
5098 if (flags & SO_TOTAL)
5099 x = count_partial(n, count_total);
5100 else if (flags & SO_OBJECTS)
5101 x = count_partial(n, count_inuse);
81819f0f 5102 else
205ab99d 5103 x = n->nr_partial;
81819f0f
CL
5104 total += x;
5105 nodes[node] += x;
5106 }
5107 }
bf16d19a
JP
5108
5109 len += sysfs_emit_at(buf, len, "%lu", total);
81819f0f 5110#ifdef CONFIG_NUMA
bf16d19a 5111 for (node = 0; node < nr_node_ids; node++) {
81819f0f 5112 if (nodes[node])
bf16d19a
JP
5113 len += sysfs_emit_at(buf, len, " N%d=%lu",
5114 node, nodes[node]);
5115 }
81819f0f 5116#endif
bf16d19a 5117 len += sysfs_emit_at(buf, len, "\n");
81819f0f 5118 kfree(nodes);
bf16d19a
JP
5119
5120 return len;
81819f0f
CL
5121}
5122
81819f0f 5123#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 5124#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
5125
5126struct slab_attribute {
5127 struct attribute attr;
5128 ssize_t (*show)(struct kmem_cache *s, char *buf);
5129 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5130};
5131
5132#define SLAB_ATTR_RO(_name) \
ab067e99
VK
5133 static struct slab_attribute _name##_attr = \
5134 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
5135
5136#define SLAB_ATTR(_name) \
5137 static struct slab_attribute _name##_attr = \
ab067e99 5138 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 5139
81819f0f
CL
5140static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5141{
bf16d19a 5142 return sysfs_emit(buf, "%u\n", s->size);
81819f0f
CL
5143}
5144SLAB_ATTR_RO(slab_size);
5145
5146static ssize_t align_show(struct kmem_cache *s, char *buf)
5147{
bf16d19a 5148 return sysfs_emit(buf, "%u\n", s->align);
81819f0f
CL
5149}
5150SLAB_ATTR_RO(align);
5151
5152static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5153{
bf16d19a 5154 return sysfs_emit(buf, "%u\n", s->object_size);
81819f0f
CL
5155}
5156SLAB_ATTR_RO(object_size);
5157
5158static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5159{
bf16d19a 5160 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
5161}
5162SLAB_ATTR_RO(objs_per_slab);
5163
5164static ssize_t order_show(struct kmem_cache *s, char *buf)
5165{
bf16d19a 5166 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
81819f0f 5167}
32a6f409 5168SLAB_ATTR_RO(order);
81819f0f 5169
73d342b1
DR
5170static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5171{
bf16d19a 5172 return sysfs_emit(buf, "%lu\n", s->min_partial);
73d342b1
DR
5173}
5174
5175static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5176 size_t length)
5177{
5178 unsigned long min;
5179 int err;
5180
3dbb95f7 5181 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5182 if (err)
5183 return err;
5184
c0bdb232 5185 set_min_partial(s, min);
73d342b1
DR
5186 return length;
5187}
5188SLAB_ATTR(min_partial);
5189
49e22585
CL
5190static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5191{
bf16d19a 5192 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
5193}
5194
5195static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5196 size_t length)
5197{
e5d9998f 5198 unsigned int objects;
49e22585
CL
5199 int err;
5200
e5d9998f 5201 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5202 if (err)
5203 return err;
345c905d 5204 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5205 return -EINVAL;
49e22585 5206
e6d0e1dc 5207 slub_set_cpu_partial(s, objects);
49e22585
CL
5208 flush_all(s);
5209 return length;
5210}
5211SLAB_ATTR(cpu_partial);
5212
81819f0f
CL
5213static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5214{
62c70bce
JP
5215 if (!s->ctor)
5216 return 0;
bf16d19a 5217 return sysfs_emit(buf, "%pS\n", s->ctor);
81819f0f
CL
5218}
5219SLAB_ATTR_RO(ctor);
5220
81819f0f
CL
5221static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5222{
bf16d19a 5223 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5224}
5225SLAB_ATTR_RO(aliases);
5226
81819f0f
CL
5227static ssize_t partial_show(struct kmem_cache *s, char *buf)
5228{
d9acf4b7 5229 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5230}
5231SLAB_ATTR_RO(partial);
5232
5233static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5234{
d9acf4b7 5235 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5236}
5237SLAB_ATTR_RO(cpu_slabs);
5238
5239static ssize_t objects_show(struct kmem_cache *s, char *buf)
5240{
205ab99d 5241 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5242}
5243SLAB_ATTR_RO(objects);
5244
205ab99d
CL
5245static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5246{
5247 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5248}
5249SLAB_ATTR_RO(objects_partial);
5250
49e22585
CL
5251static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5252{
5253 int objects = 0;
5254 int pages = 0;
5255 int cpu;
bf16d19a 5256 int len = 0;
49e22585
CL
5257
5258 for_each_online_cpu(cpu) {
a93cf07b
WY
5259 struct page *page;
5260
5261 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5262
5263 if (page) {
5264 pages += page->pages;
5265 objects += page->pobjects;
5266 }
5267 }
5268
bf16d19a 5269 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
49e22585
CL
5270
5271#ifdef CONFIG_SMP
5272 for_each_online_cpu(cpu) {
a93cf07b
WY
5273 struct page *page;
5274
5275 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
bf16d19a
JP
5276 if (page)
5277 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5278 cpu, page->pobjects, page->pages);
49e22585
CL
5279 }
5280#endif
bf16d19a
JP
5281 len += sysfs_emit_at(buf, len, "\n");
5282
5283 return len;
49e22585
CL
5284}
5285SLAB_ATTR_RO(slabs_cpu_partial);
5286
a5a84755
CL
5287static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5288{
bf16d19a 5289 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
a5a84755 5290}
8f58119a 5291SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
5292
5293static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5294{
bf16d19a 5295 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
a5a84755
CL
5296}
5297SLAB_ATTR_RO(hwcache_align);
5298
5299#ifdef CONFIG_ZONE_DMA
5300static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5301{
bf16d19a 5302 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
a5a84755
CL
5303}
5304SLAB_ATTR_RO(cache_dma);
5305#endif
5306
8eb8284b
DW
5307static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5308{
bf16d19a 5309 return sysfs_emit(buf, "%u\n", s->usersize);
8eb8284b
DW
5310}
5311SLAB_ATTR_RO(usersize);
5312
a5a84755
CL
5313static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5314{
bf16d19a 5315 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5316}
5317SLAB_ATTR_RO(destroy_by_rcu);
5318
ab4d5ed5 5319#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5320static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5321{
5322 return show_slab_objects(s, buf, SO_ALL);
5323}
5324SLAB_ATTR_RO(slabs);
5325
205ab99d
CL
5326static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5327{
5328 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5329}
5330SLAB_ATTR_RO(total_objects);
5331
81819f0f
CL
5332static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5333{
bf16d19a 5334 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 5335}
060807f8 5336SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
5337
5338static ssize_t trace_show(struct kmem_cache *s, char *buf)
5339{
bf16d19a 5340 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
81819f0f 5341}
060807f8 5342SLAB_ATTR_RO(trace);
81819f0f 5343
81819f0f
CL
5344static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5345{
bf16d19a 5346 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
81819f0f
CL
5347}
5348
ad38b5b1 5349SLAB_ATTR_RO(red_zone);
81819f0f
CL
5350
5351static ssize_t poison_show(struct kmem_cache *s, char *buf)
5352{
bf16d19a 5353 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
81819f0f
CL
5354}
5355
ad38b5b1 5356SLAB_ATTR_RO(poison);
81819f0f
CL
5357
5358static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5359{
bf16d19a 5360 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
81819f0f
CL
5361}
5362
ad38b5b1 5363SLAB_ATTR_RO(store_user);
81819f0f 5364
53e15af0
CL
5365static ssize_t validate_show(struct kmem_cache *s, char *buf)
5366{
5367 return 0;
5368}
5369
5370static ssize_t validate_store(struct kmem_cache *s,
5371 const char *buf, size_t length)
5372{
434e245d
CL
5373 int ret = -EINVAL;
5374
5375 if (buf[0] == '1') {
5376 ret = validate_slab_cache(s);
5377 if (ret >= 0)
5378 ret = length;
5379 }
5380 return ret;
53e15af0
CL
5381}
5382SLAB_ATTR(validate);
a5a84755 5383
a5a84755
CL
5384#endif /* CONFIG_SLUB_DEBUG */
5385
5386#ifdef CONFIG_FAILSLAB
5387static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5388{
bf16d19a 5389 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
a5a84755 5390}
060807f8 5391SLAB_ATTR_RO(failslab);
ab4d5ed5 5392#endif
53e15af0 5393
2086d26a
CL
5394static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5395{
5396 return 0;
5397}
5398
5399static ssize_t shrink_store(struct kmem_cache *s,
5400 const char *buf, size_t length)
5401{
832f37f5 5402 if (buf[0] == '1')
10befea9 5403 kmem_cache_shrink(s);
832f37f5 5404 else
2086d26a
CL
5405 return -EINVAL;
5406 return length;
5407}
5408SLAB_ATTR(shrink);
5409
81819f0f 5410#ifdef CONFIG_NUMA
9824601e 5411static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5412{
bf16d19a 5413 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5414}
5415
9824601e 5416static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5417 const char *buf, size_t length)
5418{
eb7235eb 5419 unsigned int ratio;
0121c619
CL
5420 int err;
5421
eb7235eb 5422 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5423 if (err)
5424 return err;
eb7235eb
AD
5425 if (ratio > 100)
5426 return -ERANGE;
0121c619 5427
eb7235eb 5428 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5429
81819f0f
CL
5430 return length;
5431}
9824601e 5432SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5433#endif
5434
8ff12cfc 5435#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5436static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5437{
5438 unsigned long sum = 0;
5439 int cpu;
bf16d19a 5440 int len = 0;
6da2ec56 5441 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5442
5443 if (!data)
5444 return -ENOMEM;
5445
5446 for_each_online_cpu(cpu) {
9dfc6e68 5447 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5448
5449 data[cpu] = x;
5450 sum += x;
5451 }
5452
bf16d19a 5453 len += sysfs_emit_at(buf, len, "%lu", sum);
8ff12cfc 5454
50ef37b9 5455#ifdef CONFIG_SMP
8ff12cfc 5456 for_each_online_cpu(cpu) {
bf16d19a
JP
5457 if (data[cpu])
5458 len += sysfs_emit_at(buf, len, " C%d=%u",
5459 cpu, data[cpu]);
8ff12cfc 5460 }
50ef37b9 5461#endif
8ff12cfc 5462 kfree(data);
bf16d19a
JP
5463 len += sysfs_emit_at(buf, len, "\n");
5464
5465 return len;
8ff12cfc
CL
5466}
5467
78eb00cc
DR
5468static void clear_stat(struct kmem_cache *s, enum stat_item si)
5469{
5470 int cpu;
5471
5472 for_each_online_cpu(cpu)
9dfc6e68 5473 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5474}
5475
8ff12cfc
CL
5476#define STAT_ATTR(si, text) \
5477static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5478{ \
5479 return show_stat(s, buf, si); \
5480} \
78eb00cc
DR
5481static ssize_t text##_store(struct kmem_cache *s, \
5482 const char *buf, size_t length) \
5483{ \
5484 if (buf[0] != '0') \
5485 return -EINVAL; \
5486 clear_stat(s, si); \
5487 return length; \
5488} \
5489SLAB_ATTR(text); \
8ff12cfc
CL
5490
5491STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5492STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5493STAT_ATTR(FREE_FASTPATH, free_fastpath);
5494STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5495STAT_ATTR(FREE_FROZEN, free_frozen);
5496STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5497STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5498STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5499STAT_ATTR(ALLOC_SLAB, alloc_slab);
5500STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5501STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5502STAT_ATTR(FREE_SLAB, free_slab);
5503STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5504STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5505STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5506STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5507STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5508STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5509STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5510STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5511STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5512STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5513STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5514STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5515STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5516STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5517#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5518
06428780 5519static struct attribute *slab_attrs[] = {
81819f0f
CL
5520 &slab_size_attr.attr,
5521 &object_size_attr.attr,
5522 &objs_per_slab_attr.attr,
5523 &order_attr.attr,
73d342b1 5524 &min_partial_attr.attr,
49e22585 5525 &cpu_partial_attr.attr,
81819f0f 5526 &objects_attr.attr,
205ab99d 5527 &objects_partial_attr.attr,
81819f0f
CL
5528 &partial_attr.attr,
5529 &cpu_slabs_attr.attr,
5530 &ctor_attr.attr,
81819f0f
CL
5531 &aliases_attr.attr,
5532 &align_attr.attr,
81819f0f
CL
5533 &hwcache_align_attr.attr,
5534 &reclaim_account_attr.attr,
5535 &destroy_by_rcu_attr.attr,
a5a84755 5536 &shrink_attr.attr,
49e22585 5537 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5538#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5539 &total_objects_attr.attr,
5540 &slabs_attr.attr,
5541 &sanity_checks_attr.attr,
5542 &trace_attr.attr,
81819f0f
CL
5543 &red_zone_attr.attr,
5544 &poison_attr.attr,
5545 &store_user_attr.attr,
53e15af0 5546 &validate_attr.attr,
ab4d5ed5 5547#endif
81819f0f
CL
5548#ifdef CONFIG_ZONE_DMA
5549 &cache_dma_attr.attr,
5550#endif
5551#ifdef CONFIG_NUMA
9824601e 5552 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5553#endif
5554#ifdef CONFIG_SLUB_STATS
5555 &alloc_fastpath_attr.attr,
5556 &alloc_slowpath_attr.attr,
5557 &free_fastpath_attr.attr,
5558 &free_slowpath_attr.attr,
5559 &free_frozen_attr.attr,
5560 &free_add_partial_attr.attr,
5561 &free_remove_partial_attr.attr,
5562 &alloc_from_partial_attr.attr,
5563 &alloc_slab_attr.attr,
5564 &alloc_refill_attr.attr,
e36a2652 5565 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5566 &free_slab_attr.attr,
5567 &cpuslab_flush_attr.attr,
5568 &deactivate_full_attr.attr,
5569 &deactivate_empty_attr.attr,
5570 &deactivate_to_head_attr.attr,
5571 &deactivate_to_tail_attr.attr,
5572 &deactivate_remote_frees_attr.attr,
03e404af 5573 &deactivate_bypass_attr.attr,
65c3376a 5574 &order_fallback_attr.attr,
b789ef51
CL
5575 &cmpxchg_double_fail_attr.attr,
5576 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5577 &cpu_partial_alloc_attr.attr,
5578 &cpu_partial_free_attr.attr,
8028dcea
AS
5579 &cpu_partial_node_attr.attr,
5580 &cpu_partial_drain_attr.attr,
81819f0f 5581#endif
4c13dd3b
DM
5582#ifdef CONFIG_FAILSLAB
5583 &failslab_attr.attr,
5584#endif
8eb8284b 5585 &usersize_attr.attr,
4c13dd3b 5586
81819f0f
CL
5587 NULL
5588};
5589
1fdaaa23 5590static const struct attribute_group slab_attr_group = {
81819f0f
CL
5591 .attrs = slab_attrs,
5592};
5593
5594static ssize_t slab_attr_show(struct kobject *kobj,
5595 struct attribute *attr,
5596 char *buf)
5597{
5598 struct slab_attribute *attribute;
5599 struct kmem_cache *s;
5600 int err;
5601
5602 attribute = to_slab_attr(attr);
5603 s = to_slab(kobj);
5604
5605 if (!attribute->show)
5606 return -EIO;
5607
5608 err = attribute->show(s, buf);
5609
5610 return err;
5611}
5612
5613static ssize_t slab_attr_store(struct kobject *kobj,
5614 struct attribute *attr,
5615 const char *buf, size_t len)
5616{
5617 struct slab_attribute *attribute;
5618 struct kmem_cache *s;
5619 int err;
5620
5621 attribute = to_slab_attr(attr);
5622 s = to_slab(kobj);
5623
5624 if (!attribute->store)
5625 return -EIO;
5626
5627 err = attribute->store(s, buf, len);
81819f0f
CL
5628 return err;
5629}
5630
41a21285
CL
5631static void kmem_cache_release(struct kobject *k)
5632{
5633 slab_kmem_cache_release(to_slab(k));
5634}
5635
52cf25d0 5636static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5637 .show = slab_attr_show,
5638 .store = slab_attr_store,
5639};
5640
5641static struct kobj_type slab_ktype = {
5642 .sysfs_ops = &slab_sysfs_ops,
41a21285 5643 .release = kmem_cache_release,
81819f0f
CL
5644};
5645
27c3a314 5646static struct kset *slab_kset;
81819f0f 5647
9a41707b
VD
5648static inline struct kset *cache_kset(struct kmem_cache *s)
5649{
9a41707b
VD
5650 return slab_kset;
5651}
5652
81819f0f
CL
5653#define ID_STR_LENGTH 64
5654
5655/* Create a unique string id for a slab cache:
6446faa2
CL
5656 *
5657 * Format :[flags-]size
81819f0f
CL
5658 */
5659static char *create_unique_id(struct kmem_cache *s)
5660{
5661 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5662 char *p = name;
5663
5664 BUG_ON(!name);
5665
5666 *p++ = ':';
5667 /*
5668 * First flags affecting slabcache operations. We will only
5669 * get here for aliasable slabs so we do not need to support
5670 * too many flags. The flags here must cover all flags that
5671 * are matched during merging to guarantee that the id is
5672 * unique.
5673 */
5674 if (s->flags & SLAB_CACHE_DMA)
5675 *p++ = 'd';
6d6ea1e9
NB
5676 if (s->flags & SLAB_CACHE_DMA32)
5677 *p++ = 'D';
81819f0f
CL
5678 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5679 *p++ = 'a';
becfda68 5680 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5681 *p++ = 'F';
230e9fc2
VD
5682 if (s->flags & SLAB_ACCOUNT)
5683 *p++ = 'A';
81819f0f
CL
5684 if (p != name + 1)
5685 *p++ = '-';
44065b2e 5686 p += sprintf(p, "%07u", s->size);
2633d7a0 5687
81819f0f
CL
5688 BUG_ON(p > name + ID_STR_LENGTH - 1);
5689 return name;
5690}
5691
5692static int sysfs_slab_add(struct kmem_cache *s)
5693{
5694 int err;
5695 const char *name;
1663f26d 5696 struct kset *kset = cache_kset(s);
45530c44 5697 int unmergeable = slab_unmergeable(s);
81819f0f 5698
1663f26d
TH
5699 if (!kset) {
5700 kobject_init(&s->kobj, &slab_ktype);
5701 return 0;
5702 }
5703
11066386
MC
5704 if (!unmergeable && disable_higher_order_debug &&
5705 (slub_debug & DEBUG_METADATA_FLAGS))
5706 unmergeable = 1;
5707
81819f0f
CL
5708 if (unmergeable) {
5709 /*
5710 * Slabcache can never be merged so we can use the name proper.
5711 * This is typically the case for debug situations. In that
5712 * case we can catch duplicate names easily.
5713 */
27c3a314 5714 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5715 name = s->name;
5716 } else {
5717 /*
5718 * Create a unique name for the slab as a target
5719 * for the symlinks.
5720 */
5721 name = create_unique_id(s);
5722 }
5723
1663f26d 5724 s->kobj.kset = kset;
26e4f205 5725 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
757fed1d 5726 if (err)
80da026a 5727 goto out;
81819f0f
CL
5728
5729 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5730 if (err)
5731 goto out_del_kobj;
9a41707b 5732
81819f0f
CL
5733 if (!unmergeable) {
5734 /* Setup first alias */
5735 sysfs_slab_alias(s, s->name);
81819f0f 5736 }
54b6a731
DJ
5737out:
5738 if (!unmergeable)
5739 kfree(name);
5740 return err;
5741out_del_kobj:
5742 kobject_del(&s->kobj);
54b6a731 5743 goto out;
81819f0f
CL
5744}
5745
d50d82fa
MP
5746void sysfs_slab_unlink(struct kmem_cache *s)
5747{
5748 if (slab_state >= FULL)
5749 kobject_del(&s->kobj);
5750}
5751
bf5eb3de
TH
5752void sysfs_slab_release(struct kmem_cache *s)
5753{
5754 if (slab_state >= FULL)
5755 kobject_put(&s->kobj);
81819f0f
CL
5756}
5757
5758/*
5759 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5760 * available lest we lose that information.
81819f0f
CL
5761 */
5762struct saved_alias {
5763 struct kmem_cache *s;
5764 const char *name;
5765 struct saved_alias *next;
5766};
5767
5af328a5 5768static struct saved_alias *alias_list;
81819f0f
CL
5769
5770static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5771{
5772 struct saved_alias *al;
5773
97d06609 5774 if (slab_state == FULL) {
81819f0f
CL
5775 /*
5776 * If we have a leftover link then remove it.
5777 */
27c3a314
GKH
5778 sysfs_remove_link(&slab_kset->kobj, name);
5779 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5780 }
5781
5782 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5783 if (!al)
5784 return -ENOMEM;
5785
5786 al->s = s;
5787 al->name = name;
5788 al->next = alias_list;
5789 alias_list = al;
5790 return 0;
5791}
5792
5793static int __init slab_sysfs_init(void)
5794{
5b95a4ac 5795 struct kmem_cache *s;
81819f0f
CL
5796 int err;
5797
18004c5d 5798 mutex_lock(&slab_mutex);
2bce6485 5799
d7660ce5 5800 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 5801 if (!slab_kset) {
18004c5d 5802 mutex_unlock(&slab_mutex);
f9f58285 5803 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5804 return -ENOSYS;
5805 }
5806
97d06609 5807 slab_state = FULL;
26a7bd03 5808
5b95a4ac 5809 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5810 err = sysfs_slab_add(s);
5d540fb7 5811 if (err)
f9f58285
FF
5812 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5813 s->name);
26a7bd03 5814 }
81819f0f
CL
5815
5816 while (alias_list) {
5817 struct saved_alias *al = alias_list;
5818
5819 alias_list = alias_list->next;
5820 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5821 if (err)
f9f58285
FF
5822 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5823 al->name);
81819f0f
CL
5824 kfree(al);
5825 }
5826
18004c5d 5827 mutex_unlock(&slab_mutex);
81819f0f
CL
5828 return 0;
5829}
5830
5831__initcall(slab_sysfs_init);
ab4d5ed5 5832#endif /* CONFIG_SYSFS */
57ed3eda 5833
64dd6849
FM
5834#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
5835static int slab_debugfs_show(struct seq_file *seq, void *v)
5836{
5837
5838 struct location *l;
5839 unsigned int idx = *(unsigned int *)v;
5840 struct loc_track *t = seq->private;
5841
5842 if (idx < t->count) {
5843 l = &t->loc[idx];
5844
5845 seq_printf(seq, "%7ld ", l->count);
5846
5847 if (l->addr)
5848 seq_printf(seq, "%pS", (void *)l->addr);
5849 else
5850 seq_puts(seq, "<not-available>");
5851
5852 if (l->sum_time != l->min_time) {
5853 seq_printf(seq, " age=%ld/%llu/%ld",
5854 l->min_time, div_u64(l->sum_time, l->count),
5855 l->max_time);
5856 } else
5857 seq_printf(seq, " age=%ld", l->min_time);
5858
5859 if (l->min_pid != l->max_pid)
5860 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
5861 else
5862 seq_printf(seq, " pid=%ld",
5863 l->min_pid);
5864
5865 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
5866 seq_printf(seq, " cpus=%*pbl",
5867 cpumask_pr_args(to_cpumask(l->cpus)));
5868
5869 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
5870 seq_printf(seq, " nodes=%*pbl",
5871 nodemask_pr_args(&l->nodes));
5872
5873 seq_puts(seq, "\n");
5874 }
5875
5876 if (!idx && !t->count)
5877 seq_puts(seq, "No data\n");
5878
5879 return 0;
5880}
5881
5882static void slab_debugfs_stop(struct seq_file *seq, void *v)
5883{
5884}
5885
5886static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
5887{
5888 struct loc_track *t = seq->private;
5889
5890 v = ppos;
5891 ++*ppos;
5892 if (*ppos <= t->count)
5893 return v;
5894
5895 return NULL;
5896}
5897
5898static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
5899{
5900 return ppos;
5901}
5902
5903static const struct seq_operations slab_debugfs_sops = {
5904 .start = slab_debugfs_start,
5905 .next = slab_debugfs_next,
5906 .stop = slab_debugfs_stop,
5907 .show = slab_debugfs_show,
5908};
5909
5910static int slab_debug_trace_open(struct inode *inode, struct file *filep)
5911{
5912
5913 struct kmem_cache_node *n;
5914 enum track_item alloc;
5915 int node;
5916 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
5917 sizeof(struct loc_track));
5918 struct kmem_cache *s = file_inode(filep)->i_private;
b3fd64e1
VB
5919 unsigned long *obj_map;
5920
5921 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5922 if (!obj_map)
5923 return -ENOMEM;
64dd6849
FM
5924
5925 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
5926 alloc = TRACK_ALLOC;
5927 else
5928 alloc = TRACK_FREE;
5929
b3fd64e1
VB
5930 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
5931 bitmap_free(obj_map);
64dd6849 5932 return -ENOMEM;
b3fd64e1 5933 }
64dd6849 5934
64dd6849
FM
5935 for_each_kmem_cache_node(s, node, n) {
5936 unsigned long flags;
5937 struct page *page;
5938
5939 if (!atomic_long_read(&n->nr_slabs))
5940 continue;
5941
5942 spin_lock_irqsave(&n->list_lock, flags);
5943 list_for_each_entry(page, &n->partial, slab_list)
b3fd64e1 5944 process_slab(t, s, page, alloc, obj_map);
64dd6849 5945 list_for_each_entry(page, &n->full, slab_list)
b3fd64e1 5946 process_slab(t, s, page, alloc, obj_map);
64dd6849
FM
5947 spin_unlock_irqrestore(&n->list_lock, flags);
5948 }
5949
b3fd64e1 5950 bitmap_free(obj_map);
64dd6849
FM
5951 return 0;
5952}
5953
5954static int slab_debug_trace_release(struct inode *inode, struct file *file)
5955{
5956 struct seq_file *seq = file->private_data;
5957 struct loc_track *t = seq->private;
5958
5959 free_loc_track(t);
5960 return seq_release_private(inode, file);
5961}
5962
5963static const struct file_operations slab_debugfs_fops = {
5964 .open = slab_debug_trace_open,
5965 .read = seq_read,
5966 .llseek = seq_lseek,
5967 .release = slab_debug_trace_release,
5968};
5969
5970static void debugfs_slab_add(struct kmem_cache *s)
5971{
5972 struct dentry *slab_cache_dir;
5973
5974 if (unlikely(!slab_debugfs_root))
5975 return;
5976
5977 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
5978
5979 debugfs_create_file("alloc_traces", 0400,
5980 slab_cache_dir, s, &slab_debugfs_fops);
5981
5982 debugfs_create_file("free_traces", 0400,
5983 slab_cache_dir, s, &slab_debugfs_fops);
5984}
5985
5986void debugfs_slab_release(struct kmem_cache *s)
5987{
5988 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
5989}
5990
5991static int __init slab_debugfs_init(void)
5992{
5993 struct kmem_cache *s;
5994
5995 slab_debugfs_root = debugfs_create_dir("slab", NULL);
5996
5997 list_for_each_entry(s, &slab_caches, list)
5998 if (s->flags & SLAB_STORE_USER)
5999 debugfs_slab_add(s);
6000
6001 return 0;
6002
6003}
6004__initcall(slab_debugfs_init);
6005#endif
57ed3eda
PE
6006/*
6007 * The /proc/slabinfo ABI
6008 */
5b365771 6009#ifdef CONFIG_SLUB_DEBUG
0d7561c6 6010void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 6011{
57ed3eda 6012 unsigned long nr_slabs = 0;
205ab99d
CL
6013 unsigned long nr_objs = 0;
6014 unsigned long nr_free = 0;
57ed3eda 6015 int node;
fa45dc25 6016 struct kmem_cache_node *n;
57ed3eda 6017
fa45dc25 6018 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
6019 nr_slabs += node_nr_slabs(n);
6020 nr_objs += node_nr_objs(n);
205ab99d 6021 nr_free += count_partial(n, count_free);
57ed3eda
PE
6022 }
6023
0d7561c6
GC
6024 sinfo->active_objs = nr_objs - nr_free;
6025 sinfo->num_objs = nr_objs;
6026 sinfo->active_slabs = nr_slabs;
6027 sinfo->num_slabs = nr_slabs;
6028 sinfo->objects_per_slab = oo_objects(s->oo);
6029 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
6030}
6031
0d7561c6 6032void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 6033{
7b3c3a50
AD
6034}
6035
b7454ad3
GC
6036ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6037 size_t count, loff_t *ppos)
7b3c3a50 6038{
b7454ad3 6039 return -EIO;
7b3c3a50 6040}
5b365771 6041#endif /* CONFIG_SLUB_DEBUG */