]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/slub.c
mm: memcg/slab: rename slab delayed deactivation functions and fields
[mirror_ubuntu-hirsute-kernel.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
881db7fb
CL
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
2482ddec 36#include <linux/random.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 54 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 55 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
881db7fb
CL
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
65 * page's freelist.
81819f0f
CL
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
81819f0f
CL
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
672bba3a
CL
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 88 * freed then the slab will show up again on the partial lists.
672bba3a
CL
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
81819f0f
CL
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
96 * Overloading of page flags that are otherwise used for LRU management.
97 *
4b6f0750
CL
98 * PageActive The slab is frozen and exempt from list processing.
99 * This means that the slab is dedicated to a purpose
100 * such as satisfying allocations for a specific
101 * processor. Objects may be freed in the slab while
102 * it is frozen but slab_free will then skip the usual
103 * list operations. It is up to the processor holding
104 * the slab to integrate the slab into the slab lists
105 * when the slab is no longer needed.
106 *
107 * One use of this flag is to mark slabs that are
108 * used for allocations. Then such a slab becomes a cpu
109 * slab. The cpu slab may be equipped with an additional
dfb4f096 110 * freelist that allows lockless access to
894b8788
CL
111 * free objects in addition to the regular freelist
112 * that requires the slab lock.
81819f0f
CL
113 *
114 * PageError Slab requires special handling due to debug
115 * options set. This moves slab handling out of
894b8788 116 * the fast path and disables lockless freelists.
81819f0f
CL
117 */
118
af537b0a
CL
119static inline int kmem_cache_debug(struct kmem_cache *s)
120{
5577bd8a 121#ifdef CONFIG_SLUB_DEBUG
af537b0a 122 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 123#else
af537b0a 124 return 0;
5577bd8a 125#endif
af537b0a 126}
5577bd8a 127
117d54df 128void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be
JK
129{
130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 p += s->red_left_pad;
132
133 return p;
134}
135
345c905d
JK
136static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137{
138#ifdef CONFIG_SLUB_CPU_PARTIAL
139 return !kmem_cache_debug(s);
140#else
141 return false;
142#endif
143}
144
81819f0f
CL
145/*
146 * Issues still to be resolved:
147 *
81819f0f
CL
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 *
81819f0f
CL
150 * - Variable sizing of the per node arrays
151 */
152
153/* Enable to test recovery from slab corruption on boot */
154#undef SLUB_RESILIENCY_TEST
155
b789ef51
CL
156/* Enable to log cmpxchg failures */
157#undef SLUB_DEBUG_CMPXCHG
158
2086d26a
CL
159/*
160 * Mininum number of partial slabs. These will be left on the partial
161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 */
76be8950 163#define MIN_PARTIAL 5
e95eed57 164
2086d26a
CL
165/*
166 * Maximum number of desirable partial slabs.
167 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 168 * sort the partial list by the number of objects in use.
2086d26a
CL
169 */
170#define MAX_PARTIAL 10
171
becfda68 172#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 173 SLAB_POISON | SLAB_STORE_USER)
672bba3a 174
149daaf3
LA
175/*
176 * These debug flags cannot use CMPXCHG because there might be consistency
177 * issues when checking or reading debug information
178 */
179#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 SLAB_TRACE)
181
182
fa5ec8a1 183/*
3de47213
DR
184 * Debugging flags that require metadata to be stored in the slab. These get
185 * disabled when slub_debug=O is used and a cache's min order increases with
186 * metadata.
fa5ec8a1 187 */
3de47213 188#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 189
210b5c06
CG
190#define OO_SHIFT 16
191#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 192#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 193
81819f0f 194/* Internal SLUB flags */
d50112ed 195/* Poison object */
4fd0b46e 196#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 197/* Use cmpxchg_double */
4fd0b46e 198#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 199
02cbc874
CL
200/*
201 * Tracking user of a slab.
202 */
d6543e39 203#define TRACK_ADDRS_COUNT 16
02cbc874 204struct track {
ce71e27c 205 unsigned long addr; /* Called from address */
d6543e39
BG
206#ifdef CONFIG_STACKTRACE
207 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
208#endif
02cbc874
CL
209 int cpu; /* Was running on cpu */
210 int pid; /* Pid context */
211 unsigned long when; /* When did the operation occur */
212};
213
214enum track_item { TRACK_ALLOC, TRACK_FREE };
215
ab4d5ed5 216#ifdef CONFIG_SYSFS
81819f0f
CL
217static int sysfs_slab_add(struct kmem_cache *);
218static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 219static void memcg_propagate_slab_attrs(struct kmem_cache *s);
bf5eb3de 220static void sysfs_slab_remove(struct kmem_cache *s);
81819f0f 221#else
0c710013
CL
222static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
107dab5c 225static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
bf5eb3de 226static inline void sysfs_slab_remove(struct kmem_cache *s) { }
81819f0f
CL
227#endif
228
4fdccdfb 229static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
230{
231#ifdef CONFIG_SLUB_STATS
88da03a6
CL
232 /*
233 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 * avoid this_cpu_add()'s irq-disable overhead.
235 */
236 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
237#endif
238}
239
81819f0f
CL
240/********************************************************************
241 * Core slab cache functions
242 *******************************************************************/
243
2482ddec
KC
244/*
245 * Returns freelist pointer (ptr). With hardening, this is obfuscated
246 * with an XOR of the address where the pointer is held and a per-cache
247 * random number.
248 */
249static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
250 unsigned long ptr_addr)
251{
252#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9
AK
253 /*
254 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
255 * Normally, this doesn't cause any issues, as both set_freepointer()
256 * and get_freepointer() are called with a pointer with the same tag.
257 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
258 * example, when __free_slub() iterates over objects in a cache, it
259 * passes untagged pointers to check_object(). check_object() in turns
260 * calls get_freepointer() with an untagged pointer, which causes the
261 * freepointer to be restored incorrectly.
262 */
263 return (void *)((unsigned long)ptr ^ s->random ^
264 (unsigned long)kasan_reset_tag((void *)ptr_addr));
2482ddec
KC
265#else
266 return ptr;
267#endif
268}
269
270/* Returns the freelist pointer recorded at location ptr_addr. */
271static inline void *freelist_dereference(const struct kmem_cache *s,
272 void *ptr_addr)
273{
274 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
275 (unsigned long)ptr_addr);
276}
277
7656c72b
CL
278static inline void *get_freepointer(struct kmem_cache *s, void *object)
279{
2482ddec 280 return freelist_dereference(s, object + s->offset);
7656c72b
CL
281}
282
0ad9500e
ED
283static void prefetch_freepointer(const struct kmem_cache *s, void *object)
284{
0882ff91 285 prefetch(object + s->offset);
0ad9500e
ED
286}
287
1393d9a1
CL
288static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
289{
2482ddec 290 unsigned long freepointer_addr;
1393d9a1
CL
291 void *p;
292
922d566c
JK
293 if (!debug_pagealloc_enabled())
294 return get_freepointer(s, object);
295
2482ddec
KC
296 freepointer_addr = (unsigned long)object + s->offset;
297 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
298 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
299}
300
7656c72b
CL
301static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
302{
2482ddec
KC
303 unsigned long freeptr_addr = (unsigned long)object + s->offset;
304
ce6fa91b
AP
305#ifdef CONFIG_SLAB_FREELIST_HARDENED
306 BUG_ON(object == fp); /* naive detection of double free or corruption */
307#endif
308
2482ddec 309 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
310}
311
312/* Loop over all objects in a slab */
224a88be 313#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
314 for (__p = fixup_red_left(__s, __addr); \
315 __p < (__addr) + (__objects) * (__s)->size; \
316 __p += (__s)->size)
7656c72b 317
7656c72b 318/* Determine object index from a given position */
284b50dd 319static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
7656c72b 320{
6373dca1 321 return (kasan_reset_tag(p) - addr) / s->size;
7656c72b
CL
322}
323
9736d2a9 324static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 325{
9736d2a9 326 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
327}
328
19af27af 329static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 330 unsigned int size)
834f3d11
CL
331{
332 struct kmem_cache_order_objects x = {
9736d2a9 333 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
334 };
335
336 return x;
337}
338
19af27af 339static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 340{
210b5c06 341 return x.x >> OO_SHIFT;
834f3d11
CL
342}
343
19af27af 344static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 345{
210b5c06 346 return x.x & OO_MASK;
834f3d11
CL
347}
348
881db7fb
CL
349/*
350 * Per slab locking using the pagelock
351 */
352static __always_inline void slab_lock(struct page *page)
353{
48c935ad 354 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
355 bit_spin_lock(PG_locked, &page->flags);
356}
357
358static __always_inline void slab_unlock(struct page *page)
359{
48c935ad 360 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
361 __bit_spin_unlock(PG_locked, &page->flags);
362}
363
1d07171c
CL
364/* Interrupts must be disabled (for the fallback code to work right) */
365static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 void *freelist_old, unsigned long counters_old,
367 void *freelist_new, unsigned long counters_new,
368 const char *n)
369{
370 VM_BUG_ON(!irqs_disabled());
2565409f
HC
371#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 373 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 374 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
375 freelist_old, counters_old,
376 freelist_new, counters_new))
6f6528a1 377 return true;
1d07171c
CL
378 } else
379#endif
380 {
381 slab_lock(page);
d0e0ac97
CG
382 if (page->freelist == freelist_old &&
383 page->counters == counters_old) {
1d07171c 384 page->freelist = freelist_new;
7d27a04b 385 page->counters = counters_new;
1d07171c 386 slab_unlock(page);
6f6528a1 387 return true;
1d07171c
CL
388 }
389 slab_unlock(page);
390 }
391
392 cpu_relax();
393 stat(s, CMPXCHG_DOUBLE_FAIL);
394
395#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 396 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
397#endif
398
6f6528a1 399 return false;
1d07171c
CL
400}
401
b789ef51
CL
402static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 void *freelist_old, unsigned long counters_old,
404 void *freelist_new, unsigned long counters_new,
405 const char *n)
406{
2565409f
HC
407#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 409 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 410 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
411 freelist_old, counters_old,
412 freelist_new, counters_new))
6f6528a1 413 return true;
b789ef51
CL
414 } else
415#endif
416 {
1d07171c
CL
417 unsigned long flags;
418
419 local_irq_save(flags);
881db7fb 420 slab_lock(page);
d0e0ac97
CG
421 if (page->freelist == freelist_old &&
422 page->counters == counters_old) {
b789ef51 423 page->freelist = freelist_new;
7d27a04b 424 page->counters = counters_new;
881db7fb 425 slab_unlock(page);
1d07171c 426 local_irq_restore(flags);
6f6528a1 427 return true;
b789ef51 428 }
881db7fb 429 slab_unlock(page);
1d07171c 430 local_irq_restore(flags);
b789ef51
CL
431 }
432
433 cpu_relax();
434 stat(s, CMPXCHG_DOUBLE_FAIL);
435
436#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 437 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
438#endif
439
6f6528a1 440 return false;
b789ef51
CL
441}
442
41ecc55b 443#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
444/*
445 * Determine a map of object in use on a page.
446 *
881db7fb 447 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
448 * not vanish from under us.
449 */
450static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451{
452 void *p;
453 void *addr = page_address(page);
454
455 for (p = page->freelist; p; p = get_freepointer(s, p))
456 set_bit(slab_index(p, s, addr), map);
457}
458
870b1fbb 459static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
460{
461 if (s->flags & SLAB_RED_ZONE)
462 return s->size - s->red_left_pad;
463
464 return s->size;
465}
466
467static inline void *restore_red_left(struct kmem_cache *s, void *p)
468{
469 if (s->flags & SLAB_RED_ZONE)
470 p -= s->red_left_pad;
471
472 return p;
473}
474
41ecc55b
CL
475/*
476 * Debug settings:
477 */
89d3c87e 478#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 479static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 480#else
d50112ed 481static slab_flags_t slub_debug;
f0630fff 482#endif
41ecc55b
CL
483
484static char *slub_debug_slabs;
fa5ec8a1 485static int disable_higher_order_debug;
41ecc55b 486
a79316c6
AR
487/*
488 * slub is about to manipulate internal object metadata. This memory lies
489 * outside the range of the allocated object, so accessing it would normally
490 * be reported by kasan as a bounds error. metadata_access_enable() is used
491 * to tell kasan that these accesses are OK.
492 */
493static inline void metadata_access_enable(void)
494{
495 kasan_disable_current();
496}
497
498static inline void metadata_access_disable(void)
499{
500 kasan_enable_current();
501}
502
81819f0f
CL
503/*
504 * Object debugging
505 */
d86bd1be
JK
506
507/* Verify that a pointer has an address that is valid within a slab page */
508static inline int check_valid_pointer(struct kmem_cache *s,
509 struct page *page, void *object)
510{
511 void *base;
512
513 if (!object)
514 return 1;
515
516 base = page_address(page);
338cfaad 517 object = kasan_reset_tag(object);
d86bd1be
JK
518 object = restore_red_left(s, object);
519 if (object < base || object >= base + page->objects * s->size ||
520 (object - base) % s->size) {
521 return 0;
522 }
523
524 return 1;
525}
526
aa2efd5e
DT
527static void print_section(char *level, char *text, u8 *addr,
528 unsigned int length)
81819f0f 529{
a79316c6 530 metadata_access_enable();
aa2efd5e 531 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 532 length, 1);
a79316c6 533 metadata_access_disable();
81819f0f
CL
534}
535
81819f0f
CL
536static struct track *get_track(struct kmem_cache *s, void *object,
537 enum track_item alloc)
538{
539 struct track *p;
540
541 if (s->offset)
542 p = object + s->offset + sizeof(void *);
543 else
544 p = object + s->inuse;
545
546 return p + alloc;
547}
548
549static void set_track(struct kmem_cache *s, void *object,
ce71e27c 550 enum track_item alloc, unsigned long addr)
81819f0f 551{
1a00df4a 552 struct track *p = get_track(s, object, alloc);
81819f0f 553
81819f0f 554 if (addr) {
d6543e39 555#ifdef CONFIG_STACKTRACE
79716799 556 unsigned int nr_entries;
d6543e39 557
a79316c6 558 metadata_access_enable();
79716799 559 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
a79316c6 560 metadata_access_disable();
d6543e39 561
79716799
TG
562 if (nr_entries < TRACK_ADDRS_COUNT)
563 p->addrs[nr_entries] = 0;
d6543e39 564#endif
81819f0f
CL
565 p->addr = addr;
566 p->cpu = smp_processor_id();
88e4ccf2 567 p->pid = current->pid;
81819f0f 568 p->when = jiffies;
b8ca7ff7 569 } else {
81819f0f 570 memset(p, 0, sizeof(struct track));
b8ca7ff7 571 }
81819f0f
CL
572}
573
81819f0f
CL
574static void init_tracking(struct kmem_cache *s, void *object)
575{
24922684
CL
576 if (!(s->flags & SLAB_STORE_USER))
577 return;
578
ce71e27c
EGM
579 set_track(s, object, TRACK_FREE, 0UL);
580 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
581}
582
86609d33 583static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
584{
585 if (!t->addr)
586 return;
587
f9f58285 588 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 589 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
d6543e39
BG
590#ifdef CONFIG_STACKTRACE
591 {
592 int i;
593 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
594 if (t->addrs[i])
f9f58285 595 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
596 else
597 break;
598 }
599#endif
24922684
CL
600}
601
602static void print_tracking(struct kmem_cache *s, void *object)
603{
86609d33 604 unsigned long pr_time = jiffies;
24922684
CL
605 if (!(s->flags & SLAB_STORE_USER))
606 return;
607
86609d33
CP
608 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
609 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
610}
611
612static void print_page_info(struct page *page)
613{
f9f58285 614 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 615 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
616
617}
618
619static void slab_bug(struct kmem_cache *s, char *fmt, ...)
620{
ecc42fbe 621 struct va_format vaf;
24922684 622 va_list args;
24922684
CL
623
624 va_start(args, fmt);
ecc42fbe
FF
625 vaf.fmt = fmt;
626 vaf.va = &args;
f9f58285 627 pr_err("=============================================================================\n");
ecc42fbe 628 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 629 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 630
373d4d09 631 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 632 va_end(args);
81819f0f
CL
633}
634
24922684
CL
635static void slab_fix(struct kmem_cache *s, char *fmt, ...)
636{
ecc42fbe 637 struct va_format vaf;
24922684 638 va_list args;
24922684
CL
639
640 va_start(args, fmt);
ecc42fbe
FF
641 vaf.fmt = fmt;
642 vaf.va = &args;
643 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 644 va_end(args);
24922684
CL
645}
646
647static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
648{
649 unsigned int off; /* Offset of last byte */
a973e9dd 650 u8 *addr = page_address(page);
24922684
CL
651
652 print_tracking(s, p);
653
654 print_page_info(page);
655
f9f58285
FF
656 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
657 p, p - addr, get_freepointer(s, p));
24922684 658
d86bd1be 659 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
660 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
661 s->red_left_pad);
d86bd1be 662 else if (p > addr + 16)
aa2efd5e 663 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 664
aa2efd5e 665 print_section(KERN_ERR, "Object ", p,
1b473f29 666 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 667 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 668 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 669 s->inuse - s->object_size);
81819f0f 670
81819f0f
CL
671 if (s->offset)
672 off = s->offset + sizeof(void *);
673 else
674 off = s->inuse;
675
24922684 676 if (s->flags & SLAB_STORE_USER)
81819f0f 677 off += 2 * sizeof(struct track);
81819f0f 678
80a9201a
AP
679 off += kasan_metadata_size(s);
680
d86bd1be 681 if (off != size_from_object(s))
81819f0f 682 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
683 print_section(KERN_ERR, "Padding ", p + off,
684 size_from_object(s) - off);
24922684
CL
685
686 dump_stack();
81819f0f
CL
687}
688
75c66def 689void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
690 u8 *object, char *reason)
691{
3dc50637 692 slab_bug(s, "%s", reason);
24922684 693 print_trailer(s, page, object);
81819f0f
CL
694}
695
a38965bf 696static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 697 const char *fmt, ...)
81819f0f
CL
698{
699 va_list args;
700 char buf[100];
701
24922684
CL
702 va_start(args, fmt);
703 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 704 va_end(args);
3dc50637 705 slab_bug(s, "%s", buf);
24922684 706 print_page_info(page);
81819f0f
CL
707 dump_stack();
708}
709
f7cb1933 710static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
711{
712 u8 *p = object;
713
d86bd1be
JK
714 if (s->flags & SLAB_RED_ZONE)
715 memset(p - s->red_left_pad, val, s->red_left_pad);
716
81819f0f 717 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
718 memset(p, POISON_FREE, s->object_size - 1);
719 p[s->object_size - 1] = POISON_END;
81819f0f
CL
720 }
721
722 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 723 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
724}
725
24922684
CL
726static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
727 void *from, void *to)
728{
729 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
730 memset(from, data, to - from);
731}
732
733static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
734 u8 *object, char *what,
06428780 735 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
736{
737 u8 *fault;
738 u8 *end;
739
a79316c6 740 metadata_access_enable();
79824820 741 fault = memchr_inv(start, value, bytes);
a79316c6 742 metadata_access_disable();
24922684
CL
743 if (!fault)
744 return 1;
745
746 end = start + bytes;
747 while (end > fault && end[-1] == value)
748 end--;
749
750 slab_bug(s, "%s overwritten", what);
f9f58285 751 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
752 fault, end - 1, fault[0], value);
753 print_trailer(s, page, object);
754
755 restore_bytes(s, what, value, fault, end);
756 return 0;
81819f0f
CL
757}
758
81819f0f
CL
759/*
760 * Object layout:
761 *
762 * object address
763 * Bytes of the object to be managed.
764 * If the freepointer may overlay the object then the free
765 * pointer is the first word of the object.
672bba3a 766 *
81819f0f
CL
767 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
768 * 0xa5 (POISON_END)
769 *
3b0efdfa 770 * object + s->object_size
81819f0f 771 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 772 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 773 * object_size == inuse.
672bba3a 774 *
81819f0f
CL
775 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
776 * 0xcc (RED_ACTIVE) for objects in use.
777 *
778 * object + s->inuse
672bba3a
CL
779 * Meta data starts here.
780 *
81819f0f
CL
781 * A. Free pointer (if we cannot overwrite object on free)
782 * B. Tracking data for SLAB_STORE_USER
672bba3a 783 * C. Padding to reach required alignment boundary or at mininum
6446faa2 784 * one word if debugging is on to be able to detect writes
672bba3a
CL
785 * before the word boundary.
786 *
787 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
788 *
789 * object + s->size
672bba3a 790 * Nothing is used beyond s->size.
81819f0f 791 *
3b0efdfa 792 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 793 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
794 * may be used with merged slabcaches.
795 */
796
81819f0f
CL
797static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
798{
799 unsigned long off = s->inuse; /* The end of info */
800
801 if (s->offset)
802 /* Freepointer is placed after the object. */
803 off += sizeof(void *);
804
805 if (s->flags & SLAB_STORE_USER)
806 /* We also have user information there */
807 off += 2 * sizeof(struct track);
808
80a9201a
AP
809 off += kasan_metadata_size(s);
810
d86bd1be 811 if (size_from_object(s) == off)
81819f0f
CL
812 return 1;
813
24922684 814 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 815 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
816}
817
39b26464 818/* Check the pad bytes at the end of a slab page */
81819f0f
CL
819static int slab_pad_check(struct kmem_cache *s, struct page *page)
820{
24922684
CL
821 u8 *start;
822 u8 *fault;
823 u8 *end;
5d682681 824 u8 *pad;
24922684
CL
825 int length;
826 int remainder;
81819f0f
CL
827
828 if (!(s->flags & SLAB_POISON))
829 return 1;
830
a973e9dd 831 start = page_address(page);
9736d2a9 832 length = PAGE_SIZE << compound_order(page);
39b26464
CL
833 end = start + length;
834 remainder = length % s->size;
81819f0f
CL
835 if (!remainder)
836 return 1;
837
5d682681 838 pad = end - remainder;
a79316c6 839 metadata_access_enable();
5d682681 840 fault = memchr_inv(pad, POISON_INUSE, remainder);
a79316c6 841 metadata_access_disable();
24922684
CL
842 if (!fault)
843 return 1;
844 while (end > fault && end[-1] == POISON_INUSE)
845 end--;
846
847 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
5d682681 848 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 849
5d682681 850 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 851 return 0;
81819f0f
CL
852}
853
854static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 855 void *object, u8 val)
81819f0f
CL
856{
857 u8 *p = object;
3b0efdfa 858 u8 *endobject = object + s->object_size;
81819f0f
CL
859
860 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
861 if (!check_bytes_and_report(s, page, object, "Redzone",
862 object - s->red_left_pad, val, s->red_left_pad))
863 return 0;
864
24922684 865 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 866 endobject, val, s->inuse - s->object_size))
81819f0f 867 return 0;
81819f0f 868 } else {
3b0efdfa 869 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 870 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
871 endobject, POISON_INUSE,
872 s->inuse - s->object_size);
3adbefee 873 }
81819f0f
CL
874 }
875
876 if (s->flags & SLAB_POISON) {
f7cb1933 877 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 878 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 879 POISON_FREE, s->object_size - 1) ||
24922684 880 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 881 p + s->object_size - 1, POISON_END, 1)))
81819f0f 882 return 0;
81819f0f
CL
883 /*
884 * check_pad_bytes cleans up on its own.
885 */
886 check_pad_bytes(s, page, p);
887 }
888
f7cb1933 889 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
890 /*
891 * Object and freepointer overlap. Cannot check
892 * freepointer while object is allocated.
893 */
894 return 1;
895
896 /* Check free pointer validity */
897 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
898 object_err(s, page, p, "Freepointer corrupt");
899 /*
9f6c708e 900 * No choice but to zap it and thus lose the remainder
81819f0f 901 * of the free objects in this slab. May cause
672bba3a 902 * another error because the object count is now wrong.
81819f0f 903 */
a973e9dd 904 set_freepointer(s, p, NULL);
81819f0f
CL
905 return 0;
906 }
907 return 1;
908}
909
910static int check_slab(struct kmem_cache *s, struct page *page)
911{
39b26464
CL
912 int maxobj;
913
81819f0f
CL
914 VM_BUG_ON(!irqs_disabled());
915
916 if (!PageSlab(page)) {
24922684 917 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
918 return 0;
919 }
39b26464 920
9736d2a9 921 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
922 if (page->objects > maxobj) {
923 slab_err(s, page, "objects %u > max %u",
f6edde9c 924 page->objects, maxobj);
39b26464
CL
925 return 0;
926 }
927 if (page->inuse > page->objects) {
24922684 928 slab_err(s, page, "inuse %u > max %u",
f6edde9c 929 page->inuse, page->objects);
81819f0f
CL
930 return 0;
931 }
932 /* Slab_pad_check fixes things up after itself */
933 slab_pad_check(s, page);
934 return 1;
935}
936
937/*
672bba3a
CL
938 * Determine if a certain object on a page is on the freelist. Must hold the
939 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
940 */
941static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
942{
943 int nr = 0;
881db7fb 944 void *fp;
81819f0f 945 void *object = NULL;
f6edde9c 946 int max_objects;
81819f0f 947
881db7fb 948 fp = page->freelist;
39b26464 949 while (fp && nr <= page->objects) {
81819f0f
CL
950 if (fp == search)
951 return 1;
952 if (!check_valid_pointer(s, page, fp)) {
953 if (object) {
954 object_err(s, page, object,
955 "Freechain corrupt");
a973e9dd 956 set_freepointer(s, object, NULL);
81819f0f 957 } else {
24922684 958 slab_err(s, page, "Freepointer corrupt");
a973e9dd 959 page->freelist = NULL;
39b26464 960 page->inuse = page->objects;
24922684 961 slab_fix(s, "Freelist cleared");
81819f0f
CL
962 return 0;
963 }
964 break;
965 }
966 object = fp;
967 fp = get_freepointer(s, object);
968 nr++;
969 }
970
9736d2a9 971 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
972 if (max_objects > MAX_OBJS_PER_PAGE)
973 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
974
975 if (page->objects != max_objects) {
756a025f
JP
976 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
977 page->objects, max_objects);
224a88be
CL
978 page->objects = max_objects;
979 slab_fix(s, "Number of objects adjusted.");
980 }
39b26464 981 if (page->inuse != page->objects - nr) {
756a025f
JP
982 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
983 page->inuse, page->objects - nr);
39b26464 984 page->inuse = page->objects - nr;
24922684 985 slab_fix(s, "Object count adjusted.");
81819f0f
CL
986 }
987 return search == NULL;
988}
989
0121c619
CL
990static void trace(struct kmem_cache *s, struct page *page, void *object,
991 int alloc)
3ec09742
CL
992{
993 if (s->flags & SLAB_TRACE) {
f9f58285 994 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
995 s->name,
996 alloc ? "alloc" : "free",
997 object, page->inuse,
998 page->freelist);
999
1000 if (!alloc)
aa2efd5e 1001 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1002 s->object_size);
3ec09742
CL
1003
1004 dump_stack();
1005 }
1006}
1007
643b1138 1008/*
672bba3a 1009 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1010 */
5cc6eee8
CL
1011static void add_full(struct kmem_cache *s,
1012 struct kmem_cache_node *n, struct page *page)
643b1138 1013{
5cc6eee8
CL
1014 if (!(s->flags & SLAB_STORE_USER))
1015 return;
1016
255d0884 1017 lockdep_assert_held(&n->list_lock);
916ac052 1018 list_add(&page->slab_list, &n->full);
643b1138
CL
1019}
1020
c65c1877 1021static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1022{
643b1138
CL
1023 if (!(s->flags & SLAB_STORE_USER))
1024 return;
1025
255d0884 1026 lockdep_assert_held(&n->list_lock);
916ac052 1027 list_del(&page->slab_list);
643b1138
CL
1028}
1029
0f389ec6
CL
1030/* Tracking of the number of slabs for debugging purposes */
1031static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1032{
1033 struct kmem_cache_node *n = get_node(s, node);
1034
1035 return atomic_long_read(&n->nr_slabs);
1036}
1037
26c02cf0
AB
1038static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1039{
1040 return atomic_long_read(&n->nr_slabs);
1041}
1042
205ab99d 1043static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1044{
1045 struct kmem_cache_node *n = get_node(s, node);
1046
1047 /*
1048 * May be called early in order to allocate a slab for the
1049 * kmem_cache_node structure. Solve the chicken-egg
1050 * dilemma by deferring the increment of the count during
1051 * bootstrap (see early_kmem_cache_node_alloc).
1052 */
338b2642 1053 if (likely(n)) {
0f389ec6 1054 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1055 atomic_long_add(objects, &n->total_objects);
1056 }
0f389ec6 1057}
205ab99d 1058static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1059{
1060 struct kmem_cache_node *n = get_node(s, node);
1061
1062 atomic_long_dec(&n->nr_slabs);
205ab99d 1063 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1064}
1065
1066/* Object debug checks for alloc/free paths */
3ec09742
CL
1067static void setup_object_debug(struct kmem_cache *s, struct page *page,
1068 void *object)
1069{
1070 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1071 return;
1072
f7cb1933 1073 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1074 init_tracking(s, object);
1075}
1076
a7101224
AK
1077static void setup_page_debug(struct kmem_cache *s, void *addr, int order)
1078{
1079 if (!(s->flags & SLAB_POISON))
1080 return;
1081
1082 metadata_access_enable();
1083 memset(addr, POISON_INUSE, PAGE_SIZE << order);
1084 metadata_access_disable();
1085}
1086
becfda68 1087static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1088 struct page *page, void *object)
81819f0f
CL
1089{
1090 if (!check_slab(s, page))
becfda68 1091 return 0;
81819f0f 1092
81819f0f
CL
1093 if (!check_valid_pointer(s, page, object)) {
1094 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1095 return 0;
81819f0f
CL
1096 }
1097
f7cb1933 1098 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1099 return 0;
1100
1101 return 1;
1102}
1103
1104static noinline int alloc_debug_processing(struct kmem_cache *s,
1105 struct page *page,
1106 void *object, unsigned long addr)
1107{
1108 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1109 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1110 goto bad;
1111 }
81819f0f 1112
3ec09742
CL
1113 /* Success perform special debug activities for allocs */
1114 if (s->flags & SLAB_STORE_USER)
1115 set_track(s, object, TRACK_ALLOC, addr);
1116 trace(s, page, object, 1);
f7cb1933 1117 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1118 return 1;
3ec09742 1119
81819f0f
CL
1120bad:
1121 if (PageSlab(page)) {
1122 /*
1123 * If this is a slab page then lets do the best we can
1124 * to avoid issues in the future. Marking all objects
672bba3a 1125 * as used avoids touching the remaining objects.
81819f0f 1126 */
24922684 1127 slab_fix(s, "Marking all objects used");
39b26464 1128 page->inuse = page->objects;
a973e9dd 1129 page->freelist = NULL;
81819f0f
CL
1130 }
1131 return 0;
1132}
1133
becfda68
LA
1134static inline int free_consistency_checks(struct kmem_cache *s,
1135 struct page *page, void *object, unsigned long addr)
81819f0f 1136{
81819f0f 1137 if (!check_valid_pointer(s, page, object)) {
70d71228 1138 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1139 return 0;
81819f0f
CL
1140 }
1141
1142 if (on_freelist(s, page, object)) {
24922684 1143 object_err(s, page, object, "Object already free");
becfda68 1144 return 0;
81819f0f
CL
1145 }
1146
f7cb1933 1147 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1148 return 0;
81819f0f 1149
1b4f59e3 1150 if (unlikely(s != page->slab_cache)) {
3adbefee 1151 if (!PageSlab(page)) {
756a025f
JP
1152 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1153 object);
1b4f59e3 1154 } else if (!page->slab_cache) {
f9f58285
FF
1155 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1156 object);
70d71228 1157 dump_stack();
06428780 1158 } else
24922684
CL
1159 object_err(s, page, object,
1160 "page slab pointer corrupt.");
becfda68
LA
1161 return 0;
1162 }
1163 return 1;
1164}
1165
1166/* Supports checking bulk free of a constructed freelist */
1167static noinline int free_debug_processing(
1168 struct kmem_cache *s, struct page *page,
1169 void *head, void *tail, int bulk_cnt,
1170 unsigned long addr)
1171{
1172 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1173 void *object = head;
1174 int cnt = 0;
1175 unsigned long uninitialized_var(flags);
1176 int ret = 0;
1177
1178 spin_lock_irqsave(&n->list_lock, flags);
1179 slab_lock(page);
1180
1181 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1182 if (!check_slab(s, page))
1183 goto out;
1184 }
1185
1186next_object:
1187 cnt++;
1188
1189 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1190 if (!free_consistency_checks(s, page, object, addr))
1191 goto out;
81819f0f 1192 }
3ec09742 1193
3ec09742
CL
1194 if (s->flags & SLAB_STORE_USER)
1195 set_track(s, object, TRACK_FREE, addr);
1196 trace(s, page, object, 0);
81084651 1197 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1198 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1199
1200 /* Reached end of constructed freelist yet? */
1201 if (object != tail) {
1202 object = get_freepointer(s, object);
1203 goto next_object;
1204 }
804aa132
LA
1205 ret = 1;
1206
5c2e4bbb 1207out:
81084651
JDB
1208 if (cnt != bulk_cnt)
1209 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1210 bulk_cnt, cnt);
1211
881db7fb 1212 slab_unlock(page);
282acb43 1213 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1214 if (!ret)
1215 slab_fix(s, "Object at 0x%p not freed", object);
1216 return ret;
81819f0f
CL
1217}
1218
41ecc55b
CL
1219static int __init setup_slub_debug(char *str)
1220{
f0630fff
CL
1221 slub_debug = DEBUG_DEFAULT_FLAGS;
1222 if (*str++ != '=' || !*str)
1223 /*
1224 * No options specified. Switch on full debugging.
1225 */
1226 goto out;
1227
1228 if (*str == ',')
1229 /*
1230 * No options but restriction on slabs. This means full
1231 * debugging for slabs matching a pattern.
1232 */
1233 goto check_slabs;
1234
1235 slub_debug = 0;
1236 if (*str == '-')
1237 /*
1238 * Switch off all debugging measures.
1239 */
1240 goto out;
1241
1242 /*
1243 * Determine which debug features should be switched on
1244 */
06428780 1245 for (; *str && *str != ','; str++) {
f0630fff
CL
1246 switch (tolower(*str)) {
1247 case 'f':
becfda68 1248 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1249 break;
1250 case 'z':
1251 slub_debug |= SLAB_RED_ZONE;
1252 break;
1253 case 'p':
1254 slub_debug |= SLAB_POISON;
1255 break;
1256 case 'u':
1257 slub_debug |= SLAB_STORE_USER;
1258 break;
1259 case 't':
1260 slub_debug |= SLAB_TRACE;
1261 break;
4c13dd3b
DM
1262 case 'a':
1263 slub_debug |= SLAB_FAILSLAB;
1264 break;
08303a73
CA
1265 case 'o':
1266 /*
1267 * Avoid enabling debugging on caches if its minimum
1268 * order would increase as a result.
1269 */
1270 disable_higher_order_debug = 1;
1271 break;
f0630fff 1272 default:
f9f58285
FF
1273 pr_err("slub_debug option '%c' unknown. skipped\n",
1274 *str);
f0630fff 1275 }
41ecc55b
CL
1276 }
1277
f0630fff 1278check_slabs:
41ecc55b
CL
1279 if (*str == ',')
1280 slub_debug_slabs = str + 1;
f0630fff 1281out:
41ecc55b
CL
1282 return 1;
1283}
1284
1285__setup("slub_debug", setup_slub_debug);
1286
c5fd3ca0
AT
1287/*
1288 * kmem_cache_flags - apply debugging options to the cache
1289 * @object_size: the size of an object without meta data
1290 * @flags: flags to set
1291 * @name: name of the cache
1292 * @ctor: constructor function
1293 *
1294 * Debug option(s) are applied to @flags. In addition to the debug
1295 * option(s), if a slab name (or multiple) is specified i.e.
1296 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1297 * then only the select slabs will receive the debug option(s).
1298 */
0293d1fd 1299slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1300 slab_flags_t flags, const char *name,
51cc5068 1301 void (*ctor)(void *))
41ecc55b 1302{
c5fd3ca0
AT
1303 char *iter;
1304 size_t len;
1305
1306 /* If slub_debug = 0, it folds into the if conditional. */
1307 if (!slub_debug_slabs)
1308 return flags | slub_debug;
1309
1310 len = strlen(name);
1311 iter = slub_debug_slabs;
1312 while (*iter) {
1313 char *end, *glob;
1314 size_t cmplen;
1315
9cf3a8d8 1316 end = strchrnul(iter, ',');
c5fd3ca0
AT
1317
1318 glob = strnchr(iter, end - iter, '*');
1319 if (glob)
1320 cmplen = glob - iter;
1321 else
1322 cmplen = max_t(size_t, len, (end - iter));
1323
1324 if (!strncmp(name, iter, cmplen)) {
1325 flags |= slub_debug;
1326 break;
1327 }
1328
1329 if (!*end)
1330 break;
1331 iter = end + 1;
1332 }
ba0268a8
CL
1333
1334 return flags;
41ecc55b 1335}
b4a64718 1336#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1337static inline void setup_object_debug(struct kmem_cache *s,
1338 struct page *page, void *object) {}
a7101224
AK
1339static inline void setup_page_debug(struct kmem_cache *s,
1340 void *addr, int order) {}
41ecc55b 1341
3ec09742 1342static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1343 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1344
282acb43 1345static inline int free_debug_processing(
81084651
JDB
1346 struct kmem_cache *s, struct page *page,
1347 void *head, void *tail, int bulk_cnt,
282acb43 1348 unsigned long addr) { return 0; }
41ecc55b 1349
41ecc55b
CL
1350static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1351 { return 1; }
1352static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1353 void *object, u8 val) { return 1; }
5cc6eee8
CL
1354static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1355 struct page *page) {}
c65c1877
PZ
1356static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1357 struct page *page) {}
0293d1fd 1358slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1359 slab_flags_t flags, const char *name,
51cc5068 1360 void (*ctor)(void *))
ba0268a8
CL
1361{
1362 return flags;
1363}
41ecc55b 1364#define slub_debug 0
0f389ec6 1365
fdaa45e9
IM
1366#define disable_higher_order_debug 0
1367
0f389ec6
CL
1368static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1369 { return 0; }
26c02cf0
AB
1370static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1371 { return 0; }
205ab99d
CL
1372static inline void inc_slabs_node(struct kmem_cache *s, int node,
1373 int objects) {}
1374static inline void dec_slabs_node(struct kmem_cache *s, int node,
1375 int objects) {}
7d550c56 1376
02e72cc6
AR
1377#endif /* CONFIG_SLUB_DEBUG */
1378
1379/*
1380 * Hooks for other subsystems that check memory allocations. In a typical
1381 * production configuration these hooks all should produce no code at all.
1382 */
0116523c 1383static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1384{
53128245 1385 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1386 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1387 kmemleak_alloc(ptr, size, 1, flags);
53128245 1388 return ptr;
d56791b3
RB
1389}
1390
ee3ce779 1391static __always_inline void kfree_hook(void *x)
d56791b3
RB
1392{
1393 kmemleak_free(x);
ee3ce779 1394 kasan_kfree_large(x, _RET_IP_);
d56791b3
RB
1395}
1396
c3895391 1397static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
d56791b3
RB
1398{
1399 kmemleak_free_recursive(x, s->flags);
7d550c56 1400
02e72cc6
AR
1401 /*
1402 * Trouble is that we may no longer disable interrupts in the fast path
1403 * So in order to make the debug calls that expect irqs to be
1404 * disabled we need to disable interrupts temporarily.
1405 */
4675ff05 1406#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1407 {
1408 unsigned long flags;
1409
1410 local_irq_save(flags);
02e72cc6
AR
1411 debug_check_no_locks_freed(x, s->object_size);
1412 local_irq_restore(flags);
1413 }
1414#endif
1415 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1416 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1417
c3895391
AK
1418 /* KASAN might put x into memory quarantine, delaying its reuse */
1419 return kasan_slab_free(s, x, _RET_IP_);
02e72cc6 1420}
205ab99d 1421
c3895391
AK
1422static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1423 void **head, void **tail)
81084651
JDB
1424{
1425/*
1426 * Compiler cannot detect this function can be removed if slab_free_hook()
1427 * evaluates to nothing. Thus, catch all relevant config debug options here.
1428 */
4675ff05 1429#if defined(CONFIG_LOCKDEP) || \
81084651
JDB
1430 defined(CONFIG_DEBUG_KMEMLEAK) || \
1431 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1432 defined(CONFIG_KASAN)
1433
c3895391
AK
1434 void *object;
1435 void *next = *head;
1436 void *old_tail = *tail ? *tail : *head;
1437
1438 /* Head and tail of the reconstructed freelist */
1439 *head = NULL;
1440 *tail = NULL;
81084651
JDB
1441
1442 do {
c3895391
AK
1443 object = next;
1444 next = get_freepointer(s, object);
1445 /* If object's reuse doesn't have to be delayed */
1446 if (!slab_free_hook(s, object)) {
1447 /* Move object to the new freelist */
1448 set_freepointer(s, object, *head);
1449 *head = object;
1450 if (!*tail)
1451 *tail = object;
1452 }
1453 } while (object != old_tail);
1454
1455 if (*head == *tail)
1456 *tail = NULL;
1457
1458 return *head != NULL;
1459#else
1460 return true;
81084651
JDB
1461#endif
1462}
1463
4d176711 1464static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1465 void *object)
1466{
1467 setup_object_debug(s, page, object);
4d176711 1468 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1469 if (unlikely(s->ctor)) {
1470 kasan_unpoison_object_data(s, object);
1471 s->ctor(object);
1472 kasan_poison_object_data(s, object);
1473 }
4d176711 1474 return object;
588f8ba9
TG
1475}
1476
81819f0f
CL
1477/*
1478 * Slab allocation and freeing
1479 */
5dfb4175
VD
1480static inline struct page *alloc_slab_page(struct kmem_cache *s,
1481 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1482{
5dfb4175 1483 struct page *page;
19af27af 1484 unsigned int order = oo_order(oo);
65c3376a 1485
2154a336 1486 if (node == NUMA_NO_NODE)
5dfb4175 1487 page = alloc_pages(flags, order);
65c3376a 1488 else
96db800f 1489 page = __alloc_pages_node(node, flags, order);
5dfb4175 1490
f3ccb2c4
VD
1491 if (page && memcg_charge_slab(page, flags, order, s)) {
1492 __free_pages(page, order);
1493 page = NULL;
1494 }
5dfb4175
VD
1495
1496 return page;
65c3376a
CL
1497}
1498
210e7a43
TG
1499#ifdef CONFIG_SLAB_FREELIST_RANDOM
1500/* Pre-initialize the random sequence cache */
1501static int init_cache_random_seq(struct kmem_cache *s)
1502{
19af27af 1503 unsigned int count = oo_objects(s->oo);
210e7a43 1504 int err;
210e7a43 1505
a810007a
SR
1506 /* Bailout if already initialised */
1507 if (s->random_seq)
1508 return 0;
1509
210e7a43
TG
1510 err = cache_random_seq_create(s, count, GFP_KERNEL);
1511 if (err) {
1512 pr_err("SLUB: Unable to initialize free list for %s\n",
1513 s->name);
1514 return err;
1515 }
1516
1517 /* Transform to an offset on the set of pages */
1518 if (s->random_seq) {
19af27af
AD
1519 unsigned int i;
1520
210e7a43
TG
1521 for (i = 0; i < count; i++)
1522 s->random_seq[i] *= s->size;
1523 }
1524 return 0;
1525}
1526
1527/* Initialize each random sequence freelist per cache */
1528static void __init init_freelist_randomization(void)
1529{
1530 struct kmem_cache *s;
1531
1532 mutex_lock(&slab_mutex);
1533
1534 list_for_each_entry(s, &slab_caches, list)
1535 init_cache_random_seq(s);
1536
1537 mutex_unlock(&slab_mutex);
1538}
1539
1540/* Get the next entry on the pre-computed freelist randomized */
1541static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1542 unsigned long *pos, void *start,
1543 unsigned long page_limit,
1544 unsigned long freelist_count)
1545{
1546 unsigned int idx;
1547
1548 /*
1549 * If the target page allocation failed, the number of objects on the
1550 * page might be smaller than the usual size defined by the cache.
1551 */
1552 do {
1553 idx = s->random_seq[*pos];
1554 *pos += 1;
1555 if (*pos >= freelist_count)
1556 *pos = 0;
1557 } while (unlikely(idx >= page_limit));
1558
1559 return (char *)start + idx;
1560}
1561
1562/* Shuffle the single linked freelist based on a random pre-computed sequence */
1563static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1564{
1565 void *start;
1566 void *cur;
1567 void *next;
1568 unsigned long idx, pos, page_limit, freelist_count;
1569
1570 if (page->objects < 2 || !s->random_seq)
1571 return false;
1572
1573 freelist_count = oo_objects(s->oo);
1574 pos = get_random_int() % freelist_count;
1575
1576 page_limit = page->objects * s->size;
1577 start = fixup_red_left(s, page_address(page));
1578
1579 /* First entry is used as the base of the freelist */
1580 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1581 freelist_count);
4d176711 1582 cur = setup_object(s, page, cur);
210e7a43
TG
1583 page->freelist = cur;
1584
1585 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1586 next = next_freelist_entry(s, page, &pos, start, page_limit,
1587 freelist_count);
4d176711 1588 next = setup_object(s, page, next);
210e7a43
TG
1589 set_freepointer(s, cur, next);
1590 cur = next;
1591 }
210e7a43
TG
1592 set_freepointer(s, cur, NULL);
1593
1594 return true;
1595}
1596#else
1597static inline int init_cache_random_seq(struct kmem_cache *s)
1598{
1599 return 0;
1600}
1601static inline void init_freelist_randomization(void) { }
1602static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1603{
1604 return false;
1605}
1606#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1607
81819f0f
CL
1608static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1609{
06428780 1610 struct page *page;
834f3d11 1611 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1612 gfp_t alloc_gfp;
4d176711 1613 void *start, *p, *next;
588f8ba9 1614 int idx, order;
210e7a43 1615 bool shuffle;
81819f0f 1616
7e0528da
CL
1617 flags &= gfp_allowed_mask;
1618
d0164adc 1619 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1620 local_irq_enable();
1621
b7a49f0d 1622 flags |= s->allocflags;
e12ba74d 1623
ba52270d
PE
1624 /*
1625 * Let the initial higher-order allocation fail under memory pressure
1626 * so we fall-back to the minimum order allocation.
1627 */
1628 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1629 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1630 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1631
5dfb4175 1632 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1633 if (unlikely(!page)) {
1634 oo = s->min;
80c3a998 1635 alloc_gfp = flags;
65c3376a
CL
1636 /*
1637 * Allocation may have failed due to fragmentation.
1638 * Try a lower order alloc if possible
1639 */
5dfb4175 1640 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1641 if (unlikely(!page))
1642 goto out;
1643 stat(s, ORDER_FALLBACK);
65c3376a 1644 }
5a896d9e 1645
834f3d11 1646 page->objects = oo_objects(oo);
81819f0f 1647
1f458cbf 1648 order = compound_order(page);
1b4f59e3 1649 page->slab_cache = s;
c03f94cc 1650 __SetPageSlab(page);
2f064f34 1651 if (page_is_pfmemalloc(page))
072bb0aa 1652 SetPageSlabPfmemalloc(page);
81819f0f 1653
a7101224 1654 kasan_poison_slab(page);
81819f0f 1655
a7101224 1656 start = page_address(page);
81819f0f 1657
a7101224 1658 setup_page_debug(s, start, order);
0316bec2 1659
210e7a43
TG
1660 shuffle = shuffle_freelist(s, page);
1661
1662 if (!shuffle) {
4d176711
AK
1663 start = fixup_red_left(s, start);
1664 start = setup_object(s, page, start);
1665 page->freelist = start;
18e50661
AK
1666 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1667 next = p + s->size;
1668 next = setup_object(s, page, next);
1669 set_freepointer(s, p, next);
1670 p = next;
1671 }
1672 set_freepointer(s, p, NULL);
81819f0f 1673 }
81819f0f 1674
e6e82ea1 1675 page->inuse = page->objects;
8cb0a506 1676 page->frozen = 1;
588f8ba9 1677
81819f0f 1678out:
d0164adc 1679 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1680 local_irq_disable();
1681 if (!page)
1682 return NULL;
1683
7779f212 1684 mod_lruvec_page_state(page,
588f8ba9
TG
1685 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1686 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1687 1 << oo_order(oo));
1688
1689 inc_slabs_node(s, page_to_nid(page), page->objects);
1690
81819f0f
CL
1691 return page;
1692}
1693
588f8ba9
TG
1694static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1695{
1696 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 1697 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
1698 flags &= ~GFP_SLAB_BUG_MASK;
1699 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1700 invalid_mask, &invalid_mask, flags, &flags);
65b9de75 1701 dump_stack();
588f8ba9
TG
1702 }
1703
1704 return allocate_slab(s,
1705 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1706}
1707
81819f0f
CL
1708static void __free_slab(struct kmem_cache *s, struct page *page)
1709{
834f3d11
CL
1710 int order = compound_order(page);
1711 int pages = 1 << order;
81819f0f 1712
becfda68 1713 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1714 void *p;
1715
1716 slab_pad_check(s, page);
224a88be
CL
1717 for_each_object(p, s, page_address(page),
1718 page->objects)
f7cb1933 1719 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1720 }
1721
7779f212 1722 mod_lruvec_page_state(page,
81819f0f
CL
1723 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1724 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1725 -pages);
81819f0f 1726
072bb0aa 1727 __ClearPageSlabPfmemalloc(page);
49bd5221 1728 __ClearPageSlab(page);
1f458cbf 1729
d4fc5069 1730 page->mapping = NULL;
1eb5ac64
NP
1731 if (current->reclaim_state)
1732 current->reclaim_state->reclaimed_slab += pages;
27ee57c9
VD
1733 memcg_uncharge_slab(page, order, s);
1734 __free_pages(page, order);
81819f0f
CL
1735}
1736
1737static void rcu_free_slab(struct rcu_head *h)
1738{
bf68c214 1739 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1740
1b4f59e3 1741 __free_slab(page->slab_cache, page);
81819f0f
CL
1742}
1743
1744static void free_slab(struct kmem_cache *s, struct page *page)
1745{
5f0d5a3a 1746 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1747 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1748 } else
1749 __free_slab(s, page);
1750}
1751
1752static void discard_slab(struct kmem_cache *s, struct page *page)
1753{
205ab99d 1754 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1755 free_slab(s, page);
1756}
1757
1758/*
5cc6eee8 1759 * Management of partially allocated slabs.
81819f0f 1760 */
1e4dd946
SR
1761static inline void
1762__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1763{
e95eed57 1764 n->nr_partial++;
136333d1 1765 if (tail == DEACTIVATE_TO_TAIL)
916ac052 1766 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 1767 else
916ac052 1768 list_add(&page->slab_list, &n->partial);
81819f0f
CL
1769}
1770
1e4dd946
SR
1771static inline void add_partial(struct kmem_cache_node *n,
1772 struct page *page, int tail)
62e346a8 1773{
c65c1877 1774 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1775 __add_partial(n, page, tail);
1776}
c65c1877 1777
1e4dd946
SR
1778static inline void remove_partial(struct kmem_cache_node *n,
1779 struct page *page)
1780{
1781 lockdep_assert_held(&n->list_lock);
916ac052 1782 list_del(&page->slab_list);
52b4b950 1783 n->nr_partial--;
1e4dd946
SR
1784}
1785
81819f0f 1786/*
7ced3719
CL
1787 * Remove slab from the partial list, freeze it and
1788 * return the pointer to the freelist.
81819f0f 1789 *
497b66f2 1790 * Returns a list of objects or NULL if it fails.
81819f0f 1791 */
497b66f2 1792static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1793 struct kmem_cache_node *n, struct page *page,
633b0764 1794 int mode, int *objects)
81819f0f 1795{
2cfb7455
CL
1796 void *freelist;
1797 unsigned long counters;
1798 struct page new;
1799
c65c1877
PZ
1800 lockdep_assert_held(&n->list_lock);
1801
2cfb7455
CL
1802 /*
1803 * Zap the freelist and set the frozen bit.
1804 * The old freelist is the list of objects for the
1805 * per cpu allocation list.
1806 */
7ced3719
CL
1807 freelist = page->freelist;
1808 counters = page->counters;
1809 new.counters = counters;
633b0764 1810 *objects = new.objects - new.inuse;
23910c50 1811 if (mode) {
7ced3719 1812 new.inuse = page->objects;
23910c50
PE
1813 new.freelist = NULL;
1814 } else {
1815 new.freelist = freelist;
1816 }
2cfb7455 1817
a0132ac0 1818 VM_BUG_ON(new.frozen);
7ced3719 1819 new.frozen = 1;
2cfb7455 1820
7ced3719 1821 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1822 freelist, counters,
02d7633f 1823 new.freelist, new.counters,
7ced3719 1824 "acquire_slab"))
7ced3719 1825 return NULL;
2cfb7455
CL
1826
1827 remove_partial(n, page);
7ced3719 1828 WARN_ON(!freelist);
49e22585 1829 return freelist;
81819f0f
CL
1830}
1831
633b0764 1832static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1833static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1834
81819f0f 1835/*
672bba3a 1836 * Try to allocate a partial slab from a specific node.
81819f0f 1837 */
8ba00bb6
JK
1838static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1839 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1840{
49e22585
CL
1841 struct page *page, *page2;
1842 void *object = NULL;
e5d9998f 1843 unsigned int available = 0;
633b0764 1844 int objects;
81819f0f
CL
1845
1846 /*
1847 * Racy check. If we mistakenly see no partial slabs then we
1848 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1849 * partial slab and there is none available then get_partials()
1850 * will return NULL.
81819f0f
CL
1851 */
1852 if (!n || !n->nr_partial)
1853 return NULL;
1854
1855 spin_lock(&n->list_lock);
916ac052 1856 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 1857 void *t;
49e22585 1858
8ba00bb6
JK
1859 if (!pfmemalloc_match(page, flags))
1860 continue;
1861
633b0764 1862 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1863 if (!t)
1864 break;
1865
633b0764 1866 available += objects;
12d79634 1867 if (!object) {
49e22585 1868 c->page = page;
49e22585 1869 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1870 object = t;
49e22585 1871 } else {
633b0764 1872 put_cpu_partial(s, page, 0);
8028dcea 1873 stat(s, CPU_PARTIAL_NODE);
49e22585 1874 }
345c905d 1875 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 1876 || available > slub_cpu_partial(s) / 2)
49e22585
CL
1877 break;
1878
497b66f2 1879 }
81819f0f 1880 spin_unlock(&n->list_lock);
497b66f2 1881 return object;
81819f0f
CL
1882}
1883
1884/*
672bba3a 1885 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1886 */
de3ec035 1887static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1888 struct kmem_cache_cpu *c)
81819f0f
CL
1889{
1890#ifdef CONFIG_NUMA
1891 struct zonelist *zonelist;
dd1a239f 1892 struct zoneref *z;
54a6eb5c
MG
1893 struct zone *zone;
1894 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1895 void *object;
cc9a6c87 1896 unsigned int cpuset_mems_cookie;
81819f0f
CL
1897
1898 /*
672bba3a
CL
1899 * The defrag ratio allows a configuration of the tradeoffs between
1900 * inter node defragmentation and node local allocations. A lower
1901 * defrag_ratio increases the tendency to do local allocations
1902 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1903 *
672bba3a
CL
1904 * If the defrag_ratio is set to 0 then kmalloc() always
1905 * returns node local objects. If the ratio is higher then kmalloc()
1906 * may return off node objects because partial slabs are obtained
1907 * from other nodes and filled up.
81819f0f 1908 *
43efd3ea
LP
1909 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1910 * (which makes defrag_ratio = 1000) then every (well almost)
1911 * allocation will first attempt to defrag slab caches on other nodes.
1912 * This means scanning over all nodes to look for partial slabs which
1913 * may be expensive if we do it every time we are trying to find a slab
672bba3a 1914 * with available objects.
81819f0f 1915 */
9824601e
CL
1916 if (!s->remote_node_defrag_ratio ||
1917 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1918 return NULL;
1919
cc9a6c87 1920 do {
d26914d1 1921 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1922 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1923 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1924 struct kmem_cache_node *n;
1925
1926 n = get_node(s, zone_to_nid(zone));
1927
dee2f8aa 1928 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1929 n->nr_partial > s->min_partial) {
8ba00bb6 1930 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1931 if (object) {
1932 /*
d26914d1
MG
1933 * Don't check read_mems_allowed_retry()
1934 * here - if mems_allowed was updated in
1935 * parallel, that was a harmless race
1936 * between allocation and the cpuset
1937 * update
cc9a6c87 1938 */
cc9a6c87
MG
1939 return object;
1940 }
c0ff7453 1941 }
81819f0f 1942 }
d26914d1 1943 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 1944#endif /* CONFIG_NUMA */
81819f0f
CL
1945 return NULL;
1946}
1947
1948/*
1949 * Get a partial page, lock it and return it.
1950 */
497b66f2 1951static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1952 struct kmem_cache_cpu *c)
81819f0f 1953{
497b66f2 1954 void *object;
a561ce00
JK
1955 int searchnode = node;
1956
1957 if (node == NUMA_NO_NODE)
1958 searchnode = numa_mem_id();
1959 else if (!node_present_pages(node))
1960 searchnode = node_to_mem_node(node);
81819f0f 1961
8ba00bb6 1962 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1963 if (object || node != NUMA_NO_NODE)
1964 return object;
81819f0f 1965
acd19fd1 1966 return get_any_partial(s, flags, c);
81819f0f
CL
1967}
1968
8a5ec0ba
CL
1969#ifdef CONFIG_PREEMPT
1970/*
1971 * Calculate the next globally unique transaction for disambiguiation
1972 * during cmpxchg. The transactions start with the cpu number and are then
1973 * incremented by CONFIG_NR_CPUS.
1974 */
1975#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1976#else
1977/*
1978 * No preemption supported therefore also no need to check for
1979 * different cpus.
1980 */
1981#define TID_STEP 1
1982#endif
1983
1984static inline unsigned long next_tid(unsigned long tid)
1985{
1986 return tid + TID_STEP;
1987}
1988
1989static inline unsigned int tid_to_cpu(unsigned long tid)
1990{
1991 return tid % TID_STEP;
1992}
1993
1994static inline unsigned long tid_to_event(unsigned long tid)
1995{
1996 return tid / TID_STEP;
1997}
1998
1999static inline unsigned int init_tid(int cpu)
2000{
2001 return cpu;
2002}
2003
2004static inline void note_cmpxchg_failure(const char *n,
2005 const struct kmem_cache *s, unsigned long tid)
2006{
2007#ifdef SLUB_DEBUG_CMPXCHG
2008 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2009
f9f58285 2010 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
2011
2012#ifdef CONFIG_PREEMPT
2013 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2014 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2015 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2016 else
2017#endif
2018 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2019 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2020 tid_to_event(tid), tid_to_event(actual_tid));
2021 else
f9f58285 2022 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2023 actual_tid, tid, next_tid(tid));
2024#endif
4fdccdfb 2025 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2026}
2027
788e1aad 2028static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2029{
8a5ec0ba
CL
2030 int cpu;
2031
2032 for_each_possible_cpu(cpu)
2033 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2034}
2cfb7455 2035
81819f0f
CL
2036/*
2037 * Remove the cpu slab
2038 */
d0e0ac97 2039static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2040 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2041{
2cfb7455 2042 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
2043 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2044 int lock = 0;
2045 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2046 void *nextfree;
136333d1 2047 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2048 struct page new;
2049 struct page old;
2050
2051 if (page->freelist) {
84e554e6 2052 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2053 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2054 }
2055
894b8788 2056 /*
2cfb7455
CL
2057 * Stage one: Free all available per cpu objects back
2058 * to the page freelist while it is still frozen. Leave the
2059 * last one.
2060 *
2061 * There is no need to take the list->lock because the page
2062 * is still frozen.
2063 */
2064 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2065 void *prior;
2066 unsigned long counters;
2067
2068 do {
2069 prior = page->freelist;
2070 counters = page->counters;
2071 set_freepointer(s, freelist, prior);
2072 new.counters = counters;
2073 new.inuse--;
a0132ac0 2074 VM_BUG_ON(!new.frozen);
2cfb7455 2075
1d07171c 2076 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2077 prior, counters,
2078 freelist, new.counters,
2079 "drain percpu freelist"));
2080
2081 freelist = nextfree;
2082 }
2083
894b8788 2084 /*
2cfb7455
CL
2085 * Stage two: Ensure that the page is unfrozen while the
2086 * list presence reflects the actual number of objects
2087 * during unfreeze.
2088 *
2089 * We setup the list membership and then perform a cmpxchg
2090 * with the count. If there is a mismatch then the page
2091 * is not unfrozen but the page is on the wrong list.
2092 *
2093 * Then we restart the process which may have to remove
2094 * the page from the list that we just put it on again
2095 * because the number of objects in the slab may have
2096 * changed.
894b8788 2097 */
2cfb7455 2098redo:
894b8788 2099
2cfb7455
CL
2100 old.freelist = page->freelist;
2101 old.counters = page->counters;
a0132ac0 2102 VM_BUG_ON(!old.frozen);
7c2e132c 2103
2cfb7455
CL
2104 /* Determine target state of the slab */
2105 new.counters = old.counters;
2106 if (freelist) {
2107 new.inuse--;
2108 set_freepointer(s, freelist, old.freelist);
2109 new.freelist = freelist;
2110 } else
2111 new.freelist = old.freelist;
2112
2113 new.frozen = 0;
2114
8a5b20ae 2115 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2116 m = M_FREE;
2117 else if (new.freelist) {
2118 m = M_PARTIAL;
2119 if (!lock) {
2120 lock = 1;
2121 /*
8bb4e7a2 2122 * Taking the spinlock removes the possibility
2cfb7455
CL
2123 * that acquire_slab() will see a slab page that
2124 * is frozen
2125 */
2126 spin_lock(&n->list_lock);
2127 }
2128 } else {
2129 m = M_FULL;
2130 if (kmem_cache_debug(s) && !lock) {
2131 lock = 1;
2132 /*
2133 * This also ensures that the scanning of full
2134 * slabs from diagnostic functions will not see
2135 * any frozen slabs.
2136 */
2137 spin_lock(&n->list_lock);
2138 }
2139 }
2140
2141 if (l != m) {
2cfb7455 2142 if (l == M_PARTIAL)
2cfb7455 2143 remove_partial(n, page);
2cfb7455 2144 else if (l == M_FULL)
c65c1877 2145 remove_full(s, n, page);
2cfb7455 2146
88349a28 2147 if (m == M_PARTIAL)
2cfb7455 2148 add_partial(n, page, tail);
88349a28 2149 else if (m == M_FULL)
2cfb7455 2150 add_full(s, n, page);
2cfb7455
CL
2151 }
2152
2153 l = m;
1d07171c 2154 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2155 old.freelist, old.counters,
2156 new.freelist, new.counters,
2157 "unfreezing slab"))
2158 goto redo;
2159
2cfb7455
CL
2160 if (lock)
2161 spin_unlock(&n->list_lock);
2162
88349a28
WY
2163 if (m == M_PARTIAL)
2164 stat(s, tail);
2165 else if (m == M_FULL)
2166 stat(s, DEACTIVATE_FULL);
2167 else if (m == M_FREE) {
2cfb7455
CL
2168 stat(s, DEACTIVATE_EMPTY);
2169 discard_slab(s, page);
2170 stat(s, FREE_SLAB);
894b8788 2171 }
d4ff6d35
WY
2172
2173 c->page = NULL;
2174 c->freelist = NULL;
81819f0f
CL
2175}
2176
d24ac77f
JK
2177/*
2178 * Unfreeze all the cpu partial slabs.
2179 *
59a09917
CL
2180 * This function must be called with interrupts disabled
2181 * for the cpu using c (or some other guarantee must be there
2182 * to guarantee no concurrent accesses).
d24ac77f 2183 */
59a09917
CL
2184static void unfreeze_partials(struct kmem_cache *s,
2185 struct kmem_cache_cpu *c)
49e22585 2186{
345c905d 2187#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2188 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2189 struct page *page, *discard_page = NULL;
49e22585
CL
2190
2191 while ((page = c->partial)) {
49e22585
CL
2192 struct page new;
2193 struct page old;
2194
2195 c->partial = page->next;
43d77867
JK
2196
2197 n2 = get_node(s, page_to_nid(page));
2198 if (n != n2) {
2199 if (n)
2200 spin_unlock(&n->list_lock);
2201
2202 n = n2;
2203 spin_lock(&n->list_lock);
2204 }
49e22585
CL
2205
2206 do {
2207
2208 old.freelist = page->freelist;
2209 old.counters = page->counters;
a0132ac0 2210 VM_BUG_ON(!old.frozen);
49e22585
CL
2211
2212 new.counters = old.counters;
2213 new.freelist = old.freelist;
2214
2215 new.frozen = 0;
2216
d24ac77f 2217 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2218 old.freelist, old.counters,
2219 new.freelist, new.counters,
2220 "unfreezing slab"));
2221
8a5b20ae 2222 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2223 page->next = discard_page;
2224 discard_page = page;
43d77867
JK
2225 } else {
2226 add_partial(n, page, DEACTIVATE_TO_TAIL);
2227 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2228 }
2229 }
2230
2231 if (n)
2232 spin_unlock(&n->list_lock);
9ada1934
SL
2233
2234 while (discard_page) {
2235 page = discard_page;
2236 discard_page = discard_page->next;
2237
2238 stat(s, DEACTIVATE_EMPTY);
2239 discard_slab(s, page);
2240 stat(s, FREE_SLAB);
2241 }
6dfd1b65 2242#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2243}
2244
2245/*
9234bae9
WY
2246 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2247 * partial page slot if available.
49e22585
CL
2248 *
2249 * If we did not find a slot then simply move all the partials to the
2250 * per node partial list.
2251 */
633b0764 2252static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2253{
345c905d 2254#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2255 struct page *oldpage;
2256 int pages;
2257 int pobjects;
2258
d6e0b7fa 2259 preempt_disable();
49e22585
CL
2260 do {
2261 pages = 0;
2262 pobjects = 0;
2263 oldpage = this_cpu_read(s->cpu_slab->partial);
2264
2265 if (oldpage) {
2266 pobjects = oldpage->pobjects;
2267 pages = oldpage->pages;
2268 if (drain && pobjects > s->cpu_partial) {
2269 unsigned long flags;
2270 /*
2271 * partial array is full. Move the existing
2272 * set to the per node partial list.
2273 */
2274 local_irq_save(flags);
59a09917 2275 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2276 local_irq_restore(flags);
e24fc410 2277 oldpage = NULL;
49e22585
CL
2278 pobjects = 0;
2279 pages = 0;
8028dcea 2280 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2281 }
2282 }
2283
2284 pages++;
2285 pobjects += page->objects - page->inuse;
2286
2287 page->pages = pages;
2288 page->pobjects = pobjects;
2289 page->next = oldpage;
2290
d0e0ac97
CG
2291 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2292 != oldpage);
d6e0b7fa
VD
2293 if (unlikely(!s->cpu_partial)) {
2294 unsigned long flags;
2295
2296 local_irq_save(flags);
2297 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2298 local_irq_restore(flags);
2299 }
2300 preempt_enable();
6dfd1b65 2301#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2302}
2303
dfb4f096 2304static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2305{
84e554e6 2306 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2307 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2308
2309 c->tid = next_tid(c->tid);
81819f0f
CL
2310}
2311
2312/*
2313 * Flush cpu slab.
6446faa2 2314 *
81819f0f
CL
2315 * Called from IPI handler with interrupts disabled.
2316 */
0c710013 2317static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2318{
9dfc6e68 2319 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2320
1265ef2d
WY
2321 if (c->page)
2322 flush_slab(s, c);
49e22585 2323
1265ef2d 2324 unfreeze_partials(s, c);
81819f0f
CL
2325}
2326
2327static void flush_cpu_slab(void *d)
2328{
2329 struct kmem_cache *s = d;
81819f0f 2330
dfb4f096 2331 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2332}
2333
a8364d55
GBY
2334static bool has_cpu_slab(int cpu, void *info)
2335{
2336 struct kmem_cache *s = info;
2337 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2338
a93cf07b 2339 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2340}
2341
81819f0f
CL
2342static void flush_all(struct kmem_cache *s)
2343{
a8364d55 2344 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2345}
2346
a96a87bf
SAS
2347/*
2348 * Use the cpu notifier to insure that the cpu slabs are flushed when
2349 * necessary.
2350 */
2351static int slub_cpu_dead(unsigned int cpu)
2352{
2353 struct kmem_cache *s;
2354 unsigned long flags;
2355
2356 mutex_lock(&slab_mutex);
2357 list_for_each_entry(s, &slab_caches, list) {
2358 local_irq_save(flags);
2359 __flush_cpu_slab(s, cpu);
2360 local_irq_restore(flags);
2361 }
2362 mutex_unlock(&slab_mutex);
2363 return 0;
2364}
2365
dfb4f096
CL
2366/*
2367 * Check if the objects in a per cpu structure fit numa
2368 * locality expectations.
2369 */
57d437d2 2370static inline int node_match(struct page *page, int node)
dfb4f096
CL
2371{
2372#ifdef CONFIG_NUMA
6159d0f5 2373 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2374 return 0;
2375#endif
2376 return 1;
2377}
2378
9a02d699 2379#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2380static int count_free(struct page *page)
2381{
2382 return page->objects - page->inuse;
2383}
2384
9a02d699
DR
2385static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2386{
2387 return atomic_long_read(&n->total_objects);
2388}
2389#endif /* CONFIG_SLUB_DEBUG */
2390
2391#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2392static unsigned long count_partial(struct kmem_cache_node *n,
2393 int (*get_count)(struct page *))
2394{
2395 unsigned long flags;
2396 unsigned long x = 0;
2397 struct page *page;
2398
2399 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2400 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2401 x += get_count(page);
2402 spin_unlock_irqrestore(&n->list_lock, flags);
2403 return x;
2404}
9a02d699 2405#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2406
781b2ba6
PE
2407static noinline void
2408slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2409{
9a02d699
DR
2410#ifdef CONFIG_SLUB_DEBUG
2411 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2412 DEFAULT_RATELIMIT_BURST);
781b2ba6 2413 int node;
fa45dc25 2414 struct kmem_cache_node *n;
781b2ba6 2415
9a02d699
DR
2416 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2417 return;
2418
5b3810e5
VB
2419 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2420 nid, gfpflags, &gfpflags);
19af27af 2421 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2422 s->name, s->object_size, s->size, oo_order(s->oo),
2423 oo_order(s->min));
781b2ba6 2424
3b0efdfa 2425 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2426 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2427 s->name);
fa5ec8a1 2428
fa45dc25 2429 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2430 unsigned long nr_slabs;
2431 unsigned long nr_objs;
2432 unsigned long nr_free;
2433
26c02cf0
AB
2434 nr_free = count_partial(n, count_free);
2435 nr_slabs = node_nr_slabs(n);
2436 nr_objs = node_nr_objs(n);
781b2ba6 2437
f9f58285 2438 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2439 node, nr_slabs, nr_objs, nr_free);
2440 }
9a02d699 2441#endif
781b2ba6
PE
2442}
2443
497b66f2
CL
2444static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2445 int node, struct kmem_cache_cpu **pc)
2446{
6faa6833 2447 void *freelist;
188fd063
CL
2448 struct kmem_cache_cpu *c = *pc;
2449 struct page *page;
497b66f2 2450
128227e7
MW
2451 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2452
188fd063 2453 freelist = get_partial(s, flags, node, c);
497b66f2 2454
188fd063
CL
2455 if (freelist)
2456 return freelist;
2457
2458 page = new_slab(s, flags, node);
497b66f2 2459 if (page) {
7c8e0181 2460 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2461 if (c->page)
2462 flush_slab(s, c);
2463
2464 /*
2465 * No other reference to the page yet so we can
2466 * muck around with it freely without cmpxchg
2467 */
6faa6833 2468 freelist = page->freelist;
497b66f2
CL
2469 page->freelist = NULL;
2470
2471 stat(s, ALLOC_SLAB);
497b66f2
CL
2472 c->page = page;
2473 *pc = c;
edde82b6 2474 }
497b66f2 2475
6faa6833 2476 return freelist;
497b66f2
CL
2477}
2478
072bb0aa
MG
2479static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2480{
2481 if (unlikely(PageSlabPfmemalloc(page)))
2482 return gfp_pfmemalloc_allowed(gfpflags);
2483
2484 return true;
2485}
2486
213eeb9f 2487/*
d0e0ac97
CG
2488 * Check the page->freelist of a page and either transfer the freelist to the
2489 * per cpu freelist or deactivate the page.
213eeb9f
CL
2490 *
2491 * The page is still frozen if the return value is not NULL.
2492 *
2493 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2494 *
2495 * This function must be called with interrupt disabled.
213eeb9f
CL
2496 */
2497static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2498{
2499 struct page new;
2500 unsigned long counters;
2501 void *freelist;
2502
2503 do {
2504 freelist = page->freelist;
2505 counters = page->counters;
6faa6833 2506
213eeb9f 2507 new.counters = counters;
a0132ac0 2508 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2509
2510 new.inuse = page->objects;
2511 new.frozen = freelist != NULL;
2512
d24ac77f 2513 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2514 freelist, counters,
2515 NULL, new.counters,
2516 "get_freelist"));
2517
2518 return freelist;
2519}
2520
81819f0f 2521/*
894b8788
CL
2522 * Slow path. The lockless freelist is empty or we need to perform
2523 * debugging duties.
2524 *
894b8788
CL
2525 * Processing is still very fast if new objects have been freed to the
2526 * regular freelist. In that case we simply take over the regular freelist
2527 * as the lockless freelist and zap the regular freelist.
81819f0f 2528 *
894b8788
CL
2529 * If that is not working then we fall back to the partial lists. We take the
2530 * first element of the freelist as the object to allocate now and move the
2531 * rest of the freelist to the lockless freelist.
81819f0f 2532 *
894b8788 2533 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2534 * we need to allocate a new slab. This is the slowest path since it involves
2535 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2536 *
2537 * Version of __slab_alloc to use when we know that interrupts are
2538 * already disabled (which is the case for bulk allocation).
81819f0f 2539 */
a380a3c7 2540static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2541 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2542{
6faa6833 2543 void *freelist;
f6e7def7 2544 struct page *page;
81819f0f 2545
f6e7def7
CL
2546 page = c->page;
2547 if (!page)
81819f0f 2548 goto new_slab;
49e22585 2549redo:
6faa6833 2550
57d437d2 2551 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2552 int searchnode = node;
2553
2554 if (node != NUMA_NO_NODE && !node_present_pages(node))
2555 searchnode = node_to_mem_node(node);
2556
2557 if (unlikely(!node_match(page, searchnode))) {
2558 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2559 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2560 goto new_slab;
2561 }
fc59c053 2562 }
6446faa2 2563
072bb0aa
MG
2564 /*
2565 * By rights, we should be searching for a slab page that was
2566 * PFMEMALLOC but right now, we are losing the pfmemalloc
2567 * information when the page leaves the per-cpu allocator
2568 */
2569 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2570 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2571 goto new_slab;
2572 }
2573
73736e03 2574 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2575 freelist = c->freelist;
2576 if (freelist)
73736e03 2577 goto load_freelist;
03e404af 2578
f6e7def7 2579 freelist = get_freelist(s, page);
6446faa2 2580
6faa6833 2581 if (!freelist) {
03e404af
CL
2582 c->page = NULL;
2583 stat(s, DEACTIVATE_BYPASS);
fc59c053 2584 goto new_slab;
03e404af 2585 }
6446faa2 2586
84e554e6 2587 stat(s, ALLOC_REFILL);
6446faa2 2588
894b8788 2589load_freelist:
507effea
CL
2590 /*
2591 * freelist is pointing to the list of objects to be used.
2592 * page is pointing to the page from which the objects are obtained.
2593 * That page must be frozen for per cpu allocations to work.
2594 */
a0132ac0 2595 VM_BUG_ON(!c->page->frozen);
6faa6833 2596 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2597 c->tid = next_tid(c->tid);
6faa6833 2598 return freelist;
81819f0f 2599
81819f0f 2600new_slab:
2cfb7455 2601
a93cf07b
WY
2602 if (slub_percpu_partial(c)) {
2603 page = c->page = slub_percpu_partial(c);
2604 slub_set_percpu_partial(c, page);
49e22585 2605 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2606 goto redo;
81819f0f
CL
2607 }
2608
188fd063 2609 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2610
f4697436 2611 if (unlikely(!freelist)) {
9a02d699 2612 slab_out_of_memory(s, gfpflags, node);
f4697436 2613 return NULL;
81819f0f 2614 }
2cfb7455 2615
f6e7def7 2616 page = c->page;
5091b74a 2617 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2618 goto load_freelist;
2cfb7455 2619
497b66f2 2620 /* Only entered in the debug case */
d0e0ac97
CG
2621 if (kmem_cache_debug(s) &&
2622 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2623 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2624
d4ff6d35 2625 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2626 return freelist;
894b8788
CL
2627}
2628
a380a3c7
CL
2629/*
2630 * Another one that disabled interrupt and compensates for possible
2631 * cpu changes by refetching the per cpu area pointer.
2632 */
2633static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2634 unsigned long addr, struct kmem_cache_cpu *c)
2635{
2636 void *p;
2637 unsigned long flags;
2638
2639 local_irq_save(flags);
2640#ifdef CONFIG_PREEMPT
2641 /*
2642 * We may have been preempted and rescheduled on a different
2643 * cpu before disabling interrupts. Need to reload cpu area
2644 * pointer.
2645 */
2646 c = this_cpu_ptr(s->cpu_slab);
2647#endif
2648
2649 p = ___slab_alloc(s, gfpflags, node, addr, c);
2650 local_irq_restore(flags);
2651 return p;
2652}
2653
894b8788
CL
2654/*
2655 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2656 * have the fastpath folded into their functions. So no function call
2657 * overhead for requests that can be satisfied on the fastpath.
2658 *
2659 * The fastpath works by first checking if the lockless freelist can be used.
2660 * If not then __slab_alloc is called for slow processing.
2661 *
2662 * Otherwise we can simply pick the next object from the lockless free list.
2663 */
2b847c3c 2664static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2665 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2666{
03ec0ed5 2667 void *object;
dfb4f096 2668 struct kmem_cache_cpu *c;
57d437d2 2669 struct page *page;
8a5ec0ba 2670 unsigned long tid;
1f84260c 2671
8135be5a
VD
2672 s = slab_pre_alloc_hook(s, gfpflags);
2673 if (!s)
773ff60e 2674 return NULL;
8a5ec0ba 2675redo:
8a5ec0ba
CL
2676 /*
2677 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2678 * enabled. We may switch back and forth between cpus while
2679 * reading from one cpu area. That does not matter as long
2680 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2681 *
9aabf810
JK
2682 * We should guarantee that tid and kmem_cache are retrieved on
2683 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2684 * to check if it is matched or not.
8a5ec0ba 2685 */
9aabf810
JK
2686 do {
2687 tid = this_cpu_read(s->cpu_slab->tid);
2688 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2689 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2690 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2691
2692 /*
2693 * Irqless object alloc/free algorithm used here depends on sequence
2694 * of fetching cpu_slab's data. tid should be fetched before anything
2695 * on c to guarantee that object and page associated with previous tid
2696 * won't be used with current tid. If we fetch tid first, object and
2697 * page could be one associated with next tid and our alloc/free
2698 * request will be failed. In this case, we will retry. So, no problem.
2699 */
2700 barrier();
8a5ec0ba 2701
8a5ec0ba
CL
2702 /*
2703 * The transaction ids are globally unique per cpu and per operation on
2704 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2705 * occurs on the right processor and that there was no operation on the
2706 * linked list in between.
2707 */
8a5ec0ba 2708
9dfc6e68 2709 object = c->freelist;
57d437d2 2710 page = c->page;
8eae1492 2711 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2712 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2713 stat(s, ALLOC_SLOWPATH);
2714 } else {
0ad9500e
ED
2715 void *next_object = get_freepointer_safe(s, object);
2716
8a5ec0ba 2717 /*
25985edc 2718 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2719 * operation and if we are on the right processor.
2720 *
d0e0ac97
CG
2721 * The cmpxchg does the following atomically (without lock
2722 * semantics!)
8a5ec0ba
CL
2723 * 1. Relocate first pointer to the current per cpu area.
2724 * 2. Verify that tid and freelist have not been changed
2725 * 3. If they were not changed replace tid and freelist
2726 *
d0e0ac97
CG
2727 * Since this is without lock semantics the protection is only
2728 * against code executing on this cpu *not* from access by
2729 * other cpus.
8a5ec0ba 2730 */
933393f5 2731 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2732 s->cpu_slab->freelist, s->cpu_slab->tid,
2733 object, tid,
0ad9500e 2734 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2735
2736 note_cmpxchg_failure("slab_alloc", s, tid);
2737 goto redo;
2738 }
0ad9500e 2739 prefetch_freepointer(s, next_object);
84e554e6 2740 stat(s, ALLOC_FASTPATH);
894b8788 2741 }
8a5ec0ba 2742
74e2134f 2743 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2744 memset(object, 0, s->object_size);
d07dbea4 2745
03ec0ed5 2746 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2747
894b8788 2748 return object;
81819f0f
CL
2749}
2750
2b847c3c
EG
2751static __always_inline void *slab_alloc(struct kmem_cache *s,
2752 gfp_t gfpflags, unsigned long addr)
2753{
2754 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2755}
2756
81819f0f
CL
2757void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2758{
2b847c3c 2759 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2760
d0e0ac97
CG
2761 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2762 s->size, gfpflags);
5b882be4
EGM
2763
2764 return ret;
81819f0f
CL
2765}
2766EXPORT_SYMBOL(kmem_cache_alloc);
2767
0f24f128 2768#ifdef CONFIG_TRACING
4a92379b
RK
2769void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2770{
2b847c3c 2771 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2772 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 2773 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2774 return ret;
2775}
2776EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2777#endif
2778
81819f0f
CL
2779#ifdef CONFIG_NUMA
2780void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2781{
2b847c3c 2782 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2783
ca2b84cb 2784 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2785 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2786
2787 return ret;
81819f0f
CL
2788}
2789EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2790
0f24f128 2791#ifdef CONFIG_TRACING
4a92379b 2792void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2793 gfp_t gfpflags,
4a92379b 2794 int node, size_t size)
5b882be4 2795{
2b847c3c 2796 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2797
2798 trace_kmalloc_node(_RET_IP_, ret,
2799 size, s->size, gfpflags, node);
0316bec2 2800
0116523c 2801 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2802 return ret;
5b882be4 2803}
4a92379b 2804EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2805#endif
6dfd1b65 2806#endif /* CONFIG_NUMA */
5b882be4 2807
81819f0f 2808/*
94e4d712 2809 * Slow path handling. This may still be called frequently since objects
894b8788 2810 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2811 *
894b8788
CL
2812 * So we still attempt to reduce cache line usage. Just take the slab
2813 * lock and free the item. If there is no additional partial page
2814 * handling required then we can return immediately.
81819f0f 2815 */
894b8788 2816static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2817 void *head, void *tail, int cnt,
2818 unsigned long addr)
2819
81819f0f
CL
2820{
2821 void *prior;
2cfb7455 2822 int was_frozen;
2cfb7455
CL
2823 struct page new;
2824 unsigned long counters;
2825 struct kmem_cache_node *n = NULL;
61728d1e 2826 unsigned long uninitialized_var(flags);
81819f0f 2827
8a5ec0ba 2828 stat(s, FREE_SLOWPATH);
81819f0f 2829
19c7ff9e 2830 if (kmem_cache_debug(s) &&
282acb43 2831 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2832 return;
6446faa2 2833
2cfb7455 2834 do {
837d678d
JK
2835 if (unlikely(n)) {
2836 spin_unlock_irqrestore(&n->list_lock, flags);
2837 n = NULL;
2838 }
2cfb7455
CL
2839 prior = page->freelist;
2840 counters = page->counters;
81084651 2841 set_freepointer(s, tail, prior);
2cfb7455
CL
2842 new.counters = counters;
2843 was_frozen = new.frozen;
81084651 2844 new.inuse -= cnt;
837d678d 2845 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2846
c65c1877 2847 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2848
2849 /*
d0e0ac97
CG
2850 * Slab was on no list before and will be
2851 * partially empty
2852 * We can defer the list move and instead
2853 * freeze it.
49e22585
CL
2854 */
2855 new.frozen = 1;
2856
c65c1877 2857 } else { /* Needs to be taken off a list */
49e22585 2858
b455def2 2859 n = get_node(s, page_to_nid(page));
49e22585
CL
2860 /*
2861 * Speculatively acquire the list_lock.
2862 * If the cmpxchg does not succeed then we may
2863 * drop the list_lock without any processing.
2864 *
2865 * Otherwise the list_lock will synchronize with
2866 * other processors updating the list of slabs.
2867 */
2868 spin_lock_irqsave(&n->list_lock, flags);
2869
2870 }
2cfb7455 2871 }
81819f0f 2872
2cfb7455
CL
2873 } while (!cmpxchg_double_slab(s, page,
2874 prior, counters,
81084651 2875 head, new.counters,
2cfb7455 2876 "__slab_free"));
81819f0f 2877
2cfb7455 2878 if (likely(!n)) {
49e22585
CL
2879
2880 /*
2881 * If we just froze the page then put it onto the
2882 * per cpu partial list.
2883 */
8028dcea 2884 if (new.frozen && !was_frozen) {
49e22585 2885 put_cpu_partial(s, page, 1);
8028dcea
AS
2886 stat(s, CPU_PARTIAL_FREE);
2887 }
49e22585 2888 /*
2cfb7455
CL
2889 * The list lock was not taken therefore no list
2890 * activity can be necessary.
2891 */
b455def2
L
2892 if (was_frozen)
2893 stat(s, FREE_FROZEN);
2894 return;
2895 }
81819f0f 2896
8a5b20ae 2897 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2898 goto slab_empty;
2899
81819f0f 2900 /*
837d678d
JK
2901 * Objects left in the slab. If it was not on the partial list before
2902 * then add it.
81819f0f 2903 */
345c905d 2904 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 2905 remove_full(s, n, page);
837d678d
JK
2906 add_partial(n, page, DEACTIVATE_TO_TAIL);
2907 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2908 }
80f08c19 2909 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2910 return;
2911
2912slab_empty:
a973e9dd 2913 if (prior) {
81819f0f 2914 /*
6fbabb20 2915 * Slab on the partial list.
81819f0f 2916 */
5cc6eee8 2917 remove_partial(n, page);
84e554e6 2918 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2919 } else {
6fbabb20 2920 /* Slab must be on the full list */
c65c1877
PZ
2921 remove_full(s, n, page);
2922 }
2cfb7455 2923
80f08c19 2924 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2925 stat(s, FREE_SLAB);
81819f0f 2926 discard_slab(s, page);
81819f0f
CL
2927}
2928
894b8788
CL
2929/*
2930 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2931 * can perform fastpath freeing without additional function calls.
2932 *
2933 * The fastpath is only possible if we are freeing to the current cpu slab
2934 * of this processor. This typically the case if we have just allocated
2935 * the item before.
2936 *
2937 * If fastpath is not possible then fall back to __slab_free where we deal
2938 * with all sorts of special processing.
81084651
JDB
2939 *
2940 * Bulk free of a freelist with several objects (all pointing to the
2941 * same page) possible by specifying head and tail ptr, plus objects
2942 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2943 */
80a9201a
AP
2944static __always_inline void do_slab_free(struct kmem_cache *s,
2945 struct page *page, void *head, void *tail,
2946 int cnt, unsigned long addr)
894b8788 2947{
81084651 2948 void *tail_obj = tail ? : head;
dfb4f096 2949 struct kmem_cache_cpu *c;
8a5ec0ba 2950 unsigned long tid;
8a5ec0ba
CL
2951redo:
2952 /*
2953 * Determine the currently cpus per cpu slab.
2954 * The cpu may change afterward. However that does not matter since
2955 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2956 * during the cmpxchg then the free will succeed.
8a5ec0ba 2957 */
9aabf810
JK
2958 do {
2959 tid = this_cpu_read(s->cpu_slab->tid);
2960 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2961 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2962 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2963
9aabf810
JK
2964 /* Same with comment on barrier() in slab_alloc_node() */
2965 barrier();
c016b0bd 2966
442b06bc 2967 if (likely(page == c->page)) {
81084651 2968 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2969
933393f5 2970 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2971 s->cpu_slab->freelist, s->cpu_slab->tid,
2972 c->freelist, tid,
81084651 2973 head, next_tid(tid)))) {
8a5ec0ba
CL
2974
2975 note_cmpxchg_failure("slab_free", s, tid);
2976 goto redo;
2977 }
84e554e6 2978 stat(s, FREE_FASTPATH);
894b8788 2979 } else
81084651 2980 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 2981
894b8788
CL
2982}
2983
80a9201a
AP
2984static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2985 void *head, void *tail, int cnt,
2986 unsigned long addr)
2987{
80a9201a 2988 /*
c3895391
AK
2989 * With KASAN enabled slab_free_freelist_hook modifies the freelist
2990 * to remove objects, whose reuse must be delayed.
80a9201a 2991 */
c3895391
AK
2992 if (slab_free_freelist_hook(s, &head, &tail))
2993 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
2994}
2995
2bd926b4 2996#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
2997void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2998{
2999 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3000}
3001#endif
3002
81819f0f
CL
3003void kmem_cache_free(struct kmem_cache *s, void *x)
3004{
b9ce5ef4
GC
3005 s = cache_from_obj(s, x);
3006 if (!s)
79576102 3007 return;
81084651 3008 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 3009 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
3010}
3011EXPORT_SYMBOL(kmem_cache_free);
3012
d0ecd894 3013struct detached_freelist {
fbd02630 3014 struct page *page;
d0ecd894
JDB
3015 void *tail;
3016 void *freelist;
3017 int cnt;
376bf125 3018 struct kmem_cache *s;
d0ecd894 3019};
fbd02630 3020
d0ecd894
JDB
3021/*
3022 * This function progressively scans the array with free objects (with
3023 * a limited look ahead) and extract objects belonging to the same
3024 * page. It builds a detached freelist directly within the given
3025 * page/objects. This can happen without any need for
3026 * synchronization, because the objects are owned by running process.
3027 * The freelist is build up as a single linked list in the objects.
3028 * The idea is, that this detached freelist can then be bulk
3029 * transferred to the real freelist(s), but only requiring a single
3030 * synchronization primitive. Look ahead in the array is limited due
3031 * to performance reasons.
3032 */
376bf125
JDB
3033static inline
3034int build_detached_freelist(struct kmem_cache *s, size_t size,
3035 void **p, struct detached_freelist *df)
d0ecd894
JDB
3036{
3037 size_t first_skipped_index = 0;
3038 int lookahead = 3;
3039 void *object;
ca257195 3040 struct page *page;
fbd02630 3041
d0ecd894
JDB
3042 /* Always re-init detached_freelist */
3043 df->page = NULL;
fbd02630 3044
d0ecd894
JDB
3045 do {
3046 object = p[--size];
ca257195 3047 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3048 } while (!object && size);
3eed034d 3049
d0ecd894
JDB
3050 if (!object)
3051 return 0;
fbd02630 3052
ca257195
JDB
3053 page = virt_to_head_page(object);
3054 if (!s) {
3055 /* Handle kalloc'ed objects */
3056 if (unlikely(!PageSlab(page))) {
3057 BUG_ON(!PageCompound(page));
3058 kfree_hook(object);
4949148a 3059 __free_pages(page, compound_order(page));
ca257195
JDB
3060 p[size] = NULL; /* mark object processed */
3061 return size;
3062 }
3063 /* Derive kmem_cache from object */
3064 df->s = page->slab_cache;
3065 } else {
3066 df->s = cache_from_obj(s, object); /* Support for memcg */
3067 }
376bf125 3068
d0ecd894 3069 /* Start new detached freelist */
ca257195 3070 df->page = page;
376bf125 3071 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3072 df->tail = object;
3073 df->freelist = object;
3074 p[size] = NULL; /* mark object processed */
3075 df->cnt = 1;
3076
3077 while (size) {
3078 object = p[--size];
3079 if (!object)
3080 continue; /* Skip processed objects */
3081
3082 /* df->page is always set at this point */
3083 if (df->page == virt_to_head_page(object)) {
3084 /* Opportunity build freelist */
376bf125 3085 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3086 df->freelist = object;
3087 df->cnt++;
3088 p[size] = NULL; /* mark object processed */
3089
3090 continue;
fbd02630 3091 }
d0ecd894
JDB
3092
3093 /* Limit look ahead search */
3094 if (!--lookahead)
3095 break;
3096
3097 if (!first_skipped_index)
3098 first_skipped_index = size + 1;
fbd02630 3099 }
d0ecd894
JDB
3100
3101 return first_skipped_index;
3102}
3103
d0ecd894 3104/* Note that interrupts must be enabled when calling this function. */
376bf125 3105void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3106{
3107 if (WARN_ON(!size))
3108 return;
3109
3110 do {
3111 struct detached_freelist df;
3112
3113 size = build_detached_freelist(s, size, p, &df);
84582c8a 3114 if (!df.page)
d0ecd894
JDB
3115 continue;
3116
376bf125 3117 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3118 } while (likely(size));
484748f0
CL
3119}
3120EXPORT_SYMBOL(kmem_cache_free_bulk);
3121
994eb764 3122/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3123int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3124 void **p)
484748f0 3125{
994eb764
JDB
3126 struct kmem_cache_cpu *c;
3127 int i;
3128
03ec0ed5
JDB
3129 /* memcg and kmem_cache debug support */
3130 s = slab_pre_alloc_hook(s, flags);
3131 if (unlikely(!s))
3132 return false;
994eb764
JDB
3133 /*
3134 * Drain objects in the per cpu slab, while disabling local
3135 * IRQs, which protects against PREEMPT and interrupts
3136 * handlers invoking normal fastpath.
3137 */
3138 local_irq_disable();
3139 c = this_cpu_ptr(s->cpu_slab);
3140
3141 for (i = 0; i < size; i++) {
3142 void *object = c->freelist;
3143
ebe909e0 3144 if (unlikely(!object)) {
ebe909e0
JDB
3145 /*
3146 * Invoking slow path likely have side-effect
3147 * of re-populating per CPU c->freelist
3148 */
87098373 3149 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3150 _RET_IP_, c);
87098373
CL
3151 if (unlikely(!p[i]))
3152 goto error;
3153
ebe909e0
JDB
3154 c = this_cpu_ptr(s->cpu_slab);
3155 continue; /* goto for-loop */
3156 }
994eb764
JDB
3157 c->freelist = get_freepointer(s, object);
3158 p[i] = object;
3159 }
3160 c->tid = next_tid(c->tid);
3161 local_irq_enable();
3162
3163 /* Clear memory outside IRQ disabled fastpath loop */
3164 if (unlikely(flags & __GFP_ZERO)) {
3165 int j;
3166
3167 for (j = 0; j < i; j++)
3168 memset(p[j], 0, s->object_size);
3169 }
3170
03ec0ed5
JDB
3171 /* memcg and kmem_cache debug support */
3172 slab_post_alloc_hook(s, flags, size, p);
865762a8 3173 return i;
87098373 3174error:
87098373 3175 local_irq_enable();
03ec0ed5
JDB
3176 slab_post_alloc_hook(s, flags, i, p);
3177 __kmem_cache_free_bulk(s, i, p);
865762a8 3178 return 0;
484748f0
CL
3179}
3180EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3181
3182
81819f0f 3183/*
672bba3a
CL
3184 * Object placement in a slab is made very easy because we always start at
3185 * offset 0. If we tune the size of the object to the alignment then we can
3186 * get the required alignment by putting one properly sized object after
3187 * another.
81819f0f
CL
3188 *
3189 * Notice that the allocation order determines the sizes of the per cpu
3190 * caches. Each processor has always one slab available for allocations.
3191 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3192 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3193 * locking overhead.
81819f0f
CL
3194 */
3195
3196/*
3197 * Mininum / Maximum order of slab pages. This influences locking overhead
3198 * and slab fragmentation. A higher order reduces the number of partial slabs
3199 * and increases the number of allocations possible without having to
3200 * take the list_lock.
3201 */
19af27af
AD
3202static unsigned int slub_min_order;
3203static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3204static unsigned int slub_min_objects;
81819f0f 3205
81819f0f
CL
3206/*
3207 * Calculate the order of allocation given an slab object size.
3208 *
672bba3a
CL
3209 * The order of allocation has significant impact on performance and other
3210 * system components. Generally order 0 allocations should be preferred since
3211 * order 0 does not cause fragmentation in the page allocator. Larger objects
3212 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3213 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3214 * would be wasted.
3215 *
3216 * In order to reach satisfactory performance we must ensure that a minimum
3217 * number of objects is in one slab. Otherwise we may generate too much
3218 * activity on the partial lists which requires taking the list_lock. This is
3219 * less a concern for large slabs though which are rarely used.
81819f0f 3220 *
672bba3a
CL
3221 * slub_max_order specifies the order where we begin to stop considering the
3222 * number of objects in a slab as critical. If we reach slub_max_order then
3223 * we try to keep the page order as low as possible. So we accept more waste
3224 * of space in favor of a small page order.
81819f0f 3225 *
672bba3a
CL
3226 * Higher order allocations also allow the placement of more objects in a
3227 * slab and thereby reduce object handling overhead. If the user has
3228 * requested a higher mininum order then we start with that one instead of
3229 * the smallest order which will fit the object.
81819f0f 3230 */
19af27af
AD
3231static inline unsigned int slab_order(unsigned int size,
3232 unsigned int min_objects, unsigned int max_order,
9736d2a9 3233 unsigned int fract_leftover)
81819f0f 3234{
19af27af
AD
3235 unsigned int min_order = slub_min_order;
3236 unsigned int order;
81819f0f 3237
9736d2a9 3238 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3239 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3240
9736d2a9 3241 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3242 order <= max_order; order++) {
81819f0f 3243
19af27af
AD
3244 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3245 unsigned int rem;
81819f0f 3246
9736d2a9 3247 rem = slab_size % size;
81819f0f 3248
5e6d444e 3249 if (rem <= slab_size / fract_leftover)
81819f0f 3250 break;
81819f0f 3251 }
672bba3a 3252
81819f0f
CL
3253 return order;
3254}
3255
9736d2a9 3256static inline int calculate_order(unsigned int size)
5e6d444e 3257{
19af27af
AD
3258 unsigned int order;
3259 unsigned int min_objects;
3260 unsigned int max_objects;
5e6d444e
CL
3261
3262 /*
3263 * Attempt to find best configuration for a slab. This
3264 * works by first attempting to generate a layout with
3265 * the best configuration and backing off gradually.
3266 *
422ff4d7 3267 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3268 * we reduce the minimum objects required in a slab.
3269 */
3270 min_objects = slub_min_objects;
9b2cd506
CL
3271 if (!min_objects)
3272 min_objects = 4 * (fls(nr_cpu_ids) + 1);
9736d2a9 3273 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3274 min_objects = min(min_objects, max_objects);
3275
5e6d444e 3276 while (min_objects > 1) {
19af27af
AD
3277 unsigned int fraction;
3278
c124f5b5 3279 fraction = 16;
5e6d444e
CL
3280 while (fraction >= 4) {
3281 order = slab_order(size, min_objects,
9736d2a9 3282 slub_max_order, fraction);
5e6d444e
CL
3283 if (order <= slub_max_order)
3284 return order;
3285 fraction /= 2;
3286 }
5086c389 3287 min_objects--;
5e6d444e
CL
3288 }
3289
3290 /*
3291 * We were unable to place multiple objects in a slab. Now
3292 * lets see if we can place a single object there.
3293 */
9736d2a9 3294 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3295 if (order <= slub_max_order)
3296 return order;
3297
3298 /*
3299 * Doh this slab cannot be placed using slub_max_order.
3300 */
9736d2a9 3301 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3302 if (order < MAX_ORDER)
5e6d444e
CL
3303 return order;
3304 return -ENOSYS;
3305}
3306
5595cffc 3307static void
4053497d 3308init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3309{
3310 n->nr_partial = 0;
81819f0f
CL
3311 spin_lock_init(&n->list_lock);
3312 INIT_LIST_HEAD(&n->partial);
8ab1372f 3313#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3314 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3315 atomic_long_set(&n->total_objects, 0);
643b1138 3316 INIT_LIST_HEAD(&n->full);
8ab1372f 3317#endif
81819f0f
CL
3318}
3319
55136592 3320static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3321{
6c182dc0 3322 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3323 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3324
8a5ec0ba 3325 /*
d4d84fef
CM
3326 * Must align to double word boundary for the double cmpxchg
3327 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3328 */
d4d84fef
CM
3329 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3330 2 * sizeof(void *));
8a5ec0ba
CL
3331
3332 if (!s->cpu_slab)
3333 return 0;
3334
3335 init_kmem_cache_cpus(s);
4c93c355 3336
8a5ec0ba 3337 return 1;
4c93c355 3338}
4c93c355 3339
51df1142
CL
3340static struct kmem_cache *kmem_cache_node;
3341
81819f0f
CL
3342/*
3343 * No kmalloc_node yet so do it by hand. We know that this is the first
3344 * slab on the node for this slabcache. There are no concurrent accesses
3345 * possible.
3346 *
721ae22a
ZYW
3347 * Note that this function only works on the kmem_cache_node
3348 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3349 * memory on a fresh node that has no slab structures yet.
81819f0f 3350 */
55136592 3351static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3352{
3353 struct page *page;
3354 struct kmem_cache_node *n;
3355
51df1142 3356 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3357
51df1142 3358 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3359
3360 BUG_ON(!page);
a2f92ee7 3361 if (page_to_nid(page) != node) {
f9f58285
FF
3362 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3363 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3364 }
3365
81819f0f
CL
3366 n = page->freelist;
3367 BUG_ON(!n);
8ab1372f 3368#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3369 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3370 init_tracking(kmem_cache_node, n);
8ab1372f 3371#endif
12b22386 3372 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
505f5dcb 3373 GFP_KERNEL);
12b22386
AK
3374 page->freelist = get_freepointer(kmem_cache_node, n);
3375 page->inuse = 1;
3376 page->frozen = 0;
3377 kmem_cache_node->node[node] = n;
4053497d 3378 init_kmem_cache_node(n);
51df1142 3379 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3380
67b6c900 3381 /*
1e4dd946
SR
3382 * No locks need to be taken here as it has just been
3383 * initialized and there is no concurrent access.
67b6c900 3384 */
1e4dd946 3385 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3386}
3387
3388static void free_kmem_cache_nodes(struct kmem_cache *s)
3389{
3390 int node;
fa45dc25 3391 struct kmem_cache_node *n;
81819f0f 3392
fa45dc25 3393 for_each_kmem_cache_node(s, node, n) {
81819f0f 3394 s->node[node] = NULL;
ea37df54 3395 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3396 }
3397}
3398
52b4b950
DS
3399void __kmem_cache_release(struct kmem_cache *s)
3400{
210e7a43 3401 cache_random_seq_destroy(s);
52b4b950
DS
3402 free_percpu(s->cpu_slab);
3403 free_kmem_cache_nodes(s);
3404}
3405
55136592 3406static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3407{
3408 int node;
81819f0f 3409
f64dc58c 3410 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3411 struct kmem_cache_node *n;
3412
73367bd8 3413 if (slab_state == DOWN) {
55136592 3414 early_kmem_cache_node_alloc(node);
73367bd8
AD
3415 continue;
3416 }
51df1142 3417 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3418 GFP_KERNEL, node);
81819f0f 3419
73367bd8
AD
3420 if (!n) {
3421 free_kmem_cache_nodes(s);
3422 return 0;
81819f0f 3423 }
73367bd8 3424
4053497d 3425 init_kmem_cache_node(n);
ea37df54 3426 s->node[node] = n;
81819f0f
CL
3427 }
3428 return 1;
3429}
81819f0f 3430
c0bdb232 3431static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3432{
3433 if (min < MIN_PARTIAL)
3434 min = MIN_PARTIAL;
3435 else if (min > MAX_PARTIAL)
3436 min = MAX_PARTIAL;
3437 s->min_partial = min;
3438}
3439
e6d0e1dc
WY
3440static void set_cpu_partial(struct kmem_cache *s)
3441{
3442#ifdef CONFIG_SLUB_CPU_PARTIAL
3443 /*
3444 * cpu_partial determined the maximum number of objects kept in the
3445 * per cpu partial lists of a processor.
3446 *
3447 * Per cpu partial lists mainly contain slabs that just have one
3448 * object freed. If they are used for allocation then they can be
3449 * filled up again with minimal effort. The slab will never hit the
3450 * per node partial lists and therefore no locking will be required.
3451 *
3452 * This setting also determines
3453 *
3454 * A) The number of objects from per cpu partial slabs dumped to the
3455 * per node list when we reach the limit.
3456 * B) The number of objects in cpu partial slabs to extract from the
3457 * per node list when we run out of per cpu objects. We only fetch
3458 * 50% to keep some capacity around for frees.
3459 */
3460 if (!kmem_cache_has_cpu_partial(s))
3461 s->cpu_partial = 0;
3462 else if (s->size >= PAGE_SIZE)
3463 s->cpu_partial = 2;
3464 else if (s->size >= 1024)
3465 s->cpu_partial = 6;
3466 else if (s->size >= 256)
3467 s->cpu_partial = 13;
3468 else
3469 s->cpu_partial = 30;
3470#endif
3471}
3472
81819f0f
CL
3473/*
3474 * calculate_sizes() determines the order and the distribution of data within
3475 * a slab object.
3476 */
06b285dc 3477static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3478{
d50112ed 3479 slab_flags_t flags = s->flags;
be4a7988 3480 unsigned int size = s->object_size;
19af27af 3481 unsigned int order;
81819f0f 3482
d8b42bf5
CL
3483 /*
3484 * Round up object size to the next word boundary. We can only
3485 * place the free pointer at word boundaries and this determines
3486 * the possible location of the free pointer.
3487 */
3488 size = ALIGN(size, sizeof(void *));
3489
3490#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3491 /*
3492 * Determine if we can poison the object itself. If the user of
3493 * the slab may touch the object after free or before allocation
3494 * then we should never poison the object itself.
3495 */
5f0d5a3a 3496 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3497 !s->ctor)
81819f0f
CL
3498 s->flags |= __OBJECT_POISON;
3499 else
3500 s->flags &= ~__OBJECT_POISON;
3501
81819f0f
CL
3502
3503 /*
672bba3a 3504 * If we are Redzoning then check if there is some space between the
81819f0f 3505 * end of the object and the free pointer. If not then add an
672bba3a 3506 * additional word to have some bytes to store Redzone information.
81819f0f 3507 */
3b0efdfa 3508 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3509 size += sizeof(void *);
41ecc55b 3510#endif
81819f0f
CL
3511
3512 /*
672bba3a
CL
3513 * With that we have determined the number of bytes in actual use
3514 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3515 */
3516 s->inuse = size;
3517
5f0d5a3a 3518 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3519 s->ctor)) {
81819f0f
CL
3520 /*
3521 * Relocate free pointer after the object if it is not
3522 * permitted to overwrite the first word of the object on
3523 * kmem_cache_free.
3524 *
3525 * This is the case if we do RCU, have a constructor or
3526 * destructor or are poisoning the objects.
3527 */
3528 s->offset = size;
3529 size += sizeof(void *);
3530 }
3531
c12b3c62 3532#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3533 if (flags & SLAB_STORE_USER)
3534 /*
3535 * Need to store information about allocs and frees after
3536 * the object.
3537 */
3538 size += 2 * sizeof(struct track);
80a9201a 3539#endif
81819f0f 3540
80a9201a
AP
3541 kasan_cache_create(s, &size, &s->flags);
3542#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3543 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3544 /*
3545 * Add some empty padding so that we can catch
3546 * overwrites from earlier objects rather than let
3547 * tracking information or the free pointer be
0211a9c8 3548 * corrupted if a user writes before the start
81819f0f
CL
3549 * of the object.
3550 */
3551 size += sizeof(void *);
d86bd1be
JK
3552
3553 s->red_left_pad = sizeof(void *);
3554 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3555 size += s->red_left_pad;
3556 }
41ecc55b 3557#endif
672bba3a 3558
81819f0f
CL
3559 /*
3560 * SLUB stores one object immediately after another beginning from
3561 * offset 0. In order to align the objects we have to simply size
3562 * each object to conform to the alignment.
3563 */
45906855 3564 size = ALIGN(size, s->align);
81819f0f 3565 s->size = size;
06b285dc
CL
3566 if (forced_order >= 0)
3567 order = forced_order;
3568 else
9736d2a9 3569 order = calculate_order(size);
81819f0f 3570
19af27af 3571 if ((int)order < 0)
81819f0f
CL
3572 return 0;
3573
b7a49f0d 3574 s->allocflags = 0;
834f3d11 3575 if (order)
b7a49f0d
CL
3576 s->allocflags |= __GFP_COMP;
3577
3578 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3579 s->allocflags |= GFP_DMA;
b7a49f0d 3580
6d6ea1e9
NB
3581 if (s->flags & SLAB_CACHE_DMA32)
3582 s->allocflags |= GFP_DMA32;
3583
b7a49f0d
CL
3584 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3585 s->allocflags |= __GFP_RECLAIMABLE;
3586
81819f0f
CL
3587 /*
3588 * Determine the number of objects per slab
3589 */
9736d2a9
MW
3590 s->oo = oo_make(order, size);
3591 s->min = oo_make(get_order(size), size);
205ab99d
CL
3592 if (oo_objects(s->oo) > oo_objects(s->max))
3593 s->max = s->oo;
81819f0f 3594
834f3d11 3595 return !!oo_objects(s->oo);
81819f0f
CL
3596}
3597
d50112ed 3598static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3599{
8a13a4cc 3600 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
2482ddec
KC
3601#ifdef CONFIG_SLAB_FREELIST_HARDENED
3602 s->random = get_random_long();
3603#endif
81819f0f 3604
06b285dc 3605 if (!calculate_sizes(s, -1))
81819f0f 3606 goto error;
3de47213
DR
3607 if (disable_higher_order_debug) {
3608 /*
3609 * Disable debugging flags that store metadata if the min slab
3610 * order increased.
3611 */
3b0efdfa 3612 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3613 s->flags &= ~DEBUG_METADATA_FLAGS;
3614 s->offset = 0;
3615 if (!calculate_sizes(s, -1))
3616 goto error;
3617 }
3618 }
81819f0f 3619
2565409f
HC
3620#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3621 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3622 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3623 /* Enable fast mode */
3624 s->flags |= __CMPXCHG_DOUBLE;
3625#endif
3626
3b89d7d8
DR
3627 /*
3628 * The larger the object size is, the more pages we want on the partial
3629 * list to avoid pounding the page allocator excessively.
3630 */
49e22585
CL
3631 set_min_partial(s, ilog2(s->size) / 2);
3632
e6d0e1dc 3633 set_cpu_partial(s);
49e22585 3634
81819f0f 3635#ifdef CONFIG_NUMA
e2cb96b7 3636 s->remote_node_defrag_ratio = 1000;
81819f0f 3637#endif
210e7a43
TG
3638
3639 /* Initialize the pre-computed randomized freelist if slab is up */
3640 if (slab_state >= UP) {
3641 if (init_cache_random_seq(s))
3642 goto error;
3643 }
3644
55136592 3645 if (!init_kmem_cache_nodes(s))
dfb4f096 3646 goto error;
81819f0f 3647
55136592 3648 if (alloc_kmem_cache_cpus(s))
278b1bb1 3649 return 0;
ff12059e 3650
4c93c355 3651 free_kmem_cache_nodes(s);
81819f0f 3652error:
278b1bb1 3653 return -EINVAL;
81819f0f 3654}
81819f0f 3655
33b12c38
CL
3656static void list_slab_objects(struct kmem_cache *s, struct page *page,
3657 const char *text)
3658{
3659#ifdef CONFIG_SLUB_DEBUG
3660 void *addr = page_address(page);
3661 void *p;
0684e652 3662 unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC);
bbd7d57b
ED
3663 if (!map)
3664 return;
945cf2b6 3665 slab_err(s, page, text, s->name);
33b12c38 3666 slab_lock(page);
33b12c38 3667
5f80b13a 3668 get_map(s, page, map);
33b12c38
CL
3669 for_each_object(p, s, addr, page->objects) {
3670
3671 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3672 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3673 print_tracking(s, p);
3674 }
3675 }
3676 slab_unlock(page);
0684e652 3677 bitmap_free(map);
33b12c38
CL
3678#endif
3679}
3680
81819f0f 3681/*
599870b1 3682 * Attempt to free all partial slabs on a node.
52b4b950
DS
3683 * This is called from __kmem_cache_shutdown(). We must take list_lock
3684 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3685 */
599870b1 3686static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3687{
60398923 3688 LIST_HEAD(discard);
81819f0f
CL
3689 struct page *page, *h;
3690
52b4b950
DS
3691 BUG_ON(irqs_disabled());
3692 spin_lock_irq(&n->list_lock);
916ac052 3693 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 3694 if (!page->inuse) {
52b4b950 3695 remove_partial(n, page);
916ac052 3696 list_add(&page->slab_list, &discard);
33b12c38
CL
3697 } else {
3698 list_slab_objects(s, page,
52b4b950 3699 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3700 }
33b12c38 3701 }
52b4b950 3702 spin_unlock_irq(&n->list_lock);
60398923 3703
916ac052 3704 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 3705 discard_slab(s, page);
81819f0f
CL
3706}
3707
f9e13c0a
SB
3708bool __kmem_cache_empty(struct kmem_cache *s)
3709{
3710 int node;
3711 struct kmem_cache_node *n;
3712
3713 for_each_kmem_cache_node(s, node, n)
3714 if (n->nr_partial || slabs_node(s, node))
3715 return false;
3716 return true;
3717}
3718
81819f0f 3719/*
672bba3a 3720 * Release all resources used by a slab cache.
81819f0f 3721 */
52b4b950 3722int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3723{
3724 int node;
fa45dc25 3725 struct kmem_cache_node *n;
81819f0f
CL
3726
3727 flush_all(s);
81819f0f 3728 /* Attempt to free all objects */
fa45dc25 3729 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3730 free_partial(s, n);
3731 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3732 return 1;
3733 }
bf5eb3de 3734 sysfs_slab_remove(s);
81819f0f
CL
3735 return 0;
3736}
3737
81819f0f
CL
3738/********************************************************************
3739 * Kmalloc subsystem
3740 *******************************************************************/
3741
81819f0f
CL
3742static int __init setup_slub_min_order(char *str)
3743{
19af27af 3744 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
3745
3746 return 1;
3747}
3748
3749__setup("slub_min_order=", setup_slub_min_order);
3750
3751static int __init setup_slub_max_order(char *str)
3752{
19af27af
AD
3753 get_option(&str, (int *)&slub_max_order);
3754 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
3755
3756 return 1;
3757}
3758
3759__setup("slub_max_order=", setup_slub_max_order);
3760
3761static int __init setup_slub_min_objects(char *str)
3762{
19af27af 3763 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
3764
3765 return 1;
3766}
3767
3768__setup("slub_min_objects=", setup_slub_min_objects);
3769
81819f0f
CL
3770void *__kmalloc(size_t size, gfp_t flags)
3771{
aadb4bc4 3772 struct kmem_cache *s;
5b882be4 3773 void *ret;
81819f0f 3774
95a05b42 3775 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3776 return kmalloc_large(size, flags);
aadb4bc4 3777
2c59dd65 3778 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3779
3780 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3781 return s;
3782
2b847c3c 3783 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3784
ca2b84cb 3785 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3786
0116523c 3787 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3788
5b882be4 3789 return ret;
81819f0f
CL
3790}
3791EXPORT_SYMBOL(__kmalloc);
3792
5d1f57e4 3793#ifdef CONFIG_NUMA
f619cfe1
CL
3794static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3795{
b1eeab67 3796 struct page *page;
e4f7c0b4 3797 void *ptr = NULL;
f619cfe1 3798
75f296d9 3799 flags |= __GFP_COMP;
4949148a 3800 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3801 if (page)
e4f7c0b4
CM
3802 ptr = page_address(page);
3803
0116523c 3804 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
3805}
3806
81819f0f
CL
3807void *__kmalloc_node(size_t size, gfp_t flags, int node)
3808{
aadb4bc4 3809 struct kmem_cache *s;
5b882be4 3810 void *ret;
81819f0f 3811
95a05b42 3812 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3813 ret = kmalloc_large_node(size, flags, node);
3814
ca2b84cb
EGM
3815 trace_kmalloc_node(_RET_IP_, ret,
3816 size, PAGE_SIZE << get_order(size),
3817 flags, node);
5b882be4
EGM
3818
3819 return ret;
3820 }
aadb4bc4 3821
2c59dd65 3822 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3823
3824 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3825 return s;
3826
2b847c3c 3827 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3828
ca2b84cb 3829 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3830
0116523c 3831 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3832
5b882be4 3833 return ret;
81819f0f
CL
3834}
3835EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 3836#endif /* CONFIG_NUMA */
81819f0f 3837
ed18adc1
KC
3838#ifdef CONFIG_HARDENED_USERCOPY
3839/*
afcc90f8
KC
3840 * Rejects incorrectly sized objects and objects that are to be copied
3841 * to/from userspace but do not fall entirely within the containing slab
3842 * cache's usercopy region.
ed18adc1
KC
3843 *
3844 * Returns NULL if check passes, otherwise const char * to name of cache
3845 * to indicate an error.
3846 */
f4e6e289
KC
3847void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3848 bool to_user)
ed18adc1
KC
3849{
3850 struct kmem_cache *s;
44065b2e 3851 unsigned int offset;
ed18adc1
KC
3852 size_t object_size;
3853
96fedce2
AK
3854 ptr = kasan_reset_tag(ptr);
3855
ed18adc1
KC
3856 /* Find object and usable object size. */
3857 s = page->slab_cache;
ed18adc1
KC
3858
3859 /* Reject impossible pointers. */
3860 if (ptr < page_address(page))
f4e6e289
KC
3861 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3862 to_user, 0, n);
ed18adc1
KC
3863
3864 /* Find offset within object. */
3865 offset = (ptr - page_address(page)) % s->size;
3866
3867 /* Adjust for redzone and reject if within the redzone. */
3868 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3869 if (offset < s->red_left_pad)
f4e6e289
KC
3870 usercopy_abort("SLUB object in left red zone",
3871 s->name, to_user, offset, n);
ed18adc1
KC
3872 offset -= s->red_left_pad;
3873 }
3874
afcc90f8
KC
3875 /* Allow address range falling entirely within usercopy region. */
3876 if (offset >= s->useroffset &&
3877 offset - s->useroffset <= s->usersize &&
3878 n <= s->useroffset - offset + s->usersize)
f4e6e289 3879 return;
ed18adc1 3880
afcc90f8
KC
3881 /*
3882 * If the copy is still within the allocated object, produce
3883 * a warning instead of rejecting the copy. This is intended
3884 * to be a temporary method to find any missing usercopy
3885 * whitelists.
3886 */
3887 object_size = slab_ksize(s);
2d891fbc
KC
3888 if (usercopy_fallback &&
3889 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
3890 usercopy_warn("SLUB object", s->name, to_user, offset, n);
3891 return;
3892 }
ed18adc1 3893
f4e6e289 3894 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
3895}
3896#endif /* CONFIG_HARDENED_USERCOPY */
3897
10d1f8cb 3898size_t __ksize(const void *object)
81819f0f 3899{
272c1d21 3900 struct page *page;
81819f0f 3901
ef8b4520 3902 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3903 return 0;
3904
294a80a8 3905 page = virt_to_head_page(object);
294a80a8 3906
76994412
PE
3907 if (unlikely(!PageSlab(page))) {
3908 WARN_ON(!PageCompound(page));
294a80a8 3909 return PAGE_SIZE << compound_order(page);
76994412 3910 }
81819f0f 3911
1b4f59e3 3912 return slab_ksize(page->slab_cache);
81819f0f 3913}
10d1f8cb 3914EXPORT_SYMBOL(__ksize);
81819f0f
CL
3915
3916void kfree(const void *x)
3917{
81819f0f 3918 struct page *page;
5bb983b0 3919 void *object = (void *)x;
81819f0f 3920
2121db74
PE
3921 trace_kfree(_RET_IP_, x);
3922
2408c550 3923 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3924 return;
3925
b49af68f 3926 page = virt_to_head_page(x);
aadb4bc4 3927 if (unlikely(!PageSlab(page))) {
0937502a 3928 BUG_ON(!PageCompound(page));
47adccce 3929 kfree_hook(object);
4949148a 3930 __free_pages(page, compound_order(page));
aadb4bc4
CL
3931 return;
3932 }
81084651 3933 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3934}
3935EXPORT_SYMBOL(kfree);
3936
832f37f5
VD
3937#define SHRINK_PROMOTE_MAX 32
3938
2086d26a 3939/*
832f37f5
VD
3940 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3941 * up most to the head of the partial lists. New allocations will then
3942 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3943 *
3944 * The slabs with the least items are placed last. This results in them
3945 * being allocated from last increasing the chance that the last objects
3946 * are freed in them.
2086d26a 3947 */
c9fc5864 3948int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
3949{
3950 int node;
3951 int i;
3952 struct kmem_cache_node *n;
3953 struct page *page;
3954 struct page *t;
832f37f5
VD
3955 struct list_head discard;
3956 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3957 unsigned long flags;
ce3712d7 3958 int ret = 0;
2086d26a 3959
2086d26a 3960 flush_all(s);
fa45dc25 3961 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3962 INIT_LIST_HEAD(&discard);
3963 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3964 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3965
3966 spin_lock_irqsave(&n->list_lock, flags);
3967
3968 /*
832f37f5 3969 * Build lists of slabs to discard or promote.
2086d26a 3970 *
672bba3a
CL
3971 * Note that concurrent frees may occur while we hold the
3972 * list_lock. page->inuse here is the upper limit.
2086d26a 3973 */
916ac052 3974 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
3975 int free = page->objects - page->inuse;
3976
3977 /* Do not reread page->inuse */
3978 barrier();
3979
3980 /* We do not keep full slabs on the list */
3981 BUG_ON(free <= 0);
3982
3983 if (free == page->objects) {
916ac052 3984 list_move(&page->slab_list, &discard);
69cb8e6b 3985 n->nr_partial--;
832f37f5 3986 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 3987 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
3988 }
3989
2086d26a 3990 /*
832f37f5
VD
3991 * Promote the slabs filled up most to the head of the
3992 * partial list.
2086d26a 3993 */
832f37f5
VD
3994 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3995 list_splice(promote + i, &n->partial);
2086d26a 3996
2086d26a 3997 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3998
3999 /* Release empty slabs */
916ac052 4000 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4001 discard_slab(s, page);
ce3712d7
VD
4002
4003 if (slabs_node(s, node))
4004 ret = 1;
2086d26a
CL
4005 }
4006
ce3712d7 4007 return ret;
2086d26a 4008}
2086d26a 4009
c9fc5864 4010#ifdef CONFIG_MEMCG
01fb58bc
TH
4011static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
4012{
50862ce7
TH
4013 /*
4014 * Called with all the locks held after a sched RCU grace period.
4015 * Even if @s becomes empty after shrinking, we can't know that @s
4016 * doesn't have allocations already in-flight and thus can't
4017 * destroy @s until the associated memcg is released.
4018 *
4019 * However, let's remove the sysfs files for empty caches here.
4020 * Each cache has a lot of interface files which aren't
4021 * particularly useful for empty draining caches; otherwise, we can
4022 * easily end up with millions of unnecessary sysfs files on
4023 * systems which have a lot of memory and transient cgroups.
4024 */
4025 if (!__kmem_cache_shrink(s))
4026 sysfs_slab_remove(s);
01fb58bc
TH
4027}
4028
c9fc5864
TH
4029void __kmemcg_cache_deactivate(struct kmem_cache *s)
4030{
4031 /*
4032 * Disable empty slabs caching. Used to avoid pinning offline
4033 * memory cgroups by kmem pages that can be freed.
4034 */
e6d0e1dc 4035 slub_set_cpu_partial(s, 0);
c9fc5864
TH
4036 s->min_partial = 0;
4037
4038 /*
4039 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
01fb58bc 4040 * we have to make sure the change is visible before shrinking.
c9fc5864 4041 */
01fb58bc 4042 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
c9fc5864 4043}
6dfd1b65 4044#endif /* CONFIG_MEMCG */
c9fc5864 4045
b9049e23
YG
4046static int slab_mem_going_offline_callback(void *arg)
4047{
4048 struct kmem_cache *s;
4049
18004c5d 4050 mutex_lock(&slab_mutex);
b9049e23 4051 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4052 __kmem_cache_shrink(s);
18004c5d 4053 mutex_unlock(&slab_mutex);
b9049e23
YG
4054
4055 return 0;
4056}
4057
4058static void slab_mem_offline_callback(void *arg)
4059{
4060 struct kmem_cache_node *n;
4061 struct kmem_cache *s;
4062 struct memory_notify *marg = arg;
4063 int offline_node;
4064
b9d5ab25 4065 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4066
4067 /*
4068 * If the node still has available memory. we need kmem_cache_node
4069 * for it yet.
4070 */
4071 if (offline_node < 0)
4072 return;
4073
18004c5d 4074 mutex_lock(&slab_mutex);
b9049e23
YG
4075 list_for_each_entry(s, &slab_caches, list) {
4076 n = get_node(s, offline_node);
4077 if (n) {
4078 /*
4079 * if n->nr_slabs > 0, slabs still exist on the node
4080 * that is going down. We were unable to free them,
c9404c9c 4081 * and offline_pages() function shouldn't call this
b9049e23
YG
4082 * callback. So, we must fail.
4083 */
0f389ec6 4084 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4085
4086 s->node[offline_node] = NULL;
8de66a0c 4087 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4088 }
4089 }
18004c5d 4090 mutex_unlock(&slab_mutex);
b9049e23
YG
4091}
4092
4093static int slab_mem_going_online_callback(void *arg)
4094{
4095 struct kmem_cache_node *n;
4096 struct kmem_cache *s;
4097 struct memory_notify *marg = arg;
b9d5ab25 4098 int nid = marg->status_change_nid_normal;
b9049e23
YG
4099 int ret = 0;
4100
4101 /*
4102 * If the node's memory is already available, then kmem_cache_node is
4103 * already created. Nothing to do.
4104 */
4105 if (nid < 0)
4106 return 0;
4107
4108 /*
0121c619 4109 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4110 * allocate a kmem_cache_node structure in order to bring the node
4111 * online.
4112 */
18004c5d 4113 mutex_lock(&slab_mutex);
b9049e23
YG
4114 list_for_each_entry(s, &slab_caches, list) {
4115 /*
4116 * XXX: kmem_cache_alloc_node will fallback to other nodes
4117 * since memory is not yet available from the node that
4118 * is brought up.
4119 */
8de66a0c 4120 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4121 if (!n) {
4122 ret = -ENOMEM;
4123 goto out;
4124 }
4053497d 4125 init_kmem_cache_node(n);
b9049e23
YG
4126 s->node[nid] = n;
4127 }
4128out:
18004c5d 4129 mutex_unlock(&slab_mutex);
b9049e23
YG
4130 return ret;
4131}
4132
4133static int slab_memory_callback(struct notifier_block *self,
4134 unsigned long action, void *arg)
4135{
4136 int ret = 0;
4137
4138 switch (action) {
4139 case MEM_GOING_ONLINE:
4140 ret = slab_mem_going_online_callback(arg);
4141 break;
4142 case MEM_GOING_OFFLINE:
4143 ret = slab_mem_going_offline_callback(arg);
4144 break;
4145 case MEM_OFFLINE:
4146 case MEM_CANCEL_ONLINE:
4147 slab_mem_offline_callback(arg);
4148 break;
4149 case MEM_ONLINE:
4150 case MEM_CANCEL_OFFLINE:
4151 break;
4152 }
dc19f9db
KH
4153 if (ret)
4154 ret = notifier_from_errno(ret);
4155 else
4156 ret = NOTIFY_OK;
b9049e23
YG
4157 return ret;
4158}
4159
3ac38faa
AM
4160static struct notifier_block slab_memory_callback_nb = {
4161 .notifier_call = slab_memory_callback,
4162 .priority = SLAB_CALLBACK_PRI,
4163};
b9049e23 4164
81819f0f
CL
4165/********************************************************************
4166 * Basic setup of slabs
4167 *******************************************************************/
4168
51df1142
CL
4169/*
4170 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4171 * the page allocator. Allocate them properly then fix up the pointers
4172 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4173 */
4174
dffb4d60 4175static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4176{
4177 int node;
dffb4d60 4178 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4179 struct kmem_cache_node *n;
51df1142 4180
dffb4d60 4181 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4182
7d557b3c
GC
4183 /*
4184 * This runs very early, and only the boot processor is supposed to be
4185 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4186 * IPIs around.
4187 */
4188 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4189 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4190 struct page *p;
4191
916ac052 4192 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4193 p->slab_cache = s;
51df1142 4194
607bf324 4195#ifdef CONFIG_SLUB_DEBUG
916ac052 4196 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4197 p->slab_cache = s;
51df1142 4198#endif
51df1142 4199 }
f7ce3190 4200 slab_init_memcg_params(s);
dffb4d60 4201 list_add(&s->list, &slab_caches);
c03914b7 4202 memcg_link_cache(s, NULL);
dffb4d60 4203 return s;
51df1142
CL
4204}
4205
81819f0f
CL
4206void __init kmem_cache_init(void)
4207{
dffb4d60
CL
4208 static __initdata struct kmem_cache boot_kmem_cache,
4209 boot_kmem_cache_node;
51df1142 4210
fc8d8620
SG
4211 if (debug_guardpage_minorder())
4212 slub_max_order = 0;
4213
dffb4d60
CL
4214 kmem_cache_node = &boot_kmem_cache_node;
4215 kmem_cache = &boot_kmem_cache;
51df1142 4216
dffb4d60 4217 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4218 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4219
3ac38faa 4220 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4221
4222 /* Able to allocate the per node structures */
4223 slab_state = PARTIAL;
4224
dffb4d60
CL
4225 create_boot_cache(kmem_cache, "kmem_cache",
4226 offsetof(struct kmem_cache, node) +
4227 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4228 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4229
dffb4d60 4230 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4231 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4232
4233 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4234 setup_kmalloc_cache_index_table();
f97d5f63 4235 create_kmalloc_caches(0);
81819f0f 4236
210e7a43
TG
4237 /* Setup random freelists for each cache */
4238 init_freelist_randomization();
4239
a96a87bf
SAS
4240 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4241 slub_cpu_dead);
81819f0f 4242
b9726c26 4243 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4244 cache_line_size(),
81819f0f
CL
4245 slub_min_order, slub_max_order, slub_min_objects,
4246 nr_cpu_ids, nr_node_ids);
4247}
4248
7e85ee0c
PE
4249void __init kmem_cache_init_late(void)
4250{
7e85ee0c
PE
4251}
4252
2633d7a0 4253struct kmem_cache *
f4957d5b 4254__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4255 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4256{
426589f5 4257 struct kmem_cache *s, *c;
81819f0f 4258
a44cb944 4259 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4260 if (s) {
4261 s->refcount++;
84d0ddd6 4262
81819f0f
CL
4263 /*
4264 * Adjust the object sizes so that we clear
4265 * the complete object on kzalloc.
4266 */
1b473f29 4267 s->object_size = max(s->object_size, size);
52ee6d74 4268 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4269
426589f5 4270 for_each_memcg_cache(c, s) {
84d0ddd6 4271 c->object_size = s->object_size;
52ee6d74 4272 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
84d0ddd6
VD
4273 }
4274
7b8f3b66 4275 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4276 s->refcount--;
cbb79694 4277 s = NULL;
7b8f3b66 4278 }
a0e1d1be 4279 }
6446faa2 4280
cbb79694
CL
4281 return s;
4282}
84c1cf62 4283
d50112ed 4284int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4285{
aac3a166
PE
4286 int err;
4287
4288 err = kmem_cache_open(s, flags);
4289 if (err)
4290 return err;
20cea968 4291
45530c44
CL
4292 /* Mutex is not taken during early boot */
4293 if (slab_state <= UP)
4294 return 0;
4295
107dab5c 4296 memcg_propagate_slab_attrs(s);
aac3a166 4297 err = sysfs_slab_add(s);
aac3a166 4298 if (err)
52b4b950 4299 __kmem_cache_release(s);
20cea968 4300
aac3a166 4301 return err;
81819f0f 4302}
81819f0f 4303
ce71e27c 4304void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4305{
aadb4bc4 4306 struct kmem_cache *s;
94b528d0 4307 void *ret;
aadb4bc4 4308
95a05b42 4309 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4310 return kmalloc_large(size, gfpflags);
4311
2c59dd65 4312 s = kmalloc_slab(size, gfpflags);
81819f0f 4313
2408c550 4314 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4315 return s;
81819f0f 4316
2b847c3c 4317 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4318
25985edc 4319 /* Honor the call site pointer we received. */
ca2b84cb 4320 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4321
4322 return ret;
81819f0f
CL
4323}
4324
5d1f57e4 4325#ifdef CONFIG_NUMA
81819f0f 4326void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4327 int node, unsigned long caller)
81819f0f 4328{
aadb4bc4 4329 struct kmem_cache *s;
94b528d0 4330 void *ret;
aadb4bc4 4331
95a05b42 4332 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4333 ret = kmalloc_large_node(size, gfpflags, node);
4334
4335 trace_kmalloc_node(caller, ret,
4336 size, PAGE_SIZE << get_order(size),
4337 gfpflags, node);
4338
4339 return ret;
4340 }
eada35ef 4341
2c59dd65 4342 s = kmalloc_slab(size, gfpflags);
81819f0f 4343
2408c550 4344 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4345 return s;
81819f0f 4346
2b847c3c 4347 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4348
25985edc 4349 /* Honor the call site pointer we received. */
ca2b84cb 4350 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4351
4352 return ret;
81819f0f 4353}
5d1f57e4 4354#endif
81819f0f 4355
ab4d5ed5 4356#ifdef CONFIG_SYSFS
205ab99d
CL
4357static int count_inuse(struct page *page)
4358{
4359 return page->inuse;
4360}
4361
4362static int count_total(struct page *page)
4363{
4364 return page->objects;
4365}
ab4d5ed5 4366#endif
205ab99d 4367
ab4d5ed5 4368#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4369static int validate_slab(struct kmem_cache *s, struct page *page,
4370 unsigned long *map)
53e15af0
CL
4371{
4372 void *p;
a973e9dd 4373 void *addr = page_address(page);
53e15af0
CL
4374
4375 if (!check_slab(s, page) ||
4376 !on_freelist(s, page, NULL))
4377 return 0;
4378
4379 /* Now we know that a valid freelist exists */
39b26464 4380 bitmap_zero(map, page->objects);
53e15af0 4381
5f80b13a
CL
4382 get_map(s, page, map);
4383 for_each_object(p, s, addr, page->objects) {
4384 if (test_bit(slab_index(p, s, addr), map))
4385 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4386 return 0;
53e15af0
CL
4387 }
4388
224a88be 4389 for_each_object(p, s, addr, page->objects)
7656c72b 4390 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4391 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4392 return 0;
4393 return 1;
4394}
4395
434e245d
CL
4396static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4397 unsigned long *map)
53e15af0 4398{
881db7fb
CL
4399 slab_lock(page);
4400 validate_slab(s, page, map);
4401 slab_unlock(page);
53e15af0
CL
4402}
4403
434e245d
CL
4404static int validate_slab_node(struct kmem_cache *s,
4405 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4406{
4407 unsigned long count = 0;
4408 struct page *page;
4409 unsigned long flags;
4410
4411 spin_lock_irqsave(&n->list_lock, flags);
4412
916ac052 4413 list_for_each_entry(page, &n->partial, slab_list) {
434e245d 4414 validate_slab_slab(s, page, map);
53e15af0
CL
4415 count++;
4416 }
4417 if (count != n->nr_partial)
f9f58285
FF
4418 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4419 s->name, count, n->nr_partial);
53e15af0
CL
4420
4421 if (!(s->flags & SLAB_STORE_USER))
4422 goto out;
4423
916ac052 4424 list_for_each_entry(page, &n->full, slab_list) {
434e245d 4425 validate_slab_slab(s, page, map);
53e15af0
CL
4426 count++;
4427 }
4428 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4429 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4430 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4431
4432out:
4433 spin_unlock_irqrestore(&n->list_lock, flags);
4434 return count;
4435}
4436
434e245d 4437static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4438{
4439 int node;
4440 unsigned long count = 0;
fa45dc25 4441 struct kmem_cache_node *n;
0684e652 4442 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
434e245d
CL
4443
4444 if (!map)
4445 return -ENOMEM;
53e15af0
CL
4446
4447 flush_all(s);
fa45dc25 4448 for_each_kmem_cache_node(s, node, n)
434e245d 4449 count += validate_slab_node(s, n, map);
0684e652 4450 bitmap_free(map);
53e15af0
CL
4451 return count;
4452}
88a420e4 4453/*
672bba3a 4454 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4455 * and freed.
4456 */
4457
4458struct location {
4459 unsigned long count;
ce71e27c 4460 unsigned long addr;
45edfa58
CL
4461 long long sum_time;
4462 long min_time;
4463 long max_time;
4464 long min_pid;
4465 long max_pid;
174596a0 4466 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4467 nodemask_t nodes;
88a420e4
CL
4468};
4469
4470struct loc_track {
4471 unsigned long max;
4472 unsigned long count;
4473 struct location *loc;
4474};
4475
4476static void free_loc_track(struct loc_track *t)
4477{
4478 if (t->max)
4479 free_pages((unsigned long)t->loc,
4480 get_order(sizeof(struct location) * t->max));
4481}
4482
68dff6a9 4483static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4484{
4485 struct location *l;
4486 int order;
4487
88a420e4
CL
4488 order = get_order(sizeof(struct location) * max);
4489
68dff6a9 4490 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4491 if (!l)
4492 return 0;
4493
4494 if (t->count) {
4495 memcpy(l, t->loc, sizeof(struct location) * t->count);
4496 free_loc_track(t);
4497 }
4498 t->max = max;
4499 t->loc = l;
4500 return 1;
4501}
4502
4503static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4504 const struct track *track)
88a420e4
CL
4505{
4506 long start, end, pos;
4507 struct location *l;
ce71e27c 4508 unsigned long caddr;
45edfa58 4509 unsigned long age = jiffies - track->when;
88a420e4
CL
4510
4511 start = -1;
4512 end = t->count;
4513
4514 for ( ; ; ) {
4515 pos = start + (end - start + 1) / 2;
4516
4517 /*
4518 * There is nothing at "end". If we end up there
4519 * we need to add something to before end.
4520 */
4521 if (pos == end)
4522 break;
4523
4524 caddr = t->loc[pos].addr;
45edfa58
CL
4525 if (track->addr == caddr) {
4526
4527 l = &t->loc[pos];
4528 l->count++;
4529 if (track->when) {
4530 l->sum_time += age;
4531 if (age < l->min_time)
4532 l->min_time = age;
4533 if (age > l->max_time)
4534 l->max_time = age;
4535
4536 if (track->pid < l->min_pid)
4537 l->min_pid = track->pid;
4538 if (track->pid > l->max_pid)
4539 l->max_pid = track->pid;
4540
174596a0
RR
4541 cpumask_set_cpu(track->cpu,
4542 to_cpumask(l->cpus));
45edfa58
CL
4543 }
4544 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4545 return 1;
4546 }
4547
45edfa58 4548 if (track->addr < caddr)
88a420e4
CL
4549 end = pos;
4550 else
4551 start = pos;
4552 }
4553
4554 /*
672bba3a 4555 * Not found. Insert new tracking element.
88a420e4 4556 */
68dff6a9 4557 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4558 return 0;
4559
4560 l = t->loc + pos;
4561 if (pos < t->count)
4562 memmove(l + 1, l,
4563 (t->count - pos) * sizeof(struct location));
4564 t->count++;
4565 l->count = 1;
45edfa58
CL
4566 l->addr = track->addr;
4567 l->sum_time = age;
4568 l->min_time = age;
4569 l->max_time = age;
4570 l->min_pid = track->pid;
4571 l->max_pid = track->pid;
174596a0
RR
4572 cpumask_clear(to_cpumask(l->cpus));
4573 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4574 nodes_clear(l->nodes);
4575 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4576 return 1;
4577}
4578
4579static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4580 struct page *page, enum track_item alloc,
a5dd5c11 4581 unsigned long *map)
88a420e4 4582{
a973e9dd 4583 void *addr = page_address(page);
88a420e4
CL
4584 void *p;
4585
39b26464 4586 bitmap_zero(map, page->objects);
5f80b13a 4587 get_map(s, page, map);
88a420e4 4588
224a88be 4589 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4590 if (!test_bit(slab_index(p, s, addr), map))
4591 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4592}
4593
4594static int list_locations(struct kmem_cache *s, char *buf,
4595 enum track_item alloc)
4596{
e374d483 4597 int len = 0;
88a420e4 4598 unsigned long i;
68dff6a9 4599 struct loc_track t = { 0, 0, NULL };
88a420e4 4600 int node;
fa45dc25 4601 struct kmem_cache_node *n;
0684e652 4602 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
88a420e4 4603
bbd7d57b 4604 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
0ee931c4 4605 GFP_KERNEL)) {
0684e652 4606 bitmap_free(map);
68dff6a9 4607 return sprintf(buf, "Out of memory\n");
bbd7d57b 4608 }
88a420e4
CL
4609 /* Push back cpu slabs */
4610 flush_all(s);
4611
fa45dc25 4612 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4613 unsigned long flags;
4614 struct page *page;
4615
9e86943b 4616 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4617 continue;
4618
4619 spin_lock_irqsave(&n->list_lock, flags);
916ac052 4620 list_for_each_entry(page, &n->partial, slab_list)
bbd7d57b 4621 process_slab(&t, s, page, alloc, map);
916ac052 4622 list_for_each_entry(page, &n->full, slab_list)
bbd7d57b 4623 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4624 spin_unlock_irqrestore(&n->list_lock, flags);
4625 }
4626
4627 for (i = 0; i < t.count; i++) {
45edfa58 4628 struct location *l = &t.loc[i];
88a420e4 4629
9c246247 4630 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4631 break;
e374d483 4632 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4633
4634 if (l->addr)
62c70bce 4635 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4636 else
e374d483 4637 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4638
4639 if (l->sum_time != l->min_time) {
e374d483 4640 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4641 l->min_time,
4642 (long)div_u64(l->sum_time, l->count),
4643 l->max_time);
45edfa58 4644 } else
e374d483 4645 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4646 l->min_time);
4647
4648 if (l->min_pid != l->max_pid)
e374d483 4649 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4650 l->min_pid, l->max_pid);
4651 else
e374d483 4652 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4653 l->min_pid);
4654
174596a0
RR
4655 if (num_online_cpus() > 1 &&
4656 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4657 len < PAGE_SIZE - 60)
4658 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4659 " cpus=%*pbl",
4660 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4661
62bc62a8 4662 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4663 len < PAGE_SIZE - 60)
4664 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4665 " nodes=%*pbl",
4666 nodemask_pr_args(&l->nodes));
45edfa58 4667
e374d483 4668 len += sprintf(buf + len, "\n");
88a420e4
CL
4669 }
4670
4671 free_loc_track(&t);
0684e652 4672 bitmap_free(map);
88a420e4 4673 if (!t.count)
e374d483
HH
4674 len += sprintf(buf, "No data\n");
4675 return len;
88a420e4 4676}
6dfd1b65 4677#endif /* CONFIG_SLUB_DEBUG */
88a420e4 4678
a5a84755 4679#ifdef SLUB_RESILIENCY_TEST
c07b8183 4680static void __init resiliency_test(void)
a5a84755
CL
4681{
4682 u8 *p;
cc252eae 4683 int type = KMALLOC_NORMAL;
a5a84755 4684
95a05b42 4685 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4686
f9f58285
FF
4687 pr_err("SLUB resiliency testing\n");
4688 pr_err("-----------------------\n");
4689 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4690
4691 p = kzalloc(16, GFP_KERNEL);
4692 p[16] = 0x12;
f9f58285
FF
4693 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4694 p + 16);
a5a84755 4695
cc252eae 4696 validate_slab_cache(kmalloc_caches[type][4]);
a5a84755
CL
4697
4698 /* Hmmm... The next two are dangerous */
4699 p = kzalloc(32, GFP_KERNEL);
4700 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4701 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4702 p);
4703 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755 4704
cc252eae 4705 validate_slab_cache(kmalloc_caches[type][5]);
a5a84755
CL
4706 p = kzalloc(64, GFP_KERNEL);
4707 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4708 *p = 0x56;
f9f58285
FF
4709 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4710 p);
4711 pr_err("If allocated object is overwritten then not detectable\n\n");
cc252eae 4712 validate_slab_cache(kmalloc_caches[type][6]);
a5a84755 4713
f9f58285 4714 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4715 p = kzalloc(128, GFP_KERNEL);
4716 kfree(p);
4717 *p = 0x78;
f9f58285 4718 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
cc252eae 4719 validate_slab_cache(kmalloc_caches[type][7]);
a5a84755
CL
4720
4721 p = kzalloc(256, GFP_KERNEL);
4722 kfree(p);
4723 p[50] = 0x9a;
f9f58285 4724 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
cc252eae 4725 validate_slab_cache(kmalloc_caches[type][8]);
a5a84755
CL
4726
4727 p = kzalloc(512, GFP_KERNEL);
4728 kfree(p);
4729 p[512] = 0xab;
f9f58285 4730 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
cc252eae 4731 validate_slab_cache(kmalloc_caches[type][9]);
a5a84755
CL
4732}
4733#else
4734#ifdef CONFIG_SYSFS
4735static void resiliency_test(void) {};
4736#endif
6dfd1b65 4737#endif /* SLUB_RESILIENCY_TEST */
a5a84755 4738
ab4d5ed5 4739#ifdef CONFIG_SYSFS
81819f0f 4740enum slab_stat_type {
205ab99d
CL
4741 SL_ALL, /* All slabs */
4742 SL_PARTIAL, /* Only partially allocated slabs */
4743 SL_CPU, /* Only slabs used for cpu caches */
4744 SL_OBJECTS, /* Determine allocated objects not slabs */
4745 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4746};
4747
205ab99d 4748#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4749#define SO_PARTIAL (1 << SL_PARTIAL)
4750#define SO_CPU (1 << SL_CPU)
4751#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4752#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4753
1663f26d
TH
4754#ifdef CONFIG_MEMCG
4755static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4756
4757static int __init setup_slub_memcg_sysfs(char *str)
4758{
4759 int v;
4760
4761 if (get_option(&str, &v) > 0)
4762 memcg_sysfs_enabled = v;
4763
4764 return 1;
4765}
4766
4767__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4768#endif
4769
62e5c4b4
CG
4770static ssize_t show_slab_objects(struct kmem_cache *s,
4771 char *buf, unsigned long flags)
81819f0f
CL
4772{
4773 unsigned long total = 0;
81819f0f
CL
4774 int node;
4775 int x;
4776 unsigned long *nodes;
81819f0f 4777
6396bb22 4778 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
4779 if (!nodes)
4780 return -ENOMEM;
81819f0f 4781
205ab99d
CL
4782 if (flags & SO_CPU) {
4783 int cpu;
81819f0f 4784
205ab99d 4785 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4786 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4787 cpu);
ec3ab083 4788 int node;
49e22585 4789 struct page *page;
dfb4f096 4790
4db0c3c2 4791 page = READ_ONCE(c->page);
ec3ab083
CL
4792 if (!page)
4793 continue;
205ab99d 4794
ec3ab083
CL
4795 node = page_to_nid(page);
4796 if (flags & SO_TOTAL)
4797 x = page->objects;
4798 else if (flags & SO_OBJECTS)
4799 x = page->inuse;
4800 else
4801 x = 1;
49e22585 4802
ec3ab083
CL
4803 total += x;
4804 nodes[node] += x;
4805
a93cf07b 4806 page = slub_percpu_partial_read_once(c);
49e22585 4807 if (page) {
8afb1474
LZ
4808 node = page_to_nid(page);
4809 if (flags & SO_TOTAL)
4810 WARN_ON_ONCE(1);
4811 else if (flags & SO_OBJECTS)
4812 WARN_ON_ONCE(1);
4813 else
4814 x = page->pages;
bc6697d8
ED
4815 total += x;
4816 nodes[node] += x;
49e22585 4817 }
81819f0f
CL
4818 }
4819 }
4820
bfc8c901 4821 get_online_mems();
ab4d5ed5 4822#ifdef CONFIG_SLUB_DEBUG
205ab99d 4823 if (flags & SO_ALL) {
fa45dc25
CL
4824 struct kmem_cache_node *n;
4825
4826 for_each_kmem_cache_node(s, node, n) {
205ab99d 4827
d0e0ac97
CG
4828 if (flags & SO_TOTAL)
4829 x = atomic_long_read(&n->total_objects);
4830 else if (flags & SO_OBJECTS)
4831 x = atomic_long_read(&n->total_objects) -
4832 count_partial(n, count_free);
81819f0f 4833 else
205ab99d 4834 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4835 total += x;
4836 nodes[node] += x;
4837 }
4838
ab4d5ed5
CL
4839 } else
4840#endif
4841 if (flags & SO_PARTIAL) {
fa45dc25 4842 struct kmem_cache_node *n;
81819f0f 4843
fa45dc25 4844 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4845 if (flags & SO_TOTAL)
4846 x = count_partial(n, count_total);
4847 else if (flags & SO_OBJECTS)
4848 x = count_partial(n, count_inuse);
81819f0f 4849 else
205ab99d 4850 x = n->nr_partial;
81819f0f
CL
4851 total += x;
4852 nodes[node] += x;
4853 }
4854 }
81819f0f
CL
4855 x = sprintf(buf, "%lu", total);
4856#ifdef CONFIG_NUMA
fa45dc25 4857 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4858 if (nodes[node])
4859 x += sprintf(buf + x, " N%d=%lu",
4860 node, nodes[node]);
4861#endif
bfc8c901 4862 put_online_mems();
81819f0f
CL
4863 kfree(nodes);
4864 return x + sprintf(buf + x, "\n");
4865}
4866
ab4d5ed5 4867#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4868static int any_slab_objects(struct kmem_cache *s)
4869{
4870 int node;
fa45dc25 4871 struct kmem_cache_node *n;
81819f0f 4872
fa45dc25 4873 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4874 if (atomic_long_read(&n->total_objects))
81819f0f 4875 return 1;
fa45dc25 4876
81819f0f
CL
4877 return 0;
4878}
ab4d5ed5 4879#endif
81819f0f
CL
4880
4881#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4882#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4883
4884struct slab_attribute {
4885 struct attribute attr;
4886 ssize_t (*show)(struct kmem_cache *s, char *buf);
4887 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4888};
4889
4890#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4891 static struct slab_attribute _name##_attr = \
4892 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4893
4894#define SLAB_ATTR(_name) \
4895 static struct slab_attribute _name##_attr = \
ab067e99 4896 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4897
81819f0f
CL
4898static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4899{
44065b2e 4900 return sprintf(buf, "%u\n", s->size);
81819f0f
CL
4901}
4902SLAB_ATTR_RO(slab_size);
4903
4904static ssize_t align_show(struct kmem_cache *s, char *buf)
4905{
3a3791ec 4906 return sprintf(buf, "%u\n", s->align);
81819f0f
CL
4907}
4908SLAB_ATTR_RO(align);
4909
4910static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4911{
1b473f29 4912 return sprintf(buf, "%u\n", s->object_size);
81819f0f
CL
4913}
4914SLAB_ATTR_RO(object_size);
4915
4916static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4917{
19af27af 4918 return sprintf(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
4919}
4920SLAB_ATTR_RO(objs_per_slab);
4921
06b285dc
CL
4922static ssize_t order_store(struct kmem_cache *s,
4923 const char *buf, size_t length)
4924{
19af27af 4925 unsigned int order;
0121c619
CL
4926 int err;
4927
19af27af 4928 err = kstrtouint(buf, 10, &order);
0121c619
CL
4929 if (err)
4930 return err;
06b285dc
CL
4931
4932 if (order > slub_max_order || order < slub_min_order)
4933 return -EINVAL;
4934
4935 calculate_sizes(s, order);
4936 return length;
4937}
4938
81819f0f
CL
4939static ssize_t order_show(struct kmem_cache *s, char *buf)
4940{
19af27af 4941 return sprintf(buf, "%u\n", oo_order(s->oo));
81819f0f 4942}
06b285dc 4943SLAB_ATTR(order);
81819f0f 4944
73d342b1
DR
4945static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4946{
4947 return sprintf(buf, "%lu\n", s->min_partial);
4948}
4949
4950static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4951 size_t length)
4952{
4953 unsigned long min;
4954 int err;
4955
3dbb95f7 4956 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4957 if (err)
4958 return err;
4959
c0bdb232 4960 set_min_partial(s, min);
73d342b1
DR
4961 return length;
4962}
4963SLAB_ATTR(min_partial);
4964
49e22585
CL
4965static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4966{
e6d0e1dc 4967 return sprintf(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
4968}
4969
4970static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4971 size_t length)
4972{
e5d9998f 4973 unsigned int objects;
49e22585
CL
4974 int err;
4975
e5d9998f 4976 err = kstrtouint(buf, 10, &objects);
49e22585
CL
4977 if (err)
4978 return err;
345c905d 4979 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4980 return -EINVAL;
49e22585 4981
e6d0e1dc 4982 slub_set_cpu_partial(s, objects);
49e22585
CL
4983 flush_all(s);
4984 return length;
4985}
4986SLAB_ATTR(cpu_partial);
4987
81819f0f
CL
4988static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4989{
62c70bce
JP
4990 if (!s->ctor)
4991 return 0;
4992 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4993}
4994SLAB_ATTR_RO(ctor);
4995
81819f0f
CL
4996static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4997{
4307c14f 4998 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4999}
5000SLAB_ATTR_RO(aliases);
5001
81819f0f
CL
5002static ssize_t partial_show(struct kmem_cache *s, char *buf)
5003{
d9acf4b7 5004 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5005}
5006SLAB_ATTR_RO(partial);
5007
5008static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5009{
d9acf4b7 5010 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5011}
5012SLAB_ATTR_RO(cpu_slabs);
5013
5014static ssize_t objects_show(struct kmem_cache *s, char *buf)
5015{
205ab99d 5016 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5017}
5018SLAB_ATTR_RO(objects);
5019
205ab99d
CL
5020static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5021{
5022 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5023}
5024SLAB_ATTR_RO(objects_partial);
5025
49e22585
CL
5026static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5027{
5028 int objects = 0;
5029 int pages = 0;
5030 int cpu;
5031 int len;
5032
5033 for_each_online_cpu(cpu) {
a93cf07b
WY
5034 struct page *page;
5035
5036 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5037
5038 if (page) {
5039 pages += page->pages;
5040 objects += page->pobjects;
5041 }
5042 }
5043
5044 len = sprintf(buf, "%d(%d)", objects, pages);
5045
5046#ifdef CONFIG_SMP
5047 for_each_online_cpu(cpu) {
a93cf07b
WY
5048 struct page *page;
5049
5050 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5051
5052 if (page && len < PAGE_SIZE - 20)
5053 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5054 page->pobjects, page->pages);
5055 }
5056#endif
5057 return len + sprintf(buf + len, "\n");
5058}
5059SLAB_ATTR_RO(slabs_cpu_partial);
5060
a5a84755
CL
5061static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5062{
5063 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5064}
5065
5066static ssize_t reclaim_account_store(struct kmem_cache *s,
5067 const char *buf, size_t length)
5068{
5069 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5070 if (buf[0] == '1')
5071 s->flags |= SLAB_RECLAIM_ACCOUNT;
5072 return length;
5073}
5074SLAB_ATTR(reclaim_account);
5075
5076static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5077{
5078 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5079}
5080SLAB_ATTR_RO(hwcache_align);
5081
5082#ifdef CONFIG_ZONE_DMA
5083static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5084{
5085 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5086}
5087SLAB_ATTR_RO(cache_dma);
5088#endif
5089
8eb8284b
DW
5090static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5091{
7bbdb81e 5092 return sprintf(buf, "%u\n", s->usersize);
8eb8284b
DW
5093}
5094SLAB_ATTR_RO(usersize);
5095
a5a84755
CL
5096static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5097{
5f0d5a3a 5098 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5099}
5100SLAB_ATTR_RO(destroy_by_rcu);
5101
ab4d5ed5 5102#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5103static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5104{
5105 return show_slab_objects(s, buf, SO_ALL);
5106}
5107SLAB_ATTR_RO(slabs);
5108
205ab99d
CL
5109static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5110{
5111 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5112}
5113SLAB_ATTR_RO(total_objects);
5114
81819f0f
CL
5115static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5116{
becfda68 5117 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
5118}
5119
5120static ssize_t sanity_checks_store(struct kmem_cache *s,
5121 const char *buf, size_t length)
5122{
becfda68 5123 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
5124 if (buf[0] == '1') {
5125 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 5126 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 5127 }
81819f0f
CL
5128 return length;
5129}
5130SLAB_ATTR(sanity_checks);
5131
5132static ssize_t trace_show(struct kmem_cache *s, char *buf)
5133{
5134 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5135}
5136
5137static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5138 size_t length)
5139{
c9e16131
CL
5140 /*
5141 * Tracing a merged cache is going to give confusing results
5142 * as well as cause other issues like converting a mergeable
5143 * cache into an umergeable one.
5144 */
5145 if (s->refcount > 1)
5146 return -EINVAL;
5147
81819f0f 5148 s->flags &= ~SLAB_TRACE;
b789ef51
CL
5149 if (buf[0] == '1') {
5150 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5151 s->flags |= SLAB_TRACE;
b789ef51 5152 }
81819f0f
CL
5153 return length;
5154}
5155SLAB_ATTR(trace);
5156
81819f0f
CL
5157static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5158{
5159 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5160}
5161
5162static ssize_t red_zone_store(struct kmem_cache *s,
5163 const char *buf, size_t length)
5164{
5165 if (any_slab_objects(s))
5166 return -EBUSY;
5167
5168 s->flags &= ~SLAB_RED_ZONE;
b789ef51 5169 if (buf[0] == '1') {
81819f0f 5170 s->flags |= SLAB_RED_ZONE;
b789ef51 5171 }
06b285dc 5172 calculate_sizes(s, -1);
81819f0f
CL
5173 return length;
5174}
5175SLAB_ATTR(red_zone);
5176
5177static ssize_t poison_show(struct kmem_cache *s, char *buf)
5178{
5179 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5180}
5181
5182static ssize_t poison_store(struct kmem_cache *s,
5183 const char *buf, size_t length)
5184{
5185 if (any_slab_objects(s))
5186 return -EBUSY;
5187
5188 s->flags &= ~SLAB_POISON;
b789ef51 5189 if (buf[0] == '1') {
81819f0f 5190 s->flags |= SLAB_POISON;
b789ef51 5191 }
06b285dc 5192 calculate_sizes(s, -1);
81819f0f
CL
5193 return length;
5194}
5195SLAB_ATTR(poison);
5196
5197static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5198{
5199 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5200}
5201
5202static ssize_t store_user_store(struct kmem_cache *s,
5203 const char *buf, size_t length)
5204{
5205 if (any_slab_objects(s))
5206 return -EBUSY;
5207
5208 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
5209 if (buf[0] == '1') {
5210 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5211 s->flags |= SLAB_STORE_USER;
b789ef51 5212 }
06b285dc 5213 calculate_sizes(s, -1);
81819f0f
CL
5214 return length;
5215}
5216SLAB_ATTR(store_user);
5217
53e15af0
CL
5218static ssize_t validate_show(struct kmem_cache *s, char *buf)
5219{
5220 return 0;
5221}
5222
5223static ssize_t validate_store(struct kmem_cache *s,
5224 const char *buf, size_t length)
5225{
434e245d
CL
5226 int ret = -EINVAL;
5227
5228 if (buf[0] == '1') {
5229 ret = validate_slab_cache(s);
5230 if (ret >= 0)
5231 ret = length;
5232 }
5233 return ret;
53e15af0
CL
5234}
5235SLAB_ATTR(validate);
a5a84755
CL
5236
5237static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5238{
5239 if (!(s->flags & SLAB_STORE_USER))
5240 return -ENOSYS;
5241 return list_locations(s, buf, TRACK_ALLOC);
5242}
5243SLAB_ATTR_RO(alloc_calls);
5244
5245static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5246{
5247 if (!(s->flags & SLAB_STORE_USER))
5248 return -ENOSYS;
5249 return list_locations(s, buf, TRACK_FREE);
5250}
5251SLAB_ATTR_RO(free_calls);
5252#endif /* CONFIG_SLUB_DEBUG */
5253
5254#ifdef CONFIG_FAILSLAB
5255static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5256{
5257 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5258}
5259
5260static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5261 size_t length)
5262{
c9e16131
CL
5263 if (s->refcount > 1)
5264 return -EINVAL;
5265
a5a84755
CL
5266 s->flags &= ~SLAB_FAILSLAB;
5267 if (buf[0] == '1')
5268 s->flags |= SLAB_FAILSLAB;
5269 return length;
5270}
5271SLAB_ATTR(failslab);
ab4d5ed5 5272#endif
53e15af0 5273
2086d26a
CL
5274static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5275{
5276 return 0;
5277}
5278
5279static ssize_t shrink_store(struct kmem_cache *s,
5280 const char *buf, size_t length)
5281{
832f37f5
VD
5282 if (buf[0] == '1')
5283 kmem_cache_shrink(s);
5284 else
2086d26a
CL
5285 return -EINVAL;
5286 return length;
5287}
5288SLAB_ATTR(shrink);
5289
81819f0f 5290#ifdef CONFIG_NUMA
9824601e 5291static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5292{
eb7235eb 5293 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5294}
5295
9824601e 5296static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5297 const char *buf, size_t length)
5298{
eb7235eb 5299 unsigned int ratio;
0121c619
CL
5300 int err;
5301
eb7235eb 5302 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5303 if (err)
5304 return err;
eb7235eb
AD
5305 if (ratio > 100)
5306 return -ERANGE;
0121c619 5307
eb7235eb 5308 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5309
81819f0f
CL
5310 return length;
5311}
9824601e 5312SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5313#endif
5314
8ff12cfc 5315#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5316static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5317{
5318 unsigned long sum = 0;
5319 int cpu;
5320 int len;
6da2ec56 5321 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5322
5323 if (!data)
5324 return -ENOMEM;
5325
5326 for_each_online_cpu(cpu) {
9dfc6e68 5327 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5328
5329 data[cpu] = x;
5330 sum += x;
5331 }
5332
5333 len = sprintf(buf, "%lu", sum);
5334
50ef37b9 5335#ifdef CONFIG_SMP
8ff12cfc
CL
5336 for_each_online_cpu(cpu) {
5337 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5338 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5339 }
50ef37b9 5340#endif
8ff12cfc
CL
5341 kfree(data);
5342 return len + sprintf(buf + len, "\n");
5343}
5344
78eb00cc
DR
5345static void clear_stat(struct kmem_cache *s, enum stat_item si)
5346{
5347 int cpu;
5348
5349 for_each_online_cpu(cpu)
9dfc6e68 5350 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5351}
5352
8ff12cfc
CL
5353#define STAT_ATTR(si, text) \
5354static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5355{ \
5356 return show_stat(s, buf, si); \
5357} \
78eb00cc
DR
5358static ssize_t text##_store(struct kmem_cache *s, \
5359 const char *buf, size_t length) \
5360{ \
5361 if (buf[0] != '0') \
5362 return -EINVAL; \
5363 clear_stat(s, si); \
5364 return length; \
5365} \
5366SLAB_ATTR(text); \
8ff12cfc
CL
5367
5368STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5369STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5370STAT_ATTR(FREE_FASTPATH, free_fastpath);
5371STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5372STAT_ATTR(FREE_FROZEN, free_frozen);
5373STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5374STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5375STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5376STAT_ATTR(ALLOC_SLAB, alloc_slab);
5377STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5378STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5379STAT_ATTR(FREE_SLAB, free_slab);
5380STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5381STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5382STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5383STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5384STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5385STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5386STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5387STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5388STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5389STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5390STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5391STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5392STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5393STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5394#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5395
06428780 5396static struct attribute *slab_attrs[] = {
81819f0f
CL
5397 &slab_size_attr.attr,
5398 &object_size_attr.attr,
5399 &objs_per_slab_attr.attr,
5400 &order_attr.attr,
73d342b1 5401 &min_partial_attr.attr,
49e22585 5402 &cpu_partial_attr.attr,
81819f0f 5403 &objects_attr.attr,
205ab99d 5404 &objects_partial_attr.attr,
81819f0f
CL
5405 &partial_attr.attr,
5406 &cpu_slabs_attr.attr,
5407 &ctor_attr.attr,
81819f0f
CL
5408 &aliases_attr.attr,
5409 &align_attr.attr,
81819f0f
CL
5410 &hwcache_align_attr.attr,
5411 &reclaim_account_attr.attr,
5412 &destroy_by_rcu_attr.attr,
a5a84755 5413 &shrink_attr.attr,
49e22585 5414 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5415#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5416 &total_objects_attr.attr,
5417 &slabs_attr.attr,
5418 &sanity_checks_attr.attr,
5419 &trace_attr.attr,
81819f0f
CL
5420 &red_zone_attr.attr,
5421 &poison_attr.attr,
5422 &store_user_attr.attr,
53e15af0 5423 &validate_attr.attr,
88a420e4
CL
5424 &alloc_calls_attr.attr,
5425 &free_calls_attr.attr,
ab4d5ed5 5426#endif
81819f0f
CL
5427#ifdef CONFIG_ZONE_DMA
5428 &cache_dma_attr.attr,
5429#endif
5430#ifdef CONFIG_NUMA
9824601e 5431 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5432#endif
5433#ifdef CONFIG_SLUB_STATS
5434 &alloc_fastpath_attr.attr,
5435 &alloc_slowpath_attr.attr,
5436 &free_fastpath_attr.attr,
5437 &free_slowpath_attr.attr,
5438 &free_frozen_attr.attr,
5439 &free_add_partial_attr.attr,
5440 &free_remove_partial_attr.attr,
5441 &alloc_from_partial_attr.attr,
5442 &alloc_slab_attr.attr,
5443 &alloc_refill_attr.attr,
e36a2652 5444 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5445 &free_slab_attr.attr,
5446 &cpuslab_flush_attr.attr,
5447 &deactivate_full_attr.attr,
5448 &deactivate_empty_attr.attr,
5449 &deactivate_to_head_attr.attr,
5450 &deactivate_to_tail_attr.attr,
5451 &deactivate_remote_frees_attr.attr,
03e404af 5452 &deactivate_bypass_attr.attr,
65c3376a 5453 &order_fallback_attr.attr,
b789ef51
CL
5454 &cmpxchg_double_fail_attr.attr,
5455 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5456 &cpu_partial_alloc_attr.attr,
5457 &cpu_partial_free_attr.attr,
8028dcea
AS
5458 &cpu_partial_node_attr.attr,
5459 &cpu_partial_drain_attr.attr,
81819f0f 5460#endif
4c13dd3b
DM
5461#ifdef CONFIG_FAILSLAB
5462 &failslab_attr.attr,
5463#endif
8eb8284b 5464 &usersize_attr.attr,
4c13dd3b 5465
81819f0f
CL
5466 NULL
5467};
5468
1fdaaa23 5469static const struct attribute_group slab_attr_group = {
81819f0f
CL
5470 .attrs = slab_attrs,
5471};
5472
5473static ssize_t slab_attr_show(struct kobject *kobj,
5474 struct attribute *attr,
5475 char *buf)
5476{
5477 struct slab_attribute *attribute;
5478 struct kmem_cache *s;
5479 int err;
5480
5481 attribute = to_slab_attr(attr);
5482 s = to_slab(kobj);
5483
5484 if (!attribute->show)
5485 return -EIO;
5486
5487 err = attribute->show(s, buf);
5488
5489 return err;
5490}
5491
5492static ssize_t slab_attr_store(struct kobject *kobj,
5493 struct attribute *attr,
5494 const char *buf, size_t len)
5495{
5496 struct slab_attribute *attribute;
5497 struct kmem_cache *s;
5498 int err;
5499
5500 attribute = to_slab_attr(attr);
5501 s = to_slab(kobj);
5502
5503 if (!attribute->store)
5504 return -EIO;
5505
5506 err = attribute->store(s, buf, len);
127424c8 5507#ifdef CONFIG_MEMCG
107dab5c 5508 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5509 struct kmem_cache *c;
81819f0f 5510
107dab5c
GC
5511 mutex_lock(&slab_mutex);
5512 if (s->max_attr_size < len)
5513 s->max_attr_size = len;
5514
ebe945c2
GC
5515 /*
5516 * This is a best effort propagation, so this function's return
5517 * value will be determined by the parent cache only. This is
5518 * basically because not all attributes will have a well
5519 * defined semantics for rollbacks - most of the actions will
5520 * have permanent effects.
5521 *
5522 * Returning the error value of any of the children that fail
5523 * is not 100 % defined, in the sense that users seeing the
5524 * error code won't be able to know anything about the state of
5525 * the cache.
5526 *
5527 * Only returning the error code for the parent cache at least
5528 * has well defined semantics. The cache being written to
5529 * directly either failed or succeeded, in which case we loop
5530 * through the descendants with best-effort propagation.
5531 */
426589f5
VD
5532 for_each_memcg_cache(c, s)
5533 attribute->store(c, buf, len);
107dab5c
GC
5534 mutex_unlock(&slab_mutex);
5535 }
5536#endif
81819f0f
CL
5537 return err;
5538}
5539
107dab5c
GC
5540static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5541{
127424c8 5542#ifdef CONFIG_MEMCG
107dab5c
GC
5543 int i;
5544 char *buffer = NULL;
93030d83 5545 struct kmem_cache *root_cache;
107dab5c 5546
93030d83 5547 if (is_root_cache(s))
107dab5c
GC
5548 return;
5549
f7ce3190 5550 root_cache = s->memcg_params.root_cache;
93030d83 5551
107dab5c
GC
5552 /*
5553 * This mean this cache had no attribute written. Therefore, no point
5554 * in copying default values around
5555 */
93030d83 5556 if (!root_cache->max_attr_size)
107dab5c
GC
5557 return;
5558
5559 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5560 char mbuf[64];
5561 char *buf;
5562 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
478fe303 5563 ssize_t len;
107dab5c
GC
5564
5565 if (!attr || !attr->store || !attr->show)
5566 continue;
5567
5568 /*
5569 * It is really bad that we have to allocate here, so we will
5570 * do it only as a fallback. If we actually allocate, though,
5571 * we can just use the allocated buffer until the end.
5572 *
5573 * Most of the slub attributes will tend to be very small in
5574 * size, but sysfs allows buffers up to a page, so they can
5575 * theoretically happen.
5576 */
5577 if (buffer)
5578 buf = buffer;
93030d83 5579 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5580 buf = mbuf;
5581 else {
5582 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5583 if (WARN_ON(!buffer))
5584 continue;
5585 buf = buffer;
5586 }
5587
478fe303
TG
5588 len = attr->show(root_cache, buf);
5589 if (len > 0)
5590 attr->store(s, buf, len);
107dab5c
GC
5591 }
5592
5593 if (buffer)
5594 free_page((unsigned long)buffer);
6dfd1b65 5595#endif /* CONFIG_MEMCG */
107dab5c
GC
5596}
5597
41a21285
CL
5598static void kmem_cache_release(struct kobject *k)
5599{
5600 slab_kmem_cache_release(to_slab(k));
5601}
5602
52cf25d0 5603static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5604 .show = slab_attr_show,
5605 .store = slab_attr_store,
5606};
5607
5608static struct kobj_type slab_ktype = {
5609 .sysfs_ops = &slab_sysfs_ops,
41a21285 5610 .release = kmem_cache_release,
81819f0f
CL
5611};
5612
5613static int uevent_filter(struct kset *kset, struct kobject *kobj)
5614{
5615 struct kobj_type *ktype = get_ktype(kobj);
5616
5617 if (ktype == &slab_ktype)
5618 return 1;
5619 return 0;
5620}
5621
9cd43611 5622static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5623 .filter = uevent_filter,
5624};
5625
27c3a314 5626static struct kset *slab_kset;
81819f0f 5627
9a41707b
VD
5628static inline struct kset *cache_kset(struct kmem_cache *s)
5629{
127424c8 5630#ifdef CONFIG_MEMCG
9a41707b 5631 if (!is_root_cache(s))
f7ce3190 5632 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5633#endif
5634 return slab_kset;
5635}
5636
81819f0f
CL
5637#define ID_STR_LENGTH 64
5638
5639/* Create a unique string id for a slab cache:
6446faa2
CL
5640 *
5641 * Format :[flags-]size
81819f0f
CL
5642 */
5643static char *create_unique_id(struct kmem_cache *s)
5644{
5645 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5646 char *p = name;
5647
5648 BUG_ON(!name);
5649
5650 *p++ = ':';
5651 /*
5652 * First flags affecting slabcache operations. We will only
5653 * get here for aliasable slabs so we do not need to support
5654 * too many flags. The flags here must cover all flags that
5655 * are matched during merging to guarantee that the id is
5656 * unique.
5657 */
5658 if (s->flags & SLAB_CACHE_DMA)
5659 *p++ = 'd';
6d6ea1e9
NB
5660 if (s->flags & SLAB_CACHE_DMA32)
5661 *p++ = 'D';
81819f0f
CL
5662 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5663 *p++ = 'a';
becfda68 5664 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5665 *p++ = 'F';
230e9fc2
VD
5666 if (s->flags & SLAB_ACCOUNT)
5667 *p++ = 'A';
81819f0f
CL
5668 if (p != name + 1)
5669 *p++ = '-';
44065b2e 5670 p += sprintf(p, "%07u", s->size);
2633d7a0 5671
81819f0f
CL
5672 BUG_ON(p > name + ID_STR_LENGTH - 1);
5673 return name;
5674}
5675
3b7b3140
TH
5676static void sysfs_slab_remove_workfn(struct work_struct *work)
5677{
5678 struct kmem_cache *s =
5679 container_of(work, struct kmem_cache, kobj_remove_work);
5680
5681 if (!s->kobj.state_in_sysfs)
5682 /*
5683 * For a memcg cache, this may be called during
5684 * deactivation and again on shutdown. Remove only once.
5685 * A cache is never shut down before deactivation is
5686 * complete, so no need to worry about synchronization.
5687 */
f6ba4880 5688 goto out;
3b7b3140
TH
5689
5690#ifdef CONFIG_MEMCG
5691 kset_unregister(s->memcg_kset);
5692#endif
5693 kobject_uevent(&s->kobj, KOBJ_REMOVE);
f6ba4880 5694out:
3b7b3140
TH
5695 kobject_put(&s->kobj);
5696}
5697
81819f0f
CL
5698static int sysfs_slab_add(struct kmem_cache *s)
5699{
5700 int err;
5701 const char *name;
1663f26d 5702 struct kset *kset = cache_kset(s);
45530c44 5703 int unmergeable = slab_unmergeable(s);
81819f0f 5704
3b7b3140
TH
5705 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5706
1663f26d
TH
5707 if (!kset) {
5708 kobject_init(&s->kobj, &slab_ktype);
5709 return 0;
5710 }
5711
11066386
MC
5712 if (!unmergeable && disable_higher_order_debug &&
5713 (slub_debug & DEBUG_METADATA_FLAGS))
5714 unmergeable = 1;
5715
81819f0f
CL
5716 if (unmergeable) {
5717 /*
5718 * Slabcache can never be merged so we can use the name proper.
5719 * This is typically the case for debug situations. In that
5720 * case we can catch duplicate names easily.
5721 */
27c3a314 5722 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5723 name = s->name;
5724 } else {
5725 /*
5726 * Create a unique name for the slab as a target
5727 * for the symlinks.
5728 */
5729 name = create_unique_id(s);
5730 }
5731
1663f26d 5732 s->kobj.kset = kset;
26e4f205 5733 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5734 if (err)
80da026a 5735 goto out;
81819f0f
CL
5736
5737 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5738 if (err)
5739 goto out_del_kobj;
9a41707b 5740
127424c8 5741#ifdef CONFIG_MEMCG
1663f26d 5742 if (is_root_cache(s) && memcg_sysfs_enabled) {
9a41707b
VD
5743 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5744 if (!s->memcg_kset) {
54b6a731
DJ
5745 err = -ENOMEM;
5746 goto out_del_kobj;
9a41707b
VD
5747 }
5748 }
5749#endif
5750
81819f0f
CL
5751 kobject_uevent(&s->kobj, KOBJ_ADD);
5752 if (!unmergeable) {
5753 /* Setup first alias */
5754 sysfs_slab_alias(s, s->name);
81819f0f 5755 }
54b6a731
DJ
5756out:
5757 if (!unmergeable)
5758 kfree(name);
5759 return err;
5760out_del_kobj:
5761 kobject_del(&s->kobj);
54b6a731 5762 goto out;
81819f0f
CL
5763}
5764
bf5eb3de 5765static void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5766{
97d06609 5767 if (slab_state < FULL)
2bce6485
CL
5768 /*
5769 * Sysfs has not been setup yet so no need to remove the
5770 * cache from sysfs.
5771 */
5772 return;
5773
3b7b3140
TH
5774 kobject_get(&s->kobj);
5775 schedule_work(&s->kobj_remove_work);
bf5eb3de
TH
5776}
5777
d50d82fa
MP
5778void sysfs_slab_unlink(struct kmem_cache *s)
5779{
5780 if (slab_state >= FULL)
5781 kobject_del(&s->kobj);
5782}
5783
bf5eb3de
TH
5784void sysfs_slab_release(struct kmem_cache *s)
5785{
5786 if (slab_state >= FULL)
5787 kobject_put(&s->kobj);
81819f0f
CL
5788}
5789
5790/*
5791 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5792 * available lest we lose that information.
81819f0f
CL
5793 */
5794struct saved_alias {
5795 struct kmem_cache *s;
5796 const char *name;
5797 struct saved_alias *next;
5798};
5799
5af328a5 5800static struct saved_alias *alias_list;
81819f0f
CL
5801
5802static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5803{
5804 struct saved_alias *al;
5805
97d06609 5806 if (slab_state == FULL) {
81819f0f
CL
5807 /*
5808 * If we have a leftover link then remove it.
5809 */
27c3a314
GKH
5810 sysfs_remove_link(&slab_kset->kobj, name);
5811 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5812 }
5813
5814 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5815 if (!al)
5816 return -ENOMEM;
5817
5818 al->s = s;
5819 al->name = name;
5820 al->next = alias_list;
5821 alias_list = al;
5822 return 0;
5823}
5824
5825static int __init slab_sysfs_init(void)
5826{
5b95a4ac 5827 struct kmem_cache *s;
81819f0f
CL
5828 int err;
5829
18004c5d 5830 mutex_lock(&slab_mutex);
2bce6485 5831
0ff21e46 5832 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5833 if (!slab_kset) {
18004c5d 5834 mutex_unlock(&slab_mutex);
f9f58285 5835 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5836 return -ENOSYS;
5837 }
5838
97d06609 5839 slab_state = FULL;
26a7bd03 5840
5b95a4ac 5841 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5842 err = sysfs_slab_add(s);
5d540fb7 5843 if (err)
f9f58285
FF
5844 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5845 s->name);
26a7bd03 5846 }
81819f0f
CL
5847
5848 while (alias_list) {
5849 struct saved_alias *al = alias_list;
5850
5851 alias_list = alias_list->next;
5852 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5853 if (err)
f9f58285
FF
5854 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5855 al->name);
81819f0f
CL
5856 kfree(al);
5857 }
5858
18004c5d 5859 mutex_unlock(&slab_mutex);
81819f0f
CL
5860 resiliency_test();
5861 return 0;
5862}
5863
5864__initcall(slab_sysfs_init);
ab4d5ed5 5865#endif /* CONFIG_SYSFS */
57ed3eda
PE
5866
5867/*
5868 * The /proc/slabinfo ABI
5869 */
5b365771 5870#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5871void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5872{
57ed3eda 5873 unsigned long nr_slabs = 0;
205ab99d
CL
5874 unsigned long nr_objs = 0;
5875 unsigned long nr_free = 0;
57ed3eda 5876 int node;
fa45dc25 5877 struct kmem_cache_node *n;
57ed3eda 5878
fa45dc25 5879 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5880 nr_slabs += node_nr_slabs(n);
5881 nr_objs += node_nr_objs(n);
205ab99d 5882 nr_free += count_partial(n, count_free);
57ed3eda
PE
5883 }
5884
0d7561c6
GC
5885 sinfo->active_objs = nr_objs - nr_free;
5886 sinfo->num_objs = nr_objs;
5887 sinfo->active_slabs = nr_slabs;
5888 sinfo->num_slabs = nr_slabs;
5889 sinfo->objects_per_slab = oo_objects(s->oo);
5890 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5891}
5892
0d7561c6 5893void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5894{
7b3c3a50
AD
5895}
5896
b7454ad3
GC
5897ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5898 size_t count, loff_t *ppos)
7b3c3a50 5899{
b7454ad3 5900 return -EIO;
7b3c3a50 5901}
5b365771 5902#endif /* CONFIG_SLUB_DEBUG */