]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/slub.c
slub: Drop DEFAULT_MAX_ORDER / DEFAULT_MIN_OBJECTS
[mirror_ubuntu-hirsute-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/kallsyms.h>
b9049e23 23#include <linux/memory.h>
81819f0f
CL
24
25/*
26 * Lock order:
27 * 1. slab_lock(page)
28 * 2. slab->list_lock
29 *
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
36 *
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
42 *
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
47 * the list lock.
48 *
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
61 *
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
66 *
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
69 *
672bba3a
CL
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 72 * freed then the slab will show up again on the partial lists.
672bba3a
CL
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
81819f0f
CL
75 *
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
79 *
80 * Overloading of page flags that are otherwise used for LRU management.
81 *
4b6f0750
CL
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
90 *
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
dfb4f096 94 * freelist that allows lockless access to
894b8788
CL
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
81819f0f
CL
97 *
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
894b8788 100 * the fast path and disables lockless freelists.
81819f0f
CL
101 */
102
5577bd8a
CL
103#define FROZEN (1 << PG_active)
104
105#ifdef CONFIG_SLUB_DEBUG
106#define SLABDEBUG (1 << PG_error)
107#else
108#define SLABDEBUG 0
109#endif
110
4b6f0750
CL
111static inline int SlabFrozen(struct page *page)
112{
5577bd8a 113 return page->flags & FROZEN;
4b6f0750
CL
114}
115
116static inline void SetSlabFrozen(struct page *page)
117{
5577bd8a 118 page->flags |= FROZEN;
4b6f0750
CL
119}
120
121static inline void ClearSlabFrozen(struct page *page)
122{
5577bd8a 123 page->flags &= ~FROZEN;
4b6f0750
CL
124}
125
35e5d7ee
CL
126static inline int SlabDebug(struct page *page)
127{
5577bd8a 128 return page->flags & SLABDEBUG;
35e5d7ee
CL
129}
130
131static inline void SetSlabDebug(struct page *page)
132{
5577bd8a 133 page->flags |= SLABDEBUG;
35e5d7ee
CL
134}
135
136static inline void ClearSlabDebug(struct page *page)
137{
5577bd8a 138 page->flags &= ~SLABDEBUG;
35e5d7ee
CL
139}
140
81819f0f
CL
141/*
142 * Issues still to be resolved:
143 *
81819f0f
CL
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
145 *
81819f0f
CL
146 * - Variable sizing of the per node arrays
147 */
148
149/* Enable to test recovery from slab corruption on boot */
150#undef SLUB_RESILIENCY_TEST
151
2086d26a
CL
152/*
153 * Mininum number of partial slabs. These will be left on the partial
154 * lists even if they are empty. kmem_cache_shrink may reclaim them.
155 */
76be8950 156#define MIN_PARTIAL 5
e95eed57 157
2086d26a
CL
158/*
159 * Maximum number of desirable partial slabs.
160 * The existence of more partial slabs makes kmem_cache_shrink
161 * sort the partial list by the number of objects in the.
162 */
163#define MAX_PARTIAL 10
164
81819f0f
CL
165#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
166 SLAB_POISON | SLAB_STORE_USER)
672bba3a 167
81819f0f
CL
168/*
169 * Set of flags that will prevent slab merging
170 */
171#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
172 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
173
174#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
175 SLAB_CACHE_DMA)
176
177#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 178#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
179#endif
180
181#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 182#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
183#endif
184
185/* Internal SLUB flags */
1ceef402
CL
186#define __OBJECT_POISON 0x80000000 /* Poison object */
187#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
81819f0f 188
65c02d4c
CL
189/* Not all arches define cache_line_size */
190#ifndef cache_line_size
191#define cache_line_size() L1_CACHE_BYTES
192#endif
193
81819f0f
CL
194static int kmem_size = sizeof(struct kmem_cache);
195
196#ifdef CONFIG_SMP
197static struct notifier_block slab_notifier;
198#endif
199
200static enum {
201 DOWN, /* No slab functionality available */
202 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 203 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
204 SYSFS /* Sysfs up */
205} slab_state = DOWN;
206
207/* A list of all slab caches on the system */
208static DECLARE_RWSEM(slub_lock);
5af328a5 209static LIST_HEAD(slab_caches);
81819f0f 210
02cbc874
CL
211/*
212 * Tracking user of a slab.
213 */
214struct track {
215 void *addr; /* Called from address */
216 int cpu; /* Was running on cpu */
217 int pid; /* Pid context */
218 unsigned long when; /* When did the operation occur */
219};
220
221enum track_item { TRACK_ALLOC, TRACK_FREE };
222
41ecc55b 223#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
81819f0f
CL
224static int sysfs_slab_add(struct kmem_cache *);
225static int sysfs_slab_alias(struct kmem_cache *, const char *);
226static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 227
81819f0f 228#else
0c710013
CL
229static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
230static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
231 { return 0; }
151c602f
CL
232static inline void sysfs_slab_remove(struct kmem_cache *s)
233{
234 kfree(s);
235}
8ff12cfc 236
81819f0f
CL
237#endif
238
8ff12cfc
CL
239static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
240{
241#ifdef CONFIG_SLUB_STATS
242 c->stat[si]++;
243#endif
244}
245
81819f0f
CL
246/********************************************************************
247 * Core slab cache functions
248 *******************************************************************/
249
250int slab_is_available(void)
251{
252 return slab_state >= UP;
253}
254
255static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
256{
257#ifdef CONFIG_NUMA
258 return s->node[node];
259#else
260 return &s->local_node;
261#endif
262}
263
dfb4f096
CL
264static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
265{
4c93c355
CL
266#ifdef CONFIG_SMP
267 return s->cpu_slab[cpu];
268#else
269 return &s->cpu_slab;
270#endif
dfb4f096
CL
271}
272
6446faa2 273/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
274static inline int check_valid_pointer(struct kmem_cache *s,
275 struct page *page, const void *object)
276{
277 void *base;
278
a973e9dd 279 if (!object)
02cbc874
CL
280 return 1;
281
a973e9dd 282 base = page_address(page);
39b26464 283 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
284 (object - base) % s->size) {
285 return 0;
286 }
287
288 return 1;
289}
290
7656c72b
CL
291/*
292 * Slow version of get and set free pointer.
293 *
294 * This version requires touching the cache lines of kmem_cache which
295 * we avoid to do in the fast alloc free paths. There we obtain the offset
296 * from the page struct.
297 */
298static inline void *get_freepointer(struct kmem_cache *s, void *object)
299{
300 return *(void **)(object + s->offset);
301}
302
303static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
304{
305 *(void **)(object + s->offset) = fp;
306}
307
308/* Loop over all objects in a slab */
224a88be
CL
309#define for_each_object(__p, __s, __addr, __objects) \
310 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
311 __p += (__s)->size)
312
313/* Scan freelist */
314#define for_each_free_object(__p, __s, __free) \
a973e9dd 315 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
316
317/* Determine object index from a given position */
318static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
319{
320 return (p - addr) / s->size;
321}
322
834f3d11
CL
323static inline struct kmem_cache_order_objects oo_make(int order,
324 unsigned long size)
325{
326 struct kmem_cache_order_objects x = {
327 (order << 16) + (PAGE_SIZE << order) / size
328 };
329
330 return x;
331}
332
333static inline int oo_order(struct kmem_cache_order_objects x)
334{
335 return x.x >> 16;
336}
337
338static inline int oo_objects(struct kmem_cache_order_objects x)
339{
340 return x.x & ((1 << 16) - 1);
341}
342
41ecc55b
CL
343#ifdef CONFIG_SLUB_DEBUG
344/*
345 * Debug settings:
346 */
f0630fff
CL
347#ifdef CONFIG_SLUB_DEBUG_ON
348static int slub_debug = DEBUG_DEFAULT_FLAGS;
349#else
41ecc55b 350static int slub_debug;
f0630fff 351#endif
41ecc55b
CL
352
353static char *slub_debug_slabs;
354
81819f0f
CL
355/*
356 * Object debugging
357 */
358static void print_section(char *text, u8 *addr, unsigned int length)
359{
360 int i, offset;
361 int newline = 1;
362 char ascii[17];
363
364 ascii[16] = 0;
365
366 for (i = 0; i < length; i++) {
367 if (newline) {
24922684 368 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
369 newline = 0;
370 }
06428780 371 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
372 offset = i % 16;
373 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
374 if (offset == 15) {
06428780 375 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
376 newline = 1;
377 }
378 }
379 if (!newline) {
380 i %= 16;
381 while (i < 16) {
06428780 382 printk(KERN_CONT " ");
81819f0f
CL
383 ascii[i] = ' ';
384 i++;
385 }
06428780 386 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
387 }
388}
389
81819f0f
CL
390static struct track *get_track(struct kmem_cache *s, void *object,
391 enum track_item alloc)
392{
393 struct track *p;
394
395 if (s->offset)
396 p = object + s->offset + sizeof(void *);
397 else
398 p = object + s->inuse;
399
400 return p + alloc;
401}
402
403static void set_track(struct kmem_cache *s, void *object,
404 enum track_item alloc, void *addr)
405{
406 struct track *p;
407
408 if (s->offset)
409 p = object + s->offset + sizeof(void *);
410 else
411 p = object + s->inuse;
412
413 p += alloc;
414 if (addr) {
415 p->addr = addr;
416 p->cpu = smp_processor_id();
417 p->pid = current ? current->pid : -1;
418 p->when = jiffies;
419 } else
420 memset(p, 0, sizeof(struct track));
421}
422
81819f0f
CL
423static void init_tracking(struct kmem_cache *s, void *object)
424{
24922684
CL
425 if (!(s->flags & SLAB_STORE_USER))
426 return;
427
428 set_track(s, object, TRACK_FREE, NULL);
429 set_track(s, object, TRACK_ALLOC, NULL);
81819f0f
CL
430}
431
432static void print_track(const char *s, struct track *t)
433{
434 if (!t->addr)
435 return;
436
24922684 437 printk(KERN_ERR "INFO: %s in ", s);
81819f0f 438 __print_symbol("%s", (unsigned long)t->addr);
24922684
CL
439 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
440}
441
442static void print_tracking(struct kmem_cache *s, void *object)
443{
444 if (!(s->flags & SLAB_STORE_USER))
445 return;
446
447 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
448 print_track("Freed", get_track(s, object, TRACK_FREE));
449}
450
451static void print_page_info(struct page *page)
452{
39b26464
CL
453 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
454 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
455
456}
457
458static void slab_bug(struct kmem_cache *s, char *fmt, ...)
459{
460 va_list args;
461 char buf[100];
462
463 va_start(args, fmt);
464 vsnprintf(buf, sizeof(buf), fmt, args);
465 va_end(args);
466 printk(KERN_ERR "========================================"
467 "=====================================\n");
468 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
469 printk(KERN_ERR "----------------------------------------"
470 "-------------------------------------\n\n");
81819f0f
CL
471}
472
24922684
CL
473static void slab_fix(struct kmem_cache *s, char *fmt, ...)
474{
475 va_list args;
476 char buf[100];
477
478 va_start(args, fmt);
479 vsnprintf(buf, sizeof(buf), fmt, args);
480 va_end(args);
481 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
482}
483
484static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
485{
486 unsigned int off; /* Offset of last byte */
a973e9dd 487 u8 *addr = page_address(page);
24922684
CL
488
489 print_tracking(s, p);
490
491 print_page_info(page);
492
493 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
494 p, p - addr, get_freepointer(s, p));
495
496 if (p > addr + 16)
497 print_section("Bytes b4", p - 16, 16);
498
499 print_section("Object", p, min(s->objsize, 128));
81819f0f
CL
500
501 if (s->flags & SLAB_RED_ZONE)
502 print_section("Redzone", p + s->objsize,
503 s->inuse - s->objsize);
504
81819f0f
CL
505 if (s->offset)
506 off = s->offset + sizeof(void *);
507 else
508 off = s->inuse;
509
24922684 510 if (s->flags & SLAB_STORE_USER)
81819f0f 511 off += 2 * sizeof(struct track);
81819f0f
CL
512
513 if (off != s->size)
514 /* Beginning of the filler is the free pointer */
24922684
CL
515 print_section("Padding", p + off, s->size - off);
516
517 dump_stack();
81819f0f
CL
518}
519
520static void object_err(struct kmem_cache *s, struct page *page,
521 u8 *object, char *reason)
522{
3dc50637 523 slab_bug(s, "%s", reason);
24922684 524 print_trailer(s, page, object);
81819f0f
CL
525}
526
24922684 527static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
528{
529 va_list args;
530 char buf[100];
531
24922684
CL
532 va_start(args, fmt);
533 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 534 va_end(args);
3dc50637 535 slab_bug(s, "%s", buf);
24922684 536 print_page_info(page);
81819f0f
CL
537 dump_stack();
538}
539
540static void init_object(struct kmem_cache *s, void *object, int active)
541{
542 u8 *p = object;
543
544 if (s->flags & __OBJECT_POISON) {
545 memset(p, POISON_FREE, s->objsize - 1);
06428780 546 p[s->objsize - 1] = POISON_END;
81819f0f
CL
547 }
548
549 if (s->flags & SLAB_RED_ZONE)
550 memset(p + s->objsize,
551 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
552 s->inuse - s->objsize);
553}
554
24922684 555static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
556{
557 while (bytes) {
558 if (*start != (u8)value)
24922684 559 return start;
81819f0f
CL
560 start++;
561 bytes--;
562 }
24922684
CL
563 return NULL;
564}
565
566static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
567 void *from, void *to)
568{
569 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
570 memset(from, data, to - from);
571}
572
573static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
574 u8 *object, char *what,
06428780 575 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
576{
577 u8 *fault;
578 u8 *end;
579
580 fault = check_bytes(start, value, bytes);
581 if (!fault)
582 return 1;
583
584 end = start + bytes;
585 while (end > fault && end[-1] == value)
586 end--;
587
588 slab_bug(s, "%s overwritten", what);
589 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
590 fault, end - 1, fault[0], value);
591 print_trailer(s, page, object);
592
593 restore_bytes(s, what, value, fault, end);
594 return 0;
81819f0f
CL
595}
596
81819f0f
CL
597/*
598 * Object layout:
599 *
600 * object address
601 * Bytes of the object to be managed.
602 * If the freepointer may overlay the object then the free
603 * pointer is the first word of the object.
672bba3a 604 *
81819f0f
CL
605 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
606 * 0xa5 (POISON_END)
607 *
608 * object + s->objsize
609 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
610 * Padding is extended by another word if Redzoning is enabled and
611 * objsize == inuse.
612 *
81819f0f
CL
613 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
614 * 0xcc (RED_ACTIVE) for objects in use.
615 *
616 * object + s->inuse
672bba3a
CL
617 * Meta data starts here.
618 *
81819f0f
CL
619 * A. Free pointer (if we cannot overwrite object on free)
620 * B. Tracking data for SLAB_STORE_USER
672bba3a 621 * C. Padding to reach required alignment boundary or at mininum
6446faa2 622 * one word if debugging is on to be able to detect writes
672bba3a
CL
623 * before the word boundary.
624 *
625 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
626 *
627 * object + s->size
672bba3a 628 * Nothing is used beyond s->size.
81819f0f 629 *
672bba3a
CL
630 * If slabcaches are merged then the objsize and inuse boundaries are mostly
631 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
632 * may be used with merged slabcaches.
633 */
634
81819f0f
CL
635static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
636{
637 unsigned long off = s->inuse; /* The end of info */
638
639 if (s->offset)
640 /* Freepointer is placed after the object. */
641 off += sizeof(void *);
642
643 if (s->flags & SLAB_STORE_USER)
644 /* We also have user information there */
645 off += 2 * sizeof(struct track);
646
647 if (s->size == off)
648 return 1;
649
24922684
CL
650 return check_bytes_and_report(s, page, p, "Object padding",
651 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
652}
653
39b26464 654/* Check the pad bytes at the end of a slab page */
81819f0f
CL
655static int slab_pad_check(struct kmem_cache *s, struct page *page)
656{
24922684
CL
657 u8 *start;
658 u8 *fault;
659 u8 *end;
660 int length;
661 int remainder;
81819f0f
CL
662
663 if (!(s->flags & SLAB_POISON))
664 return 1;
665
a973e9dd 666 start = page_address(page);
834f3d11 667 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
668 end = start + length;
669 remainder = length % s->size;
81819f0f
CL
670 if (!remainder)
671 return 1;
672
39b26464 673 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
674 if (!fault)
675 return 1;
676 while (end > fault && end[-1] == POISON_INUSE)
677 end--;
678
679 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 680 print_section("Padding", end - remainder, remainder);
24922684
CL
681
682 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
683 return 0;
81819f0f
CL
684}
685
686static int check_object(struct kmem_cache *s, struct page *page,
687 void *object, int active)
688{
689 u8 *p = object;
690 u8 *endobject = object + s->objsize;
691
692 if (s->flags & SLAB_RED_ZONE) {
693 unsigned int red =
694 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
695
24922684
CL
696 if (!check_bytes_and_report(s, page, object, "Redzone",
697 endobject, red, s->inuse - s->objsize))
81819f0f 698 return 0;
81819f0f 699 } else {
3adbefee
IM
700 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
701 check_bytes_and_report(s, page, p, "Alignment padding",
702 endobject, POISON_INUSE, s->inuse - s->objsize);
703 }
81819f0f
CL
704 }
705
706 if (s->flags & SLAB_POISON) {
707 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
708 (!check_bytes_and_report(s, page, p, "Poison", p,
709 POISON_FREE, s->objsize - 1) ||
710 !check_bytes_and_report(s, page, p, "Poison",
06428780 711 p + s->objsize - 1, POISON_END, 1)))
81819f0f 712 return 0;
81819f0f
CL
713 /*
714 * check_pad_bytes cleans up on its own.
715 */
716 check_pad_bytes(s, page, p);
717 }
718
719 if (!s->offset && active)
720 /*
721 * Object and freepointer overlap. Cannot check
722 * freepointer while object is allocated.
723 */
724 return 1;
725
726 /* Check free pointer validity */
727 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
728 object_err(s, page, p, "Freepointer corrupt");
729 /*
730 * No choice but to zap it and thus loose the remainder
731 * of the free objects in this slab. May cause
672bba3a 732 * another error because the object count is now wrong.
81819f0f 733 */
a973e9dd 734 set_freepointer(s, p, NULL);
81819f0f
CL
735 return 0;
736 }
737 return 1;
738}
739
740static int check_slab(struct kmem_cache *s, struct page *page)
741{
39b26464
CL
742 int maxobj;
743
81819f0f
CL
744 VM_BUG_ON(!irqs_disabled());
745
746 if (!PageSlab(page)) {
24922684 747 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
748 return 0;
749 }
39b26464
CL
750
751 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
752 if (page->objects > maxobj) {
753 slab_err(s, page, "objects %u > max %u",
754 s->name, page->objects, maxobj);
755 return 0;
756 }
757 if (page->inuse > page->objects) {
24922684 758 slab_err(s, page, "inuse %u > max %u",
39b26464 759 s->name, page->inuse, page->objects);
81819f0f
CL
760 return 0;
761 }
762 /* Slab_pad_check fixes things up after itself */
763 slab_pad_check(s, page);
764 return 1;
765}
766
767/*
672bba3a
CL
768 * Determine if a certain object on a page is on the freelist. Must hold the
769 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
770 */
771static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
772{
773 int nr = 0;
774 void *fp = page->freelist;
775 void *object = NULL;
224a88be 776 unsigned long max_objects;
81819f0f 777
39b26464 778 while (fp && nr <= page->objects) {
81819f0f
CL
779 if (fp == search)
780 return 1;
781 if (!check_valid_pointer(s, page, fp)) {
782 if (object) {
783 object_err(s, page, object,
784 "Freechain corrupt");
a973e9dd 785 set_freepointer(s, object, NULL);
81819f0f
CL
786 break;
787 } else {
24922684 788 slab_err(s, page, "Freepointer corrupt");
a973e9dd 789 page->freelist = NULL;
39b26464 790 page->inuse = page->objects;
24922684 791 slab_fix(s, "Freelist cleared");
81819f0f
CL
792 return 0;
793 }
794 break;
795 }
796 object = fp;
797 fp = get_freepointer(s, object);
798 nr++;
799 }
800
224a88be
CL
801 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
802 if (max_objects > 65535)
803 max_objects = 65535;
804
805 if (page->objects != max_objects) {
806 slab_err(s, page, "Wrong number of objects. Found %d but "
807 "should be %d", page->objects, max_objects);
808 page->objects = max_objects;
809 slab_fix(s, "Number of objects adjusted.");
810 }
39b26464 811 if (page->inuse != page->objects - nr) {
70d71228 812 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
813 "counted were %d", page->inuse, page->objects - nr);
814 page->inuse = page->objects - nr;
24922684 815 slab_fix(s, "Object count adjusted.");
81819f0f
CL
816 }
817 return search == NULL;
818}
819
3ec09742
CL
820static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
821{
822 if (s->flags & SLAB_TRACE) {
823 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
824 s->name,
825 alloc ? "alloc" : "free",
826 object, page->inuse,
827 page->freelist);
828
829 if (!alloc)
830 print_section("Object", (void *)object, s->objsize);
831
832 dump_stack();
833 }
834}
835
643b1138 836/*
672bba3a 837 * Tracking of fully allocated slabs for debugging purposes.
643b1138 838 */
e95eed57 839static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 840{
643b1138
CL
841 spin_lock(&n->list_lock);
842 list_add(&page->lru, &n->full);
843 spin_unlock(&n->list_lock);
844}
845
846static void remove_full(struct kmem_cache *s, struct page *page)
847{
848 struct kmem_cache_node *n;
849
850 if (!(s->flags & SLAB_STORE_USER))
851 return;
852
853 n = get_node(s, page_to_nid(page));
854
855 spin_lock(&n->list_lock);
856 list_del(&page->lru);
857 spin_unlock(&n->list_lock);
858}
859
0f389ec6
CL
860/* Tracking of the number of slabs for debugging purposes */
861static inline unsigned long slabs_node(struct kmem_cache *s, int node)
862{
863 struct kmem_cache_node *n = get_node(s, node);
864
865 return atomic_long_read(&n->nr_slabs);
866}
867
205ab99d 868static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
869{
870 struct kmem_cache_node *n = get_node(s, node);
871
872 /*
873 * May be called early in order to allocate a slab for the
874 * kmem_cache_node structure. Solve the chicken-egg
875 * dilemma by deferring the increment of the count during
876 * bootstrap (see early_kmem_cache_node_alloc).
877 */
205ab99d 878 if (!NUMA_BUILD || n) {
0f389ec6 879 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
880 atomic_long_add(objects, &n->total_objects);
881 }
0f389ec6 882}
205ab99d 883static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
884{
885 struct kmem_cache_node *n = get_node(s, node);
886
887 atomic_long_dec(&n->nr_slabs);
205ab99d 888 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
889}
890
891/* Object debug checks for alloc/free paths */
3ec09742
CL
892static void setup_object_debug(struct kmem_cache *s, struct page *page,
893 void *object)
894{
895 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
896 return;
897
898 init_object(s, object, 0);
899 init_tracking(s, object);
900}
901
902static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
903 void *object, void *addr)
81819f0f
CL
904{
905 if (!check_slab(s, page))
906 goto bad;
907
d692ef6d 908 if (!on_freelist(s, page, object)) {
24922684 909 object_err(s, page, object, "Object already allocated");
70d71228 910 goto bad;
81819f0f
CL
911 }
912
913 if (!check_valid_pointer(s, page, object)) {
914 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 915 goto bad;
81819f0f
CL
916 }
917
d692ef6d 918 if (!check_object(s, page, object, 0))
81819f0f 919 goto bad;
81819f0f 920
3ec09742
CL
921 /* Success perform special debug activities for allocs */
922 if (s->flags & SLAB_STORE_USER)
923 set_track(s, object, TRACK_ALLOC, addr);
924 trace(s, page, object, 1);
925 init_object(s, object, 1);
81819f0f 926 return 1;
3ec09742 927
81819f0f
CL
928bad:
929 if (PageSlab(page)) {
930 /*
931 * If this is a slab page then lets do the best we can
932 * to avoid issues in the future. Marking all objects
672bba3a 933 * as used avoids touching the remaining objects.
81819f0f 934 */
24922684 935 slab_fix(s, "Marking all objects used");
39b26464 936 page->inuse = page->objects;
a973e9dd 937 page->freelist = NULL;
81819f0f
CL
938 }
939 return 0;
940}
941
3ec09742
CL
942static int free_debug_processing(struct kmem_cache *s, struct page *page,
943 void *object, void *addr)
81819f0f
CL
944{
945 if (!check_slab(s, page))
946 goto fail;
947
948 if (!check_valid_pointer(s, page, object)) {
70d71228 949 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
950 goto fail;
951 }
952
953 if (on_freelist(s, page, object)) {
24922684 954 object_err(s, page, object, "Object already free");
81819f0f
CL
955 goto fail;
956 }
957
958 if (!check_object(s, page, object, 1))
959 return 0;
960
961 if (unlikely(s != page->slab)) {
3adbefee 962 if (!PageSlab(page)) {
70d71228
CL
963 slab_err(s, page, "Attempt to free object(0x%p) "
964 "outside of slab", object);
3adbefee 965 } else if (!page->slab) {
81819f0f 966 printk(KERN_ERR
70d71228 967 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 968 object);
70d71228 969 dump_stack();
06428780 970 } else
24922684
CL
971 object_err(s, page, object,
972 "page slab pointer corrupt.");
81819f0f
CL
973 goto fail;
974 }
3ec09742
CL
975
976 /* Special debug activities for freeing objects */
a973e9dd 977 if (!SlabFrozen(page) && !page->freelist)
3ec09742
CL
978 remove_full(s, page);
979 if (s->flags & SLAB_STORE_USER)
980 set_track(s, object, TRACK_FREE, addr);
981 trace(s, page, object, 0);
982 init_object(s, object, 0);
81819f0f 983 return 1;
3ec09742 984
81819f0f 985fail:
24922684 986 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
987 return 0;
988}
989
41ecc55b
CL
990static int __init setup_slub_debug(char *str)
991{
f0630fff
CL
992 slub_debug = DEBUG_DEFAULT_FLAGS;
993 if (*str++ != '=' || !*str)
994 /*
995 * No options specified. Switch on full debugging.
996 */
997 goto out;
998
999 if (*str == ',')
1000 /*
1001 * No options but restriction on slabs. This means full
1002 * debugging for slabs matching a pattern.
1003 */
1004 goto check_slabs;
1005
1006 slub_debug = 0;
1007 if (*str == '-')
1008 /*
1009 * Switch off all debugging measures.
1010 */
1011 goto out;
1012
1013 /*
1014 * Determine which debug features should be switched on
1015 */
06428780 1016 for (; *str && *str != ','; str++) {
f0630fff
CL
1017 switch (tolower(*str)) {
1018 case 'f':
1019 slub_debug |= SLAB_DEBUG_FREE;
1020 break;
1021 case 'z':
1022 slub_debug |= SLAB_RED_ZONE;
1023 break;
1024 case 'p':
1025 slub_debug |= SLAB_POISON;
1026 break;
1027 case 'u':
1028 slub_debug |= SLAB_STORE_USER;
1029 break;
1030 case 't':
1031 slub_debug |= SLAB_TRACE;
1032 break;
1033 default:
1034 printk(KERN_ERR "slub_debug option '%c' "
06428780 1035 "unknown. skipped\n", *str);
f0630fff 1036 }
41ecc55b
CL
1037 }
1038
f0630fff 1039check_slabs:
41ecc55b
CL
1040 if (*str == ',')
1041 slub_debug_slabs = str + 1;
f0630fff 1042out:
41ecc55b
CL
1043 return 1;
1044}
1045
1046__setup("slub_debug", setup_slub_debug);
1047
ba0268a8
CL
1048static unsigned long kmem_cache_flags(unsigned long objsize,
1049 unsigned long flags, const char *name,
4ba9b9d0 1050 void (*ctor)(struct kmem_cache *, void *))
41ecc55b
CL
1051{
1052 /*
e153362a 1053 * Enable debugging if selected on the kernel commandline.
41ecc55b 1054 */
e153362a
CL
1055 if (slub_debug && (!slub_debug_slabs ||
1056 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1057 flags |= slub_debug;
ba0268a8
CL
1058
1059 return flags;
41ecc55b
CL
1060}
1061#else
3ec09742
CL
1062static inline void setup_object_debug(struct kmem_cache *s,
1063 struct page *page, void *object) {}
41ecc55b 1064
3ec09742
CL
1065static inline int alloc_debug_processing(struct kmem_cache *s,
1066 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1067
3ec09742
CL
1068static inline int free_debug_processing(struct kmem_cache *s,
1069 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1070
41ecc55b
CL
1071static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1072 { return 1; }
1073static inline int check_object(struct kmem_cache *s, struct page *page,
1074 void *object, int active) { return 1; }
3ec09742 1075static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1076static inline unsigned long kmem_cache_flags(unsigned long objsize,
1077 unsigned long flags, const char *name,
4ba9b9d0 1078 void (*ctor)(struct kmem_cache *, void *))
ba0268a8
CL
1079{
1080 return flags;
1081}
41ecc55b 1082#define slub_debug 0
0f389ec6
CL
1083
1084static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1085 { return 0; }
205ab99d
CL
1086static inline void inc_slabs_node(struct kmem_cache *s, int node,
1087 int objects) {}
1088static inline void dec_slabs_node(struct kmem_cache *s, int node,
1089 int objects) {}
41ecc55b 1090#endif
205ab99d 1091
81819f0f
CL
1092/*
1093 * Slab allocation and freeing
1094 */
65c3376a
CL
1095static inline struct page *alloc_slab_page(gfp_t flags, int node,
1096 struct kmem_cache_order_objects oo)
1097{
1098 int order = oo_order(oo);
1099
1100 if (node == -1)
1101 return alloc_pages(flags, order);
1102 else
1103 return alloc_pages_node(node, flags, order);
1104}
1105
81819f0f
CL
1106static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1107{
06428780 1108 struct page *page;
834f3d11 1109 struct kmem_cache_order_objects oo = s->oo;
81819f0f 1110
b7a49f0d 1111 flags |= s->allocflags;
e12ba74d 1112
65c3376a
CL
1113 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1114 oo);
1115 if (unlikely(!page)) {
1116 oo = s->min;
1117 /*
1118 * Allocation may have failed due to fragmentation.
1119 * Try a lower order alloc if possible
1120 */
1121 page = alloc_slab_page(flags, node, oo);
1122 if (!page)
1123 return NULL;
81819f0f 1124
65c3376a
CL
1125 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1126 }
834f3d11 1127 page->objects = oo_objects(oo);
81819f0f
CL
1128 mod_zone_page_state(page_zone(page),
1129 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1130 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1131 1 << oo_order(oo));
81819f0f
CL
1132
1133 return page;
1134}
1135
1136static void setup_object(struct kmem_cache *s, struct page *page,
1137 void *object)
1138{
3ec09742 1139 setup_object_debug(s, page, object);
4f104934 1140 if (unlikely(s->ctor))
4ba9b9d0 1141 s->ctor(s, object);
81819f0f
CL
1142}
1143
1144static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1145{
1146 struct page *page;
81819f0f 1147 void *start;
81819f0f
CL
1148 void *last;
1149 void *p;
1150
6cb06229 1151 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1152
6cb06229
CL
1153 page = allocate_slab(s,
1154 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1155 if (!page)
1156 goto out;
1157
205ab99d 1158 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1159 page->slab = s;
1160 page->flags |= 1 << PG_slab;
1161 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1162 SLAB_STORE_USER | SLAB_TRACE))
35e5d7ee 1163 SetSlabDebug(page);
81819f0f
CL
1164
1165 start = page_address(page);
81819f0f
CL
1166
1167 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1168 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1169
1170 last = start;
224a88be 1171 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1172 setup_object(s, page, last);
1173 set_freepointer(s, last, p);
1174 last = p;
1175 }
1176 setup_object(s, page, last);
a973e9dd 1177 set_freepointer(s, last, NULL);
81819f0f
CL
1178
1179 page->freelist = start;
1180 page->inuse = 0;
1181out:
81819f0f
CL
1182 return page;
1183}
1184
1185static void __free_slab(struct kmem_cache *s, struct page *page)
1186{
834f3d11
CL
1187 int order = compound_order(page);
1188 int pages = 1 << order;
81819f0f 1189
c59def9f 1190 if (unlikely(SlabDebug(page))) {
81819f0f
CL
1191 void *p;
1192
1193 slab_pad_check(s, page);
224a88be
CL
1194 for_each_object(p, s, page_address(page),
1195 page->objects)
81819f0f 1196 check_object(s, page, p, 0);
2208b764 1197 ClearSlabDebug(page);
81819f0f
CL
1198 }
1199
1200 mod_zone_page_state(page_zone(page),
1201 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1202 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1203 -pages);
81819f0f 1204
49bd5221
CL
1205 __ClearPageSlab(page);
1206 reset_page_mapcount(page);
834f3d11 1207 __free_pages(page, order);
81819f0f
CL
1208}
1209
1210static void rcu_free_slab(struct rcu_head *h)
1211{
1212 struct page *page;
1213
1214 page = container_of((struct list_head *)h, struct page, lru);
1215 __free_slab(page->slab, page);
1216}
1217
1218static void free_slab(struct kmem_cache *s, struct page *page)
1219{
1220 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1221 /*
1222 * RCU free overloads the RCU head over the LRU
1223 */
1224 struct rcu_head *head = (void *)&page->lru;
1225
1226 call_rcu(head, rcu_free_slab);
1227 } else
1228 __free_slab(s, page);
1229}
1230
1231static void discard_slab(struct kmem_cache *s, struct page *page)
1232{
205ab99d 1233 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1234 free_slab(s, page);
1235}
1236
1237/*
1238 * Per slab locking using the pagelock
1239 */
1240static __always_inline void slab_lock(struct page *page)
1241{
1242 bit_spin_lock(PG_locked, &page->flags);
1243}
1244
1245static __always_inline void slab_unlock(struct page *page)
1246{
a76d3546 1247 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1248}
1249
1250static __always_inline int slab_trylock(struct page *page)
1251{
1252 int rc = 1;
1253
1254 rc = bit_spin_trylock(PG_locked, &page->flags);
1255 return rc;
1256}
1257
1258/*
1259 * Management of partially allocated slabs
1260 */
7c2e132c
CL
1261static void add_partial(struct kmem_cache_node *n,
1262 struct page *page, int tail)
81819f0f 1263{
e95eed57
CL
1264 spin_lock(&n->list_lock);
1265 n->nr_partial++;
7c2e132c
CL
1266 if (tail)
1267 list_add_tail(&page->lru, &n->partial);
1268 else
1269 list_add(&page->lru, &n->partial);
81819f0f
CL
1270 spin_unlock(&n->list_lock);
1271}
1272
1273static void remove_partial(struct kmem_cache *s,
1274 struct page *page)
1275{
1276 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1277
1278 spin_lock(&n->list_lock);
1279 list_del(&page->lru);
1280 n->nr_partial--;
1281 spin_unlock(&n->list_lock);
1282}
1283
1284/*
672bba3a 1285 * Lock slab and remove from the partial list.
81819f0f 1286 *
672bba3a 1287 * Must hold list_lock.
81819f0f 1288 */
4b6f0750 1289static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
81819f0f
CL
1290{
1291 if (slab_trylock(page)) {
1292 list_del(&page->lru);
1293 n->nr_partial--;
4b6f0750 1294 SetSlabFrozen(page);
81819f0f
CL
1295 return 1;
1296 }
1297 return 0;
1298}
1299
1300/*
672bba3a 1301 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1302 */
1303static struct page *get_partial_node(struct kmem_cache_node *n)
1304{
1305 struct page *page;
1306
1307 /*
1308 * Racy check. If we mistakenly see no partial slabs then we
1309 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1310 * partial slab and there is none available then get_partials()
1311 * will return NULL.
81819f0f
CL
1312 */
1313 if (!n || !n->nr_partial)
1314 return NULL;
1315
1316 spin_lock(&n->list_lock);
1317 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1318 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1319 goto out;
1320 page = NULL;
1321out:
1322 spin_unlock(&n->list_lock);
1323 return page;
1324}
1325
1326/*
672bba3a 1327 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1328 */
1329static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1330{
1331#ifdef CONFIG_NUMA
1332 struct zonelist *zonelist;
1333 struct zone **z;
1334 struct page *page;
1335
1336 /*
672bba3a
CL
1337 * The defrag ratio allows a configuration of the tradeoffs between
1338 * inter node defragmentation and node local allocations. A lower
1339 * defrag_ratio increases the tendency to do local allocations
1340 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1341 *
672bba3a
CL
1342 * If the defrag_ratio is set to 0 then kmalloc() always
1343 * returns node local objects. If the ratio is higher then kmalloc()
1344 * may return off node objects because partial slabs are obtained
1345 * from other nodes and filled up.
81819f0f 1346 *
6446faa2 1347 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1348 * defrag_ratio = 1000) then every (well almost) allocation will
1349 * first attempt to defrag slab caches on other nodes. This means
1350 * scanning over all nodes to look for partial slabs which may be
1351 * expensive if we do it every time we are trying to find a slab
1352 * with available objects.
81819f0f 1353 */
9824601e
CL
1354 if (!s->remote_node_defrag_ratio ||
1355 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1356 return NULL;
1357
3adbefee
IM
1358 zonelist = &NODE_DATA(
1359 slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
81819f0f
CL
1360 for (z = zonelist->zones; *z; z++) {
1361 struct kmem_cache_node *n;
1362
1363 n = get_node(s, zone_to_nid(*z));
1364
1365 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
e95eed57 1366 n->nr_partial > MIN_PARTIAL) {
81819f0f
CL
1367 page = get_partial_node(n);
1368 if (page)
1369 return page;
1370 }
1371 }
1372#endif
1373 return NULL;
1374}
1375
1376/*
1377 * Get a partial page, lock it and return it.
1378 */
1379static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1380{
1381 struct page *page;
1382 int searchnode = (node == -1) ? numa_node_id() : node;
1383
1384 page = get_partial_node(get_node(s, searchnode));
1385 if (page || (flags & __GFP_THISNODE))
1386 return page;
1387
1388 return get_any_partial(s, flags);
1389}
1390
1391/*
1392 * Move a page back to the lists.
1393 *
1394 * Must be called with the slab lock held.
1395 *
1396 * On exit the slab lock will have been dropped.
1397 */
7c2e132c 1398static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1399{
e95eed57 1400 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
8ff12cfc 1401 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
e95eed57 1402
4b6f0750 1403 ClearSlabFrozen(page);
81819f0f 1404 if (page->inuse) {
e95eed57 1405
a973e9dd 1406 if (page->freelist) {
7c2e132c 1407 add_partial(n, page, tail);
8ff12cfc
CL
1408 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1409 } else {
1410 stat(c, DEACTIVATE_FULL);
1411 if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1412 add_full(n, page);
1413 }
81819f0f
CL
1414 slab_unlock(page);
1415 } else {
8ff12cfc 1416 stat(c, DEACTIVATE_EMPTY);
e95eed57
CL
1417 if (n->nr_partial < MIN_PARTIAL) {
1418 /*
672bba3a
CL
1419 * Adding an empty slab to the partial slabs in order
1420 * to avoid page allocator overhead. This slab needs
1421 * to come after the other slabs with objects in
6446faa2
CL
1422 * so that the others get filled first. That way the
1423 * size of the partial list stays small.
1424 *
1425 * kmem_cache_shrink can reclaim any empty slabs from the
1426 * partial list.
e95eed57 1427 */
7c2e132c 1428 add_partial(n, page, 1);
e95eed57
CL
1429 slab_unlock(page);
1430 } else {
1431 slab_unlock(page);
8ff12cfc 1432 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
e95eed57
CL
1433 discard_slab(s, page);
1434 }
81819f0f
CL
1435 }
1436}
1437
1438/*
1439 * Remove the cpu slab
1440 */
dfb4f096 1441static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1442{
dfb4f096 1443 struct page *page = c->page;
7c2e132c 1444 int tail = 1;
8ff12cfc 1445
b773ad73 1446 if (page->freelist)
8ff12cfc 1447 stat(c, DEACTIVATE_REMOTE_FREES);
894b8788 1448 /*
6446faa2 1449 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1450 * because both freelists are empty. So this is unlikely
1451 * to occur.
1452 */
a973e9dd 1453 while (unlikely(c->freelist)) {
894b8788
CL
1454 void **object;
1455
7c2e132c
CL
1456 tail = 0; /* Hot objects. Put the slab first */
1457
894b8788 1458 /* Retrieve object from cpu_freelist */
dfb4f096 1459 object = c->freelist;
b3fba8da 1460 c->freelist = c->freelist[c->offset];
894b8788
CL
1461
1462 /* And put onto the regular freelist */
b3fba8da 1463 object[c->offset] = page->freelist;
894b8788
CL
1464 page->freelist = object;
1465 page->inuse--;
1466 }
dfb4f096 1467 c->page = NULL;
7c2e132c 1468 unfreeze_slab(s, page, tail);
81819f0f
CL
1469}
1470
dfb4f096 1471static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1472{
8ff12cfc 1473 stat(c, CPUSLAB_FLUSH);
dfb4f096
CL
1474 slab_lock(c->page);
1475 deactivate_slab(s, c);
81819f0f
CL
1476}
1477
1478/*
1479 * Flush cpu slab.
6446faa2 1480 *
81819f0f
CL
1481 * Called from IPI handler with interrupts disabled.
1482 */
0c710013 1483static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1484{
dfb4f096 1485 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
81819f0f 1486
dfb4f096
CL
1487 if (likely(c && c->page))
1488 flush_slab(s, c);
81819f0f
CL
1489}
1490
1491static void flush_cpu_slab(void *d)
1492{
1493 struct kmem_cache *s = d;
81819f0f 1494
dfb4f096 1495 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1496}
1497
1498static void flush_all(struct kmem_cache *s)
1499{
1500#ifdef CONFIG_SMP
1501 on_each_cpu(flush_cpu_slab, s, 1, 1);
1502#else
1503 unsigned long flags;
1504
1505 local_irq_save(flags);
1506 flush_cpu_slab(s);
1507 local_irq_restore(flags);
1508#endif
1509}
1510
dfb4f096
CL
1511/*
1512 * Check if the objects in a per cpu structure fit numa
1513 * locality expectations.
1514 */
1515static inline int node_match(struct kmem_cache_cpu *c, int node)
1516{
1517#ifdef CONFIG_NUMA
1518 if (node != -1 && c->node != node)
1519 return 0;
1520#endif
1521 return 1;
1522}
1523
81819f0f 1524/*
894b8788
CL
1525 * Slow path. The lockless freelist is empty or we need to perform
1526 * debugging duties.
1527 *
1528 * Interrupts are disabled.
81819f0f 1529 *
894b8788
CL
1530 * Processing is still very fast if new objects have been freed to the
1531 * regular freelist. In that case we simply take over the regular freelist
1532 * as the lockless freelist and zap the regular freelist.
81819f0f 1533 *
894b8788
CL
1534 * If that is not working then we fall back to the partial lists. We take the
1535 * first element of the freelist as the object to allocate now and move the
1536 * rest of the freelist to the lockless freelist.
81819f0f 1537 *
894b8788 1538 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1539 * we need to allocate a new slab. This is the slowest path since it involves
1540 * a call to the page allocator and the setup of a new slab.
81819f0f 1541 */
894b8788 1542static void *__slab_alloc(struct kmem_cache *s,
dfb4f096 1543 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
81819f0f 1544{
81819f0f 1545 void **object;
dfb4f096 1546 struct page *new;
81819f0f 1547
e72e9c23
LT
1548 /* We handle __GFP_ZERO in the caller */
1549 gfpflags &= ~__GFP_ZERO;
1550
dfb4f096 1551 if (!c->page)
81819f0f
CL
1552 goto new_slab;
1553
dfb4f096
CL
1554 slab_lock(c->page);
1555 if (unlikely(!node_match(c, node)))
81819f0f 1556 goto another_slab;
6446faa2 1557
8ff12cfc 1558 stat(c, ALLOC_REFILL);
6446faa2 1559
894b8788 1560load_freelist:
dfb4f096 1561 object = c->page->freelist;
a973e9dd 1562 if (unlikely(!object))
81819f0f 1563 goto another_slab;
dfb4f096 1564 if (unlikely(SlabDebug(c->page)))
81819f0f
CL
1565 goto debug;
1566
b3fba8da 1567 c->freelist = object[c->offset];
39b26464 1568 c->page->inuse = c->page->objects;
a973e9dd 1569 c->page->freelist = NULL;
dfb4f096 1570 c->node = page_to_nid(c->page);
1f84260c 1571unlock_out:
dfb4f096 1572 slab_unlock(c->page);
8ff12cfc 1573 stat(c, ALLOC_SLOWPATH);
81819f0f
CL
1574 return object;
1575
1576another_slab:
dfb4f096 1577 deactivate_slab(s, c);
81819f0f
CL
1578
1579new_slab:
dfb4f096
CL
1580 new = get_partial(s, gfpflags, node);
1581 if (new) {
1582 c->page = new;
8ff12cfc 1583 stat(c, ALLOC_FROM_PARTIAL);
894b8788 1584 goto load_freelist;
81819f0f
CL
1585 }
1586
b811c202
CL
1587 if (gfpflags & __GFP_WAIT)
1588 local_irq_enable();
1589
dfb4f096 1590 new = new_slab(s, gfpflags, node);
b811c202
CL
1591
1592 if (gfpflags & __GFP_WAIT)
1593 local_irq_disable();
1594
dfb4f096
CL
1595 if (new) {
1596 c = get_cpu_slab(s, smp_processor_id());
8ff12cfc 1597 stat(c, ALLOC_SLAB);
05aa3450 1598 if (c->page)
dfb4f096 1599 flush_slab(s, c);
dfb4f096
CL
1600 slab_lock(new);
1601 SetSlabFrozen(new);
1602 c->page = new;
4b6f0750 1603 goto load_freelist;
81819f0f 1604 }
71c7a06f 1605 return NULL;
81819f0f 1606debug:
dfb4f096 1607 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1608 goto another_slab;
894b8788 1609
dfb4f096 1610 c->page->inuse++;
b3fba8da 1611 c->page->freelist = object[c->offset];
ee3c72a1 1612 c->node = -1;
1f84260c 1613 goto unlock_out;
894b8788
CL
1614}
1615
1616/*
1617 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1618 * have the fastpath folded into their functions. So no function call
1619 * overhead for requests that can be satisfied on the fastpath.
1620 *
1621 * The fastpath works by first checking if the lockless freelist can be used.
1622 * If not then __slab_alloc is called for slow processing.
1623 *
1624 * Otherwise we can simply pick the next object from the lockless free list.
1625 */
06428780 1626static __always_inline void *slab_alloc(struct kmem_cache *s,
ce15fea8 1627 gfp_t gfpflags, int node, void *addr)
894b8788 1628{
894b8788 1629 void **object;
dfb4f096 1630 struct kmem_cache_cpu *c;
1f84260c
CL
1631 unsigned long flags;
1632
894b8788 1633 local_irq_save(flags);
dfb4f096 1634 c = get_cpu_slab(s, smp_processor_id());
a973e9dd 1635 if (unlikely(!c->freelist || !node_match(c, node)))
894b8788 1636
dfb4f096 1637 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1638
1639 else {
dfb4f096 1640 object = c->freelist;
b3fba8da 1641 c->freelist = object[c->offset];
8ff12cfc 1642 stat(c, ALLOC_FASTPATH);
894b8788
CL
1643 }
1644 local_irq_restore(flags);
d07dbea4
CL
1645
1646 if (unlikely((gfpflags & __GFP_ZERO) && object))
42a9fdbb 1647 memset(object, 0, c->objsize);
d07dbea4 1648
894b8788 1649 return object;
81819f0f
CL
1650}
1651
1652void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1653{
ce15fea8 1654 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
81819f0f
CL
1655}
1656EXPORT_SYMBOL(kmem_cache_alloc);
1657
1658#ifdef CONFIG_NUMA
1659void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1660{
ce15fea8 1661 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
81819f0f
CL
1662}
1663EXPORT_SYMBOL(kmem_cache_alloc_node);
1664#endif
1665
1666/*
894b8788
CL
1667 * Slow patch handling. This may still be called frequently since objects
1668 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1669 *
894b8788
CL
1670 * So we still attempt to reduce cache line usage. Just take the slab
1671 * lock and free the item. If there is no additional partial page
1672 * handling required then we can return immediately.
81819f0f 1673 */
894b8788 1674static void __slab_free(struct kmem_cache *s, struct page *page,
b3fba8da 1675 void *x, void *addr, unsigned int offset)
81819f0f
CL
1676{
1677 void *prior;
1678 void **object = (void *)x;
8ff12cfc 1679 struct kmem_cache_cpu *c;
81819f0f 1680
8ff12cfc
CL
1681 c = get_cpu_slab(s, raw_smp_processor_id());
1682 stat(c, FREE_SLOWPATH);
81819f0f
CL
1683 slab_lock(page);
1684
35e5d7ee 1685 if (unlikely(SlabDebug(page)))
81819f0f 1686 goto debug;
6446faa2 1687
81819f0f 1688checks_ok:
b3fba8da 1689 prior = object[offset] = page->freelist;
81819f0f
CL
1690 page->freelist = object;
1691 page->inuse--;
1692
8ff12cfc
CL
1693 if (unlikely(SlabFrozen(page))) {
1694 stat(c, FREE_FROZEN);
81819f0f 1695 goto out_unlock;
8ff12cfc 1696 }
81819f0f
CL
1697
1698 if (unlikely(!page->inuse))
1699 goto slab_empty;
1700
1701 /*
6446faa2 1702 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1703 * then add it.
1704 */
a973e9dd 1705 if (unlikely(!prior)) {
7c2e132c 1706 add_partial(get_node(s, page_to_nid(page)), page, 1);
8ff12cfc
CL
1707 stat(c, FREE_ADD_PARTIAL);
1708 }
81819f0f
CL
1709
1710out_unlock:
1711 slab_unlock(page);
81819f0f
CL
1712 return;
1713
1714slab_empty:
a973e9dd 1715 if (prior) {
81819f0f 1716 /*
672bba3a 1717 * Slab still on the partial list.
81819f0f
CL
1718 */
1719 remove_partial(s, page);
8ff12cfc
CL
1720 stat(c, FREE_REMOVE_PARTIAL);
1721 }
81819f0f 1722 slab_unlock(page);
8ff12cfc 1723 stat(c, FREE_SLAB);
81819f0f 1724 discard_slab(s, page);
81819f0f
CL
1725 return;
1726
1727debug:
3ec09742 1728 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1729 goto out_unlock;
77c5e2d0 1730 goto checks_ok;
81819f0f
CL
1731}
1732
894b8788
CL
1733/*
1734 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1735 * can perform fastpath freeing without additional function calls.
1736 *
1737 * The fastpath is only possible if we are freeing to the current cpu slab
1738 * of this processor. This typically the case if we have just allocated
1739 * the item before.
1740 *
1741 * If fastpath is not possible then fall back to __slab_free where we deal
1742 * with all sorts of special processing.
1743 */
06428780 1744static __always_inline void slab_free(struct kmem_cache *s,
894b8788
CL
1745 struct page *page, void *x, void *addr)
1746{
1747 void **object = (void *)x;
dfb4f096 1748 struct kmem_cache_cpu *c;
1f84260c
CL
1749 unsigned long flags;
1750
894b8788 1751 local_irq_save(flags);
dfb4f096 1752 c = get_cpu_slab(s, smp_processor_id());
27d9e4e9 1753 debug_check_no_locks_freed(object, c->objsize);
ee3c72a1 1754 if (likely(page == c->page && c->node >= 0)) {
b3fba8da 1755 object[c->offset] = c->freelist;
dfb4f096 1756 c->freelist = object;
8ff12cfc 1757 stat(c, FREE_FASTPATH);
894b8788 1758 } else
b3fba8da 1759 __slab_free(s, page, x, addr, c->offset);
894b8788
CL
1760
1761 local_irq_restore(flags);
1762}
1763
81819f0f
CL
1764void kmem_cache_free(struct kmem_cache *s, void *x)
1765{
77c5e2d0 1766 struct page *page;
81819f0f 1767
b49af68f 1768 page = virt_to_head_page(x);
81819f0f 1769
77c5e2d0 1770 slab_free(s, page, x, __builtin_return_address(0));
81819f0f
CL
1771}
1772EXPORT_SYMBOL(kmem_cache_free);
1773
1774/* Figure out on which slab object the object resides */
1775static struct page *get_object_page(const void *x)
1776{
b49af68f 1777 struct page *page = virt_to_head_page(x);
81819f0f
CL
1778
1779 if (!PageSlab(page))
1780 return NULL;
1781
1782 return page;
1783}
1784
1785/*
672bba3a
CL
1786 * Object placement in a slab is made very easy because we always start at
1787 * offset 0. If we tune the size of the object to the alignment then we can
1788 * get the required alignment by putting one properly sized object after
1789 * another.
81819f0f
CL
1790 *
1791 * Notice that the allocation order determines the sizes of the per cpu
1792 * caches. Each processor has always one slab available for allocations.
1793 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1794 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1795 * locking overhead.
81819f0f
CL
1796 */
1797
1798/*
1799 * Mininum / Maximum order of slab pages. This influences locking overhead
1800 * and slab fragmentation. A higher order reduces the number of partial slabs
1801 * and increases the number of allocations possible without having to
1802 * take the list_lock.
1803 */
1804static int slub_min_order;
114e9e89
CL
1805static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1806static int slub_min_objects = 4;
81819f0f
CL
1807
1808/*
1809 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1810 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1811 */
1812static int slub_nomerge;
1813
81819f0f
CL
1814/*
1815 * Calculate the order of allocation given an slab object size.
1816 *
672bba3a
CL
1817 * The order of allocation has significant impact on performance and other
1818 * system components. Generally order 0 allocations should be preferred since
1819 * order 0 does not cause fragmentation in the page allocator. Larger objects
1820 * be problematic to put into order 0 slabs because there may be too much
1821 * unused space left. We go to a higher order if more than 1/8th of the slab
1822 * would be wasted.
1823 *
1824 * In order to reach satisfactory performance we must ensure that a minimum
1825 * number of objects is in one slab. Otherwise we may generate too much
1826 * activity on the partial lists which requires taking the list_lock. This is
1827 * less a concern for large slabs though which are rarely used.
81819f0f 1828 *
672bba3a
CL
1829 * slub_max_order specifies the order where we begin to stop considering the
1830 * number of objects in a slab as critical. If we reach slub_max_order then
1831 * we try to keep the page order as low as possible. So we accept more waste
1832 * of space in favor of a small page order.
81819f0f 1833 *
672bba3a
CL
1834 * Higher order allocations also allow the placement of more objects in a
1835 * slab and thereby reduce object handling overhead. If the user has
1836 * requested a higher mininum order then we start with that one instead of
1837 * the smallest order which will fit the object.
81819f0f 1838 */
5e6d444e
CL
1839static inline int slab_order(int size, int min_objects,
1840 int max_order, int fract_leftover)
81819f0f
CL
1841{
1842 int order;
1843 int rem;
6300ea75 1844 int min_order = slub_min_order;
81819f0f 1845
39b26464
CL
1846 if ((PAGE_SIZE << min_order) / size > 65535)
1847 return get_order(size * 65535) - 1;
1848
6300ea75 1849 for (order = max(min_order,
5e6d444e
CL
1850 fls(min_objects * size - 1) - PAGE_SHIFT);
1851 order <= max_order; order++) {
81819f0f 1852
5e6d444e 1853 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1854
5e6d444e 1855 if (slab_size < min_objects * size)
81819f0f
CL
1856 continue;
1857
1858 rem = slab_size % size;
1859
5e6d444e 1860 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1861 break;
1862
1863 }
672bba3a 1864
81819f0f
CL
1865 return order;
1866}
1867
5e6d444e
CL
1868static inline int calculate_order(int size)
1869{
1870 int order;
1871 int min_objects;
1872 int fraction;
1873
1874 /*
1875 * Attempt to find best configuration for a slab. This
1876 * works by first attempting to generate a layout with
1877 * the best configuration and backing off gradually.
1878 *
1879 * First we reduce the acceptable waste in a slab. Then
1880 * we reduce the minimum objects required in a slab.
1881 */
1882 min_objects = slub_min_objects;
1883 while (min_objects > 1) {
1884 fraction = 8;
1885 while (fraction >= 4) {
1886 order = slab_order(size, min_objects,
1887 slub_max_order, fraction);
1888 if (order <= slub_max_order)
1889 return order;
1890 fraction /= 2;
1891 }
1892 min_objects /= 2;
1893 }
1894
1895 /*
1896 * We were unable to place multiple objects in a slab. Now
1897 * lets see if we can place a single object there.
1898 */
1899 order = slab_order(size, 1, slub_max_order, 1);
1900 if (order <= slub_max_order)
1901 return order;
1902
1903 /*
1904 * Doh this slab cannot be placed using slub_max_order.
1905 */
1906 order = slab_order(size, 1, MAX_ORDER, 1);
1907 if (order <= MAX_ORDER)
1908 return order;
1909 return -ENOSYS;
1910}
1911
81819f0f 1912/*
672bba3a 1913 * Figure out what the alignment of the objects will be.
81819f0f
CL
1914 */
1915static unsigned long calculate_alignment(unsigned long flags,
1916 unsigned long align, unsigned long size)
1917{
1918 /*
6446faa2
CL
1919 * If the user wants hardware cache aligned objects then follow that
1920 * suggestion if the object is sufficiently large.
81819f0f 1921 *
6446faa2
CL
1922 * The hardware cache alignment cannot override the specified
1923 * alignment though. If that is greater then use it.
81819f0f 1924 */
b6210386
NP
1925 if (flags & SLAB_HWCACHE_ALIGN) {
1926 unsigned long ralign = cache_line_size();
1927 while (size <= ralign / 2)
1928 ralign /= 2;
1929 align = max(align, ralign);
1930 }
81819f0f
CL
1931
1932 if (align < ARCH_SLAB_MINALIGN)
b6210386 1933 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
1934
1935 return ALIGN(align, sizeof(void *));
1936}
1937
dfb4f096
CL
1938static void init_kmem_cache_cpu(struct kmem_cache *s,
1939 struct kmem_cache_cpu *c)
1940{
1941 c->page = NULL;
a973e9dd 1942 c->freelist = NULL;
dfb4f096 1943 c->node = 0;
42a9fdbb
CL
1944 c->offset = s->offset / sizeof(void *);
1945 c->objsize = s->objsize;
62f75532
PE
1946#ifdef CONFIG_SLUB_STATS
1947 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1948#endif
dfb4f096
CL
1949}
1950
81819f0f
CL
1951static void init_kmem_cache_node(struct kmem_cache_node *n)
1952{
1953 n->nr_partial = 0;
81819f0f
CL
1954 spin_lock_init(&n->list_lock);
1955 INIT_LIST_HEAD(&n->partial);
8ab1372f 1956#ifdef CONFIG_SLUB_DEBUG
0f389ec6 1957 atomic_long_set(&n->nr_slabs, 0);
643b1138 1958 INIT_LIST_HEAD(&n->full);
8ab1372f 1959#endif
81819f0f
CL
1960}
1961
4c93c355
CL
1962#ifdef CONFIG_SMP
1963/*
1964 * Per cpu array for per cpu structures.
1965 *
1966 * The per cpu array places all kmem_cache_cpu structures from one processor
1967 * close together meaning that it becomes possible that multiple per cpu
1968 * structures are contained in one cacheline. This may be particularly
1969 * beneficial for the kmalloc caches.
1970 *
1971 * A desktop system typically has around 60-80 slabs. With 100 here we are
1972 * likely able to get per cpu structures for all caches from the array defined
1973 * here. We must be able to cover all kmalloc caches during bootstrap.
1974 *
1975 * If the per cpu array is exhausted then fall back to kmalloc
1976 * of individual cachelines. No sharing is possible then.
1977 */
1978#define NR_KMEM_CACHE_CPU 100
1979
1980static DEFINE_PER_CPU(struct kmem_cache_cpu,
1981 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1982
1983static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1984static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1985
1986static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1987 int cpu, gfp_t flags)
1988{
1989 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1990
1991 if (c)
1992 per_cpu(kmem_cache_cpu_free, cpu) =
1993 (void *)c->freelist;
1994 else {
1995 /* Table overflow: So allocate ourselves */
1996 c = kmalloc_node(
1997 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1998 flags, cpu_to_node(cpu));
1999 if (!c)
2000 return NULL;
2001 }
2002
2003 init_kmem_cache_cpu(s, c);
2004 return c;
2005}
2006
2007static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2008{
2009 if (c < per_cpu(kmem_cache_cpu, cpu) ||
2010 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2011 kfree(c);
2012 return;
2013 }
2014 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2015 per_cpu(kmem_cache_cpu_free, cpu) = c;
2016}
2017
2018static void free_kmem_cache_cpus(struct kmem_cache *s)
2019{
2020 int cpu;
2021
2022 for_each_online_cpu(cpu) {
2023 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2024
2025 if (c) {
2026 s->cpu_slab[cpu] = NULL;
2027 free_kmem_cache_cpu(c, cpu);
2028 }
2029 }
2030}
2031
2032static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2033{
2034 int cpu;
2035
2036 for_each_online_cpu(cpu) {
2037 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2038
2039 if (c)
2040 continue;
2041
2042 c = alloc_kmem_cache_cpu(s, cpu, flags);
2043 if (!c) {
2044 free_kmem_cache_cpus(s);
2045 return 0;
2046 }
2047 s->cpu_slab[cpu] = c;
2048 }
2049 return 1;
2050}
2051
2052/*
2053 * Initialize the per cpu array.
2054 */
2055static void init_alloc_cpu_cpu(int cpu)
2056{
2057 int i;
2058
2059 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2060 return;
2061
2062 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2063 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2064
2065 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2066}
2067
2068static void __init init_alloc_cpu(void)
2069{
2070 int cpu;
2071
2072 for_each_online_cpu(cpu)
2073 init_alloc_cpu_cpu(cpu);
2074 }
2075
2076#else
2077static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2078static inline void init_alloc_cpu(void) {}
2079
2080static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2081{
2082 init_kmem_cache_cpu(s, &s->cpu_slab);
2083 return 1;
2084}
2085#endif
2086
81819f0f
CL
2087#ifdef CONFIG_NUMA
2088/*
2089 * No kmalloc_node yet so do it by hand. We know that this is the first
2090 * slab on the node for this slabcache. There are no concurrent accesses
2091 * possible.
2092 *
2093 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2094 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2095 * memory on a fresh node that has no slab structures yet.
81819f0f 2096 */
1cd7daa5
AB
2097static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2098 int node)
81819f0f
CL
2099{
2100 struct page *page;
2101 struct kmem_cache_node *n;
ba84c73c 2102 unsigned long flags;
81819f0f
CL
2103
2104 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2105
a2f92ee7 2106 page = new_slab(kmalloc_caches, gfpflags, node);
81819f0f
CL
2107
2108 BUG_ON(!page);
a2f92ee7
CL
2109 if (page_to_nid(page) != node) {
2110 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2111 "node %d\n", node);
2112 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2113 "in order to be able to continue\n");
2114 }
2115
81819f0f
CL
2116 n = page->freelist;
2117 BUG_ON(!n);
2118 page->freelist = get_freepointer(kmalloc_caches, n);
2119 page->inuse++;
2120 kmalloc_caches->node[node] = n;
8ab1372f 2121#ifdef CONFIG_SLUB_DEBUG
d45f39cb
CL
2122 init_object(kmalloc_caches, n, 1);
2123 init_tracking(kmalloc_caches, n);
8ab1372f 2124#endif
81819f0f 2125 init_kmem_cache_node(n);
205ab99d 2126 inc_slabs_node(kmalloc_caches, node, page->objects);
6446faa2 2127
ba84c73c 2128 /*
2129 * lockdep requires consistent irq usage for each lock
2130 * so even though there cannot be a race this early in
2131 * the boot sequence, we still disable irqs.
2132 */
2133 local_irq_save(flags);
7c2e132c 2134 add_partial(n, page, 0);
ba84c73c 2135 local_irq_restore(flags);
81819f0f
CL
2136 return n;
2137}
2138
2139static void free_kmem_cache_nodes(struct kmem_cache *s)
2140{
2141 int node;
2142
f64dc58c 2143 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2144 struct kmem_cache_node *n = s->node[node];
2145 if (n && n != &s->local_node)
2146 kmem_cache_free(kmalloc_caches, n);
2147 s->node[node] = NULL;
2148 }
2149}
2150
2151static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2152{
2153 int node;
2154 int local_node;
2155
2156 if (slab_state >= UP)
2157 local_node = page_to_nid(virt_to_page(s));
2158 else
2159 local_node = 0;
2160
f64dc58c 2161 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2162 struct kmem_cache_node *n;
2163
2164 if (local_node == node)
2165 n = &s->local_node;
2166 else {
2167 if (slab_state == DOWN) {
2168 n = early_kmem_cache_node_alloc(gfpflags,
2169 node);
2170 continue;
2171 }
2172 n = kmem_cache_alloc_node(kmalloc_caches,
2173 gfpflags, node);
2174
2175 if (!n) {
2176 free_kmem_cache_nodes(s);
2177 return 0;
2178 }
2179
2180 }
2181 s->node[node] = n;
2182 init_kmem_cache_node(n);
2183 }
2184 return 1;
2185}
2186#else
2187static void free_kmem_cache_nodes(struct kmem_cache *s)
2188{
2189}
2190
2191static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2192{
2193 init_kmem_cache_node(&s->local_node);
2194 return 1;
2195}
2196#endif
2197
2198/*
2199 * calculate_sizes() determines the order and the distribution of data within
2200 * a slab object.
2201 */
06b285dc 2202static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2203{
2204 unsigned long flags = s->flags;
2205 unsigned long size = s->objsize;
2206 unsigned long align = s->align;
834f3d11 2207 int order;
81819f0f 2208
d8b42bf5
CL
2209 /*
2210 * Round up object size to the next word boundary. We can only
2211 * place the free pointer at word boundaries and this determines
2212 * the possible location of the free pointer.
2213 */
2214 size = ALIGN(size, sizeof(void *));
2215
2216#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2217 /*
2218 * Determine if we can poison the object itself. If the user of
2219 * the slab may touch the object after free or before allocation
2220 * then we should never poison the object itself.
2221 */
2222 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2223 !s->ctor)
81819f0f
CL
2224 s->flags |= __OBJECT_POISON;
2225 else
2226 s->flags &= ~__OBJECT_POISON;
2227
81819f0f
CL
2228
2229 /*
672bba3a 2230 * If we are Redzoning then check if there is some space between the
81819f0f 2231 * end of the object and the free pointer. If not then add an
672bba3a 2232 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2233 */
2234 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2235 size += sizeof(void *);
41ecc55b 2236#endif
81819f0f
CL
2237
2238 /*
672bba3a
CL
2239 * With that we have determined the number of bytes in actual use
2240 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2241 */
2242 s->inuse = size;
2243
2244 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2245 s->ctor)) {
81819f0f
CL
2246 /*
2247 * Relocate free pointer after the object if it is not
2248 * permitted to overwrite the first word of the object on
2249 * kmem_cache_free.
2250 *
2251 * This is the case if we do RCU, have a constructor or
2252 * destructor or are poisoning the objects.
2253 */
2254 s->offset = size;
2255 size += sizeof(void *);
2256 }
2257
c12b3c62 2258#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2259 if (flags & SLAB_STORE_USER)
2260 /*
2261 * Need to store information about allocs and frees after
2262 * the object.
2263 */
2264 size += 2 * sizeof(struct track);
2265
be7b3fbc 2266 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2267 /*
2268 * Add some empty padding so that we can catch
2269 * overwrites from earlier objects rather than let
2270 * tracking information or the free pointer be
2271 * corrupted if an user writes before the start
2272 * of the object.
2273 */
2274 size += sizeof(void *);
41ecc55b 2275#endif
672bba3a 2276
81819f0f
CL
2277 /*
2278 * Determine the alignment based on various parameters that the
65c02d4c
CL
2279 * user specified and the dynamic determination of cache line size
2280 * on bootup.
81819f0f
CL
2281 */
2282 align = calculate_alignment(flags, align, s->objsize);
2283
2284 /*
2285 * SLUB stores one object immediately after another beginning from
2286 * offset 0. In order to align the objects we have to simply size
2287 * each object to conform to the alignment.
2288 */
2289 size = ALIGN(size, align);
2290 s->size = size;
06b285dc
CL
2291 if (forced_order >= 0)
2292 order = forced_order;
2293 else
2294 order = calculate_order(size);
71c7a06f 2295
834f3d11 2296 if (order < 0)
81819f0f
CL
2297 return 0;
2298
b7a49f0d 2299 s->allocflags = 0;
834f3d11 2300 if (order)
b7a49f0d
CL
2301 s->allocflags |= __GFP_COMP;
2302
2303 if (s->flags & SLAB_CACHE_DMA)
2304 s->allocflags |= SLUB_DMA;
2305
2306 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2307 s->allocflags |= __GFP_RECLAIMABLE;
2308
81819f0f
CL
2309 /*
2310 * Determine the number of objects per slab
2311 */
834f3d11 2312 s->oo = oo_make(order, size);
65c3376a 2313 s->min = oo_make(get_order(size), size);
205ab99d
CL
2314 if (oo_objects(s->oo) > oo_objects(s->max))
2315 s->max = s->oo;
81819f0f 2316
834f3d11 2317 return !!oo_objects(s->oo);
81819f0f
CL
2318
2319}
2320
81819f0f
CL
2321static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2322 const char *name, size_t size,
2323 size_t align, unsigned long flags,
4ba9b9d0 2324 void (*ctor)(struct kmem_cache *, void *))
81819f0f
CL
2325{
2326 memset(s, 0, kmem_size);
2327 s->name = name;
2328 s->ctor = ctor;
81819f0f 2329 s->objsize = size;
81819f0f 2330 s->align = align;
ba0268a8 2331 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f 2332
06b285dc 2333 if (!calculate_sizes(s, -1))
81819f0f
CL
2334 goto error;
2335
2336 s->refcount = 1;
2337#ifdef CONFIG_NUMA
9824601e 2338 s->remote_node_defrag_ratio = 100;
81819f0f 2339#endif
dfb4f096
CL
2340 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2341 goto error;
81819f0f 2342
dfb4f096 2343 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
81819f0f 2344 return 1;
4c93c355 2345 free_kmem_cache_nodes(s);
81819f0f
CL
2346error:
2347 if (flags & SLAB_PANIC)
2348 panic("Cannot create slab %s size=%lu realsize=%u "
2349 "order=%u offset=%u flags=%lx\n",
834f3d11 2350 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2351 s->offset, flags);
2352 return 0;
2353}
81819f0f
CL
2354
2355/*
2356 * Check if a given pointer is valid
2357 */
2358int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2359{
06428780 2360 struct page *page;
81819f0f
CL
2361
2362 page = get_object_page(object);
2363
2364 if (!page || s != page->slab)
2365 /* No slab or wrong slab */
2366 return 0;
2367
abcd08a6 2368 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2369 return 0;
2370
2371 /*
2372 * We could also check if the object is on the slabs freelist.
2373 * But this would be too expensive and it seems that the main
6446faa2 2374 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2375 * to a certain slab.
2376 */
2377 return 1;
2378}
2379EXPORT_SYMBOL(kmem_ptr_validate);
2380
2381/*
2382 * Determine the size of a slab object
2383 */
2384unsigned int kmem_cache_size(struct kmem_cache *s)
2385{
2386 return s->objsize;
2387}
2388EXPORT_SYMBOL(kmem_cache_size);
2389
2390const char *kmem_cache_name(struct kmem_cache *s)
2391{
2392 return s->name;
2393}
2394EXPORT_SYMBOL(kmem_cache_name);
2395
33b12c38
CL
2396static void list_slab_objects(struct kmem_cache *s, struct page *page,
2397 const char *text)
2398{
2399#ifdef CONFIG_SLUB_DEBUG
2400 void *addr = page_address(page);
2401 void *p;
2402 DECLARE_BITMAP(map, page->objects);
2403
2404 bitmap_zero(map, page->objects);
2405 slab_err(s, page, "%s", text);
2406 slab_lock(page);
2407 for_each_free_object(p, s, page->freelist)
2408 set_bit(slab_index(p, s, addr), map);
2409
2410 for_each_object(p, s, addr, page->objects) {
2411
2412 if (!test_bit(slab_index(p, s, addr), map)) {
2413 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2414 p, p - addr);
2415 print_tracking(s, p);
2416 }
2417 }
2418 slab_unlock(page);
2419#endif
2420}
2421
81819f0f 2422/*
599870b1 2423 * Attempt to free all partial slabs on a node.
81819f0f 2424 */
599870b1 2425static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2426{
81819f0f
CL
2427 unsigned long flags;
2428 struct page *page, *h;
2429
2430 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2431 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f
CL
2432 if (!page->inuse) {
2433 list_del(&page->lru);
2434 discard_slab(s, page);
599870b1 2435 n->nr_partial--;
33b12c38
CL
2436 } else {
2437 list_slab_objects(s, page,
2438 "Objects remaining on kmem_cache_close()");
599870b1 2439 }
33b12c38 2440 }
81819f0f 2441 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2442}
2443
2444/*
672bba3a 2445 * Release all resources used by a slab cache.
81819f0f 2446 */
0c710013 2447static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2448{
2449 int node;
2450
2451 flush_all(s);
2452
2453 /* Attempt to free all objects */
4c93c355 2454 free_kmem_cache_cpus(s);
f64dc58c 2455 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2456 struct kmem_cache_node *n = get_node(s, node);
2457
599870b1
CL
2458 free_partial(s, n);
2459 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2460 return 1;
2461 }
2462 free_kmem_cache_nodes(s);
2463 return 0;
2464}
2465
2466/*
2467 * Close a cache and release the kmem_cache structure
2468 * (must be used for caches created using kmem_cache_create)
2469 */
2470void kmem_cache_destroy(struct kmem_cache *s)
2471{
2472 down_write(&slub_lock);
2473 s->refcount--;
2474 if (!s->refcount) {
2475 list_del(&s->list);
a0e1d1be 2476 up_write(&slub_lock);
d629d819
PE
2477 if (kmem_cache_close(s)) {
2478 printk(KERN_ERR "SLUB %s: %s called for cache that "
2479 "still has objects.\n", s->name, __func__);
2480 dump_stack();
2481 }
81819f0f 2482 sysfs_slab_remove(s);
a0e1d1be
CL
2483 } else
2484 up_write(&slub_lock);
81819f0f
CL
2485}
2486EXPORT_SYMBOL(kmem_cache_destroy);
2487
2488/********************************************************************
2489 * Kmalloc subsystem
2490 *******************************************************************/
2491
331dc558 2492struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
81819f0f
CL
2493EXPORT_SYMBOL(kmalloc_caches);
2494
81819f0f
CL
2495static int __init setup_slub_min_order(char *str)
2496{
06428780 2497 get_option(&str, &slub_min_order);
81819f0f
CL
2498
2499 return 1;
2500}
2501
2502__setup("slub_min_order=", setup_slub_min_order);
2503
2504static int __init setup_slub_max_order(char *str)
2505{
06428780 2506 get_option(&str, &slub_max_order);
81819f0f
CL
2507
2508 return 1;
2509}
2510
2511__setup("slub_max_order=", setup_slub_max_order);
2512
2513static int __init setup_slub_min_objects(char *str)
2514{
06428780 2515 get_option(&str, &slub_min_objects);
81819f0f
CL
2516
2517 return 1;
2518}
2519
2520__setup("slub_min_objects=", setup_slub_min_objects);
2521
2522static int __init setup_slub_nomerge(char *str)
2523{
2524 slub_nomerge = 1;
2525 return 1;
2526}
2527
2528__setup("slub_nomerge", setup_slub_nomerge);
2529
81819f0f
CL
2530static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2531 const char *name, int size, gfp_t gfp_flags)
2532{
2533 unsigned int flags = 0;
2534
2535 if (gfp_flags & SLUB_DMA)
2536 flags = SLAB_CACHE_DMA;
2537
2538 down_write(&slub_lock);
2539 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2540 flags, NULL))
81819f0f
CL
2541 goto panic;
2542
2543 list_add(&s->list, &slab_caches);
2544 up_write(&slub_lock);
2545 if (sysfs_slab_add(s))
2546 goto panic;
2547 return s;
2548
2549panic:
2550 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2551}
2552
2e443fd0 2553#ifdef CONFIG_ZONE_DMA
4097d601 2554static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
1ceef402
CL
2555
2556static void sysfs_add_func(struct work_struct *w)
2557{
2558 struct kmem_cache *s;
2559
2560 down_write(&slub_lock);
2561 list_for_each_entry(s, &slab_caches, list) {
2562 if (s->flags & __SYSFS_ADD_DEFERRED) {
2563 s->flags &= ~__SYSFS_ADD_DEFERRED;
2564 sysfs_slab_add(s);
2565 }
2566 }
2567 up_write(&slub_lock);
2568}
2569
2570static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2571
2e443fd0
CL
2572static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2573{
2574 struct kmem_cache *s;
2e443fd0
CL
2575 char *text;
2576 size_t realsize;
2577
2578 s = kmalloc_caches_dma[index];
2579 if (s)
2580 return s;
2581
2582 /* Dynamically create dma cache */
1ceef402
CL
2583 if (flags & __GFP_WAIT)
2584 down_write(&slub_lock);
2585 else {
2586 if (!down_write_trylock(&slub_lock))
2587 goto out;
2588 }
2589
2590 if (kmalloc_caches_dma[index])
2591 goto unlock_out;
2e443fd0 2592
7b55f620 2593 realsize = kmalloc_caches[index].objsize;
3adbefee
IM
2594 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2595 (unsigned int)realsize);
1ceef402
CL
2596 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2597
2598 if (!s || !text || !kmem_cache_open(s, flags, text,
2599 realsize, ARCH_KMALLOC_MINALIGN,
2600 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2601 kfree(s);
2602 kfree(text);
2603 goto unlock_out;
dfce8648 2604 }
1ceef402
CL
2605
2606 list_add(&s->list, &slab_caches);
2607 kmalloc_caches_dma[index] = s;
2608
2609 schedule_work(&sysfs_add_work);
2610
2611unlock_out:
dfce8648 2612 up_write(&slub_lock);
1ceef402 2613out:
dfce8648 2614 return kmalloc_caches_dma[index];
2e443fd0
CL
2615}
2616#endif
2617
f1b26339
CL
2618/*
2619 * Conversion table for small slabs sizes / 8 to the index in the
2620 * kmalloc array. This is necessary for slabs < 192 since we have non power
2621 * of two cache sizes there. The size of larger slabs can be determined using
2622 * fls.
2623 */
2624static s8 size_index[24] = {
2625 3, /* 8 */
2626 4, /* 16 */
2627 5, /* 24 */
2628 5, /* 32 */
2629 6, /* 40 */
2630 6, /* 48 */
2631 6, /* 56 */
2632 6, /* 64 */
2633 1, /* 72 */
2634 1, /* 80 */
2635 1, /* 88 */
2636 1, /* 96 */
2637 7, /* 104 */
2638 7, /* 112 */
2639 7, /* 120 */
2640 7, /* 128 */
2641 2, /* 136 */
2642 2, /* 144 */
2643 2, /* 152 */
2644 2, /* 160 */
2645 2, /* 168 */
2646 2, /* 176 */
2647 2, /* 184 */
2648 2 /* 192 */
2649};
2650
81819f0f
CL
2651static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2652{
f1b26339 2653 int index;
81819f0f 2654
f1b26339
CL
2655 if (size <= 192) {
2656 if (!size)
2657 return ZERO_SIZE_PTR;
81819f0f 2658
f1b26339 2659 index = size_index[(size - 1) / 8];
aadb4bc4 2660 } else
f1b26339 2661 index = fls(size - 1);
81819f0f
CL
2662
2663#ifdef CONFIG_ZONE_DMA
f1b26339 2664 if (unlikely((flags & SLUB_DMA)))
2e443fd0 2665 return dma_kmalloc_cache(index, flags);
f1b26339 2666
81819f0f
CL
2667#endif
2668 return &kmalloc_caches[index];
2669}
2670
2671void *__kmalloc(size_t size, gfp_t flags)
2672{
aadb4bc4 2673 struct kmem_cache *s;
81819f0f 2674
331dc558 2675 if (unlikely(size > PAGE_SIZE))
eada35ef 2676 return kmalloc_large(size, flags);
aadb4bc4
CL
2677
2678 s = get_slab(size, flags);
2679
2680 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2681 return s;
2682
ce15fea8 2683 return slab_alloc(s, flags, -1, __builtin_return_address(0));
81819f0f
CL
2684}
2685EXPORT_SYMBOL(__kmalloc);
2686
f619cfe1
CL
2687static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2688{
2689 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2690 get_order(size));
2691
2692 if (page)
2693 return page_address(page);
2694 else
2695 return NULL;
2696}
2697
81819f0f
CL
2698#ifdef CONFIG_NUMA
2699void *__kmalloc_node(size_t size, gfp_t flags, int node)
2700{
aadb4bc4 2701 struct kmem_cache *s;
81819f0f 2702
331dc558 2703 if (unlikely(size > PAGE_SIZE))
f619cfe1 2704 return kmalloc_large_node(size, flags, node);
aadb4bc4
CL
2705
2706 s = get_slab(size, flags);
2707
2708 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2709 return s;
2710
ce15fea8 2711 return slab_alloc(s, flags, node, __builtin_return_address(0));
81819f0f
CL
2712}
2713EXPORT_SYMBOL(__kmalloc_node);
2714#endif
2715
2716size_t ksize(const void *object)
2717{
272c1d21 2718 struct page *page;
81819f0f
CL
2719 struct kmem_cache *s;
2720
ef8b4520 2721 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2722 return 0;
2723
294a80a8 2724 page = virt_to_head_page(object);
294a80a8
VN
2725
2726 if (unlikely(!PageSlab(page)))
2727 return PAGE_SIZE << compound_order(page);
2728
81819f0f 2729 s = page->slab;
81819f0f 2730
ae20bfda 2731#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2732 /*
2733 * Debugging requires use of the padding between object
2734 * and whatever may come after it.
2735 */
2736 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2737 return s->objsize;
2738
ae20bfda 2739#endif
81819f0f
CL
2740 /*
2741 * If we have the need to store the freelist pointer
2742 * back there or track user information then we can
2743 * only use the space before that information.
2744 */
2745 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2746 return s->inuse;
81819f0f
CL
2747 /*
2748 * Else we can use all the padding etc for the allocation
2749 */
2750 return s->size;
2751}
2752EXPORT_SYMBOL(ksize);
2753
2754void kfree(const void *x)
2755{
81819f0f 2756 struct page *page;
5bb983b0 2757 void *object = (void *)x;
81819f0f 2758
2408c550 2759 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2760 return;
2761
b49af68f 2762 page = virt_to_head_page(x);
aadb4bc4
CL
2763 if (unlikely(!PageSlab(page))) {
2764 put_page(page);
2765 return;
2766 }
5bb983b0 2767 slab_free(page->slab, page, object, __builtin_return_address(0));
81819f0f
CL
2768}
2769EXPORT_SYMBOL(kfree);
2770
2086d26a 2771/*
672bba3a
CL
2772 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2773 * the remaining slabs by the number of items in use. The slabs with the
2774 * most items in use come first. New allocations will then fill those up
2775 * and thus they can be removed from the partial lists.
2776 *
2777 * The slabs with the least items are placed last. This results in them
2778 * being allocated from last increasing the chance that the last objects
2779 * are freed in them.
2086d26a
CL
2780 */
2781int kmem_cache_shrink(struct kmem_cache *s)
2782{
2783 int node;
2784 int i;
2785 struct kmem_cache_node *n;
2786 struct page *page;
2787 struct page *t;
205ab99d 2788 int objects = oo_objects(s->max);
2086d26a 2789 struct list_head *slabs_by_inuse =
834f3d11 2790 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2791 unsigned long flags;
2792
2793 if (!slabs_by_inuse)
2794 return -ENOMEM;
2795
2796 flush_all(s);
f64dc58c 2797 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2798 n = get_node(s, node);
2799
2800 if (!n->nr_partial)
2801 continue;
2802
834f3d11 2803 for (i = 0; i < objects; i++)
2086d26a
CL
2804 INIT_LIST_HEAD(slabs_by_inuse + i);
2805
2806 spin_lock_irqsave(&n->list_lock, flags);
2807
2808 /*
672bba3a 2809 * Build lists indexed by the items in use in each slab.
2086d26a 2810 *
672bba3a
CL
2811 * Note that concurrent frees may occur while we hold the
2812 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2813 */
2814 list_for_each_entry_safe(page, t, &n->partial, lru) {
2815 if (!page->inuse && slab_trylock(page)) {
2816 /*
2817 * Must hold slab lock here because slab_free
2818 * may have freed the last object and be
2819 * waiting to release the slab.
2820 */
2821 list_del(&page->lru);
2822 n->nr_partial--;
2823 slab_unlock(page);
2824 discard_slab(s, page);
2825 } else {
fcda3d89
CL
2826 list_move(&page->lru,
2827 slabs_by_inuse + page->inuse);
2086d26a
CL
2828 }
2829 }
2830
2086d26a 2831 /*
672bba3a
CL
2832 * Rebuild the partial list with the slabs filled up most
2833 * first and the least used slabs at the end.
2086d26a 2834 */
834f3d11 2835 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
2836 list_splice(slabs_by_inuse + i, n->partial.prev);
2837
2086d26a
CL
2838 spin_unlock_irqrestore(&n->list_lock, flags);
2839 }
2840
2841 kfree(slabs_by_inuse);
2842 return 0;
2843}
2844EXPORT_SYMBOL(kmem_cache_shrink);
2845
b9049e23
YG
2846#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2847static int slab_mem_going_offline_callback(void *arg)
2848{
2849 struct kmem_cache *s;
2850
2851 down_read(&slub_lock);
2852 list_for_each_entry(s, &slab_caches, list)
2853 kmem_cache_shrink(s);
2854 up_read(&slub_lock);
2855
2856 return 0;
2857}
2858
2859static void slab_mem_offline_callback(void *arg)
2860{
2861 struct kmem_cache_node *n;
2862 struct kmem_cache *s;
2863 struct memory_notify *marg = arg;
2864 int offline_node;
2865
2866 offline_node = marg->status_change_nid;
2867
2868 /*
2869 * If the node still has available memory. we need kmem_cache_node
2870 * for it yet.
2871 */
2872 if (offline_node < 0)
2873 return;
2874
2875 down_read(&slub_lock);
2876 list_for_each_entry(s, &slab_caches, list) {
2877 n = get_node(s, offline_node);
2878 if (n) {
2879 /*
2880 * if n->nr_slabs > 0, slabs still exist on the node
2881 * that is going down. We were unable to free them,
2882 * and offline_pages() function shoudn't call this
2883 * callback. So, we must fail.
2884 */
0f389ec6 2885 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
2886
2887 s->node[offline_node] = NULL;
2888 kmem_cache_free(kmalloc_caches, n);
2889 }
2890 }
2891 up_read(&slub_lock);
2892}
2893
2894static int slab_mem_going_online_callback(void *arg)
2895{
2896 struct kmem_cache_node *n;
2897 struct kmem_cache *s;
2898 struct memory_notify *marg = arg;
2899 int nid = marg->status_change_nid;
2900 int ret = 0;
2901
2902 /*
2903 * If the node's memory is already available, then kmem_cache_node is
2904 * already created. Nothing to do.
2905 */
2906 if (nid < 0)
2907 return 0;
2908
2909 /*
2910 * We are bringing a node online. No memory is availabe yet. We must
2911 * allocate a kmem_cache_node structure in order to bring the node
2912 * online.
2913 */
2914 down_read(&slub_lock);
2915 list_for_each_entry(s, &slab_caches, list) {
2916 /*
2917 * XXX: kmem_cache_alloc_node will fallback to other nodes
2918 * since memory is not yet available from the node that
2919 * is brought up.
2920 */
2921 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2922 if (!n) {
2923 ret = -ENOMEM;
2924 goto out;
2925 }
2926 init_kmem_cache_node(n);
2927 s->node[nid] = n;
2928 }
2929out:
2930 up_read(&slub_lock);
2931 return ret;
2932}
2933
2934static int slab_memory_callback(struct notifier_block *self,
2935 unsigned long action, void *arg)
2936{
2937 int ret = 0;
2938
2939 switch (action) {
2940 case MEM_GOING_ONLINE:
2941 ret = slab_mem_going_online_callback(arg);
2942 break;
2943 case MEM_GOING_OFFLINE:
2944 ret = slab_mem_going_offline_callback(arg);
2945 break;
2946 case MEM_OFFLINE:
2947 case MEM_CANCEL_ONLINE:
2948 slab_mem_offline_callback(arg);
2949 break;
2950 case MEM_ONLINE:
2951 case MEM_CANCEL_OFFLINE:
2952 break;
2953 }
2954
2955 ret = notifier_from_errno(ret);
2956 return ret;
2957}
2958
2959#endif /* CONFIG_MEMORY_HOTPLUG */
2960
81819f0f
CL
2961/********************************************************************
2962 * Basic setup of slabs
2963 *******************************************************************/
2964
2965void __init kmem_cache_init(void)
2966{
2967 int i;
4b356be0 2968 int caches = 0;
81819f0f 2969
4c93c355
CL
2970 init_alloc_cpu();
2971
81819f0f
CL
2972#ifdef CONFIG_NUMA
2973 /*
2974 * Must first have the slab cache available for the allocations of the
672bba3a 2975 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
2976 * kmem_cache_open for slab_state == DOWN.
2977 */
2978 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2979 sizeof(struct kmem_cache_node), GFP_KERNEL);
8ffa6875 2980 kmalloc_caches[0].refcount = -1;
4b356be0 2981 caches++;
b9049e23
YG
2982
2983 hotplug_memory_notifier(slab_memory_callback, 1);
81819f0f
CL
2984#endif
2985
2986 /* Able to allocate the per node structures */
2987 slab_state = PARTIAL;
2988
2989 /* Caches that are not of the two-to-the-power-of size */
4b356be0
CL
2990 if (KMALLOC_MIN_SIZE <= 64) {
2991 create_kmalloc_cache(&kmalloc_caches[1],
81819f0f 2992 "kmalloc-96", 96, GFP_KERNEL);
4b356be0
CL
2993 caches++;
2994 }
2995 if (KMALLOC_MIN_SIZE <= 128) {
2996 create_kmalloc_cache(&kmalloc_caches[2],
81819f0f 2997 "kmalloc-192", 192, GFP_KERNEL);
4b356be0
CL
2998 caches++;
2999 }
81819f0f 3000
331dc558 3001 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
81819f0f
CL
3002 create_kmalloc_cache(&kmalloc_caches[i],
3003 "kmalloc", 1 << i, GFP_KERNEL);
4b356be0
CL
3004 caches++;
3005 }
81819f0f 3006
f1b26339
CL
3007
3008 /*
3009 * Patch up the size_index table if we have strange large alignment
3010 * requirements for the kmalloc array. This is only the case for
6446faa2 3011 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3012 *
3013 * Largest permitted alignment is 256 bytes due to the way we
3014 * handle the index determination for the smaller caches.
3015 *
3016 * Make sure that nothing crazy happens if someone starts tinkering
3017 * around with ARCH_KMALLOC_MINALIGN
3018 */
3019 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3020 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3021
12ad6843 3022 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
f1b26339
CL
3023 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3024
81819f0f
CL
3025 slab_state = UP;
3026
3027 /* Provide the correct kmalloc names now that the caches are up */
331dc558 3028 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
81819f0f
CL
3029 kmalloc_caches[i]. name =
3030 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3031
3032#ifdef CONFIG_SMP
3033 register_cpu_notifier(&slab_notifier);
4c93c355
CL
3034 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3035 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3036#else
3037 kmem_size = sizeof(struct kmem_cache);
81819f0f
CL
3038#endif
3039
3adbefee
IM
3040 printk(KERN_INFO
3041 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3042 " CPUs=%d, Nodes=%d\n",
3043 caches, cache_line_size(),
81819f0f
CL
3044 slub_min_order, slub_max_order, slub_min_objects,
3045 nr_cpu_ids, nr_node_ids);
3046}
3047
3048/*
3049 * Find a mergeable slab cache
3050 */
3051static int slab_unmergeable(struct kmem_cache *s)
3052{
3053 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3054 return 1;
3055
c59def9f 3056 if (s->ctor)
81819f0f
CL
3057 return 1;
3058
8ffa6875
CL
3059 /*
3060 * We may have set a slab to be unmergeable during bootstrap.
3061 */
3062 if (s->refcount < 0)
3063 return 1;
3064
81819f0f
CL
3065 return 0;
3066}
3067
3068static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3069 size_t align, unsigned long flags, const char *name,
4ba9b9d0 3070 void (*ctor)(struct kmem_cache *, void *))
81819f0f 3071{
5b95a4ac 3072 struct kmem_cache *s;
81819f0f
CL
3073
3074 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3075 return NULL;
3076
c59def9f 3077 if (ctor)
81819f0f
CL
3078 return NULL;
3079
3080 size = ALIGN(size, sizeof(void *));
3081 align = calculate_alignment(flags, align, size);
3082 size = ALIGN(size, align);
ba0268a8 3083 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3084
5b95a4ac 3085 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3086 if (slab_unmergeable(s))
3087 continue;
3088
3089 if (size > s->size)
3090 continue;
3091
ba0268a8 3092 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3093 continue;
3094 /*
3095 * Check if alignment is compatible.
3096 * Courtesy of Adrian Drzewiecki
3097 */
06428780 3098 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3099 continue;
3100
3101 if (s->size - size >= sizeof(void *))
3102 continue;
3103
3104 return s;
3105 }
3106 return NULL;
3107}
3108
3109struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3110 size_t align, unsigned long flags,
4ba9b9d0 3111 void (*ctor)(struct kmem_cache *, void *))
81819f0f
CL
3112{
3113 struct kmem_cache *s;
3114
3115 down_write(&slub_lock);
ba0268a8 3116 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3117 if (s) {
42a9fdbb
CL
3118 int cpu;
3119
81819f0f
CL
3120 s->refcount++;
3121 /*
3122 * Adjust the object sizes so that we clear
3123 * the complete object on kzalloc.
3124 */
3125 s->objsize = max(s->objsize, (int)size);
42a9fdbb
CL
3126
3127 /*
3128 * And then we need to update the object size in the
3129 * per cpu structures
3130 */
3131 for_each_online_cpu(cpu)
3132 get_cpu_slab(s, cpu)->objsize = s->objsize;
6446faa2 3133
81819f0f 3134 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 3135 up_write(&slub_lock);
6446faa2 3136
81819f0f
CL
3137 if (sysfs_slab_alias(s, name))
3138 goto err;
a0e1d1be
CL
3139 return s;
3140 }
6446faa2 3141
a0e1d1be
CL
3142 s = kmalloc(kmem_size, GFP_KERNEL);
3143 if (s) {
3144 if (kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 3145 size, align, flags, ctor)) {
81819f0f 3146 list_add(&s->list, &slab_caches);
a0e1d1be
CL
3147 up_write(&slub_lock);
3148 if (sysfs_slab_add(s))
3149 goto err;
3150 return s;
3151 }
3152 kfree(s);
81819f0f
CL
3153 }
3154 up_write(&slub_lock);
81819f0f
CL
3155
3156err:
81819f0f
CL
3157 if (flags & SLAB_PANIC)
3158 panic("Cannot create slabcache %s\n", name);
3159 else
3160 s = NULL;
3161 return s;
3162}
3163EXPORT_SYMBOL(kmem_cache_create);
3164
81819f0f 3165#ifdef CONFIG_SMP
81819f0f 3166/*
672bba3a
CL
3167 * Use the cpu notifier to insure that the cpu slabs are flushed when
3168 * necessary.
81819f0f
CL
3169 */
3170static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3171 unsigned long action, void *hcpu)
3172{
3173 long cpu = (long)hcpu;
5b95a4ac
CL
3174 struct kmem_cache *s;
3175 unsigned long flags;
81819f0f
CL
3176
3177 switch (action) {
4c93c355
CL
3178 case CPU_UP_PREPARE:
3179 case CPU_UP_PREPARE_FROZEN:
3180 init_alloc_cpu_cpu(cpu);
3181 down_read(&slub_lock);
3182 list_for_each_entry(s, &slab_caches, list)
3183 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3184 GFP_KERNEL);
3185 up_read(&slub_lock);
3186 break;
3187
81819f0f 3188 case CPU_UP_CANCELED:
8bb78442 3189 case CPU_UP_CANCELED_FROZEN:
81819f0f 3190 case CPU_DEAD:
8bb78442 3191 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3192 down_read(&slub_lock);
3193 list_for_each_entry(s, &slab_caches, list) {
4c93c355
CL
3194 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3195
5b95a4ac
CL
3196 local_irq_save(flags);
3197 __flush_cpu_slab(s, cpu);
3198 local_irq_restore(flags);
4c93c355
CL
3199 free_kmem_cache_cpu(c, cpu);
3200 s->cpu_slab[cpu] = NULL;
5b95a4ac
CL
3201 }
3202 up_read(&slub_lock);
81819f0f
CL
3203 break;
3204 default:
3205 break;
3206 }
3207 return NOTIFY_OK;
3208}
3209
06428780 3210static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3211 .notifier_call = slab_cpuup_callback
06428780 3212};
81819f0f
CL
3213
3214#endif
3215
81819f0f
CL
3216void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3217{
aadb4bc4
CL
3218 struct kmem_cache *s;
3219
331dc558 3220 if (unlikely(size > PAGE_SIZE))
eada35ef
PE
3221 return kmalloc_large(size, gfpflags);
3222
aadb4bc4 3223 s = get_slab(size, gfpflags);
81819f0f 3224
2408c550 3225 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3226 return s;
81819f0f 3227
ce15fea8 3228 return slab_alloc(s, gfpflags, -1, caller);
81819f0f
CL
3229}
3230
3231void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3232 int node, void *caller)
3233{
aadb4bc4
CL
3234 struct kmem_cache *s;
3235
331dc558 3236 if (unlikely(size > PAGE_SIZE))
f619cfe1 3237 return kmalloc_large_node(size, gfpflags, node);
eada35ef 3238
aadb4bc4 3239 s = get_slab(size, gfpflags);
81819f0f 3240
2408c550 3241 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3242 return s;
81819f0f 3243
ce15fea8 3244 return slab_alloc(s, gfpflags, node, caller);
81819f0f
CL
3245}
3246
5b06c853 3247#if (defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)) || defined(CONFIG_SLABINFO)
205ab99d
CL
3248static unsigned long count_partial(struct kmem_cache_node *n,
3249 int (*get_count)(struct page *))
5b06c853
CL
3250{
3251 unsigned long flags;
3252 unsigned long x = 0;
3253 struct page *page;
3254
3255 spin_lock_irqsave(&n->list_lock, flags);
3256 list_for_each_entry(page, &n->partial, lru)
205ab99d 3257 x += get_count(page);
5b06c853
CL
3258 spin_unlock_irqrestore(&n->list_lock, flags);
3259 return x;
3260}
205ab99d
CL
3261
3262static int count_inuse(struct page *page)
3263{
3264 return page->inuse;
3265}
3266
3267static int count_total(struct page *page)
3268{
3269 return page->objects;
3270}
3271
3272static int count_free(struct page *page)
3273{
3274 return page->objects - page->inuse;
3275}
5b06c853
CL
3276#endif
3277
41ecc55b 3278#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
434e245d
CL
3279static int validate_slab(struct kmem_cache *s, struct page *page,
3280 unsigned long *map)
53e15af0
CL
3281{
3282 void *p;
a973e9dd 3283 void *addr = page_address(page);
53e15af0
CL
3284
3285 if (!check_slab(s, page) ||
3286 !on_freelist(s, page, NULL))
3287 return 0;
3288
3289 /* Now we know that a valid freelist exists */
39b26464 3290 bitmap_zero(map, page->objects);
53e15af0 3291
7656c72b
CL
3292 for_each_free_object(p, s, page->freelist) {
3293 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3294 if (!check_object(s, page, p, 0))
3295 return 0;
3296 }
3297
224a88be 3298 for_each_object(p, s, addr, page->objects)
7656c72b 3299 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3300 if (!check_object(s, page, p, 1))
3301 return 0;
3302 return 1;
3303}
3304
434e245d
CL
3305static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3306 unsigned long *map)
53e15af0
CL
3307{
3308 if (slab_trylock(page)) {
434e245d 3309 validate_slab(s, page, map);
53e15af0
CL
3310 slab_unlock(page);
3311 } else
3312 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3313 s->name, page);
3314
3315 if (s->flags & DEBUG_DEFAULT_FLAGS) {
35e5d7ee
CL
3316 if (!SlabDebug(page))
3317 printk(KERN_ERR "SLUB %s: SlabDebug not set "
53e15af0
CL
3318 "on slab 0x%p\n", s->name, page);
3319 } else {
35e5d7ee
CL
3320 if (SlabDebug(page))
3321 printk(KERN_ERR "SLUB %s: SlabDebug set on "
53e15af0
CL
3322 "slab 0x%p\n", s->name, page);
3323 }
3324}
3325
434e245d
CL
3326static int validate_slab_node(struct kmem_cache *s,
3327 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3328{
3329 unsigned long count = 0;
3330 struct page *page;
3331 unsigned long flags;
3332
3333 spin_lock_irqsave(&n->list_lock, flags);
3334
3335 list_for_each_entry(page, &n->partial, lru) {
434e245d 3336 validate_slab_slab(s, page, map);
53e15af0
CL
3337 count++;
3338 }
3339 if (count != n->nr_partial)
3340 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3341 "counter=%ld\n", s->name, count, n->nr_partial);
3342
3343 if (!(s->flags & SLAB_STORE_USER))
3344 goto out;
3345
3346 list_for_each_entry(page, &n->full, lru) {
434e245d 3347 validate_slab_slab(s, page, map);
53e15af0
CL
3348 count++;
3349 }
3350 if (count != atomic_long_read(&n->nr_slabs))
3351 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3352 "counter=%ld\n", s->name, count,
3353 atomic_long_read(&n->nr_slabs));
3354
3355out:
3356 spin_unlock_irqrestore(&n->list_lock, flags);
3357 return count;
3358}
3359
434e245d 3360static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3361{
3362 int node;
3363 unsigned long count = 0;
205ab99d 3364 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3365 sizeof(unsigned long), GFP_KERNEL);
3366
3367 if (!map)
3368 return -ENOMEM;
53e15af0
CL
3369
3370 flush_all(s);
f64dc58c 3371 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3372 struct kmem_cache_node *n = get_node(s, node);
3373
434e245d 3374 count += validate_slab_node(s, n, map);
53e15af0 3375 }
434e245d 3376 kfree(map);
53e15af0
CL
3377 return count;
3378}
3379
b3459709
CL
3380#ifdef SLUB_RESILIENCY_TEST
3381static void resiliency_test(void)
3382{
3383 u8 *p;
3384
3385 printk(KERN_ERR "SLUB resiliency testing\n");
3386 printk(KERN_ERR "-----------------------\n");
3387 printk(KERN_ERR "A. Corruption after allocation\n");
3388
3389 p = kzalloc(16, GFP_KERNEL);
3390 p[16] = 0x12;
3391 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3392 " 0x12->0x%p\n\n", p + 16);
3393
3394 validate_slab_cache(kmalloc_caches + 4);
3395
3396 /* Hmmm... The next two are dangerous */
3397 p = kzalloc(32, GFP_KERNEL);
3398 p[32 + sizeof(void *)] = 0x34;
3399 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3400 " 0x34 -> -0x%p\n", p);
3401 printk(KERN_ERR
3402 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3403
3404 validate_slab_cache(kmalloc_caches + 5);
3405 p = kzalloc(64, GFP_KERNEL);
3406 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3407 *p = 0x56;
3408 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3409 p);
3adbefee
IM
3410 printk(KERN_ERR
3411 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3412 validate_slab_cache(kmalloc_caches + 6);
3413
3414 printk(KERN_ERR "\nB. Corruption after free\n");
3415 p = kzalloc(128, GFP_KERNEL);
3416 kfree(p);
3417 *p = 0x78;
3418 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3419 validate_slab_cache(kmalloc_caches + 7);
3420
3421 p = kzalloc(256, GFP_KERNEL);
3422 kfree(p);
3423 p[50] = 0x9a;
3adbefee
IM
3424 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3425 p);
b3459709
CL
3426 validate_slab_cache(kmalloc_caches + 8);
3427
3428 p = kzalloc(512, GFP_KERNEL);
3429 kfree(p);
3430 p[512] = 0xab;
3431 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3432 validate_slab_cache(kmalloc_caches + 9);
3433}
3434#else
3435static void resiliency_test(void) {};
3436#endif
3437
88a420e4 3438/*
672bba3a 3439 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3440 * and freed.
3441 */
3442
3443struct location {
3444 unsigned long count;
3445 void *addr;
45edfa58
CL
3446 long long sum_time;
3447 long min_time;
3448 long max_time;
3449 long min_pid;
3450 long max_pid;
3451 cpumask_t cpus;
3452 nodemask_t nodes;
88a420e4
CL
3453};
3454
3455struct loc_track {
3456 unsigned long max;
3457 unsigned long count;
3458 struct location *loc;
3459};
3460
3461static void free_loc_track(struct loc_track *t)
3462{
3463 if (t->max)
3464 free_pages((unsigned long)t->loc,
3465 get_order(sizeof(struct location) * t->max));
3466}
3467
68dff6a9 3468static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3469{
3470 struct location *l;
3471 int order;
3472
88a420e4
CL
3473 order = get_order(sizeof(struct location) * max);
3474
68dff6a9 3475 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3476 if (!l)
3477 return 0;
3478
3479 if (t->count) {
3480 memcpy(l, t->loc, sizeof(struct location) * t->count);
3481 free_loc_track(t);
3482 }
3483 t->max = max;
3484 t->loc = l;
3485 return 1;
3486}
3487
3488static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3489 const struct track *track)
88a420e4
CL
3490{
3491 long start, end, pos;
3492 struct location *l;
3493 void *caddr;
45edfa58 3494 unsigned long age = jiffies - track->when;
88a420e4
CL
3495
3496 start = -1;
3497 end = t->count;
3498
3499 for ( ; ; ) {
3500 pos = start + (end - start + 1) / 2;
3501
3502 /*
3503 * There is nothing at "end". If we end up there
3504 * we need to add something to before end.
3505 */
3506 if (pos == end)
3507 break;
3508
3509 caddr = t->loc[pos].addr;
45edfa58
CL
3510 if (track->addr == caddr) {
3511
3512 l = &t->loc[pos];
3513 l->count++;
3514 if (track->when) {
3515 l->sum_time += age;
3516 if (age < l->min_time)
3517 l->min_time = age;
3518 if (age > l->max_time)
3519 l->max_time = age;
3520
3521 if (track->pid < l->min_pid)
3522 l->min_pid = track->pid;
3523 if (track->pid > l->max_pid)
3524 l->max_pid = track->pid;
3525
3526 cpu_set(track->cpu, l->cpus);
3527 }
3528 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3529 return 1;
3530 }
3531
45edfa58 3532 if (track->addr < caddr)
88a420e4
CL
3533 end = pos;
3534 else
3535 start = pos;
3536 }
3537
3538 /*
672bba3a 3539 * Not found. Insert new tracking element.
88a420e4 3540 */
68dff6a9 3541 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3542 return 0;
3543
3544 l = t->loc + pos;
3545 if (pos < t->count)
3546 memmove(l + 1, l,
3547 (t->count - pos) * sizeof(struct location));
3548 t->count++;
3549 l->count = 1;
45edfa58
CL
3550 l->addr = track->addr;
3551 l->sum_time = age;
3552 l->min_time = age;
3553 l->max_time = age;
3554 l->min_pid = track->pid;
3555 l->max_pid = track->pid;
3556 cpus_clear(l->cpus);
3557 cpu_set(track->cpu, l->cpus);
3558 nodes_clear(l->nodes);
3559 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3560 return 1;
3561}
3562
3563static void process_slab(struct loc_track *t, struct kmem_cache *s,
3564 struct page *page, enum track_item alloc)
3565{
a973e9dd 3566 void *addr = page_address(page);
39b26464 3567 DECLARE_BITMAP(map, page->objects);
88a420e4
CL
3568 void *p;
3569
39b26464 3570 bitmap_zero(map, page->objects);
7656c72b
CL
3571 for_each_free_object(p, s, page->freelist)
3572 set_bit(slab_index(p, s, addr), map);
88a420e4 3573
224a88be 3574 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3575 if (!test_bit(slab_index(p, s, addr), map))
3576 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3577}
3578
3579static int list_locations(struct kmem_cache *s, char *buf,
3580 enum track_item alloc)
3581{
e374d483 3582 int len = 0;
88a420e4 3583 unsigned long i;
68dff6a9 3584 struct loc_track t = { 0, 0, NULL };
88a420e4
CL
3585 int node;
3586
68dff6a9 3587 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
ea3061d2 3588 GFP_TEMPORARY))
68dff6a9 3589 return sprintf(buf, "Out of memory\n");
88a420e4
CL
3590
3591 /* Push back cpu slabs */
3592 flush_all(s);
3593
f64dc58c 3594 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3595 struct kmem_cache_node *n = get_node(s, node);
3596 unsigned long flags;
3597 struct page *page;
3598
9e86943b 3599 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3600 continue;
3601
3602 spin_lock_irqsave(&n->list_lock, flags);
3603 list_for_each_entry(page, &n->partial, lru)
3604 process_slab(&t, s, page, alloc);
3605 list_for_each_entry(page, &n->full, lru)
3606 process_slab(&t, s, page, alloc);
3607 spin_unlock_irqrestore(&n->list_lock, flags);
3608 }
3609
3610 for (i = 0; i < t.count; i++) {
45edfa58 3611 struct location *l = &t.loc[i];
88a420e4 3612
e374d483 3613 if (len > PAGE_SIZE - 100)
88a420e4 3614 break;
e374d483 3615 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3616
3617 if (l->addr)
e374d483 3618 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3619 else
e374d483 3620 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3621
3622 if (l->sum_time != l->min_time) {
3623 unsigned long remainder;
3624
e374d483 3625 len += sprintf(buf + len, " age=%ld/%ld/%ld",
45edfa58
CL
3626 l->min_time,
3627 div_long_long_rem(l->sum_time, l->count, &remainder),
3628 l->max_time);
3629 } else
e374d483 3630 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3631 l->min_time);
3632
3633 if (l->min_pid != l->max_pid)
e374d483 3634 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3635 l->min_pid, l->max_pid);
3636 else
e374d483 3637 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3638 l->min_pid);
3639
84966343 3640 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
e374d483
HH
3641 len < PAGE_SIZE - 60) {
3642 len += sprintf(buf + len, " cpus=");
3643 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3644 l->cpus);
3645 }
3646
84966343 3647 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3648 len < PAGE_SIZE - 60) {
3649 len += sprintf(buf + len, " nodes=");
3650 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3651 l->nodes);
3652 }
3653
e374d483 3654 len += sprintf(buf + len, "\n");
88a420e4
CL
3655 }
3656
3657 free_loc_track(&t);
3658 if (!t.count)
e374d483
HH
3659 len += sprintf(buf, "No data\n");
3660 return len;
88a420e4
CL
3661}
3662
81819f0f 3663enum slab_stat_type {
205ab99d
CL
3664 SL_ALL, /* All slabs */
3665 SL_PARTIAL, /* Only partially allocated slabs */
3666 SL_CPU, /* Only slabs used for cpu caches */
3667 SL_OBJECTS, /* Determine allocated objects not slabs */
3668 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3669};
3670
205ab99d 3671#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3672#define SO_PARTIAL (1 << SL_PARTIAL)
3673#define SO_CPU (1 << SL_CPU)
3674#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3675#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3676
62e5c4b4
CG
3677static ssize_t show_slab_objects(struct kmem_cache *s,
3678 char *buf, unsigned long flags)
81819f0f
CL
3679{
3680 unsigned long total = 0;
81819f0f
CL
3681 int node;
3682 int x;
3683 unsigned long *nodes;
3684 unsigned long *per_cpu;
3685
3686 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3687 if (!nodes)
3688 return -ENOMEM;
81819f0f
CL
3689 per_cpu = nodes + nr_node_ids;
3690
205ab99d
CL
3691 if (flags & SO_CPU) {
3692 int cpu;
81819f0f 3693
205ab99d
CL
3694 for_each_possible_cpu(cpu) {
3695 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
dfb4f096 3696
205ab99d
CL
3697 if (!c || c->node < 0)
3698 continue;
3699
3700 if (c->page) {
3701 if (flags & SO_TOTAL)
3702 x = c->page->objects;
3703 else if (flags & SO_OBJECTS)
3704 x = c->page->inuse;
81819f0f
CL
3705 else
3706 x = 1;
205ab99d 3707
81819f0f 3708 total += x;
205ab99d 3709 nodes[c->node] += x;
81819f0f 3710 }
205ab99d 3711 per_cpu[c->node]++;
81819f0f
CL
3712 }
3713 }
3714
205ab99d
CL
3715 if (flags & SO_ALL) {
3716 for_each_node_state(node, N_NORMAL_MEMORY) {
3717 struct kmem_cache_node *n = get_node(s, node);
3718
3719 if (flags & SO_TOTAL)
3720 x = atomic_long_read(&n->total_objects);
3721 else if (flags & SO_OBJECTS)
3722 x = atomic_long_read(&n->total_objects) -
3723 count_partial(n, count_free);
81819f0f 3724
81819f0f 3725 else
205ab99d 3726 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3727 total += x;
3728 nodes[node] += x;
3729 }
3730
205ab99d
CL
3731 } else if (flags & SO_PARTIAL) {
3732 for_each_node_state(node, N_NORMAL_MEMORY) {
3733 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3734
205ab99d
CL
3735 if (flags & SO_TOTAL)
3736 x = count_partial(n, count_total);
3737 else if (flags & SO_OBJECTS)
3738 x = count_partial(n, count_inuse);
81819f0f 3739 else
205ab99d 3740 x = n->nr_partial;
81819f0f
CL
3741 total += x;
3742 nodes[node] += x;
3743 }
3744 }
81819f0f
CL
3745 x = sprintf(buf, "%lu", total);
3746#ifdef CONFIG_NUMA
f64dc58c 3747 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3748 if (nodes[node])
3749 x += sprintf(buf + x, " N%d=%lu",
3750 node, nodes[node]);
3751#endif
3752 kfree(nodes);
3753 return x + sprintf(buf + x, "\n");
3754}
3755
3756static int any_slab_objects(struct kmem_cache *s)
3757{
3758 int node;
81819f0f 3759
dfb4f096 3760 for_each_online_node(node) {
81819f0f
CL
3761 struct kmem_cache_node *n = get_node(s, node);
3762
dfb4f096
CL
3763 if (!n)
3764 continue;
3765
31d33baf 3766 if (atomic_read(&n->total_objects))
81819f0f
CL
3767 return 1;
3768 }
3769 return 0;
3770}
3771
3772#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3773#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3774
3775struct slab_attribute {
3776 struct attribute attr;
3777 ssize_t (*show)(struct kmem_cache *s, char *buf);
3778 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3779};
3780
3781#define SLAB_ATTR_RO(_name) \
3782 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3783
3784#define SLAB_ATTR(_name) \
3785 static struct slab_attribute _name##_attr = \
3786 __ATTR(_name, 0644, _name##_show, _name##_store)
3787
81819f0f
CL
3788static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3789{
3790 return sprintf(buf, "%d\n", s->size);
3791}
3792SLAB_ATTR_RO(slab_size);
3793
3794static ssize_t align_show(struct kmem_cache *s, char *buf)
3795{
3796 return sprintf(buf, "%d\n", s->align);
3797}
3798SLAB_ATTR_RO(align);
3799
3800static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3801{
3802 return sprintf(buf, "%d\n", s->objsize);
3803}
3804SLAB_ATTR_RO(object_size);
3805
3806static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3807{
834f3d11 3808 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
3809}
3810SLAB_ATTR_RO(objs_per_slab);
3811
06b285dc
CL
3812static ssize_t order_store(struct kmem_cache *s,
3813 const char *buf, size_t length)
3814{
3815 int order = simple_strtoul(buf, NULL, 10);
3816
3817 if (order > slub_max_order || order < slub_min_order)
3818 return -EINVAL;
3819
3820 calculate_sizes(s, order);
3821 return length;
3822}
3823
81819f0f
CL
3824static ssize_t order_show(struct kmem_cache *s, char *buf)
3825{
834f3d11 3826 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 3827}
06b285dc 3828SLAB_ATTR(order);
81819f0f
CL
3829
3830static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3831{
3832 if (s->ctor) {
3833 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3834
3835 return n + sprintf(buf + n, "\n");
3836 }
3837 return 0;
3838}
3839SLAB_ATTR_RO(ctor);
3840
81819f0f
CL
3841static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3842{
3843 return sprintf(buf, "%d\n", s->refcount - 1);
3844}
3845SLAB_ATTR_RO(aliases);
3846
3847static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3848{
205ab99d 3849 return show_slab_objects(s, buf, SO_ALL);
81819f0f
CL
3850}
3851SLAB_ATTR_RO(slabs);
3852
3853static ssize_t partial_show(struct kmem_cache *s, char *buf)
3854{
d9acf4b7 3855 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
3856}
3857SLAB_ATTR_RO(partial);
3858
3859static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3860{
d9acf4b7 3861 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
3862}
3863SLAB_ATTR_RO(cpu_slabs);
3864
3865static ssize_t objects_show(struct kmem_cache *s, char *buf)
3866{
205ab99d 3867 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
3868}
3869SLAB_ATTR_RO(objects);
3870
205ab99d
CL
3871static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3872{
3873 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3874}
3875SLAB_ATTR_RO(objects_partial);
3876
3877static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3878{
3879 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3880}
3881SLAB_ATTR_RO(total_objects);
3882
81819f0f
CL
3883static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3884{
3885 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3886}
3887
3888static ssize_t sanity_checks_store(struct kmem_cache *s,
3889 const char *buf, size_t length)
3890{
3891 s->flags &= ~SLAB_DEBUG_FREE;
3892 if (buf[0] == '1')
3893 s->flags |= SLAB_DEBUG_FREE;
3894 return length;
3895}
3896SLAB_ATTR(sanity_checks);
3897
3898static ssize_t trace_show(struct kmem_cache *s, char *buf)
3899{
3900 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3901}
3902
3903static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3904 size_t length)
3905{
3906 s->flags &= ~SLAB_TRACE;
3907 if (buf[0] == '1')
3908 s->flags |= SLAB_TRACE;
3909 return length;
3910}
3911SLAB_ATTR(trace);
3912
3913static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3914{
3915 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3916}
3917
3918static ssize_t reclaim_account_store(struct kmem_cache *s,
3919 const char *buf, size_t length)
3920{
3921 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3922 if (buf[0] == '1')
3923 s->flags |= SLAB_RECLAIM_ACCOUNT;
3924 return length;
3925}
3926SLAB_ATTR(reclaim_account);
3927
3928static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3929{
5af60839 3930 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
3931}
3932SLAB_ATTR_RO(hwcache_align);
3933
3934#ifdef CONFIG_ZONE_DMA
3935static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3936{
3937 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3938}
3939SLAB_ATTR_RO(cache_dma);
3940#endif
3941
3942static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3943{
3944 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3945}
3946SLAB_ATTR_RO(destroy_by_rcu);
3947
3948static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3949{
3950 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3951}
3952
3953static ssize_t red_zone_store(struct kmem_cache *s,
3954 const char *buf, size_t length)
3955{
3956 if (any_slab_objects(s))
3957 return -EBUSY;
3958
3959 s->flags &= ~SLAB_RED_ZONE;
3960 if (buf[0] == '1')
3961 s->flags |= SLAB_RED_ZONE;
06b285dc 3962 calculate_sizes(s, -1);
81819f0f
CL
3963 return length;
3964}
3965SLAB_ATTR(red_zone);
3966
3967static ssize_t poison_show(struct kmem_cache *s, char *buf)
3968{
3969 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3970}
3971
3972static ssize_t poison_store(struct kmem_cache *s,
3973 const char *buf, size_t length)
3974{
3975 if (any_slab_objects(s))
3976 return -EBUSY;
3977
3978 s->flags &= ~SLAB_POISON;
3979 if (buf[0] == '1')
3980 s->flags |= SLAB_POISON;
06b285dc 3981 calculate_sizes(s, -1);
81819f0f
CL
3982 return length;
3983}
3984SLAB_ATTR(poison);
3985
3986static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3987{
3988 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3989}
3990
3991static ssize_t store_user_store(struct kmem_cache *s,
3992 const char *buf, size_t length)
3993{
3994 if (any_slab_objects(s))
3995 return -EBUSY;
3996
3997 s->flags &= ~SLAB_STORE_USER;
3998 if (buf[0] == '1')
3999 s->flags |= SLAB_STORE_USER;
06b285dc 4000 calculate_sizes(s, -1);
81819f0f
CL
4001 return length;
4002}
4003SLAB_ATTR(store_user);
4004
53e15af0
CL
4005static ssize_t validate_show(struct kmem_cache *s, char *buf)
4006{
4007 return 0;
4008}
4009
4010static ssize_t validate_store(struct kmem_cache *s,
4011 const char *buf, size_t length)
4012{
434e245d
CL
4013 int ret = -EINVAL;
4014
4015 if (buf[0] == '1') {
4016 ret = validate_slab_cache(s);
4017 if (ret >= 0)
4018 ret = length;
4019 }
4020 return ret;
53e15af0
CL
4021}
4022SLAB_ATTR(validate);
4023
2086d26a
CL
4024static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4025{
4026 return 0;
4027}
4028
4029static ssize_t shrink_store(struct kmem_cache *s,
4030 const char *buf, size_t length)
4031{
4032 if (buf[0] == '1') {
4033 int rc = kmem_cache_shrink(s);
4034
4035 if (rc)
4036 return rc;
4037 } else
4038 return -EINVAL;
4039 return length;
4040}
4041SLAB_ATTR(shrink);
4042
88a420e4
CL
4043static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4044{
4045 if (!(s->flags & SLAB_STORE_USER))
4046 return -ENOSYS;
4047 return list_locations(s, buf, TRACK_ALLOC);
4048}
4049SLAB_ATTR_RO(alloc_calls);
4050
4051static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4052{
4053 if (!(s->flags & SLAB_STORE_USER))
4054 return -ENOSYS;
4055 return list_locations(s, buf, TRACK_FREE);
4056}
4057SLAB_ATTR_RO(free_calls);
4058
81819f0f 4059#ifdef CONFIG_NUMA
9824601e 4060static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4061{
9824601e 4062 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4063}
4064
9824601e 4065static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4066 const char *buf, size_t length)
4067{
4068 int n = simple_strtoul(buf, NULL, 10);
4069
4070 if (n < 100)
9824601e 4071 s->remote_node_defrag_ratio = n * 10;
81819f0f
CL
4072 return length;
4073}
9824601e 4074SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4075#endif
4076
8ff12cfc 4077#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4078static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4079{
4080 unsigned long sum = 0;
4081 int cpu;
4082 int len;
4083 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4084
4085 if (!data)
4086 return -ENOMEM;
4087
4088 for_each_online_cpu(cpu) {
4089 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4090
4091 data[cpu] = x;
4092 sum += x;
4093 }
4094
4095 len = sprintf(buf, "%lu", sum);
4096
50ef37b9 4097#ifdef CONFIG_SMP
8ff12cfc
CL
4098 for_each_online_cpu(cpu) {
4099 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4100 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4101 }
50ef37b9 4102#endif
8ff12cfc
CL
4103 kfree(data);
4104 return len + sprintf(buf + len, "\n");
4105}
4106
4107#define STAT_ATTR(si, text) \
4108static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4109{ \
4110 return show_stat(s, buf, si); \
4111} \
4112SLAB_ATTR_RO(text); \
4113
4114STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4115STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4116STAT_ATTR(FREE_FASTPATH, free_fastpath);
4117STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4118STAT_ATTR(FREE_FROZEN, free_frozen);
4119STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4120STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4121STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4122STAT_ATTR(ALLOC_SLAB, alloc_slab);
4123STAT_ATTR(ALLOC_REFILL, alloc_refill);
4124STAT_ATTR(FREE_SLAB, free_slab);
4125STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4126STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4127STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4128STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4129STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4130STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4131STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4132#endif
4133
06428780 4134static struct attribute *slab_attrs[] = {
81819f0f
CL
4135 &slab_size_attr.attr,
4136 &object_size_attr.attr,
4137 &objs_per_slab_attr.attr,
4138 &order_attr.attr,
4139 &objects_attr.attr,
205ab99d
CL
4140 &objects_partial_attr.attr,
4141 &total_objects_attr.attr,
81819f0f
CL
4142 &slabs_attr.attr,
4143 &partial_attr.attr,
4144 &cpu_slabs_attr.attr,
4145 &ctor_attr.attr,
81819f0f
CL
4146 &aliases_attr.attr,
4147 &align_attr.attr,
4148 &sanity_checks_attr.attr,
4149 &trace_attr.attr,
4150 &hwcache_align_attr.attr,
4151 &reclaim_account_attr.attr,
4152 &destroy_by_rcu_attr.attr,
4153 &red_zone_attr.attr,
4154 &poison_attr.attr,
4155 &store_user_attr.attr,
53e15af0 4156 &validate_attr.attr,
2086d26a 4157 &shrink_attr.attr,
88a420e4
CL
4158 &alloc_calls_attr.attr,
4159 &free_calls_attr.attr,
81819f0f
CL
4160#ifdef CONFIG_ZONE_DMA
4161 &cache_dma_attr.attr,
4162#endif
4163#ifdef CONFIG_NUMA
9824601e 4164 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4165#endif
4166#ifdef CONFIG_SLUB_STATS
4167 &alloc_fastpath_attr.attr,
4168 &alloc_slowpath_attr.attr,
4169 &free_fastpath_attr.attr,
4170 &free_slowpath_attr.attr,
4171 &free_frozen_attr.attr,
4172 &free_add_partial_attr.attr,
4173 &free_remove_partial_attr.attr,
4174 &alloc_from_partial_attr.attr,
4175 &alloc_slab_attr.attr,
4176 &alloc_refill_attr.attr,
4177 &free_slab_attr.attr,
4178 &cpuslab_flush_attr.attr,
4179 &deactivate_full_attr.attr,
4180 &deactivate_empty_attr.attr,
4181 &deactivate_to_head_attr.attr,
4182 &deactivate_to_tail_attr.attr,
4183 &deactivate_remote_frees_attr.attr,
65c3376a 4184 &order_fallback_attr.attr,
81819f0f
CL
4185#endif
4186 NULL
4187};
4188
4189static struct attribute_group slab_attr_group = {
4190 .attrs = slab_attrs,
4191};
4192
4193static ssize_t slab_attr_show(struct kobject *kobj,
4194 struct attribute *attr,
4195 char *buf)
4196{
4197 struct slab_attribute *attribute;
4198 struct kmem_cache *s;
4199 int err;
4200
4201 attribute = to_slab_attr(attr);
4202 s = to_slab(kobj);
4203
4204 if (!attribute->show)
4205 return -EIO;
4206
4207 err = attribute->show(s, buf);
4208
4209 return err;
4210}
4211
4212static ssize_t slab_attr_store(struct kobject *kobj,
4213 struct attribute *attr,
4214 const char *buf, size_t len)
4215{
4216 struct slab_attribute *attribute;
4217 struct kmem_cache *s;
4218 int err;
4219
4220 attribute = to_slab_attr(attr);
4221 s = to_slab(kobj);
4222
4223 if (!attribute->store)
4224 return -EIO;
4225
4226 err = attribute->store(s, buf, len);
4227
4228 return err;
4229}
4230
151c602f
CL
4231static void kmem_cache_release(struct kobject *kobj)
4232{
4233 struct kmem_cache *s = to_slab(kobj);
4234
4235 kfree(s);
4236}
4237
81819f0f
CL
4238static struct sysfs_ops slab_sysfs_ops = {
4239 .show = slab_attr_show,
4240 .store = slab_attr_store,
4241};
4242
4243static struct kobj_type slab_ktype = {
4244 .sysfs_ops = &slab_sysfs_ops,
151c602f 4245 .release = kmem_cache_release
81819f0f
CL
4246};
4247
4248static int uevent_filter(struct kset *kset, struct kobject *kobj)
4249{
4250 struct kobj_type *ktype = get_ktype(kobj);
4251
4252 if (ktype == &slab_ktype)
4253 return 1;
4254 return 0;
4255}
4256
4257static struct kset_uevent_ops slab_uevent_ops = {
4258 .filter = uevent_filter,
4259};
4260
27c3a314 4261static struct kset *slab_kset;
81819f0f
CL
4262
4263#define ID_STR_LENGTH 64
4264
4265/* Create a unique string id for a slab cache:
6446faa2
CL
4266 *
4267 * Format :[flags-]size
81819f0f
CL
4268 */
4269static char *create_unique_id(struct kmem_cache *s)
4270{
4271 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4272 char *p = name;
4273
4274 BUG_ON(!name);
4275
4276 *p++ = ':';
4277 /*
4278 * First flags affecting slabcache operations. We will only
4279 * get here for aliasable slabs so we do not need to support
4280 * too many flags. The flags here must cover all flags that
4281 * are matched during merging to guarantee that the id is
4282 * unique.
4283 */
4284 if (s->flags & SLAB_CACHE_DMA)
4285 *p++ = 'd';
4286 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4287 *p++ = 'a';
4288 if (s->flags & SLAB_DEBUG_FREE)
4289 *p++ = 'F';
4290 if (p != name + 1)
4291 *p++ = '-';
4292 p += sprintf(p, "%07d", s->size);
4293 BUG_ON(p > name + ID_STR_LENGTH - 1);
4294 return name;
4295}
4296
4297static int sysfs_slab_add(struct kmem_cache *s)
4298{
4299 int err;
4300 const char *name;
4301 int unmergeable;
4302
4303 if (slab_state < SYSFS)
4304 /* Defer until later */
4305 return 0;
4306
4307 unmergeable = slab_unmergeable(s);
4308 if (unmergeable) {
4309 /*
4310 * Slabcache can never be merged so we can use the name proper.
4311 * This is typically the case for debug situations. In that
4312 * case we can catch duplicate names easily.
4313 */
27c3a314 4314 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4315 name = s->name;
4316 } else {
4317 /*
4318 * Create a unique name for the slab as a target
4319 * for the symlinks.
4320 */
4321 name = create_unique_id(s);
4322 }
4323
27c3a314 4324 s->kobj.kset = slab_kset;
1eada11c
GKH
4325 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4326 if (err) {
4327 kobject_put(&s->kobj);
81819f0f 4328 return err;
1eada11c 4329 }
81819f0f
CL
4330
4331 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4332 if (err)
4333 return err;
4334 kobject_uevent(&s->kobj, KOBJ_ADD);
4335 if (!unmergeable) {
4336 /* Setup first alias */
4337 sysfs_slab_alias(s, s->name);
4338 kfree(name);
4339 }
4340 return 0;
4341}
4342
4343static void sysfs_slab_remove(struct kmem_cache *s)
4344{
4345 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4346 kobject_del(&s->kobj);
151c602f 4347 kobject_put(&s->kobj);
81819f0f
CL
4348}
4349
4350/*
4351 * Need to buffer aliases during bootup until sysfs becomes
4352 * available lest we loose that information.
4353 */
4354struct saved_alias {
4355 struct kmem_cache *s;
4356 const char *name;
4357 struct saved_alias *next;
4358};
4359
5af328a5 4360static struct saved_alias *alias_list;
81819f0f
CL
4361
4362static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4363{
4364 struct saved_alias *al;
4365
4366 if (slab_state == SYSFS) {
4367 /*
4368 * If we have a leftover link then remove it.
4369 */
27c3a314
GKH
4370 sysfs_remove_link(&slab_kset->kobj, name);
4371 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4372 }
4373
4374 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4375 if (!al)
4376 return -ENOMEM;
4377
4378 al->s = s;
4379 al->name = name;
4380 al->next = alias_list;
4381 alias_list = al;
4382 return 0;
4383}
4384
4385static int __init slab_sysfs_init(void)
4386{
5b95a4ac 4387 struct kmem_cache *s;
81819f0f
CL
4388 int err;
4389
0ff21e46 4390 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4391 if (!slab_kset) {
81819f0f
CL
4392 printk(KERN_ERR "Cannot register slab subsystem.\n");
4393 return -ENOSYS;
4394 }
4395
26a7bd03
CL
4396 slab_state = SYSFS;
4397
5b95a4ac 4398 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4399 err = sysfs_slab_add(s);
5d540fb7
CL
4400 if (err)
4401 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4402 " to sysfs\n", s->name);
26a7bd03 4403 }
81819f0f
CL
4404
4405 while (alias_list) {
4406 struct saved_alias *al = alias_list;
4407
4408 alias_list = alias_list->next;
4409 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4410 if (err)
4411 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4412 " %s to sysfs\n", s->name);
81819f0f
CL
4413 kfree(al);
4414 }
4415
4416 resiliency_test();
4417 return 0;
4418}
4419
4420__initcall(slab_sysfs_init);
81819f0f 4421#endif
57ed3eda
PE
4422
4423/*
4424 * The /proc/slabinfo ABI
4425 */
158a9624
LT
4426#ifdef CONFIG_SLABINFO
4427
4428ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4429 size_t count, loff_t *ppos)
4430{
4431 return -EINVAL;
4432}
4433
57ed3eda
PE
4434
4435static void print_slabinfo_header(struct seq_file *m)
4436{
4437 seq_puts(m, "slabinfo - version: 2.1\n");
4438 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4439 "<objperslab> <pagesperslab>");
4440 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4441 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4442 seq_putc(m, '\n');
4443}
4444
4445static void *s_start(struct seq_file *m, loff_t *pos)
4446{
4447 loff_t n = *pos;
4448
4449 down_read(&slub_lock);
4450 if (!n)
4451 print_slabinfo_header(m);
4452
4453 return seq_list_start(&slab_caches, *pos);
4454}
4455
4456static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4457{
4458 return seq_list_next(p, &slab_caches, pos);
4459}
4460
4461static void s_stop(struct seq_file *m, void *p)
4462{
4463 up_read(&slub_lock);
4464}
4465
4466static int s_show(struct seq_file *m, void *p)
4467{
4468 unsigned long nr_partials = 0;
4469 unsigned long nr_slabs = 0;
4470 unsigned long nr_inuse = 0;
205ab99d
CL
4471 unsigned long nr_objs = 0;
4472 unsigned long nr_free = 0;
57ed3eda
PE
4473 struct kmem_cache *s;
4474 int node;
4475
4476 s = list_entry(p, struct kmem_cache, list);
4477
4478 for_each_online_node(node) {
4479 struct kmem_cache_node *n = get_node(s, node);
4480
4481 if (!n)
4482 continue;
4483
4484 nr_partials += n->nr_partial;
4485 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4486 nr_objs += atomic_long_read(&n->total_objects);
4487 nr_free += count_partial(n, count_free);
57ed3eda
PE
4488 }
4489
205ab99d 4490 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4491
4492 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4493 nr_objs, s->size, oo_objects(s->oo),
4494 (1 << oo_order(s->oo)));
57ed3eda
PE
4495 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4496 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4497 0UL);
4498 seq_putc(m, '\n');
4499 return 0;
4500}
4501
4502const struct seq_operations slabinfo_op = {
4503 .start = s_start,
4504 .next = s_next,
4505 .stop = s_stop,
4506 .show = s_show,
4507};
4508
158a9624 4509#endif /* CONFIG_SLABINFO */